1
|
Karakus U, Sempere Borau M, Martínez-Barragán P, von Kempis J, Yildiz S, Arroyo-Fernández LM, Pohl MO, Steiger JA, Glas I, Hunziker A, García-Sastre A, Stertz S. MHC class II proteins mediate sialic acid independent entry of human and avian H2N2 influenza A viruses. Nat Microbiol 2024; 9:2626-2641. [PMID: 39009691 DOI: 10.1038/s41564-024-01771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024]
Abstract
Influenza A viruses (IAV) pose substantial burden on human and animal health. Avian, swine and human IAV bind sialic acid on host glycans as receptor, whereas some bat IAV require MHC class II complexes for cell entry. It is unknown how this difference evolved and whether dual receptor specificity is possible. Here we show that human H2N2 IAV and related avian H2N2 possess dual receptor specificity in cell lines and primary human airway cultures. Using sialylation-deficient cells, we reveal that entry via MHC class II is independent of sialic acid. We find that MHC class II from humans, pigs, ducks, swans and chickens but not bats can mediate H2 IAV entry and that this is conserved in Eurasian avian H2. Our results demonstrate that IAV can possess dual receptor specificity for sialic acid and MHC class II, and suggest a role for MHC class II-dependent entry in zoonotic IAV infections.
Collapse
Affiliation(s)
- Umut Karakus
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - Soner Yildiz
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Marie O Pohl
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Julia A Steiger
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Irina Glas
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Annika Hunziker
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Silke Stertz
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Medina-Armenteros Y, Cajado-Carvalho D, das Neves Oliveira R, Apetito Akamatsu M, Lee Ho P. Recent Occurrence, Diversity, and Candidate Vaccine Virus Selection for Pandemic H5N1: Alert Is in the Air. Vaccines (Basel) 2024; 12:1044. [PMID: 39340074 PMCID: PMC11435632 DOI: 10.3390/vaccines12091044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
The prevalence of the highly pathogenic avian influenza virus H5N1 in wild birds that migrate all over the world has resulted in the dissemination of this virus across Asia, Europe, Africa, North and South America, the Arctic continent, and Antarctica. So far, H5N1 clade 2.3.4.4.b has reached an almost global distribution, with the exception of Australia and New Zealand for autochthonous cases. H5N1 clade 2.3.4.4.b, derived from the broad-host-range A/Goose/Guangdong/1/96 (H5N1) lineage, has evolved, adapted, and spread to species other than birds, with potential mammal-to-mammal transmission. Many public health agencies consider H5N1 influenza a real pandemic threat. In this sense, we analyzed H5N1 hemagglutinin sequences from recent outbreaks in animals, clinical samples, antigenic prototypes of candidate vaccine viruses, and licensed human vaccines for H5N1 with the aim of shedding light on the development of an H5N1 vaccine suitable for a pandemic response, should one occur in the near future.
Collapse
Affiliation(s)
| | | | | | - Milena Apetito Akamatsu
- Centro BioIndustrial, Instituto Butantan and Fundação Butantan, São Paulo 05503-900, SP, Brazil; (Y.M.-A.); (D.C.-C.); (R.d.N.O.)
| | - Paulo Lee Ho
- Centro BioIndustrial, Instituto Butantan and Fundação Butantan, São Paulo 05503-900, SP, Brazil; (Y.M.-A.); (D.C.-C.); (R.d.N.O.)
| |
Collapse
|
3
|
Guo X, Zhou Y, Yan H, An Q, Liang C, Liu L, Qian J. Molecular Markers and Mechanisms of Influenza A Virus Cross-Species Transmission and New Host Adaptation. Viruses 2024; 16:883. [PMID: 38932174 PMCID: PMC11209369 DOI: 10.3390/v16060883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Influenza A viruses continue to be a serious health risk to people and result in a large-scale socio-economic loss. Avian influenza viruses typically do not replicate efficiently in mammals, but through the accumulation of mutations or genetic reassortment, they can overcome interspecies barriers, adapt to new hosts, and spread among them. Zoonotic influenza A viruses sporadically infect humans and exhibit limited human-to-human transmission. However, further adaptation of these viruses to humans may result in airborne transmissible viruses with pandemic potential. Therefore, we are beginning to understand genetic changes and mechanisms that may influence interspecific adaptation, cross-species transmission, and the pandemic potential of influenza A viruses. We also discuss the genetic and phenotypic traits associated with the airborne transmission of influenza A viruses in order to provide theoretical guidance for the surveillance of new strains with pandemic potential and the prevention of pandemics.
Collapse
Affiliation(s)
- Xinyi Guo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| | - Yang Zhou
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Huijun Yan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (H.Y.); (C.L.)
| | - Qing An
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China;
| | - Chudan Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (H.Y.); (C.L.)
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou 510080, China
| | - Linna Liu
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Jun Qian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou 510080, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| |
Collapse
|
4
|
Kieran TJ, Sun X, Creager HM, Tumpey TM, Maines TR, Belser JA. An aggregated dataset of serial morbidity and titer measurements from influenza A virus-infected ferrets. Sci Data 2024; 11:510. [PMID: 38760422 PMCID: PMC11101425 DOI: 10.1038/s41597-024-03256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/11/2024] [Indexed: 05/19/2024] Open
Abstract
Data from influenza A virus (IAV) infected ferrets provides invaluable information towards the study of novel and emerging viruses that pose a threat to human health. This gold standard model can recapitulate many clinical signs of infection present in IAV-infected humans, support virus replication of human, avian, swine, and other zoonotic strains without prior adaptation, and permit evaluation of virus transmissibility by multiple modes. While ferrets have been employed in risk assessment settings for >20 years, results from this work are typically reported in discrete stand-alone publications, making aggregation of raw data from this work over time nearly impossible. Here, we describe a dataset of 728 ferrets inoculated with 126 unique IAV, conducted by a single research group under a uniform experimental protocol. This collection of morbidity, mortality, and viral titer data represents the largest publicly available dataset to date of in vivo-generated IAV infection outcomes on a per-ferret level.
