1
|
Ciaramidaro A, Toppi J, Vogel P, Freitag CM, Siniatchkin M, Astolfi L. Synergy of the mirror neuron system and the mentalizing system in a single brain and between brains during joint actions. Neuroimage 2024; 299:120783. [PMID: 39187218 DOI: 10.1016/j.neuroimage.2024.120783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Cooperative action involves the simulation of actions and their co-representation by two or more people. This requires the involvement of two complex brain systems: the mirror neuron system (MNS) and the mentalizing system (MENT), both of critical importance for successful social interaction. However, their internal organization and the potential synergy of both systems during joint actions (JA) are yet to be determined. The aim of this study was to examine the role and interaction of these two fundamental systems-MENT and MNS-during continuous interaction. To this hand, we conducted a multiple-brain connectivity analysis in the source domain during a motor cooperation task using high-density EEG dual-recordings providing relevant insights into the roles of MNS and MENT at the intra- and interbrain levels. In particular, the intra-brain analysis demonstrated the essential function of both systems during JA, as well as the crucial role played by single brain regions of both neural mechanisms during cooperative activities. Specifically, our intra-brain analysis revealed that both neural mechanisms are essential during Joint Action (JA), showing a solid connection between MNS and MENT and a central role of the single brain regions of both mechanisms during cooperative actions. Additionally, our inter-brain study revealed increased inter-subject connections involving the motor system, MENT and MNS. Thus, our findings show a mutual influence between two interacting agents, based on synchronization of MNS and MENT systems. Our results actually encourage more research into the still-largely unknown realm of inter-brain dynamics and contribute to expand the body of knowledge in social neuroscience.
Collapse
Affiliation(s)
- Angela Ciaramidaro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Viale Allegri 9, 42121 Reggio Emilia, Italy; Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany.
| | - Jlenia Toppi
- Department of Computer, Control, and Management Engineering, Univ. of Rome "Sapienza", Via Ariosto 25, 00185 Rome, Italy; Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| | - Pascal Vogel
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany; Institute of Neurophysiology, Neuroscience Center, Goethe University, Heinrich-Hoffmann-Str. 7, 60528 Frankfurt/M, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany
| | - Michael Siniatchkin
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany; Clinic of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Laura Astolfi
- Department of Computer, Control, and Management Engineering, Univ. of Rome "Sapienza", Via Ariosto 25, 00185 Rome, Italy; Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| |
Collapse
|
2
|
Schwartz L, Hayut O, Levy J, Gordon I, Feldman R. Sensitive infant care tunes a frontotemporal interbrain network in adolescence. Sci Rep 2024; 14:22602. [PMID: 39349700 PMCID: PMC11442694 DOI: 10.1038/s41598-024-73630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
Caregiving plays a critical role in children's cognitive, emotional, and psychological well-being. In the current longitudinal study, we investigated the enduring effects of early maternal behavior on processes of interbrain synchrony in adolescence. Mother-infant naturalistic interactions were filmed when infants were 3-4 months old and interactions were coded for maternal sensitivity and intrusiveness with the Coding Interactive Behavior Manual. In early adolescence (Mean = 12.30, SD = 1.25), mother-adolescent interbrain synchrony was measured using hyperscanning EEG during a naturalistic interaction of positive valence. Guided by previous hyperscanning studies, we focused on interbrain connections within the right frontotemporal interbrain network. Results indicate that maternal sensitivity in early infancy was longitudinally associated with neural synchrony in the right interbrain frontotemporal network. Post-hoc comparisons highlighted enhancement of mother-adolescent frontal-frontal connectivity, a connection that has been implicated in parent-child social communication. In contrast, maternal intrusiveness in infancy was linked with attenuation of interbrain synchrony in the right interbrain frontotemporal network. Sensitivity and intrusiveness are key maternal social orientations that have shown to be individually stable in the mother-child relationship from infancy to adulthood and foreshadow children's positive and negative social-emotional outcomes, respectively. Our findings are the first to demonstrate that these two maternal orientations play a role in enhancing or attenuating the child's interbrain frontotemporal network, which sustains social communication and affiliation. Results suggest that the reported long-term impact of maternal sensitivity and intrusiveness may relate, in part, to its effects on tuning the child's brain to sociality.
Collapse
Affiliation(s)
- Linoy Schwartz
- Center for Developmental Social Neuroscience, Reichman University, Herzliya, 0460101, Israel
| | - Olga Hayut
- Center for Developmental Social Neuroscience, Reichman University, Herzliya, 0460101, Israel
| | - Jonathan Levy
- Center for Developmental Social Neuroscience, Reichman University, Herzliya, 0460101, Israel
- Department of Criminology and Gonda Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Ilanit Gordon
- Department of Psychology and Gonda Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- Child Study Center, Yale University, New Haven, USA
| | - Ruth Feldman
- Center for Developmental Social Neuroscience, Reichman University, Herzliya, 0460101, Israel.
- Child Study Center, Yale University, New Haven, USA.
| |
Collapse
|
3
|
Du R, Liang T, Lu G. Modulation of empathic abilities by the interplay between estrogen receptors and arginine vasopressin. Neurosci Res 2024:S0168-0102(24)00110-X. [PMID: 39245211 DOI: 10.1016/j.neures.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/05/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
This review examines the complex interactions between estrogen receptors α and β (ERα and ERβ) and arginine vasopressin (AVP), delving into their significant roles in modulating empathy, a critical psychological component in human social dynamics. Empathy, integrating affective and cognitive elements, is anchored in neural regions like the amygdala and prefrontal cortex. ERα and ERβ, pivotal in estrogen regulation, influence neurotransmitter dynamics and neural network activities, crucial for empathic development. AVP, key in regulating water balance, blood pressure, and social behaviors, interplays with these receptors, profoundly impacting empathic responses. The study highlights that ERα predominantly enhances empathy, especially affective empathy, by stimulating AVP synthesis and release. In contrast, ERβ may diminish empathy in certain contexts by suppressing AVP expression and activity. The intricate interplay, homeostatic balance, and mutual conversion between ERα and ERβ in AVP regulation are identified as challenging yet crucial areas for future research. These findings provide essential insights into the neurobiological underpinnings of empathy, offering new avenues for therapeutic interventions in social cognitive disorders and emotional dysregulation.
Collapse
Affiliation(s)
- Rui Du
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Ting Liang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Guofang Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
4
|
Hurel E, Grall-Bronnec M, Bouillard O, Chirio-Espitalier M, Barrangou-Poueys-Darlas M, Challet-Bouju G. Systematic Review of Gaming and Neuropsychological Assessment of Social Cognition. Neuropsychol Rev 2024; 34:738-767. [PMID: 37667058 PMCID: PMC11473559 DOI: 10.1007/s11065-023-09599-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 05/24/2023] [Indexed: 09/06/2023]
Abstract
Playing video games is associated with cognitive changes and possibly psychosocial difficulties. Problematic gaming occurs upon the loss of control over videogame playing; gaming disorder is considered a behavioral addiction in the 11th version of the International Classification of Diseases. Models used to understand behavioral addictions include cognition as an essential factor in the development, maintenance, and relapse of addiction. Nevertheless, some aspects of cognition, such as social cognition, remain underexplored, despite evidence of alterations in cognitive and social function among patients with problematic gaming. This review aimed to describe the current understanding of social cognition in individuals exposed to videogames. We included all studies assessing social cognition in participants of any age with a wide range of exposure to video games (from simple use of video games (such as at least two exposures) to problematic gaming, defined according to the included study). This wide range of exposure allowed us to explore the whole process from repeated exposure to addiction. We included only studies that used neuropsychological tasks to assess social cognition. Patient-reported outcomes that could be biased by subjective self-report data were not included. The search was conducted from inception to January 2022 in three databases (PubMed, PsycINFO, and Web of Science). The systematic search identified 39 studies that assessed facial emotion processing, empathy, theory of mind, social decision-making, aggressive behavior, and moral competence. In general, results have been mixed, and a number of questions remain unanswered. Nevertheless, several studies showed cerebral changes when processing facial emotion that were linked with problematic gaming, while no link was obtained between nonproblematic gaming and empathy alterations. The influences of cooperation patterns, theory of mind, moral competence, and gaming frequency were highlighted. Finally, there was substantial heterogeneity in the population assessed and the methods used.
Collapse
Affiliation(s)
- Elodie Hurel
- CHU Nantes, UIC Psychiatrie et Santé Mentale, Nantes Université, Nantes, F-44000, France
- MethodS in Patient-centered outcomes and HEalth ResEarch, SPHERE, Nantes Université, Univ Tours, CHU Nantes, INSERM, Nantes, F-44000, France
| | - Marie Grall-Bronnec
- CHU Nantes, UIC Psychiatrie et Santé Mentale, Nantes Université, Nantes, F-44000, France
- MethodS in Patient-centered outcomes and HEalth ResEarch, SPHERE, Nantes Université, Univ Tours, CHU Nantes, INSERM, Nantes, F-44000, France
| | - Orianne Bouillard
- CHU Nantes, UIC Psychiatrie et Santé Mentale, Nantes Université, Nantes, F-44000, France
| | - Marion Chirio-Espitalier
- CHU Nantes, UIC Psychiatrie et Santé Mentale, Nantes Université, Nantes, F-44000, France
- MethodS in Patient-centered outcomes and HEalth ResEarch, SPHERE, Nantes Université, Univ Tours, CHU Nantes, INSERM, Nantes, F-44000, France
| | | | - Gaëlle Challet-Bouju
- CHU Nantes, UIC Psychiatrie et Santé Mentale, Nantes Université, Nantes, F-44000, France.
- MethodS in Patient-centered outcomes and HEalth ResEarch, SPHERE, Nantes Université, Univ Tours, CHU Nantes, INSERM, Nantes, F-44000, France.
| |
Collapse
|
5
|
Villanueva J, Ilari B, Habibi A. Long-term music instruction is partially associated with the development of socioemotional skills. PLoS One 2024; 19:e0307373. [PMID: 39024268 PMCID: PMC11257369 DOI: 10.1371/journal.pone.0307373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
This study aims to investigate the development of pitch-matching, rhythmic entrainment, and socioemotional skills in children who received formal music instruction and other non-music based after school programs. Eighty-three children, averaging 6.81 years old at baseline, were enrolled in either a music, sports, or no after-school program and followed over four years. The music program involved formal and systematic instruction in music theory, instrumental technique, and performance. Most control participants had no music education; however, in some instances, participants received minimal music education at school or at church. Musical development was measured using a pitch-matching and drumming-based rhythmic entrainment task. Sharing behavior was measured using a variation of the dictator game, and empathy was assessed using three different assessments: the Index of Empathy for Children and Adolescence (trait empathy), the Reading the Mind in the Eyes Test (theory of mind), and a Fiction Emotion-Matching task (state empathy). Results revealed no time-related associations in pitch-matching ability; however, formal music instruction improved pitch-matching relative to controls. On the contrary, improvements in rhythmic entrainment were best explained by age-related changes rather than music instruction. This study also found limited support for a positive association between formal music instruction and socioemotional skills. That is, individuals with formal music instruction exhibited improved emotion-matching relative to those with sports training. In terms of general socioemotional development, children's trait-level affective empathy did not improve over time, while sharing, theory of mind, and state empathy did. Additionally, pitch-matching and rhythmic entrainment did not reliably predict any socioemotional measures, with associations being trivial to small. While formal music instruction benefitted pitch-matching ability and emotion-matching to an audiovisual stimulus, it was not a significant predictor of rhythmic entrainment or broader socioemotional development. These findings suggest that the transfer of music training may be most evident in near or similar domains.
Collapse
Affiliation(s)
- Jed Villanueva
- Brain and Creativity Institute, Dornsife College of Letters Arts and Sciences, University of Southern California, Los Angeles, CA, United States of America
| | - Beatriz Ilari
- Department of Music Teaching & Learning, Thornton School of Music, University of Southern California, Los Angeles, CA, United States of America
| | - Assal Habibi
- Brain and Creativity Institute, Dornsife College of Letters Arts and Sciences, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
6
|
Yamaguchi Y, Okamura K, Yamamuro K, Okumura K, Komori T, Toritsuka M, Takada R, Nishihata Y, Ikawa D, Yamauchi T, Makinodan M, Yoshino H, Saito Y, Matsuzaki H, Kishimoto T, Kimoto S. NARP-related alterations in the excitatory and inhibitory circuitry of socially isolated mice: developmental insights and implications for autism spectrum disorder. Front Psychiatry 2024; 15:1403476. [PMID: 38903649 PMCID: PMC11187327 DOI: 10.3389/fpsyt.2024.1403476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Background Social isolation during critical periods of development is associated with alterations in behavior and neuronal circuitry. This study aimed to investigate the immediate and developmental effects of social isolation on firing properties, neuronal activity-regulated pentraxin (NARP) and parvalbumin (PV) expression in the prefrontal cortex (PFC), social behavior in juvenile socially isolated mice, and the biological relevance of NARP expression in autism spectrum disorder (ASD). Methods Mice were subjected to social isolation during postnatal days 21-35 (P21-P35) and were compared with group-housed control mice. Firing properties in the PFC pyramidal neurons were altered in P35 socially isolated mice, which might be associated with alterations in NARP and PV expression. Results In adulthood, mice that underwent juvenile social isolation exhibited difficulty distinguishing between novel and familiar mice during a social memory task, while maintaining similar levels of social interaction as the control mice. Furthermore, a marked decrease in NARP expression in lymphoblastoid cell lines derived from adolescent humans with ASD as compared to typically developing (TD) humans was found. Conclusion Our study highlights the role of electrophysiological properties, as well as NARP and PV expression in the PFC in mediating the developmental consequences of social isolation on behavior.
