1
|
Muthuraman KR, Utomo DIS, Matsuda M, Suzuki R, Park EY. Expression of dengue capsid-like particles in silkworm and display of envelope domain III of dengue virus serotype 2. Protein Expr Purif 2024; 222:106543. [PMID: 38971211 DOI: 10.1016/j.pep.2024.106543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Dengue virus (DENV) is a considerable public health threat affecting millions of people globally. Vaccines for dengue are an important strategy to reduce the disease burden. We expressed capsid (C2) and envelope domain III of dengue virus serotype 2 (2EDIII) separately in the silkworm expression system. We conjugated them employing the monomeric streptavidin (mSA2) and biotin affinity to display the antigenic 2EDIII on the C2-forming capsid-like particle (CLP). Purified 2EDIII-displaying C2 (CLP/2EDIII) was immunogenic in BALB/c mice, eliciting neutralizing antibodies confirmed by a single-round infectious particle (SRIP) neutralization assay. Th1 cytokine levels were upregulated for the CLP/2EDIII group, and the anti-inflammatory IL-10 and pro-inflammatory IL-6 cytokine levels were also raised compared to the 2EDIII and the control groups. Elevated cytokine levels for CLP/2EDIII indicate the importance of displaying the 2EDIII as CLP/2EDIII rather than as an individual subunit. This study is the first to express the C2 protein as self-assembling CLP in vivo and 2EDIII separately in the silkworm expression system and conjugate them to form a monovalent CLP. Thus, this CLP/2EDIII display method may pave the way for an efficient tetravalent dengue vaccine candidate.
Collapse
Affiliation(s)
- Krishna Raja Muthuraman
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Doddy Irawan Setyo Utomo
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Disease, Gakuen, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Disease, Gakuen, Musashi-murayama, Tokyo, 208-0011, Japan
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
2
|
Mardanova ES, Vasyagin EA, Kotova KG, Zahmanova GG, Ravin NV. Plant-Produced Chimeric Hepatitis E Virus-like Particles as Carriers for Antigen Presentation. Viruses 2024; 16:1093. [PMID: 39066255 PMCID: PMC11281382 DOI: 10.3390/v16071093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
A wide range of virus-like particles (VLPs) is extensively employed as carriers to display various antigens for vaccine development to fight against different infections. The plant-produced truncated variant of the hepatitis E virus (HEV) coat protein is capable of forming VLPs. In this study, we demonstrated that recombinant fusion proteins comprising truncated HEV coat protein with green fluorescent protein (GFP) or four tandem copies of the extracellular domain of matrix protein 2 (M2e) of influenza A virus inserted at the Tyr485 position could be efficiently expressed in Nicotiana benthamiana plants using self-replicating vector based on the potato virus X genome. The plant-produced fusion proteins in vivo formed VLPs displaying GFP and 4M2e. Therefore, HEV coat protein can be used as a VLP carrier platform for the presentation of relatively large antigens comprising dozens to hundreds of amino acids. Furthermore, plant-produced HEV particles could be useful research tools for the development of recombinant vaccines against influenza.
Collapse
Affiliation(s)
- Eugenia S. Mardanova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.S.M.)
| | - Egor A. Vasyagin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.S.M.)
| | - Kira G. Kotova
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.S.M.)
| | - Gergana G. Zahmanova
- Department of Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria
- Department of Technology Transfer and IP Management, Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Nikolai V. Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia; (E.S.M.)
| |
Collapse
|
3
|
Travassos R, Martins SA, Fernandes A, Correia JDG, Melo R. Tailored Viral-like Particles as Drivers of Medical Breakthroughs. Int J Mol Sci 2024; 25:6699. [PMID: 38928403 PMCID: PMC11204272 DOI: 10.3390/ijms25126699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Despite the recognized potential of nanoparticles, only a few formulations have progressed to clinical trials, and an even smaller number have been approved by the regulatory authorities and marketed. Virus-like particles (VLPs) have emerged as promising alternatives to conventional nanoparticles due to their safety, biocompatibility, immunogenicity, structural stability, scalability, and versatility. Furthermore, VLPs can be surface-functionalized with small molecules to improve circulation half-life and target specificity. Through the functionalization and coating of VLPs, it is possible to optimize the response properties to a given stimulus, such as heat, pH, an alternating magnetic field, or even enzymes. Surface functionalization can also modulate other properties, such as biocompatibility, stability, and specificity, deeming VLPs as potential vaccine candidates or delivery systems. This review aims to address the different types of surface functionalization of VLPs, highlighting the more recent cutting-edge technologies that have been explored for the design of tailored VLPs, their importance, and their consequent applicability in the medical field.
Collapse
Affiliation(s)
- Rafael Travassos
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - Sofia A. Martins
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - Ana Fernandes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| | - João D. G. Correia
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
- Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal
| | - Rita Melo
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, CTN, Estrada Nacional 10 (km 139.7), 2695-066 Bobadela, Portugal; (R.T.); (S.A.M.); (A.F.)
| |
Collapse
|
4
|
Liu L, Ning N, Xu S, Chen D, Zhou L, Guo Z, Liang X, Ye X. Double promoter and tandem gene strategy for efficiently expressing recombinant FGF21. Microb Cell Fact 2024; 23:171. [PMID: 38867280 PMCID: PMC11167883 DOI: 10.1186/s12934-024-02447-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Fibroblast growth factor 21 (FGF21) is a promising candidate for treating metabolic disorder diseases and has been used in phase II clinical trials. Currently, metabolic diseases are prevalent worldwide, underscoring the significant market potential of FGF21. Therefore, the production of FGF21 must be effectively improved to meet market demand. RESULTS Herein, to investigate the impact of vectors and host cells on FGF21 expression, we successfully engineered strains that exhibit a high yield of FGF21. Surprisingly, the data revealed that vectors with various copy numbers significantly impact the expression of FGF21, and the results showed a 4.35-fold increase in expression levels. Furthermore, the performance of the double promoter and tandem gene expression construction design surpassed that of the conventional construction method, with a maximum difference of 2.67 times. CONCLUSION By exploring engineered vectors and host cells, we successfully achieved high-yield production of the FGF21 strain. This breakthrough lays a solid foundation for the future industrialization of FGF21. Additionally, FGF21 can be easily, quickly and efficiently expressed, providing a better tool and platform for the research and application of more recombinant proteins.
Collapse
Affiliation(s)
- Longying Liu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Nuoyi Ning
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Simeng Xu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Dongqing Chen
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Luping Zhou
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
| | - Zhimou Guo
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China
- Dalian Institute of Chemical Physics, Key Laboratory of Separation Science for Analytical Chemistry, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Xinmiao Liang
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
- Dalian Institute of Chemical Physics, Key Laboratory of Separation Science for Analytical Chemistry, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China.
| | - Xianlong Ye
- Ganjiang Chinese Medicine Innovation Center, Nanchang, 330000, China.
| |
Collapse
|
5
|
Chen G, Guo Z, Shu Y, Zhao Y, Qiu L, Duan S, Lin Y, He S, Li X, Feng X, Xiang G, Nian B, Wang Y, Li Z, Chongkang Yang, Shi Y, Lu Y, Liu G, Yang S, Zhang G, Hao B. Biosynthetic pathway of prescription cucurbitacin IIa and high-level production of key triterpenoid intermediates in engineered yeast and tobacco. PLANT COMMUNICATIONS 2024; 5:100835. [PMID: 38425040 PMCID: PMC11211238 DOI: 10.1016/j.xplc.2024.100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 03/02/2024]
Abstract
Cucurbitacin IIa is a triterpenoid isolated exclusively from Hemsleya plants and a non-steroidal anti-inflammatory drug that functions as the main ingredient of prescription Hemslecin capsules and tablets in China. Synthetic biology provides new strategies for production of such valuable cucurbitacins at a large scale; however, the biosynthetic pathway of cucurbitacin IIa has been unknown, and the heterologous production of cucurbitacins in galactose medium has been expensive and low yielding. In this study, we characterized the functions of genes encoding two squalene epoxidases (HcSE1-2), six oxidosqualene cyclases (HcOSC1-6), two CYP450s (HcCYP87D20 and HcCYP81Q59), and an acyltransferase (HcAT1) in cucurbitacin IIa biosynthesis by heterologous expression in Saccharomyces cerevisiae and Nicotiana benthamiana. We achieved high-level production of the key cucurbitacin precursor 11-carbonyl-20β-hydroxy-Cuol from glucose in yeast via modular engineering of the mevalonate pathway and optimization of P450 expression levels. The resulting yields of 46.41 mg/l 11-carbonyl-20β-hydroxy-Cuol and 126.47 mg/l total cucurbitacin triterpenoids in shake flasks are the highest yields yet reported from engineered microbes. Subsequently, production of 11-carbonyl-20β-hydroxy-Cuol by transient gene expression in tobacco resulted in yields of 1.28 mg/g dry weight in leaves. This work reveals the key genes involved in biosynthesis of prescription cucurbitacin IIa and demonstrates that engineered yeast cultivated with glucose can produce high yields of key triterpenoid intermediates. We describe a low-cost and highly efficient platform for rapid screening of candidate genes and high-yield production of pharmacological triterpenoids.
Collapse
Affiliation(s)
- Geng Chen
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China
| | - Zhaokuan Guo
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China
| | - Yanyu Shu
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China
| | - Yan Zhao
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China
| | - Lei Qiu
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China
| | - Shaofeng Duan
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China
| | - Yuan Lin
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China
| | - Simei He
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China
| | - Xiaobo Li
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China
| | - Xiaolin Feng
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China
| | - Guisheng Xiang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China
| | - Bo Nian
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China
| | - Yina Wang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China
| | - Zhiyuan Li
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China
| | - Chongkang Yang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Shi
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China
| | - Yingchun Lu
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China
| | - Guanze Liu
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China
| | - Shengchao Yang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China
| | - Guanghui Zhang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China.
| | - Bing Hao
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasms Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming 650201, China; Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan 650106, China.
| |
Collapse
|
6
|
Wendlandt T, Britz B, Kleinow T, Hipp K, Eber FJ, Wege C. Getting Hold of the Tobamovirus Particle-Why and How? Purification Routes over Time and a New Customizable Approach. Viruses 2024; 16:884. [PMID: 38932176 PMCID: PMC11209083 DOI: 10.3390/v16060884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
This article develops a multi-perspective view on motivations and methods for tobamovirus purification through the ages and presents a novel, efficient, easy-to-use approach that can be well-adapted to different species of native and functionalized virions. We survey the various driving forces prompting researchers to enrich tobamoviruses, from the search for the causative agents of mosaic diseases in plants to their increasing recognition as versatile nanocarriers in biomedical and engineering applications. The best practices and rarely applied options for the serial processing steps required for successful isolation of tobamoviruses are then reviewed. Adaptations for distinct particle species, pitfalls, and 'forgotten' or underrepresented technologies are considered as well. The article is topped off with our own development of a method for virion preparation, rooted in historical protocols. It combines selective re-solubilization of polyethylene glycol (PEG) virion raw precipitates with density step gradient centrifugation in biocompatible iodixanol formulations, yielding ready-to-use particle suspensions. This newly established protocol and some considerations for perhaps worthwhile further developments could serve as putative stepping stones towards preparation procedures appropriate for routine practical uses of these multivalent soft-matter nanorods.