Collapse
Affiliation(s)
- Troy J Kieran
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Xiangjie Sun
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Hannah M Creager
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
- University of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Terrence M Tumpey
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Taronna R Maines
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Jessica A Belser
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| |
Collapse
|
5
|
Spruit CM, Palme DI, Li T, Ríos Carrasco M, Gabarroca García A, Sweet IR, Kuryshko M, Maliepaard JCL, Reiding KR, Scheibner D, Boons GJ, Abdelwhab EM, de Vries RP. Complex N-glycans are important for interspecies transmission of H7 influenza A viruses. J Virol 2024; 98:e0194123. [PMID: 38470143 PMCID: PMC11019957 DOI: 10.1128/jvi.01941-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/20/2024] [Indexed: 03/13/2024] Open
Abstract
Influenza A viruses (IAVs) can overcome species barriers by adaptation of the receptor-binding site of the hemagglutinin (HA). To initiate infection, HAs bind to glycan receptors with terminal sialic acids, which are either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc); the latter is mainly found in horses and pigs but not in birds and humans. We investigated the influence of previously identified equine NeuGc-adapting mutations (S128T, I130V, A135E, T189A, and K193R) in avian H7 IAVs in vitro and in vivo. We observed that these mutations negatively affected viral replication in chicken cells but not in duck cells and positively affected replication in horse cells. In vivo, the mutations reduced virus virulence and mortality in chickens. Ducks excreted high viral loads longer than chickens, although they appeared clinically healthy. To elucidate why these viruses infected chickens and ducks despite the absence of NeuGc, we re-evaluated the receptor binding of H7 HAs using glycan microarray and flow cytometry studies. This re-evaluation demonstrated that mutated avian H7 HAs also bound to α2,3-linked NeuAc and sialyl-LewisX, which have an additional fucose moiety in their terminal epitope, explaining why infection of ducks and chickens was possible. Interestingly, the α2,3-linked NeuAc and sialyl-LewisX epitopes were only bound when presented on tri-antennary N-glycans, emphasizing the importance of investigating the fine receptor specificities of IAVs. In conclusion, the binding of NeuGc-adapted H7 IAV to tri-antennary N-glycans enables viral replication and shedding by chickens and ducks, potentially facilitating interspecies transmission of equine-adapted H7 IAVs.IMPORTANCEInfluenza A viruses (IAVs) cause millions of deaths and illnesses in birds and mammals each year. The viral surface protein hemagglutinin initiates infection by binding to host cell terminal sialic acids. Hemagglutinin adaptations affect the binding affinity to these sialic acids and the potential host species targeted. While avian and human IAVs tend to bind to N-acetylneuraminic acid (sialic acid), equine H7 viruses prefer binding to N-glycolylneuraminic acid (NeuGc). To better understand the function of NeuGc-specific adaptations in hemagglutinin and to elucidate interspecies transmission potential NeuGc-adapted viruses, we evaluated the effects of NeuGc-specific mutations in avian H7 viruses in chickens and ducks, important economic hosts and reservoir birds, respectively. We also examined the impact on viral replication and found a binding affinity to tri-antennary N-glycans containing different terminal epitopes. These findings are significant as they contribute to the understanding of the role of receptor binding in avian influenza infection.
Collapse
Affiliation(s)
- Cindy M. Spruit
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Diana I. Palme
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Tiehai Li
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - María Ríos Carrasco
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Alba Gabarroca García
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Igor R. Sweet
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Maryna Kuryshko
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Joshua C. L. Maliepaard
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Karli R. Reiding
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Elsayed M. Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
6
|
Yang J, Lan R, Chang H, Li H, Yu H, Tong Q, Liu J, Sun H. Isolation and characterization of genotype 4 Eurasian avian-like H1N1 influenza virus in pigs suffering from pneumonia. Virology 2024; 592:110009. [PMID: 38330852 DOI: 10.1016/j.virol.2024.110009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/28/2023] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Swine influenza viruses pose ongoing threat to pork industry throughout the world. In 2023, fattening pigs from a swine farm in Inner Mongolia of China experienced influenza-like symptoms. Co-infection of influenza A virus with Pasteurella multocida was diagnosed in lung tissues of diseased pigs and a genotype 4 (G4) Eurasian avian-like (EA) H1N1 virus was isolated, which was named as A/swine/Neimenggu/0326/2023. We demonstrated the virus preferentially bound human-like SAα2,6Gal receptor. It was noteworthy that the virus possessed multiple genetic markers for mammalian adaptation in the internal genes. Animal studies showed that compared with genotype 1 (G1) EA H1N1 virus and early prevalent G4 EA H1N1 virus, A/swine/Neimenggu/0326/2023 virus exhibited increased virus shedding, enhanced replication in lungs, and caused more severe lung lesions in pigs. These findings indicate that the G4 EA H1N1 virus poses increased threat to pork industry, controlling the prevailing viruses in pigs should be promptly implemented.