Collapse
Affiliation(s)
- Yasunari Yamaguchi
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
- Department of Neuropsychiatry, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Kazuya Okamura
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
- Department of Neuropsychiatry, Wakayama Medical University School of Medicine, Wakayama, Japan
| | - Kazuhiko Yamamuro
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Kazuki Okumura
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Takashi Komori
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Michihiro Toritsuka
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Ryohei Takada
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Yosuke Nishihata
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Daisuke Ikawa
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Takahira Yamauchi
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Hiroki Yoshino
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
- Mie Prefectural Mental Medical Center, Mie, Japan
| | - Yasuhiko Saito
- Department of Neurophysiology, Nara Medical University School of Medicine, Nara, Japan
| | - Hideo Matsuzaki
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Sohei Kimoto
- Department of Neuropsychiatry, Wakayama Medical University School of Medicine, Wakayama, Japan
| |
Collapse
|
7
|
Mahowald K, Ivanova AA, Blank IA, Kanwisher N, Tenenbaum JB, Fedorenko E. Dissociating language and thought in large language models. Trends Cogn Sci 2024; 28:517-540. [PMID: 38508911 DOI: 10.1016/j.tics.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 03/22/2024]
Abstract
Large language models (LLMs) have come closest among all models to date to mastering human language, yet opinions about their linguistic and cognitive capabilities remain split. Here, we evaluate LLMs using a distinction between formal linguistic competence (knowledge of linguistic rules and patterns) and functional linguistic competence (understanding and using language in the world). We ground this distinction in human neuroscience, which has shown that formal and functional competence rely on different neural mechanisms. Although LLMs are surprisingly good at formal competence, their performance on functional competence tasks remains spotty and often requires specialized fine-tuning and/or coupling with external modules. We posit that models that use language in human-like ways would need to master both of these competence types, which, in turn, could require the emergence of separate mechanisms specialized for formal versus functional linguistic competence.
Collapse
|
8
|
Dworetsky A, Seitzman BA, Adeyemo B, Nielsen AN, Hatoum AS, Smith DM, Nichols TE, Neta M, Petersen SE, Gratton C. Two common and distinct forms of variation in human functional brain networks. Nat Neurosci 2024; 27:1187-1198. [PMID: 38689142 PMCID: PMC11248096 DOI: 10.1038/s41593-024-01618-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/07/2024] [Indexed: 05/02/2024]
Abstract
The cortex has a characteristic layout with specialized functional areas forming distributed large-scale networks. However, substantial work shows striking variation in this organization across people, which relates to differences in behavior. While most previous work treats individual differences as linked to boundary shifts between the borders of regions, here we show that cortical 'variants' also occur at a distance from their typical position, forming ectopic intrusions. Both 'border' and 'ectopic' variants are common across individuals, but differ in their location, network associations, properties of subgroups of individuals, activations during tasks, and prediction of behavioral phenotypes. Border variants also track significantly more with shared genetics than ectopic variants, suggesting a closer link between ectopic variants and environmental influences. This work argues that these two dissociable forms of variation-border shifts and ectopic intrusions-must be separately accounted for in the analysis of individual differences in cortical systems across people.
Collapse
Affiliation(s)
- Ally Dworetsky
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychology, Florida State University, Tallahassee, FL, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Benjamin A Seitzman
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ashley N Nielsen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexander S Hatoum
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Derek M Smith
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Department of Neurology, Division of Cognitive Neurology/Neuropsychology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas E Nichols
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Maital Neta
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Steven E Petersen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA
| | - Caterina Gratton
- Department of Psychology, Florida State University, Tallahassee, FL, USA.
- Department of Psychology, Northwestern University, Evanston, IL, USA.
- Neuroscience Program, Florida State University, Tallahassee, FL, USA.
- Department of Neurology, Northwestern University, Evanston, IL, USA.
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
9
|
Fang D, Zhou Z, Xiong Y, Fan Y, Li Y, Zhao H, Huang J, Yuan G, Rao M. Advancing Alzheimer's research: Radiomics visualization of the default mode network in cerebral perfusion imaging. J Appl Clin Med Phys 2024; 25:e14368. [PMID: 38657114 PMCID: PMC11087173 DOI: 10.1002/acm2.14368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/05/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
OBJECTIVE Alzheimer's disease, an irreversible neurological condition, demands timely diagnosis for effective clinical intervention. This study employs radiomics analysis to assess image features in default mode network cerebral perfusion imaging among individuals with cognitive impairment. METHODS A radiomics analysis of cerebral perfusion imaging was conducted on 117 patients with cognitive impairment. They were divided into training and validation sets in a 7:3 ratio. Least Absolute Shrinkage and Selection Operator (LASSO) and Random Forest were employed to select and model image features, followed by logistic regression analysis of LASSO and Random Forest results. Diagnostic performance was assessed by calculating the area under the curve (AUC). RESULTS In the training set, LASSO achieved AUC of 0.978, Random Forest had an AUC of 0.933. In the validation set, LASSO had AUC of 0.859, Random Forest had AUC of 0.986. By conducting Logistic Regression analysis in combination with LASSO and Random Forest, we identified a total of five radiomics features, with four related to morphology and one to textural features, originating from the medial prefrontal cortex and middle temporal gyrus. In the training set, Logistic Regression achieved AUC of 0.911, while in the validation set, it attained AUC of 0.925. CONCLUSION The medial prefrontal cortex and middle temporal gyrus are the two brain regions within the default mode network that hold the highest significance for Alzheimer's disease diagnosis. Radiomics analysis contributes to the clinical assessment of Alzheimer's disease by delving into image data to extract deeper layers of information.
Collapse
Affiliation(s)
- Danzhou Fang
- Department of Nuclear MedicineSecond Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Zhiming Zhou
- Department of RadiologySecond Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yalan Xiong
- Department of Nuclear MedicineSecond Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yongzeng Fan
- Department of Nuclear MedicineSecond Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yixuan Li
- Department of Nuclear MedicineSecond Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Huayi Zhao
- Department of Nuclear MedicineSecond Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jiahui Huang
- Department of Nuclear MedicineSecond Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Gengbiao Yuan
- Department of Nuclear MedicineSecond Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Maohua Rao
- Department of Nuclear MedicineSecond Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
10
|
Bortolotti A, Conti A, Romagnoli A, Sacco PL. Imagination vs. routines: festive time, weekly time, and the predictive brain. Front Hum Neurosci 2024; 18:1357354. [PMID: 38736532 PMCID: PMC11082368 DOI: 10.3389/fnhum.2024.1357354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/05/2024] [Indexed: 05/14/2024] Open
Abstract
This paper examines the relationship between societal structures shaped by traditions, norms, laws, and customs, and creative expressions in arts and media through the lens of the predictive coding framework in cognitive science. The article proposes that both dimensions of culture can be viewed as adaptations designed to enhance and train the brain's predictive abilities in the social domain. Traditions, norms, laws, and customs foster shared predictions and expectations among individuals, thereby reducing uncertainty in social environments. On the other hand, arts and media expose us to simulated experiences that explore alternative social realities, allowing the predictive machinery of the brain to hone its skills through exposure to a wider array of potentially relevant social circumstances and scenarios. We first review key principles of predictive coding and active inference, and then explore the rationale of cultural traditions and artistic culture in this perspective. Finally, we draw parallels between institutionalized normative habits that stabilize social worlds and creative and imaginative acts that temporarily subvert established conventions to inject variability.
Collapse
Affiliation(s)
- Alessandro Bortolotti
- Department of Neuroscience, Imaging, and Clinical Sciences, University “G. D'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Alice Conti
- Department of Neuroscience, Imaging, and Clinical Sciences, University “G. D'Annunzio” of Chieti-Pescara, Chieti, Italy
| | | | - Pier Luigi Sacco
- Department of Neuroscience, Imaging, and Clinical Sciences, University “G. D'Annunzio” of Chieti-Pescara, Chieti, Italy
- metaLAB (at) Harvard, Cambridge, MA, United States
| |
Collapse
|
11
|
Studler M, Gianotti LRR, Lobmaier J, Maric A, Knoch D. Human Prosocial Preferences Are Related to Slow-Wave Activity in Sleep. J Neurosci 2024; 44:e0885232024. [PMID: 38467433 PMCID: PMC11007317 DOI: 10.1523/jneurosci.0885-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 03/13/2024] Open
Abstract
Prosocial behavior is crucial for the smooth functioning of the society. Yet, individuals differ vastly in the propensity to behave prosocially. Here, we try to explain these individual differences under normal sleep conditions without any experimental modulation of sleep. Using a portable high-density EEG, we measured the sleep data in 54 healthy adults (28 females) during a normal night's sleep at the participants' homes. To capture prosocial preferences, participants played an incentivized public goods game in which they faced real monetary consequences. The whole-brain analyses showed that a higher relative slow-wave activity (SWA, an indicator of sleep depth) in a cluster of electrodes over the right temporoparietal junction (TPJ) was associated with increased prosocial preferences. Source localization and current source density analyses further support these findings. Recent sleep deprivation studies imply that sleeping enough makes us more prosocial; the present findings suggest that it is not only sleep duration, but particularly sufficient sleep depth in the TPJ that is positively related to prosociality. Because the TPJ plays a central role in social cognitive functions, we speculate that sleep depth in the TPJ, as reflected by relative SWA, might serve as a dispositional indicator of social cognition ability, which is reflected in prosocial preferences. These findings contribute to the emerging framework explaining the link between sleep and prosocial behavior by shedding light on the underlying mechanisms.
Collapse
Affiliation(s)
- Mirjam Studler
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Bern 3012, Switzerland
| | - Lorena R R Gianotti
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Bern 3012, Switzerland
| | - Janek Lobmaier
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Bern 3012, Switzerland
| | - Angelina Maric
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Daria Knoch
- Department of Social Neuroscience and Social Psychology, Institute of Psychology, University of Bern, Bern 3012, Switzerland
| |
Collapse
|
12
|
Luppi AI, Rosas FE, Noonan MP, Mediano PAM, Kringelbach ML, Carhart-Harris RL, Stamatakis EA, Vernon AC, Turkheimer FE. Oxygen and the Spark of Human Brain Evolution: Complex Interactions of Metabolism and Cortical Expansion across Development and Evolution. Neuroscientist 2024; 30:173-198. [PMID: 36476177 DOI: 10.1177/10738584221138032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Scientific theories on the functioning and dysfunction of the human brain require an understanding of its development-before and after birth and through maturation to adulthood-and its evolution. Here we bring together several accounts of human brain evolution by focusing on the central role of oxygen and brain metabolism. We argue that evolutionary expansion of human transmodal association cortices exceeded the capacity of oxygen delivery by the vascular system, which led these brain tissues to rely on nonoxidative glycolysis for additional energy supply. We draw a link between the resulting lower oxygen tension and its effect on cytoarchitecture, which we posit as a key driver of genetic developmental programs for the human brain-favoring lower intracortical myelination and the presence of biosynthetic materials for synapse turnover. Across biological and temporal scales, this protracted capacity for neural plasticity sets the conditions for cognitive flexibility and ongoing learning, supporting complex group dynamics and intergenerational learning that in turn enabled improved nutrition to fuel the metabolic costs of further cortical expansion. Our proposed model delineates explicit mechanistic links among metabolism, molecular and cellular brain heterogeneity, and behavior, which may lead toward a clearer understanding of brain development and its disorders.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
| | - Fernando E Rosas
- Department of Informatics, University of Sussex, Brighton, UK
- Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London, UK
- Centre for Complexity Science, Imperial College London, London, UK
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
| | - MaryAnn P Noonan
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychology, Queen Mary University of London, London, UK
- Department of Computing, Imperial College London, London, UK
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Anthony C Vernon
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
13
|
Tsomokos DI, Flouri E. The role of social cognition in mental health trajectories from childhood to adolescence. Eur Child Adolesc Psychiatry 2024; 33:771-786. [PMID: 37000247 PMCID: PMC10894108 DOI: 10.1007/s00787-023-02187-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/08/2023] [Indexed: 04/01/2023]
Abstract
We investigated the association between an aspect of Theory of Mind in childhood, false-belief understanding, and trajectories of internalising (emotional and peer) and externalising (conduct and hyperactivity) problems in childhood and adolescence. The sample was 8408 children from the UK's Millennium Cohort Study, followed at ages 5, 7, 11, 14, and 17 years. Social cognitive abilities were measured at 5 and 7 years through a vignette version of the Sally-Anne task administered by an unfamiliar assessor in a socially demanding dyadic interaction. Internalising and externalising problems were measured via the Strengths and Difficulties Questionnaire at 7-17 years. Using latent growth modelling, and after controlling for sex, ethnicity, maternal education, verbal ability, and time-varying family income, we found that superior social cognitive abilities predicted a decrease in emotional problems over time. In sex-stratified analyses, they predicted decreasing conduct problem trajectories in females and lower levels of conduct problems at baseline in males.