Collapse
Affiliation(s)
- Tim Wendlandt
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| | - Beate Britz
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| | - Tatjana Kleinow
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| | - Katharina Hipp
- Electron Microscopy Facility, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany;
| | - Fabian J. Eber
- Department of Mechanical and Process Engineering, Offenburg University of Applied Sciences, Badstr. 24, 77652 Offenburg, Germany;
| | - Christina Wege
- Institute of Biomaterials and Biomolecular Systems, Molecular and Synthetic Plant Virology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany; (T.W.); (B.B.); (T.K.)
| |
Collapse
|
7
|
Tatarūnas V, Čiapienė I, Giedraitienė A. Precise Therapy Using the Selective Endogenous Encapsidation for Cellular Delivery Vector System. Pharmaceutics 2024; 16:292. [PMID: 38399346 PMCID: PMC10893373 DOI: 10.3390/pharmaceutics16020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Interindividual variability in drug response is a major problem in the prescription of pharmacological treatments. The therapeutic effect of drugs can be influenced by human genes. Pharmacogenomic guidelines for individualization of treatment have been validated and used for conventional dosage forms. However, drugs can often target non-specific areas and produce both desired and undesired pharmacological effects. The use of nanoparticles, liposomes, or other available forms for drug formulation could help to overcome the latter problem. Virus-like particles based on retroviruses could be a potential envelope for safe and efficient drug formulations. Human endogenous retroviruses would make it possible to overcome the host immune response and deliver drugs to the desired target. PEG10 is a promising candidate that can bind to mRNA because it is secreted like an enveloped virus-like extracellular vesicle. PEG10 is a retrotransposon-derived gene that has been domesticated. Therefore, formulations with PEG10 may have a lower immunogenicity. The use of existing knowledge can lead to the development of suitable drug formulations for the precise treatment of individual diseases.
Collapse
Affiliation(s)
- Vacis Tatarūnas
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania; (V.T.); (I.Č.)
| | - Ieva Čiapienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania; (V.T.); (I.Č.)
| | - Agnė Giedraitienė
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Eiveniu 4, LT 50161 Kaunas, Lithuania
| |
Collapse
|
8
|
Malik MS, Elahi I, Sameeullah M, Ijaz F, Batool N, Khalid F, Gurel E, Saba K, Waheed MT. In silico designing and characterization of outer membrane protein K (OmpK) from Vibrio anguillarum and its expression in Nicotiana tabacum for the development of a plant-based vaccine against fish vibriosis. J Biotechnol 2024; 380:51-63. [PMID: 38151110 DOI: 10.1016/j.jbiotec.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Vibriosis is caused by Vibrio anguillarum in various species of aquaculture. A novel, secure, and stable vaccine is needed to eradicate vibriosis. Here, for reverse vaccinology and plant-based expression, the outer membrane protein K (OmpK) of V. anguillarum was chosen due to its conserved nature in all Vibrio species. OmpK, an ideal vaccine candidate against vibriosis, demonstrated immunogenic, non-allergic, and non-toxic behavior by using various bioinformatics tools. Docking showed the interaction of the OmpK model with TLR-5. In comparison to costly platforms, plants can be used as alternative and economic bio-factories to produce vaccine antigens. We expressed OmpK antigen in Nicotiana tabacum using Agrobacterium-mediated transformation. The expression vector was constructed using Gateway® cloning. Transgene integration was verified by polymerase chain reaction (PCR), and the copy number via qRT-PCR, which showed two copies of transgenes. Western blotting detected monomeric form of OmpK protein. The total soluble protein (TSP) fraction of OmpK was equivalent to 0.38% as detected by ELISA. Mice and fish were immunized with plant-derived OmpK antigen, which showed a significantly high level of anti-OmpK antibodies. The present study is the first report of OmpK antigen expression in higher plants for the potential use as vaccine in aquaculture against vibriosis, which could provide protection against multiple Vibrio species due to the conserved nature OmpK antigen.
Collapse
Affiliation(s)
- Muhammad Suleman Malik
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iqra Elahi
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Sameeullah
- Department of Field Crops, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu 14030, Türkiye; Centre for Innovative Food Technologies Development, Application and Research, Bolu Abant Izzet Baysal University, Bolu 14030, Türkiye
| | - Fatima Ijaz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Neelam Batool
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fatima Khalid
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ekrem Gurel
- Department of Biology, Faculty of Science and Literature, Bolu Abant Izzet Baysal University, Bolu 14030, Türkiye
| | - Kiran Saba
- Department of Biochemistry, Faculty of Life Sciences, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - Mohammad Tahir Waheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
9
|
Hadj Hassine I, Ben M'hadheb M, Almalki MA, Gharbi J. Virus-like particles as powerful vaccination strategy against human viruses. Rev Med Virol 2024; 34:e2498. [PMID: 38116958 DOI: 10.1002/rmv.2498] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/25/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Nowadays, viruses are not only seen as causative agents of viral infectious diseases but also as valuable research materials for various biomedical purposes, including recombinant protein production. When expressed in living or cell-free expression systems, viral structural proteins self-assemble into virus-like particles (VLPs). Mimicking the native form and size of viruses and lacking the genetic material, VLPs are safe and highly immunogenic and thus can be exploited to develop antiviral vaccines. Some vaccines based on VLPs against various infectious pathogens have already been licenced for human use and are available in the commercial market, the latest of which is a VLP-based vaccine to protect against the novel Coronavirus. Despite the success and popularity of VLP subunit vaccines, many more VLPs are still in different stages of design, production, and approval. There are still many challenges that require to be addressed in the future before this surface display system can be widely used as an effective vaccine strategy in combating infectious diseases. In this review, we highlight the use of structural viral proteins to produce VLPs, emphasising their intrinsic properties, structural classification, and main expression host systems. We also compiled the recent scientific literature about VLP-based vaccines to underline the recent advances in their application as a vaccine strategy for preventing and fighting virulent human pathogens. Finally, we presented the key challenges and possible solutions for VLP-based vaccine production.
Collapse
Affiliation(s)
- Ikbel Hadj Hassine
- Virology and Antiviral Strategies Research Unit UR17ES30, Higher Institute of Biotechnology, University of Monastir, Monastir, Tunisia
- USCR-SAG Unit, Higher Institute of Biotechnology, University of Monastirs, Monastir, Tunisia
| | - Manel Ben M'hadheb
- Virology and Antiviral Strategies Research Unit UR17ES30, Higher Institute of Biotechnology, University of Monastir, Monastir, Tunisia
- USCR-SAG Unit, Higher Institute of Biotechnology, University of Monastirs, Monastir, Tunisia
| | - Mohammed A Almalki
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Jawhar Gharbi
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
10
|
Zahmanova G, Aljabali AAA, Takova K, Minkov G, Tambuwala MM, Minkov I, Lomonossoff GP. Green Biologics: Harnessing the Power of Plants to Produce Pharmaceuticals. Int J Mol Sci 2023; 24:17575. [PMID: 38139405 PMCID: PMC10743837 DOI: 10.3390/ijms242417575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Plants are increasingly used for the production of high-quality biological molecules for use as pharmaceuticals and biomaterials in industry. Plants have proved that they can produce life-saving therapeutic proteins (Elelyso™-Gaucher's disease treatment, ZMapp™-anti-Ebola monoclonal antibodies, seasonal flu vaccine, Covifenz™-SARS-CoV-2 virus-like particle vaccine); however, some of these therapeutic proteins are difficult to bring to market, which leads to serious difficulties for the manufacturing companies. The closure of one of the leading companies in the sector (the Canadian biotech company Medicago Inc., producer of Covifenz) as a result of the withdrawal of investments from the parent company has led to the serious question: What is hindering the exploitation of plant-made biologics to improve health outcomes? Exploring the vast potential of plants as biological factories, this review provides an updated perspective on plant-derived biologics (PDB). A key focus is placed on the advancements in plant-based expression systems and highlighting cutting-edge technologies that streamline the production of complex protein-based biologics. The versatility of plant-derived biologics across diverse fields, such as human and animal health, industry, and agriculture, is emphasized. This review also meticulously examines regulatory considerations specific to plant-derived biologics, shedding light on the disparities faced compared to biologics produced in other systems.
Collapse
Affiliation(s)
- Gergana Zahmanova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (K.T.)
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Katerina Takova
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (K.T.)
| | - George Minkov
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria; (K.T.)
| | - Murtaza M. Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK;
| | - Ivan Minkov
- Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria
| | | |
Collapse
|
11
|
Shapiro JR, Andreani G, Dubé C, Berubé M, Bussière D, Couture MMJ, Dargis M, Hendin HE, Landry N, Lavoie PO, Pillet S, Ward BJ, D'Aoust MA, Trépanier S. Development and characterization of a plant-derived norovirus-like particle vaccine. Vaccine 2023; 41:6008-6016. [PMID: 37625992 DOI: 10.1016/j.vaccine.2023.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND Norovirus (NoV) is the most common cause of diarrheal episodes globally. Issues with in vitro cultivation systems, genetic variation, and animal models have hindered vaccine development. Plant-derived virus-like particles (VLPs) may address some of these concerns because they are highly immunogenic, can be administered by different routes, and can be rapidly produced to accommodate emerging viral strains. METHODS NoV VLPs (NoVLP) composed of the surface viral protein (VP) 1 of the GI and GII genogroups were produced in Nicotiana benthamiana using an Agrobacterium tumefaciens-based recombinant transient expression system. Leaves from infiltrated plants were harvested and NoVLPs were extracted and purified. The safety and immunogenicity of the GII.4 NoVLP, the genotype currently causing most human disease, were subsequently examined in rabbits and mice. RESULTS Fifteen GI and GII NoVLPs were successfully expressed in N. benthamiana and were structurally similar to NoV virions, as determined by cryogenic transmission electron microscopy. The NoVLP was well-tolerated, with no local or systemic signs of toxicity in rabbits. Three intramuscular doses of the GII.4 NoVLP adjuvanted with aluminum hydroxide induced robust IgG titers, IgG-secreting cells, histo-blood group antigen blocking titers, and IFNγ-secreting T cells in mice. In addition to circulating antibodies, oral administration of the NoVLP in mice induced significant IgA levels in feces, indicative of a mucosal response. CONCLUSIONS The plant-made NoVLP vaccine was safe and immunogenic in mice and rabbits. Multi-modal vaccination, combining oral and intramuscular administration could be considered for future clinical development to maximize systemic and mucosal immune responses.
Collapse
Affiliation(s)
- Janna R Shapiro
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | - Charlotte Dubé
- Medicago Inc., 2552 boul. du Parc-Technologique, Québec, QC, Canada
| | - Mélanie Berubé
- Medicago Inc., 2552 boul. du Parc-Technologique, Québec, QC, Canada
| | - Diane Bussière
- Medicago Inc., 2552 boul. du Parc-Technologique, Québec, QC, Canada
| | | | - Michèle Dargis
- Medicago Inc., 2552 boul. du Parc-Technologique, Québec, QC, Canada
| | - Hilary E Hendin
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Nathalie Landry
- Medicago Inc., 2552 boul. du Parc-Technologique, Québec, QC, Canada
| | | | - Stéphane Pillet
- Medicago Inc., 2552 boul. du Parc-Technologique, Québec, QC, Canada
| | - Brian J Ward
- Medicago Inc., 2552 boul. du Parc-Technologique, Québec, QC, Canada
| | | | - Sonia Trépanier
- Medicago Inc., 2552 boul. du Parc-Technologique, Québec, QC, Canada.
