1
|
Noffel Z, Dobrovolny HM. Modeling the bystander effect during viral coinfection. J Theor Biol 2024; 594:111928. [PMID: 39168369 DOI: 10.1016/j.jtbi.2024.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Viral coinfections are responsible for a significant portion of cases of patients hospitalized with influenza-like illness. As our awareness of viral coinfections has increased, researchers have started to experimentally examine some of the virus-virus interactions underlying these infections. One mechanism of interaction between viruses is through the innate immune response. This seems to occur primarily through the interferon response, which generates an antiviral state in nearby uninfected cells, a phenomenon know as the bystander effect. Here, we develop a mathematical model of two viruses interacting through the bystander effect. We find that when the rate of removal of cells to the protected state is high, growth of the first virus is suppressed, while the second virus enjoys sole access to the protected cells, enhancing its growth. Conversely, growth of the second virus can be fully suppressed if its ability to infect the protected cells is limited.
Collapse
Affiliation(s)
- Zakarya Noffel
- University of Texas at Austin, Department of Computer Science, Asutin, TX, United States
| | - Hana M Dobrovolny
- Texas Christian University, Department of Physics & Astronomy, Fort Worth, 76129, TX, United States.
| |
Collapse
|
2
|
Collins C, Chaumont L, Peruzzi M, Jamak N, Boudinot P, Béjar J, Moreno P, Álvarez Torres D, Collet B. Effect of a loss of the mda5/ifih1 gene on the antiviral resistance in a Chinook salmon Oncorhynchus tshawytscha cell line. PLoS One 2024; 19:e0311283. [PMID: 39401233 PMCID: PMC11472919 DOI: 10.1371/journal.pone.0311283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/17/2024] [Indexed: 10/17/2024] Open
Abstract
Cells are equipped with intracellular RIG-like Receptors (RLRs) detecting double stranded (ds)RNA, a molecule with Pathogen-Associated Molecular Pattern (PAMPs) generated during the life cycle of many viruses. Melanoma Differentiation-Associated protein 5 (MDA5), a helicase enzyme member of the RLRs encoded by the ifih1 gene, binds to long dsRNA molecules during a viral infection and initiates production of type I interferon (IFN1) which orchestrates the antiviral response. In order to understand the contribution of MDA5 to viral resistance in fish cells, we have isolated a clonal Chinook salmon Oncorhynchus tshawytscha epithelial-like cell line invalidated for the ifih1 gene by CRISPR/Cas9 genome editing. We demonstrated that IFN1 induction is impaired in this cell line after infection with the Snakehead Rhabdovirus (SHRV), the Salmon Alphavirus (SAV) or Nervous Necrosis Virus (NNV). The cell line, however, did not show any increase in cytopathic effect when infected with SHRV or SAV. Similarly, no cytopathic effect was observed in the ifih1-/- cell line when infected with Infectious Pancreatic Necrosis Virus (IPNV), Infectious Haemorrhagic Necrotic Virus (IHNV). These results indicate the redundancy of the antiviral innate defence system in CHSE-derived cells, which helps with circumventing viral evasion strategies.
Collapse
Affiliation(s)
- Catherine Collins
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Lise Chaumont
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Mathilde Peruzzi
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nedim Jamak
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | - Pierre Boudinot
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | | | - Bertrand Collet
- INRAE, UVSQ, VIM, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
3
|
Malik AE, Slauenwhite D, McAlpine SM, Hanly JG, Marshall JS, Dérfalvi B, Issekutz TB. Differential type I and type III interferon expression profiles in rheumatoid and juvenile idiopathic arthritis. Front Med (Lausanne) 2024; 11:1466397. [PMID: 39399119 PMCID: PMC11468860 DOI: 10.3389/fmed.2024.1466397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Background The role of type I and type III interferons (IFNs) in rheumatoid arthritis (RA) and juvenile idiopathic arthritis (JIA) is still poorly understood. The objective of this study was to examine the hypothesis that IFN expression profiles in the peripheral blood differ between subsets of arthritic subjects. Multiple type I and type III IFNs were examined in patients with RA and JIA, as well as among subtypes of JIA. Methods Treatment-naïve RA and JIA patients were enrolled. Droplet digital PCR was used to measure the expression of type I, II, and III interferons in blood and synovial fluid leukocytes. Dendritic cell subsets were isolated from synovial fluid to examine IFN expression in each subset. Additionally, synovial mononuclear cells and JIA-derived fibroblast-like synoviocytes were stimulated with TNF, IFNγ, and poly(I:C) to examine inducible IFN expression. Results The predominant type I IFN gene expressed by blood leukocytes was IFNκ and was significantly lower in RA than JIA and controls. Oligoarticular and psoriatic JIA subgroups showed higher IFNκ expression compared to polyarticular JIA and RA. JIA synovial fluid leukocytes expressed abundant IFNγ and type III IFNs (IFNλ1, IFNλ3), with distinct dendritic cell subset contributions. JIA fibroblast-like synoviocytes produced IFNβ, IFNλ1, and IFNλ2 mRNA upon poly(I:C) stimulation. Conclusion This study revealed differences in IFN expression patterns in RA and JIA, with notable differences between JIA subtypes. The expression levels of IFNκ, IFNγ, IFNλ1 and IFNλ3 in JIA suggest specific roles in disease pathology, influenced by disease subtype and joint microenvironment. This study contributes to understanding IFN-mediated mechanisms in arthritis, potentially guiding targeted therapeutic strategies.
Collapse
Affiliation(s)
- Anikó E. Malik
- IWK Health Centre, Halifax, NS, Canada
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Drew Slauenwhite
- IWK Health Centre, Halifax, NS, Canada
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Sarah M. McAlpine
- IWK Health Centre, Halifax, NS, Canada
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - John G. Hanly
- Division of Rheumatology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada
| | - Jean S. Marshall
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Beáta Dérfalvi
- IWK Health Centre, Halifax, NS, Canada
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Thomas B. Issekutz
- IWK Health Centre, Halifax, NS, Canada
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
4
|
Abacar K, Macleod T, Direskeneli H, McGonagle D. How underappreciated autoinflammatory (innate immunity) mechanisms dominate disparate autoimmune disorders. Front Immunol 2024; 15:1439371. [PMID: 39372419 PMCID: PMC11449752 DOI: 10.3389/fimmu.2024.1439371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Historically inflammation against self was considered autoimmune which stems back to the seminal observations by Ehrlich who described serum factors, now known to be autoantibodies produced by B lineage cells that mediate "horror autotoxicus". The 20th century elucidation of B- and T-cell adaptive immune responses cemented the understanding of the key role of adaptive immune responses in mediating pathology against self. However, Mechnikov shared the Nobel Prize for the discovery of phagocytosis, the most rudimentary aspect of innate immunity. Fast forward some 100 years and an immunogenetic understanding of innate immunity led to the categorising of innate immunopathology under the umbrella term 'auto inflammation' and terminology such as "horror autoinflammaticus" to highlight the schism from the classical adaptive immune understanding of autoimmunity. These concepts lead to calls for a two-tiered classification of inflammation against self, but just as innate and adaptive immunity are functionally integrated, so is immunopathology in many settings and the concept of an autoimmune to autoinflammation continuum emerged with overlaps between both. Herein we describe several historically designated disorders of adaptive immunity where innate immunity is key, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic juvenile idiopathic arthritis (sJIA) and adult-onset Still's disease (AOSD) where the immunopathology phenotype is strongly linked to major histocompatibility complex (MHC) class II associations and responds to drugs that target T-cells. We also consider MHC-I-opathies including psoriasis and Behcet's disease(BD) that are increasingly viewed as archetype CD8 T-cell related disorders. We also briefly review the key role of barrier dysfunction in eczema and ulcerative colitis (UC) where innate tissue permeability barrier dysfunction and microbial dysbiosis contributes to prominent adaptive immune pathological mechanisms. We also highlight the emerging roles of intermediate populations of lymphocytes including gamma delta (γδ) and mucosal-associated invariant T (MAIT) cells that represent a blend of adaptive immune plasticity and innate immune rapid responders that may also determine site specific patterns of inflammation.
Collapse
Affiliation(s)
- Kerem Abacar
- Department of Internal Medicine, Division of Rheumatology, Marmara University School of Medicine, Istanbul, Türkiye
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Tom Macleod
- Department of Internal Medicine, Division of Rheumatology, Marmara University School of Medicine, Istanbul, Türkiye
| | - Haner Direskeneli
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Dennis McGonagle
- Department of Internal Medicine, Division of Rheumatology, Marmara University School of Medicine, Istanbul, Türkiye
- National Institute for Health Research, Leeds Biomedical Research Centre, Leeds Teaching Hospitals, Leeds, United Kingdom
| |
Collapse
|
5
|
Lv Y, Qi J, Babon JJ, Cao L, Fan G, Lang J, Zhang J, Mi P, Kobe B, Wang F. The JAK-STAT pathway: from structural biology to cytokine engineering. Signal Transduct Target Ther 2024; 9:221. [PMID: 39169031 PMCID: PMC11339341 DOI: 10.1038/s41392-024-01934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway serves as a paradigm for signal transduction from the extracellular environment to the nucleus. It plays a pivotal role in physiological functions, such as hematopoiesis, immune balance, tissue homeostasis, and surveillance against tumors. Dysregulation of this pathway may lead to various disease conditions such as immune deficiencies, autoimmune diseases, hematologic disorders, and cancer. Due to its critical role in maintaining human health and involvement in disease, extensive studies have been conducted on this pathway, ranging from basic research to medical applications. Advances in the structural biology of this pathway have enabled us to gain insights into how the signaling cascade operates at the molecular level, laying the groundwork for therapeutic development targeting this pathway. Various strategies have been developed to restore its normal function, with promising therapeutic potential. Enhanced comprehension of these molecular mechanisms, combined with advances in protein engineering methodologies, has allowed us to engineer cytokines with tailored properties for targeted therapeutic applications, thereby enhancing their efficiency and safety. In this review, we outline the structural basis that governs key nodes in this pathway, offering a comprehensive overview of the signal transduction process. Furthermore, we explore recent advances in cytokine engineering for therapeutic development in this pathway.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai, 201112, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Faming Wang
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
6
|
Bo M, Manetti R, Biggio ML, Sechi LA. The Humoral Immune Response against Human Endogenous Retroviruses in Celiac Disease: A Case-Control Study. Biomedicines 2024; 12:1811. [PMID: 39200275 PMCID: PMC11351412 DOI: 10.3390/biomedicines12081811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND Celiac disease (CD) is an immune-mediated disease characterized by disruptions of the small intestine. Factors such as viral and bacterial infections can trigger CD. Recently, the reactivation of Human Endogenous Retroviruses (HERVs) has also been implicated, but little is known about their specific role in patients with celiac disease. METHODS The purpose of this study is to explore the humoral immune response mounted against epitopes derived from the envelope portion of three families of HERVs (HERV-K, HERV-H, and HERV-W) in CD patients. Reactivity against the HERV-K, HERV-H, and HERV-W env-su peptides was tested by indirect ELISAs in plasma of 40 patients with celiac disease and 41 age-matched healthy subjects (HCs). RESULTS HERV-K, HERV-H, and HERV-W env-su peptides triggered different antibody responses in CD patients compared to HCs, with a stronger reactivity (p = 0.0001). CONCLUSIONS Present results show, for the first time, that epitopes of HERV-K, HERV-H, and HERV-W are more recognized in patients with CD. Taking into consideration their proinflammatory and autoimmune features, this might suggest that HERVs may contribute to the development of CD or its exacerbation in genetically predisposed subjects. Finally, to elucidate the interplay between gut inflammation and HERVs during the inflammatory process, further studies are required. Those investigations should focus on the expression levels of HERVs and their relationship with the immune response, specifically examining anti-transglutaminase 2 (TG2) antibody levels under both gluten-free and gluten-containing dietary conditions.
Collapse
Affiliation(s)
- Marco Bo
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy;
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy
| | - Roberto Manetti
- Department of Medicine, Surgery and Pharmacology, University of Sassari, 07100 Sassari, Italy; (R.M.)
| | - Maria Luigia Biggio
- Department of Medicine, Surgery and Pharmacology, University of Sassari, 07100 Sassari, Italy; (R.M.)
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy;
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, 07100 Sassari, Italy
| |
Collapse
|
7
|
Deligeorgakis D, Skouvaklidou E, Adamichou C. Interferon Inhibition in SLE: From Bench to Bedside. Mediterr J Rheumatol 2024; 35:354-364. [PMID: 39193183 PMCID: PMC11345605 DOI: 10.31138/mjr.010324.iis] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 05/15/2024] [Indexed: 08/29/2024] Open
Abstract
Despite advances in the management of systemic lupus erythematosus (SLE), it remains a chronic disease with frequent flares, requiring constant medical care, laboratory exams, hospitalisations, and the use of immunosuppressive drugs and corticosteroids, increasing the morbidity and mortality of these patients. The past decade of research has brought to light multiple observations on the role of interferons (IFNs) in the pathogenesis of SLE, which paved the way for the development of potential novel therapies targeting the interferon pathway. Following two phase III trials, anifrolumab, a monoclonal antibody which binds to the type I IFN receptor, blocking the activity of type I IFNs, was approved for active SLE. This review summarises the latest research on the role and mechanisms of type I IFNs in SLE and the development and advances on new therapeutic drugs based on IFN inhibition for SLE.
