1
|
Hamedi N, García-Salinas JS, Berry BM, Worrell GA, Kucewicz MT. Anterior prefrontal EEG theta activities indicate memory and executive functions in patients with epilepsy. Epilepsia 2025. [PMID: 39760669 DOI: 10.1111/epi.18246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025]
Abstract
OBJECTIVE Cognitive deficits are one of the most debilitating comorbidities in epilepsy and other neurodegenerative, neuropsychiatric, and neurodevelopmental brain disorders. Current diagnostic and therapeutic options are limited and lack objective measures of the underlying neural activities. In this study, electrophysiological biomarkers that reflect cognitive functions in clinically validated batteries were determined to aid diagnosis and treatment in specific brain regions. METHODS We employed the Cambridge Neuropsychological Test Automated Battery (CANTAB) tasks to probe memory and executive functions in 86 patients with epilepsy undergoing clinical electroencephalography (EEG) monitoring. EEG electrode signals during performance of particular battery tasks were decomposed to identify specific frequency bands and cortical areas that differentiated patients with impaired, normal, and good standardized performance according to their age and gender. RESULTS The anterior prefrontal cortical EEG power in the theta frequency band was consistently lower in patients with impaired memory and executive function performance (z-score < -1). This effect was evident in all four behavioral measures of executive, visual, spatial, and working memory functions and was confined to the cortical area of all four frontal pole electrodes (Nz, Fpz, Fp1, and Fp2). SIGNIFICANCE Theta EEG power in the anterior prefrontal cortex provides simple, accessible, and objective electrophysiological measure of memory and executive functions in epilepsy. Our results suggest a feasible clinical biomarker for diagnosis, monitoring, and treatment of cognitive deficits with emerging targeted neuromodulation approaches.
Collapse
Affiliation(s)
- Nastaran Hamedi
- Brain and Mind Electrophysiology Laboratory, Multimedia Systems Department, BioTechMed Center, Gdansk University of Technology, Gdansk, Poland
| | - Jesús S García-Salinas
- Brain and Mind Electrophysiology Laboratory, Multimedia Systems Department, BioTechMed Center, Gdansk University of Technology, Gdansk, Poland
| | - Brent M Berry
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gregory A Worrell
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Michal T Kucewicz
- Brain and Mind Electrophysiology Laboratory, Multimedia Systems Department, BioTechMed Center, Gdansk University of Technology, Gdansk, Poland
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Takano M, Wada M, Nakajima S, Taniguchi K, Honda S, Mimura Y, Kitahata R, Zomorrodi R, Blumberger DM, Daskalakis ZJ, Uchida H, Mimura M, Noda Y. Optimizing the identification of long-interval intracortical inhibition from the dorsolateral prefrontal cortex. Clin Neurophysiol 2025; 169:102-113. [PMID: 39578189 DOI: 10.1016/j.clinph.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/04/2024] [Accepted: 10/27/2024] [Indexed: 11/24/2024]
Abstract
OBJECTIVE This study aimed to optimally evaluate the effect of the long-interval intracortical inhibition (LICI) in the dorsolateral prefrontal cortex (DLPFC) through transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) by eliminating the volume conductance with signal source estimation and using a realistic sham coil as a control. METHODS We compared the LICI effects from the DLPFC between the active and sham stimulation conditions in 27 healthy participants. Evoked responses between the two conditions were evaluated at the sensor and source levels. RESULTS At the sensor level, a significant LICI effect was confirmed in the active condition in the global mean field power analysis; however, in the local mean field power analysis focused on the DLPFC, no LICI effect was observed in the active condition. However, in the signal source estimation analysis for the DLPFC, we could reconfirm a significant LICI effect (p = 0.023) in the interval 30-250 ms post-stimulus, compared to the sham condition. CONCLUSIONS Our results demonstrate that application of realistic sham stimulation condition and source estimation method allows for a robust and optimal identification of the LICI effect in the DLPFC. SIGNIFICANCE The optimal DLPFC-LICI effect was identified by the use of the sophisticated sham coil.
Collapse
Affiliation(s)
- Mayuko Takano
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; TEIJIN PHARMA LIMITED, Tokyo, Japan
| | - Masataka Wada
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Keita Taniguchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shiori Honda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Faculty of Environmental and Information Studies, Media and Governance, Graduate school of Keio University
| | - Yu Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | | | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan; Department of Psychiatry, International University of Health and Welfare, Mita Hospital, Tokyo, Japan.
| |
Collapse
|
3
|
Di Bello F, Mione V, Pani P, Brunamonti E, Ferraina S. Prefrontal cortex contribution in transitive inference task through the interplay of beta and gamma oscillations. Commun Biol 2024; 7:1715. [PMID: 39741176 DOI: 10.1038/s42003-024-07418-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
Transitive inference allows people to infer new relations between previously experienced premises. It has been hypothesized that this logical thinking relies on a mental schema that spatially organizes elements, facilitating inferential insights. However, recent evidence challenges the need for these complex cognitive processes. To dig into the neural substrate driving TI cognitive processes, we examine the role of beta and gamma local field potential bands in the prefrontal cortex of 2 monkeys. During the inferential problem-solving period, we discover a tight link between beta and gamma bands modulation and TI complexity. This correlation diminishes its strength before initiating the motor response, indicating the chosen item. Notably, while the beta band maintains a constant relationship with TI performance throughout the trial, the gamma band shows a flexible relationship. This research highlights the role of beta and gamma interplay in cognitive computations when solving TI problems.
Collapse
Affiliation(s)
- Fabio Di Bello
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Valentina Mione
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | | | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.
| |
Collapse
|
4
|
Makino Y, Wang Y, McHugh TJ. Multi-regional control of amygdalar dynamics reliably reflects fear memory age. Nat Commun 2024; 15:10283. [PMID: 39653694 PMCID: PMC11628566 DOI: 10.1038/s41467-024-54273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024] Open
Abstract
The basolateral amygdala (BLA) is crucial for the encoding and expression of fear memory, yet it remains unexplored how neural activity in this region is dynamically influenced by distributed circuits across the brain to facilitate expression of fear memory of different ages. Using longitudinal multisite electrophysiological recordings in male mice, we find that the recall of older contextual fear memory is accompanied by weaker, yet more rhythmic, BLA gamma activity which is distally entrained by theta oscillations in both the hippocampal CA1 and the anterior cingulate cortex. Computational modeling with Light Gradient Boosting Machine using extracted oscillatory features from these three regions, as well as with Transformer using raw local field potentials, accurately classified remote from recent memory recall primarily based on BLA gamma and CA1 theta. These results demonstrate in a non-biased manner that multi-regional control of BLA activity serves as reliable neural signatures for memory age-dependent recall mechanisms.
Collapse
Affiliation(s)
- Yuichi Makino
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan.
- International Research Center for Neurointelligence, UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Yi Wang
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan.
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, New Zealand.
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan.
| |
Collapse
|
5
|
Van de Maele T, Dhoedt B, Verbelen T, Pezzulo G. A hierarchical active inference model of spatial alternation tasks and the hippocampal-prefrontal circuit. Nat Commun 2024; 15:9892. [PMID: 39543207 PMCID: PMC11564537 DOI: 10.1038/s41467-024-54257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Cognitive problem-solving benefits from cognitive maps aiding navigation and planning. Physical space navigation involves hippocampal (HC) allocentric codes, while abstract task space engages medial prefrontal cortex (mPFC) task-specific codes. Previous studies show that challenging tasks, like spatial alternation, require integrating these two types of maps. The disruption of the HC-mPFC circuit impairs performance. We propose a hierarchical active inference model clarifying how this circuit solves spatial interaction tasks by bridging physical and task-space maps. Simulations demonstrate that the model's dual layers develop effective cognitive maps for physical and task space. The model solves spatial alternation tasks through reciprocal interactions between the two layers. Disrupting its communication impairs decision-making, which is consistent with empirical evidence. Additionally, the model adapts to switching between multiple alternation rules, providing a mechanistic explanation of how the HC-mPFC circuit supports spatial alternation tasks and the effects of disruption.
Collapse
Grants
- This research received funding from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Specific Grant Agreements No. 945539 (Human Brain Project SGA3) and No. 952215 (TAILOR); the European Research Council under the Grant Agreement No. 820213 (ThinkAhead), the Italian National Recovery and Resilience Plan (NRRP), M4C2, funded by the European Union – NextGenerationEU (Project IR0000011, CUP B51E22000150006, “EBRAINS-Italy”; Project PE0000013, “FAIR”; Project PE0000006, “MNESYS”), and the PRIN PNRR P20224FESY. The GEFORCE Quadro RTX6000 and Titan GPU cards used for this research were donated by the NVIDIA Corporation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Collapse
Affiliation(s)
- Toon Van de Maele
- IDLab, Department of Information Technology, Ghent University - imec, Ghent, Belgium
- VERSES Research Lab, Los Angeles, USA
| | - Bart Dhoedt
- IDLab, Department of Information Technology, Ghent University - imec, Ghent, Belgium
| | | | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Rome, Italy.
| |
Collapse
|
6
|
Yu H, Cao W, Fang T, Jin J, Pei G. EEG β oscillations in aberrant data perception under cognitive load modulation. Sci Rep 2024; 14:22995. [PMID: 39362975 PMCID: PMC11450174 DOI: 10.1038/s41598-024-74381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
Data-driven decision making (DDDM) is becoming an indispensable component of work across various fields, and the perception of aberrant data (PAD) has emerged as an essential skill. Nonetheless, the neural processing mechanisms underpinning PAD remain incompletely elucidated. Direct evidence linking neural oscillations to PAD is currently lacking, and the impact of cognitive load remains ambiguous. We address this issue using EEG time-frequency analysis. Data were collected from 21 healthy participants. The experiment employed a 2 (low vs. high cognitive load) × 2 [PAD+ (aberrant data accurately identified as aberrant) vs. PAD- (non-aberrant data correctly recognized as normal)] within-subject laboratory design. Results indicate that upper β band oscillations (26-30 Hz) were significantly enhanced in the PAD + condition compared to PAD-, with consistent activity observed in the frontal (p < 0.001, [Formula: see text] = 0.41) and parietal lobes (p = 0.028, [Formula: see text] = 0.22) within the 300-350 ms time window. Additionally, as cognitive load increased, the time window of β oscillations for distinguishing PAD+ from PAD- shifted earlier. This study enriches our understanding of the PAD neural basis by exploring the distribution of neural oscillation frequencies, decision-making neural circuits, and the windowing effect induced by cognitive load. These findings have significant implications for elucidating the pathological mechanisms of neurodegenerative disorders, as well as in the initial screening, intervention, and treatment of diseases.
Collapse
Affiliation(s)
- Haihong Yu
- Maritime School, Ningbo University, Ningbo, China
- School of Economics and Management, Ningbo University of Technology, Ningbo, China
| | - Wei Cao
- Maritime School, Ningbo University, Ningbo, China
| | - Tie Fang
- Maritime School, Ningbo University, Ningbo, China
| | - Jia Jin
- Key Laboratory of Brain-Machine Intelligence for Information Behavior (Ministry of Education and Shanghai), School of Business and Management, Shanghai International Studies University, 550# Dalian West Road, Shanghai, 200083, China.
| | - Guanxiong Pei
- Zhejiang Laboratory of Philosophy and Social Sciences - Laboratory of Intelligent Society and Governance, Zhejiang Lab, 1818# Wenyixi Road, Hangzhou, 311121, China.
- Development Strategy and Cooperation Center, Zhejiang Lab, Hangzhou, China.
| |
Collapse
|
7
|
Phalip A, Netser S, Wagner S. Understanding the neurobiology of social behavior through exploring brain-wide dynamics of neural activity. Neurosci Biobehav Rev 2024; 165:105856. [PMID: 39159735 DOI: 10.1016/j.neubiorev.2024.105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/21/2024]
Abstract
Social behavior is highly complex and adaptable. It can be divided into multiple temporal stages: detection, approach, and consummatory behavior. Each stage can be further divided into several cognitive and behavioral processes, such as perceiving social cues, evaluating the social and non-social contexts, and recognizing the internal/emotional state of others. Recent studies have identified numerous brain-wide circuits implicated in social behavior and suggested the existence of partially overlapping functional brain networks underlying various types of social and non-social behavior. However, understanding the brain-wide dynamics underlying social behavior remains challenging, and several brain-scale dynamics (macro-, meso-, and micro-scale levels) need to be integrated. Here, we suggest leveraging new tools and concepts to explore social brain networks and integrate those different levels. These include studying the expression of immediate-early genes throughout the entire brain to impartially define the structure of the neuronal networks involved in a given social behavior. Then, network dynamics could be investigated using electrode arrays or multi-channel fiber photometry. Finally, tools like high-density silicon probes and miniscopes can probe neural activity in specific areas and across neuronal populations at the single-cell level.