| |
Collapse
|
12
|
Xue Q, Swevers L, Taning CNT. Plant and insect virus-like particles: emerging nanoparticles for agricultural pest management. PEST MANAGEMENT SCIENCE 2023; 79:2975-2991. [PMID: 37103223 DOI: 10.1002/ps.7514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 06/05/2023]
Abstract
Virus-like particles (VLPs) represent a biodegradable, biocompatible nanomaterial made from viral coat proteins that can improve the delivery of antigens, drugs, nucleic acids, and other substances, with most applications in human and veterinary medicine. Regarding agricultural viruses, many insect and plant virus coat proteins have been shown to assemble into VLPs accurately. In addition, some plant virus-based VLPs have been used in medical studies. However, to our knowledge, the potential application of plant/insect virus-based VLPs in agriculture remains largely underexplored. This review focuses on why and how to engineer coat proteins of plant/insect viruses as functionalized VLPs, and how to exploit VLPs in agricultural pest control. The first part of the review describes four different engineering strategies for loading cargo at the inner or the outer surface of VLPs depending on the type of cargo and purpose. Second, the literature on plant and insect viruses the coat proteins of which have been confirmed to self-assemble into VLPs is reviewed. These VLPs are good candidates for developing VLP-based agricultural pest control strategies. Lastly, the concepts of plant/insect virus-based VLPs for delivering insecticidal and antiviral components (e.g., double-stranded RNA, peptides, and chemicals) are discussed, which provides future prospects of VLP application in agricultural pest control. In addition, some concerns are raised about VLP production on a large scale and the short-term resistance of hosts to VLP uptake. Overall, this review is expected to stimulate interest and research exploring plant/insect virus-based VLP applications in agricultural pest management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qi Xue
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Clauvis Nji Tizi Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Shen AM, Malekshah OM, Pogrebnyak N, Minko T. Plant-derived single domain COVID-19 antibodies. J Control Release 2023; 359:1-11. [PMID: 37225092 PMCID: PMC10231691 DOI: 10.1016/j.jconrel.2023.05.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/14/2023] [Accepted: 05/21/2023] [Indexed: 05/26/2023]
Abstract
Data show a decrease in the risk of hospitalization and death from COVID-19. To date, global vaccinations for SARS-CoV-2 protections are underway, but additional treatments are urgently needed to prevent and cure infection among naïve and even vaccinated people. Neutralizing monoclonal antibodies are very promising for prophylaxis and therapy of SARS-CoV-2 infections. However, traditional large-scale methods of producing such antibodies are slow, extremely expensive and possess a high risk of contamination with viruses, prions, oncogenic DNA and other pollutants. The present study is aimed at developing an approach of producing monoclonal antibodies (mAbs) against SARS-CoV-2 spike (S) protein in plant systems which offers unique advantages, such as the lack of human and animal pathogens or bacterial toxins, relatively low-cost manufacturing, and ease of production scale-up. We selected a single N-terminal domain functional camelid-derived heavy (H)-chain antibody fragments (VHH, AKA nanobodies) targeted to receptor binding domain of SARS-CoV-2 spike protein and developed methods of their rapid production using transgenic plants and plant cell suspensions. Isolated and purified plant-derived VHH antibodies were compared with mAbs produced in traditional mammalian and bacterial expression systems. It was found that plant generated VHH using the proposed methods of transformation and purification possess the ability to bind to SARS-CoV-2 spike protein comparable to that of monoclonal antibodies derived from bacterial and mammalian cell cultures. The results of the present studies confirm the visibility of producing monoclonal single-chain antibodies with a high ability to bind the targeted COVID-19 spike protein in plant systems within a relatively shorter time span and at a lower cost when compared with traditional methods. Moreover, similar plant biotechnology approaches can be used for producing monoclonal neutralizing antibodies against other types of viruses.
Collapse
Affiliation(s)
- Andrew M Shen
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | - Obeid M Malekshah
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | - Natalia Pogrebnyak
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854-8020, USA.
| |
Collapse
|
14
|
Zhou A, Kirkpatrick LD, Ornelas IJ, Washington LJ, Hummel NFC, Gee CW, Tang SN, Barnum CR, Scheller HV, Shih PM. A Suite of Constitutive Promoters for Tuning Gene Expression in Plants. ACS Synth Biol 2023; 12:1533-1545. [PMID: 37083366 DOI: 10.1021/acssynbio.3c00075] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The need for convenient tools to express transgenes over a large dynamic range is pervasive throughout plant synthetic biology; however, current efforts are largely limited by the heavy reliance on a small set of strong promoters, precluding more nuanced and refined engineering endeavors in planta. To address this technical gap, we characterize a suite of constitutive promoters that span a wide range of transcriptional levels and develop a GoldenGate-based plasmid toolkit named PCONS, optimized for versatile cloning and rapid testing of transgene expression at varying strengths. We demonstrate how easy access to a stepwise gradient of expression levels can be used for optimizing synthetic transcriptional systems and the production of small molecules in planta. We also systematically investigate the potential of using PCONS as an internal standard in plant biology experimental design, establishing the best practices for signal normalization in experiments. Although our library has primarily been developed for optimizing expression in N. benthamiana, we demonstrate the translatability of our promoters across distantly related species using a multiplexed reporter assay with barcoded transcripts. Our findings showcase the advantages of the PCONS library as an invaluable toolkit for plant synthetic biology.
Collapse
Affiliation(s)
- Andy Zhou
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94705, United States
| | - Liam D Kirkpatrick
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94705, United States
| | - Izaiah J Ornelas
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94705, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Lorenzo J Washington
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94705, United States
| | - Niklas F C Hummel
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94705, United States
| | - Christopher W Gee
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94705, United States
| | - Sophia N Tang
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94705, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Collin R Barnum
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, California 95616, United States
| | - Henrik V Scheller
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94705, United States
| | - Patrick M Shih
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California 94720, United States
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, California 94608, United States
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94705, United States
- Innovative Genomics Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
15
|
Knödler M, Opdensteinen P, Sankaranarayanan RA, Morgenroth A, Buhl EM, Mottaghy FM, Buyel JF. Simple plant-based production and purification of the assembled human ferritin heavy chain as a nanocarrier for tumor-targeted drug delivery and bioimaging in cancer therapy. Biotechnol Bioeng 2023; 120:1038-1054. [PMID: 36539373 DOI: 10.1002/bit.28312] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Nanoparticles are used as carriers for the delivery of drugs and imaging agents. Proteins are safer than synthetic nanocarriers due to their greater biocompatibility and the absence of toxic degradation products. In this context, ferritin has the additional benefit of inherently targeting the membrane receptor transferrin 1, which is overexpressed by most cancer cells. Furthermore, this self-assembling multimeric protein can be loaded with more than 2000 iron atoms, as well as drugs, contrast agents, and other cargos. However, recombinant ferritin currently costs ~3.5 million € g-1 , presumably because the limited number of producers cannot meet demand, making it generally unaffordable as a nanocarrier. Because plants can produce proteins at very-large-scale, we developed a simple, proof-of-concept process for the production of the human ferritin heavy chain by transient expression in Nicotiana benthamiana. We optimized the protein yields by screening different compartments and 5'-untranslated regions in PCPs, and selected the best-performing construct for production in differentiated plants. We then established a rapid and scalable purification protocol by combining pH and heat treatment before extraction, followed by an ultrafiltration/diafiltration size-based separation process. The optimized process achieved ferritin levels of ~40 mg kg-1 fresh biomass although depth filtration limited product recovery to ~7%. The purity of the recombinant product was >90% at costs ~3% of the current sales price. Our method therefore allows the production of affordable ferritin heavy chain as a carrier for therapeutic and diagnostic agents, which is suitable for further stability and functionality testing in vitro and in vivo.
Collapse
Affiliation(s)
- Matthias Knödler
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V., Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Patrick Opdensteinen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V., Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | | | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute for Pathology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Johannes Felix Buyel
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| |
Collapse
|
16
|
Eidenberger L, Kogelmann B, Steinkellner H. Plant-based biopharmaceutical engineering. NATURE REVIEWS BIOENGINEERING 2023; 1:426-439. [PMID: 37317690 PMCID: PMC10030082 DOI: 10.1038/s44222-023-00044-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/13/2023] [Indexed: 03/24/2023]
Abstract
Plants can be engineered to recombinantly produce high-quality proteins such as therapeutic proteins and vaccines, also known as molecular farming. Molecular farming can be established in various settings with minimal cold-chain requirements and could thus ensure rapid and global-scale deployment of biopharmaceuticals, promoting equitable access to pharmaceuticals. State of the art plant-based engineering relies on rationally assembled genetic circuits, engineered to enable the high-throughput and rapid expression of multimeric proteins with complex post-translational modifications. In this Review, we discuss the design of expression hosts and vectors, including Nicotiana benthamiana, viral elements and transient expression vectors, for the production of biopharmaceuticals in plants. We examine engineering of post-translational modifications and highlight the plant-based expression of monoclonal antibodies and nanoparticles, such as virus-like particles and protein bodies. Techno-economic analyses suggest a cost advantage of molecular farming compared with mammalian cell-based protein production systems. However, regulatory challenges remain to be addressed to enable the widespread translation of plant-based biopharmaceuticals.
Collapse
Affiliation(s)
- Lukas Eidenberger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benjamin Kogelmann
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
- acib — Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Herta Steinkellner
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
17
|
Legen J, Dühnen S, Gauert A, Götz M, Schmitz-Linneweber C. A CRR2-Dependent sRNA Sequence Supports Papillomavirus Vaccine Expression in Tobacco Chloroplasts. Metabolites 2023; 13:metabo13030315. [PMID: 36984756 PMCID: PMC10054877 DOI: 10.3390/metabo13030315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction: Human papillomavirus (HPV) infection is the leading cause of cervical cancer, and vaccination with HPV L1 capsid proteins has been successful in controlling it. However, vaccination coverage is not universal, particularly in developing countries, where 80% of all cervical cancer cases occur. Cost-effective vaccination could be achieved by expressing the L1 protein in plants. Various efforts have been made to produce the L1 protein in plants, including attempts to express it in chloroplasts for high-yield performance. However, manipulating chloroplast gene expression requires complex and difficult-to-control expression elements. In recent years, a family of nuclear-encoded, chloroplast-targeted RNA-binding proteins, the pentatricopeptide repeat (PPR) proteins, were described as key regulators of chloroplast gene expression. For example, PPR proteins are used by plants to stabilize and translate chloroplast mRNAs. Objectives: To demonstrate that a PPR target site can be used to drive HPV L1 expression in chloroplasts. Methods: To test our hypothesis, we used biolistic chloroplast transformation to establish tobacco lines that express two variants of the HPV L1 protein under the control of the target site of the PPR protein CHLORORESPIRATORY REDUCTION2 (CRR2). The transgenes were inserted into a dicistronic operon driven by the plastid rRNA promoter. To determine the effectiveness of the PPR target site for the expression of the HPV L1 protein in the chloroplasts, we analyzed the accumulation of the transgenic mRNA and its processing, as well as the accumulation of the L1 protein in the transgenic lines. Results: We established homoplastomic lines carrying either the HPV18 L1 protein or an HPV16B Enterotoxin::L1 fusion protein. The latter line showed severe growth retardation and pigment loss, suggesting that the fusion protein is toxic to the chloroplasts. Despite the presence of dicistronic mRNAs, we observed very little accumulation of monocistronic transgenic mRNA and no significant increase in CRR2-associated small RNAs. Although both lines expressed the L1 protein, quantification using an external standard suggested that the amounts were low. Conclusions: Our results suggest that PPR binding sites can be used to drive vaccine expression in plant chloroplasts; however, the factors that modulate the effectiveness of target gene expression remain unclear. The identification of dozens of PPR binding sites through small RNA sequencing expands the set of expression elements available for high-value protein production in chloroplasts.