Collapse
Affiliation(s)
- Dimitrios Deligeorgakis
- Department of Rheumatology, 4th Department of Internal Medicine, Hippokration Hospital, Thessaloniki, Greece
| | - Elpida Skouvaklidou
- Department of Rheumatology, 4th Department of Internal Medicine, Hippokration Hospital, Thessaloniki, Greece
| | - Christina Adamichou
- Department of Rheumatology, 4th Department of Internal Medicine, Hippokration Hospital, Thessaloniki, Greece
| |
Collapse
|
8
|
Abdel-Haq H. Feasibility of Using a Type I IFN-Based Non-Animal Approach to Predict Vaccine Efficacy and Safety Profiles. Vaccines (Basel) 2024; 12:583. [PMID: 38932312 PMCID: PMC11209158 DOI: 10.3390/vaccines12060583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Animal-based tests are used for the control of vaccine quality. However, because highly purified and safe vaccines are now available, alternative approaches that can replace or reduce animal use for the assessment of vaccine outcomes must be established. In vitro tests for vaccine quality control exist and have already been implemented. However, these tests are specifically designed for some next-generation vaccines, and this makes them not readily available for testing other vaccines. Therefore, universal non-animal tests are still needed. Specific signatures of the innate immune response could represent a promising approach to predict the outcome of vaccines by non-animal methods. Type I interferons (IFNs) have multiple immunomodulatory activities, which are exerted through effectors called interferon stimulated genes (ISGs), and are one of the most important immune signatures that might provide potential candidate molecular biomarkers for this purpose. This paper will mainly examine if this idea might be feasible by analyzing all relevant published studies that have provided type I IFN-related biomarkers for evaluating the safety and efficacy profiles of vaccines using an advanced transcriptomic approach as an alternative to the animal methods. Results revealed that such an approach could potentially provide biomarkers predictive of vaccine outcomes after addressing some limitations.
Collapse
Affiliation(s)
- Hanin Abdel-Haq
- Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| |
Collapse
|
9
|
Zannikou M, Fish EN, Platanias LC. Signaling by Type I Interferons in Immune Cells: Disease Consequences. Cancers (Basel) 2024; 16:1600. [PMID: 38672681 PMCID: PMC11049350 DOI: 10.3390/cancers16081600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
This review addresses interferon (IFN) signaling in immune cells and the tumor microenvironment (TME) and examines how this affects cancer progression. The data reveal that IFNs exert dual roles in cancers, dependent on the TME, exhibiting both anti-tumor activity and promoting cancer progression. We discuss the abnormal IFN signaling induced by cancerous cells that alters immune responses to permit their survival and proliferation.
Collapse
Affiliation(s)
- Markella Zannikou
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
| | - Eleanor N. Fish
- Toronto General Hospital Research Institute, University Health Network, 67 College Street, Toronto, ON M5G 2M1, Canada;
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center, Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Ave., Chicago, IL 60612, USA
| |
Collapse
|
10
|
Bobba S, Chauhan KS, Akter S, Das S, Mittal E, Mathema B, Philips JA, Khader SA. A protective role for type I interferon signaling following infection with Mycobacterium tuberculosis carrying the rifampicin drug resistance-conferring RpoB mutation H445Y. PLoS Pathog 2024; 20:e1012137. [PMID: 38603763 PMCID: PMC11037539 DOI: 10.1371/journal.ppat.1012137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 04/23/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Interleukin-1 (IL-1) signaling is essential for controlling virulent Mycobacterium tuberculosis (Mtb) infection since antagonism of this pathway leads to exacerbated pathology and increased susceptibility. In contrast, the triggering of type I interferon (IFN) signaling is associated with the progression of tuberculosis (TB) disease and linked with negative regulation of IL-1 signaling. However, mice lacking IL-1 signaling can control Mtb infection if infected with an Mtb strain carrying the rifampin-resistance conferring mutation H445Y in its RNA polymerase β subunit (rpoB-H445Y Mtb). The mechanisms that govern protection in the absence of IL-1 signaling during rpoB-H445Y Mtb infection are unknown. In this study, we show that in the absence of IL-1 signaling, type I IFN signaling controls rpoB-H445Y Mtb replication, lung pathology, and excessive myeloid cell infiltration. Additionally, type I IFN is produced predominantly by monocytes and recruited macrophages and acts on LysM-expressing cells to drive protection through nitric oxide (NO) production to restrict intracellular rpoB-H445Y Mtb. These findings reveal an unexpected protective role for type I IFN signaling in compensating for deficiencies in IL-1 pathways during rpoB-H445Y Mtb infection.
Collapse
Affiliation(s)
- Suhas Bobba
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kuldeep S. Chauhan
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Sadia Akter
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| | - Shibali Das
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ekansh Mittal
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Barun Mathema
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York, United States of America
| | - Jennifer A. Philips
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Shabaana A. Khader
- Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
11
|
Sanford SAI, Miller LVC, Vaysburd M, Keeling S, Tuck BJ, Clark J, Neumann M, Syanda V, James LC, McEwan WA. The type-I interferon response potentiates seeded tau aggregation and exacerbates tau pathology. Alzheimers Dement 2024; 20:1013-1025. [PMID: 37849026 PMCID: PMC10916982 DOI: 10.1002/alz.13493] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 10/19/2023]
Abstract
INTRODUCTION Signatures of a type-I interferon (IFN-I) response are observed in the post mortem brain in Alzheimer's disease (AD) and other tauopathies. However, the effect of the IFN-I response on pathological tau accumulation remains unclear. METHODS We examined the effects of IFN-I signaling in primary neural culture models of seeded tau aggregation and P301S-tau transgenic mouse models in the context of genetic deletion of the IFN-I receptor (IFNAR). RESULTS Polyinosinic:polycytidylic acid (PolyI:C), a synthetic analog of viral nucleic acids, evoked a potent cytokine response that enhanced seeded aggregation of tau in an IFN-I-dependent manner. IFN-I-induced vulnerability could be pharmacologically prevented and was intrinsic to neurons. Aged P301S-tau mice lacking Ifnar1 had significantly reduced tau pathology compared to mice with intact IFN signaling. DISCUSSION We identify a critical role for IFN-I in potentiating tau aggregation. IFN-I is therefore identified as a potential therapeutic target in AD and other tauopathies. HIGHLIGHTS Type-I IFN (IFN-I) promotes seeded tau aggregation in neural cultures. IFNAR inhibition prevents IFN-I driven sensitivity to tau aggregation. IFN-I driven vulnerability is intrinsic to neurons. Tau pathology is significantly reduced in aged P301S-tau mice lacking IFNAR.
Collapse
Affiliation(s)
- Sophie A. I. Sanford
- UK Dementia Research Institute at the University of CambridgeCambridgeUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Lauren V. C. Miller
- UK Dementia Research Institute at the University of CambridgeCambridgeUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Marina Vaysburd
- Medical Research Council Laboratory of Molecular BiologyFrancis Crick AvenueCambridgeUK
| | - Sophie Keeling
- UK Dementia Research Institute at the University of CambridgeCambridgeUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Benjamin J. Tuck
- UK Dementia Research Institute at the University of CambridgeCambridgeUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Jessica Clark
- Medical Research Council Laboratory of Molecular BiologyFrancis Crick AvenueCambridgeUK
| | - Michal Neumann
- Medical Research Council Laboratory of Molecular BiologyFrancis Crick AvenueCambridgeUK
| | - Victoria Syanda
- Medical Research Council Laboratory of Molecular BiologyFrancis Crick AvenueCambridgeUK
| | - Leo C. James
- Medical Research Council Laboratory of Molecular BiologyFrancis Crick AvenueCambridgeUK
| | - William A. McEwan
- UK Dementia Research Institute at the University of CambridgeCambridgeUK
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
12
|
Toffoli EC, van Vliet AA, Verheul HWM, van der Vliet HJ, Tuynman J, Spanholtz J, de Gruijl TD. Allogeneic NK cells induce monocyte-to-dendritic cell conversion, control tumor growth, and trigger a pro-inflammatory shift in patient-derived cultures of primary and metastatic colorectal cancer. J Immunother Cancer 2023; 11:e007554. [PMID: 38056896 PMCID: PMC10711876 DOI: 10.1136/jitc-2023-007554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/08/2023] Open
Abstract
INTRODUCTION Natural killer (NK) cells are innate lymphocytes with a key role in the defense against tumors. Recently, allogeneic NK cell-based therapies have gained interest because of their ability to directly lyse tumor cells without inducing graft-versus-host disease. As NK cells are also able to influence the function of other immune cells (most notably dendritic cells (DC)), a better understanding of the effects of allogeneic NK cell products on the host immune system is required. In this study, we analyzed the effects of an allogeneic off-the-shelf NK cell product, on the tumor microenvironment (TME) of primary and metastatic colorectal cancer (pCRC and mCRC, respectively). Moreover, we explored if the combination of NK cells with R848, a toll-like receptors 7/8 ligand, could further enhance any pro-inflammatory effects. METHODS Ex vivo expanded umbilical cord blood stem cell derived NK cells were co-cultured with pCRC or mCRC single-cell suspensions in the presence or absence of R848 for 5 days, during and after which flow cytometry and cytokine release profiling were performed. RESULTS NK cells efficiently induced lysis of tumor cells in both pCRC and mCRC single-cell suspensions and thereby controlled growth rates during culture. They also induced differentiation of infiltrating monocytic cells to an activated DC phenotype. Importantly, this NK-mediated myeloid conversion was also apparent in cultures after tumor cell depletion and was further enhanced by combining NK cells with R848. Moreover, NK cells, and to a greater extent, the combination of NK cells and R848, triggered CD8+ and CD4+ T-cell activation as well as a reduction in activated regulatory T cell rates. Finally, the combination of NK cells and R848 induced a pro-inflammatory shift in the cytokine release profile resulting in higher levels of interferon (IFN)-γ, interleukin (IL)-2, IL-12p70, and IFN-α as well as a reduction in IL-6, in both pCRC and mCRC cultures. CONCLUSION Allogeneic NK cells engaged in favorable myeloid crosstalk, displayed effective antitumor activity and, when combined with R848, induced a pro-inflammatory shift of the CRC TME. These findings prompt the investigation of NK cells and R848 as a combination therapy for solid tumors.
Collapse
Affiliation(s)
- Elisa C Toffoli
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Amanda A van Vliet
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Glycostem Therapeutics, Oss, The Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Henk W M Verheul
- Department of Medical Oncology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Hans J van der Vliet
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Lava Therapeutics, Utrecht, The Netherlands
| | - Jurriaan Tuynman
- Department of Surgery, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, The Netherlands
| | | | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| |
Collapse
|
13
|
Mimura S, Fujita K, Takuma K, Nakahara M, Oura K, Tadokoro T, Tani J, Morishita A, Ono M, Himoto T, Masaki T. Predictors of therapeutic response to peginterferon α‑2a and nucleos(t)ide analog combination therapy for HBeAg‑negative chronic hepatitis B: 1‑year follow‑up after treatment. Exp Ther Med 2023; 26:587. [PMID: 38023352 PMCID: PMC10665991 DOI: 10.3892/etm.2023.12286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Chronic hepatitis B (CHB) is a major global health concern. Guidelines for the management of hepatitis B virus (HBV) indicate that the loss of hepatitis B surface antigen (HBsAg) is a key endpoint of interest. The present study aimed to examine long-term changes in HBsAg levels in HBV-DNA-negative, hepatitis B e-antigen (HBeAg)-negative patients treated with peginterferon (Peg-IFN) α-2a and nucleos(t)ide analog (NA), and to examine the conditions that make them susceptible to HBsAg decline. A total of 17 patients with CHB treated with NA and Peg-IFN were observed for 96 weeks (48 weeks of Peg-IFN therapy and 48 weeks of post-treatment follow-up). In this study, responders were defined as those with a 50% or greater decrease in HBsAg levels from baseline at week 96. Beginning at week 16 of Peg-IFN therapy, there was a significant difference in the decrease in HBsAg levels from baseline between the responders and non-responders. In responders, HBsAg levels tended to be >60% lower 16 weeks after Peg-IFN initiation than before initiation. Age at the start of NA use and the duration of NA use before Peg-IFN treatment initiation were significant pretreatment factors associated with HBsAg response. In conclusion, Peg-IFN was revealed to be more effective in HBeAg-negative patients with CHB who started NA at a young age and have been on long-term treatment, particularly if the HBsAg levels decreased to less than 60% of the starting level at week 16 after starting Peg-IFN treatment.