Collapse
Affiliation(s)
- Adèle Phalip
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
8
|
Paßmann S, Baselgia S, Kasten FH, Herrmann CS, Rasch B. Differential online and offline effects of theta-tACS on memory encoding and retrieval. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:894-911. [PMID: 39085585 PMCID: PMC11390785 DOI: 10.3758/s13415-024-01204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 08/02/2024]
Abstract
Theta oscillations support memory formation, but their exact contribution to the communication between prefrontal cortex (PFC) and the hippocampus is unknown. We tested the functional relevance of theta oscillations as a communication link between both areas for memory formation using transcranial alternating current stimulation (tACS). Healthy, young participants learned two lists of Dutch-German word pairs and retrieved them immediately and with a 30-min delay. In the encoding group (N = 30), tACS was applied during the encoding of list 1. List 2 was used to test stimulation aftereffects. In the retrieval group (N = 23), we stimulated during the delayed recall. In both groups, we applied tACS bilaterally at prefrontal and tempo-parietal sites, using either individualized theta frequency or 15 Hz (as control), according to a within-subject design. Stimulation with theta-tACS did not alter overall learning performance. An exploratory analysis revealed that immediate recall improved when word-pairs were learned after theta-tACS (list 2). Applying theta-tACS during retrieval had detrimental effects on memory. No changes in the power of the respective frequency bands were observed. Our results do not support the notion that impacting the communication between PFC and the hippocampus during a task by bilateral tACS improves memory. However, we do find evidence that direct stimulation had a trend for negatively interfering effects during immediate and delayed recall. Hints for beneficial effects on memory only occurred with aftereffects of the stimulation. Future studies need to further examine the effects during and after stimulation on memory formation.
Collapse
Affiliation(s)
- Sven Paßmann
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland.
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany.
| | - Sandrine Baselgia
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland
| | - Florian H Kasten
- Centre de Recherche Cerveau & Cognition, CNRS, Toulouse, France
- Université Toulouse III Paul Sabatier, Toulouse, France
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl Von Ossietzky Universität, Oldenburg, Germany
| | - Björn Rasch
- Cognitive Biopsychology and Methods, Department of Psychology, Université Fribourg, Rue P.-A.-de-Faucigny 2, 1700, Fribourg, Switzerland
| |
Collapse
|
9
|
Mohapatra AN, Jabarin R, Ray N, Netser S, Wagner S. Impaired emotion recognition in Cntnap2-deficient mice is associated with hyper-synchronous prefrontal cortex neuronal activity. Mol Psychiatry 2024:10.1038/s41380-024-02754-8. [PMID: 39289476 DOI: 10.1038/s41380-024-02754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Individuals diagnosed with autism spectrum disorder (ASD) show difficulty in recognizing emotions in others, a process termed emotion recognition. While human fMRI studies linked multiple brain areas to emotion recognition, the specific mechanisms underlying impaired emotion recognition in ASD are not clear. Here, we employed an emotional state preference (ESP) task to show that Cntnap2-knockout (KO) mice, an established ASD model, do not distinguish between conspecifics according to their emotional state. We assessed brain-wide local-field potential (LFP) signals during various social behavior tasks and found that Cntnap2-KO mice exhibited higher LFP theta and gamma rhythmicity than did C57BL/6J mice, even at rest. Specifically, Cntnap2-KO mice showed increased theta coherence, especially between the prelimbic cortex (PrL) and the hypothalamic paraventricular nucleus, during social behavior. Moreover, we observed significantly increased Granger causality of theta rhythmicity between these two brain areas, across several types of social behavior tasks. Finally, optogenetic stimulation of PrL pyramidal neurons in C57BL/6J mice impaired their social discrimination abilities, including in ESP. Together, these results suggest that increased rhythmicity of PrL pyramidal neuronal activity and its hyper-synchronization with specific brain regions are involved in the impaired emotion recognition exhibited by Cntnap2-KO mice.
Collapse
Affiliation(s)
- Alok Nath Mohapatra
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Renad Jabarin
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Natali Ray
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
10
|
Farkhondeh Tale Navi F, Heysieattalab S, Raoufy MR, Sabaghypour S, Nazari M, Nazari MA. Adaptive closed-loop modulation of cortical theta oscillations: Insights into the neural dynamics of navigational decision-making. Brain Stimul 2024; 17:1101-1118. [PMID: 39277130 DOI: 10.1016/j.brs.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 08/04/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
Navigational decision-making tasks, such as spatial working memory (SWM), rely highly on information integration from several cortical and sub-cortical regions. Performance in SWM tasks is associated with theta rhythm, including low-frequency oscillations related to movement and memory. The interaction of the ventral hippocampus (vHPC) and medial prefrontal cortex (mPFC), reflected in theta synchrony, is essential in various steps of information processing during SWM. We used a closed-loop neurofeedback (CLNF) system to upregulate theta power in the mPFC and investigate its effects on circuit dynamics and behavior in animal models. Specifically, we hypothesized that enhancing the power of the theta rhythm in the mPFC might improve SWM performance. Animals were divided into three groups: closed-loop (CL), random-loop (RL), and OFF (without stimulation). We recorded local field potential (LFP) in the mPFC while electrical reward stimulation contingent on cortical theta activity was delivered to the lateral hypothalamus (LH), which is considered one of the central reward-associated regions. We also recorded LFP in the vHPC to evaluate the related subcortical neural changes. Results revealed a sustained increase in the theta power in both mPFC and vHPC for the CL group. Our analysis also revealed an increase in mPFC-vHPC synchronization in the theta range over the stimulation sessions in the CL group, as measured by coherence and cross-correlation in the theta frequency band. The reinforcement of this circuit improved spatial decision-making performance in the subsequent behavioral results. Our findings provide direct evidence of the relationship between specific theta upregulation and SWM performance and suggest that theta oscillations are integral to cognitive processes. Overall, this study highlights the potential of adaptive CLNF systems in investigating neural dynamics in various brain circuits.
Collapse
Affiliation(s)
- Farhad Farkhondeh Tale Navi
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Soomaayeh Heysieattalab
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Mohammad Reza Raoufy
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Saied Sabaghypour
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran
| | - Milad Nazari
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Mohammad Ali Nazari
- Department of Cognitive Neuroscience, Faculty of Education and Psychology, University of Tabriz, Tabriz, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Happer JP, Beaton LE, Wagner LC, Hodgkinson CA, Goldman D, Marinkovic K. Neural indices of heritable impulsivity: Impact of the COMT Val158Met polymorphism on frontal beta power during early motor preparation. Biol Psychol 2024; 191:108826. [PMID: 38862067 DOI: 10.1016/j.biopsycho.2024.108826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
Studies of COMT Val158Met suggest that the neural circuitry subserving inhibitory control may be modulated by this functional polymorphism altering cortical dopamine availability, thus giving rise to heritable differences in behaviors. Using an anatomically-constrained magnetoencephalography method and stratifying the sample by COMT genotype, from a larger sample of 153 subjects, we examined the spatial and temporal dynamics of beta oscillations during motor execution and inhibition in 21 healthy Met158/Met158 (high dopamine) or 21 Val158/Val158 (low dopamine) genotype individuals during a Go/NoGo paradigm. While task performance was unaffected, Met158 homozygotes demonstrated an overall increase in beta power across regions essential for inhibitory control during early motor preparation (∼100 ms latency), suggestive of a global motor "pause" on behavior. This increase was especially evident on Go trials with slow response speed and was absent during inhibition failures. Such a pause could underlie the tendency of Met158 allele carriers to be more cautious and inhibited. In contrast, Val158 homozygotes exhibited a beta drop during early motor preparation, indicative of high response readiness. This decrease was associated with measures of behavioral disinhibition and consistent with greater extraversion and impulsivity observed in Val homozygotes. These results provide mechanistic insight into genetically-determined interindividual differences of inhibitory control with higher cortical dopamine associated with momentary response hesitation, and lower dopamine leading to motor impulsivity.
Collapse
Affiliation(s)
- Joseph P Happer
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA
| | - Lauren E Beaton
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | - Laura C Wagner
- Department of Psychology, San Diego State University, San Diego, CA, USA
| | | | - David Goldman
- Laboratory of Neurogenetics, NIAAA, NIH, Bethesda, MD, USA
| | - Ksenija Marinkovic
- San Diego State University/University of California, San Diego Joint Doctoral Program in Clinical Psychology, San Diego, CA, USA; Department of Psychology, San Diego State University, San Diego, CA, USA; Department of Radiology, University of California, La Jolla, San Diego, CA, USA.
| |
Collapse
|
12
|
Zhang L, Bao K, Liao Y. Enhanced Post-Movement Beta Rebound: Unraveling the Impact of Preplanned Sequential Actions. J Mot Behav 2024; 56:727-737. [PMID: 39138969 DOI: 10.1080/00222895.2024.2384886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/15/2024]
Abstract
The Post-Movement Beta Rebound (PMBR) is the increase in beta-band power after voluntary movement ends, but its specific role in cognitive processing is unclear. Current theory links PMBR with updates to internal models, mental frameworks that help anticipate and react to sensory feedback. However, research has not explored how reactivating a preexisting action plan, another source for internal model updates, might affect PMBR intensity. To address this gap, we recruited 20 participants (mean age 18.55 ± 0.51; 12 females) for an experiment involving isolated (single-step) or sequential (two-step) motor tasks based on predetermined cues. We compared PMBR after single-step movements with PMBR after the first movement in two-step tasks to assess the influence of a subsequent action on the PMBR power associated with the first action. The results show a significant increase in PMBR magnitude after the first movement in sequential tasks compared to the second action and the isolated movements. Notably, this increase is more pronounced for right-hand movements, suggesting lateralized brain activity in the left hemisphere. These findings indicate that PMBR is influenced not only by external stimuli but also by internal cognitive processes such as working memory. This insight enhances our understanding of PMBR's role in motor control, emphasizing the integration of both external and internal information.
Collapse
Affiliation(s)
- Lingli Zhang
- School of Education, Soochow University, Suzhou, Jiangsu, China
| | - Kaige Bao
- School of Education, Soochow University, Suzhou, Jiangsu, China
| | - Yu Liao
- School of Education, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
13
|
Young RA, Shin JD, Guo Z, Jadhav SP. Hippocampal-prefrontal communication subspaces align with behavioral and network patterns in a spatial memory task. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.601617. [PMID: 39026752 PMCID: PMC11257456 DOI: 10.1101/2024.07.08.601617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Rhythmic network states have been theorized to facilitate communication between brain regions, but how these oscillations influence communication subspaces, i.e, the low-dimensional neural activity patterns that mediate inter-regional communication, and in turn how subspaces impact behavior remains unclear. Using a spatial memory task in rats, we simultaneously recorded ensembles from hippocampal CA1 and the prefrontal cortex (PFC) to address this question. We found that task behaviors best aligned with low-dimensional, shared subspaces between these regions, rather than local activity in either region. Critically, both network oscillations and speed modulated the structure and performance of this communication subspace. Contrary to expectations, theta coherence did not better predict CA1-PFC shared activity, while theta power played a more significant role. To understand the communication space, we visualized shared CA1-PFC communication geometry using manifold techniques and found ring-like structures. We hypothesize that these shared activity manifolds are utilized to mediate the task behavior. These findings suggest that memory-guided behaviors are driven by shared CA1-PFC interactions that are dynamically modulated by oscillatory states, offering a novel perspective on the interplay between rhythms and behaviorally relevant neural communication.