Collapse
Affiliation(s)
- Julia Legen
- Molecular Genetics, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Sara Dühnen
- Molecular Genetics, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Anton Gauert
- Molecular Genetics, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Michael Götz
- BioEnergy GmbH, Dietersberg 1, 92334 Berching, Germany
| | - Christian Schmitz-Linneweber
- Molecular Genetics, Humboldt-University Berlin, Philippstr. 13, 10115 Berlin, Germany
- Correspondence: ; Tel.: +49-20-2093-49700
| |
Collapse
|
18
|
VanderBurgt JT, Harper O, Garnham CP, Kohalmi SE, Menassa R. Plant production of a virus-like particle-based vaccine candidate against porcine reproductive and respiratory syndrome. FRONTIERS IN PLANT SCIENCE 2023; 14:1044675. [PMID: 36760639 PMCID: PMC9902946 DOI: 10.3389/fpls.2023.1044675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a disease leading to spontaneous abortions and stillbirths in sows and lowered life quality and expectancy in growing pigs. PRRS is prevalent worldwide and has significant economic impacts to swine industries around the globe. Co-expression of the two most abundant proteins in the viral envelope, the matrix protein (M) and glycosylated protein 5 (GP5), can produce a neutralizing immune response for the virus providing a potentially effective subunit vaccine against the disease, but these proteins are difficult to express. The goal of this research was to display antigenic portions of the M and GP5 proteins on the surface of tobacco mosaic virus-like particles. A modified tobacco mosaic virus coat protein (TMVc) was transiently expressed in Nicotiana benthamiana leaves and targeted to three subcellular compartments along the secretory pathway to introduce glycosylation patterns important for M-GP5 epitope immunogenicity. We found that accumulation levels in the apoplast were similar to the ER and the vacuole. Because glycans present on plant apoplastic proteins are closest to those present on PRRSV proteins, a TMVc-M-GP5 fusion construct was targeted to the apoplast and accumulated at over 0.5 mg/g of plant fresh weight. TMVc virus-like particles self-assembled in plant cells and surface-displayed the M-GP5 epitope, as visualized by transmission electron microscopy and immunogold localization. These promising findings lay the foundation for immunogenicity and protective-immunity studies in animals to examine the efficacy of this vaccine candidate as a measure to control PRRS.
Collapse
Affiliation(s)
- Jordan T. VanderBurgt
- Biology Department, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Ondre Harper
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Biochemistry Department, University of Western Ontario, London, ON, Canada
| | - Christopher P. Garnham
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Biochemistry Department, University of Western Ontario, London, ON, Canada
| | | | - Rima Menassa
- Biology Department, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
19
|
Schwestka J, Zeh L, Tschofen M, Schubert F, Arcalis E, Esteve-Gasent M, Pedrazzini E, Vitale A, Stoger E. Generation of multi-layered protein bodies in N. benthamiana for the encapsulation of vaccine antigens. FRONTIERS IN PLANT SCIENCE 2023; 14:1109270. [PMID: 36733717 PMCID: PMC9887037 DOI: 10.3389/fpls.2023.1109270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/02/2023] [Indexed: 06/18/2023]
Abstract
The ability of plants to assemble particulate structures such as virus-like particles and protein storage organelles allows the direct bioencapsulation of recombinant proteins during the manufacturing process, which holds promise for the development of new drug delivery vehicles. Storage organelles found in plants such as protein bodies (PBs) have been successfully used as tools for accumulation and encapsulation of recombinant proteins. The fusion of sequences derived from 27-kDa-γ-zein, a major storage protein of maize, with a protein of interest leads to the incorporation of the chimeric protein into the stable and protected environment inside newly induced PBs. While this procedure has proven successful for several, but not all recombinant proteins, the aim of this study was to refine the technology by using a combination of PB-forming proteins, thereby generating multi-layered protein assemblies in N. benthamiana. We used fluorescent proteins to demonstrate that up to three proteinaceous components can be incorporated into different layers. In addition to 27-kDa-γ-zein, which is essential for PB initiation, 16-kDa-γ-zein was identified as a key element to promote the incorporation of a third zein-component into the core of the PBs. We show that a vaccine antigen could be incorporated into the matrix of multi-layered PBs, and the protein microparticles were characterized by confocal and electron microscopy as well as flow cytometry. In future, this approach will enable the generation of designer PBs that serve as drug carriers and integrate multiple components that can be functionalized in different ways.
Collapse
Affiliation(s)
- Jennifer Schwestka
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lukas Zeh
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Marc Tschofen
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Fabian Schubert
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Elsa Arcalis
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Maria Esteve-Gasent
- Department of Veterinary Pathobiology, College of Veterinary Medicine, College Station, TX, United States
| | - Emanuela Pedrazzini
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche (CNR), Milano, Italy
| | - Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche (CNR), Milano, Italy
| | - Eva Stoger
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
20
|
The Plant Viruses and Molecular Farming: How Beneficial They Might Be for Human and Animal Health? Int J Mol Sci 2023; 24:ijms24021533. [PMID: 36675043 PMCID: PMC9863966 DOI: 10.3390/ijms24021533] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Plant viruses have traditionally been studied as pathogens in the context of understanding the molecular and cellular mechanisms of a particular disease affecting crops. In recent years, viruses have emerged as a new alternative for producing biological nanomaterials and chimeric vaccines. Plant viruses were also used to generate highly efficient expression vectors, revolutionizing plant molecular farming (PMF). Several biological products, including recombinant vaccines, monoclonal antibodies, diagnostic reagents, and other pharmaceutical products produced in plants, have passed their clinical trials and are in their market implementation stage. PMF offers opportunities for fast, adaptive, and low-cost technology to meet ever-growing and critical global health needs. In this review, we summarized the advancements in the virus-like particles-based (VLPs-based) nanotechnologies and the role they played in the production of advanced vaccines, drugs, diagnostic bio-nanomaterials, and other bioactive cargos. We also highlighted various applications and advantages plant-produced vaccines have and their relevance for treating human and animal illnesses. Furthermore, we summarized the plant-based biologics that have passed through clinical trials, the unique challenges they faced, and the challenges they will face to qualify, become available, and succeed on the market.
Collapse
|
21
|
Esquirol L, McNeale D, Venturi M, Sainsbury F. Production and Purification of Virus-Like Particles by Transient Expression in Plants. Methods Mol Biol 2023; 2671:387-402. [PMID: 37308657 DOI: 10.1007/978-1-0716-3222-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transient expression in plants has become a useful production system for virus-like particle (VLP) expression. High yields and flexible approaches to assembling complex VLPs, combine with ease of scale-up and inexpensive reagents to provide an attractive method for recombinant protein expression in general. Plants have demonstrated excellent capacity for the assembly and production of protein cages for use in vaccine design and nanotechnology. Furthermore, numerous virus structures have now been determined using plant-expressed VLPs, showing the utility of this approach in structural virology. Transient protein expression in plants uses common microbiology techniques, leading to a straightforward transformation procedure that does not result in stable transgenesis. In this chapter, we aim to provide a generic protocol for transient expression of VLPs in Nicotiana benthamiana using soil-free plant cultivation and a simple vacuum infiltration procedure, along with methodology for purifying VLPs from plant leaves.
Collapse
Affiliation(s)
- Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Donna McNeale
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Micol Venturi
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia.
| |
Collapse
|
22
|
Transient Expression of Flavivirus Structural Proteins in Nicotiana benthamiana. Vaccines (Basel) 2022; 10:vaccines10101667. [PMID: 36298532 PMCID: PMC9610170 DOI: 10.3390/vaccines10101667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Flaviviruses are a threat to public health and can cause major disease outbreaks. Tick-borne encephalitis (TBE) is caused by a flavivirus, and it is one of the most important causes of viral encephalitis in Europe and is on the rise in Sweden. As there is no antiviral treatment available, vaccination remains the best protective measure against TBE. Currently available TBE vaccines are based on formalin-inactivated virus produced in cell culture. These vaccines must be delivered by intramuscular injection, have a burdensome immunization schedule, and may exhibit vaccine failure in certain populations. This project aimed to develop an edible TBE vaccine to trigger a stronger immune response through oral delivery of viral antigens to mucosal surfaces. We demonstrated successful expression and post-translational processing of flavivirus structural proteins which then self-assembled to form virus-like particles in Nicotiana benthamiana. We performed oral toxicity tests in mice using various plant species as potential bioreactors and evaluated the immunogenicity of the resulting edible vaccine candidate. Mice immunized with the edible vaccine candidate did not survive challenge with TBE virus. Interestingly, immunization of female mice with a commercial TBE vaccine can protect their offspring against TBE virus infection.
Collapse
|
23
|
Vasilev N. Medicinal Plants: Guests and Hosts in the Heterologous Expression of High-Value Products. PLANTA MEDICA 2022; 88:1175-1189. [PMID: 34521134 DOI: 10.1055/a-1576-4148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Medicinal plants play an important dual role in the context of the heterologous expression of high-value pharmaceutical products. On the one hand, the classical biochemical and modern omics approaches allowed for the discovery of various genes encoding biosynthetic pathways in medicinal plants. Recombinant DNA technology enabled introducing these genes and regulatory elements into host organisms and enhancing the heterologous production of the corresponding secondary metabolites. On the other hand, the transient expression of foreign DNA in plants facilitated the production of numerous proteins of pharmaceutical importance. This review summarizes several success stories of the engineering of plant metabolic pathways in heterologous hosts. Likewise, a few examples of recombinant protein expression in plants for therapeutic purposes are also highlighted. Therefore, the importance of medicinal plants has grown immensely as sources for valuable products of low and high molecular weight. The next step ahead for bioengineering is to achieve more success stories of industrial-scale production of secondary plant metabolites in microbial systems and to fully exploit plant cell factories' commercial potential for recombinant proteins.
Collapse
Affiliation(s)
- Nikolay Vasilev
- TU Dortmund University, Biochemical and Chemical Engineering, Technical Biochemistry, Dortmund, Germany
| |
Collapse
|
24
|
Pinneh EC, van Dolleweerd CJ, Göritzer K, Drake PMW, Ma JK, Teh AY. Multiple gene expression in plants using MIDAS-P, a versatile type II restriction-based modular expression vector. Biotechnol Bioeng 2022; 119:1660-1672. [PMID: 35238400 PMCID: PMC9313558 DOI: 10.1002/bit.28073] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/20/2022]
Abstract
MIDAS-P is a plant expression vector with blue/white screening for iterative cloning of multiple, tandemly arranged transcription units (TUs). We have used the MIDAS-P system to investigate the expression of up to five genes encoding three anti-HIV proteins and the reporter gene DsRed in Nicotiana benthamiana plants. The anti-HIV cocktail was made up of a broadly neutralizing monoclonal antibody (VRC01), a lectin (Griffithsin), and a single-chain camelid nanobody (J3-VHH). Constructs containing different combinations of 3, 4, or 5 TUs encoding different components of the anti-HIV cocktail were assembled. Messenger RNA (mRNA) levels of the genes of interest decreased beyond two TUs. Coexpression of the RNA silencing suppressor P19 dramatically increased the overall mRNA and protein expression levels of each component. The position of individual TUs in 3 TU constructs did not affect mRNA or protein expression levels. However, their expression dropped to non-detectable levels in constructs with four or more TUs each containing the same promoter and terminator elements, with the exception of DsRed at the first or last position in 5 TU constructs. This drop was alleviated by co-expression of P19. In short, the MIDAS-P system is suitable for the simultaneous expression of multiple proteins in one construct.
Collapse
Affiliation(s)
- Elizabeth C. Pinneh
- Molecular Immunology Unit, Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Craig J. van Dolleweerd
- Protein Science & Engineering, Callaghan Innovation, School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Kathrin Göritzer
- Molecular Immunology Unit, Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Pascal M. W. Drake
- Molecular Immunology Unit, Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Julian K‐C. Ma
- Molecular Immunology Unit, Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| | - Audrey Y‐H. Teh
- Molecular Immunology Unit, Institute for Infection and ImmunitySt. George's University of LondonLondonUK
| |
Collapse
|
25
|
Can Virus-like Particles Be Used as Synergistic Agent in Pest Management? Viruses 2022; 14:v14050943. [PMID: 35632685 PMCID: PMC9144638 DOI: 10.3390/v14050943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
Among novel strategies proposed in pest management, synergistic agents are used to improve insecticide efficacy through an elevation of intracellular calcium concentration that activates the calcium-dependent intracellular pathway. This leads to a changed target site conformation and to increased sensitivity to insecticides while reducing their concentrations. Because virus-like particles (VLPs) increase the intracellular calcium concentration, they can be used as a synergistic agent to synergize the effect of insecticides. VLPs are self-assembled viral protein complexes, and by contrast to entomopathogen viruses, they are devoid of genetic material, which makes them non-infectious and safer than viruses. Although VLPs are well-known to be used in human health, we propose in this study the development of a promising strategy based on the use of VLPs as synergistic agents in pest management. This will lead to increased insecticides efficacy while reducing their concentrations.