Collapse
Affiliation(s)
- Shima Mimura
- Department of Gastroenterology and Neurology, Kagawa University Hospital, Kita, Kagawa 761-0793, Japan
| | - Koji Fujita
- Department of Gastroenterology and Neurology, Kagawa University Hospital, Kita, Kagawa 761-0793, Japan
| | - Kei Takuma
- Department of Gastroenterology and Neurology, Kagawa University Hospital, Kita, Kagawa 761-0793, Japan
| | - Mai Nakahara
- Department of Gastroenterology and Neurology, Kagawa University Hospital, Kita, Kagawa 761-0793, Japan
| | - Kyoko Oura
- Department of Gastroenterology and Neurology, Kagawa University Hospital, Kita, Kagawa 761-0793, Japan
| | - Tomoko Tadokoro
- Department of Gastroenterology and Neurology, Kagawa University Hospital, Kita, Kagawa 761-0793, Japan
| | - Joji Tani
- Department of Gastroenterology and Neurology, Kagawa University Hospital, Kita, Kagawa 761-0793, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University Hospital, Kita, Kagawa 761-0793, Japan
| | - Masafumi Ono
- Department of Gastroenterology and Neurology, Kagawa University Hospital, Kita, Kagawa 761-0793, Japan
| | - Takashi Himoto
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu, Kagawa 761-0123, Japan
| | - Tsutomu Masaki
- Department of Gastroenterology and Neurology, Kagawa University Hospital, Kita, Kagawa 761-0793, Japan
| |
Collapse
|
14
|
Wang H, Zhang J. The glucose metabolic reprogramming in hepatitis B virus infection and hepatitis B virus associated diseases. J Gastroenterol Hepatol 2023; 38:1886-1891. [PMID: 37654246 DOI: 10.1111/jgh.16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 09/02/2023]
Abstract
Hepatitis B virus (HBV) infection is closely related to viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. HBV infection can reprogram metabolism processes of the host cells including glucose metabolism. The aberrant glucose metabolism may aid in viral infection and immune escape and may contribute to liver associated pathology. In this review, we discussed the interplay between HBV infection and glucose metabolism, which may provide new insights into HBV infection and pathology, novel intervention targets for HBV-related diseases.
Collapse
Affiliation(s)
- Hangle Wang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Peking University Health Science Center, Beijing, China
| |
Collapse
|
15
|
Noval MG, Spector SN, Bartnicki E, Izzo F, Narula N, Yeung ST, Damani-Yokota P, Dewan MZ, Mezzano V, Rodriguez-Rodriguez BA, Loomis C, Khanna KM, Stapleford KA. MAVS signaling is required for preventing persistent chikungunya heart infection and chronic vascular tissue inflammation. Nat Commun 2023; 14:4668. [PMID: 37537212 PMCID: PMC10400619 DOI: 10.1038/s41467-023-40047-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Chikungunya virus (CHIKV) infection has been associated with severe cardiac manifestations, yet, how CHIKV infection leads to heart disease remains unknown. Here, we leveraged both mouse models and human primary cardiac cells to define the mechanisms of CHIKV heart infection. Using an immunocompetent mouse model of CHIKV infection as well as human primary cardiac cells, we demonstrate that CHIKV directly infects and actively replicates in cardiac fibroblasts. In immunocompetent mice, CHIKV is cleared from cardiac tissue without significant damage through the induction of a local type I interferon response from both infected and non-infected cardiac cells. Using mice deficient in major innate immunity signaling components, we found that signaling through the mitochondrial antiviral-signaling protein (MAVS) is required for viral clearance from the heart. In the absence of MAVS signaling, persistent infection leads to focal myocarditis and vasculitis of the large vessels attached to the base of the heart. Large vessel vasculitis was observed for up to 60 days post infection, suggesting CHIKV can lead to vascular inflammation and potential long-lasting cardiovascular complications. This study provides a model of CHIKV cardiac infection and mechanistic insight into CHIKV-induced heart disease, underscoring the importance of monitoring cardiac function in patients with CHIKV infections.
Collapse
Affiliation(s)
- Maria G Noval
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Sophie N Spector
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Eric Bartnicki
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Franco Izzo
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Navneet Narula
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Stephen T Yeung
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Payal Damani-Yokota
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - M Zahidunnabi Dewan
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Valeria Mezzano
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Cynthia Loomis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
- Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY, USA
| | - Kamal M Khanna
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Kenneth A Stapleford
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
16
|
Masenga SK, Mweene BC, Luwaya E, Muchaili L, Chona M, Kirabo A. HIV-Host Cell Interactions. Cells 2023; 12:1351. [PMID: 37408185 DOI: 10.3390/cells12101351] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The development of antiretroviral drugs (ARVs) was a great milestone in the management of HIV infection. ARVs suppress viral activity in the host cell, thus minimizing injury to the cells and prolonging life. However, an effective treatment has remained elusive for four decades due to the successful immune evasion mechanisms of the virus. A thorough understanding of the molecular interaction of HIV with the host cell is essential in the development of both preventive and curative therapies for HIV infection. This review highlights several inherent mechanisms of HIV that promote its survival and propagation, such as the targeting of CD4+ lymphocytes, the downregulation of MHC class I and II, antigenic variation and an envelope complex that minimizes antibody access, and how they collaboratively render the immune system unable to mount an effective response.
Collapse
Affiliation(s)
- Sepiso K Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
- Vanderbilt University Medical Center, Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Bislom C Mweene
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Emmanuel Luwaya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Lweendo Muchaili
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Makondo Chona
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Annet Kirabo
- Vanderbilt University Medical Center, Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| |
Collapse
|
17
|
Wang P, Xu Y, Liu M, Li H, Wang H, Liu Y, Wang B, Xia S, Su H, Wei M, Tao L, Chen X, Lu B, Gu X, Lyu H, Zhou W, Zhang H, Gong S. Risk factors and early markers for echovirus type 11 associated haemorrhage-hepatitis syndrome in neonates, a retrospective cohort study. Front Pediatr 2023; 11:1063558. [PMID: 37090924 PMCID: PMC10117901 DOI: 10.3389/fped.2023.1063558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/14/2023] [Indexed: 04/25/2023] Open
Abstract
Background Echovirus type 11(E-11) can cause fatal haemorrhage-hepatitis syndrome in neonates. This study aims to investigate clinical risk factors and early markers of E-11 associated neonatal haemorrhage-hepatitis syndrome. Methods This is a multicentre retrospective cohort study of 105 neonates with E-11 infection in China. Patients with haemorrhage-hepatitis syndrome (the severe group) were compared with those with mild disease. Clinical risk factors and early markers of haemorrhage-hepatitis syndrome were analysed. In addition, cytokine analysis were performed in selective patients to explore the immune responses. Results In addition to prematurity, low birth weight, premature rupture of fetal membrane, total parenteral nutrition (PN) (OR, 28.7; 95% CI, 2.8-295.1) and partial PN (OR, 12.9; 95% CI, 2.2-77.5) prior to the onset of disease were identified as risk factors of developing haemorrhage-hepatitis syndrome. Progressive decrease in haemoglobin levels (per 10 g/L; OR, 1.5; 95% CI, 1.1-2.0) and platelet (PLT) < 140 × 10⁹/L at early stage of illness (OR, 17.7; 95% CI, 1.4-221.5) were associated with the development of haemorrhage-hepatitis syndrome. Immunological workup revealed significantly increased interferon-inducible protein-10(IP-10) (P < 0.0005) but decreased IFN-α (P < 0.05) in peripheral blood in severe patients compared with the mild cases. Conclusions PN may potentiate the development of E-11 associated haemorrhage-hepatitis syndrome. Early onset of thrombocytopenia and decreased haemoglobin could be helpful in early identification of neonates with the disease. The low level of IFN-α and elevated expression of IP-10 may promote the progression of haemorrhage-hepatitis syndrome.
Collapse
Affiliation(s)
- Ping Wang
- Division of Neonatology and Center for Newborn Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yi Xu
- Division of Infectious Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ming Liu
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huixian Li
- Data Center, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Hui Wang
- Division of Neonatology, Tongji Medical College, Maternal and Child Health Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, China
| | - Yumei Liu
- Division of Neonatology, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Bin Wang
- Division of Neonatology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Shiwen Xia
- Division of Neonatology, Tongji Medical College, Maternal and Child Health Hospital of Hubei Province, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Su
- Division of Neonatology and Center for Newborn Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mou Wei
- Division of Neonatology and Center for Newborn Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Tao
- Division of Neonatology and Center for Newborn Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Chen
- Division of Neonatology and Center for Newborn Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bingtai Lu
- Medical Research Center of Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaoqiong Gu
- Department of Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hui Lyu
- Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Zhou
- Division of Neonatology and Center for Newborn Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huayan Zhang
- Division of Neonatology and Center for Newborn Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
- Division of Neonatology, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, United States
| | - Sitang Gong
- Division of Gestroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
18
|
Qudus MS, Tian M, Sirajuddin S, Liu S, Afaq U, Wali M, Liu J, Pan P, Luo Z, Zhang Q, Yang G, Wan P, Li Y, Wu J. The roles of critical pro-inflammatory cytokines in the drive of cytokine storm during SARS-CoV-2 infection. J Med Virol 2023; 95:e28751. [PMID: 37185833 DOI: 10.1002/jmv.28751] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023]
Abstract
In patients with severe COVID-19, acute respiratory distress syndrome (ARDS), multiple organ dysfunction syndrome (MODS), and even mortality can result from cytokine storm, which is a hyperinflammatory medical condition caused by the excessive and uncontrolled release of pro-inflammatory cytokines. High levels of numerous crucial pro-inflammatory cytokines, such as interleukin-1 (IL-1), IL-2, IL-6, tumor necrosis factor-α, interferon (IFN)-γ, IFN-induced protein 10 kDa, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein-1, and IL-10 and so on, have been found in severe COVID-19. They participate in cascade amplification pathways of pro-inflammatory responses through complex inflammatory networks. Here, we review the involvements of these critical inflammatory cytokines in SARS-CoV-2 infection and discuss their potential roles in triggering or regulating cytokine storm, which can help to understand the pathogenesis of severe COVID-19. So far, there is rarely effective therapeutic strategy for patients with cytokine storm besides using glucocorticoids, which is proved to result in fatal side effects. Clarifying the roles of key involved cytokines in the complex inflammatory network of cytokine storm will help to develop an ideal therapeutic intervention, such as neutralizing antibody of certain cytokine or inhibitor of some inflammatory signal pathways.
Collapse
Affiliation(s)
- Muhammad Suhaib Qudus
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mingfu Tian
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Summan Sirajuddin
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Uzair Afaq
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Muneeba Wali
- Department of Allied Health Sciences, CECOS University of IT and Emerging Sciences, Peshawar, Pakistan
| | - Jinbiao Liu
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Pan Pan
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Zhen Luo
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Qiwei Zhang
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Ge Yang
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Pin Wan
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Yongkui Li
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- Foshan Institute of Medical Microbiology, Foshan, China
| |
Collapse
|
19
|
Waad Sadiq Z, Brioli A, Al-Abdulla R, Çetin G, Schütt J, Murua Escobar H, Krüger E, Ebstein F. Immunogenic cell death triggered by impaired deubiquitination in multiple myeloma relies on dysregulated type I interferon signaling. Front Immunol 2023; 14:982720. [PMID: 36936919 PMCID: PMC10018035 DOI: 10.3389/fimmu.2023.982720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Proteasome inhibition is first line therapy in multiple myeloma (MM). The immunological potential of cell death triggered by defects of the ubiquitin-proteasome system (UPS) and subsequent perturbations of protein homeostasis is, however, less well defined. Methods In this paper, we applied the protein homeostasis disruptors bortezomib (BTZ), ONX0914, RA190 and PR619 to various MM cell lines and primary patient samples to investigate their ability to induce immunogenic cell death (ICD). Results Our data show that while BTZ treatment triggers sterile type I interferon (IFN) responses, exposure of the cells to ONX0914 or RA190 was mostly immunologically silent. Interestingly, inhibition of protein de-ubiquitination by PR619 was associated with the acquisition of a strong type I IFN gene signature which relied on key components of the unfolded protein and integrated stress responses including inositol-requiring enzyme 1 (IRE1), protein kinase R (PKR) and general control nonderepressible 2 (GCN2). The immunological relevance of blocking de-ubiquitination in MM was further reflected by the ability of PR619-induced apoptotic cells to facilitate dendritic cell (DC) maturation via type I IFN-dependent mechanisms. Conclusion Altogether, our findings identify de-ubiquitination inhibition as a promising strategy for inducing ICD of MM to expand current available treatments.
Collapse
Affiliation(s)
- Zeinab Waad Sadiq
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Annamaria Brioli
- Klinik und Poliklinik für Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Ruba Al-Abdulla
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Gonca Çetin
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Jacqueline Schütt
- Klinik und Poliklinik für Innere Medizin C, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Hugo Murua Escobar
- Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, Rostock University Medical Center, Rostock, Germany
| | - Elke Krüger
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| | - Frédéric Ebstein
- Institut für Medizinische Biochemie und Molekularbiologie (IMBM), Universitätsmedizin Greifswald, Greifswald, Germany
| |
Collapse
|
20
|
Boeren M, Meysman P, Laukens K, Ponsaerts P, Ogunjimi B, Delputte P. T cell immunity in HSV-1- and VZV-infected neural ganglia. Trends Microbiol 2023; 31:51-61. [PMID: 35987880 DOI: 10.1016/j.tim.2022.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
Herpesviruses hijack the MHC class I (MHC I) and class II (MHC II) antigen-presentation pathways to manipulate immune recognition by T cells. First, we illustrate herpes simplex virus-1 (HSV-1) and varicella-zoster virus (VZV) MHC immune evasion strategies. Next, we describe MHC-T cell interactions in HSV-1- and VZV- infected neural ganglia. Although studies on the topic are scarce, and use different models, most reports indicate that neuronal HSV-1 infection is mainly controlled by CD8+ T cells through noncytolytic mechanisms, whereas VZV seems to be largely controlled through CD4+ T cell-specific immune responses. Autologous human stem-cell-derived in vitro models could substantially aid in elucidating these neuroimmune interactions and are fit for studies on both herpesviruses.