Collapse
|
14
|
Becker M, Fischer DJ, Kühn S, Gallinat J. Videogame training increases clinical well-being, attention and hippocampal-prefrontal functional connectivity in patients with schizophrenia. Transl Psychiatry 2024; 14:218. [PMID: 38806461 PMCID: PMC11133354 DOI: 10.1038/s41398-024-02945-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Recent research shows that videogame training enhances neuronal plasticity and cognitive improvements in healthy individuals. As patients with schizophrenia exhibit reduced neuronal plasticity linked to cognitive deficits and symptoms, we investigated whether videogame-related cognitive improvements and plasticity changes extend to this population. In a training study, patients with schizophrenia and healthy controls were randomly assigned to 3D or 2D platformer videogame training or E-book reading (active control) for 8 weeks, 30 min daily. After training, both videogame conditions showed significant increases in sustained attention compared to the control condition, correlated with increased functional connectivity in a hippocampal-prefrontal network. Notably, patients trained with videogames mostly improved in negative symptoms, general psychopathology, and perceived mental health recovery. Videogames, incorporating initiative, goal setting and gratification, offer a training approach closer to real life than current psychiatric treatments. Our results provide initial evidence that they may represent a possible adjunct therapeutic intervention for complex mental disorders.
Collapse
Affiliation(s)
- Maxi Becker
- University Medical Center Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistrasse 52, 20246, Hamburg, Germany.
- Humboldt-University Berlin, Department of Psychology, Berlin, Germany.
| | - Djo J Fischer
- University Medical Center Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistrasse 52, 20246, Hamburg, Germany
| | - Simone Kühn
- University Medical Center Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistrasse 52, 20246, Hamburg, Germany.
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany.
- Max Planck-UCL Center for Computational Psychiatry and Ageing Research, Berlin, Germany.
| | - Jürgen Gallinat
- University Medical Center Hamburg-Eppendorf, Clinic and Policlinic for Psychiatry and Psychotherapy, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
15
|
Ambrogioni L. In Search of Dispersed Memories: Generative Diffusion Models Are Associative Memory Networks. ENTROPY (BASEL, SWITZERLAND) 2024; 26:381. [PMID: 38785630 PMCID: PMC11119823 DOI: 10.3390/e26050381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
Uncovering the mechanisms behind long-term memory is one of the most fascinating open problems in neuroscience and artificial intelligence. Artificial associative memory networks have been used to formalize important aspects of biological memory. Generative diffusion models are a type of generative machine learning techniques that have shown great performance in many tasks. Similar to associative memory systems, these networks define a dynamical system that converges to a set of target states. In this work, we show that generative diffusion models can be interpreted as energy-based models and that, when trained on discrete patterns, their energy function is (asymptotically) identical to that of modern Hopfield networks. This equivalence allows us to interpret the supervised training of diffusion models as a synaptic learning process that encodes the associative dynamics of a modern Hopfield network in the weight structure of a deep neural network. Leveraging this connection, we formulate a generalized framework for understanding the formation of long-term memory, where creative generation and memory recall can be seen as parts of a unified continuum.
Collapse
Affiliation(s)
- Luca Ambrogioni
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 XZ Nijmegen, The Netherlands
| |
Collapse
|
16
|
Khanjanianpak M, Azimi-Tafreshi N, Valizadeh A. Emergence of complex oscillatory dynamics in the neuronal networks with long activity time of inhibitory synapses. iScience 2024; 27:109401. [PMID: 38532887 PMCID: PMC10963234 DOI: 10.1016/j.isci.2024.109401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/30/2023] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
The brain displays complex dynamics, including collective oscillations, and extensive research has been conducted to understand their generation. However, our understanding of how biological constraints influence these oscillations is incomplete. This study investigates the essential properties of neuronal networks needed to generate oscillations resembling those in the brain. A simple discrete-time model of interconnected excitable elements is developed, capable of closely resembling the complex oscillations observed in biological neural networks. In the model, synaptic connections remain active for a duration exceeding individual neuron activity. We show that the inhibitory synapses must exhibit longer activity than excitatory synapses to produce a diverse range of the dynamical states, including biologically plausible oscillations. Upon meeting this condition, the transition between different dynamical states can be controlled by external stochastic input to the neurons. The study provides a comprehensive explanation for the emergence of distinct dynamical states in neural networks based on specific parameters.
Collapse
Affiliation(s)
- Mozhgan Khanjanianpak
- Physics Department, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran 1991633357, Iran
| | - Nahid Azimi-Tafreshi
- Physics Department, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Alireza Valizadeh
- Physics Department, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran 1991633357, Iran
| |
Collapse
|
17
|
Negrón-Oyarzo I, Dib T, Chacana-Véliz L, López-Quilodrán N, Urrutia-Piñones J. Large-scale coupling of prefrontal activity patterns as a mechanism for cognitive control in health and disease: evidence from rodent models. Front Neural Circuits 2024; 18:1286111. [PMID: 38638163 PMCID: PMC11024307 DOI: 10.3389/fncir.2024.1286111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/11/2024] [Indexed: 04/20/2024] Open
Abstract
Cognitive control of behavior is crucial for well-being, as allows subject to adapt to changing environments in a goal-directed way. Changes in cognitive control of behavior is observed during cognitive decline in elderly and in pathological mental conditions. Therefore, the recovery of cognitive control may provide a reliable preventive and therapeutic strategy. However, its neural basis is not completely understood. Cognitive control is supported by the prefrontal cortex, structure that integrates relevant information for the appropriate organization of behavior. At neurophysiological level, it is suggested that cognitive control is supported by local and large-scale synchronization of oscillatory activity patterns and neural spiking activity between the prefrontal cortex and distributed neural networks. In this review, we focus mainly on rodent models approaching the neuronal origin of these prefrontal patterns, and the cognitive and behavioral relevance of its coordination with distributed brain systems. We also examine the relationship between cognitive control and neural activity patterns in the prefrontal cortex, and its role in normal cognitive decline and pathological mental conditions. Finally, based on these body of evidence, we propose a common mechanism that may underlie the impaired cognitive control of behavior.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Tatiana Dib
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Lorena Chacana-Véliz
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Nélida López-Quilodrán
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jocelyn Urrutia-Piñones
- Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Programa de Doctorado en Ciencias Mención en Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
18
|
Bevandić J, Chareyron LJ, Bachevalier J, Cacucci F, Genzel L, Newcombe NS, Vargha-Khadem F, Ólafsdóttir HF. Episodic memory development: Bridging animal and human research. Neuron 2024; 112:1060-1080. [PMID: 38359826 PMCID: PMC11129319 DOI: 10.1016/j.neuron.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
Human episodic memory is not functionally evident until about 2 years of age and continues to develop into the school years. Behavioral studies have elucidated this developmental timeline and its constituent processes. In tandem, lesion and neurophysiological studies in non-human primates and rodents have identified key neural substrates and circuit mechanisms that may underlie episodic memory development. Despite this progress, collaborative efforts between psychologists and neuroscientists remain limited, hindering progress. Here, we seek to bridge human and non-human episodic memory development research by offering a comparative review of studies using humans, non-human primates, and rodents. We highlight critical theoretical and methodological issues that limit cross-fertilization and propose a common research framework, adaptable to different species, that may facilitate cross-species research endeavors.
Collapse
Affiliation(s)
- Juraj Bevandić
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Loïc J Chareyron
- Cognitive Neuroscience and Neuropsychiatry, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, UK; Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, Lausanne, Switzerland
| | - Jocelyne Bachevalier
- Division of Developmental and Cognitive Neuroscience, Emory National Primate Research Center, Department of Psychology, Emory University, Atlanta, GA, USA.
| | - Francesca Cacucci
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Lisa Genzel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| | - Nora S Newcombe
- Department of Psychology, Temple University, Philadelphia, PA, USA.
| | - Faraneh Vargha-Khadem
- Cognitive Neuroscience and Neuropsychiatry, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, UK.
| | - H Freyja Ólafsdóttir
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
19
|
Abstract
Brain oscillations are involved in many cognitive processes, and several studies have investigated their role in cognition. In particular, the phase of certain oscillations has been related to temporal binding and integration processes, with some authors arguing that perception could be an inherently rhythmic process. However, previous research on oscillations mostly overlooked their spatial component: how oscillations propagate through the brain as traveling waves, with systematic phase delays between brain regions. Here, we argue that interpreting oscillations as traveling waves is a useful paradigm shift to understand their role in temporal binding and address controversial results. After a brief definition of traveling waves, we propose an original view on temporal integration that considers this new perspective. We first focus on cortical dynamics, then speculate about the role of thalamic nuclei in modulating the waves, and on the possible consequences for rhythmic temporal binding. In conclusion, we highlight the importance of considering oscillations as traveling waves when investigating their role in cognitive functions.
Collapse
Affiliation(s)
- Andrea Alamia
- CNRS Centre de Recherche Cerveau et Cognition (CERCO, UMR 5549), Toulouse, France
| | - Rufin VanRullen
- CNRS Centre de Recherche Cerveau et Cognition (CERCO, UMR 5549), Toulouse, France
| |
Collapse
|
20
|
Pan L, Wang J, Wu W, Wang Y, Zhu Y, Song Y. Transcutaneous auricular vagus nerve stimulation improves working memory in temporal lobe epilepsy: A randomized double-blind study. CNS Neurosci Ther 2024; 30:e14395. [PMID: 37553557 PMCID: PMC10848055 DOI: 10.1111/cns.14395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/08/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023] Open
Abstract
AIMS This study investigated the impact of transcutaneous auricular vagus nerve stimulation (taVNS) on working memory (WM) in refractory temporal lobe epilepsy (rTLE) and the underlying mechanisms. METHODS In this randomized double-blind study, 28 rTLE patients were subjected to an active or sham taVNS (a/s-taVNS) protocol for 20 weeks (a-taVNS group, n = 19; s-ta VNS group, n = 9). Patients performed visual WM tasks during stimulation and neural oscillations were simultaneously recorded by 19-channel electroencephalography. RESULTS Compared with the baseline state, reaction time was significantly shorter after 20 weeks of taVNS in the a-taVNS group (p = 0.010), whereas no difference was observed in the s-taVNS group (p > 0.05). The power spectral density (PSD) of the theta frequency band in the Fz channel decreased significantly after a-taVNS during WM-encoding (p = 0.020), maintenance (p = 0.038), and retrieval (p = 0.039) phases, but not in the s-taVNS group (all p > 0.05). CONCLUSION Neural oscillations during WM were altered by taVNS and WM performance was improved. Alterations in frontal midline theta oscillations may be a marker for the effect of taVNS on cognitive regulation.
Collapse
Affiliation(s)
- Liping Pan
- General Medicine DepartmentTianjin Medical University General HospitalTianjinChina
| | - Jiajing Wang
- Department of Intensive Care Medicine, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
- Tianjin Medical UniversityTianjinChina
| | - Wenjuan Wu
- Department of NeurologyThe First Affiliated Hospital of Henan University of Science and TechnologyLuoyangChina
| | | | | | - Yijun Song
- Department of Intensive Care Medicine, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeTianjinChina
| |
Collapse
|
21
|
Kim J, Kim HW, Kovar J, Lee YS. Neural consequences of binaural beat stimulation on auditory sentence comprehension: an EEG study. Cereb Cortex 2024; 34:bhad459. [PMID: 38044462 DOI: 10.1093/cercor/bhad459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
A growing literature has shown that binaural beat (BB)-generated by dichotic presentation of slightly mismatched pure tones-improves cognition. We recently found that BB stimulation of either beta (18 Hz) or gamma (40 Hz) frequencies enhanced auditory sentence comprehension. Here, we used electroencephalography (EEG) to characterize neural oscillations pertaining to the enhanced linguistic operations following BB stimulation. Sixty healthy young adults were randomly assigned to one of three listening groups: 18-Hz BB, 40-Hz BB, or pure-tone baseline, all embedded in music. After listening to the sound for 10 min (stimulation phase), participants underwent an auditory sentence comprehension task involving spoken sentences that contained either an object or subject relative clause (task phase). During the stimulation phase, 18-Hz BB yielded increased EEG power in a beta frequency range, while 40-Hz BB did not. During the task phase, only the 18-Hz BB resulted in significantly higher accuracy and faster response times compared with the baseline, especially on syntactically more complex object-relative sentences. The behavioral improvement by 18-Hz BB was accompanied by attenuated beta power difference between object- and subject-relative sentences. Altogether, our findings demonstrate beta oscillations as a neural correlate of improved syntactic operation following BB stimulation.