Collapse
|
26
|
McNulty MJ, Schwartz A, Delzio J, Karuppanan K, Jacobson A, Hart O, Dandekar A, Giritch A, Nandi S, Gleba Y, McDonald KA. Affinity Sedimentation and Magnetic Separation With Plant-Made Immunosorbent Nanoparticles for Therapeutic Protein Purification. Front Bioeng Biotechnol 2022; 10:865481. [PMID: 35573255 PMCID: PMC9092175 DOI: 10.3389/fbioe.2022.865481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
The virus-based immunosorbent nanoparticle is a nascent technology being developed to serve as a simple and efficacious agent in biosensing and therapeutic antibody purification. There has been particular emphasis on the use of plant virions as immunosorbent nanoparticle chassis for their diverse morphologies and accessible, high yield manufacturing via plant cultivation. To date, studies in this area have focused on proof-of-concept immunosorbent functionality in biosensing and purification contexts. Here we consolidate a previously reported pro-vector system into a single Agrobacterium tumefaciens vector to investigate and expand the utility of virus-based immunosorbent nanoparticle technology for therapeutic protein purification. We demonstrate the use of this technology for Fc-fusion protein purification, characterize key nanomaterial properties including binding capacity, stability, reusability, and particle integrity, and present an optimized processing scheme with reduced complexity and increased purity. Furthermore, we present a coupling of virus-based immunosorbent nanoparticles with magnetic particles as a strategy to overcome limitations of the immunosorbent nanoparticle sedimentation-based affinity capture methodology. We report magnetic separation results which exceed the binding capacity reported for current industry standards by an order of magnitude.
Collapse
Affiliation(s)
- Matthew J. McNulty
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | | | - Jesse Delzio
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Kalimuthu Karuppanan
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Aaron Jacobson
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Olivia Hart
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Abhaya Dandekar
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | | | - Somen Nandi
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
- Global HealthShare® Initiative, University of California, Davis, Davis, CA, United States
| | | | - Karen A. McDonald
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
- Global HealthShare® Initiative, University of California, Davis, Davis, CA, United States
- *Correspondence: Karen A. McDonald,
| |
Collapse
|
27
|
Martí M, Merwaiss F, Butković A, Daròs JA. Production of Potyvirus-Derived Nanoparticles Decorated with a Nanobody in Biofactory Plants. Front Bioeng Biotechnol 2022; 10:877363. [PMID: 35433643 PMCID: PMC9008781 DOI: 10.3389/fbioe.2022.877363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 01/10/2023] Open
Abstract
Viral nanoparticles (VNPs) have recently attracted attention for their use as building blocks for novel materials to support a range of functions of potential interest in nanotechnology and medicine. Viral capsids are ideal for presenting small epitopes by inserting them at an appropriate site on the selected coat protein (CP). VNPs presenting antibodies on their surfaces are considered highly promising tools for therapeutic and diagnostic purposes. Due to their size, nanobodies are an interesting alternative to classic antibodies for surface presentation. Nanobodies are the variable domains of heavy-chain (VHH) antibodies from animals belonging to the family Camelidae, which have several properties that make them attractive therapeutic molecules, such as their small size, simple structure, and high affinity and specificity. In this work, we have produced genetically encoded VNPs derived from two different potyviruses—the largest group of RNA viruses that infect plants—decorated with nanobodies. We have created a VNP derived from zucchini yellow mosaic virus (ZYMV) decorated with a nanobody against the green fluorescent protein (GFP) in zucchini (Cucurbita pepo) plants. As reported for other viruses, the expression of ZYMV-derived VNPs decorated with this nanobody was only made possible by including a picornavirus 2A splicing peptide between the fused proteins, which resulted in a mixed population of unmodified and decorated CPs. We have also produced tobacco etch virus (TEV)-derived VNPs in Nicotiana benthamiana plants decorated with the same nanobody against GFP. Strikingly, in this case, VNPs could be assembled by direct fusion of the nanobody to the viral CP with no 2A splicing involved, likely resulting in fully decorated VNPs. For both expression systems, correct assembly and purification of the recombinant VNPs was confirmed by transmission electron microscope; the functionality of the CP-fused nanobody was assessed by western blot and binding assays. In sum, here we report the production of genetically encoded plant-derived VNPs decorated with a nanobody. This system may be an attractive alternative for the sustainable production in plants of nanobody-containing nanomaterials for diagnostic and therapeutic purposes.
Collapse
|
28
|
Improving Protein Quantity and Quality—The Next Level of Plant Molecular Farming. Int J Mol Sci 2022; 23:ijms23031326. [PMID: 35163249 PMCID: PMC8836236 DOI: 10.3390/ijms23031326] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/15/2022] Open
Abstract
Plants offer several unique advantages in the production of recombinant pharmaceuticals for humans and animals. Although numerous recombinant proteins have been expressed in plants, only a small fraction have been successfully put into use. The hugely distinct expression systems between plant and animal cells frequently cause insufficient yield of the recombinant proteins with poor or undesired activity. To overcome the issues that greatly constrain the development of plant-produced pharmaceuticals, great efforts have been made to improve expression systems and develop alternative strategies to increase both the quantity and quality of the recombinant proteins. Recent technological revolutions, such as targeted genome editing, deconstructed vectors, virus-like particles, and humanized glycosylation, have led to great advances in plant molecular farming to meet the industrial manufacturing and clinical application standards. In this review, we discuss the technological advances made in various plant expression platforms, with special focus on the upstream designs and milestone achievements in improving the yield and glycosylation of the plant-produced pharmaceutical proteins.
Collapse
|
29
|
Plant-Derived Recombinant Vaccines against Zoonotic Viruses. Life (Basel) 2022; 12:life12020156. [PMID: 35207444 PMCID: PMC8878793 DOI: 10.3390/life12020156] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Emerging and re-emerging zoonotic diseases cause serious illness with billions of cases, and millions of deaths. The most effective way to restrict the spread of zoonotic viruses among humans and animals and prevent disease is vaccination. Recombinant proteins produced in plants offer an alternative approach for the development of safe, effective, inexpensive candidate vaccines. Current strategies are focused on the production of highly immunogenic structural proteins, which mimic the organizations of the native virion but lack the viral genetic material. These include chimeric viral peptides, subunit virus proteins, and virus-like particles (VLPs). The latter, with their ability to self-assemble and thus resemble the form of virus particles, are gaining traction among plant-based candidate vaccines against many infectious diseases. In this review, we summarized the main zoonotic diseases and followed the progress in using plant expression systems for the production of recombinant proteins and VLPs used in the development of plant-based vaccines against zoonotic viruses.
Collapse
|
30
|
Abstract
Plants are increasingly viewed as suitable expression hosts for the production of recombinant proteins, especially when oxidative folding and/or posttranslational modification is essential for protein stability and functionality. In contrast to traditional platforms such as yeast and mammalian cells, where the product is secreted into the culture medium, recombinant proteins expressed in plants are usually retained within the cells so additional effort is required during extraction and purification. Various extraction processes are used to release soluble proteins from plant tissues, followed by clarification to remove fibers and particulates before the target protein is purified. Fermentation media generally contain few proteins, making it easier to recover a secreted product, whereas the green juice extracted from plants usually contains a large number of host proteins that interfere with target isolation and purification. In this chapter, we describe the use of heat precipitation to remove a large portion of the host cell proteins, thus improving the efficiency of subsequent purification steps and the quality of the purified recombinant protein.
Collapse
Affiliation(s)
- Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.
| |
Collapse
|
31
|
Hemmati F, Hemmati-Dinarvand M, Karimzade M, Rutkowska D, Eskandari MH, Khanizadeh S, Afsharifar A. Plant-derived VLP: a worthy platform to produce vaccine against SARS-CoV-2. Biotechnol Lett 2021; 44:45-57. [PMID: 34837582 PMCID: PMC8626723 DOI: 10.1007/s10529-021-03211-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
After its emergence in late 2019 SARS-CoV-2 was declared a pandemic by the World Health Organization on 11 March 2020 and has claimed more than 2.8 million lives. There has been a massive global effort to develop vaccines against SARS-CoV-2 and the rapid and low cost production of large quantities of vaccine is urgently needed to ensure adequate supply to both developed and developing countries. Virus-like particles (VLPs) are composed of viral antigens that self-assemble into structures that mimic the structure of native viruses but lack the viral genome. Thus they are not only a safer alternative to attenuated or inactivated vaccines but are also able to induce potent cellular and humoral immune responses and can be manufactured recombinantly in expression systems that do not require viral replication. VLPs have successfully been produced in bacteria, yeast, insect and mammalian cell cultures, each production platform with its own advantages and limitations. Plants offer a number of advantages in one production platform, including proper eukaryotic protein modification and assembly, increased safety, low cost, high scalability as well as rapid production speed, a critical factor needed to control outbreaks of potential pandemics. Plant-based VLP-based viral vaccines currently in clinical trials include, amongst others, Hepatitis B virus, Influenza virus and SARS-CoV-2 vaccines. Here we discuss the importance of plants as a next generation expression system for the fast, scalable and low cost production of VLP-based vaccines.
Collapse
Affiliation(s)
- Farshad Hemmati
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Mohsen Hemmati-Dinarvand
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marziye Karimzade
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Daria Rutkowska
- CSIR Next Generation Health, PO Box 395, Pretoria, 0001, South Africa
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Sayyad Khanizadeh
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Alireza Afsharifar
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran.
| |
Collapse
|
32
|
Kaur M, Manchanda P, Kalia A, Ahmed FK, Nepovimova E, Kuca K, Abd-Elsalam KA. Agroinfiltration Mediated Scalable Transient Gene Expression in Genome Edited Crop Plants. Int J Mol Sci 2021; 22:10882. [PMID: 34639221 PMCID: PMC8509792 DOI: 10.3390/ijms221910882] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 02/07/2023] Open
Abstract
Agrobacterium-mediated transformation is one of the most commonly used genetic transformation method that involves transfer of foreign genes into target plants. Agroinfiltration, an Agrobacterium-based transient approach and the breakthrough discovery of CRISPR/Cas9 holds trending stature to perform targeted and efficient genome editing (GE). The predominant feature of agroinfiltration is the abolishment of Transfer-DNA (T-DNA) integration event to ensure fewer biosafety and regulatory issues besides showcasing the capability to perform transcription and translation efficiently, hence providing a large picture through pilot-scale experiment via transient approach. The direct delivery of recombinant agrobacteria through this approach carrying CRISPR/Cas cassette to knockout the expression of the target gene in the intercellular tissue spaces by physical or vacuum infiltration can simplify the targeted site modification. This review aims to provide information on Agrobacterium-mediated transformation and implementation of agroinfiltration with GE to widen the horizon of targeted genome editing before a stable genome editing approach. This will ease the screening of numerous functions of genes in different plant species with wider applicability in future.