Collapse
Affiliation(s)
- Marlies Boeren
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium; Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Pieter Meysman
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), Antwerp, Belgium; Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium; Biomedical Informatics Research Network Antwerp (biomina), University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), Antwerp, Belgium; Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium; Biomedical Informatics Research Network Antwerp (biomina), University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium
| | - Benson Ogunjimi
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium; Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), Antwerp, Belgium; Centre for Health Economics Research & Modeling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Antwerp, Belgium; Department of Paediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium; Infla-med, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
21
|
Aristotelous AC, Chen A, Forest MG. A hybrid discrete-continuum model of immune responses to SARS-CoV-2 infection in the lung alveolar region, with a focus on interferon induced innate response. J Theor Biol 2022; 555:111293. [PMID: 36208668 PMCID: PMC9533651 DOI: 10.1016/j.jtbi.2022.111293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 01/14/2023]
Abstract
We develop a lattice-based, hybrid discrete-continuum modeling framework for SARS-CoV-2 exposure and infection in the human lung alveolar region, or parenchyma, the massive surface area for gas exchange. COVID-19 pneumonia is alveolar infection by the SARS-CoV-2 virus significant enough to compromise gas exchange. The modeling framework orchestrates the onset and progression of alveolar infection, spatially and temporally, beginning with a pre-immunity baseline, upon which we superimpose multiple mechanisms of immune protection conveyed by interferons and antibodies. The modeling framework is tunable to individual profiles, focusing here on degrees of innate immunity, and to the evolving infection-replication properties of SARS-CoV-2 variant strains. The model employs partial differential equations for virion, interferon, and antibody concentrations governed by diffusion in the thin fluid coating of alveolar cells, species and lattice interactions corresponding to sources and sinks for each species, and multiple immune protections signaled by interferons. The spatial domain is a two-dimensional, rectangular lattice of alveolar type I (non-infectable) and type II (infectable) cells with a stochastic, species-concentration-governed, switching dynamics of type II lattice sites from healthy to infected. Once infected, type II cells evolve through three phases: an eclipse phase during which RNA copies (virions) are assembled; a shedding phase during which virions and interferons are released; and then cell death. Model simulations yield the dynamic spread of, and immune protection against, alveolar infection and viral load from initial sites of exposure. We focus in this paper on model illustrations of the diversity of outcomes possible from alveolar infection, first absent of immune protection, and then with varying degrees of four known mechanisms of interferon-induced innate immune protection. We defer model illustrations of antibody protection to future studies. Results presented reinforce previous recognition that interferons produced solely by infected cells are insufficient to maintain a high efficacy level of immune protection, compelling additional mechanisms to clear alveolar infection, such as interferon production by immune cells and adaptive immunity (e.g., T cells). This manuscript was submitted as part of a theme issue on "Modelling COVID-19 and Preparedness for Future Pandemics".
Collapse
Affiliation(s)
- Andreas C. Aristotelous
- Department of Mathematics, The University of Akron, Akron, OH 44325-4002, United States of America,Corresponding author
| | - Alex Chen
- Department of Mathematics, California State University, Dominguez Hills, CA 90747, United States of America
| | - M. Gregory Forest
- Departments of Mathematics, Applied Physical Sciences, and Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3250, United States of America
| |
Collapse
|
22
|
Ranjbar M, Rahimi A, Baghernejadan Z, Ghorbani A, Khorramdelazad H. Role of CCL2/CCR2 axis in the pathogenesis of COVID-19 and possible Treatments: All options on the Table. Int Immunopharmacol 2022; 113:109325. [PMID: 36252475 PMCID: PMC9561120 DOI: 10.1016/j.intimp.2022.109325] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is cause of the novel coronavirus disease (COVID-19). In the last two years, SARS-CoV-2 has infected millions of people worldwide with different waves, resulting in the death of many individuals. The evidence disclosed that the host immune responses to SARS-CoV-2 play a pivotal role in COVID-19 pathogenesis and clinical manifestations. In addition to inducing antiviral immune responses, SARS-CoV-2 can also cause dysregulated inflammatory responses characterized by the noticeable release of proinflammatory mediators in COVID-19 patients. Among these proinflammatory mediators, chemokines are considered a subset of cytokines that participate in the chemotaxis process to recruit immune and non-immune cells to the site of inflammation and infection. Researchers have demonstrated that monocyte chemoattractant protein-1 (MCP-1/CCL2) and its receptor (CCR2) are involved in the recruitment of monocytes and infiltration of these cells into the lungs of patients suffering from COVID-19. Moreover, elevated levels of CCL2 have been reported in the bronchoalveolar lavage fluid (BALF) obtained from patients with severe COVID-19, initiating cytokine storm and promoting CD163+ myeloid cells infiltration in the airways and further alveolar damage. Therefore, CCL2/CCR axis plays a key role in the immunopathogenesis of COVID-19 and targeted therapy of involved molecules in this axis can be a potential therapeutic approach for these patients. This review discusses the biology of the CCL2/CCR2 axis as well as the role of this axis in COVID-19 immunopathogenesis, along with therapeutic options aimed at inhibiting CCL2/CCR2 and modulating dysregulated inflammatory responses in patients with severe SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Mitra Ranjbar
- Department of Infectious Disease, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Baghernejadan
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atousa Ghorbani
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
23
|
Vezzani B, Neri M, D’Errico S, Papi A, Contoli M, Giorgi C. SARS-CoV-2 Infection Prompts IL-1β-Mediated Inflammation and Reduces IFN-λ Expression in Human Lung Tissue. Pathogens 2022; 11:1390. [PMID: 36422642 PMCID: PMC9698775 DOI: 10.3390/pathogens11111390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 08/27/2023] Open
Abstract
Two years after its spreading, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still responsible for more than 2000 deaths per day worldwide, despite vaccines and monoclonal antibody countermeasures. Therefore, there is a need to understand the immune-inflammatory pathways that prompt the manifestation of the disease to identify a novel potential target for pharmacological intervention. In this context, the characterization of the main players in the SARS-CoV-2-induced cytokine storm is mandatory. To date, the most characterized have been IL-6 and the class I and II interferons, while less is known about the proinflammatory cytokine IL-1β and class III interferons. Here, we report a preliminary study aimed at the characterization of the lung inflammatory context in COVID-19 patients, with a special focus on IFN-λ and IL-1β. By investigating IFN and inflammatory cytokine patterns by IHC in 10 deceased patients due to COVID-19 infection, compared to 10 control subjects, we reveal that while IFN-β production was increased in COVID-19 patients, IFN-λ was almost abolished. At the same time, the levels of IL-1β were dramatically improved, while IL-6 lung levels seem to be unaffected by the infection. Our findings highlight a central role of IL-1β in prompting lung inflammation after SARS-CoV-2 infection. Together, we show that IFN-λ is negatively affected by viral infection, supporting the idea that IFN-λ administration together with the pharmaceutical blockage of IL-1β represents a promising approach to revert the COVID-19-induced cytokine storm.
Collapse
Affiliation(s)
- Bianca Vezzani
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
| | - Margherita Neri
- Department of Medical Sciences, Section of Public Health Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Stefano D’Errico
- Department of Medicine, Surgery and Health, University of Trieste, 34149 Trieste, Italy
| | - Alberto Papi
- Respiratory Medicine, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Marco Contoli
- Respiratory Medicine, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
- Laboratory of Technologies for Advanced Therapy (LTTA), Technopole of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
24
|
Talukdar P, Junecko BF, Lane DS, Maiello P, Mattila JT. Macrophages and neutrophils express IFNλs in granulomas from Mycobacterium tuberculosis-infected nonhuman primates. Front Immunol 2022; 13:985405. [PMID: 36189279 PMCID: PMC9516334 DOI: 10.3389/fimmu.2022.985405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Granulomas are the hallmark of Mycobacterium tuberculosis (Mtb) infection. Cytokine-mediated signaling can modulate immune function; thus, understanding the cytokine milieu in granulomas is critical for understanding immunity in tuberculosis (TB). Interferons (IFNs) are important immune mediators in TB, and while type 1 and 2 IFNs have been extensively studied, less is known about type 3 IFNs (IFNλs) in TB. To determine if IFNλs are expressed in granulomas, which cells express them, and how granuloma microenvironments influence IFNλ expression, we investigated IFNλ1 and IFNλ4 expression in macaque lung granulomas. We identified IFNλ expression in granulomas, and IFNλ levels negatively correlated with bacteria load. Macrophages and neutrophils expressed IFNλ1 and IFNλ4, with neutrophils expressing higher levels of each protein. IFNλ expression varied in different granuloma microenvironments, with lymphocyte cuff macrophages expressing more IFNλ1 than epithelioid macrophages. IFNλ1 and IFNλ4 differed in their subcellular localization, with IFNλ4 predominantly localizing inside macrophage nuclei. IFNλR1 was also expressed in granulomas, with intranuclear localization in some cells. Further investigation demonstrated that IFNλ signaling is driven in part by TLR2 ligation and was accompanied by nuclear translocation of IFNλR1. Our data indicate that IFNλs are part of the granuloma cytokine milieu that may influence myeloid cell function and immunity in TB.
Collapse
Affiliation(s)
- Priyanka Talukdar
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Beth F. Junecko
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Daniel S. Lane
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Pauline Maiello
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joshua T. Mattila
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Joshua T. Mattila,
| |
Collapse
|
25
|
Furie RA, van Vollenhoven RF, Kalunian K, Navarra S, Romero-Diaz J, Werth VP, Huang X, Clark G, Carroll H, Meyers A, Musselli C, Barbey C, Franchimont N. Trial of Anti-BDCA2 Antibody Litifilimab for Systemic Lupus Erythematosus. N Engl J Med 2022; 387:894-904. [PMID: 36069871 DOI: 10.1056/nejmoa2118025] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Antibody-binding of blood dendritic cell antigen 2 (BDCA2), which is expressed exclusively on plasmacytoid dendritic cells, suppresses the production of type I interferon that is involved in the pathogenesis of systemic lupus erythematosus (SLE). The safety and efficacy of subcutaneous litifilimab, a humanized monoclonal antibody that binds to BDCA2, in patients with SLE have not been extensively studied. METHODS We conducted a phase 2 trial of litifilimab involving participants with SLE. The initial trial design called for randomly assigning participants to receive litifilimab (at a dose of 50, 150, or 450 mg) or placebo administered subcutaneously at weeks 0, 2, 4, 8, 12, 16, and 20, with the primary end point of evaluating cutaneous lupus activity. The trial design was subsequently modified; adults with SLE, arthritis, and active skin disease were randomly assigned to receive either litifilimab at a dose of 450 mg or placebo. The revised primary end point was the change from baseline in the total number of active joints (defined as the sum of the swollen joints and the tender joints) at week 24. Secondary end points were changes in cutaneous and global disease activity. Safety was also assessed. RESULTS A total of 334 adults were assessed for eligibility, and 132 underwent randomization (64 were assigned to receive 450-mg litifilimab, 6 to receive 150-mg litifilimab, 6 to receive 50-mg litifilimab, and 56 to receive placebo). The primary analysis was conducted in the 102 participants who had received 450-mg litifilimab or placebo and had at least four tender and at least four swollen joints. The mean (±SD) baseline number of active joints was 19.0±8.4 in the litifilimab group and 21.6±8.5 in the placebo group. The least-squares mean (±SE) change from baseline to week 24 in the total number of active joints was -15.0±1.2 with litifilimab and -11.6±1.3 with placebo (mean difference, -3.4; 95% confidence interval, -6.7 to -0.2; P = 0.04). Most of the secondary end points did not support the results of the analysis of the primary end point. Receipt of litifilimab was associated with adverse events, including two cases of herpes zoster and one case of herpes keratitis. CONCLUSIONS In a phase 2 trial involving participants with SLE, litifilimab was associated with a greater reduction from baseline in the number of swollen and tender joints than placebo over a period of 24 weeks. Longer and larger trials are required to determine the safety and efficacy of litifilimab for the treatment of SLE. (Funded by Biogen; LILAC ClinicalTrials.gov number, NCT02847598.).