Collapse
Affiliation(s)
- Jeahong Kim
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080, United States
- Callier Clinical Research Center, The University of Texas at Dallas, Richardson, TX 75080, United States
| | - Hyun-Woong Kim
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080, United States
- Callier Clinical Research Center, The University of Texas at Dallas, Richardson, TX 75080, United States
- Center for BrainHealth, The University of Texas at Dallas, Dallas, TX 75235, United States
- Department of Psychology, The University of Texas at Dallas, Richardson, TX 75080, United States
| | - Jessica Kovar
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080, United States
- Callier Clinical Research Center, The University of Texas at Dallas, Richardson, TX 75080, United States
| | - Yune Sang Lee
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX 75080, United States
- Callier Clinical Research Center, The University of Texas at Dallas, Richardson, TX 75080, United States
- Center for BrainHealth, The University of Texas at Dallas, Dallas, TX 75235, United States
- Department of Speech, Language, and Hearing, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080, United States
| |
Collapse
|
22
|
Mohapatra AN, Peles D, Netser S, Wagner S. Synchronized LFP rhythmicity in the social brain reflects the context of social encounters. Commun Biol 2024; 7:2. [PMID: 38168971 PMCID: PMC10761981 DOI: 10.1038/s42003-023-05728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Mammalian social behavior is highly context-sensitive. Yet, little is known about the mechanisms that modulate social behavior according to its context. Recent studies have revealed a network of mostly limbic brain regions which regulates social behavior. We hypothesize that coherent theta and gamma rhythms reflect the organization of this network into functional sub-networks in a context-dependent manner. To test this concept, we simultaneously record local field potential (LFP) from multiple social brain regions in adult male mice performing three social discrimination tasks. While LFP rhythmicity across all tasks is dominated by a global internal state, the pattern of theta coherence between the various regions reflect the behavioral task more than other variables. Moreover, Granger causality analysis implicate the ventral dentate gyrus as a main player in coordinating the context-specific rhythmic activity. Thus, our results suggest that the pattern of coordinated rhythmic activity within the network reflects the subject's social context.
Collapse
Affiliation(s)
- Alok Nath Mohapatra
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, POB. 3338, Haifa, 3103301, Israel.
| | - David Peles
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, POB. 3338, Haifa, 3103301, Israel
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, POB. 3338, Haifa, 3103301, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, POB. 3338, Haifa, 3103301, Israel
| |
Collapse
|
23
|
Joshi SD, Ruffini G, Nuttall HE, Watson DG, Braithwaite JJ. Optimised Multi-Channel Transcranial Direct Current Stimulation (MtDCS) Reveals Differential Involvement of the Right-Ventrolateral Prefrontal Cortex (rVLPFC) and Insular Complex in those Predisposed to Aberrant Experiences. Conscious Cogn 2024; 117:103610. [PMID: 38056338 DOI: 10.1016/j.concog.2023.103610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
Research has shown a prominent role for cortical hyperexcitability underlying aberrant perceptions, hallucinations, and distortions in human conscious experience - even in neurotypical groups. The rVLPFC has been identified as an important structure in mediating cognitive affective states / feeling conscious states. The current study examined the involvement of the rVLPFC in mediating cognitive affective states in those predisposed to aberrant experiences in the neurotypical population. Participants completed two trait-based measures: (i) the Cortical Hyperexcitability Index_II (CHi_II, a proxy measure of cortical hyperexcitability) and (ii) two factors from the Cambridge Depersonalisation Scale (CDS). An optimised 7-channel MtDCS montage for stimulation conditions (Anodal, Cathodal and Sham) was created targeting the rVLPFC in a single-blind study. At the end of each stimulation session, participants completed a body-threat task (BTAB) while skin conductance responses (SCRs) and psychological responses were recorded. Participants with signs of increasing cortical hyperexcitability showed significant suppression of SCRs in the Cathodal stimulation relative to the Anodal and sSham conditions. Those high on the trait-based measures of depersonalisation-like experiences failed to show reliable effects. Collectively, the findings suggest that baseline brain states can mediate the effects of neurostimulation which would be missed via sample level averaging and without appropriate measures for stratifying individual differences.
Collapse
|
24
|
Gillespie B, Panthi S, Sundram S, Hill RA. The impact of maternal immune activation on GABAergic interneuron development: A systematic review of rodent studies and their translational implications. Neurosci Biobehav Rev 2024; 156:105488. [PMID: 38042358 DOI: 10.1016/j.neubiorev.2023.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/09/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Mothers exposed to infections during pregnancy disproportionally birth children who develop autism and schizophrenia, disorders associated with altered GABAergic function. The maternal immune activation (MIA) model recapitulates this risk factor, with many studies also reporting disruptions to GABAergic interneuron expression, protein, cellular density and function. However, it is unclear if there are species, sex, age, region, or GABAergic subtype specific vulnerabilities to MIA. Furthermore, to fully comprehend the impact of MIA on the GABAergic system a synthesised account of molecular, cellular, electrophysiological and behavioural findings was required. To this end we conducted a systematic review of GABAergic interneuron changes in the MIA model, focusing on the prefrontal cortex and hippocampus. We reviewed 102 articles that revealed robust changes in a number of GABAergic markers that present as gestationally-specific, region-specific and sometimes sex-specific. Disruptions to GABAergic markers coincided with distinct behavioural phenotypes, including memory, sensorimotor gating, anxiety, and sociability. Findings suggest the MIA model is a valid tool for testing novel therapeutics designed to recover GABAergic function and associated behaviour.
Collapse
Affiliation(s)
- Brendan Gillespie
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Sandesh Panthi
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Rachel A Hill
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, VIC 3168, Australia.
| |
Collapse
|
25
|
Woodcock EA, Greenwald MK, Chen I, Feng D, Cohn JA, Lundahl LH. HIV chronicity as a predictor of hippocampal memory deficits in daily cannabis users living with HIV. DRUG AND ALCOHOL DEPENDENCE REPORTS 2023; 9:100189. [PMID: 37736522 PMCID: PMC10509297 DOI: 10.1016/j.dadr.2023.100189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Background Antiretroviral medications have increased the lifespan of persons living with HIV (PLWH) thereby unmasking memory decline that may be attributed to chronological age, HIV symptomatology, HIV disease chronicity, and/or substance use (especially cannabis use which is common among PLWH). To date, few studies have attempted to disentangle these effects. In a sample of daily cannabis-using PLWH, we investigated whether hippocampal memory function, assessed via an object-location associative learning task, was associated with age, HIV chronicity and symptom severity, or substance use. Methods 48 PLWH (12.9 ± 9.6 years since HIV diagnosis), who were 44 years old on average (range: 24-64 years; 58 % male) and reported daily cannabis use (recent use confirmed by urinalysis) completed the study. We assessed each participant's demographics, substance use, medical history, current HIV symptoms, and hippocampal memory function via a well-validated object-location associative learning task. Results Multiple regression analyses found that living more years since HIV+ diagnosis predicted significantly worse associative learning total score (r=-0.40) and learning rate (r=-0.34) whereas chronological age, cannabis-use characteristics, and recent HIV symptom severity were not significantly related to hippocampal memory function. Conclusions In daily cannabis-using PLWH, HIV chronicity was related to worse hippocampal memory function independent from cannabis use, age, and HIV symptomatology. Object-location associative learning performance could serve as an 'early-warning' metric of cognitive decline among PLWH. Future research should examine longitudinal changes in associative learning proficiency and evaluate interventions to prevent hippocampal memory decline among PLWH. ClinicalTrials.gov: NCT01536899.
Collapse
Affiliation(s)
- Eric A. Woodcock
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI USA
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI USA
| | - Mark K. Greenwald
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI USA
| | - Irene Chen
- Wayne State University School of Medicine, Detroit, MI USA
| | - Danni Feng
- Wayne State University School of Medicine, Detroit, MI USA
| | - Jonathan A. Cohn
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI USA
| | - Leslie H. Lundahl
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI USA
| |
Collapse
|
26
|
Comeaux P, Clark K, Noudoost B. A recruitment through coherence theory of working memory. Prog Neurobiol 2023; 228:102491. [PMID: 37393039 PMCID: PMC10530428 DOI: 10.1016/j.pneurobio.2023.102491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
The interactions between prefrontal cortex and other areas during working memory have been studied for decades. Here we outline a conceptual framework describing interactions between these areas during working memory, and review evidence for key elements of this model. We specifically suggest that a top-down signal sent from prefrontal to sensory areas drives oscillations in these areas. Spike timing within sensory areas becomes locked to these working-memory-driven oscillations, and the phase of spiking conveys information about the representation available within these areas. Downstream areas receiving these phase-locked spikes from sensory areas can recover this information via a combination of coherent oscillations and gating of input efficacy based on the phase of their local oscillations. Although the conceptual framework is based on prefrontal interactions with sensory areas during working memory, we also discuss the broader implications of this framework for flexible communication between brain areas in general.
Collapse
Affiliation(s)
- Phillip Comeaux
- Dept. of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Salt Lake City, UT 84112, USA; Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Kelsey Clark
- Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Behrad Noudoost
- Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
27
|
Tong RL, Kahn UN, Grafe LA, Hitti FL, Fried NT, Corbett BF. Stress circuitry: mechanisms behind nervous and immune system communication that influence behavior. Front Psychiatry 2023; 14:1240783. [PMID: 37706039 PMCID: PMC10495591 DOI: 10.3389/fpsyt.2023.1240783] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023] Open
Abstract
Inflammatory processes are increased by stress and contribute to the pathology of mood disorders. Stress is thought to primarily induce inflammation through peripheral and central noradrenergic neurotransmission. In healthy individuals, these pro-inflammatory effects are countered by glucocorticoid signaling, which is also activated by stress. In chronically stressed individuals, the anti-inflammatory effects of glucocorticoids are impaired, allowing pro-inflammatory effects to go unchecked. Mechanisms underlying this glucocorticoid resistance are well understood, but the precise circuits and molecular mechanisms by which stress increases inflammation are not as well known. In this narrative review, we summarize the mechanisms by which chronic stress increases inflammation and contributes to the onset and development of stress-related mood disorders. We focus on the neural substrates and molecular mechanisms, especially those regulated by noradrenergic signaling, that increase inflammatory processes in stressed individuals. We also discuss key knowledge gaps in our understanding of the communication between nervous and immune systems during stress and considerations for future therapeutic strategies. Here we highlight the mechanisms by which noradrenergic signaling contributes to inflammatory processes during stress and how this inflammation can contribute to the pathology of stress-related mood disorders. Understanding the mechanisms underlying crosstalk between the nervous and immune systems may lead to novel therapeutic strategies for mood disorders and/or provide important considerations for treating immune-related diseases in individuals suffering from stress-related disorders.
Collapse
Affiliation(s)
- Rose L. Tong
- Corbett Laboratory, Department of Biology, Rutgers University, Camden, NJ, United States
| | - Ubaidah N. Kahn
- Fried Laboratory, Department of Biology, Rutgers University, Camden, NJ, United States
| | - Laura A. Grafe
- Grafe Laboratory, Department of Psychology, Bryn Mawr College, Bryn Mawr, PA, United States
| | - Frederick L. Hitti
- Hitti Laboratory, Department of Neurological Surgery and Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Nathan T. Fried
- Fried Laboratory, Department of Biology, Rutgers University, Camden, NJ, United States
| | - Brian F. Corbett
- Corbett Laboratory, Department of Biology, Rutgers University, Camden, NJ, United States
| |
Collapse
|
28
|
Basha D, Chauvette S, Sheroziya M, Timofeev I. Respiration organizes gamma synchrony in the prefronto-thalamic network. Sci Rep 2023; 13:8529. [PMID: 37237017 PMCID: PMC10219931 DOI: 10.1038/s41598-023-35516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Multiple cognitive operations are associated with the emergence of gamma oscillations in the medial prefrontal cortex (mPFC) although little is known about the mechanisms that control this rhythm. Using local field potential recordings from cats, we show that periodic bursts of gamma recur with 1 Hz regularity in the wake mPFC and are locked to the exhalation phase of the respiratory cycle. Respiration organizes long-range coherence in the gamma band between the mPFC and the nucleus reuniens the thalamus (Reu), linking the prefrontal cortex and the hippocampus. In vivo intracellular recordings of the mouse thalamus reveal that respiration timing is propagated by synaptic activity in Reu and likely underlies the emergence of gamma bursts in the prefrontal cortex. Our findings highlight breathing as an important substrate for long-range neuronal synchronization across the prefrontal circuit, a key network for cognitive operations.