Collapse
Affiliation(s)
- Jizhe Yang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Riguo Lan
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Haoyu Chang
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Han Li
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Haili Yu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Qi Tong
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jinhua Liu
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Honglei Sun
- National Key Laboratory of Veterinary Public Health and Safety, Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Sergeeva Y, Yeung SY, Sellergren B. Heteromultivalent Ligand Display on Reversible Self-Assembled Monolayers (rSAMs): A Fluidic Platform for Tunable Influenza Virus Recognition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3139-3146. [PMID: 38197122 PMCID: PMC10811624 DOI: 10.1021/acsami.3c15699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024]
Abstract
We report on the design of heteromultivalent influenza A virus (IAV) receptors based on reversible self-assembled monolayers (SAMs) featuring two distinct mobile ligands. The principal layer building blocks consist of α-(4-amidinophenoxy)alkanes decorated at the ω-position with sialic acid (SA) and the neuraminidase inhibitor Zanamivir (Zan), acting as two mobile ligands binding to the complementary receptors hemagglutinin (HA) and neuraminidase (NA) on the virus surface. From ternary amphiphile mixtures comprising these ligands, the amidines spontaneously self-assemble on top of carboxylic acid-terminated SAMs to form reversible mixed monolayers (rSAMs) that are easily tunable with respect to the ligand ratio. We show that this results in the ability to construct surfaces featuring a very strong affinity for the surface proteins and specific virus subtypes. Hence, an rSAM prepared from solutions containing 15% SA and 10% Zan showed an exceptionally high affinity and selectivity for the avian IAV H7N9 (Kd = 11 fM) that strongly exceeded the affinity for other subtypes (H3N2, H5N1, H1N1). Changing the SA/Zan ratio resulted in changes in the relative preference between the four tested subtypes, suggesting this to be a key parameter for rapid adjustments of both virus affinity and selectivity.
Collapse
Affiliation(s)
- Yulia Sergeeva
- Department of Biomedical
Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty
of Health and Society, Malmö University, 205 06 Malmö, Sweden
| | | | - Börje Sellergren
- Department of Biomedical
Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty
of Health and Society, Malmö University, 205 06 Malmö, Sweden
| |
Collapse
|
8
|
Neasham PJ, Pliasas VC, North JF, Johnson C, Tompkins SM, Kyriakis CS. Development and characterization of an immortalized swine respiratory cell line for influenza A virus research. Front Vet Sci 2023; 10:1258269. [PMID: 38179335 PMCID: PMC10765598 DOI: 10.3389/fvets.2023.1258269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/16/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction Swine serve as an important intermediate host species for generating novel influenza A viruses (IAVs) with pandemic potential because of the host's susceptibility to IAVs of swine, human and avian origin. Primary respiratory cell lines are used in IAV research to model the host's upper respiratory tract in vitro. However, primary cell lines are limited by their passaging capacity and are time-consuming for use in industry and research pipelines. We were interested in developing and characterizing a biologically relevant immortalized swine respiratory cell line that could be used for efficient propagation and characterization of swine IAV isolates. Methods Lung tissue for the generation of primary swine respiratory cells were isolated from the bronchi of an 8-week-old Yorkshire/Hampshire pig, which were immortalized by transduction of the SV40 T antigen using a lentivirus vector. The transduction of the SV40 T antigen was confirmed by Real Time RT-PCR in cells passaged greater than twenty times. Results Immortalized swine respiratory cells expressed primarily α2,6 sialic acid receptors and were susceptible to both swine and human IAVs, with swine viruses exhibiting higher replication rates. Notably, infection with a swine H3N2 isolate prompted increased IL-6 and IL-1α protein secretion compared to a seasonal human H3N2 virus. Even after 20 passages, the immortalized cells maintained the primary respiratory cell phenotype and remained permissive to IAV infection without exogenous trypsin. Discussion In summary, our developed immortalized swine respiratory cell line offers an alternative in vitro substrate for studying IAV replication and transmission dynamics in pigs, overcoming the limitations of primary respiratory cells in terms of low passage survivability and cost.
Collapse
Affiliation(s)
- Peter J. Neasham
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Vasilis C. Pliasas
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - J. Fletcher North
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Celeste Johnson
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - S. Mark Tompkins
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | - Constantinos S. Kyriakis
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| |
Collapse
|
9
|
Yan Z, Li Y, Huang S, Wen F. Global distribution, receptor binding, and cross-species transmission of H6 influenza viruses: risks and implications for humans. J Virol 2023; 97:e0137023. [PMID: 37877722 PMCID: PMC10688349 DOI: 10.1128/jvi.01370-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
The H6 subtype of avian influenza virus (AIV) is a pervasive subtype that is ubiquitously found in both wild bird and poultry populations across the globe. Recent investigations have unveiled its capacity to infect mammals, thereby expanding its host range beyond that of other subtypes and potentially facilitating its global transmission. This heightened breadth also endows H6 AIVs with the potential to serve as a genetic reservoir for the emergence of highly pathogenic avian influenza strains through genetic reassortment and adaptive mutations. Furthermore, alterations in key amino acid loci within the H6 AIV genome foster the evolution of viral infection mechanisms, which may enable the virus to surmount interspecies barriers and infect mammals, including humans, thus posing a potential threat to human well-being. In this review, we summarize the origins, dissemination patterns, geographical distribution, cross-species transmission dynamics, and genetic attributes of H6 influenza viruses. This study holds implications for the timely detection and surveillance of H6 AIVs.
Collapse
Affiliation(s)
- Zhanfei Yan
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - You Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
10
|
Giri T, Panda S, Palanisamy A. Pregnancy-induced differential expression of SARS-CoV-2 and influenza a viral entry factors in the lower respiratory tract. PLoS One 2023; 18:e0281033. [PMID: 37437040 DOI: 10.1371/journal.pone.0281033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023] Open
Abstract
Despite differences in the clinical presentation of coronavirus disease-19 and pandemic influenza in pregnancy, fundamental mechanistic insights are currently lacking because of the difficulty in recruiting critically ill pregnant subjects for research studies. Therefore, to better understand host-pathogen interaction during pregnancy, we performed a series of foundational experiments in pregnant rats at term gestation to assess the expression of host entry factors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) and genes associated with innate immune response in the lower respiratory tract. We report that pregnancy is characterized by a decrease in host factors mediating SARS-CoV-2 entry and an increase in host factors mediating IAV entry. Furthermore, using flow cytometric assessment of immune cell populations and immune provocation studies, we show an increased prevalence of plasmacytoid dendritic cells and a Type I interferon-biased environment in the lower respiratory tract of pregnancy, contrary to the expected immunological indolence. Our findings, therefore, suggest that the dissimilar clinical presentation of COVID-19 and pandemic influenza A in pregnancy could partly be due to differences in the extent of innate immune activation from altered viral tropism and indicate the need for comparative mechanistic investigations with live virus studies.