Collapse
Affiliation(s)
- Richard A Furie
- From Northwell Health, Great Neck, NY (R.A.F.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); the University of California San Diego, La Jolla (K.K.); the University of Santo Tomas, Manila, Philippines (S.N.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City (J.R.-D.); the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Biogen, Cambridge, MA (X.H., G.C., H.C., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Ronald F van Vollenhoven
- From Northwell Health, Great Neck, NY (R.A.F.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); the University of California San Diego, La Jolla (K.K.); the University of Santo Tomas, Manila, Philippines (S.N.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City (J.R.-D.); the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Biogen, Cambridge, MA (X.H., G.C., H.C., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Kenneth Kalunian
- From Northwell Health, Great Neck, NY (R.A.F.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); the University of California San Diego, La Jolla (K.K.); the University of Santo Tomas, Manila, Philippines (S.N.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City (J.R.-D.); the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Biogen, Cambridge, MA (X.H., G.C., H.C., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Sandra Navarra
- From Northwell Health, Great Neck, NY (R.A.F.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); the University of California San Diego, La Jolla (K.K.); the University of Santo Tomas, Manila, Philippines (S.N.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City (J.R.-D.); the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Biogen, Cambridge, MA (X.H., G.C., H.C., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Juanita Romero-Diaz
- From Northwell Health, Great Neck, NY (R.A.F.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); the University of California San Diego, La Jolla (K.K.); the University of Santo Tomas, Manila, Philippines (S.N.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City (J.R.-D.); the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Biogen, Cambridge, MA (X.H., G.C., H.C., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Victoria P Werth
- From Northwell Health, Great Neck, NY (R.A.F.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); the University of California San Diego, La Jolla (K.K.); the University of Santo Tomas, Manila, Philippines (S.N.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City (J.R.-D.); the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Biogen, Cambridge, MA (X.H., G.C., H.C., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Xiaobi Huang
- From Northwell Health, Great Neck, NY (R.A.F.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); the University of California San Diego, La Jolla (K.K.); the University of Santo Tomas, Manila, Philippines (S.N.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City (J.R.-D.); the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Biogen, Cambridge, MA (X.H., G.C., H.C., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - George Clark
- From Northwell Health, Great Neck, NY (R.A.F.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); the University of California San Diego, La Jolla (K.K.); the University of Santo Tomas, Manila, Philippines (S.N.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City (J.R.-D.); the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Biogen, Cambridge, MA (X.H., G.C., H.C., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Hua Carroll
- From Northwell Health, Great Neck, NY (R.A.F.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); the University of California San Diego, La Jolla (K.K.); the University of Santo Tomas, Manila, Philippines (S.N.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City (J.R.-D.); the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Biogen, Cambridge, MA (X.H., G.C., H.C., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Adam Meyers
- From Northwell Health, Great Neck, NY (R.A.F.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); the University of California San Diego, La Jolla (K.K.); the University of Santo Tomas, Manila, Philippines (S.N.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City (J.R.-D.); the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Biogen, Cambridge, MA (X.H., G.C., H.C., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Cristina Musselli
- From Northwell Health, Great Neck, NY (R.A.F.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); the University of California San Diego, La Jolla (K.K.); the University of Santo Tomas, Manila, Philippines (S.N.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City (J.R.-D.); the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Biogen, Cambridge, MA (X.H., G.C., H.C., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Catherine Barbey
- From Northwell Health, Great Neck, NY (R.A.F.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); the University of California San Diego, La Jolla (K.K.); the University of Santo Tomas, Manila, Philippines (S.N.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City (J.R.-D.); the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Biogen, Cambridge, MA (X.H., G.C., H.C., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Nathalie Franchimont
- From Northwell Health, Great Neck, NY (R.A.F.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); the University of California San Diego, La Jolla (K.K.); the University of Santo Tomas, Manila, Philippines (S.N.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City (J.R.-D.); the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Biogen, Cambridge, MA (X.H., G.C., H.C., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| |
Collapse
|
26
|
Sekaran SD, Ismail AA, Thergarajan G, Chandramathi S, Rahman SKH, Mani RR, Jusof FF, Lim YAL, Manikam R. Host immune response against DENV and ZIKV infections. Front Cell Infect Microbiol 2022; 12:975222. [PMID: 36159640 PMCID: PMC9492869 DOI: 10.3389/fcimb.2022.975222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022] Open
Abstract
Dengue is a major public health concern, affecting almost 400 million people worldwide, with about 70% of the global burden of disease in Asia. Despite revised clinical classifications of dengue infections by the World Health Organization, the wide spectrum of the manifestations of dengue illness continues to pose challenges in diagnosis and patient management for clinicians. When the Zika epidemic spread through the American continent and then later to Africa and Asia in 2015, researchers compared the characteristics of the Zika infection to Dengue, considering both these viruses were transmitted primarily through the same vector, the Aedes aegypti female mosquitoes. An important difference to note, however, was that the Zika epidemic diffused in a shorter time span compared to the persisting feature of Dengue infections, which is endemic in many Asian countries. As the pathogenesis of viral illnesses is affected by host immune responses, various immune modulators have been proposed as biomarkers to predict the risk of the disease progression to a severe form, at a much earlier stage of the illness. However, the findings for most biomarkers are highly discrepant between studies. Meanwhile, the cross-reactivity of CD8+ and CD4+ T cells response to Dengue and Zika viruses provide important clues for further development of potential treatments. This review discusses similarities between Dengue and Zika infections, comparing their disease transmissions and vectors involved, and both the innate and adaptive immune responses in these infections. Consideration of the genetic identity of both the Dengue and Zika flaviviruses as well as the cross-reactivity of relevant T cells along with the actions of CD4+ cytotoxic cells in these infections are also presented. Finally, a summary of the immune biomarkers that have been reported for dengue and Zika viral infections are discussed which may be useful indicators for future anti-viral targets or predictors for disease severity. Together, this information appraises the current understanding of both Zika and Dengue infections, providing insights for future vaccine design approaches against both viruses.
Collapse
Affiliation(s)
| | - Amni Adilah Ismail
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Gaythri Thergarajan
- Faculty of Medical & Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Samudi Chandramathi
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - S. K. Hanan Rahman
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ravishankar Ram Mani
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Felicita Fedelis Jusof
- Department of Physiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yvonne A. L. Lim
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rishya Manikam
- Department of Trauma and Emergency Medicine, University Malaya Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Jian Z, Ma R, Zhu L, Deng H, Li F, Zhao J, Deng L, Lai S, Sun X, Tang H, Xu Z. Evasion of interferon-mediated immune response by arteriviruses. Front Immunol 2022; 13:963923. [PMID: 36091073 PMCID: PMC9454096 DOI: 10.3389/fimmu.2022.963923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/13/2022] [Indexed: 12/24/2022] Open
Abstract
IFN is the most potent antiviral cytokine required for the innate and adaptive immune responses, and its expression can help the host defend against viral infection. Arteriviruses have evolved strategies to antagonize the host cell’s innate immune responses, interfering with IFN expression by interfering with RIG, blocking PRR, obstructing IRF-3/7, NF-κB, and degrading STAT1 signaling pathways, thereby assisting viral immune evasion. Arteriviruses infect immune cells and may result in persistence in infected hosts. In this article, we reviewed the strategies used by Arteriviruses to antagonize IFN production and thwart IFN-activated antiviral signaling, mainly including structural and nonstructural proteins of Arteriviruses encoding IFN antagonists directly or indirectly to disrupt innate immunity. This review will certainly provide a better insight into the pathogenesis of the arthritis virus and provide a theoretical basis for developing more efficient vaccines.
Collapse
Affiliation(s)
- Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Rui Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Cheng Du, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Fengqin Li
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
- College of Animal Science, Xichang University, Xichang, China
| | - Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Cheng Du, China
| | - Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Huaqiao Tang
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Cheng Du, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Cheng Du, China
- *Correspondence: Zhiwen Xu,
| |
Collapse
|
28
|
Werth VP, Furie RA, Romero-Diaz J, Navarra S, Kalunian K, van Vollenhoven RF, Nyberg F, Kaffenberger BH, Sheikh SZ, Radunovic G, Huang X, Clark G, Carroll H, Naik H, Gaudreault F, Meyers A, Barbey C, Musselli C, Franchimont N. Trial of Anti-BDCA2 Antibody Litifilimab for Cutaneous Lupus Erythematosus. N Engl J Med 2022; 387:321-331. [PMID: 35939578 DOI: 10.1056/nejmoa2118024] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Blood dendritic cell antigen 2 (BDCA2) is a receptor that is exclusively expressed on plasmacytoid dendritic cells, which are implicated in the pathogenesis of lupus erythematosus. Whether treatment with litifilimab, a humanized monoclonal antibody against BDCA2, would be efficacious in reducing disease activity in patients with cutaneous lupus erythematosus has not been extensively studied. METHODS In this phase 2 trial, we randomly assigned adults with histologically confirmed cutaneous lupus erythematosus with or without systemic manifestations in a 1:1:1:1 ratio to receive subcutaneous litifilimab (at a dose of 50, 150, or 450 mg) or placebo at weeks 0, 2, 4, 8, and 12. We used a dose-response model to assess whether there was a response across the four groups on the basis of the primary end point, which was the percent change from baseline to 16 weeks in the Cutaneous Lupus Erythematosus Disease Area and Severity Index-Activity score (CLASI-A; scores range from 0 to 70, with higher scores indicating more widespread or severe skin involvement). Safety was also assessed. RESULTS A total of 132 participants were enrolled; 26 were assigned to the 50-mg litifilimab group, 25 to the 150-mg litifilimab group, 48 to the 450-mg litifilimab group, and 33 to the placebo group. Mean CLASI-A scores for the groups at baseline were 15.2, 18.4, 16.5, and 16.5, respectively. The difference from placebo in the change from baseline in CLASI-A score at week 16 was -24.3 percentage points (95% confidence interval [CI] -43.7 to -4.9) in the 50-mg litifilimab group, -33.4 percentage points (95% CI, -52.7 to -14.1) in the 150-mg group, and -28.0 percentage points (95% CI, -44.6 to -11.4) in the 450-mg group. The least squares mean changes were used in the primary analysis of a best-fitting dose-response model across the three drug-dose levels and placebo, which showed a significant effect. Most of the secondary end points did not support the results of the primary analysis. Litifilimab was associated with three cases each of hypersensitivity and oral herpes infection and one case of herpes zoster infection. One case of herpes zoster meningitis occurred 4 months after the participant received the last dose of litifilimab. CONCLUSIONS In a phase 2 trial involving participants with cutaneous lupus erythematosus, treatment with litifilimab was superior to placebo with regard to a measure of skin disease activity over a period of 16 weeks. Larger and longer trials are needed to determine the effect and safety of litifilimab for the treatment of cutaneous lupus erythematosus. (Funded by Biogen; LILAC ClinicalTrials.gov number, NCT02847598.).
Collapse
MESH Headings
- Adult
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dose-Response Relationship, Drug
- Double-Blind Method
- Herpes Zoster/etiology
- Humans
- Lectins, C-Type/antagonists & inhibitors
- Lectins, C-Type/immunology
- Lupus Erythematosus, Cutaneous/drug therapy
- Membrane Glycoproteins/antagonists & inhibitors
- Membrane Glycoproteins/immunology
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/immunology
- Severity of Illness Index
- Treatment Outcome
Collapse
Affiliation(s)
- Victoria P Werth
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Richard A Furie
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Juanita Romero-Diaz
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Sandra Navarra
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Kenneth Kalunian
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Ronald F van Vollenhoven
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Filippa Nyberg
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Benjamin H Kaffenberger
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Saira Z Sheikh
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Goran Radunovic
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Xiaobi Huang
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - George Clark
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Hua Carroll
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Himanshu Naik
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Francois Gaudreault
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Adam Meyers
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Catherine Barbey
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Cristina Musselli
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| | - Nathalie Franchimont
- From the University of Pennsylvania and Corporal Michael J. Crescenz Veterans Affairs Medical Center - both in Philadelphia (V.P.W.); Northwell Health, Great Neck, NY (R.A.F.); Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubrián, Mexico City (J.R.-D.); the University of Santo Tomas, Manila, Philippines (S.N.); the University of California, San Diego, La Jolla (K.K.); Amsterdam University Medical Centers, Amsterdam (R.F.V.); Karolinska University Hospital, Stockholm (F.N.); Ohio State University, Columbus (B.H.K.); University of North Carolina at Chapel Hill, Chapel Hill (S.Z.S.); Institute of Rheumatology, University of Belgrade, Belgrade, Serbia (G.R.); Biogen, Cambridge, MA (X.H., G.C., H.C., H.N., F.G., A.M., C.M., N.F.); and Biogen, Baar, Switzerland (C.B.)
| |
Collapse
|
29
|
Du X, Yuan L, Yao Y, Yang Y, Zhou K, Wu X, Wang L, Qin L, Li W, Xiang Y, Qu X, Liu H, Qin X, Yang M, Liu C. ITGB4 Deficiency in Airway Epithelium Aggravates RSV Infection and Increases HDM Sensitivity. Front Immunol 2022; 13:912095. [PMID: 35958591 PMCID: PMC9357881 DOI: 10.3389/fimmu.2022.912095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Background The heterogeneity of RSV-infected pathology phenotype in early life is strongly associate with increased susceptibility of asthma in later life. However, the inner mechanism of this heterogeneity is still obscure. ITGB4 is a down-regulated adhesion molecular in the airway epithelia of asthma patients which may participate in the regulation of RSV infection related intracellular pathways. Object This study was designed to observe the involvement of ITGB4 in the process of RSV infection and the effect of ITGB4 deficiency on anti-RSV responses of airway epithelia. Results RSV infection caused a transient decrease of ITGB4 expression both in vitro and in vivo. Besides, ITGB4 deficiency induced not only exacerbated RSV infection, but also enhanced HDM sensitivity in later life. Moreover, IFN III (IFN-λ) was significantly suppressed during RSV infection in ITGB4 deficient airway epithelial cells. Furthermore, the suppression of IFN-λ were regulated by IRF-1 through the phosphorylation of EGFR in airway epithelial cells after RSV infection. Conclusion These results demonstrated the involvement of ITGB4 deficiency in the development of enhance RSV infection in early life and the increased HDM sensitivity in later life by down-regulation of IFN-λ through EGFR/IRF-1 pathway in airway epithelial cells.