Collapse
Affiliation(s)
- Maninder Kaur
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004, India;
| | - Pooja Manchanda
- School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004, India;
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Department of Soil Science, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004, India;
| | - Farah K. Ahmed
- Biotechnology English Program, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic;
- Biomedical Research Center, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), 9-Gamaa St., Giza 12619, Egypt;
| |
Collapse
|
33
|
Byrne M, Kashyap A, Esquirol L, Ranson N, Sainsbury F. The structure of a plant-specific partitivirus capsid reveals a unique coat protein domain architecture with an intrinsically disordered protrusion. Commun Biol 2021; 4:1155. [PMID: 34615994 PMCID: PMC8494798 DOI: 10.1038/s42003-021-02687-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 09/17/2021] [Indexed: 11/22/2022] Open
Abstract
Persistent plant viruses may be the most common viruses in wild plants. A growing body of evidence for mutualism between such viruses and their hosts, suggests that they play an important role in ecology and agriculture. Here we present the capsid structure of a plant-specific partitivirus, Pepper cryptic virus 1, at 2.9 Å resolution by Cryo-EM. Structural features, including the T = 1 arrangement of 60 coat protein dimers, are shared with fungal partitiviruses and the picobirnavirus lineage of dsRNA viruses. However, the topology of the capsid is markedly different with protrusions emanating from, and partly comprising, the binding interface of coat protein dimers. We show that a disordered region at the apex of the protrusion is not required for capsid assembly and represents a hypervariable site unique to, and characteristic of, the plant-specific partitiviruses. These results suggest a structural basis for the acquisition of additional functions by partitivirus coat proteins that enables mutualistic relationships with diverse plant hosts.
Collapse
Affiliation(s)
- Matthew Byrne
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | - Aseem Kashyap
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia
| | - Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia
| | - Neil Ranson
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.
- Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organization (CSIRO), Brisbane, QLD, 4001, Australia.
| |
Collapse
|
34
|
He W, Baysal C, Lobato Gómez M, Huang X, Alvarez D, Zhu C, Armario‐Najera V, Blanco Perera A, Cerda Bennaser P, Saba‐Mayoral A, Sobrino‐Mengual G, Vargheese A, Abranches R, Alexandra Abreu I, Balamurugan S, Bock R, Buyel JF, da Cunha NB, Daniell H, Faller R, Folgado A, Gowtham I, Häkkinen ST, Kumar S, Sathish Kumar R, Lacorte C, Lomonossoff GP, Luís IM, K.‐C. Ma J, McDonald KA, Murad A, Nandi S, O’Keef B, Parthiban S, Paul MJ, Ponndorf D, Rech E, Rodrigues JC, Ruf S, Schillberg S, Schwestka J, Shah PS, Singh R, Stoger E, Twyman RM, Varghese IP, Vianna GR, Webster G, Wilbers RHP, Christou P, Oksman‐Caldentey K, Capell T. Contributions of the international plant science community to the fight against infectious diseases in humans-part 2: Affordable drugs in edible plants for endemic and re-emerging diseases. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1921-1936. [PMID: 34181810 PMCID: PMC8486237 DOI: 10.1111/pbi.13658] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 05/05/2023]
Abstract
The fight against infectious diseases often focuses on epidemics and pandemics, which demand urgent resources and command attention from the health authorities and media. However, the vast majority of deaths caused by infectious diseases occur in endemic zones, particularly in developing countries, placing a disproportionate burden on underfunded health systems and often requiring international interventions. The provision of vaccines and other biologics is hampered not only by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, but also by challenges caused by distribution and storage, particularly in regions without a complete cold chain. In this review article, we consider the potential of molecular farming to address the challenges of endemic and re-emerging diseases, focusing on edible plants for the development of oral drugs. Key recent developments in this field include successful clinical trials based on orally delivered dried leaves of Artemisia annua against malarial parasite strains resistant to artemisinin combination therapy, the ability to produce clinical-grade protein drugs in leaves to treat infectious diseases and the long-term storage of protein drugs in dried leaves at ambient temperatures. Recent FDA approval of the first orally delivered protein drug encapsulated in plant cells to treat peanut allergy has opened the door for the development of affordable oral drugs that can be manufactured and distributed in remote areas without cold storage infrastructure and that eliminate the need for expensive purification steps and sterile delivery by injection.
Collapse
Affiliation(s)
- Wenshu He
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Can Baysal
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Maria Lobato Gómez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Xin Huang
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Derry Alvarez
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Changfu Zhu
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Victoria Armario‐Najera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Aamaya Blanco Perera
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Pedro Cerda Bennaser
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Andrea Saba‐Mayoral
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | | | - Ashwin Vargheese
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| | - Rita Abranches
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Isabel Alexandra Abreu
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Shanmugaraj Balamurugan
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Johannes F. Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for Molecular BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Nicolau B. da Cunha
- Centro de Análise Proteômicas e Bioquímicas de BrasíliaUniversidade Católica de BrasíliaBrasíliaBrazil
| | - Henry Daniell
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Roland Faller
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
| | - André Folgado
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Iyappan Gowtham
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Suvi T. Häkkinen
- Industrial Biotechnology and Food SolutionsVTT Technical Research Centre of Finland LtdEspooFinland
| | - Shashi Kumar
- International Centre for Genetic Engineering and BiotechnologyNew DelhiIndia
| | - Ramalingam Sathish Kumar
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Cristiano Lacorte
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | | | - Ines M. Luís
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Julian K.‐C. Ma
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Karen A. McDonald
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Andre Murad
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Somen Nandi
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Global HealthShare InitiativeUniversity of California, DavisDavisCAUSA
| | - Barry O’Keef
- Division of Cancer Treatment and DiagnosisMolecular Targets ProgramCenter for Cancer ResearchNational Cancer Institute, and Natural Products Branch, Developmental Therapeutics ProgramNational Cancer Institute, NIHFrederickMDUSA
| | - Subramanian Parthiban
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Mathew J. Paul
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Daniel Ponndorf
- Department of Biological ChemistryJohn Innes CentreNorwich Research Park, NorwichUK
| | - Elibio Rech
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Julio C.M. Rodrigues
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Stephanie Ruf
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachenGermany
- Institute for PhytopathologyJustus‐Liebig‐University GiessenGiessenGermany
| | - Jennifer Schwestka
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Priya S. Shah
- Department of Chemical EngineeringUniversity of California, DavisDavisCAUSA
- Department of Microbiology and Molecular GeneticsUniversity of California, DavisDavisCAUSA
| | - Rahul Singh
- School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Eva Stoger
- Institute of Plant Biotechnology and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | - Inchakalody P. Varghese
- Plant Genetic Engineering LaboratoryDepartment of BiotechnologyBharathiar UniversityTamil NaduIndia
| | - Giovanni R. Vianna
- Brazilian Agriculture Research CorporationEmbrapa Genetic Resources and Biotechnology and National Institute of Science and Technology Synthetic in Biology, Parque Estação BiológicaBrasiliaBrazil
| | - Gina Webster
- Institute for Infection and ImmunitySt. George’s University of LondonLondonUK
| | - Ruud H. P. Wilbers
- Laboratory of NematologyPlant Sciences GroupWageningen University and ResearchWageningenThe Netherlands
| | - Paul Christou
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
- ICREACatalan Institute for Research and Advanced StudiesBarcelonaSpain
| | | | - Teresa Capell
- Department of Crop and Forest SciencesUniversity of Lleida‐Agrotecnio CERCA CenterLleidaSpain
| |
Collapse
|
35
|
Challenges and Prospects of Plant-Derived Oral Vaccines against Hepatitis B and C Viruses. PLANTS 2021; 10:plants10102037. [PMID: 34685844 PMCID: PMC8537828 DOI: 10.3390/plants10102037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
Hepatitis B and C viruses chronically affect approximately 3.5% of the global population, causing more than 800,000 deaths yearly due to severe liver pathogenesis. Current HBV vaccines have significantly contributed to the reduction of chronic HBV infections, supporting the notion that virus eradication is a feasible public health objective in the near future. In contrast to HBV, a prophylactic vaccine against HCV infection is not available yet; however, intense research efforts within the last decade have significantly advanced the field and several vaccine candidates are shortlisted for clinical trials. A successful vaccine against an infectious disease of global importance must not only be efficient and safe, but also easy to produce, distribute, administer, and economically affordable to ensure appropriate coverage. Some of these requirements could be fulfilled by oral vaccines that could complement traditional immunization strategies. In this review, we discuss the potential of edible plant-based oral vaccines in assisting the worldwide fight against hepatitis B and C infections. We highlight the latest research efforts to reveal the potential of oral vaccines, discuss novel antigen designs and delivery strategies, as well as the limitations and controversies of oral administration that remain to be addressed to make this approach successful.
Collapse
|
36
|
Nosaki S, Hoshikawa K, Ezura H, Miura K. Transient protein expression systems in plants and their applications. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:297-304. [PMID: 34782815 PMCID: PMC8562577 DOI: 10.5511/plantbiotechnology.21.0610a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/10/2021] [Indexed: 06/01/2023]
Abstract
The production of recombinant proteins is important in academic research to identify protein functions. Moreover, recombinant enzymes are used in the food and chemical industries, and high-quality proteins are required for diagnostic, therapeutic, and pharmaceutical applications. Though many recombinant proteins are produced by microbial or mammalian cell-based expression systems, plants have been promoted as alternative, cost-effective, scalable, safe, and sustainable expression systems. The development and improvement of transient expression systems have significantly reduced the period of protein production and increased the yield of recombinant proteins in plants. In this review, we consider the importance of plant-based expression systems for recombinant protein production and as genetic engineering tools.
Collapse
Affiliation(s)
- Shohei Nosaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Ken Hoshikawa
- Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki 305-8686, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
37
|
Kurokawa N, Robinson MK, Bernard C, Kawaguchi Y, Koujin Y, Koen A, Madhi S, Polasek TM, McNeal M, Dargis M, Couture MMJ, Trépanier S, Forrest BD, Tsutsui N. Safety and immunogenicity of a plant-derived rotavirus-like particle vaccine in adults, toddlers and infants. Vaccine 2021; 39:5513-5523. [PMID: 34454786 DOI: 10.1016/j.vaccine.2021.08.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/06/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND This study is the first clinical trial for a parenteral non-replicating rotavirus vaccine developed using virus-like particle (VLP) technology. METHODS This open-labeled, randomized, placebo-controlled trial was conducted in two parts: Part A (a first-in-human study in Australian adults) and Part B (ascending dose and descending age in South African adults, toddlers and infants). In Part A, two cohorts of 10 adults were assigned to receive a single intramuscular injection of 1 of 2 escalating dose levels of the rotavirus VLP (Ro-VLP) vaccine (7 μg or 21 μg) or placebo. In Part B, one cohort of 10 adults was assigned to receive a single injection of the Ro-VLP vaccine (21 μg) or placebo, two cohorts of 10 toddlers were assigned to receive 2 injections of 1 of 2 escalating dose levels of the Ro-VLP vaccine (7 μg or 21 μg) or placebo 28 days apart, and three cohorts of 20 infants were assigned to receive 3 injections of 1 of 3 escalating dose levels of the Ro-VLP vaccine (2.5 μg, 7 μg or 21 μg) or placebo or 2 doses of oral Rotarix 28 days apart. Safety, reactogenicity and immunogenicity were assessed. RESULTS There were no safety or tolerability concerns after administration of the Ro-VLP vaccine. The Ro-VLP vaccine induced an anti-G1P[8] IgG response in infants 4 weeks after the second and third doses. Neutralizing antibody responses against homologous G1P[8] rotavirus were higher in all Ro-VLP infant groups than in the placebo group 4 weeks after the third dose. No heterotypic immunity was elicited by the Ro-VLP vaccine. CONCLUSIONS The Ro-VLP vaccine was well tolerated and induced a homotypic immune response in infants, suggesting that this technology platform is a favorable approach for a parenteral non-replicating rotavirus vaccine. CLINICAL TRIAL REGISTRATION NCT03507738.