Collapse
Affiliation(s)
- Diellor Basha
- Département de Psychiatrie Et de Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
- CERVO Centre de Recherche, Université Laval, 2301 Av. D'Estimauville, Québec, QC, G1E 1T2, Canada
| | - Sylvain Chauvette
- CERVO Centre de Recherche, Université Laval, 2301 Av. D'Estimauville, Québec, QC, G1E 1T2, Canada
| | - Maxim Sheroziya
- Département de Psychiatrie Et de Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
- CERVO Centre de Recherche, Université Laval, 2301 Av. D'Estimauville, Québec, QC, G1E 1T2, Canada
| | - Igor Timofeev
- Département de Psychiatrie Et de Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada.
- CERVO Centre de Recherche, Université Laval, 2301 Av. D'Estimauville, Québec, QC, G1E 1T2, Canada.
| |
Collapse
|
29
|
Balasubramani PP, Diaz-Delgado J, Grennan G, Alim F, Zafar-Khan M, Maric V, Ramanathan D, Mishra J. Distinct neural activations correlate with maximization of reward magnitude versus frequency. Cereb Cortex 2023; 33:6038-6050. [PMID: 36573422 PMCID: PMC10422923 DOI: 10.1093/cercor/bhac482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/29/2022] Open
Abstract
Choice selection strategies and decision-making are typically investigated using multiple-choice gambling paradigms that require participants to maximize expected value of rewards. However, research shows that performance in such paradigms suffers from individual biases towards the frequency of gains such that users often choose smaller frequent gains over larger rarely occurring gains, also referred to as melioration. To understand the basis of this subjective tradeoff, we used a simple 2-choice reward task paradigm in 186 healthy human adult subjects sampled across the adult lifespan. Cortical source reconstruction of simultaneously recorded electroencephalography suggested distinct neural correlates for maximizing reward magnitude versus frequency. We found that activations in the parahippocampal and entorhinal areas, which are typically linked to memory function, specifically correlated with maximization of reward magnitude. In contrast, maximization of reward frequency was correlated with activations in the lateral orbitofrontal cortices and operculum, typical areas involved in reward processing. These findings reveal distinct neural processes serving reward frequency versus magnitude maximization that can have clinical translational utility to optimize decision-making.
Collapse
Affiliation(s)
- Pragathi Priyadharsini Balasubramani
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- Department of Cognitive Science, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Juan Diaz-Delgado
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Gillian Grennan
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Fahad Alim
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Mariam Zafar-Khan
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Vojislav Maric
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| | - Dhakshin Ramanathan
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
- Department of Mental Health, VA San Diego Medical Center, San Diego, CA, United States
- Center of Excellence for Stress and Mental Health, VA San Diego Medical Center, San Diego, CA, United States
| | - Jyoti Mishra
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
30
|
Rats in proestrus-estrus present more attention behaviors toward males and exhibit higher prefrontal-parietal EEG synchronization. Physiol Behav 2023; 263:114136. [PMID: 36841322 DOI: 10.1016/j.physbeh.2023.114136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
According to the different stages of the estrous cycle, female rats exhibit behavioral changes associated with variations in sex hormone levels that affect the functionality of certain brain regions. In this study, we characterized the attention that female rats paid to a sexually-experienced male and the degree of electroencephalographic (EEG) activation and coupling between the medial prefrontal and posterior parietal cortices during antagonistic phases of the estrous cycle (proestrus-estrus vs. diestrous). The degree of attention paid to the stimulus was measured by the number of nose pokes performed while the rats were in a sexual incentive motivation box. EEGs were recorded in two conditions: a) awake-quiet state with no male rat present; and b) awake-quiet state in the presence of a male. Only during proestrus-estrus did the females show lower latency with a higher frequency and duration of nose pokes. In both cortices, the receptive females presented higher absolute power in all EEG bands recorded in the presence of the male, regardless of the phase of the estrous cycle. They also had greater EEG coupling between the medial prefrontal and posterior parietal cortices of the left hemisphere in all EEG bands regardless of the presence of a male. The higher synchronization between prefronto-parietal areas could be associated with the greater attention paid to, and adequate processing of, the sexual stimuli emitted by the male. Hence, it is probable that manifesting the proceptivity and receptivity behaviors characteristic of the proestrus-estrus phase requires a higher functional coupling between the prefrontal and parietal cortices.
Collapse
|
31
|
Nissim NR, Pham DVH, Poddar T, Blutt E, Hamilton RH. The impact of gamma transcranial alternating current stimulation (tACS) on cognitive and memory processes in patients with mild cognitive impairment or Alzheimer's disease: A literature review. Brain Stimul 2023; 16:748-755. [PMID: 37028756 PMCID: PMC10862495 DOI: 10.1016/j.brs.2023.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/16/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Transcranial alternating current stimulation (tACS)-a noninvasive brain stimulation technique that modulates cortical oscillations through entrainment-has been demonstrated to alter oscillatory activity and enhance cognition in healthy adults. TACS is being explored as a tool to improve cognition and memory in patient populations with mild cognitive impairment (MCI) and Alzheimer's disease (AD). OBJECTIVE To review the growing body of literature and current findings obtained from the application of tACS in patients with MCI or AD, highlighting the effects of gamma tACS on brain function, memory, and cognition. Evidence on the use of brain stimulation in animal models of AD is also discussed. Important parameters of stimulation are underscored for consideration in protocols that aim to apply tACS as a therapeutic tool in patients with MCI/AD. FINDINGS The application of gamma tACS has shown promising results in the improvement of cognitive and memory processes that are impacted in patients with MCI/AD. These data demonstrate the potential for tACS as an interventional stand-alone tool or alongside pharmacological and/or other behavioral interventions in MCI/AD. CONCLUSIONS While the use of tACS in MCI/AD has evidenced encouraging results, the effects of this stimulation technique on brain function and pathophysiology in MCI/AD remains to be fully determined. This review explores the literature and highlights the need for continued research on tACS as a tool to alter the course of the disease by reinstating oscillatory activity, improving cognitive and memory processing, delaying disease progression, and remediating cognitive abilities in patients with MCI/AD.
Collapse
Affiliation(s)
- N R Nissim
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Pennsylvania, PA, USA; Moss Rehabilitation Research Institute, Einstein Medical Center, Elkins Park, PA, USA.
| | - D V H Pham
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Pennsylvania, PA, USA
| | - T Poddar
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Pennsylvania, PA, USA
| | - E Blutt
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Pennsylvania, PA, USA
| | - R H Hamilton
- Laboratory for Cognition and Neural Stimulation, Department of Neurology, University of Pennsylvania, Pennsylvania, PA, USA; Moss Rehabilitation Research Institute, Einstein Medical Center, Elkins Park, PA, USA.
| |
Collapse
|
32
|
Karekal A, Stuart S, Mancini M, Swann NC. Elevated Gaussian-modeled beta power in the cortex characterizes aging, but not Parkinson's disease. J Neurophysiol 2023; 129:1086-1093. [PMID: 37017333 PMCID: PMC10151040 DOI: 10.1152/jn.00480.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/06/2023] Open
Abstract
Aging is a key risk factor for the development of Parkinson's disease (PD). PD is characterized by excessive synchrony of beta oscillations (13-30 Hz) in the basal ganglia thalamo-cortical network. However, cortical beta power is not reliably elevated in individuals with PD. Here, we sought to disentangle how resting cortical beta power compares in younger controls, older controls, and individuals with PD using scalp electroencephalogram (EEG) and a novel approach for quantifying beta power. Specifically, we used a Gaussian model to determine if sensorimotor beta power distinguishes these groups. In addition, we looked at the distribution of beta power across the entire cortex. Our findings showed that Gaussian-modeled beta power does not differentiate individuals with PD (on medication) from healthy younger or older controls in sensorimotor cortex. However, beta power (and not theta or alpha) was higher in healthy older versus younger controls. This effect was most pronounced in regions near sensorimotor cortex including the frontal and parietal areas [P < 0.05, false discovery rate (FDR) corrected]. In addition, the bandwidth of the periodic beta was also higher in healthy older than young individuals in parietal regions. Finally, the aperiodic component, specifically the exponent of the signal, was higher (steeper) in younger controls than in individuals with PD in the right parietal-occipital region (P < 0.05, FDR corrected), possibly reflecting differences in neuronal spiking. Our findings suggest that cortical Gaussian beta power is possibly modulated by age and could be further explored in longitudinal studies to determine whether sensorimotor beta increases with increasing age.NEW & NOTEWORTHY Altered sensorimotor beta activity has been shown to be a feature in aging and PD. Using a novel approach, we clarify that resting sensorimotor beta power does not distinguish subjects with PD from healthy younger and older controls. However, beta power was higher in older compared with younger controls in central sensorimotor, frontal, and parietal regions. These results provide a clearer picture of sensorimotor beta power, demonstrating that it is elevated in aging but not PD.
Collapse
Affiliation(s)
- Apoorva Karekal
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Samuel Stuart
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | - Martina Mancini
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, United States
| | - Nicole C Swann
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| |
Collapse
|
33
|
Ferguson B, Glick C, Huguenard JR. Prefrontal PV interneurons facilitate attention and are linked to attentional dysfunction in a mouse model of absence epilepsy. eLife 2023; 12:e78349. [PMID: 37014118 PMCID: PMC10072875 DOI: 10.7554/elife.78349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 02/07/2023] [Indexed: 04/05/2023] Open
Abstract
Absence seizures are characterized by brief periods of unconsciousness accompanied by lapses in motor function that can occur hundreds of times throughout the day. Outside of these frequent moments of unconsciousness, approximately a third of people living with the disorder experience treatment-resistant attention impairments. Convergent evidence suggests prefrontal cortex (PFC) dysfunction may underlie attention impairments in affected patients. To examine this, we use a combination of slice physiology, fiber photometry, electrocorticography (ECoG), optogenetics, and behavior in the Scn8a+/-mouse model of absence epilepsy. Attention function was measured using a novel visual attention task where a light cue that varied in duration predicted the location of a food reward. In Scn8a+/-mice, we find altered parvalbumin interneuron (PVIN) output in the medial PFC (mPFC) in vitro and PVIN hypoactivity along with reductions in gamma power during cue presentation in vivo. This was associated with poorer attention performance in Scn8a+/-mice that could be rescued by gamma-frequency optogenetic stimulation of PVINs. This highlights cue-related PVIN activity as an important mechanism for attention and suggests PVINs may represent a therapeutic target for cognitive comorbidities in absence epilepsy.
Collapse
Affiliation(s)
- Brielle Ferguson
- Department of Neurology and Neurological Sciences, Stanford UniversityStanfordUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Program in Neurobiology and Department of Neurology, Boston Children's HospitalBostonUnited States
| | - Cameron Glick
- Department of Neurology and Neurological Sciences, Stanford UniversityStanfordUnited States
| | - John R Huguenard
- Department of Neurology and Neurological Sciences, Stanford UniversityStanfordUnited States
| |
Collapse
|
34
|
Han C, Zhao X, Li M, Haihambo N, Teng J, Li S, Qiu J, Feng X, Gao M. Enhancement of the neural response during 40 Hz auditory entrainment in closed-eye state in human prefrontal region. Cogn Neurodyn 2023; 17:399-410. [PMID: 37007205 PMCID: PMC10050539 DOI: 10.1007/s11571-022-09834-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/09/2022] [Accepted: 06/13/2022] [Indexed: 12/30/2022] Open
Abstract
Gamma-band activity was thought to be related to several high-level cognitive functions, and Gamma ENtrainment Using Sensory stimulation (GENUS, 40 Hz sensory combined visual and auditory stimulation) was found to have positive effects on patients with Alzheimer's dementia. Other studies found, however, that neural responses induced by single 40 Hz auditory stimulation were relatively weak. To address this, we included several new experimental conditions (sounds with sinusoidal or square wave; open-eye and closed-eye state) combined with auditory stimulation with the aim of investigating which of these induces a stronger 40 Hz neural response. We found that when participant´s eyes were closed, sounds with 40 Hz sinusoidal wave induced the strongest 40 Hz neural response in the prefrontal region compared to responses in other conditions. More interestingly, we also found there is a suppression of alpha rhythms with 40 Hz square wave sounds. Our results provide potential new methods when using auditory entrainment, which may result in a better effect in preventing cerebral atrophy and improving cognitive performance. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09834-x.