Collapse
Affiliation(s)
- Xizi Du
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Lin Yuan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Ye Yao
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Yu Yang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Kai Zhou
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xinyu Wu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Leyuan Wang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Wenkai Li
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Ming Yang
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, NSW, Australia
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
- Research Center of China-Africa Infectious Diseases, Xiangya School of Medicine Central South University, Changsha, China
- *Correspondence: Chi Liu,
| |
Collapse
|
30
|
Xu MM, Wu B, Huang GG, Feng CL, Wang XH, Wang HY, Wu YW, Tang W. Hemin protects against Zika virus infection by disrupting virus-endosome fusion. Antiviral Res 2022; 203:105347. [DOI: 10.1016/j.antiviral.2022.105347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/18/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022]
|
31
|
Zhang A, Rastogi R, Marsh KM, Yang B, Wu D, Kron IL, Yang Z. Topical Neck Cooling Without Systemic Hypothermia Attenuates Myocardial Ischemic Injury and Post-ischemic Reperfusion Injury. Front Cardiovasc Med 2022; 9:893837. [PMID: 35837603 PMCID: PMC9274088 DOI: 10.3389/fcvm.2022.893837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Background Following acute myocardial infarction (MI), irreversible damage to the myocardium can only be reduced by shortening the duration between symptom onset and revascularization. While systemic hypothermia has shown promising results in slowing pre-revascularization myocardial damage, it is resource intensive and not conducive to prehospital initiation. We hypothesized that topical neck cooling (NC), an easily implemented therapy for en route transfer to definitive therapy, could similarly attenuate myocardial ischemia-reperfusion injury (IRI). Methods Using an in vivo mouse model of myocardial IRI, moderate systemic hypothermia or NC was applied following left coronary artery (LCA) occlusion and subsequent reperfusion, at early, late, and post-reperfusion intervals. Vagotomy was performed after late NC in an additional group. Hearts were harvested to measure infarct size. Results Both hypothermia treatments equally attenuated myocardial infarct size by 60% compared to control. The infarct-sparing effect of NC was temperature-dependent and timing-dependent. Vagotomy at the gastroesophageal junction abolished the infarct-sparing effect of late NC. Cardiac perfusate isolated following ischemia had significantly reduced cardiac troponin T, HMGB1, cell-free DNA, and interferon α and β levels after NC. Conclusions Topical neck cooling attenuates myocardial IRI in a vagus nerve-dependent manner, with an effect comparable to that of systemic hypothermia. NC attenuated infarct size when applied during ischemia, with earlier initiation resulting in superior infarct sparing. This novel therapy exerts a cardioprotective effect without requiring significant change in core temperature and may be a promising practical strategy to attenuate myocardial damage while patients await definitive revascularization.
Collapse
|
32
|
Ghasemzadeh M, Ahmadi J, Hosseini E. Platelet-leukocyte crosstalk in COVID-19: How might the reciprocal links between thrombotic events and inflammatory state affect treatment strategies and disease prognosis? Thromb Res 2022; 213:179-194. [PMID: 35397313 PMCID: PMC8969450 DOI: 10.1016/j.thromres.2022.03.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 01/09/2023]
Abstract
Platelet-leukocyte crosstalk is commonly manifested by reciprocal links between thrombosis and inflammation. Platelet thrombus acts as a reactive matrix that recruits leukocytes to the injury site where their massive accumulation, activation and migration promote thrombotic events while triggering inflammatory responses. As a life-threatening condition with the associations between inflammation and thrombosis, COVID-19 presents diffuse alveolar damage due to exaggerated macrophage activity and cytokine storms. These events, together with direct intracellular virus invasion lead to pulmonary vascular endothelialitis, cell membranes disruption, severe endothelial injury, and thrombosis. The developing pre-alveolar thrombus provides a hyper-reactive milieu that recruits circulating leukocytes to the injury site where their activation contributes to thrombus stabilization and thrombosis propagation, primarily through the formation of Neutrophil extracellular trap (NET). NET fragments can also circulate and deposit in further distance where they may disseminate intravascular thrombosis in severe cases of disease. Thrombi may also facilitate leukocytes migration into alveoli where their accumulation and activation exacerbate cytokine storms and tissue damage, further complicating the disease. Based on these mechanisms, whether an effective anti-inflammatory protocol can prevent thrombotic events, or on the other hand; efficient antiplatelet or anticoagulant regimens may be associated with reduced cytokine storms and tissue damage, is now of interests for several ongoing researches. Thus shedding more light on platelet-leukocyte crosstalk, the review presented here discusses the detailed mechanisms by which platelets may contribute to the pathogenesis of COVID-19, especially in severe cases where their interaction with leukocytes can intensify both inflammatory state and thrombosis in a reciprocal manner.
Collapse
Affiliation(s)
- Mehran Ghasemzadeh
- Corresponding authors at: Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, Tehran, Iran
| | | | - Ehteramolsadat Hosseini
- Corresponding authors at: Blood Transfusion Research Centre, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization Building, Hemmat Exp. Way, Next to the Milad Tower, Tehran, Iran
| |
Collapse
|
33
|
Hsu RJ, Yu WC, Peng GR, Ye CH, Hu S, Chong PCT, Yap KY, Lee JYC, Lin WC, Yu SH. The Role of Cytokines and Chemokines in Severe Acute Respiratory Syndrome Coronavirus 2 Infections. Front Immunol 2022; 13:832394. [PMID: 35464491 PMCID: PMC9021400 DOI: 10.3389/fimmu.2022.832394] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in countless infections and caused millions of deaths since its emergence in 2019. Coronavirus disease 2019 (COVID-19)-associated mortality is caused by uncontrolled inflammation, aberrant immune response, cytokine storm, and an imbalanced hyperactive immune system. The cytokine storm further results in multiple organ failure and lung immunopathology. Therefore, any potential treatments should focus on the direct elimination of viral particles, prevention strategies, and mitigation of the imbalanced (hyperactive) immune system. This review focuses on cytokine secretions of innate and adaptive immune responses against COVID-19, including interleukins, interferons, tumor necrosis factor-alpha, and other chemokines. In addition to the review focus, we discuss potential immunotherapeutic approaches based on relevant pathophysiological features, the systemic immune response against SARS-CoV-2, and data from recent clinical trials and experiments on the COVID-19-associated cytokine storm. Prompt use of these cytokines as diagnostic markers and aggressive prevention and management of the cytokine storm can help determine COVID-19-associated morbidity and mortality. The prophylaxis and rapid management of the cytokine storm appear to significantly improve disease outcomes. For these reasons, this study aims to provide advanced information to facilitate innovative strategies to survive in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ren-Jun Hsu
- Cancer Center, Hualien Tzu Chi Hospital, Buddhist Tzuchi Medical Foundation, Hualien, Taiwan.,School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Wei-Chieh Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Guan-Ru Peng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chih-Hung Ye
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - SuiYun Hu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | - Kah Yi Yap
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | | - Wei-Chen Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
34
|
Payet CA, You A, Fayet OM, Dragin N, Berrih-Aknin S, Le Panse R. Myasthenia Gravis: An Acquired Interferonopathy? Cells 2022; 11:cells11071218. [PMID: 35406782 PMCID: PMC8997999 DOI: 10.3390/cells11071218] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/12/2023] Open
Abstract
Myasthenia gravis (MG) is a rare autoimmune disease mediated by antibodies against components of the neuromuscular junction, particularly the acetylcholine receptor (AChR). The thymus plays a primary role in AChR-MG patients. In early-onset AChR-MG and thymoma-associated MG, an interferon type I (IFN-I) signature is clearly detected in the thymus. The origin of this chronic IFN-I expression in the thymus is not yet defined. IFN-I subtypes are normally produced in response to viral infection. However, genetic diseases called interferonopathies are associated with an aberrant chronic production of IFN-I defined as sterile inflammation. Some systemic autoimmune diseases also share common features with interferonopathies. This review aims to analyze the pathogenic role of IFN-I in these diseases as compared to AChR-MG in order to determine if AChR-MG could be an acquired interferonopathy.
Collapse
Affiliation(s)
- Cloé A Payet
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| | - Axel You
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| | - Odessa-Maud Fayet
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| | - Nadine Dragin
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| | - Sonia Berrih-Aknin
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| | - Rozen Le Panse
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, F-75013 Paris, France
| |
Collapse
|
35
|
Guo X, Zeng S, Ji X, Meng X, Lei N, Yang H, Mu X. Type I Interferon-Induced TMEM106A Blocks Attachment of EV-A71 Virus by Interacting With the Membrane Protein SCARB2. Front Immunol 2022; 13:817835. [PMID: 35359978 PMCID: PMC8963425 DOI: 10.3389/fimmu.2022.817835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/17/2022] [Indexed: 11/19/2022] Open
Abstract
Enterovirus A71 (EV-A71) and Coxsackievirus A16 (CV-A16) are the main causative agents of hand, foot and mouth disease (HFMD) worldwide. Studies showed that EV-A71 and CV-A16 antagonize the interferon (IFN) signaling pathway; however, how IFN controls this viral infection is largely unknown. Here, we identified an IFN-stimulated gene, Transmembrane Protein 106A (TMEM106A), encoding a protein that blocks EV-A71 and CV-A16 infection. Combined approaches measuring viral infection, gene expression, and protein interactions uncovered that TMEM106A is required for optimal IFN-mediated viral inhibition and interferes with EV-A71 binding to host cells on the receptor scavenger receptor class B member 2 (SCARB2). Our findings reveal a new mechanism contributing to the IFN-mediated defense against EV-A71 and CV-A16 infection and provide a potential strategy for HFMD treatment by using the antiviral role of TMEM106A against enterovirus.
Collapse
Affiliation(s)
- Xuemin Guo
- Meizhou People’s Hospital, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou, China
| | - Shinuan Zeng
- Department of Surgery, HKU-SZH & Faculty of Medicine,The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiaoxin Ji
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
| | - Xiaobin Meng
- Meizhou People’s Hospital, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou, China
| | - Nanfeng Lei
- Meizhou People’s Hospital, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou, China
| | - Hai Yang
- Meizhou People’s Hospital, Meizhou, China
- Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translation Research of Hakka Population, Meizhou, China
| | - Xin Mu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin, China
| |
Collapse
|
36
|
Huijser E, Bodewes ILA, Lourens MS, van Helden-Meeuwsen CG, van den Bosch TPP, Grashof DGB, van de Werken HJG, Lopes AP, van Roon JAG, van Daele PLA, Brkic Z, Dik WA, Versnel MA. Hyperresponsive cytosolic DNA-sensing pathway in monocytes from primary Sjögren's syndrome. Rheumatology (Oxford) 2022; 61:3491-3496. [PMID: 35022662 PMCID: PMC9348764 DOI: 10.1093/rheumatology/keac016] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/27/2021] [Indexed: 11/12/2022] Open
Abstract
Objectives Cytosolic DNA-sensing pathway stimulation prompts type I IFN (IFN-I) production, but its role in systemic IFN-I pathway activation in primary SS (pSS) is poorly studied. Here we investigate the responsiveness of pSS monocytes and plasmacytoid dendritic cells (pDCs) to stimulator of interferon genes (STING) activation in relation to systemic IFN-I pathway activation and compare this with SLE. Methods Expression of DNA-sensing receptors cGAS, IFI16, ZBP-1 and DDX41, signalling molecules STING, TBK1 and IRF3, positive and negative STING regulators, and IFN-I-stimulated genes MxA, IFI44, IFI44L, IFIT1 and IFIT3 was analysed in whole blood, CD14+ monocytes, pDCs, and salivary glands by RT-PCR, monocyte RNA sequencing data, flow cytometry and immunohistochemical staining. Peripheral blood mononuclear cells (PBMCs) from pSS, SLE and healthy controls (HCs) were stimulated with STING agonist 2′3′-cGAMP. STING phosphorylation (pSTING) and intracellular IFNα were evaluated using flow cytometry. Results STING activation induced a significantly higher proportion of IFNα-producing monocytes, but not pDCs, in both IFN-low and IFN-high pSS compared with HC PBMCs. Additionally, a trend towards more pSTING+ monocytes was observed in pSS and SLE, most pronounced in IFN-high patients. Positive STING regulators TRIM38, TRIM56, USP18 and SENP7 were significantly higher expression in pSS than HC monocytes, while the dual-function STING regulator RNF26 was downregulated in pSS monocytes. STING was expressed in mononuclear infiltrates and ductal epithelium in pSS salivary glands. STING stimulation induced pSTING and IFNα in pSS and SLE pDCs. Conclusion pSS monocytes and pDCs are hyperresponsive to stimulation of the STING pathway, which was not restricted to patients with IFN-I pathway activation.
Collapse
Affiliation(s)
- Erika Huijser
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Iris L A Bodewes
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mirthe S Lourens
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Thierry P P van den Bosch
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dwin G B Grashof
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Harmen J G van de Werken
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Cancer Computational Biology Center, Erasmus MC Cancer Institute, University Medical Center, Rotterdam, The Netherlands
| | - Ana P Lopes
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Joel A G van Roon
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.,Center for Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Paul L A van Daele
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Zana Brkic
- Department of Internal Medicine, Division of Allergy and Clinical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Willem A Dik
- Laboratory Medical Immunology, Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marjan A Versnel
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
37
|
Abstract
In vitro-transcribed RNAs are emerging as new biologics for therapeutic innovation, as exemplified by their application recently in SARS-CoV-2 vaccinations. RNAs prepared by in vitro transcription (IVT) allow transient expression of proteins of interest, conferring safety over DNA- or virus-mediated gene delivery systems. However, in vitro-transcribed RNAs should be used with caution because of their immunogenicity, which is in part triggered by double-stranded RNA (dsRNA) byproducts during IVT. Cellular innate immune response to dsRNA byproducts can lead to undesirable consequences, including suppression of protein synthesis and cell death, which in turn can detrimentally impact the efficacy of mRNA therapy. Thus, it is critical to understand the nature of IVT byproducts and the mechanisms by which they trigger innate immune responses.Our lab has been investigating the mechanisms by which the innate immune system discriminates between "self" and "nonself" RNA, with the focus on the cytoplasmic dsRNA receptors retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated 5 (MDA5). We have biochemically and structurally characterized critical events involving RNA discrimination and signal transduction by RIG-I or MDA5. We have used in vitro-transcribed RNAs as tools to investigate RNA specificity of RIG-I and MDA5, which required optimization of the IVT reaction and purification processes to eliminate the effect of IVT byproducts. In this Account, we summarize our current understanding of RIG-I and MDA5 and IVT reactions and propose future directions for improving IVT as a method to generate both research tools and therapeutics. Other critical proteins in cellular innate immune response to dsRNAs are also discussed. We arrange the contents in the following order: (i) innate immunity sensors for nonself RNA, including the RIG-I-like receptors (RLRs) in the cytosol and the toll-like receptors (TLRs) in the endosome, as well as cytoplasmic dsRNA-responding proteins, including protein kinase R (PKR) and 2',5'-oligoadenylate synthetases (OASes), illustrating the feature of protein-RNA binding and its consequences; (ii) the immunogenicity of IVT byproducts, specifically the generation of dsRNA molecules during IVT; and (iii) methods to reduce IVT RNA immunogenicity, including optimizations of RNA polymerases, reagents, and experimental conditions during IVT and subsequent purification.