Collapse
Affiliation(s)
- Dimitris I Tsomokos
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, Scotland, UK.
| | - Eirini Flouri
- Department of Psychology and Human Development, UCL Institute of Education, University College London, London, UK
| |
Collapse
|
14
|
Schiller D, Yu ANC, Alia-Klein N, Becker S, Cromwell HC, Dolcos F, Eslinger PJ, Frewen P, Kemp AH, Pace-Schott EF, Raber J, Silton RL, Stefanova E, Williams JHG, Abe N, Aghajani M, Albrecht F, Alexander R, Anders S, Aragón OR, Arias JA, Arzy S, Aue T, Baez S, Balconi M, Ballarini T, Bannister S, Banta MC, Barrett KC, Belzung C, Bensafi M, Booij L, Bookwala J, Boulanger-Bertolus J, Boutros SW, Bräscher AK, Bruno A, Busatto G, Bylsma LM, Caldwell-Harris C, Chan RCK, Cherbuin N, Chiarella J, Cipresso P, Critchley H, Croote DE, Demaree HA, Denson TF, Depue B, Derntl B, Dickson JM, Dolcos S, Drach-Zahavy A, Dubljević O, Eerola T, Ellingsen DM, Fairfield B, Ferdenzi C, Friedman BH, Fu CHY, Gatt JM, de Gelder B, Gendolla GHE, Gilam G, Goldblatt H, Gooding AEK, Gosseries O, Hamm AO, Hanson JL, Hendler T, Herbert C, Hofmann SG, Ibanez A, Joffily M, Jovanovic T, Kahrilas IJ, Kangas M, Katsumi Y, Kensinger E, Kirby LAJ, Koncz R, Koster EHW, Kozlowska K, Krach S, Kret ME, Krippl M, Kusi-Mensah K, Ladouceur CD, Laureys S, Lawrence A, Li CSR, Liddell BJ, Lidhar NK, Lowry CA, Magee K, Marin MF, Mariotti V, Martin LJ, Marusak HA, Mayer AV, Merner AR, Minnier J, Moll J, Morrison RG, Moore M, Mouly AM, Mueller SC, Mühlberger A, Murphy NA, Muscatello MRA, Musser ED, Newton TL, Noll-Hussong M, Norrholm SD, Northoff G, Nusslock R, Okon-Singer H, Olino TM, Ortner C, Owolabi M, Padulo C, Palermo R, Palumbo R, Palumbo S, Papadelis C, Pegna AJ, Pellegrini S, Peltonen K, Penninx BWJH, Pietrini P, Pinna G, Lobo RP, Polnaszek KL, Polyakova M, Rabinak C, Helene Richter S, Richter T, Riva G, Rizzo A, Robinson JL, Rosa P, Sachdev PS, Sato W, Schroeter ML, Schweizer S, Shiban Y, Siddharthan A, Siedlecka E, Smith RC, Soreq H, Spangler DP, Stern ER, Styliadis C, Sullivan GB, Swain JE, Urben S, Van den Stock J, Vander Kooij MA, van Overveld M, Van Rheenen TE, VanElzakker MB, Ventura-Bort C, Verona E, Volk T, Wang Y, Weingast LT, Weymar M, Williams C, Willis ML, Yamashita P, Zahn R, Zupan B, Lowe L. The Human Affectome. Neurosci Biobehav Rev 2024; 158:105450. [PMID: 37925091 PMCID: PMC11003721 DOI: 10.1016/j.neubiorev.2023.105450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Over the last decades, theoretical perspectives in the interdisciplinary field of the affective sciences have proliferated rather than converged due to differing assumptions about what human affective phenomena are and how they work. These metaphysical and mechanistic assumptions, shaped by academic context and values, have dictated affective constructs and operationalizations. However, an assumption about the purpose of affective phenomena can guide us to a common set of metaphysical and mechanistic assumptions. In this capstone paper, we home in on a nested teleological principle for human affective phenomena in order to synthesize metaphysical and mechanistic assumptions. Under this framework, human affective phenomena can collectively be considered algorithms that either adjust based on the human comfort zone (affective concerns) or monitor those adaptive processes (affective features). This teleologically-grounded framework offers a principled agenda and launchpad for both organizing existing perspectives and generating new ones. Ultimately, we hope the Human Affectome brings us a step closer to not only an integrated understanding of human affective phenomena, but an integrated field for affective research.
Collapse
Affiliation(s)
- Daniela Schiller
- Department of Psychiatry, the Nash Family Department of Neuroscience, and the Friedman Brain Institute, at the Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Alessandra N C Yu
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Nelly Alia-Klein
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Susanne Becker
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany; Integrative Spinal Research Group, Department of Chiropractic Medicine, University Hospital Balgrist, University of Zurich, Balgrist Campus, Lengghalde 5, 8008 Zurich, Switzerland
| | - Howard C Cromwell
- J.P. Scott Center for Neuroscience, Mind and Behavior, Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, United States
| | - Florin Dolcos
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Paul J Eslinger
- Departments of Neurology, Neural & Behavioral Science, Radiology, and Public Health Sciences, Penn State Hershey Medical Center and College of Medicine, Hershey, PA, United States
| | - Paul Frewen
- Departments of Psychiatry, Psychology and Neuroscience at the University of Western Ontario, London, Ontario, Canada
| | - Andrew H Kemp
- School of Psychology, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, United Kingdom
| | - Edward F Pace-Schott
- Harvard Medical School and Massachusetts General Hospital, Department of Psychiatry, Boston, MA, United States; Department of Psychiatry, Massachusetts General Hospital, Boston, MA, United States
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States; Departments of Neurology, Radiation Medicine, Psychiatry, and Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, United States
| | - Rebecca L Silton
- Department of Psychology, Loyola University Chicago, Chicago, IL, United States
| | - Elka Stefanova
- Faculty of Medicine, University of Belgrade, Serbia; Neurology Clinic, Clinical Center of Serbia, Serbia
| | - Justin H G Williams
- Griffith University, Gold Coast Campus, 1 Parklands Dr, Southport, QLD 4215, Australia
| | - Nobuhito Abe
- Institute for the Future of Human Society, Kyoto University, 46 Shimoadachi-cho, Yoshida Sakyo-ku, Kyoto, Japan
| | - Moji Aghajani
- Institute of Education & Child Studies, Section Forensic Family & Youth Care, Leiden University, the Netherlands; Department of Psychiatry, Amsterdam UMC, Location VUMC, GGZ InGeest Research & Innovation, Amsterdam Neuroscience, the Netherlands
| | - Franziska Albrecht
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany; Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Karolinska University Hospital, Women's Health and Allied Health Professionals Theme, Medical unit Occupational Therapy & Physiotherapy, Stockholm, Sweden
| | - Rebecca Alexander
- Neuroscience Research Australia, Randwick, Sydney, NSW, Australia; Australian National University, Canberra, ACT, Australia
| | - Silke Anders
- Department of Neurology, University of Lübeck, Lübeck, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Oriana R Aragón
- Yale University, 2 Hillhouse Ave, New Haven, CT, United States; Cincinnati University, Marketing Department, 2906 Woodside Drive, Cincinnati, OH 45221-0145, United States
| | - Juan A Arias
- School of Psychology, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, United Kingdom; Department of Statistics, Mathematical Analysis, and Operational Research, Universidade de Santiago de Compostela, Spain; The Galician Center for Mathematical Research and Technology (CITMAga), 15782 Santiago de Compostela, Spain
| | - Shahar Arzy
- Department of Medical Neurobiology, Hebrew University, Jerusalem, Israel
| | - Tatjana Aue
- Institute of Psychology, University of Bern, Fabrikstr. 8, 3012 Bern, Switzerland
| | | | - Michela Balconi
- International Research Center for Cognitive Applied Neuroscience, Catholic University of Milan, Milan, Italy
| | - Tommaso Ballarini
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Scott Bannister
- Durham University, Palace Green, DH1 RL3 Durham, United Kingdom
| | | | - Karen Caplovitz Barrett
- Department of Human Development & Family Studies, Colorado State University, Fort Collins, CO, United States; Department of Community & Behavioral Health, Colorado School of Public Health, Denver, CO, United States
| | | | - Moustafa Bensafi
- Research Center in Neurosciences of Lyon, CNRS UMR5292, INSERM U1028, Claude Bernard University Lyon 1, Lyon, Centre Hospitalier Le Vinatier, 95 bd Pinel, 69675 Bron Cedex, France
| | - Linda Booij
- Department of Psychology, Concordia University, Montreal, Canada; CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | - Jamila Bookwala
- Department of Psychology, Lafayette College, Easton, PA, United States
| | - Julie Boulanger-Bertolus
- Department of Anesthesiology and Center for Consciousness Science, University of Michigan, Ann Arbor, MI, United States
| | - Sydney Weber Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, United States
| | - Anne-Kathrin Bräscher
- Department of Clinical Psychology, Psychotherapy and Experimental Psychopathology, University of Mainz, Wallstr. 3, 55122 Mainz, Germany; Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | - Antonio Bruno
- Department of Biomedical, Dental Sciences and Morpho-Functional Imaging - University of Messina, Italy
| | - Geraldo Busatto
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Lauren M Bylsma
- Departments of Psychiatry and Psychology; and the Center for Neural Basis of Cognition, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Nicolas Cherbuin
- Centre for Research on Ageing, Health, and Wellbeing, Australian National University, Canberra, ACT, Australia
| | - Julian Chiarella
- Department of Psychology, Concordia University, Montreal, Canada; CHU Sainte-Justine, University of Montreal, Montreal, Canada
| | - Pietro Cipresso
- Applied Technology for Neuro-Psychology Lab., Istituto Auxologico Italiano (IRCCS), Milan, Italy; Department of Psychology, University of Turin, Turin, Italy
| | - Hugo Critchley
- Psychiatry, Department of Neuroscience, Brighton and Sussex Medical School (BSMS), University of Sussex, Sussex, United Kingdom
| | - Denise E Croote
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai and Friedman Brain Institute, New York, NY 10029, United States; Hospital Universitário Gaffrée e Guinle, Universidade do Rio de Janeiro, Brazil
| | - Heath A Demaree
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas F Denson
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Brendan Depue
- Departments of Psychological and Brain Sciences and Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States
| | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| | - Joanne M Dickson
- Edith Cowan University, Psychology Discipline, School of Arts and Humanities, 270 Joondalup Dr, Joondalup, WA 6027, Australia
| | - Sanda Dolcos
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Anat Drach-Zahavy
- The Faculty of Health and Welfare Sciences, University of Haifa, Haifa, Israel
| | - Olga Dubljević
- Neurology Clinic, Clinical Center of Serbia, Serbia; Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Belgrade, Serbia
| | - Tuomas Eerola
- Durham University, Palace Green, DH1 RL3 Durham, United Kingdom
| | - Dan-Mikael Ellingsen
- Department of Diagnostic Physics, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Beth Fairfield
- Department of Humanistic Studies, University of Naples Federico II, Naples, Italy; UniCamillus, International Medical University, Rome, Italy
| | - Camille Ferdenzi
- Research Center in Neurosciences of Lyon, CNRS UMR5292, INSERM U1028, Claude Bernard University Lyon 1, Lyon, Centre Hospitalier Le Vinatier, 95 bd Pinel, 69675 Bron Cedex, France
| | - Bruce H Friedman
- Department of Psychology, Virginia Tech, Blacksburg, VA, United States
| | - Cynthia H Y Fu
- School of Psychology, University of East London, United Kingdom; Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Justine M Gatt
- Neuroscience Research Australia, Randwick, Sydney, NSW, Australia; School of Psychology, University of New South Wales, Randwick, Sydney, NSW, Australia
| | - Beatrice de Gelder
- Department of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Guido H E Gendolla
- Geneva Motivation Lab, University of Geneva, FPSE, Section of Psychology, CH-1211 Geneva 4, Switzerland
| | - Gadi Gilam
- The Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel; Systems Neuroscience and Pain Laboratory, Stanford University School of Medicine, CA, United States
| | - Hadass Goldblatt
- Department of Nursing, Faculty of Social Welfare & Health Sciences, University of Haifa, Haifa, Israel
| | | | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness & Centre du Cerveau2, University and University Hospital of Liege, Liege, Belgium
| | - Alfons O Hamm
- Department of Biological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald, Germany
| | - Jamie L Hanson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA 15206, United States
| | - Talma Hendler
- Tel Aviv Center for Brain Function, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; School of Psychological Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Cornelia Herbert
- Department of Applied Emotion and Motivation Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Stefan G Hofmann
- Department of Clinical Psychology, Philipps University Marburg, Germany
| | - Agustin Ibanez
- Universidad de San Andres, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), United States and Trinity Collegue Dublin (TCD), Ireland
| | - Mateus Joffily
- Groupe d'Analyse et de Théorie Economique (GATE), 93 Chemin des Mouilles, 69130 Écully, France
| | - Tanja Jovanovic
- Department of Psychiatry and Behavaioral Neurosciences, Wayne State University, Detroit, MI, United States
| | - Ian J Kahrilas
- Department of Psychology, Loyola University Chicago, Chicago, IL, United States
| | - Maria Kangas
- Department of Psychology, Macquarie University, Sydney, Australia
| | - Yuta Katsumi
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, United States; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Elizabeth Kensinger
- Department of Psychology and Neuroscience, Boston College, Boston, MA, United States
| | - Lauren A J Kirby
- Department of Psychology and Counseling, University of Texas at Tyler, Tyler, TX, United States
| | - Rebecca Koncz
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, Australia; Specialty of Psychiatry, The University of Sydney, Concord, New South Wales, Australia
| | - Ernst H W Koster
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | | | - Sören Krach
- Social Neuroscience Lab, Translational Psychiatry Unit, University of Lübeck, Lübeck, Germany
| | - Mariska E Kret
- Leiden University, Cognitive Psychology, Pieter de la Court, Waassenaarseweg 52, Leiden 2333 AK, the Netherlands
| | - Martin Krippl
- Faculty of Natural Sciences, Department of Psychology, Otto von Guericke University Magdeburg, Universitätsplatz 2, Magdeburg, Germany
| | - Kwabena Kusi-Mensah
- Department of Psychiatry, Komfo Anokye Teaching Hospital, P. O. Box 1934, Kumasi, Ghana; Department of Psychiatry, University of Cambridge, Darwin College, Silver Street, CB3 9EU Cambridge, United Kingdom; Behavioural Sciences Department, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Cecile D Ladouceur
- Departments of Psychiatry and Psychology and the Center for Neural Basis of Cognition (CNBC), University of Pittsburgh, Pittsburgh, PA, United States
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness & Centre du Cerveau2, University and University Hospital of Liege, Liege, Belgium
| | - Alistair Lawrence
- Scotland's Rural College, King's Buildings, Edinburgh, Scotland; The Roslin Institute, University of Edinburgh, Easter Bush, Scotland
| | - Chiang-Shan R Li
- Connecticut Mental Health Centre, Yale University, New Haven, CT, United States
| | - Belinda J Liddell
- School of Psychology, University of New South Wales, Randwick, Sydney, NSW, Australia
| | - Navdeep K Lidhar
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Kelsey Magee
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Marie-France Marin
- Department of Psychology, Université du Québec à Montréal, Montreal, Canada; Research Center, Institut universitaire en santé mentale de Montréal, Montreal, Canada
| | - Veronica Mariotti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Loren J Martin
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Hilary A Marusak
- Department of Psychiatry and Behavaioral Neurosciences, Wayne State University, Detroit, MI, United States; Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, MI, United States
| | - Annalina V Mayer
- Social Neuroscience Lab, Translational Psychiatry Unit, University of Lübeck, Lübeck, Germany
| | - Amanda R Merner
- Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Jessica Minnier
- School of Public Health, Oregon Health & Science University, Portland, OR, United States
| | - Jorge Moll
- Cognitive Neuroscience and Neuroinformatics Unit, D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Robert G Morrison
- Department of Psychology, Loyola University Chicago, Chicago, IL, United States
| | - Matthew Moore
- Beckman Institute for Advanced Science & Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, United States; War Related Illness and Injury Study Center (WRIISC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, CNRS-UMR 5292, INSERM U1028, Universite Lyon, Lyon, France
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Andreas Mühlberger
- Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany
| | - Nora A Murphy
- Department of Psychology, Loyola Marymount University, Los Angeles, CA, United States
| | | | - Erica D Musser
- Center for Children and Families, Department of Psychology, Florida International University, Miami, FL, United States
| | - Tamara L Newton
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, United States
| | - Michael Noll-Hussong
- Psychosomatic Medicine and Psychotherapy, TU Muenchen, Langerstrasse 3, D-81675 Muenchen, Germany