Collapse
Affiliation(s)
- Tusar Giri
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Santosh Panda
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Arvind Palanisamy
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States of America
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States of America
| |
Collapse
|
11
|
Yin R, Luo Z, Zhuang P, Zeng M, Li M, Lin Z, Kwoh CK. ViPal: A framework for virulence prediction of influenza viruses with prior viral knowledge using genomic sequences. J Biomed Inform 2023; 142:104388. [PMID: 37178781 PMCID: PMC10602211 DOI: 10.1016/j.jbi.2023.104388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Influenza viruses pose great threats to public health and cause enormous economic losses every year. Previous work has revealed the viral factors associated with the virulence of influenza viruses in mammals. However, taking prior viral knowledge represented by heterogeneous categorical and discrete information into account to explore virus virulence is scarce in the existing work. How to make full use of the preceding domain knowledge in virulence study is challenging but beneficial. This paper proposes a general framework named ViPal for virulence prediction in mice that incorporates discrete prior viral mutation and reassortment information based on all eight influenza segments. The posterior regularization technique is leveraged to transform prior viral knowledge into constraint features and integrated into the machine learning models. Experimental results on influenza genomic datasets validate that our proposed framework can improve virulence prediction performance over baselines. The comparison between ViPal and other existing methods shows the computational efficiency of our framework with comparable or superior performance. Moreover, the interpretable analysis through SHAP (SHapley Additive exPlanations) identifies the scores of constraint features contributing to the prediction. We hope this framework could provide assistance for the accurate detection of influenza virulence and facilitate flu surveillance.
Collapse
Affiliation(s)
- Rui Yin
- Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, USA; School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Zihan Luo
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Zhuang
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Min Zeng
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Zhuoyi Lin
- School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
12
|
Escudero-Pérez B, Lalande A, Mathieu C, Lawrence P. Host–Pathogen Interactions Influencing Zoonotic Spillover Potential and Transmission in Humans. Viruses 2023; 15:v15030599. [PMID: 36992308 PMCID: PMC10060007 DOI: 10.3390/v15030599] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Emerging infectious diseases of zoonotic origin are an ever-increasing public health risk and economic burden. The factors that determine if and when an animal virus is able to spill over into the human population with sufficient success to achieve ongoing transmission in humans are complex and dynamic. We are currently unable to fully predict which pathogens may appear in humans, where and with what impact. In this review, we highlight current knowledge of the key host–pathogen interactions known to influence zoonotic spillover potential and transmission in humans, with a particular focus on two important human viruses of zoonotic origin, the Nipah virus and the Ebola virus. Namely, key factors determining spillover potential include cellular and tissue tropism, as well as the virulence and pathogenic characteristics of the pathogen and the capacity of the pathogen to adapt and evolve within a novel host environment. We also detail our emerging understanding of the importance of steric hindrance of host cell factors by viral proteins using a “flytrap”-type mechanism of protein amyloidogenesis that could be crucial in developing future antiviral therapies against emerging pathogens. Finally, we discuss strategies to prepare for and to reduce the frequency of zoonotic spillover occurrences in order to minimize the risk of new outbreaks.
Collapse
Affiliation(s)
- Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel-Reims, 38124 Braunschweig, Germany
| | - Alexandre Lalande
- CIRI (Centre International de Recherche en Infectiologie), Team Neuro-Invasion, TROpism and VIRal Encephalitis, INSERM U1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Cyrille Mathieu
- CIRI (Centre International de Recherche en Infectiologie), Team Neuro-Invasion, TROpism and VIRal Encephalitis, INSERM U1111, CNRS UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Philip Lawrence
- CONFLUENCE: Sciences et Humanités (EA 1598), Université Catholique de Lyon (UCLy), 69002 Lyon, France
- Correspondence:
| |
Collapse
|
13
|
Detection and Characterization of an H9N2 Influenza A Virus in the Egyptian Rousette Bat in Limpopo, South Africa. Viruses 2023; 15:v15020498. [PMID: 36851712 PMCID: PMC9958621 DOI: 10.3390/v15020498] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
In recent years, bats have been shown to host various novel bat-specific influenza viruses, including H17N10 and H18N11 in the Americas and the H9N2 subtype from Africa. Rousettus aegyptiacus (Egyptian Rousette bat) is recognized as a host species for diverse viral agents. This study focused on the molecular surveillance of a maternal colony in Limpopo, South Africa, between 2017-2018. A pan-influenza hemi-nested RT-PCR assay targeting the PB1 gene was established, and influenza A virus RNA was identified from one fecal sample out of 860 samples. Genome segments were recovered using segment-specific amplification combined with standard Sanger sequencing and Illumina unbiased sequencing. The identified influenza A virus was closely related to the H9N2 bat-influenza virus, confirming the circulation of this subtype among Egyptian fruit bat populations in Southern Africa. This bat H9N2 subtype contained amino acid residues associated with transmission and virulence in either mammalian or avian hosts, though it will likely require additional adaptations before spillover.