Collapse
Affiliation(s)
- Xin Mu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, United States
| |
Collapse
|
38
|
Abdelmoaty MM, Yeapuri P, Machhi J, Olson KE, Shahjin F, Kumar V, Zhou Y, Liang J, Pandey K, Acharya A, Byrareddy SN, Mosley RL, Gendelman HE. Defining the Innate Immune Responses for SARS-CoV-2-Human Macrophage Interactions. Front Immunol 2021; 12:741502. [PMID: 34671355 PMCID: PMC8521106 DOI: 10.3389/fimmu.2021.741502] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/15/2021] [Indexed: 12/19/2022] Open
Abstract
Host innate immune response follows severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and it is the driver of the acute respiratory distress syndrome (ARDS) amongst other inflammatory end-organ morbidities. Such life-threatening coronavirus disease 2019 (COVID-19) is heralded by virus-induced activation of mononuclear phagocytes (MPs; monocytes, macrophages, and dendritic cells). MPs play substantial roles in aberrant immune secretory activities affecting profound systemic inflammation and end-organ malfunctions. All follow the presence of persistent viral components and virions without evidence of viral replication. To elucidate SARS-CoV-2-MP interactions we investigated transcriptomic and proteomic profiles of human monocyte-derived macrophages. While expression of the SARS-CoV-2 receptor, the angiotensin-converting enzyme 2, paralleled monocyte-macrophage differentiation, it failed to affect productive viral infection. In contrast, simple macrophage viral exposure led to robust pro-inflammatory cytokine and chemokine expression but attenuated type I interferon (IFN) activity. Both paralleled dysregulation of innate immune signaling pathways, specifically those linked to IFN. We conclude that the SARS-CoV-2-infected host mounts a robust innate immune response characterized by a pro-inflammatory storm heralding end-organ tissue damage.
Collapse
Affiliation(s)
- Mai M. Abdelmoaty
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Giza, Egypt
| | - Pravin Yeapuri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Katherine E. Olson
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Farah Shahjin
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Vikas Kumar
- Mass Spectrometry and Proteomics Core, University of Nebraska Medical Center, Omaha, NE, United States
| | - You Zhou
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Jingjing Liang
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Kabita Pandey
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Siddappa N. Byrareddy
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - R. Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
39
|
Seo SU, Jeong JH, Baek BS, Choi JM, Choi YS, Ko HJ, Kweon MN. Bleomycin-Induced Lung Injury Increases Resistance to Influenza Virus Infection in a Type I Interferon-Dependent Manner. Front Immunol 2021; 12:697162. [PMID: 34484196 PMCID: PMC8416411 DOI: 10.3389/fimmu.2021.697162] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/29/2021] [Indexed: 01/07/2023] Open
Abstract
Acute lung injury (ALI) results in acute respiratory disease that causes fatal respiratory diseases; however, little is known about the incidence of influenza infection in ALI. Using a ALI-mouse model, we investigated the pro-inflammatory cytokine response to ALI and influenza infection. Mice treated with bleomycin (BLM), which induces ALI, were more resistant to influenza virus infection and exhibited higher levels of type I interferon (IFN-I) transcription during the early infection period than that in PBS-treated control mice. BLM-treated mice also exhibited a lower viral burden, reduced pro-inflammatory cytokine production, and neutrophil levels. In contrast, BLM-treated IFN-I receptor 1 (IFNAR1)-knockout mice failed to show this attenuated phenotype, indicating that IFN-I is key to the antiviral response in ALI-induced mice. The STING/TBK1/IRF3 pathway was found to be involved in IFN-I production and the establishment of an antiviral environment in the lung. The depletion of plasmacytoid dendritic cells (pDCs) reduced the effect of BLM treatment against influenza virus infection, suggesting that pDCs are the major source of IFN-I and are crucial for defense against viral infection in BLM-induced lung injury. Overall, this study showed that BLM-mediated ALI in mice induced the release of double-stranded DNA, which in turn potentiated IFN-I-dependent pulmonary viral resistance by activating the STING/TBK1/IRF3 pathway in association with pDCs.
Collapse
Affiliation(s)
- Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jae-Hyeon Jeong
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Bum-Seo Baek
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, South Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, South Korea
| |
Collapse
|
40
|
Kim H, Zhang W, Hwang J, An EK, Choi YK, Moon E, Loznik M, Huh YH, Herrmann A, Kwak M, Jin JO. Carrier-free micellar CpG interacting with cell membrane for enhanced immunological treatment of HIV-1. Biomaterials 2021; 277:121081. [PMID: 34481291 DOI: 10.1016/j.biomaterials.2021.121081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Unmethylated CpG motifs activate toll-like receptor 9 (TLR9), leading to sequence- and species-specific immune stimulation. Here, we engineered a CpG oligodeoxyribonucleotide (ODN) with multiple hydrophobic moieties, so-called lipid-modified uracil, which resulted in a facile micelle formation of the stimulant. The self-assembled CpG nanostructure (U4CpG) containing the ODN 2216 sequence was characterized by various spectroscopic and microscopic methods together with molecular dynamics simulations. Next, we evaluated the nano-immunostimulant for enhancement of anti-HIV immunity. U4CpG treatment induced activation of plasmacytoid dendritic cells (pDCs) and natural killer (NK) cells in healthy human peripheral blood, which produced type I interferons (IFNs) and IFN-γ in human peripheral blood mononuclear cells (PBMCs). Moreover, we validated the activation and promotion efficacy of U4CpG in patient-derived blood cells, and HIV-1 spread was significantly suppressed by a low dosage of the immunostimulant. Furthermore, U4CpG-treated PBMC cultured medium elicited transcription of latent HIV-1 in U1 cells indicating that U4CpG reversed HIV-1 latency. Thus, the functions of U4CpG in eradicating HIV-1 by enhancing immunity and reversing latency make the material a potential candidate for clinical studies dealing with viral infection.
Collapse
Affiliation(s)
- Haejoo Kim
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Wei Zhang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, 201508, China
| | - Juyoung Hwang
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Eun-Koung An
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Yeol Kyo Choi
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Eunyoung Moon
- Center for Electron Microscopy Research, Korea Basic Science Institute, Chungcheongbuk-do, 28119, Republic of Korea
| | - Mark Loznik
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Yang Hoon Huh
- Center for Electron Microscopy Research, Korea Basic Science Institute, Chungcheongbuk-do, 28119, Republic of Korea
| | - Andreas Herrmann
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Minseok Kwak
- Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea; DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany.
| | - Jun-O Jin
- Shanghai Public Health Clinical Center, Shanghai Medical College, Fudan University, Shanghai, 201508, China; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
41
|
Musella M, Galassi C, Manduca N, Sistigu A. The Yin and Yang of Type I IFNs in Cancer Promotion and Immune Activation. BIOLOGY 2021; 10:856. [PMID: 34571733 PMCID: PMC8467547 DOI: 10.3390/biology10090856] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022]
Abstract
Type I Interferons (IFNs) are key regulators of natural and therapy-induced host defense against viral infection and cancer. Several years of remarkable progress in the field of oncoimmunology have revealed the dual nature of these cytokines. Hence, Type I IFNs may trigger anti-tumoral responses, while leading immune dysfunction and disease progression. This dichotomy relies on the duration and intensity of the transduced signaling, the nature of the unleashed IFN stimulated genes, and the subset of responding cells. Here, we discuss the role of Type I IFNs in the evolving relationship between the host immune system and cancer, as we offer a view of the therapeutic strategies that exploit and require an intact Type I IFN signaling, and the role of these cytokines in inducing adaptive resistance. A deep understanding of the complex, yet highly regulated, network of Type I IFN triggered molecular pathways will help find a timely and immune"logical" way to exploit these cytokines for anticancer therapy.
Collapse
Affiliation(s)
- Martina Musella
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
| | - Claudia Galassi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
| | - Nicoletta Manduca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (C.G.); (N.M.)
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| |
Collapse
|
42
|
Webb LM, Phythian-Adams AT, Costain AH, Brown SL, Lundie RJ, Forde-Thomas J, Cook PC, Jackson-Jones LH, Marley AK, Smits HH, Hoffmann KF, Tait Wojno ED, MacDonald AS. Plasmacytoid Dendritic Cells Facilitate Th Cell Cytokine Responses throughout Schistosoma mansoni Infection. Immunohorizons 2021; 5:721-732. [PMID: 34462311 PMCID: PMC8881908 DOI: 10.4049/immunohorizons.2100071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/19/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are potent producers of type I IFN (IFN-I) during viral infection and respond to IFN-I in a positive feedback loop that promotes their function. IFN-I shapes dendritic cell responses during helminth infection, impacting their ability to support Th2 responses. However, the role of pDCs in type 2 inflammation is unclear. Previous studies have shown that pDCs are dispensable for hepatic or splenic Th2 responses during the early stages of murine infection with the trematode Schistosoma mansoni at the onset of parasite egg laying. However, during S. mansoni infection, an ongoing Th2 response against mature parasite eggs is required to protect the liver and intestine from acute damage and how pDCs participate in immune responses to eggs and adult worms in various tissues beyond acute infection remains unclear. We now show that pDCs are required for optimal Th2 cytokine production in response to S. mansoni eggs in the intestinal-draining mesenteric lymph nodes throughout infection and for egg-specific IFN-γ at later time points of infection. Further, pDC depletion at chronic stages of infection led to increased hepatic and splenic pathology as well as abrogated Th2 cell cytokine production and activation in the liver. In vitro, mesenteric lymph node pDCs supported Th2 cell responses from infection-experienced CD4+ T cells, a process dependent on pDC IFN-I responsiveness, yet independent of Ag. Together, these data highlight a previously unappreciated role for pDCs and IFN-I in maintaining and reinforcing type 2 immunity in the lymph nodes and inflamed tissue during helminth infection.
Collapse
Affiliation(s)
- Lauren M Webb
- Department of Immunology, University of Washington, Seattle, WA;
| | | | - Alice H Costain
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sheila L Brown
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | | | - Josephine Forde-Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Peter C Cook
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Lucy H Jackson-Jones
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom; and
| | - Angela K Marley
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Karl F Hoffmann
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | | | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom;
| |
Collapse
|
43
|
Coffin AB, Boney R, Hill J, Tian C, Steyger PS. Detecting Novel Ototoxins and Potentiation of Ototoxicity by Disease Settings. Front Neurol 2021; 12:725566. [PMID: 34489859 PMCID: PMC8418111 DOI: 10.3389/fneur.2021.725566] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Over 100 drugs and chemicals are associated with permanent hearing loss, tinnitus, and vestibular deficits, collectively known as ototoxicity. The ototoxic potential of drugs is rarely assessed in pre-clinical drug development or during clinical trials, so this debilitating side-effect is often discovered as patients begin to report hearing loss. Furthermore, drug-induced ototoxicity in adults, and particularly in elderly patients, may go unrecognized due to hearing loss from a variety of etiologies because of a lack of baseline assessments immediately prior to novel therapeutic treatment. During the current pandemic, there is an intense effort to identify new drugs or repurpose FDA-approved drugs to treat COVID-19. Several potential COVID-19 therapeutics are known ototoxins, including chloroquine (CQ) and lopinavir-ritonavir, demonstrating the necessity to identify ototoxic potential in existing and novel medicines. Furthermore, several factors are emerging as potentiators of ototoxicity, such as inflammation (a hallmark of COVID-19), genetic polymorphisms, and ototoxic synergy with co-therapeutics, increasing the necessity to evaluate a drug's potential to induce ototoxicity under varying conditions. Here, we review the potential of COVID-19 therapies to induce ototoxicity and factors that may compound their ototoxic effects. We then discuss two models for rapidly detecting the potential for ototoxicity: mammalian auditory cell lines and the larval zebrafish lateral line. These models offer considerable value for pre-clinical drug development, including development of COVID-19 therapies. Finally, we show the validity of in silico screening for ototoxic potential using a computational model that compares structural similarity of compounds of interest with a database of known ototoxins and non-ototoxins. Preclinical screening at in silico, in vitro, and in vivo levels can provide an earlier indication of the potential for ototoxicity and identify the subset of candidate therapeutics for treating COVID-19 that need to be monitored for ototoxicity as for other widely-used clinical therapeutics, like aminoglycosides and cisplatin.