| | - Seth Davin Norrholm
- Department of Psychiatry and Behavaioral Neurosciences, Wayne State University, Detroit, MI, United States
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, University of Ottawa Institute of Mental Health Research, Royal Ottawa Mental Health Centre, Canada
| | - Robin Nusslock
- Department of Psychology and Institute for Policy Research, Northwestern University, 2029 Sheridan Road, Evanston, IL, United States
| | - Hadas Okon-Singer
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Thomas M Olino
- Department of Psychology, Temple University, 1701N. 13th St, Philadelphia, PA, United States
| | - Catherine Ortner
- Thompson Rivers University, Department of Psychology, 805 TRU Way, Kamloops, BC, Canada
| | - Mayowa Owolabi
- Department of Medicine and Center for Genomic and Precision Medicine, College of Medicine, University of Ibadan; University College Hospital, Ibadan, Oyo State, Nigeria; Blossom Specialist Medical Center Ibadan, Oyo State, Nigeria
| | - Caterina Padulo
- Department of Psychological, Health and Territorial Sciences, University of Chieti, Chieti, Italy
| | - Romina Palermo
- School of Psychological Science, University of Western Australia, Perth, WA, Australia
| | - Rocco Palumbo
- Department of Psychological, Health and Territorial Sciences, University of Chieti, Chieti, Italy
| | - Sara Palumbo
- Department of Surgical, Medical and Molecular Pathology and of Critical Care, University of Pisa, Pisa, Italy
| | - Christos Papadelis
- Jane and John Justin Neuroscience Center, Cook Children's Health Care System, Fort Worth, TX, United States; Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Alan J Pegna
- School of Psychology, University of Queensland, Saint Lucia, Queensland, Australia
| | - Silvia Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Kirsi Peltonen
- Research Centre for Child Psychiatry, University of Turku, Turku, Finland; INVEST Research Flagship, University of Turku, Turku, Finland
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam UMC, Location VUMC, GGZ InGeest Research & Innovation, Amsterdam Neuroscience, the Netherlands
| | | | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Rosario Pintos Lobo
- Center for Children and Families, Department of Psychology, Florida International University, Miami, FL, United States
| | - Kelly L Polnaszek
- Department of Psychology, Loyola University Chicago, Chicago, IL, United States
| | - Maryna Polyakova
- Neurology Department, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christine Rabinak
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, United States
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Badestraße 13, Münster, Germany
| | - Thalia Richter
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Giuseppe Riva
- Applied Technology for Neuro-Psychology Lab., Istituto Auxologico Italiano (IRCCS), Milan, Italy; Humane Technology Lab., Università Cattolica del Sacro Cuore, Milan, Italy
| | - Amelia Rizzo
- Department of Biomedical, Dental Sciences and Morpho-Functional Imaging - University of Messina, Italy
| | | | - Pedro Rosa
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, Australia; Neuropsychiatric Institute, The Prince of Wales Hospital, Sydney, Australia
| | - Wataru Sato
- Psychological Process Research Team, Guardian Robot Project, RIKEN, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Susanne Schweizer
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom; School of Psychology, University of New South Wales, Sydney, Australia
| | - Youssef Shiban
- Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany; Department of Psychology (Clinical Psychology and Psychotherapy Research), PFH - Private University of Applied Sciences, Gottingen, Germany
| | - Advaith Siddharthan
- Knowledge Media Institute, The Open University, Milton Keynes MK7 6AA, United Kingdom
| | - Ewa Siedlecka
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Robert C Smith
- Departments of Medicine and Psychiatry, Michigan State University, East Lansing, MI, United States
| | - Hermona Soreq
- Department of Biological Chemistry, Edmond and Lily Safra Center of Brain Science and The Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Derek P Spangler
- Department of Biobehavioral Health, The Pennsylvania State University, State College, PA, United States
| | - Emily R Stern
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States; New York University School of Medicine, New York, NY, United States
| | - Charis Styliadis
- Neuroscience of Cognition and Affection group, Lab of Medical Physics and Digital Innovation, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - James E Swain
- Departments of Psychiatry & Behavioral Health, Psychology, Obstetrics, Gynecology & Reproductive Medicine, and Program in Public Health, Renaissance School of Medicine at Stony Brook University, New York, United States
| | - Sébastien Urben
- Division of Child and Adolescent Psychiatry, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Jan Van den Stock
- Neuropsychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Michael A Vander Kooij
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Universitatsmedizin der Johannes Guttenberg University Medical Center, Mainz, Germany
| | | | - Tamsyn E Van Rheenen
- University of Melbourne, Melbourne Neuropsychiatry Centre, Department of Psychiatry, 161 Barry Street, Carlton, VIC, Australia
| | - Michael B VanElzakker
- Division of Neurotherapeutics, Massachusetts General Hospital, Boston, MA, United States
| | - Carlos Ventura-Bort
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany
| | - Edelyn Verona
- Department of Psychology, University of South Florida, Tampa, FL, United States
| | - Tyler Volk
- Professor Emeritus of Biology and Environmental Studies, New York University, New York, NY, United States
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Leah T Weingast
- Department of Social Work and Human Services and the Department of Psychological Sciences, Center for Young Adult Addiction and Recovery, Kennesaw State University, Kennesaw, GA, United States
| | - Mathias Weymar
- Department of Biological Psychology and Affective Science, Faculty of Human Sciences, University of Potsdam, Potsdam, Germany; Faculty of Health Sciences Brandenburg, University of Potsdam, Germany
| | - Claire Williams
- School of Psychology, Faculty of Medicine, Health & Life Science, Swansea University, Swansea, United Kingdom; Elysium Neurological Services, Elysium Healthcare, The Avalon Centre, United Kingdom
| | - Megan L Willis
- School of Behavioural and Health Sciences, Australian Catholic University, Sydney, NSW, Australia
| | - Paula Yamashita
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Roland Zahn
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Barbra Zupan
- Central Queensland University, School of Health, Medical and Applied Sciences, Bruce Highway, Rockhampton, QLD, Australia
| | - Leroy Lowe
- Neuroqualia (NGO), Truro, Nova Scotia, Canada.
| |
Collapse
|
15
|
Schulze J, Sinke C, Neumann I, Wollmer MA, Kruger THC. Effects of glabellar botulinum toxin injections on resting-state functional connectivity in borderline personality disorder. Eur Arch Psychiatry Clin Neurosci 2024; 274:97-107. [PMID: 36991143 DOI: 10.1007/s00406-023-01563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/23/2023] [Indexed: 03/31/2023]
Abstract
Meta-analyses suggest a sustained alleviation of depressive symptoms through glabellar botulinum toxin (BTX) injections. This can be explained by the disruption of facial feedback loops, which may moderate and reinforce the experience of negative emotions. Borderline personality disorder (BPD) is characterized by excessive negative emotions. Here, a seed-based resting-state functional connectivity (rsFC) analysis following BTX (N = 24) or acupuncture (ACU, N = 21) treatment in BPD is presented on areas related to the motor system and emotion processing. RsFC in BPD using a seed-based approach was analyzed. MRI data were measured before and 4 weeks after treatment. Based on previous research, the rsFC focus was on limbic and motor areas as well as the salience and default mode network. Clinically, after 4 weeks both groups showed a reduction of borderline symptoms. However, the anterior cingulate cortex (ACC) and the face area in the primary motor cortex (M1) displayed aberrant rsFC after BTX compared to ACU treatment. The M1 showed higher rsFC to the ACC after BTX treatment compared to ACU treatment. In addition, the ACC displayed an increased connectivity to the M1 as well as a decrease to the right cerebellum. This study shows first evidence for BTX-specific effects in the motor face region and the ACC. The observed effects of BTX on rsFC to areas are related to motor behavior. Since symptom improvement did not differ between the two groups, a BTX-specific effect seems plausible rather than a general therapeutic effect.
Collapse
Affiliation(s)
- Jara Schulze
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Christopher Sinke
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Insa Neumann
- Asklepios Campus Hamburg, Medical Faculty, Semmelweis University, Asklepios Clinic North - Ochsenzoll, Langenhorner Chaussee 560, 22419, Hamburg, Germany
- Asklepios Clinic North - Ochsenzoll, Clinic for Geriatric Psychiatry, Hamburg, Germany
| | - M Axel Wollmer
- Asklepios Campus Hamburg, Medical Faculty, Semmelweis University, Asklepios Clinic North - Ochsenzoll, Langenhorner Chaussee 560, 22419, Hamburg, Germany
- Asklepios Clinic North - Ochsenzoll, Clinic for Geriatric Psychiatry, Hamburg, Germany
| | - Tillmann H C Kruger
- Division of Clinical Psychology and Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
- Center for Systems Neuroscience, Bünteweg 2, 30559, Hanover, Germany.
| |
Collapse
|
16
|
Kent J, Pinkham A. Cerebral and cerebellar correlates of social cognitive impairment in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110850. [PMID: 37657639 DOI: 10.1016/j.pnpbp.2023.110850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/26/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Social cognition is a broad construct encompassing the ways in which individuals perceive, process, and use information about other people. Social cognition involves both lower- and higher-level processes such as emotion recognition and theory of mind, respectively. Social cognitive impairments have been repeatedly demonstrated in schizophrenia spectrum illnesses and, crucially, are related to functional outcomes. In this review, we summarize the literature investigating the brain networks implicated in social cognitive impairments in schizophrenia spectrum illnesses. In addition to cortical and limbic loci and networks, we also discuss evidence for cerebellar contributions to social cognitive impairment in this population. We conclude by synthesizing these two literatures, with an emphasis on current knowledge gaps, particularly in regard to cerebellar influences, and future directions.
Collapse
Affiliation(s)
- Jerillyn Kent
- Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Amy Pinkham
- Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States.
| |
Collapse
|
17
|
Edmonds D, Salvo JJ, Anderson N, Lakshman M, Yang Q, Kay K, Zelano C, Braga RM. Social cognitive regions of human association cortex are selectively connected to the amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570477. [PMID: 38106046 PMCID: PMC10723387 DOI: 10.1101/2023.12.06.570477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Reasoning about someone's thoughts and intentions - i.e., forming a theory of mind - is an important aspect of social cognition that relies on association areas of the brain that have expanded disproportionately in the human lineage. We recently showed that these association zones comprise parallel distributed networks that, despite occupying adjacent and interdigitated regions, serve dissociable functions. One network is selectively recruited by theory of mind processes. What circuit properties differentiate these parallel networks? Here, we show that social cognitive association areas are intrinsically and selectively connected to regions of the anterior medial temporal lobe that are implicated in emotional learning and social behaviors, including the amygdala at or near the basolateral complex and medial nucleus. The results suggest that social cognitive functions emerge through coordinated activity between amygdala circuits and a distributed association network, and indicate the medial nucleus may play an important role in social cognition in humans.
Collapse
Affiliation(s)
- Donnisa Edmonds
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Joseph J. Salvo
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Nathan Anderson
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Maya Lakshman
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Qiaohan Yang
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Kendrick Kay
- Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Christina Zelano
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Rodrigo M. Braga
- Department of Neurology, Northwestern University, Chicago, IL, USA
| |
Collapse
|
18
|
Veerareddy A, Fang H, Safari N, Xu P, Krueger F. Cognitive empathy mediates the relationship between gray matter volume size of dorsomedial prefrontal cortex and social network size: A voxel-based morphometry study. Cortex 2023; 169:279-289. [PMID: 37972460 DOI: 10.1016/j.cortex.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 07/19/2023] [Accepted: 09/26/2023] [Indexed: 11/19/2023]
Abstract
Social networks are an important factor in developing and maintaining social relationships. The social brain network comprises brain regions that differ in terms of their location, structure, and functioning, and these differences tend to vary among individuals with different social network sizes. However, it remains unknown how social cognitive abilities such as empathy can affect social network size. The goal of our study was to examine the relationship between brain regions in the social brain network, empathy, and individual social network size by using the Social Network Index, which measures social network diversity, size, and complexity by assessing 12 different types of relationships. We performed voxel-based morphometry and mediation analyses using data from questionnaires and structural magnetic resonance imaging data in a sample of 204 young adults. Our findings showed that the gray matter volume of the dorsomedial prefrontal cortex (dmPFC) was inversely associated with social network size and cognitive empathy mediated this association, suggesting that decreased gray matter volume in the dmPFC is associated with greater utilization of cognitive empathy, which, in turn, seems to increase social network size. A potential mechanism explaining this inverse relationship could be cognitive pruning, a phenomenon that occurs in the brain between early adolescence and adulthood, but future longitudinal studies are needed. In conclusion, our findings provide information about the neurocognitive mechanisms involved in the formation and maintenance of social networks.
Collapse
Affiliation(s)
| | - Huihua Fang
- Shenzhen Key Laboratory of Affective and Social Neuroscience, Magnetic Resonance Imaging Center, Center for Brain Disorders and Cognitive Sciences, Shenzhen University, Shenzhen, China; Department of Psychology, University of Mannheim, Mannheim, Germany
| | - Nooshin Safari
- School of Systems Biology, George Mason University, Fairfax, VA, USA
| | - Pengfei Xu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing, China; Center for Neuroimaging, Shenzhen Institute of Neuroscience, Shenzhen, China.
| | - Frank Krueger
- School of Systems Biology, George Mason University, Fairfax, VA, USA; Department of Psychology, University of Mannheim, Mannheim, Germany
| |
Collapse
|
19
|
Hurel E, Grall-Bronnec M, Challet-Bouju G. Online Assessment of Social Cognition in a Population of Gamers and Gamblers: Results of the eSMILE Study. J Gambl Stud 2023; 39:1611-1633. [PMID: 37742231 PMCID: PMC10627996 DOI: 10.1007/s10899-023-10254-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 09/26/2023]
Abstract
The purpose of the eSMILE study was to explore social cognition (SC) in the two behavioural addictions (BAs) included in international classifications: gaming disorder and gambling disorder. In these disorders, cognitive functioning is involved in the development and maintenance of addiction. Nevertheless, SC have received less attention than other cognitive functions. The eSMILE study was conducted online and included 105 participants (gamers and gamblers). This study included: the Penn emotion recognition task, the Condensed and Revised Multifaced Empathy Test, the Interpersonal Reactivity Index, the Chicken Game, social metacognition questions, and the Toronto Alexithymia Scale. We analysed the relationships among SC measures, addiction levels, and behaviour frequency. For gamers, we showed that the higher their level of addiction was, the lower their self-confidence following the identification of basic emotions, although the more frequently they played, the better their performance on this task. Additionally, we found lower performance on the identification of more complex emotions by gamblers, which seems to be the result of their levels of addiction rather than the frequency of their gambling behaviour. This study contributes to our understanding of the cognitive processes underlying BAs. Additionally, working on SC abilities may be an additional management mode for BAs that could be added to existing treatments.