Collapse
|
14
|
Wang Q, Zeng X, Tang S, Lan L, Wang X, Lai Z, Liu Z, Hou X, Gao L, Yun C, Zhang Z, Leng J, Fan X. Pathogenicity and anti-infection immunity of animal H3N2 and H6N6 subtype influenza virus cross-species infection with tree shrews. Virus Res 2023; 324:199027. [PMID: 36543317 DOI: 10.1016/j.virusres.2022.199027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/11/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
Animal influenza viruses can spread across species and pose a fatal threat to human health due to the high pathogenicity and mortality. Animal models are crucial for studying cross-species infection and the pathogenesis of influenza viruses. Tupaia belangeri (tree shrew) has been emerging as an animal model for multiple human virus infections recently because of the close genetic relationship and phylogeny with humans. So far, tree shrew has been reported to be susceptible to human influenza virus subtype H1N1, avian influenza viruses subtype H9N2, subtype H5N1, and subtype H7N9. However, the pathogenicity, infection, and immunity of swine and land avian influenza viruses with low pathogenicity and the potential to jump to humans remain largely unexplored in the tree shrew model. Previously, our team has successfully isolated the newly emerging swine influenza virus subtype H3N2 (A/Swine/GX/NS2783/2010, SW2783) and avian influenza virus subtype H6N6 (A/CK/ZZ/346/2014, ZZ346). In this study, we observed the pathogenicity, immune characteristics, and cross-species infection potential ability of SW2783 and ZZ346 strains in tree shrew model with 50% tissue culture infective dose (TCID50), hematoxylin and eosin (HE) staining, immunohistochemistry (IHC), real-time quantitative PCR (qRT-PCR) and other experimental methods. Both animal-borne influenza viruses had a strong ability on tissue infection in the turbinate and the trachea of tree shrews in vitro, in which SW2783 showed stronger replication ability than in ZZ346. SW2783 and ZZ346 both showed pathogenic ability with infected tree shrews model in vivo without prior adaptive culture, which mainly happened in the upper respiratory tract. However, the infection ability was weak, the clinical symptoms were mild, and the histopathological changes in the respiratory tract were relatively light. Furthermore, innate immune responses and adaptive immunity were observed in the tree shrew model after the infection of SW2783 and ZZ346 strains. We observed that the unadapted SW2783 and ZZ346 virus could transmit among tree shrews by direct contact. We also observed that SW2783 virus could transmit from tree shrews to guinea pigs. These results indicated that both animal-borne influenza viruses could induce similar pathogenicity and immune response to those caused by human-common influenza viruses. Tree shrews may be an excellent animal model for studying the interaction between the influenza virus and the host and the cross-species infection mechanism of the animal influenza virus.
Collapse
Affiliation(s)
- Qihui Wang
- Department of Immunology, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Xia Zeng
- Department of Immunology, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Shen Tang
- Department of Immunology, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China
| | - Li Lan
- Department of Immunology, Guangxi Medical University, Nanning 530021, China
| | - Xinhang Wang
- Department of Immunology, Guangxi Medical University, Nanning 530021, China
| | - Zhenping Lai
- Department of Microbiology, Guangxi Medical University, Nanning 530021, China
| | - Zihe Liu
- Department of Immunology, Guangxi Medical University, Nanning 530021, China
| | - Xiaoqiong Hou
- Department of Immunology, Guangxi Medical University, Nanning 530021, China
| | - Lingxi Gao
- Department of Microbiology, Guangxi Medical University, Nanning 530021, China
| | - Chenxia Yun
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zengfeng Zhang
- Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China; Department of Microbiology, Guangxi Medical University, Nanning 530021, China.
| | - Jing Leng
- Department of Immunology, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases with Integrative Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Xiaohui Fan
- Guangxi Colleges and Universities Key Laboratory of Preclinical Medicine, Guangxi Medical University, Nanning 530021, China; Department of Microbiology, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
15
|
Pandita P, Bhalla R, Saini A, Mani I. Emerging tools for studying receptor endocytosis and signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:19-48. [PMID: 36631193 DOI: 10.1016/bs.pmbts.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ligands, agonists, or antagonists use receptor-mediated endocytosis (RME) to reach their intracellular targets. After the internalization of ligand-receptor complexes, it traffics through different subcellular organelles such as early endosome, recycling endosome, lysosome, etc. Further, after the ligand binding to the receptor, different second messengers are generated, such as cGMP, cAMP, IP3, etc. Several methods have been used, such as radioligand binding assay, western blotting, co-immunoprecipitation (co-IP), qRT-PCR, immunofluorescence and confocal microscopy, microRNA/siRNA, and bioassays to understand the various events, such as internalization, subcellular trafficking, signaling, metabolic degradation, etc. This chapter briefly discusses the key principles and methods used to study internalization, subcellular trafficking, signaling, and metabolic degradation of numerous receptors.
Collapse
Affiliation(s)
- Pratiksha Pandita
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Rhea Bhalla
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
16
|
Del Rosario JMM, da Costa KAS, Temperton NJ. Pseudotyped Viruses for Influenza. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:153-173. [PMID: 36920696 DOI: 10.1007/978-981-99-0113-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
We have developed an influenza hemagglutinin (HA) pseudotype (PV) library encompassing all influenza A (IAV) subtypes from HA1-HA18, influenza B (IBV) subtypes (both lineages), representative influenza C (ICV), and influenza D (IDV) viruses. These influenza HA (or hemagglutinin-esterase fusion (HEF) for ICV and IDV) pseudotypes have been used in a pseudotype microneutralization assay (pMN), an optimized luciferase reporter assay, that is highly sensitive and specific for detecting neutralizing antibodies against influenza viruses. This has been an invaluable tool in detecting the humoral immune response against specific hemagglutinin or hemagglutinin-esterase fusion proteins for IAV to IDV in serum samples and for screening antibodies for their neutralizing abilities. Additionally, we have also produced influenza neuraminidase (NA) pseudotypes for IAV N1-N9 subtypes and IBV lineages. We have utilized these NA-PV as surrogate antigens in in vitro assays to assess vaccine immunogenicity. These NA PV have been employed as the source of neuraminidase enzyme activity in a pseudotype enzyme-linked lectin assay (pELLA) that is able to measure neuraminidase inhibition (NI) titers of reference antisera, monoclonal antibodies, and postvaccination sera. Here we show the production of influenza HA, HEF, and NA PV and their employment as substitutes for wild-type viruses in influenza serological and neutralization assays. We also introduce AutoPlate, an easily accessible web app that can analyze data from pMN and pELLA quickly and efficiently, plotting inhibition curves and calculating half-maximal concentration (IC50) neutralizing antibody titers. These serological techniques coupled with user-friendly analysis tools are faster, safer, inexpensive alternatives to classical influenza assays while also offering the reliability and reproducibility to advance influenza research and make it more accessible to laboratories around the world.