Collapse
Affiliation(s)
| | | | - Jordan Hill
- Washington State University Vancouver, Vancouver, WA, United States
| | - Cong Tian
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Peter S. Steyger
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
- National Center for Rehabilitative Auditory Research, Portland, OR, United States
| |
Collapse
|
44
|
Lai L, Zhang A, Yang B, Charles EJ, Kron IL, Yang Z. Plasmacytoid Dendritic Cells Mediate Myocardial Ischemia/Reperfusion Injury by Secreting Type I Interferons. J Am Heart Assoc 2021; 10:e020754. [PMID: 34325534 PMCID: PMC8475660 DOI: 10.1161/jaha.121.020754] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background We previously demonstrated that ischemically injured cardiomyocytes release cell‐free DNA and HMGB1 (high mobility group box 1 protein) into circulation during reperfusion, activating proinflammatory responses and ultimately exacerbating reperfusion injury. We hypothesize that cell‐free DNA and HMGB1 mediate myocardial ischemia‐reperfusion injury by stimulating plasmacytoid dendritic cells (pDCs) to secrete type I interferon (IFN‐I). Methods and Results C57BL/6 and interferon alpha receptor‐1 knockout mice underwent 40 minutes of left coronary artery occlusion followed by 60 minutes of reperfusion (40′/60′ IR) before infarct size was evaluated by 2,3,5‐Triphenyltetrazolium chloride–Blue staining. Cardiac perfusate was acquired in ischemic hearts without reperfusion by antegrade perfusion of the isolated heart. Flow cytometry in pDC‐depleted mice treated with multiple doses of plasmacytoid dendritic cell antigen‐1 antibody via intraperitoneal injection demonstrated plasmacytoid dendritic cell antigen‐1 antibody treatment had no effect on conventional splenic dendritic cells but significantly reduced splenic pDCs by 60%. pDC‐depleted mice had significantly smaller infarct size and decreased plasma interferon‐α and interferon‐β compared with control. Blockade of the type I interferon signaling pathway with cyclic GMP‐AMP synthase inhibitor, stimulator of interferon genes antibody, or interferon regulatory factor 3 antibody upon reperfusion similarly significantly attenuated infarct size by 45%. Plasma levels of interferon‐α and interferon‐β were significantly reduced in cyclic GMP‐AMP synthase inhibitor‐treated mice. Infarct size was significantly reduced by >30% in type I interferon receptor monoclonal antibody–treated mice and interferon alpha receptor‐1 knockout mice. In splenocyte culture, 40′/0′ cardiac perfusate treatment stimulated interferon‐α and interferon‐β production; however, this effect disappeared in the presence of cyclic GMP‐AMP synthase inhibitor. Conclusions Type I interferon production is stimulated following myocardial ischemia by cardiogenic cell‐free DNA/HMGB1 in a pDC‐dependent manner, and subsequently activates type I interferon receptors to exacerbate reperfusion injury. These results identify new potential therapeutic targets to attenuate myocardial ischemia‐reperfusion injury.
Collapse
Affiliation(s)
- Lina Lai
- Department of Surgery University of Virginia Charlottesville VA.,Department of Pharmacology Changzhi Medical College Changzhi City Shanxi Province China
| | - Aimee Zhang
- Department of Surgery University of Virginia Charlottesville VA
| | - Boris Yang
- Department of Surgery University of Virginia Charlottesville VA
| | - Eric J Charles
- Department of Surgery University of Virginia Charlottesville VA
| | - Irving L Kron
- Department of Surgery University of Virginia Charlottesville VA
| | - Zequan Yang
- Department of Surgery University of Virginia Charlottesville VA
| |
Collapse
|
45
|
Abdelmoaty M, Yeapuri P, Machhi J, Olson K, Shahjin F, Zhou Y, Jingjing L, Pandey K, Acharya A, Byrareddy S, Mosley L, Gendelman H. Defining the Immune Responses for SARS-CoV-2-Human Macrophage Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.07.07.449660. [PMID: 34268510 PMCID: PMC8282098 DOI: 10.1101/2021.07.07.449660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Host innate immune response follows severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and it is the driver of the acute respiratory distress syndrome (ARDS) amongst other inflammatory end-organ morbidities. Such life-threatening coronavirus disease 2019 (COVID-19) is heralded by virus-induced activation of mononuclear phagocytes (MPs; monocytes, macrophages, and dendritic cells). MPs play substantial roles in aberrant immune secretory activities affecting profound systemic inflammation and end organ malfunctions. All follow an abortive viral infection. To elucidate SARS-CoV-2-MP interactions we investigated transcriptomic and proteomic profiles of human monocyte-derived macrophages. While expression of the SARS-CoV-2 receptor, the angiotensin-converting enzyme 2, paralleled monocyte-macrophage differentiation it failed to affect productive viral infection. In contrast, simple macrophage viral exposure led to robust pro-inflammatory cytokine and chemokine expression but attenuated type I interferon (IFN) activity. Both paralleled dysregulation of innate immune signaling pathways specifically those linked to IFN. We conclude that the SARS-CoV-2-infected host mounts a robust innate immune response characterized by a pro-inflammatory storm heralding consequent end-organ tissue damage.
Collapse
|
46
|
Lu ZD, Chen YF, Shen S, Xu CF, Wang J. Co-delivery of Phagocytosis Checkpoint Silencer and Stimulator of Interferon Genes Agonist for Synergetic Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29424-29438. [PMID: 34129318 DOI: 10.1021/acsami.1c08329] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Efficient capture and presentation of tumor antigens by antigen-presenting cells (APCs), especially dendritic cells (DCs), are crucial for activating the anti-tumor immunity. However, APCs are immunosuppressed in the tumor microenvironment, which hinders the tumor elimination. To reprogram APCs for inducing strong anti-tumor immunity, we report here a co-delivery immunotherapeutic strategy targeting the phagocytosis checkpoint (signal regulatory protein α, SIRPα) and stimulator of interferon genes (STING) of APCs to jointly enhance their ability of capturing and presenting tumor antigens. In brief, a small interfering RNA targeting SIRPα (siSIRPα) and a STING agonist (cGAMP) were co-delivered into APCs by the encapsulation into poly(ethylene glycol)-b-poly(lactide-co-glycolide)-based polymeric nanoparticles (NPsiSIRPα/cGAMP). siSIRPα-mediated SIRPα silence promoted APCs to actively capture tumor antigens by engulfing tumor cells. The cGAMP-stimulated STING signaling pathway further enhanced the functions of APCs, thereby increased the activation and expansion of CD8+ T cells. Using ovalbumin (OVA)-expressing melanoma as a model, we demonstrated that NPsiSIRPα/cGAMP stimulated the activation of OVA-specific CD8+ T cells and induced holistic anti-tumor immune responses by reversing the immunosuppressive phenotype of APCs. Collectively, this co-delivery strategy synergistically enhanced the functions of APCs and can be extended to the treatment of tumors with poor immunogenicity.
Collapse
Affiliation(s)
- Zi-Dong Lu
- School of Medicine, South China University of Technology, Guangzhou 510006, P.R. China
| | - Yi-Fang Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P.R. China
| | - Song Shen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P.R. China
- Shenzhen Bay Laboratory, Shenzhen 518132, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
| | - Cong-Fei Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P.R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P.R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P.R. China
| |
Collapse
|
47
|
Ren H, Mou Y, Lin L, Wang L, Hu H. Efficient antigen cross-presentation through coating conventional aluminum adjuvant particles with PEI. Am J Transl Res 2021; 13:4092-4102. [PMID: 34150001 PMCID: PMC8205809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Classical aluminum adjuvant is a deficient antigen carrier for cross-presentation and cross-priming of CD8+ cytotoxic T cells. Our previous research has demonstrated that cross-presentation efficiency significantly increased when antigens are conjugated covalently to α-Al2O3 nanoparticles. Here we found that coating conventional aluminum adjuvants with polyethyleneimine (PEI) could enhance antigen cross-presentation of DCs (dendritic cells) in vitro and in vivo. PEIs exerted differential effects on antigen cross-presentation. These findings provided an alternative approach to promote the rapid translation of alumina nanoparticles adjuvants into clinical application.
Collapse
Affiliation(s)
- Hongyan Ren
- Department of Pathology and Pathophysiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese MedicineNanjing 210023, P. R. China
- Laboratory of Cancer Immunobiology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer CenterPortland, OR, USA
| | - Yongbin Mou
- Laboratory of Cancer Immunobiology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer CenterPortland, OR, USA
- Nanjing Stomatological Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Lin Lin
- Laboratory of Cancer Immunobiology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer CenterPortland, OR, USA
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese MedicineChina
| | - Lixin Wang
- School of Medicine, Southeast UniversityNanjing, China
| | - Hongming Hu
- Laboratory of Cancer Immunobiology, Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer CenterPortland, OR, USA
| |
Collapse
|
48
|
Schmerer N, Schulte LN. Long noncoding RNAs in bacterial infection. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1664. [PMID: 33989449 DOI: 10.1002/wrna.1664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 11/10/2022]
Abstract
Infectious and inflammatory diseases remain major causes of mortality and morbidity worldwide. To combat bacterial infections, the mammalian immune system employs a myriad of regulators, which secure the effective initiation of inflammatory responses while preventing pathologies due to overshooting immunity. Recently, the human genome has been shown to be pervasively transcribed and to generate thousands of still poorly characterized long noncoding RNAs (lncRNAs). A growing body of literature suggests that lncRNAs play important roles in the regulatory circuitries controlling innate and adaptive immune responses to bacterial pathogens. This review provides an overview of the roles of lncRNAs in the interaction of human and rodent host cells with bacterial pathogens. Further decoding of the lncRNA networks that underlie pathological inflammation and immune subversion could provide new insights into the host cell mechanisms and microbial strategies that determine the outcome of bacterial infections. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Nils Schmerer
- Institute for Lung Research, Philipps-University, Marburg, Germany
| | - Leon N Schulte
- Institute for Lung Research, Philipps-University, Marburg, Germany.,German Center for Lung Research, Giessen, Germany
| |
Collapse
|
49
|
Kosyreva A, Dzhalilova D, Lokhonina A, Vishnyakova P, Fatkhudinov T. The Role of Macrophages in the Pathogenesis of SARS-CoV-2-Associated Acute Respiratory Distress Syndrome. Front Immunol 2021; 12:682871. [PMID: 34040616 PMCID: PMC8141811 DOI: 10.3389/fimmu.2021.682871] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022] Open
Abstract
Macrophages are cells that mediate both innate and adaptive immunity reactions, playing a major role in both physiological and pathological processes. Systemic SARS-CoV-2-associated complications include acute respiratory distress syndrome (ARDS), disseminated intravascular coagulation syndrome, edema, and pneumonia. These are predominantly effects of massive macrophage activation that collectively can be defined as macrophage activation syndrome. In this review we focus on the role of macrophages in COVID-19, as pathogenesis of the new coronavirus infection, especially in cases complicated by ARDS, largely depends on macrophage phenotypes and functionalities. We describe participation of monocytes, monocyte-derived and resident lung macrophages in SARS-CoV-2-associated ARDS and discuss possible utility of cell therapies for its treatment, notably the use of reprogrammed macrophages with stable pro- or anti-inflammatory phenotypes.
Collapse
Affiliation(s)
- Anna Kosyreva
- Department of Neuromorphology, Science Research Institute of Human Morphology, Moscow, Russia
- Histology Department, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Dzhuliia Dzhalilova
- Department of Immunomorphology of Inflammation, Science Research Institute of Human Morphology, Moscow, Russia
| | - Anastasia Lokhonina
- Histology Department, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Polina Vishnyakova
- Histology Department, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Timur Fatkhudinov
- Histology Department, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Growth and Development, Science Research Institute of Human Morphology, Moscow, Russia
| |
Collapse
|
50
|
Labarta-Bajo L, Nilsen SP, Humphrey G, Schwartz T, Sanders K, Swafford A, Knight R, Turner JR, Zúñiga EI. Type I IFNs and CD8 T cells increase intestinal barrier permeability after chronic viral infection. J Exp Med 2021; 217:152069. [PMID: 32880630 PMCID: PMC7953738 DOI: 10.1084/jem.20192276] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/29/2020] [Accepted: 08/06/2020] [Indexed: 12/16/2022] Open
Abstract
Intestinal barrier leakage constitutes a potential therapeutic target for many inflammatory diseases and represents a disease progression marker during chronic viral infections. However, the causes of altered gut barrier remain mostly unknown. Using murine infection with lymphocytic choriomeningitis virus, we demonstrate that, in contrast to an acute viral strain, a persistent viral isolate leads to long-term viral replication in hematopoietic and mesenchymal cells, but not epithelial cells (IECs), in the intestine. Viral persistence drove sustained intestinal epithelial barrier leakage, which was characterized by increased paracellular flux of small molecules and was associated with enhanced colitis susceptibility. Type I IFN signaling caused tight junction dysregulation in IECs, promoted gut microbiome shifts and enhanced intestinal CD8 T cell responses. Notably, both type I IFN receptor blockade and CD8 T cell depletion prevented infection-induced barrier leakage. Our study demonstrates that infection with a virus that persistently replicates in the intestinal mucosa increases epithelial barrier permeability and reveals type I IFNs and CD8 T cells as causative factors of intestinal leakage during chronic infections.
Collapse
Affiliation(s)
- Lara Labarta-Bajo
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| | - Steven P Nilsen
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Gregory Humphrey
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Tara Schwartz
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Karenina Sanders
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Austin Swafford
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, La Jolla, CA.,Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA.,Department of Bioengineering, University of California, San Diego, La Jolla, CA.,Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Elina I Zúñiga
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA
| |
Collapse
|