Collapse
Affiliation(s)
- Elodie Hurel
- CHU de Nantes, UIC Psychiatrie et Santé Mentale, Nantes Université, Nantes, France.
- Univ Tours, CHU Nantes, INSERM, MethodS in Patient Centered Outcomes and HEalth ResEarch, SPHERE, Nantes Université, 44000, Nantes, France.
| | - Marie Grall-Bronnec
- CHU de Nantes, UIC Psychiatrie et Santé Mentale, Nantes Université, Nantes, France
- Univ Tours, CHU Nantes, INSERM, MethodS in Patient Centered Outcomes and HEalth ResEarch, SPHERE, Nantes Université, 44000, Nantes, France
| | - Gaëlle Challet-Bouju
- CHU de Nantes, UIC Psychiatrie et Santé Mentale, Nantes Université, Nantes, France
- Univ Tours, CHU Nantes, INSERM, MethodS in Patient Centered Outcomes and HEalth ResEarch, SPHERE, Nantes Université, 44000, Nantes, France
| |
Collapse
|
20
|
Shafie M, Shahmohamadi E, Cattarinussi G, Sanjari Moghaddam H, Akhondzadeh S, Sambataro F, Moltrasio C, Delvecchio G. Resting-state functional magnetic resonance imaging alterations in borderline personality disorder: A systematic review. J Affect Disord 2023; 341:335-345. [PMID: 37673288 DOI: 10.1016/j.jad.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Borderline personality disorder (BPD) is a severe psychiatric disorder characterized by emotion dysregulation, impulsivity, and interpersonal disturbances. Several structural and functional neuroimaging abnormalities have been described in BPD. In particular, resting-state functional magnetic resonance imaging (rs-fMRI) studies have recently suggested various connectivity alterations within and between large-scale brain networks in BPD. This review aimed at providing an updated summary of the evidence reported by the available rs-fMRI studies in BPD individuals. METHODS A search on PubMed, Scopus, and Web of Science was performed to identify rs-fMRI alterations in BPD. A total of 15 studies met our inclusion criteria. RESULTS Overall, aberrant resting-state functional connectivity (rs-FC) within and between default mode network (DMN), salience network (SN), and central executive network (CEN) were observed in BPD compared to healthy controls, as well as selective functional impairments in bilateral amygdala, anterior and posterior cingulate cortex, hippocampus, and prefrontal cortex. LIMITATIONS The observational design, small sample size, prevalence of females, high rates of concurrent comorbidities and medications, and heterogeneity across imaging methodologies limit the generalizability of the results. CONCLUSIONS The identification of altered patterns of rs-FC within and between selective brain networks, including DMN, SN, and CEN, could further our knowledge of the clinical symptoms of BPD, and therefore, future studies with multimodal methodologies and longitudinal designs are warranted to further explore the neural correlates of this disorder.
Collapse
Affiliation(s)
- Mahan Shafie
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Giulia Cattarinussi
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Hossein Sanjari Moghaddam
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Psychiatry and Psychology Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Akhondzadeh
- Psychiatry and Psychology Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Fabio Sambataro
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Chiara Moltrasio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
21
|
Ozkul B, Candemir C, Oguz K, Eroglu-Koc S, Kizilates-Evin G, Ugurlu O, Erdogan Y, Mull DD, Eker MC, Kitis O, Gonul AS. Gradual Loss of Social Group Support during Competition Activates Anterior TPJ and Insula but Deactivates Default Mode Network. Brain Sci 2023; 13:1509. [PMID: 38002470 PMCID: PMC10669722 DOI: 10.3390/brainsci13111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Group forming behaviors are common in many species to overcome environmental challenges. In humans, bonding, trust, group norms, and a shared past increase consolidation of social groups. Being a part of a social group increases resilience to mental stress; conversely, its loss increases vulnerability to depression. However, our knowledge on how social group support affects brain functions is limited. This study observed that default mode network (DMN) activity reduced with the loss of social group support from real-life friends in a challenging social competition. The loss of support induced anterior temporoparietal activity followed by anterior insula and the dorsal attentional network activity. Being a part of a social group and having support provides an environment for high cognitive functioning of the DMN, while the loss of group support acts as a threat signal and activates the anterior temporoparietal junction (TPJ) and insula regions of salience and attentional networks for individual survival.
Collapse
Affiliation(s)
- Burcu Ozkul
- School of Nursing and Midwifery, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Cemre Candemir
- SoCAT Lab Department of Psychiatry, School of Medicine, Ege University, Izmir 35080, Turkey; (C.C.); (S.E.-K.); (Y.E.); (M.C.E.)
- International Computer Institute, Ege University, Izmir 35100, Turkey
| | - Kaya Oguz
- Department of Computer Engineering, Izmir University of Economics, Izmir 35330, Turkey;
| | - Seda Eroglu-Koc
- SoCAT Lab Department of Psychiatry, School of Medicine, Ege University, Izmir 35080, Turkey; (C.C.); (S.E.-K.); (Y.E.); (M.C.E.)
- Department of Psychology, Faculty of Letters, Dokuz Eylul University, Izmir 35390, Turkey
| | - Gozde Kizilates-Evin
- Neuroimaging Unit, Hulusi Behcet Life Sciences Research Laboratory, Istanbul University, Istanbul 34093, Turkey;
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34093, Turkey
| | - Onur Ugurlu
- Department of Fundamental Sciences, Faculty of Engineering and Architecture, Izmir Bakircay University, Izmir 35665, Turkey;
| | - Yigit Erdogan
- SoCAT Lab Department of Psychiatry, School of Medicine, Ege University, Izmir 35080, Turkey; (C.C.); (S.E.-K.); (Y.E.); (M.C.E.)
- Department of Neuroscience, Health Sciences Institute, Ege University, Izmir 35080, Turkey
| | - Defne Dakota Mull
- SoCAT Lab Department of Psychiatry, School of Medicine, Ege University, Izmir 35080, Turkey; (C.C.); (S.E.-K.); (Y.E.); (M.C.E.)
- Department of Neuroscience, Health Sciences Institute, Ege University, Izmir 35080, Turkey
| | - Mehmet Cagdas Eker
- SoCAT Lab Department of Psychiatry, School of Medicine, Ege University, Izmir 35080, Turkey; (C.C.); (S.E.-K.); (Y.E.); (M.C.E.)
| | - Omer Kitis
- Department of Radiology, School of Medicine, Ege University, Izmir 35080, Turkey;
| | - Ali Saffet Gonul
- SoCAT Lab Department of Psychiatry, School of Medicine, Ege University, Izmir 35080, Turkey; (C.C.); (S.E.-K.); (Y.E.); (M.C.E.)
| |
Collapse
|
22
|
Ciorli T, Pia L. Spatial perspective and identity in visual awareness of the bodily self-other distinction. Sci Rep 2023; 13:14994. [PMID: 37696861 PMCID: PMC10495455 DOI: 10.1038/s41598-023-42107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023] Open
Abstract
Spatial perspective and identity of visual bodily stimuli are two key cues for the self-other distinction. However, how they emerge into visual awareness is largely unknown. Here, self- or other-hands presented in first- or third-person perspective were compared in a breaking-Continuous Flash Suppression paradigm (Experiment 1) measuring the time the stimuli need to access visual awareness, and in a Binocular Rivalry paradigm (Experiment 2), measuring predominance in perceptual awareness. Results showed that, irrespectively of identity, first-person perspective speeded up the access, whereas the third-person one increased the dominance. We suggest that the effect of first-person perspective represents an unconscious prioritization of an egocentric body coding important for visuomotor control. On the other hand, the effect of third-person perspective indicates a conscious advantage of an allocentric body representation fundamental for detecting the presence of another intentional agent. Summarizing, the emergence of self-other distinction into visual awareness would strongly depend on the interplay between spatial perspectives, with an inverse prioritization before and after conscious perception. On the other hand, identity features might rely on post-perceptual processes.
Collapse
Affiliation(s)
- Tommaso Ciorli
- SAMBA (SpAtial, Motor and Bodily Awareness) Research Group, Department of Psychology, University of Turin, Via Verdi 10, 10123, Turin, Italy
| | - Lorenzo Pia
- SAMBA (SpAtial, Motor and Bodily Awareness) Research Group, Department of Psychology, University of Turin, Via Verdi 10, 10123, Turin, Italy.
- NIT (Neuroscience Institute of Turin), Turin, Italy.
| |
Collapse
|
23
|
Reznik D, Trampel R, Weiskopf N, Witter MP, Doeller CF. Dissociating distinct cortical networks associated with subregions of the human medial temporal lobe using precision neuroimaging. Neuron 2023; 111:2756-2772.e7. [PMID: 37390820 DOI: 10.1016/j.neuron.2023.05.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 07/02/2023]
Abstract
Tract-tracing studies in primates indicate that different subregions of the medial temporal lobe (MTL) are connected with multiple brain regions. However, no clear framework defining the distributed anatomy associated with the human MTL exists. This gap in knowledge originates in notoriously low MRI data quality in the anterior human MTL and in group-level blurring of idiosyncratic anatomy between adjacent brain regions, such as entorhinal and perirhinal cortices, and parahippocampal areas TH/TF. Using MRI, we intensively scanned four human individuals and collected whole-brain data with unprecedented MTL signal quality. Following detailed exploration of cortical networks associated with MTL subregions within each individual, we discovered three biologically meaningful networks associated with the entorhinal cortex, perirhinal cortex, and parahippocampal area TH, respectively. Our findings define the anatomical constraints within which human mnemonic functions must operate and are insightful for examining the evolutionary trajectory of the MTL connectivity across species.
Collapse
Affiliation(s)
- Daniel Reznik
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Robert Trampel
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian F Doeller
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, Trondheim, Norway; Wilhelm Wundt Institute of Psychology, Leipzig University, Leipzig, Germany; Department of Psychology, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
24
|
Ferrari E, Butti N, Gagliardi C, Romaniello R, Borgatti R, Urgesi C. Cognitive predictors of Social processing in congenital atypical development. J Autism Dev Disord 2023; 53:3343-3355. [PMID: 35729297 DOI: 10.1007/s10803-022-05630-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
Abstract
According to current accounts of social cognition, the emergence of verbal and non-verbal components of social perception might rely on the acquisition of different cognitive abilities. These components might be differently sensitive to the pattern of neuropsychological impairments in congenital neurodevelopmental disorders. Here, we explored the association between social and non-social cognitive domains by administering subtests of the NEPSY-II battery to 92 patients with Intellectual and Developmental Disability (IDD). Regardless the level of intellectual functioning and presence of congenital brain malformations, results revealed that visuospatial skills predicted emotion recognition and verbal component of Theory of Mind, whereas imitation predicted the non-verbal one. Future interventions might focus on spatial and sensorimotor abilities to boost the development of social cognition in IDD.
Collapse
Affiliation(s)
- Elisabetta Ferrari
- Scientific Institute, IRCCS E. Medea, Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Lecco, Italy.
| | - Niccolò Butti
- Scientific Institute, IRCCS E. Medea, Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Lecco, Italy
- PhD Program in Neural and Cognitive Sciences, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Chiara Gagliardi
- Scientific Institute, IRCCS E. Medea, Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Lecco, Italy
- SPAEE, Catholic University of the Sacred Heart, Milan, Italy
| | - Romina Romaniello
- Scientific Institute, IRCCS E. Medea, Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Lecco, Italy
| | - Renato Borgatti
- IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Cosimo Urgesi
- Scientific Institute, IRCCS E. Medea, Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Lecco, Italy
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy
| |
Collapse
|
25
|
Jackson RL, Humphreys GF, Rice GE, Binney RJ, Lambon Ralph MA. A network-level test of the role of the co-activated default mode network in episodic recall and social cognition. Cortex 2023; 165:141-159. [PMID: 37285763 PMCID: PMC10284259 DOI: 10.1016/j.cortex.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/10/2022] [Accepted: 12/19/2022] [Indexed: 06/09/2023]
Abstract
Resting-state network research is extremely influential, yet the functions of many networks remain unknown. In part, this is due to typical (e.g., univariate) analyses independently testing the function of individual regions and not examining the full set of regions that form a network whilst co-activated. Connectivity is dynamic and the function of a region may change based on its current connections. Therefore, determining the function of a network requires assessment at this network-level. Yet popular theories implicating the default mode network (DMN) in episodic memory and social cognition, rest principally upon analyses performed at the level of individual brain regions. Here we use independent component analysis to formally test the role of the DMN in episodic and social processing at the network level. As well as an episodic retrieval task, two independent datasets were employed to assess DMN function across the breadth of social cognition; a person knowledge judgement and a theory of mind task. Each task dataset was separated into networks of co-activated regions. In each, the co-activated DMN, was identified through comparison to an a priori template and its relation to the task model assessed. This co-activated DMN did not show greater activity in episodic or social tasks than high-level baseline conditions. Thus, no evidence was found to support hypotheses that the co-activated DMN is involved in explicit episodic or social tasks at a network-level. The networks associated with these processes are described. Implications for prior univariate findings and the functional significance of the co-activated DMN are considered.