Collapse
Affiliation(s)
- Joanne Marie M Del Rosario
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich at Medway, Chatham, UK
| | - Kelly A S da Costa
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich at Medway, Chatham, UK
| | - Nigel J Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich at Medway, Chatham, UK.
| |
Collapse
|
17
|
Zhu H, Li X, Chen H, Qian P. Genetic characterization and pathogenicity of a Eurasian avian-like H1N1 swine influenza reassortant virus. Virol J 2022; 19:205. [PMID: 36461007 PMCID: PMC9716174 DOI: 10.1186/s12985-022-01936-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Swine influenza viruses (SIV), considered the "mixing vessels" of influenza viruses, posed a significant threat to global health systems and are dangerous pathogens. Eurasian avian-like H1N1(EA-H1N1) viruses have become predominant in swine populations in China since 2016. METHODS Lung tissue samples were obtained from pregnant sows with miscarriage and respiratory disease in Heilongjiang province, and pathogens were detected by Next-generation sequencing (NGS) and PCR. The nucleic acid of isolates was extracted to detect SIV by RT-PCR. Then, SIV-positive samples were inoculated into embryonated chicken eggs. After successive generations, the isolates were identified by RT-PCR, IFA, WB and TEM. The genetic evolution and pathogenicity to mice of A/swine/Heilongjiang/GN/2020 were analyzed. RESULTS The major pathogens were influenza virus (31%), Simbu orthobunyavirus (15%) and Jingmen tick virus (8%) by NGS, while the pathogen that can cause miscarriage and respiratory disease was influenza virus. The SIV(A/swine/Heilongjiang/GN/2020) with hemagglutination activity was isolated from lung samples and was successfully identified by RT-PCR, IFA, WB and TEM. Homology and phylogenetic analysis showed that A/swine/Heilongjiang/GN/2020 is most closely related to A/swine/Henan/SN/10/2018 and belonged to EA-H1N1. Pathogenicity in mice showed that the EA-H1N1 could cause lethal or exhibit extrapulmonary virus spread and cause severe damage to respiratory tracts effectively proliferating in lung and trachea. CONCLUSION A/swine/Heilongjiang/GN/2020 (EA-H1N1) virus was isolated from pregnant sows with miscarriage and respiratory disease in Heilongjiang province, China. Clinical signs associated with influenza infection were observed during 14 days with A/swine/Heilongjiang/GN/2020 infected mice. These data suggest that A/swine/Heilongjiang/GN/2020 (EA-H1N1) had high pathogenicity and could be systemic spread in mice.
Collapse
Affiliation(s)
- Hechao Zhu
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 Hubei China
| | - Xiangmin Li
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 Hubei China
| | - Huanchun Chen
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 Hubei China
| | - Ping Qian
- grid.35155.370000 0004 1790 4137State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070 Hubei China
| |
Collapse
|
18
|
Warren CJ, Yu S, Peters DK, Barbachano-Guerrero A, Yang Q, Burris BL, Worwa G, Huang IC, Wilkerson GK, Goldberg TL, Kuhn JH, Sawyer SL. Primate hemorrhagic fever-causing arteriviruses are poised for spillover to humans. Cell 2022; 185:3980-3991.e18. [PMID: 36182704 PMCID: PMC9588614 DOI: 10.1016/j.cell.2022.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Accepted: 09/12/2022] [Indexed: 01/26/2023]
Abstract
Simian arteriviruses are endemic in some African primates and can cause fatal hemorrhagic fevers when they cross into primate hosts of new species. We find that CD163 acts as an intracellular receptor for simian hemorrhagic fever virus (SHFV; a simian arterivirus), a rare mode of virus entry that is shared with other hemorrhagic fever-causing viruses (e.g., Ebola and Lassa viruses). Further, SHFV enters and replicates in human monocytes, indicating full functionality of all of the human cellular proteins required for viral replication. Thus, simian arteriviruses in nature may not require major adaptations to the human host. Given that at least three distinct simian arteriviruses have caused fatal infections in captive macaques after host-switching, and that humans are immunologically naive to this family of viruses, development of serology tests for human surveillance should be a priority.
Collapse
Affiliation(s)
- Cody J Warren
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Shuiqing Yu
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Douglas K Peters
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Arturo Barbachano-Guerrero
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Qing Yang
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA
| | - Bridget L Burris
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Gabriella Worwa
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - I-Chueh Huang
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Gregory K Wilkerson
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA.
| | - Sara L Sawyer
- BioFrontiers Institute, Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80303, USA.
| |
Collapse
|
19
|
Doostkam A, Malekmakan L, Hosseinpour A, Janfeshan S, Roozbeh J, Masjedi F. Sialic acid: an attractive biomarker with promising biomedical applications. ASIAN BIOMED 2022; 16:153-167. [PMID: 37551166 PMCID: PMC10321195 DOI: 10.2478/abm-2022-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This broad, narrative review highlights the roles of sialic acids as acidic sugars found on cellular membranes. The role of sialic acids in cellular communication and development has been well established. Recently, attention has turned to the fundamental role of sialic acids in many diseases, including viral infections, cardiovascular diseases, neurological disorders, diabetic nephropathy, and malignancies. Sialic acid may be a target for developing new drugs to treat various cancers and inflammatory processes. We recommend the routine measurement of serum sialic acid as a sensitive inflammatory marker in various diseases.