Collapse
Affiliation(s)
- Chuanliang Han
- Shenzhen Key Laboratory of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science, Shenzhen Fundamental Research Institutions, Shenzhen, 518055 China
| | - Xixi Zhao
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088 China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100191 China
| | - Meijia Li
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Naem Haihambo
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Jiayi Teng
- WM Therapeutics Ltd, Beijing, 100013 China
- School of Psychology, Philosophy and Language Science, University of Edinburgh, Edinburgh, EH8 9JZ UK
| | - Sixiao Li
- WM Therapeutics Ltd, Beijing, 100013 China
- School of Music, Faculty of Arts, Humanities and Cultures, University of Leeds, Leeds, LS2 9JT UK
| | - Jinyi Qiu
- School of Artificial Intelligence, Beijing Normal University, Beijing, 100875 China
| | - Xiaoyang Feng
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
| | - Michel Gao
- WM Therapeutics Ltd, Beijing, 100013 China
| |
Collapse
|
35
|
Wu T, Cai Y, Zhang R, Wang Z, Tao L, Xiao ZC. Multi-band oscillations emerge from a simple spiking network. CHAOS (WOODBURY, N.Y.) 2023; 33:043121. [PMID: 37097932 DOI: 10.1063/5.0106884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
In the brain, coherent neuronal activities often appear simultaneously in multiple frequency bands, e.g., as combinations of alpha (8-12 Hz), beta (12.5-30 Hz), and gamma (30-120 Hz) oscillations, among others. These rhythms are believed to underlie information processing and cognitive functions and have been subjected to intense experimental and theoretical scrutiny. Computational modeling has provided a framework for the emergence of network-level oscillatory behavior from the interaction of spiking neurons. However, due to the strong nonlinear interactions between highly recurrent spiking populations, the interplay between cortical rhythms in multiple frequency bands has rarely been theoretically investigated. Many studies invoke multiple physiological timescales (e.g., various ion channels or multiple types of inhibitory neurons) or oscillatory inputs to produce rhythms in multi-bands. Here, we demonstrate the emergence of multi-band oscillations in a simple network consisting of one excitatory and one inhibitory neuronal population driven by constant input. First, we construct a data-driven, Poincaré section theory for robust numerical observations of single-frequency oscillations bifurcating into multiple bands. Then, we develop model reductions of the stochastic, nonlinear, high-dimensional neuronal network to capture the appearance of multi-band dynamics and the underlying bifurcations theoretically. Furthermore, when viewed within the reduced state space, our analysis reveals conserved geometrical features of the bifurcations on low-dimensional dynamical manifolds. These results suggest a simple geometric mechanism behind the emergence of multi-band oscillations without appealing to oscillatory inputs or multiple synaptic or neuronal timescales. Thus, our work points to unexplored regimes of stochastic competition between excitation and inhibition behind the generation of dynamic, patterned neuronal activities.
Collapse
Affiliation(s)
- Tianyi Wu
- School of Mathematical Sciences, Peking University, Beijing 100871, China
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing 100871, China
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10003, USA
| | - Yuhang Cai
- Department of Mathematics, University of California, Berkeley, Berkeley, California 94720, USA
| | - Ruilin Zhang
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing 100871, China
- Yuanpei College, Peking University, Beijing 100871, China
| | - Zhongyi Wang
- School of Mathematical Sciences, Peking University, Beijing 100871, China
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing 100871, China
| | - Louis Tao
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, School of Life Sciences, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Zhuo-Cheng Xiao
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10003, USA
| |
Collapse
|
36
|
Heck DH, Fox MB, Correia Chapman B, McAfee SS, Liu Y. Cerebellar control of thalamocortical circuits for cognitive function: A review of pathways and a proposed mechanism. Front Syst Neurosci 2023; 17:1126508. [PMID: 37064161 PMCID: PMC10097962 DOI: 10.3389/fnsys.2023.1126508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/13/2023] [Indexed: 04/18/2023] Open
Abstract
There is general agreement that cerebrocerebellar interactions via cerebellothalamocortical pathways are essential for a cerebellar cognitive and motor functions. Cerebellothalamic projections were long believed target mainly the ventral lateral (VL) and part of the ventral anterior (VA) nuclei, which project to cortical motor and premotor areas. Here we review new insights from detailed tracing studies, which show that projections from the cerebellum to the thalamus are widespread and reach almost every thalamic subnucleus, including nuclei involved in cognitive functions. These new insights into cerebellothalamic pathways beyond the motor thalamus are consistent with the increasing evidence of cerebellar cognitive function. However, the function of cerebellothalamic pathways and how they are involved in the various motor and cognitive functions of the cerebellum is still unknown. We briefly review literature on the role of the thalamus in coordinating the coherence of neuronal oscillations in the neocortex. The coherence of oscillations, which measures the stability of the phase relationship between two oscillations of the same frequency, is considered an indicator of increased functional connectivity between two structures showing coherent oscillations. Through thalamocortical interactions coherence patterns dynamically create and dissolve functional cerebral cortical networks in a task dependent manner. Finally, we review evidence for an involvement of the cerebellum in coordinating coherence of oscillations between cerebral cortical structures. We conclude that cerebellothalamic pathways provide the necessary anatomical substrate for a proposed role of the cerebellum in coordinating neuronal communication between cerebral cortical areas by coordinating the coherence of oscillations.
Collapse
Affiliation(s)
- Detlef H. Heck
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| | - Mia B. Fox
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Brittany Correia Chapman
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Samuel S. McAfee
- St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Yu Liu
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| |
Collapse
|
37
|
Kimata AR, Zheng B, Watanabe T, Asaad WF. The temporal cost of deploying attention limits accurate target identification in rapid serial visual presentation. Sci Rep 2023; 13:3590. [PMID: 36869218 PMCID: PMC9984373 DOI: 10.1038/s41598-023-30748-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Lag-1 sparing is a common exception to the attentional blink, where a target presented directly after T1 can be identified and reported accurately. Prior work has proposed potential mechanisms for lag 1 sparing, including the boost and bounce model and the attentional gating model. Here, we apply a rapid serial visual presentation task to investigate the temporal limitations of lag 1 sparing by testing three distinct hypotheses. We found that endogenous engagement of attention to T2 requires between 50 and 100 ms. Critically, faster presentation rates yielded lower T2 performance, whereas decreased image duration did not impair T2 detection and report. These observations were reinforced by subsequent experiments controlling for short-term learning and capacity-dependent visual processing effects. Thus, lag-1 sparing was limited by the intrinsic dynamics of attentional boost engagement rather than by earlier perceptual bottlenecks such as insufficient exposure to images in the stimulus stream or visual processing capacity limitations. Taken together, these findings support the boost and bounce theory over earlier models that focus only on attentional gating or visual short-term memory storage, informing our understanding of how the human visual system deploys attention under challenging temporal constraints.
Collapse
Affiliation(s)
- Anna R Kimata
- Department of Neuroscience, The Carney Institute, Brown University, Providence, RI, USA.
- The Warren Alpert Medical School of Brown University, Providence, RI, USA.
- Department of Neurosurgery, Brown University Alpert Medical School and Rhode Island Hospital, 593 Eddy Street, Providence, RI, 02903, USA.
| | - Bryan Zheng
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Neurosurgery, Brown University Alpert Medical School and Rhode Island Hospital, 593 Eddy Street, Providence, RI, 02903, USA
| | - Takeo Watanabe
- Department of Neuroscience, The Carney Institute, Brown University, Providence, RI, USA
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| | - Wael F Asaad
- Department of Neuroscience, The Carney Institute, Brown University, Providence, RI, USA
- The Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Neurosurgery, Brown University Alpert Medical School and Rhode Island Hospital, 593 Eddy Street, Providence, RI, 02903, USA
- Norman Prince Neurosciences Institute, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
38
|
Muza PM, Bush D, Pérez-González M, Zouhair I, Cleverley K, Sopena ML, Aoidi R, West SJ, Good M, Tybulewicz VL, Walker MC, Fisher EM, Chang P. Cognitive impairments in a Down syndrome model with abnormal hippocampal and prefrontal dynamics and cytoarchitecture. iScience 2023; 26:106073. [PMID: 36818290 PMCID: PMC9929862 DOI: 10.1016/j.isci.2023.106073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/22/2022] [Accepted: 01/24/2023] [Indexed: 01/29/2023] Open
Abstract
The Dp(10)2Yey mouse carries a ∼2.3-Mb intra-chromosomal duplication of mouse chromosome 10 (Mmu10) that has homology to human chromosome 21, making it an essential model for aspects of Down syndrome (DS, trisomy 21). In this study, we investigated neuronal dysfunction in the Dp(10)2Yey mouse and report spatial memory impairment and anxiety-like behavior alongside altered neural activity in the medial prefrontal cortex (mPFC) and hippocampus (HPC). Specifically, Dp(10)2Yey mice showed impaired spatial alternation associated with increased sharp-wave ripple activity in mPFC during a period of memory consolidation, and reduced mobility in a novel environment accompanied by reduced theta-gamma phase-amplitude coupling in HPC. Finally, we found alterations in the number of interneuron subtypes in mPFC and HPC that may contribute to the observed phenotypes and highlight potential approaches to ameliorate the effects of human trisomy 21.
Collapse
Affiliation(s)
- Phillip M. Muza
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Daniel Bush
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UCL Institute of Cognitive Neuroscience and UCL Queen Square Institute of Neurology, University College London, London WC1N 3AZ, UK
| | - Marta Pérez-González
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Ines Zouhair
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Karen Cleverley
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Miriam L. Sopena
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rifdat Aoidi
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Steven J. West
- Sainsbury Wellcome Centre, University College London, London W1T 4JG, UK
| | - Mark Good
- School of Psychology, Cardiff University, Cardiff CF10 3AT, UK
| | - Victor L.J. Tybulewicz
- Immune Cell Biology and Down Syndrome Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Matthew C. Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Elizabeth M.C. Fisher
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Pishan Chang
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
39
|
Peterson BS, Kaur T, Sawardekar S, Colibazzi T, Hao X, Wexler BE, Bansal R. Aberrant hippocampus and amygdala morphology associated with cognitive deficits in schizophrenia. Front Cell Neurosci 2023; 17:1126577. [PMID: 36909281 PMCID: PMC9996667 DOI: 10.3389/fncel.2023.1126577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Background Working memory deficits are thought to be a primary disturbance in schizophrenia. We aimed to identify differences in morphology of the hippocampus and amygdala in patients with schizophrenia compared with healthy controls (HCs), and in patients who were either neuropsychologically near normal (NPNN) or neuropsychologically impaired (NPI). Morphological disturbances in the same subfields of the hippocampus and amygdala, but of greater magnitude in those with NPI, would strengthen evidence for the centrality of these limbic regions and working memory deficits in the pathogenesis of schizophrenia. Methods We acquired anatomical MRIs in 69 patients with schizophrenia (18 NPNN, 46 NPI) and 63 age-matched HC participants. We compared groups in hippocampus and amygdala surface morphologies and correlated morphological measures with clinical symptoms and working memory scores. Results Schizophrenia was associated with inward deformations of the head and tail of the hippocampus, protrusion of the hippocampal body, and widespread inward deformations of the amygdala. In the same regions where we detected the effects of schizophrenia, morphological measures correlated positively with the severity of symptoms and inversely with working memory performance. Patients with NPI displayed a similar pattern of anatomical abnormality compared to patients with NPNN. Conclusion Our findings indicate that anatomical abnormalities of the hippocampus relate to working memory performance and clinical symptoms in persons with schizophrenia. Moreover, NPNN and NPI patients may lie on a continuum of severity, both in terms of working memory abilities and altered brain structure, with NPI patients being more severe than NPNN patients in both domains.