Collapse
Affiliation(s)
- Rebecca L Jackson
- Department of Psychology & York Biomedical Research Institute, University of York, York, UK; MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Gina F Humphreys
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Grace E Rice
- MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
26
|
Shain C, Paunov A, Chen X, Lipkin B, Fedorenko E. No evidence of theory of mind reasoning in the human language network. Cereb Cortex 2023; 33:6299-6319. [PMID: 36585774 PMCID: PMC10183748 DOI: 10.1093/cercor/bhac505] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 01/01/2023] Open
Abstract
Language comprehension and the ability to infer others' thoughts (theory of mind [ToM]) are interrelated during development and language use. However, neural evidence that bears on the relationship between language and ToM mechanisms is mixed. Although robust dissociations have been reported in brain disorders, brain activations for contrasts that target language and ToM bear similarities, and some have reported overlap. We take another look at the language-ToM relationship by evaluating the response of the language network, as measured with fMRI, to verbal and nonverbal ToM across 151 participants. Individual-participant analyses reveal that all core language regions respond more strongly when participants read vignettes about false beliefs compared to the control vignettes. However, we show that these differences are largely due to linguistic confounds, and no such effects appear in a nonverbal ToM task. These results argue against cognitive and neural overlap between language processing and ToM. In exploratory analyses, we find responses to social processing in the "periphery" of the language network-right-hemisphere homotopes of core language areas and areas in bilateral angular gyri-but these responses are not selectively ToM-related and may reflect general visual semantic processing.
Collapse
Affiliation(s)
- Cory Shain
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, MIT Bldg 46-316077 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Alexander Paunov
- INSERM-CEA Cognitive Neuroimaging Unit (UNICOG), NeuroSpin Center, Gif sur Yvette 91191, France
| | - Xuanyi Chen
- Department of Cognitive Sciences, Rice University, 6100 Main Street, Houston, TX 77005, United States
| | - Benjamin Lipkin
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, MIT Bldg 46-316077 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Evelina Fedorenko
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, MIT Bldg 46-316077 Massachusetts Avenue, Cambridge, MA 02139, United States
- Program in Speech Hearing in Bioscience and Technology, Harvard Medical School, 260 Longwood Avenue, TMEC 333, Boston, MA 02115, United States
| |
Collapse
|
27
|
Xin J, Huang K, Yi A, Feng Z, Liu H, Liu X, Liang L, Huang Q, Xiao Y. Absence of associations with prefrontal cortex and cerebellum may link to early language and social deficits in preschool children with ASD. Front Psychiatry 2023; 14:1144993. [PMID: 37215652 PMCID: PMC10192852 DOI: 10.3389/fpsyt.2023.1144993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Autism spectrum disorder (ASD) is a complex developmental disorder, characterized by language and social deficits that begin to appear in the first years of life. Research in preschool children with ASD has consistently reported increased global brain volume and abnormal cortical patterns, and the brain structure abnormalities have also been found to be clinically and behaviorally relevant. However, little is known regarding the associations between brain structure abnormalities and early language and social deficits in preschool children with ASD. Methods In this study, we collected magnetic resonance imaging (MRI) data from a cohort of Chinese preschool children with and without ASD (24 ASD/20 non-ASD) aged 12-52 months, explored group differences in brain gray matter (GM) volume, and examined associations between regional GM volume and early language and social abilities in these two groups, separately. Results We observed significantly greater global GM volume in children with ASD as compared to those without ASD, but there were no regional GM volume differences between these two groups. For children without ASD, GM volume in bilateral prefrontal cortex and cerebellum was significantly correlated with language scores; GM volume in bilateral prefrontal cortex was significantly correlated with social scores. No significant correlations were found in children with ASD. Discussion Our data demonstrate correlations of regional GM volume with early language and social abilities in preschool children without ASD, and the absence of these associations appear to underlie language and social deficits in children with ASD. These findings provide novel evidence for the neuroanatomical basis associated with language and social abilities in preschool children with and without ASD, which promotes a better understanding of early deficits in language and social functions in ASD.
Collapse
Affiliation(s)
- Jing Xin
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
| | - Kaiyu Huang
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Aiwen Yi
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
| | - Ziyu Feng
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
| | - Heng Liu
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Xiaoqing Liu
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Medical Imaging Center of Guizhou Province, Zunyi, China
| | - Lili Liang
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
| | - Qingshan Huang
- Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan, China
| | - Yaqiong Xiao
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| |
Collapse
|
28
|
Pluta A, Mazurek J, Wojciechowski J, Wolak T, Soral W, Bilewicz M. Exposure to hate speech deteriorates neurocognitive mechanisms of the ability to understand others' pain. Sci Rep 2023; 13:4127. [PMID: 36914701 PMCID: PMC10011534 DOI: 10.1038/s41598-023-31146-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
The widespread ubiquity of hate speech affects people's attitudes and behavior. Exposure to hate speech can lead to prejudice, dehumanization, and lack of empathy towards members of outgroups. However, the impact of exposure to hate speech on empathy and propensity to attribute mental states to others has never been directly tested empirically. In this fMRI study, we examine the effects of exposure to hate speech on neural mechanisms of empathy towards ingroup (Poles) versus outgroup members (Arabs). Thirty healthy young adults were randomly assigned to 2 groups: hateful and neutral. During the fMRI study, they were initially exposed to hateful or neutral comments and subsequently to narratives depicting Poles and Arabs in pain. Using whole-brain and region of interest analysis, we showed that exposure to derogatory language about migrants attenuates the brain response to someone else's pain in the right temporal parietal junction (rTPJ), irrespective of group membership (Poles or Arabs). Given that rTPJ is associated with processes relevant to perspective-taking, its reduced activity might be related to a decreased propensity to take the psychological perspective of others. This finding suggests that hate speech affects human functioning beyond intergroup relations.
Collapse
Affiliation(s)
- Agnieszka Pluta
- Faculty of Psychology, University of Warsaw, Stawki 5/7 Street, 00-183, Warszawa, Poland.
- Bioimaging Research Center, World Hearing Center of Institute of Physiology and Pathology of Hearing, Warszawa, Poland.
| | - Joanna Mazurek
- Faculty of Psychology, University of Warsaw, Stawki 5/7 Street, 00-183, Warszawa, Poland
| | - Jakub Wojciechowski
- Bioimaging Research Center, World Hearing Center of Institute of Physiology and Pathology of Hearing, Warszawa, Poland
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology PAS, Warsaw, Poland
| | - Tomasz Wolak
- Bioimaging Research Center, World Hearing Center of Institute of Physiology and Pathology of Hearing, Warszawa, Poland
| | - Wiktor Soral
- Faculty of Psychology, University of Warsaw, Stawki 5/7 Street, 00-183, Warszawa, Poland
| | - Michał Bilewicz
- Faculty of Psychology, University of Warsaw, Stawki 5/7 Street, 00-183, Warszawa, Poland
| |
Collapse
|
29
|
Ogawa A, Asano S, Osada T, Tanaka M, Tochigi R, Kamagata K, Aoki S, Konishi S. Role of right temporoparietal junction for counterfactual evaluation of partner's decision in ultimatum game. Cereb Cortex 2023; 33:2947-2957. [PMID: 35718541 PMCID: PMC10016052 DOI: 10.1093/cercor/bhac252] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
Humans assess the distributions of resources based on their aversion to unfairness. If a partner distributes in an unfair manner even though the partner had a less unfair distribution option, a recipient will believe that the partner should have chosen the counterfactual option. In this study, we investigated the neural basis for fairness evaluation of actual and counterfactual options in the ultimatum game. In this task, a partner chose one distribution option out of two options, and a participant accepted or rejected the option. The behavioral results showed that the acceptance rate was influenced by counterfactual evaluation (CE), among others, as defined by the difference of monetary amount between the actual and counterfactual options. The functional magnetic resonance imaging results showed that CE was associated with the right ventral angular gyrus (vAG) that provided one of convergent inputs to the supramarginal gyrus related to decision utility, which reflects gross preferences for the distribution options. Furthermore, inhibitory repetitive transcranial magnetic stimulation administered to the right vAG reduced the behavioral component associated with CE. These results suggest that our acceptance/rejection of distribution options relies on multiple processes (monetary amount, disadvantageous inequity, and CE) and that the right vAG causally contributes to CE.
Collapse
Affiliation(s)
| | - Saki Asano
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takahiro Osada
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masaki Tanaka
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Reia Tochigi
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Seiki Konishi
- Department of Neurophysiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
30
|
Berkay D, Jenkins AC. A Role for Uncertainty in the Neural Distinction Between Social and Nonsocial Thought. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2023; 18:491-502. [PMID: 36170572 DOI: 10.1177/17456916221112077] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neuroimaging research has identified a network of brain regions that is consistently more engaged when people think about the minds of other people than when they engage in nonsocial tasks. Activations in this "mentalizing network" are sometimes interpreted as evidence for the domain-specificity of cognitive processes supporting social thought. Here, we examine the alternative possibility that at least some activations in the mentalizing network may be explained by uncertainty. A reconsideration of findings from existing functional MRI studies in light of new data from independent raters suggests that (a) social tasks used in past studies have higher levels of uncertainty than their nonsocial comparison tasks and (b) activation in a key brain region associated with social cognition, the dorsomedial prefrontal cortex (DMPFC), may track with the degree of uncertainty surrounding both social and nonsocial inferences. These observations suggest that the preferential DMPFC response observed consistently in social scenarios may reflect the engagement of domain-general processes of uncertainty reduction, which points to avenues for future research into the core cognitive mechanisms supporting typical and atypical social thought.
Collapse
Affiliation(s)
- Dilara Berkay
- Department of Psychology, University of Pennsylvania
| | | |
Collapse
|
31
|
Trudel N, Lockwood PL, Rushworth MFS, Wittmann MK. Neural activity tracking identity and confidence in social information. eLife 2023; 12:71315. [PMID: 36763582 PMCID: PMC9917428 DOI: 10.7554/elife.71315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 12/15/2022] [Indexed: 02/11/2023] Open
Abstract
Humans learn about the environment either directly by interacting with it or indirectly by seeking information about it from social sources such as conspecifics. The degree of confidence in the information obtained through either route should determine the impact that it has on adapting and changing behaviour. We examined whether and how behavioural and neural computations differ during non-social learning as opposed to learning from social sources. Trial-wise confidence judgements about non-social and social information sources offered a window into this learning process. Despite matching exactly the statistical features of social and non-social conditions, confidence judgements were more accurate and less changeable when they were made about social as opposed to non-social information sources. In addition to subjective reports of confidence, differences were also apparent in the Bayesian estimates of participants' subjective beliefs. Univariate activity in dorsomedial prefrontal cortex and posterior temporoparietal junction more closely tracked confidence about social as opposed to non-social information sources. In addition, the multivariate patterns of activity in the same areas encoded identities of social information sources compared to non-social information sources.
Collapse
Affiliation(s)
- Nadescha Trudel
- Wellcome Centre of Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of OxfordOxfordUnited Kingdom
- Wellcome Centre for Human Neuroimaging, University College LondonLondonUnited Kingdom
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College LondonLondonUnited Kingdom
| | - Patricia L Lockwood
- Centre for Human Brain Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- Institute for Mental Health, School of Psychology, University of BirminghamBirminghamUnited Kingdom
- Centre for Developmental Science, School of Psychology, University of BirminghamBirminghamUnited Kingdom
| | - Matthew FS Rushworth
- Wellcome Centre of Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of OxfordOxfordUnited Kingdom
- Wellcome Centre of Integrative Neuroimaging (WIN), Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of OxfordOxfordUnited Kingdom
| | - Marco K Wittmann
- Wellcome Centre of Integrative Neuroimaging (WIN), Department of Experimental Psychology, University of OxfordOxfordUnited Kingdom
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College LondonLondonUnited Kingdom
- Department of Experimental Psychology, University College LondonLondonUnited Kingdom
| |
Collapse
|
32
|
Chakrabarty M, Bhattacharya K, Chatterjee G, Biswas A, Ghosal M. Pragmatic deficits in patients with schizophrenia and right hemisphere damage: A pilot study. INTERNATIONAL JOURNAL OF LANGUAGE & COMMUNICATION DISORDERS 2023; 58:169-188. [PMID: 36073996 DOI: 10.1111/1460-6984.12778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND While pragmatic deficits are well documented in patients with schizophrenia (SCZ) and right hemisphere damage (RHD), there is a paucity of research comparing the pragmatic deficits of these two groups. Do they experience similar cognitive dysfunction or is there a dissociation between the two patient groups? AIMS To investigate the nature of pragmatic deficits in these two groups and to gain an understanding of the underlying cognitive mechanisms that might be associated with these deficits to further future investigations. METHODS & PROCEDURES A total of 60 participants (15 patients with SCZ; 15 with RHD; 30 (15 + 15) healthy controls (HC) were administered the Bengali Audio-Visual Test-Battery for Assessment of Pragmatic Skills. OUTCOMES & RESULTS Both SCZ and RHD patients were found to have significant pragmatic deficits compared with their matched controls. SCZ patients were found to score significantly better than the RHD group in six out of the 10 pragmatic skills when controlled for age and education. Discriminant function analysis was performed and 86.7% of the cases (HC = 100%, SCZ = 73.3% and RHD = 86.7%) were correctly reclassified into their original categories using the test scores. CONCLUSIONS & IMPLICATIONS The study suggests that there is heterogeneity in the nature of the pragmatic breakdown within and across patient groups. Therefore, individualized restorative measures targeting the disrupted cognitive mechanism(s) might help elevate pragmatic competence and enhance the social functioning of patients with pragmatic deficits. WHAT THIS PAPER ADDS What is already known on the subject Pragmatic deficits are common in adults with cognitive impairments of different etiologies. However, few studies have explored pragmatic deficits across clinical populations. Consequently, very little is known about the nature of pragmatic deficits in patients with schizophrenia and right hemisphere damage. What this paper adds to existing knowledge This work offers preliminary data on pragmatic difficulties in patients with schizophrenia and right hemisphere damage. This study overrides the boundaries of traditional classifications and evaluates pragmatic difficulties in these two clinical populations with reference to the underlying cognitive mechanisms, which might be disrupted. What are the potential or actual clinical implications of this work? The study adds a transdiagnostic perspective suggesting that there might be heterogeneity in pragmatic deficits, both within and across patient groups, and stresses the need for individualized therapy.