Collapse
Affiliation(s)
- Aida Doostkam
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Leila Malekmakan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Alireza Hosseinpour
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz7134853185, Iran
| | - Sahar Janfeshan
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Jamshid Roozbeh
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| | - Fatemeh Masjedi
- Shiraz Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz7193635899, Iran
| |
Collapse
|
20
|
Nogales A, DeDiego ML, Martínez-Sobrido L. Live attenuated influenza A virus vaccines with modified NS1 proteins for veterinary use. Front Cell Infect Microbiol 2022; 12:954811. [PMID: 35937688 PMCID: PMC9354547 DOI: 10.3389/fcimb.2022.954811] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Influenza A viruses (IAV) spread rapidly and can infect a broad range of avian or mammalian species, having a tremendous impact in human and animal health and the global economy. IAV have evolved to develop efficient mechanisms to counteract innate immune responses, the first host mechanism that restricts IAV infection and replication. One key player in this fight against host-induced innate immune responses is the IAV non-structural 1 (NS1) protein that modulates antiviral responses and virus pathogenicity during infection. In the last decades, the implementation of reverse genetics approaches has allowed to modify the viral genome to design recombinant IAV, providing researchers a powerful platform to develop effective vaccine strategies. Among them, different levels of truncation or deletion of the NS1 protein of multiple IAV strains has resulted in attenuated viruses able to induce robust innate and adaptive immune responses, and high levels of protection against wild-type (WT) forms of IAV in multiple animal species and humans. Moreover, this strategy allows the development of novel assays to distinguish between vaccinated and/or infected animals, also known as Differentiating Infected from Vaccinated Animals (DIVA) strategy. In this review, we briefly discuss the potential of NS1 deficient or truncated IAV as safe, immunogenic and protective live-attenuated influenza vaccines (LAIV) to prevent disease caused by this important animal and human pathogen.
Collapse
Affiliation(s)
- Aitor Nogales
- Centro de Investigación en Sanidad Animal (CISA), Centro Nacional Instituto de Investigación y Tecnología Agraria y Alimentaria (INIA, CSIC), Madrid, Spain
- *Correspondence: Aitor Nogales, ; Luis Martínez-Sobrido,
| | - Marta L. DeDiego
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Martínez-Sobrido
- Department of Disease Intervention and Prevetion, Texas Biomedical Research Institute, San Antonio, TX, United States
- *Correspondence: Aitor Nogales, ; Luis Martínez-Sobrido,
| |
Collapse
|
21
|
Xu H, Palpant T, Weinberger C, Shaw DE. Characterizing Receptor Flexibility to Predict Mutations That Lead to Human Adaptation of Influenza Hemagglutinin. J Chem Theory Comput 2022; 18:4995-5005. [PMID: 35815857 PMCID: PMC9367001 DOI: 10.1021/acs.jctc.1c01044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
A key step in the
emergence of human pandemic influenza strains
has been a switch in binding preference of the viral glycoprotein
hemagglutinin (HA) from avian to human sialic acid (SA) receptors.
The conformation of the bound SA varies substantially with HA sequence,
and crystallographic evidence suggests that the bound SA is flexible,
making it difficult to predict which mutations are responsible for
changing HA-binding preference. We performed molecular dynamics (MD)
simulations of SA analogues binding to various HAs and observed a
dynamic equilibrium among structurally diverse receptor conformations,
including conformations that have not been experimentally observed.
Using one such novel conformation, we predicted—and experimentally
confirmed—a set of mutations that substantially increased an
HA’s affinity for a human SA analogue. This prediction could
not have been inferred from the existing crystal structures, suggesting
that MD-generated HA–SA conformational ensembles could help
researchers predict human-adaptive mutations, aiding surveillance
of emerging pandemic threats.
Collapse
Affiliation(s)
- Huafeng Xu
- D. E. Shaw Research, New York, New York 10036, United States
| | - Timothy Palpant
- D. E. Shaw Research, New York, New York 10036, United States
| | - Cody Weinberger
- D. E. Shaw Research, New York, New York 10036, United States
| | - David E Shaw
- D. E. Shaw Research, New York, New York 10036, United States.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, United States
| |
Collapse
|
22
|
Cui J, Cui P, Shi J, Fan W, Xing X, Gu W, Zhang Y, Zhang Y, Zeng X, Jiang Y, Chen P, Yang H, Chen Y, Liu J, Liu L, Tian G, Lu Y, Chen H, Li C, Deng G. Continued evolution of H6 avian influenza viruses isolated from farms in China between 2014 and 2018. Transbound Emerg Dis 2022; 69:2156-2172. [PMID: 34192815 DOI: 10.1111/tbed.14212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/04/2021] [Accepted: 06/27/2021] [Indexed: 12/22/2022]
Abstract
H6 avian influenza virus (AIV) is one of the most prevalent AIV subtypes in the world. Our previous studies have demonstrated that H6 AIVs isolated from live poultry markets pose a potential threat to human health. In recent years, increasing number of H6 AIVs has been constantly isolated from poultry farms. In order to understand the biological characteristics of H6 AIVs in the context of farms, here, we analyzed the phylogenetic relationships, antigenicity, replication in mice and receptor binding properties of H6 AIVs isolated from farms in China between 2014 and 2018. Phylogenetic analysis showed that 19 different genotypes were formed among 20 representative H6 viruses. Notably, the internal genes of these H6 viruses exhibited complicated relationships with different subtypes of AIVs worldwide, indicating that these viruses are the products of complex and frequent reassortment events. Antigenic analysis revealed that 13 viruses tested were divided into three antigenic groups. 10 viruses examined could all replicate in the respiratory organs of infected mice without prior adaptation. Receptor binding analysis demonstrated that some of the H6 AIVs bound to both α-2, 3-linked glycans (avian-type receptor) and α-2, 6-linked glycans (human-type receptor), thereby posing a potential threat to human health. Together, these findings revealed the prevalence, complicated genetic evolution, diverse antigenicity, and dual receptor binding specificity of H6 AIVs in the settings of poultry farms, which emphasize the importance to continuously monitor the evolution and biological properties of H6 AIVs in nature.