Collapse
Affiliation(s)
- Natsuki Kurokawa
- Mitsubishi Tanabe Pharma Corporation, 17-10, Nihonbashi-Koamicho, Chuo-ku, Tokyo 103-8405, Japan.
| | | | - Catherine Bernard
- International Regulatory Affairs Services, Inc., 10626 Wagon Box Way, Highlands Ranch, CO 80130, USA
| | - Yutaka Kawaguchi
- Mitsubishi Tanabe Pharma Corporation, 17-10, Nihonbashi-Koamicho, Chuo-ku, Tokyo 103-8405, Japan
| | - Yoshito Koujin
- Mitsubishi Tanabe Pharma Corporation, 17-10, Nihonbashi-Koamicho, Chuo-ku, Tokyo 103-8405, Japan
| | - Anthonet Koen
- Respiratory and Meningeal Pathogens Research Unit, Chris Hani Baragwanath Hospital, Berstham Chris Hani Road, Soweto 2013, South Africa
| | - Shabir Madhi
- Respiratory and Meningeal Pathogens Research Unit, Chris Hani Baragwanath Hospital, Berstham Chris Hani Road, Soweto 2013, South Africa
| | - Thomas M Polasek
- Department of Clinical Pharmacology, Royal Adelaide Hospital, Port Road, Adelaide, SA 5000, Australia
| | - Monica McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229-3039, USA
| | - Michèle Dargis
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC, Canada
| | - Manon M-J Couture
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC, Canada
| | - Sonia Trépanier
- Medicago Inc., 1020 route de l'Église office 600, Québec, QC, Canada
| | - Bruce D Forrest
- Cognoscenti Bioscience, LLC., PO Box 444, Nyack, NY 10960, USA
| | - Naohisa Tsutsui
- Mitsubishi Tanabe Pharma Corporation, 17-10, Nihonbashi-Koamicho, Chuo-ku, Tokyo 103-8405, Japan
| |
Collapse
|
38
|
Zakri AM, Al-Doss AA, Ali AA, Samara EM, Ahmed BS, Al-Saleh MA, Idris AM, Abdalla OA, Sack M. Generation and Characterization of Nanobodies Against Tomato Leaf Curl Sudan Virus. PLANT DISEASE 2021; 105:2410-2417. [PMID: 33599515 DOI: 10.1094/pdis-11-20-2407-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Begomoviruses infect food, fiber, and vegetable crop plants, including tomato, potato, bean, cotton, cucumber, and pumpkin, and damage many economically important crop plants worldwide. Tomato leaf curl Sudan virus (ToLCSDV) is the most widespread tomato-infecting begomovirus in Saudi Arabia. Using phage display technology, this study isolated two camel-derived nanobodies against purified ToLCSDV virions from a library of antigen-binding fragments (VHH or nanobody) of heavy-chain antibodies built from an immunized camel. The isolated nanobodies also cross-reacted with purified tomato yellow leaf curl virus virions and showed significant enzyme-linked immunosorbent assay reactivity with extracts from plants with typical begomovirus infection symptoms. The results can pave the way to developing diagnostics for begomovirus detection, design, and characterization of novel nanomaterials based on virus-like particles, in addition to nanobody-mediated begomovirus resistance in economically important crops, such as tomato, potato, and cucumber.
Collapse
Affiliation(s)
- Adel M Zakri
- Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A Al-Doss
- Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A Ali
- Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Emad M Samara
- Department of Animal Production, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Basem S Ahmed
- Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed A Al-Saleh
- Department of Plant Protection, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | - Ali M Idris
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, U.S.A
| | - Omar A Abdalla
- Department of Plant Protection, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
39
|
Producing Vaccines against Enveloped Viruses in Plants: Making the Impossible, Difficult. Vaccines (Basel) 2021; 9:vaccines9070780. [PMID: 34358196 PMCID: PMC8310165 DOI: 10.3390/vaccines9070780] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
The past 30 years have seen the growth of plant molecular farming as an approach to the production of recombinant proteins for pharmaceutical and biotechnological uses. Much of this effort has focused on producing vaccine candidates against viral diseases, including those caused by enveloped viruses. These represent a particular challenge given the difficulties associated with expressing and purifying membrane-bound proteins and achieving correct assembly. Despite this, there have been notable successes both from a biochemical and a clinical perspective, with a number of clinical trials showing great promise. This review will explore the history and current status of plant-produced vaccine candidates against enveloped viruses to date, with a particular focus on virus-like particles (VLPs), which mimic authentic virus structures but do not contain infectious genetic material.
Collapse
|
40
|
Venkataraman S, Hefferon K, Makhzoum A, Abouhaidar M. Combating Human Viral Diseases: Will Plant-Based Vaccines Be the Answer? Vaccines (Basel) 2021; 9:vaccines9070761. [PMID: 34358177 PMCID: PMC8310141 DOI: 10.3390/vaccines9070761] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 12/28/2022] Open
Abstract
Molecular pharming or the technology of application of plants and plant cell culture to manufacture high-value recombinant proteins has progressed a long way over the last three decades. Whether generated in transgenic plants by stable expression or in plant virus-based transient expression systems, biopharmaceuticals have been produced to combat several human viral diseases that have impacted the world in pandemic proportions. Plants have been variously employed in expressing a host of viral antigens as well as monoclonal antibodies. Many of these biopharmaceuticals have shown great promise in animal models and several of them have performed successfully in clinical trials. The current review elaborates the strategies and successes achieved in generating plant-derived vaccines to target several virus-induced health concerns including highly communicable infectious viral diseases. Importantly, plant-made biopharmaceuticals against hepatitis B virus (HBV), hepatitis C virus (HCV), the cancer-causing virus human papillomavirus (HPV), human immunodeficiency virus (HIV), influenza virus, zika virus, and the emerging respiratory virus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have been discussed. The use of plant virus-derived nanoparticles (VNPs) and virus-like particles (VLPs) in generating plant-based vaccines are extensively addressed. The review closes with a critical look at the caveats of plant-based molecular pharming and future prospects towards further advancements in this technology. The use of biopharmed viral vaccines in human medicine and as part of emergency response vaccines and therapeutics in humans looks promising for the near future.
Collapse
Affiliation(s)
- Srividhya Venkataraman
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
- Correspondence:
| | - Kathleen Hefferon
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
| | - Abdullah Makhzoum
- Department of Biological Sciences & Biotechnology, Botswana International University of Science & Technology, Palapye, Botswana;
| | - Mounir Abouhaidar
- Virology Laboratory, Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (K.H.); (M.A.)
| |
Collapse
|
41
|
Shanmugaraj B, Bulaon CJI, Malla A, Phoolcharoen W. Biotechnological Insights on the Expression and Production of Antimicrobial Peptides in Plants. Molecules 2021; 26:4032. [PMID: 34279372 PMCID: PMC8272150 DOI: 10.3390/molecules26134032] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
The emergence of drug-resistant pathogens poses a serious critical threat to global public health and requires immediate action. Antimicrobial peptides (AMPs) are a class of short peptides ubiquitously found in all living forms, including plants, insects, mammals, microorganisms and play a significant role in host innate immune system. These peptides are considered as promising candidates to treat microbial infections due to its distinct advantages over conventional antibiotics. Given their potent broad spectrum of antimicrobial action, several AMPs are currently being evaluated in preclinical/clinical trials. However, large quantities of highly purified AMPs are vital for basic research and clinical settings which is still a major bottleneck hindering its application. This can be overcome by genetic engineering approaches to produce sufficient amount of diverse peptides in heterologous host systems. Recently plants are considered as potential alternatives to conventional protein production systems such as microbial and mammalian platforms due to their unique advantages such as rapidity, scalability and safety. In addition, AMPs can also be utilized for development of novel approaches for plant protection thereby increasing the crop yield. Hence, in order to provide a spotlight for the expression of AMP in plants for both clinical or agricultural use, the present review presents the importance of AMPs and efforts aimed at producing recombinant AMPs in plants for molecular farming and plant protection so far.
Collapse
Affiliation(s)
| | - Christine Joy I Bulaon
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Waranyoo Phoolcharoen
- Research Unit for Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
42
|
Microparticles and Nanoparticles from Plants-The Benefits of Bioencapsulation. Vaccines (Basel) 2021; 9:vaccines9040369. [PMID: 33920425 PMCID: PMC8069552 DOI: 10.3390/vaccines9040369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 11/25/2022] Open
Abstract
The efficacy of drugs and vaccines depends on their stability and ability to interact with their targets in vivo. Many drugs benefit from encapsulation, which protects them from harsh conditions and allows targeted delivery and controlled release. Although many encapsulation methods are inexpensive, such as the formulation of tablets for oral delivery, others require complex procedures that add significantly to production costs and require low-temperature transport and storage, making them inaccessible in developing countries. In this review we consider the benefits of encapsulation technologies based on plants. Plant-derived biopolymers such as starch and the maize storage protein zein are already used as protective coatings, but plant cells used as production host provide natural in vivo bioencapsulation that survives passage through the stomach and releases drugs in the intestine, due to the presence of microbes that can digest the cell wall. Proteins can also be encapsulated in subcellular compartments such as protein bodies, which ensure stability and activity while often conferring additional immunomodulatory effects. Finally, we consider the incorporation of drugs and vaccines into plant-derived nanoparticles assembled from the components of viruses. These are extremely versatile, allowing the display of epitopes and targeting peptides as well as carrying cargoes of drugs and imaging molecules.
Collapse
|
43
|
Hepatitis B core-based virus-like particles: A platform for vaccine development in plants. ACTA ACUST UNITED AC 2021; 29:e00605. [PMID: 33732633 PMCID: PMC7937989 DOI: 10.1016/j.btre.2021.e00605] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023]
Abstract
Virus-like particles (VLPs) are a class of structures formed by the self-assembly of viral capsid protein subunits and contain no infective viral genetic material. The Hepatitis B core (HBc) antigen is capable of assembling into VLPs that can elicit strong immune responses and has been licensed as a commercial vaccine against Hepatitis B. The HBc VLPs have also been employed as a platform for the presentation of foreign epitopes to the immune system and have been used to develop vaccines against, for example, influenza A and Foot-and-mouth disease. Plant expression systems are rapid, scalable and safe, and are capable of providing correct post-translational modifications and reducing upstream production costs. The production of HBc-based virus-like particles in plants would thus greatly increase the efficiency of vaccine production. This review investigates the application of plant-based HBc VLP as a platform for vaccine production.
Collapse
|
44
|
Nooraei S, Bahrulolum H, Hoseini ZS, Katalani C, Hajizade A, Easton AJ, Ahmadian G. Virus-like particles: preparation, immunogenicity and their roles as nanovaccines and drug nanocarriers. J Nanobiotechnology 2021; 19:59. [PMID: 33632278 PMCID: PMC7905985 DOI: 10.1186/s12951-021-00806-7] [Citation(s) in RCA: 352] [Impact Index Per Article: 117.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022] Open
Abstract
Virus-like particles (VLPs) are virus-derived structures made up of one or more different molecules with the ability to self-assemble, mimicking the form and size of a virus particle but lacking the genetic material so they are not capable of infecting the host cell. Expression and self-assembly of the viral structural proteins can take place in various living or cell-free expression systems after which the viral structures can be assembled and reconstructed. VLPs are gaining in popularity in the field of preventive medicine and to date, a wide range of VLP-based candidate vaccines have been developed for immunization against various infectious agents, the latest of which is the vaccine against SARS-CoV-2, the efficacy of which is being evaluated. VLPs are highly immunogenic and are able to elicit both the antibody- and cell-mediated immune responses by pathways different from those elicited by conventional inactivated viral vaccines. However, there are still many challenges to this surface display system that need to be addressed in the future. VLPs that are classified as subunit vaccines are subdivided into enveloped and non- enveloped subtypes both of which are discussed in this review article. VLPs have also recently received attention for their successful applications in targeted drug delivery and for use in gene therapy. The development of more effective and targeted forms of VLP by modification of the surface of the particles in such a way that they can be introduced into specific cells or tissues or increase their half-life in the host is likely to expand their use in the future. Recent advances in the production and fabrication of VLPs including the exploration of different types of expression systems for their development, as well as their applications as vaccines in the prevention of infectious diseases and cancers resulting from their interaction with, and mechanism of activation of, the humoral and cellular immune systems are discussed in this review.