Collapse
Affiliation(s)
| | | | - Garga Chatterjee
- Psychology Research Unit, Indian Statistical Institute, Kolkata, West Bengal, India
| | - Atanu Biswas
- Bangur Institute of Neurosciences, IPGME&R, Kolkata, West Bengal, India
| | | |
Collapse
|
33
|
Kuroda K, Ogura Y, Ogawa A, Tamei T, Ikeda K, Kameda T. Behavioral and neuro-cognitive bases for emergence of norms and socially shared realities via dynamic interaction. Commun Biol 2022; 5:1379. [PMID: 36522539 PMCID: PMC9754314 DOI: 10.1038/s42003-022-04329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
In the digital era, new socially shared realities and norms emerge rapidly, whether they are beneficial or harmful to our societies. Although these are emerging properties from dynamic interaction, most research has centered on static situations where isolated individuals face extant norms. We investigated how perceptual norms emerge endogenously as shared realities through interaction, using behavioral and fMRI experiments coupled with computational modeling. Social interactions fostered convergence of perceptual responses among people, not only overtly but also at the covert psychophysical level that generates overt responses. Reciprocity played a critical role in increasing the stability (reliability) of the psychophysical function within each individual, modulated by neural activity in the mentalizing network during interaction. These results imply that bilateral influence promotes mutual cognitive anchoring of individual views, producing shared generative models at the collective level that enable endogenous agreement on totally new targets-one of the key functions of social norms.
Collapse
Affiliation(s)
- Kiri Kuroda
- Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, 102-0083, Japan
- Center for Adaptive Rationality, Max Planck Institute for Human Development, 14195, Berlin, Germany
- Institute for Research in Business and Economics, Faculty of Economics, Meiji Gakuin University, Minato-ku, Tokyo, 108-8636, Japan
- Department of Social Psychology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yukiko Ogura
- Department of Mechano-Informatics, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Akitoshi Ogawa
- Brain Science Institute, Tamagawa University, Machida, Tokyo, 194-8610, Japan
- Faculty of Medicine, Juntendo University, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Tomoya Tamei
- Department of Robotics, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Kazushi Ikeda
- Division of Information Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Tatsuya Kameda
- Brain Science Institute, Tamagawa University, Machida, Tokyo, 194-8610, Japan.
- Center for Experimental Research in Social Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
- Department of Social Psychology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
34
|
Hadad S, Ibrahim HK, Desoky T, Suleiman SM, Sayed TA. The ability of executive functions to predict deterioration in social abstraction in adolescents with idiopathic generalized epilepsy. MIDDLE EAST CURRENT PSYCHIATRY 2022. [DOI: 10.1186/s43045-022-00223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Epilepsy is a prevalent disease worldwide. Executive functions and social cognition are essential in daily living functioning, academic performance, and social adjustment. This study attempts to investigate the executive functions and ability to abstract social concepts in adolescents who have idiopathic generalized epilepsy and assess if the deterioration in executive functions can predict deterioration in the ability to abstract social concepts. Sixty adolescents with idiopathic generalized epilepsy aged between 12 and 19 collected from the neurology outpatient clinic at Sohag University Hospital in Upper Egypt were compared with 60 age- and sex-matched healthy adolescents regarding performance on executive function tests and ability to abstract social concepts tests. We used the Tower test to assess planning, the design fluency test to assess cognitive flexibility, the verbal fluency test to assess verbal fluency, and the Stroop test (overlapping between colour and word test) to assess inhibition and ability to abstract the social concepts test, which is composed of verbal part and performance part.
Results
Adolescents who have idiopathic generalized epilepsy have worse executive function impairment in all executive functions than control adolescents. Adolescents with idiopathic epilepsy have significantly more impairment in the ability to abstract social concepts (verbal and performance) compared to control adolescents. There is a significant correlation between executive functions and the ability to abstract social concepts (verbal and performance) in epileptic and control adolescents. Impairment in some executive functions can predict impairment in the ability to abstract social concepts (verbal and performance) in epileptic and control adolescents. Executive function impairment is correlated with the duration of illness, frequency of seizures per year, time since last epileptic fit, and presence of interictal epileptic discharge in EEG in the patient group.
Conclusions
Executive functions and the ability to abstract social concepts are significantly impaired in adolescents who have idiopathic generalized epilepsy. Impairment in executive functions can predict impairment in the ability to abstract social concepts. There is a need to screen executive functions and social abilities of adolescents with epilepsy and programmes to enhance these abilities.
Collapse
|
35
|
Weinfurter J. Emergence of the Revolutionary Subject: Evolutionary Psychology and the Exaptive Tactics of the Everyday. Integr Psychol Behav Sci 2022; 56:1029-1054. [PMID: 34417719 DOI: 10.1007/s12124-021-09630-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
This article proposes an alternative view of the revolutionary subject. By building on insights from the critical streams of evolutionary psychology, it argues for the notion of revolutionary consciousness to be grounded in the categories of 'exaptive actorness' which are most notably manifested in everyday micropolitics. By emphasising the role of contingency, spontaneity, creativity, resourcefulness and, crucially, formal indeterminism and autonomy, exaptationism emerges as an irreducible and irrevocable enabling tactic of subsistence and subversion, as well as the very essence of the revolutionary act. The discussion will turn to the case of the Arab revolutions to demonstrate the everyday grammars of present-day popular uprisings.
Collapse
Affiliation(s)
- Jaroslav Weinfurter
- Department of Historical Sociology, Univerzita Karlova Praha (Charles University Prague), Prague, Czech Republic.
| |
Collapse
|
36
|
Neurocomputational mechanisms of confidence in self and others. Nat Commun 2022; 13:4238. [PMID: 35869044 PMCID: PMC9307648 DOI: 10.1038/s41467-022-31674-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/27/2022] [Indexed: 11/08/2022] Open
Abstract
AbstractComputing confidence in one’s own and others’ decisions is critical for social success. While there has been substantial progress in our understanding of confidence estimates about oneself, little is known about how people form confidence estimates about others. Here, we address this question by asking participants undergoing fMRI to place bets on perceptual decisions made by themselves or one of three other players of varying ability. We show that participants compute confidence in another player’s decisions by combining distinct estimates of player ability and decision difficulty – allowing them to predict that a good player may get a difficult decision wrong and that a bad player may get an easy decision right. We find that this computation is associated with an interaction between brain systems implicated in decision-making (LIP) and theory of mind (TPJ and dmPFC). These results reveal an interplay between self- and other-related processes during a social confidence computation.
Collapse
|
37
|
Social, affective, and non-motoric bodily cues to the Sense of Agency: A systematic review of the experience of control. Neurosci Biobehav Rev 2022; 142:104900. [DOI: 10.1016/j.neubiorev.2022.104900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/15/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2022]
|
38
|
Hodgson VJ, Lambon Ralph MA, Jackson RL. The cross-domain functional organization of posterior lateral temporal cortex: insights from ALE meta-analyses of 7 cognitive domains spanning 12,000 participants. Cereb Cortex 2022; 33:4990-5006. [PMID: 36269034 PMCID: PMC10110446 DOI: 10.1093/cercor/bhac394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/12/2022] Open
Abstract
The posterior lateral temporal cortex is implicated in many verbal, nonverbal, and social cognitive domains and processes. Yet without directly comparing these disparate domains, the region's organization remains unclear; do distinct processes engage discrete subregions, or could different domains engage shared neural correlates and processes? Here, using activation likelihood estimation meta-analyses, the bilateral posterior lateral temporal cortex subregions engaged in 7 domains were directly compared. These domains comprised semantics, semantic control, phonology, biological motion, face processing, theory of mind, and representation of tools. Although phonology and biological motion were predominantly associated with distinct regions, other domains implicated overlapping areas, perhaps due to shared underlying processes. Theory of mind recruited regions implicated in semantic representation, tools engaged semantic control areas, and faces engaged subregions for biological motion and theory of mind. This cross-domain approach provides insight into how posterior lateral temporal cortex is organized and why.
Collapse
Affiliation(s)
- Victoria J Hodgson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom
| | - Matthew A Lambon Ralph
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom
| | - Rebecca L Jackson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, United Kingdom.,Department of Psychology & York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, United Kingdom
| |
Collapse
|
39
|
Thurston L, Hunjan T, Ertl N, Wall MB, Mills EG, Suladze S, Patel B, Alexander EC, Muzi B, Bassett PA, Rabiner EA, Bech P, Goldmeier D, Abbara A, Comninos AN, Dhillo WS. Effects of Kisspeptin Administration in Women With Hypoactive Sexual Desire Disorder: A Randomized Clinical Trial. JAMA Netw Open 2022; 5:e2236131. [PMID: 36287566 PMCID: PMC9606846 DOI: 10.1001/jamanetworkopen.2022.36131] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
IMPORTANCE Despite being the most common female sexual health complaint worldwide, current treatment options for hypoactive sexual desire disorder (HSDD) are limited in their safety and effectiveness. The hormone kisspeptin is a key endogenous activator of the reproductive hormonal axis with additional emerging roles in sexual and emotional behavior; however, its effects in women with HSDD are unknown. OBJECTIVE To test the hypothesis that kisspeptin enhances sexual and attraction brain processing in women with HSDD. DESIGN, SETTING, AND PARTICIPANTS This randomized clinical trial was double-masked and placebo controlled with a 2-way crossover. The trial was conducted in a university research setting in the UK from October 2020 to April 2021. Eligible participants were premenopausal women with HSDD. Functional neuroimaging, psychometric, and hormonal analyses were employed to investigate the effects of kisspeptin administration on brain processing, in response to erotic stimuli (erotic videos) and facial attraction (face images of varying attractiveness). Data were analyzed from May to December 2021. INTERVENTIONS A 75-minute intravenous infusion of kisspeptin-54 (1 nmol/kg/h) vs equivalent-rate placebo infusion. MAIN OUTCOMES AND MEASURES Blood oxygen level-dependent responses across the whole brain and regions of interest during kisspeptin vs placebo administration in response to erotic and facial attraction stimuli. RESULTS Of the 40 participants who were randomized, 32 women completed both kisspeptin and placebo visits, with a mean (SE) age of 29.2 (1.2) years. Kisspeptin administration resulted in modulations in sexual and facial attraction brain processing (deactivation of the left inferior frontal gyrus: Z max, 3.76; P = .01; activation of the right postcentral and supramarginal gyrus: Z max, 3.73; P < .001; deactivation of the right temporoparietal junction: Z max 4.08; P = .02). Furthermore, positive correlations were observed between kisspeptin-enhanced hippocampal activity in response to erotic videos, and baseline distress relating to sexual function (r = 0.469; P = .007). Kisspeptin's enhancement of posterior cingulate cortex activity in response to attractive male faces also correlated with reduced sexual aversion, providing additional functional significance (r = 0.476, P = .005). Kisspeptin was well-tolerated with no reported adverse effects. CONCLUSIONS AND RELEVANCE These findings lay the foundations for clinical applications for kisspeptin in women with HSDD. TRIAL REGISTRATION ISRCTN trial registry identifier: ISRCTN17271094.
Collapse
Affiliation(s)
- Layla Thurston
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Tia Hunjan
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Natalie Ertl
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Invicro, a Konica Minolta company, London, United Kingdom
| | - Matthew B Wall
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Invicro, a Konica Minolta company, London, United Kingdom
| | - Edouard G Mills
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Sofiya Suladze
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Bjial Patel
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Emma C Alexander
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Beatrice Muzi
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | | | | | - Paul Bech
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - David Goldmeier
- Department of Sexual Medicine, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
| | - Alexander N Comninos
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, London, United Kingdom
- Department of Endocrinology, Imperial College Healthcare NHS Trust, London, United Kingdom
| |
Collapse
|
40
|
Jin T, Zhang S, Lockwood P, Vilares I, Wu H, Liu C, Ma Y. Learning whom to cooperate with: neurocomputational mechanisms for choosing cooperative partners. Cereb Cortex 2022; 33:4612-4625. [PMID: 36156119 DOI: 10.1093/cercor/bhac365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Cooperation is fundamental for survival and a functioning society. With substantial individual variability in cooperativeness, we must learn whom to cooperate with, and often make these decisions on behalf of others. Understanding how people learn about the cooperativeness of others, and the neurocomputational mechanisms supporting this learning, is therefore essential. During functional magnetic resonance imaging scanning, participants completed a novel cooperation-partner-choice task where they learned to choose between cooperative and uncooperative partners through trial-and-error both for themselves and vicariously for another person. Interestingly, when choosing for themselves, participants made faster and more exploitative choices than when choosing for another person. Activity in the ventral striatum preferentially responded to prediction errors (PEs) during self-learning, whereas activity in the perigenual anterior cingulate cortex (ACC) signaled both personal and vicarious PEs. Multivariate pattern analyses showed distinct coding of personal and vicarious choice-making and outcome processing in the temporoparietal junction (TPJ), dorsal ACC, and striatum. Moreover, in right TPJ the activity pattern that differentiated self and other outcomes was associated with individual differences in exploitation tendency. We reveal neurocomputational mechanisms supporting cooperative learning and show that this learning is reflected in trial-by-trial univariate signals and multivariate patterns that can distinguish personal and vicarious choices.
Collapse
Affiliation(s)
- Tao Jin
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China.,Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN, 55455, United States
| | - Shen Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
| | - Patricia Lockwood
- Centre for Human Brain Health and Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom.,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, United Kingdom.,Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, United Kingdom
| | - Iris Vilares
- Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis, MN, 55455, United States
| | - Haiyan Wu
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Taipa, Macau SAR, 519000, China
| | - Chao Liu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China.,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100875, China
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China.,Chinese Institute for Brain Research, Beijing, 102206, China
| |
Collapse
|
41
|
Hofmans L, van den Bos W. Social learning across adolescence: A Bayesian neurocognitive perspective. Dev Cogn Neurosci 2022; 58:101151. [PMID: 36183664 PMCID: PMC9526184 DOI: 10.1016/j.dcn.2022.101151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 01/13/2023] Open
Abstract
Adolescence is a period of social re-orientation in which we are generally more prone to peer influence and the updating of our beliefs based on social information, also called social learning, than in any other stage of our life. However, how do we know when to use social information and whose information to use and how does this ability develop across adolescence? Here, we review the social learning literature from a behavioral, neural and computational viewpoint, focusing on the development of brain systems related to executive functioning, value-based decision-making and social cognition. We put forward a Bayesian reinforcement learning framework that incorporates social learning about value associated with particular behavior and uncertainty in our environment and experiences. We discuss how this framework can inform us about developmental changes in social learning, including how the assessment of uncertainty and the ability to adaptively discriminate between information from different social sources change across adolescence. By combining reward-based decision-making in the domains of both informational and normative influence, this framework explains both negative and positive social peer influence in adolescence.