Collapse
Affiliation(s)
- Bradley S. Peterson
- Children’s Hospital Los Angeles, Department of Psychiatry at the Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Bradley S. Peterson,
| | - Tejal Kaur
- Department of Psychiatry, Columbia College of Physicians and Surgeons, New York, NY, United States
| | - Siddhant Sawardekar
- Children’s Hospital Los Angeles, Department of Psychiatry at the Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Tiziano Colibazzi
- Department of Psychiatry, Columbia College of Physicians and Surgeons, New York, NY, United States
| | - Xuejun Hao
- Department of Psychiatry, Columbia College of Physicians and Surgeons, New York, NY, United States
| | - Bruce E. Wexler
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Ravi Bansal
- Children’s Hospital Los Angeles, Department of Psychiatry at the Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
40
|
Jones KT, Johnson EL, Gazzaley A, Zanto TP. Structural and functional network mechanisms of rescuing cognitive control in aging. Neuroimage 2022; 262:119547. [PMID: 35940423 PMCID: PMC9464721 DOI: 10.1016/j.neuroimage.2022.119547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/13/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Abstract
Age-related declines in cognitive control, an ability critical in most daily tasks, threaten individual independence. We previously showed in both older and younger adults that transcranial alternating current stimulation (tACS) can improve cognitive control, with effects observed across neural regions distant from the stimulated site and frequencies outside the stimulated range. Here, we assess network-level changes in neural activity that extend beyond the stimulated site and evaluate anatomical pathways that subserve these effects. We investigated the potential to rescue cognitive control in aging using prefrontal (F3-F4) theta (6 Hz) or control (1 Hz) tACS while older adults engaged in a cognitive control video game intervention on three consecutive days. Functional connectivity was assessed with EEG by measuring daily changes in frontal-posterior phase-locking values (PLV) from the tACS-free baseline. Structural connectivity was measured using MRI diffusion tractography data collected at baseline. Theta tACS improved multitasking performance, and individual gains reflected a dissociation in daily PLV changes, where theta tACS strengthened PLV and control tACS reduced PLV. Strengthened alpha-beta PLV in the theta tACS group correlated positively with inferior longitudinal fasciculus and corpus callosum body integrity, and further explained multitasking gains. These results demonstrate that theta tACS can improve cognitive control in aging by strengthening functional connectivity, particularly in higher frequency bands. However, the extent of functional connectivity gains is limited by the integrity of structural white matter tracts. Given that advanced age is associated with decreased white matter integrity, results suggest that the deployment of tACS as a therapeutic is best prior to advanced age.
Collapse
Affiliation(s)
- Kevin T Jones
- Department of Neurology, University of California-San Francisco, San Francisco, California; Neuroscape, University of California-San Francisco, San Francisco, California.
| | - Elizabeth L Johnson
- Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, Illinois
| | - Adam Gazzaley
- Department of Neurology, University of California-San Francisco, San Francisco, California; Neuroscape, University of California-San Francisco, San Francisco, California; Departments of Physiology and Psychiatry, University of California-San Francisco, San Francisco, California
| | - Theodore P Zanto
- Department of Neurology, University of California-San Francisco, San Francisco, California; Neuroscape, University of California-San Francisco, San Francisco, California
| |
Collapse
|
41
|
Maiella M, Casula EP, Borghi I, Assogna M, D’Acunto A, Pezzopane V, Mencarelli L, Rocchi L, Pellicciari MC, Koch G. Simultaneous transcranial electrical and magnetic stimulation boost gamma oscillations in the dorsolateral prefrontal cortex. Sci Rep 2022; 12:19391. [PMID: 36371451 PMCID: PMC9653481 DOI: 10.1038/s41598-022-23040-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
Abstract
Neural oscillations in the gamma frequency band have been identified as a fundament for synaptic plasticity dynamics and their alterations are central in various psychiatric and neurological conditions. Transcranial magnetic stimulation (TMS) and alternating electrical stimulation (tACS) may have a strong therapeutic potential by promoting gamma oscillations expression and plasticity. Here we applied intermittent theta-burst stimulation (iTBS), an established TMS protocol known to induce LTP-like cortical plasticity, simultaneously with transcranial alternating current stimulation (tACS) at either theta (θtACS) or gamma (γtACS) frequency on the dorsolateral prefrontal cortex (DLPFC). We used TMS in combination with electroencephalography (EEG) to evaluate changes in cortical activity on both left/right DLPFC and over the vertex. We found that simultaneous iTBS with γtACS but not with θtACS resulted in an enhancement of spectral gamma power, a trend in shift of individual peak frequency towards faster oscillations and an increase of local connectivity in the gamma band. Furthermore, the response to the neuromodulatory protocol, in terms of gamma oscillations and connectivity, were directly correlated with the initial level of cortical excitability. These results were specific to the DLPFC and confined locally to the site of stimulation, not being detectable in the contralateral DLPFC. We argue that the results described here could promote a new and effective method able to induce long-lasting changes in brain plasticity useful to be clinically applied to several psychiatric and neurological conditions.
Collapse
Affiliation(s)
- Michele Maiella
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy
| | - Elias Paolo Casula
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy ,grid.7841.aDepartment of Psychology, La Sapienza University, Rome, Italy
| | - Ilaria Borghi
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy ,grid.25786.3e0000 0004 1764 2907Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia (IIT), Ferrara, Italy
| | - Martina Assogna
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy
| | - Alessia D’Acunto
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy
| | - Valentina Pezzopane
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy
| | - Lucia Mencarelli
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy
| | - Lorenzo Rocchi
- grid.7763.50000 0004 1755 3242Department of Medical Sciences and Public Health, Institute of Neurology, University of Cagliari, Cagliari, Italy
| | - Maria Concetta Pellicciari
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy
| | - Giacomo Koch
- grid.417778.a0000 0001 0692 3437Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS, Via Ardeatina, 306, 00179 Rome, Italy ,grid.8484.00000 0004 1757 2064Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| |
Collapse
|
42
|
Liu Y, McAfee SS, Van Der Heijden ME, Dhamala M, Sillitoe RV, Heck DH. Causal Evidence for a Role of Cerebellar Lobulus Simplex in Prefrontal-Hippocampal Interaction in Spatial Working Memory Decision-Making. CEREBELLUM (LONDON, ENGLAND) 2022; 21:762-775. [PMID: 35218525 PMCID: PMC10230449 DOI: 10.1007/s12311-022-01383-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 11/27/2022]
Abstract
Spatial working memory (SWM) is a cerebrocerebellar cognitive skill supporting survival-relevant behaviors, such as optimizing foraging behavior by remembering recent routes and visited sites. It is known that SWM decision-making in rodents requires the medial prefrontal cortex (mPFC) and dorsal hippocampus. The decision process in SWM tasks carries a specific electrophysiological signature of a brief, decision-related increase in neuronal communication in the form of an increase in the coherence of neuronal theta oscillations (4-12 Hz) between the mPFC and dorsal hippocampus, a finding we replicated here during spontaneous exploration of a plus maze in freely moving mice. We further evaluated SWM decision-related coherence changes within frequency bands above theta. Decision-related coherence increases occurred in seven frequency bands between 4 and 200 Hz and decision-outcome-related differences in coherence modulation occurred within the beta and gamma frequency bands and in higher frequency oscillations up to 130 Hz. With recent evidence that Purkinje cells in the cerebellar lobulus simplex (LS) represent information about the phase and phase differences of gamma oscillations in the mPFC and dorsal hippocampus, we hypothesized that LS might be involved in the modulation of mPFC-hippocampal gamma coherence. We show that optical stimulation of LS significantly impairs SWM performance and decision-related mPFC-dCA1 coherence modulation, providing causal evidence for an involvement of cerebellar LS in SWM decision-making at the behavioral and neuronal level. Our findings suggest that the cerebellum might contribute to SWM decision-making by optimizing the decision-related modulation of mPFC-dCA1 coherence.
Collapse
Affiliation(s)
- Yu Liu
- Department of Anatomy and Neurobiology, University of Tennessee HSC, Memphis, TN, USA
| | - Samuel S McAfee
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Meike E Van Der Heijden
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Mukesh Dhamala
- Department of Physics and Astronomy, Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee HSC, Memphis, TN, USA.
| |
Collapse
|
43
|
Ulanov M, Shtyrov Y. Oscillatory beta/alpha band modulations: A potential biomarker of functional language and motor recovery in chronic stroke? Front Hum Neurosci 2022; 16:940845. [PMID: 36226263 PMCID: PMC9549964 DOI: 10.3389/fnhum.2022.940845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke remains one of the leading causes of various disabilities, including debilitating motor and language impairments. Though various treatments exist, post-stroke impairments frequently become chronic, dramatically reducing daily life quality, and requiring specific rehabilitation. A critical goal of chronic stroke rehabilitation is to induce, usually through behavioral training, experience-dependent plasticity processes in order to promote functional recovery. However, the efficiency of such interventions is typically modest, and very little is known regarding the neural dynamics underpinning recovery processes and possible biomarkers of their efficiency. Some studies have emphasized specific alterations of excitatory–inhibitory balance within distributed neural networks as an important recovery correlate. Neural processes sensitive to these alterations, such as task-dependent oscillatory activity in beta as well as alpha bands, may be candidate biomarkers of chronic stroke functional recovery. In this review, we discuss the results of studies on motor and language recovery with a focus on oscillatory processes centered around the beta band and their modulations during functional recovery in chronic stroke. The discussion is based on a framework where task-dependent modulations of beta and alpha oscillatory activity, generated by the deep cortical excitatory–inhibitory microcircuits, serve as a neural mechanism of domain-general top-down control processes. We discuss the findings, their limitations, and possible directions for future research.
Collapse
Affiliation(s)
- Maxim Ulanov
- Centre for Cognition and Decision Making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russia
- *Correspondence: Maxim Ulanov,
| | - Yury Shtyrov
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
44
|
Long-lasting, dissociable improvements in working memory and long-term memory in older adults with repetitive neuromodulation. Nat Neurosci 2022; 25:1237-1246. [PMID: 35995877 PMCID: PMC10068908 DOI: 10.1038/s41593-022-01132-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
The development of technologies to protect or enhance memory in older people is an enduring goal of translational medicine. Here we describe repetitive (4-day) transcranial alternating current stimulation (tACS) protocols for the selective, sustainable enhancement of auditory-verbal working memory and long-term memory in 65-88-year-old people. Modulation of synchronous low-frequency, but not high-frequency, activity in parietal cortex preferentially improved working memory on day 3 and day 4 and 1 month after intervention, whereas modulation of synchronous high-frequency, but not low-frequency, activity in prefrontal cortex preferentially improved long-term memory on days 2-4 and 1 month after intervention. The rate of memory improvements over 4 days predicted the size of memory benefits 1 month later. Individuals with lower baseline cognitive function experienced larger, more enduring memory improvements. Our findings demonstrate that the plasticity of the aging brain can be selectively and sustainably exploited using repetitive and highly focalized neuromodulation grounded in spatiospectral parameters of memory-specific cortical circuitry.
Collapse
|
45
|
Hudson MR, Jones NC. Deciphering the code: Identifying true gamma neural oscillations. Exp Neurol 2022; 357:114205. [PMID: 35985554 DOI: 10.1016/j.expneurol.2022.114205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/04/2022]
Abstract
Neural oscillatory activity occurring in the gamma frequency range (30-80 Hz) has been proposed to play essential roles in sensory and cognitive processing. Supporting this, abnormalities in gamma oscillations have been reported in patients with diverse neurological and neuropsychiatric disorders in which cognitive impairment is prominent. Understanding the mechanisms underpinning this relationship is the focus of extensive research. But while an increasing number of studies are investigating the intricate relationship between gamma oscillations and cognition, interpretation and generalisation of these studies is limited by the diverse, and at times questionable, methodologies used to analyse oscillatory activity. For example, a variety of different types of gamma oscillatory activity have been characterised, but all are generalised non-specifically as 'gamma oscillations'. This creates confusion, since distinct cellular and network mechanisms are likely responsible for generating these different types of rhythm. Moreover, in some instances, certain analytical measures of electrophysiological data are overinterpreted, with researchers pushing the boundaries of what would be considered rhythmic or oscillatory in nature. Here, we provide clarity on these issues, firstly presenting an overview of the different measures of gamma oscillatory activity, and describing common signal processing techniques used for analysis. Limitations of these techniques are discussed, and recommendations made on how future studies should optimise analyses, presentation and interpretation of gamma frequency oscillations. This is an essential progression in order to harmonise future studies, allowing us to gain a clearer understanding of the role of gamma oscillations in cognition, and in cognitive disorders.