Collapse
Affiliation(s)
- Saghi Nooraei
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Howra Bahrulolum
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Zakieh Sadat Hoseini
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran
| | - Camellia Katalani
- Sari Agriculture Science and Natural Resource University (SANRU), Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari, Iran
| | - Abbas Hajizade
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Andrew J Easton
- School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, UK.
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P. O. BOX: 14155-6343, Tehran, 1497716316, Iran.
| |
Collapse
|
45
|
Thuenemann EC, Le DHT, Lomonossoff GP, Steinmetz NF. Bluetongue Virus Particles as Nanoreactors for Enzyme Delivery and Cancer Therapy. Mol Pharm 2021; 18:1150-1156. [PMID: 33566625 DOI: 10.1021/acs.molpharmaceut.0c01053] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The side effects of chemotherapy can be reduced by targeting tumor cells with an enzyme (or the corresponding gene) that converts a nontoxic prodrug into a toxic drug inside the tumor cells, also killing the surrounding tumor cells via the bystander effect. Viruses are the most efficient gene delivery vehicles because they have evolved to transfer their own nucleic acids into cells, but their efficiency must be balanced against the risks of infection, the immunogenicity of nucleic acids, and the potential for genomic integration. We therefore tested the effectiveness of genome-free virus-like particles (VLPs) for the delivery of Herpes simplex virus 1 thymidine kinase (HSV1-TK), the most common enzyme used in prodrug conversion therapy. HSV1-TK is typically delivered as a gene, but in the context of VLPs, it must be delivered as a protein. We constructed VLPs and smaller core-like particles (CLPs) based on Bluetongue virus, with HSV1-TK fused to the inner capsid protein VP3. TK-CLPs and TK-VLPs could be produced in large quantities in plants. The TK-VLPs killed human glioblastoma cells efficiently in the presence of ganciclovir, with an IC50 value of 14.8 μM. Conversely, CLPs were ineffective because they remained trapped in the endosomal compartment, in common with many synthetic nanoparticles. VLPs are advantageous because they can escape from endosomes and therefore allow HSV1-TK to access the cytosolic adenosine triphosphate (ATP) required for the phosphorylation of ganciclovir. The VLP delivery strategy of TK protein therefore offers a promising new modality for the treatment of cancer with systemic prodrugs such as ganciclovir.
Collapse
Affiliation(s)
- Eva C Thuenemann
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, NR4 7UH Colney, United Kingdom
| | - Duc H T Le
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States.,Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513 (STO 3.25), 5600 MB Eindhoven, The Netherlands.,Department of Biochemistry, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - George P Lomonossoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, NR4 7UH Colney, United Kingdom
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
46
|
Batty CJ, Heise MT, Bachelder EM, Ainslie KM. Vaccine formulations in clinical development for the prevention of severe acute respiratory syndrome coronavirus 2 infection. Adv Drug Deliv Rev 2021; 169:168-189. [PMID: 33316346 PMCID: PMC7733686 DOI: 10.1016/j.addr.2020.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an unprecedented effort toward the development of an effective and safe vaccine. Aided by extensive research efforts into characterizing and developing countermeasures towards prior coronavirus epidemics, as well as recent developments of diverse vaccine platform technologies, hundreds of vaccine candidates using dozens of delivery vehicles and routes have been proposed and evaluated preclinically. A high demand coupled with massive effort from researchers has led to the advancement of at least 31 candidate vaccines in clinical trials, many using platforms that have never before been approved for use in humans. This review will address the approach and requirements for a successful vaccine against SARS-CoV-2, the background of the myriad of vaccine platforms currently in clinical trials for COVID-19 prevention, and a summary of the present results of those trials. It concludes with a perspective on formulation problems which remain to be addressed in COVID-19 vaccine development and antigens or adjuvants which may be worth further investigation.
Collapse
Affiliation(s)
- Cole J Batty
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Mark T Heise
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA; Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
47
|
Nakahira Y, Mizuno K, Yamashita H, Tsuchikura M, Takeuchi K, Shiina T, Kawakami H. Mass Production of Virus-Like Particles Using Chloroplast Genetic Engineering for Highly Immunogenic Oral Vaccine Against Fish Disease. FRONTIERS IN PLANT SCIENCE 2021; 12:717952. [PMID: 34497627 PMCID: PMC8419230 DOI: 10.3389/fpls.2021.717952] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/12/2021] [Indexed: 05/13/2023]
Abstract
Nervous necrosis virus (NNV) is the causative agent of viral nervous necrosis (VNN), which is one of the most serious fish diseases leading to mass mortality in a wide range of fish species worldwide. Although a few injectable inactivated vaccines are commercially available, there is a need for more labor-saving, cost-effective, and fish-friendly immunization methods. The use of transgenic plants expressing pathogen-derived recombinant antigens as edible vaccines is an ideal way to meet these requirements. In this study, chloroplast genetic engineering was successfully utilized to overexpress the red-spotted grouper NNV capsid protein (RGNNV-CP). The RGNNV-CP accumulated at high levels in all young, mature, and old senescent leaves of transplastomic tobacco plants (averaging approximately 3 mg/g leaf fresh weight). The RGNNV-CP efficiently self-assembled into virus-like particles (RGNNV-VLPs) in the chloroplast stroma of the transgenic lines, which could be readily observed by in situ transmission electron microscopy. Furthermore, intraperitoneal injection and oral administration of the crudely purified protein extract containing chloroplast-derived RGNNV-VLPs provided the sevenband grouper fish with sufficient protection against RGNNV challenge, and its immunogenicity was comparable to that of a commercial injectable vaccine. These findings indicate that chloroplast-derived VLP vaccines may play a promising role in the prevention of various diseases, not only in fish but also in other animals, including humans.
Collapse
Affiliation(s)
- Yoichi Nakahira
- College of Agriculture, Ibaraki University, Ami, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
- *Correspondence: Yoichi Nakahira,
| | | | | | | | - Kaoru Takeuchi
- Laboratory of Environmental Microbiology, Division of Basic Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takashi Shiina
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Japan
| | | |
Collapse
|
48
|
Lico C, Santi L, Baschieri S, Noris E, Marusic C, Donini M, Pedrazzini E, Maga G, Franconi R, Di Bonito P, Avesani L. Plant Molecular Farming as a Strategy Against COVID-19 - The Italian Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:609910. [PMID: 33381140 PMCID: PMC7768017 DOI: 10.3389/fpls.2020.609910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/13/2020] [Indexed: 05/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed more than 37,000 people in Italy and has caused widespread socioeconomic disruption. Urgent measures are needed to contain and control the virus, particularly diagnostic kits for detection and surveillance, therapeutics to reduce mortality among the severely affected, and vaccines to protect the remaining population. Here we discuss the potential role of plant molecular farming in the rapid and scalable supply of protein antigens as reagents and vaccine candidates, antibodies for virus detection and passive immunotherapy, other therapeutic proteins, and virus-like particles as novel vaccine platforms. We calculate the amount of infrastructure and production capacity needed to deal with predictable subsequent waves of COVID-19 in Italy by pooling expertise in plant molecular farming, epidemiology and the Italian health system. We calculate the investment required in molecular farming infrastructure that would enable us to capitalize on this technology, and provide a roadmap for the development of diagnostic reagents and biopharmaceuticals using molecular farming in plants to complement production methods based on the cultivation of microbes and mammalian cells.
Collapse
Affiliation(s)
- Chiara Lico
- Laboratory of Biotechnology, Biotechnologies and Agroindustry Division, Department of Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Luca Santi
- Department of Agriculture and Forest Science, Tuscia University, Viterbo, Italy
| | - Selene Baschieri
- Laboratory of Biotechnology, Biotechnologies and Agroindustry Division, Department of Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council IPSP-CNR, Turin, Italy
| | - Carla Marusic
- Laboratory of Biotechnology, Biotechnologies and Agroindustry Division, Department of Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Marcello Donini
- Laboratory of Biotechnology, Biotechnologies and Agroindustry Division, Department of Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Emanuela Pedrazzini
- Institute for Sustainable Plant Protection, National Research Council IBBA-CNR, Turin, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza,”Pavia, Italy
| | - Rosella Franconi
- Laboratory of Biomedical Technologies, Health Technologies Division, Department of Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Paola Di Bonito
- Department of Infectious Diseases, Viral Hepatitis, Oncoviruses and Retroviruses (EVOR) Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Linda Avesani
- Department of Biotechnology, University of Verona, Verona, Italy
| |
Collapse
|
49
|
Naupu PN, van Zyl AR, Rybicki EP, Hitzeroth II. Immunogenicity of Plant-Produced Human Papillomavirus (HPV) Virus-Like Particles (VLPs). Vaccines (Basel) 2020; 8:vaccines8040740. [PMID: 33291259 PMCID: PMC7762164 DOI: 10.3390/vaccines8040740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/16/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Cervical cancer is ranked fourth among the top cancers in women and is the second most common cancer in low- and middle-income regions, with ~570,000 new cases reported in 2018, which attributed to 84% of worldwide cervical cancer cases. Three commercially available prophylactic Human papillomavirus (HPV) vaccines are effective at preventing HPV infections. However, these vaccines are expensive due to their complex production systems, therefore limiting their use in developing countries. Recently, the use of plants to produce vaccines has emerged as a cost-effective alternative to conventionally used expression systems. Here, L1 proteins of eight high-risk (HPV 16, 18, 31, 33, 35, 45, 52, and 58) and two low risk (HPV 6 and 34) HPV types were successfully expressed in Nicotiana benthamiana, and transmission electron microscopy (TEM) analysis showed the presence of VLPs and/or capsomeres. Immunogenicity studies were conducted in mice utilizing HPV 35, 52, and 58 and showed that type-specific L1-specific antibodies were produced which were able to successfully neutralize homologous HPV pseudovirions in pseudovirion-based neutralization assays (PBNAs). This work demonstrated the potential for using plant-based transient expression systems to produce affordable and immunogenic HPV vaccines, particularly for developing countries.
Collapse
Affiliation(s)
- Paulina N. Naupu
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa; (P.N.N.); (E.P.R.); (I.I.H.)
| | - Albertha R. van Zyl
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa; (P.N.N.); (E.P.R.); (I.I.H.)
- Correspondence: ; Tel.: +27-21-650-5232
| | - Edward P. Rybicki
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa; (P.N.N.); (E.P.R.); (I.I.H.)
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Inga I. Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa; (P.N.N.); (E.P.R.); (I.I.H.)
| |
Collapse
|
50
|
Shahgolzari M, Pazhouhandeh M, Milani M, Yari Khosroushahi A, Fiering S. Plant viral nanoparticles for packaging and in vivo delivery of bioactive cargos. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1629. [PMID: 32249552 DOI: 10.1002/wnan.1629] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 01/15/2023]
Abstract
Nanoparticles have unique capabilities and considerable promise for many different biological uses. One capability is delivering bioactive cargos to specific cells, tissues, or organisms. Depending on the task, there are multiple variables to consider including nanoparticle selection, targeting strategies, and incorporating cargo so it can be delivered in a biologically active form. One nanoparticle option, genetically controlled plant viral nanoparticles (PVNPs), is highly uniform within a given virus but quite variable between viruses with a broad range of useful properties. PVNPs are flexible and versatile tools for incorporating and delivering a wide range of small or large molecule cargos. Furthermore, PVNPs can be modified to create nanostructures that can solve problems in medical, environmental, and basic research. This review discusses the currently available techniques for delivering bioactive cargos with PVNPs and potential cargos that can be delivered with these strategies. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Mehdi Shahgolzari
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maghsoud Pazhouhandeh
- Biotechnology Department, Agricultural Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Morteza Milani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Steven Fiering
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| |
Collapse
|