Collapse
Affiliation(s)
- Lieke Hofmans
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, the Netherlands,Correspondence to: Nieuwe Achtergracht 129, room G1.05, 1018WS Amsterdam, the Netherlands.
| | - Wouter van den Bos
- Department of Developmental Psychology, University of Amsterdam, Amsterdam, the Netherlands,Amsterdam Brain and Cognition Center, University of Amsterdam, Amsterdam, the Netherlands,Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
42
|
Altavilla D, Adornetti I, Chiera A, Deriu V, Acciai A, Ferretti F. Introspective self-narrative modulates the neuronal response during the emphatic process: an event-related potentials (ERPs) study. Exp Brain Res 2022; 240:2725-2738. [PMID: 36066588 DOI: 10.1007/s00221-022-06441-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022]
Abstract
Empathy is the ability to perceive and understand others' emotional states generating a similar mental state in the self. Previous behavioural studies have shown that self-reflection can enhance the empathic process. The present event-related potentials' study aims to investigate whether self-reflection, elicited by an introspective self-narrative task, modulates the neuronal response to eye expressions and improves the accuracy of empathic process. The 29 participants included in the final sample were divided into two groups: an introspection group (IG) (n = 15), who received an introspective writing task, and a control group (CG) (n = 14), who completed a not-introspective writing task. For both groups, the electroencephalographic and behavioural responses to images depicting eye expressions taken from the "Reading the Mind in the Eyes" Theory of Mind test were recorded pre- (T0) and post- (T1) 7 days of writing. The main result showed that only the IG presented a different P300 amplitude in response to eye expressions at T1 compared to T0 on the left centre-frontal montage. No significant results on accuracy at T1 compared to T0 were found. These findings seem to suggest that the introspective writing task modulates attention and implicit evaluation of the socio-emotional stimuli. Results are discussed with reference to the hypothesis that such neuronal modulation is linked to an increase in the embodied simulation process underlying affective empathy.
Collapse
Affiliation(s)
- Daniela Altavilla
- Cosmic Lab, Department of Philosophy, Communication and Performing Arts, "Roma Tre" University, Via Ostiense, 234 00146, Rome, Italy.
| | - Ines Adornetti
- Cosmic Lab, Department of Philosophy, Communication and Performing Arts, "Roma Tre" University, Via Ostiense, 234 00146, Rome, Italy
| | - Alessandra Chiera
- Cosmic Lab, Department of Philosophy, Communication and Performing Arts, "Roma Tre" University, Via Ostiense, 234 00146, Rome, Italy
| | - Valentina Deriu
- Cosmic Lab, Department of Philosophy, Communication and Performing Arts, "Roma Tre" University, Via Ostiense, 234 00146, Rome, Italy
| | - Alessandro Acciai
- Cosmic Lab, Department of Philosophy, Communication and Performing Arts, "Roma Tre" University, Via Ostiense, 234 00146, Rome, Italy
| | - Francesco Ferretti
- Cosmic Lab, Department of Philosophy, Communication and Performing Arts, "Roma Tre" University, Via Ostiense, 234 00146, Rome, Italy
| |
Collapse
|
43
|
Perceiving social injustice during arrests of Black and White civilians by White police officers: An fMRI investigation. Neuroimage 2022; 255:119153. [PMID: 35354091 DOI: 10.1016/j.neuroimage.2022.119153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/14/2021] [Accepted: 03/26/2022] [Indexed: 12/11/2022] Open
Abstract
From social media to courts of law, recordings of interracial police officer-civilian interactions are now widespread and publicly available. People may be motivated to preferentially understand the dynamics of these interactions when they perceive injustice towards those whose communities experience disproportionate policing relative to others (e.g., non-White racial/ethnic groups). To explore these questions, two studies were conducted (study 1 neuroimaging n = 69 and study 2 behavioral n = 58). The fMRI study examined White participants' neural activity when viewing real-world videos with varying degrees of aggression or conflict of White officers arresting a Black or White civilian. Activity in brain regions supporting social cognition was greater when viewing Black (vs. White) civilians involved in more aggressive police encounters. Additionally, although an independent sample of perceivers rated videos featuring Black and White civilians as similar in overall levels of aggression when civilian race was obscured, participants in the fMRI study (where race was not obscured) rated officers as more aggressive and their use of force as less legitimate when the civilian was Black. In study 2, participants who had not viewed the videos also reported that they believe police are generally more unjustly aggressive towards Black compared with White civilians. These findings inform our understanding of how perceptions of conflict with the potential for injustice shape social cognitive engagement when viewing arrests of Black and White individuals by White police officers.
Collapse
|
44
|
A neuroscientific perspective on the computational theory of social groups. Behav Brain Sci 2022; 45:e126. [PMID: 35796376 DOI: 10.1017/s0140525x2100128x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We welcome a computational theory on social groups, yet we argue it would benefit from a broader scope. A neuroscientific perspective offers the possibility to disentangle which computations employed in a group context are genuinely social in nature. Concurrently, we emphasize that a unifying theory of social groups needs to additionally consider higher-level processes like motivations and emotions.
Collapse
|
45
|
Bio BJ, Guterstam A, Pinsk M, Wilterson AI, Graziano MS. Right temporoparietal junction encodes inferred visual knowledge of others. Neuropsychologia 2022; 171:108243. [DOI: 10.1016/j.neuropsychologia.2022.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/10/2022] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
|
46
|
Labek K, Dommes L, Bosch JE, Schurz M, Viviani R, Buchheim A. A Short Functional Neuroimaging Assay Using Attachment Scenes to Recruit Neural Correlates of Social Cognition—A Replication Study. Brain Sci 2022; 12:brainsci12070855. [PMID: 35884660 PMCID: PMC9313198 DOI: 10.3390/brainsci12070855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Attachment theory provides a conceptual framework to understand the impact of early child–caregiver experiences, such as loss or separation, on adult functioning and psychopathology. In the current study, scenes from the Adult Attachment Projective Picture System (AAP), a validated, commonly used standardized diagnostic instrument to assess adult attachment representations, were used to develop a short fMRI assay eliciting the neural correlates of encoding of potentially hurtful and threatening social situations such as social losses, rejections or loneliness. Data from healthy participants (N = 19) showed activations in brain areas associated with social cognition and semantic knowledge during exposure to attachment-related scenes compared to control scenes. Extensive activation of the temporal poles was observed, suggesting the use of semantic knowledge for generating social concepts and scripts. This knowledge may underlie our ability to explain and predict social interactions, a specific aspect of theory of mind or mentalization. In this replication study, we verified the effectiveness of a modified fMRI assay to assess the external validity of a previously used imaging paradigm to investigate the processing of emotionally negatively valenced and painful social interactions. Our data confirm the recruitment of brain areas associated with social cognition with our very short neuroimaging assay.
Collapse
Affiliation(s)
- Karin Labek
- Institute of Psychology, Faculty of Psychology and Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.S.); (R.V.); (A.B.)
- Correspondence:
| | - Lisa Dommes
- Department of Psychiatry and Psychotherapy III, Ulm University Medical Center, 89075 Ulm, Germany; (L.D.); (J.E.B.)
| | - Julia Eva Bosch
- Department of Psychiatry and Psychotherapy III, Ulm University Medical Center, 89075 Ulm, Germany; (L.D.); (J.E.B.)
| | - Matthias Schurz
- Institute of Psychology, Faculty of Psychology and Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.S.); (R.V.); (A.B.)
| | - Roberto Viviani
- Institute of Psychology, Faculty of Psychology and Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.S.); (R.V.); (A.B.)
- Department of Psychiatry and Psychotherapy III, Ulm University Medical Center, 89075 Ulm, Germany; (L.D.); (J.E.B.)
| | - Anna Buchheim
- Institute of Psychology, Faculty of Psychology and Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.S.); (R.V.); (A.B.)
| |
Collapse
|
47
|
Naoi N, Minagawa Y, Yamamoto JI, Kojima S. Infants' Prefrontal Hemodynamic Responses and Functional Connectivity During Joint Attention in an Interactive-Live Setting. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:821248. [PMID: 35782576 PMCID: PMC9240356 DOI: 10.3389/fmedt.2022.821248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/03/2022] [Indexed: 12/01/2022] Open
Abstract
The present study examined cerebral hemodynamic responses and functional connectivity during joint attention either initiated by infants (Initiating Joint Attention, IJA condition) or by their partner (Responding to Joint Attention, RJA condition). To capture responses to natural social cues in infants aged 7–12 months using functional near-infrared spectroscopy (fNIRS), we employed an interactive-live paradigm for IJA and RJA. During the measurement, an adult sat facing an infant, and objects, such as small stuffed animals, paired with sound toys were presented to the right or left side of the screen. In the RJA condition, the adult gazed at the infants' eyes and then to the objects to encourage the infants to follow the adult's gaze. On the other hand, in the IJA condition, the adult followed the infant's gaze as it shifted to the presented object. Our results indicate that the concentration of oxy-Hb in the bilateral ventral prefrontal region had significantly decreased, then followed by an increase in the right dorsal prefrontal region in the RJA. In addition, a selective activation in the bilateral dorsal prefrontal region was seen in the IJA condition. Moreover, the infants exhibited increased functional connectivity especially within the right ventral prefrontal region during RJA condition when compared with IJA conditions. These findings suggest that RJA and IJA recruit specific brain networks localized in the prefrontal cortex of infants.
Collapse
Affiliation(s)
- Nozomi Naoi
- Department of Psychology and Linguistics, International Christian University, Tokyo, Japan
- *Correspondence: Nozomi Naoi
| | - Yasuyo Minagawa
- Department of Psychology, Faculty of Letters, Keio University, Yokohama, Japan
- Graduate School of Human Relations, Keio University, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Jun-ichi Yamamoto
- Department of Psychology, Faculty of Letters, Keio University, Yokohama, Japan
- Graduate School of Human Relations, Keio University, Tokyo, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
| | - Shozo Kojima
- Department of Psychology, Faculty of Letters, Keio University, Yokohama, Japan
| |
Collapse
|
48
|
Haesevoets T, Van Hiel A, De Cremer D, Delplanque J, De Coninck S, Van Overwalle F. The myth of the extra mile: Psychological processes and neural mechanisms underlying overcompensation effects. JOURNAL OF EXPERIMENTAL SOCIAL PSYCHOLOGY 2022. [DOI: 10.1016/j.jesp.2022.104282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
49
|
Morawetz C, Berboth S, Kohn N, Jackson PL, Jauniaux J. Reappraisal and empathic perspective-taking - More alike than meets the eyes. Neuroimage 2022; 255:119194. [PMID: 35413444 DOI: 10.1016/j.neuroimage.2022.119194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/02/2022] [Accepted: 04/06/2022] [Indexed: 01/10/2023] Open
Abstract
Emotion regulation and empathy represent highly intertwined psychological processes sharing common conceptual ground. Despite the wealth of research in these fields, the joint and distinct functional nature and topological features of these constructs have not yet been investigated using the same experimental approach. This study investigated the common and distinct neural correlates of emotion regulation and empathy using a meta-analytic approach. The regions that were jointly activated were then characterized using meta-analytic connectivity modeling and functional decoding of metadata terms. The results revealed convergent activity within the ventrolateral and dorsomedial prefrontal cortex as well as temporal regions. The functional decoding analysis demonstrated that emotion regulation and empathy were related to highly similar executive and internally oriented processes. This synthesis underlining strong functional and neuronal correspondence between emotion regulation and empathy could (i) facilitate greater integration of these two separate lines of literature, (ii) accelerate progress toward elucidating the neural mechanisms that support social cognition, and (iii) push forward the development of a common theoretical framework for these psychological processes essential to human social interactions.
Collapse
Affiliation(s)
| | - Stella Berboth
- Institute of Psychology, University of Innsbruck, Austria
| | - Nils Kohn
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Netherlands
| | | | - Josiane Jauniaux
- Faculty of Medicine and Health Sciences, Sherbrooke University, Sherbrooke, Canada
| |
Collapse
|
50
|
Ito A, Yoshida K, Aoki R, Fujii T, Kawasaki I, Hayashi A, Ueno A, Sakai S, Mugikura S, Takahashi S, Mori E. The Role of the Ventromedial Prefrontal Cortex in Preferential Decisions for Own- and Other-Age Faces. Front Psychol 2022; 13:822234. [PMID: 35360573 PMCID: PMC8962742 DOI: 10.3389/fpsyg.2022.822234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
Own-age bias is a well-known bias reflecting the effects of age, and its role has been demonstrated, particularly, in face recognition. However, it remains unclear whether an own-age bias exists in facial impression formation. In the present study, we used three datasets from two published and one unpublished functional magnetic resonance imaging (fMRI) study that employed the same pleasantness rating task with fMRI scanning and preferential choice task after the fMRI to investigate whether healthy young and older participants showed own-age effects in face preference. Specifically, we employed a drift-diffusion model to elaborate the existence of own-age bias in the processes of preferential choice. The behavioral results showed higher rating scores and higher drift rate for young faces than for older faces, regardless of the ages of participants. We identified a young-age effect, but not an own-age effect. Neuroimaging results from aggregation analysis of the three datasets suggest a possibility that the ventromedial prefrontal cortex (vmPFC) was associated with evidence accumulation of own-age faces; however, no clear evidence was provided. Importantly, we found no age-related decline in the responsiveness of the vmPFC to subjective pleasantness of faces, and both young and older participants showed a contribution of the vmPFC to the parametric representation of the subjective value of face and functional coupling between the vmPFC and ventral visual area, which reflects face preference. These results suggest that the preferential choice of face is less susceptible to the own-age bias across the lifespan of individuals.
Collapse
Affiliation(s)
- Ayahito Ito
- Research Institute for Future Design, Kochi University of Technology, Kochi, Japan
| | - Kazuki Yoshida
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Ryuta Aoki
- Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan
| | - Toshikatsu Fujii
- Kansei Fukushi Research Institute, Tohoku Fukushi University, Sendai, Japan
| | - Iori Kawasaki
- Department of Behavioral Neurology and Cognitive Neuroscience, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Akiko Hayashi
- Department of Behavioral Neurology and Cognitive Neuroscience, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Aya Ueno
- Department of Behavioral Neurology and Cognitive Neuroscience, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shinya Sakai
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Shunji Mugikura
- Division of Image Statistics, Tohoku Medical Megabank Organization, Sendai, Japan
- Department of Diagnostic Radiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Shoki Takahashi
- Department of Diagnostic Radiology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Etsuro Mori
- Department of Behavioral Neurology and Cognitive Neuroscience, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|