Collapse
Affiliation(s)
- Matthew R Hudson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia; Department of Neurology, The Alfred Hospital, Commercial Road, Melbourne, 3004, Victoria, Australia; Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, Victoria 3052, Australia.
| |
Collapse
|
46
|
Asamoah B, Khatoun A, Mc Laughlin M. Frequency-Specific Modulation of Slow-Wave Neural Oscillations via Weak Exogeneous Extracellular Fields Reveals a Resonance Pattern. J Neurosci 2022; 42:6221-6231. [PMID: 35790404 PMCID: PMC9374140 DOI: 10.1523/jneurosci.0177-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/18/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
Single neurons often exhibit endogenous oscillatory activity centered around a specific frequency band. Transcranial alternating current stimulation (tACS) can generate a weak oscillating extracellular field in the brain that causes subthreshold membrane potential shifts that can affect spike timing at the single neuron level. Many studies have now shown that the endogenous oscillation can be entrained when the tACS frequency matches that of the exogenous extracellular field. However, the effect of tACS on the amplitude of the endogenous oscillation has been less well studied. We investigated this by using exogenous extracellular fields to modulate slow-wave neural oscillations in the ketamine anesthetized male Wistar rat. We applied spatially broad extracellular fields of different frequencies while recording spiking activity from single neurons. The effect of the exogenous extracellular field on the slow-wave neural oscillation amplitude (NOA) followed a resonance pattern: large modulations were observed when the extracellular frequency matched the endogenous frequency of the neuron, while extracellular fields with frequencies far away from the endogenous frequency had little effect. No changes in spike-rate were observed for any of the extracellular fields applied. Our results demonstrate that in addition to the previously reported entrainment and Arnold tongue patterns, weak oscillating extracellular fields modulate the amplitude of the endogenous neural oscillation without any changes in spike-rate, and that this modulation follows a frequency-specific resonance pattern.SIGNIFICANCE STATEMENT Neural activity often oscillates around specific endogenous frequencies. Transcranial alternating current stimulation (tACS) is a neuromodulation method which biases spike-times and alter endogenous activity. Most tACS studies focus on entrainment effects which occur when tACS and endogenous neural frequencies are matched. In this study we varied the frequency of the applied tACS and investigated its effect on amplitude of the neural oscillation. Our results revealed a resonance pattern where tACS frequencies close to the endogenous frequency caused an increase in neural oscillation amplitude (NOA) specifically at the applied tACS frequency, while applying tACS frequencies farther away caused little or no change in NOA. Furthermore, applying tACS at differing frequencies caused the amplitude of the neural oscillation at the prestimulation endogenous frequency to decrease.
Collapse
Affiliation(s)
- Boateng Asamoah
- ExpORL, Department of neurosciences, The Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven B-3000, Belgium
| | - Ahmad Khatoun
- ExpORL, Department of neurosciences, The Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven B-3000, Belgium
| | - Myles Mc Laughlin
- ExpORL, Department of neurosciences, The Leuven Brain Institute, Katholieke Universiteit Leuven, Leuven B-3000, Belgium
| |
Collapse
|
47
|
Han C, Shapley R, Xing D. Gamma rhythms in the visual cortex: functions and mechanisms. Cogn Neurodyn 2022; 16:745-756. [PMID: 35847544 PMCID: PMC9279528 DOI: 10.1007/s11571-021-09767-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/09/2021] [Accepted: 12/05/2021] [Indexed: 01/18/2023] Open
Abstract
Gamma-band activity, peaking around 30-100 Hz in the local field potential's power spectrum, has been found and intensively studied in many brain regions. Although gamma is thought to play a critical role in processing neural information in the brain, its cognitive functions and neural mechanisms remain unclear or debatable. Experimental studies showed that gamma rhythms are stochastic in time and vary with visual stimuli. Recent studies further showed that multiple rhythms coexist in V1 with distinct origins in different species. While all these experimental facts are a challenge for understanding the functions of gamma in the visual cortex, there are many signs of progress in computational studies. This review summarizes and discusses studies on gamma in the visual cortex from multiple perspectives and concludes that gamma rhythms are still a mystery. Combining experimental and computational studies seems the best way forward in the future.
Collapse
Affiliation(s)
- Chuanliang Han
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Robert Shapley
- Center for Neural Science, New York University, New York, NY USA
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| |
Collapse
|
48
|
Smausz R, Neill J, Gigg J. Neural mechanisms underlying psilocybin's therapeutic potential - the need for preclinical in vivo electrophysiology. J Psychopharmacol 2022; 36:781-793. [PMID: 35638159 PMCID: PMC9247433 DOI: 10.1177/02698811221092508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Psilocybin is a naturally occurring psychedelic compound with profound perception-, emotion- and cognition-altering properties and great potential for treating brain disorders. However, the neural mechanisms mediating its effects require in-depth investigation as there is still much to learn about how psychedelic drugs produce their profound and long-lasting effects. In this review, we outline the current understanding of the neurophysiology of psilocybin's psychoactive properties, highlighting the need for additional preclinical studies to determine its effect on neural network dynamics. We first describe how psilocybin's effect on brain regions associated with the default-mode network (DMN), particularly the prefrontal cortex and hippocampus, likely plays a key role in mediating its consciousness-altering properties. We then outline the specific receptor and cell types involved and discuss contradictory evidence from neuroimaging studies regarding psilocybin's net effect on activity within these regions. We go on to argue that in vivo electrophysiology is ideally suited to provide a more holistic, neural network analysis approach to understand psilocybin's mode of action. Thus, we integrate information about the neural bases for oscillatory activity generation with the accumulating evidence about psychedelic drug effects on neural synchrony within DMN-associated areas. This approach will help to generate important questions for future preclinical and clinical studies. Answers to these questions are vital for determining the neural mechanisms mediating psilocybin's psychotherapeutic potential, which promises to improve outcomes for patients with severe depression and other difficulty to treat conditions.
Collapse
Affiliation(s)
- Rebecca Smausz
- Division of Neuroscience and
Experimental Psychology, Faculty of Biology, Medicine and Health, The
University of Manchester, Manchester, UK
| | - Joanna Neill
- Division of Pharmacy and
Optometry, Faculty of Biology, Medicine and Health, The University of
Manchester, Manchester, UK,Medical Psychedelics Working
Group, Drug Science, UK
| | - John Gigg
- Division of Neuroscience and
Experimental Psychology, Faculty of Biology, Medicine and Health, The
University of Manchester, Manchester, UK,John Gigg, Division of Neuroscience
and Experimental Psychology, Faculty of Biology, Medicine and Health,
The University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
49
|
Ken Tanaka G, Russell TA, Bittencourt J, Marinho V, Teixeira S, Hugo Bastos V, Gongora M, Ramim M, Budde H, Aprigio D, Fernando Basile L, Cagy M, Ribeiro P, Gupta DS, Velasques B. Open monitoring meditation alters the EEG gamma coherence in experts meditators: The expert practice exhibit greater right intra-hemispheric functional coupling. Conscious Cogn 2022; 102:103354. [PMID: 35636352 DOI: 10.1016/j.concog.2022.103354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/14/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022]
Abstract
AIM This study investigated the differences in frontoparietal EEG gamma coherence between expert meditators (EM) and naïve meditators (NM). MATERIAL AND METHODS This is a cross-sectional study with a sample of twenty-one healthy adults divided under two groups (experts meditators vs. naive-meditators), with analyzing the intra-hemispheric coherence of frontoparietal gamma oscillations by electroencephalography during the study steps: EEG resting-state 1, during the open presence meditation practice, and EEG resting-state 2. RESULTS The findings demonstrated greater frontoparietal EEG coherence in gamma for experts meditators in the Fp1-P3, F4-P4, F8-P4 electrode pairs during rest 1 and rest 2 (p ≤ 0.0083). In addition, we evidenced differences in the frontoparietal EEG coherence for expert meditators in F4-P4, F8-P4 during the meditation (p ≤ 0.0083). CONCLUSION Our results can support evidence that the connectivity of the right frontoparietal network acts as a biomarker of the enhanced Open monitoring meditation training.
Collapse
Affiliation(s)
- Guaraci Ken Tanaka
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of the Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Institute of Applied Neuroscience, Rio de Janeiro, Brazil; Mente Aberta, Brazilian Center for Mindfulness and Health Promotion, Federal University of Sao Paulo, São Paulo, Brazil
| | - Tamara A Russell
- Neuroimaging Department, Institute of Psychiatry, Psychology, and Neuroscience of King's College, London, UK
| | - Juliana Bittencourt
- Institute of Applied Neuroscience, Rio de Janeiro, Brazil; Veiga de Almeida University, Rio de Janeiro, Brazil
| | - Victor Marinho
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil.
| | - Silmar Teixeira
- Neuro-innovation Technology & Brain Mapping Laboratory, Federal University of Delta do Parnaíba, Parnaíba, Brazil
| | - Victor Hugo Bastos
- Brain Mapping and Functionality Laboratory, Federal University of Delta do Parnaíba, Brazil
| | - Mariana Gongora
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of the Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Ramim
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of the Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Institute of Applied Neuroscience, Rio de Janeiro, Brazil
| | - Henning Budde
- Faculty of Human Sciences, Medical School Hamburg, Hamburg, Germany
| | - Danielle Aprigio
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of the Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Institute of Applied Neuroscience, Rio de Janeiro, Brazil
| | | | - Mauricio Cagy
- Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Ribeiro
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of the Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Institute of Applied Neuroscience, Rio de Janeiro, Brazil; Bioscience Department, School of Physical Education of the Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daya S Gupta
- College of Science and Humanities, College of Health and Pharmacy, Husson University, Bangor, USA
| | - Bruna Velasques
- Brain Mapping and Sensory Motor Integration Laboratory, Institute of Psychiatry of the Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Institute of Applied Neuroscience, Rio de Janeiro, Brazil; Bioscience Department, School of Physical Education of the Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
50
|
Vaughn MJ, Haas JS. On the Diverse Functions of Electrical Synapses. Front Cell Neurosci 2022; 16:910015. [PMID: 35755782 PMCID: PMC9219736 DOI: 10.3389/fncel.2022.910015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Electrical synapses are the neurophysiological product of gap junctional pores between neurons that allow bidirectional flow of current between neurons. They are expressed throughout the mammalian nervous system, including cortex, hippocampus, thalamus, retina, cerebellum, and inferior olive. Classically, the function of electrical synapses has been associated with synchrony, logically following that continuous conductance provided by gap junctions facilitates the reduction of voltage differences between coupled neurons. Indeed, electrical synapses promote synchrony at many anatomical and frequency ranges across the brain. However, a growing body of literature shows there is greater complexity to the computational function of electrical synapses. The paired membranes that embed electrical synapses act as low-pass filters, and as such, electrical synapses can preferentially transfer spike after hyperpolarizations, effectively providing spike-dependent inhibition. Other functions include driving asynchronous firing, improving signal to noise ratio, aiding in discrimination of dissimilar inputs, or dampening signals by shunting current. The diverse ways by which electrical synapses contribute to neuronal integration merits furthers study. Here we review how functions of electrical synapses vary across circuits and brain regions and depend critically on the context of the neurons and brain circuits involved. Computational modeling of electrical synapses embedded in multi-cellular models and experiments utilizing optical control and measurement of cellular activity will be essential in determining the specific roles performed by electrical synapses in varying contexts.
Collapse
Affiliation(s)
- Mitchell J Vaughn
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| | - Julie S Haas
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|