Collapse
Affiliation(s)
- Jiaqi Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Pengfei Cui
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Weifeng Fan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Xin Xing
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Wenli Gu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Yuancheng Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Yaping Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Xianying Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Yongping Jiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Pucheng Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Huanliang Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Yan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Jinxiong Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Liling Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Guobin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Yixin Lu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P. R. China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| | - Guohua Deng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, Harbin, P. R. China
| |
Collapse
|
23
|
Lublin A, Thie N, Shkoda I, Simanov L, Bar-Gal GK, Farnoushi Y, King R, Getz WM, Kamath PL, Bowie RCK, Nathan R. First detection of avian influenza subtype H4N6 in Israel in a wild mallard (Anas platyrhynchos). Transbound Emerg Dis 2022; 69:e3316-e3326. [PMID: 35687561 DOI: 10.1111/tbed.14610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/08/2022] [Accepted: 05/25/2022] [Indexed: 11/27/2022]
Abstract
Avian influenza viruses (AIV) are a worldwide threat to animal and human health. As wild waterfowl circulate and spread these viruses around the world, investigations of AIV prevalence in wild populations are critical for understanding pathogen transmission, as well as predicting disease outbreaks in domestic animals and humans. Surveillance efforts in this study have isolated H4N6 for the first time in Israel from a faecal sample of a wild mallard (Anas platyrhynchos). Phylogenetic analyses of the HA and NA genes revealed that this strain is closely related to isolates from Europe and Asia. This Eurasian origin, together with Israel serving as an important migratory bottleneck of the mid Palearctic-African flyway, suggests a potential introduction of this strain by migratory birds. Additional phylogenetic analysis of the isolate's internal genes (PB1, PB2, PA, NP, M and NS) revealed high levels of phylogenetic relatedness with other AIV subtypes, indicating previous reassortment events. High reassortment rates are characteristic for H4N6 viruses, which, together with this subtype's ability to infect pigs and adaptability to the human receptor binding domain, raises the concern that it would potentially become zoonotic in the future. These results emphasize the importance of continuous AIV monitoring in migratory birds.
Collapse
Affiliation(s)
- Avishai Lublin
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Nikki Thie
- Movement Ecology Lab, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Irina Shkoda
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Luba Simanov
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Gila Kahila Bar-Gal
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yigal Farnoushi
- Division of Avian Diseases, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Roni King
- Israel Nature and Parks Authority (INPA), Jerusalem, Israel
| | - Wayne M Getz
- Department of Environmental Science, Policy & Management, University of California, Berkeley, California.,School of Mathematical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Pauline L Kamath
- School of Food and Agriculture, University of Maine, Orono, Maine
| | - Rauri C K Bowie
- Museum of Vertebrate Zoology, University of California, Berkeley, California.,Department of Integrative Biology, University of California, Berkeley, California
| | - Ran Nathan
- Movement Ecology Lab, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
24
|
Sun H, Deng G, Sun H, Song J, Zhang W, Li H, Wei X, Li F, Zhang X, Liu J, Pu J, Sun Y, Tong Q, Bi Y, Xie Y, Qi J, Chang KC, Gao GF, Liu J. N-linked glycosylation enhances hemagglutinin stability in avian H5N6 influenza virus to promote adaptation in mammals. PNAS NEXUS 2022; 1:pgac085. [PMID: 36741455 PMCID: PMC9896958 DOI: 10.1093/pnasnexus/pgac085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/05/2022] [Indexed: 02/07/2023]
Abstract
Clade 2.3.4.4 avian H5Ny viruses, namely H5N2, H5N6, and H5N8, have exhibited unprecedented intercontinental spread in poultry. Among them, only H5N6 viruses are frequently reported to infect mammals and cause serious human infections. In this study, the genetic and biological characteristics of surface hemagglutinin (HA) from clade 2.3.4.4 H5Ny avian influenza viruses (AIVs) were examined for adaptation in mammalian infection. Phylogenetic analysis identified an amino acid (AA) deletion at position 131 of HA as a distinctive feature of H5N6 virus isolated from human patients. This single AA deletion was found to enhance H5N6 virus replication and pathogenicity in vitro and in mammalian hosts (mice and ferrets) through HA protein acid and thermal stabilization that resulted in reduced pH threshold from pH 5.7 to 5.5 for viral-endosomal membrane fusion. Mass spectrometry and crystal structure revealed that the AA deletion in HA at position 131 introduced an N-linked glycosylation site at 129, which increases compactness between HA monomers, thus stabilizes the trimeric structure. Our findings provide a molecular understanding of how HA protein stabilization promotes cross-species avian H5N6 virus infection to mammalian hosts.
Collapse
Affiliation(s)
| | | | | | | | | | - Han Li
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaohui Wei
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Fangtao Li
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xin Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiyu Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qi Tong
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yufeng Xie
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Kin-Chow Chang
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China,Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China,WHO Collaborating Center for Reference and Research on Influenza, Beijing 102206, China
| | - Jinhua Liu
- To whom correspondence should be addressed:
| |
Collapse
|
25
|
Protein Engineering of Pasteurella multocida α2,3-Sialyltransferase with Reduced α2,3-Sialidase Activity and Application in Synthesis of 3′-Sialyllactose. Catalysts 2022. [DOI: 10.3390/catal12060579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Sialyltransferases are key enzymes for the production of sialosides. The versatility of Pasteurella multocida α2,3-sialyltransferase 1 (PmST1) causes difficulties in the efficient synthesis of α2,3-linked sialylatetd compounds, especial its α2,3-sialidase activity. In the current study, the α2,3-sialidase activity of PmST1 was further reduced by rational design-based protein engineering. Three double mutants PMG1 (M144D/R313Y), PMG2 (M144D/R313H) and PMG3 (M144D/R313N) were designed and constructed using M144D as the template and kinetically investigated. In comparison with M144D, the α2,3-sialyltransferase activity of PMG2 was enhanced by 1.4-fold, while its α2,3-sialidase activity was reduced by 4-fold. Two PMG2-based triple mutants PMG2-1 (M144D/R313H/T265S) and PMG2-2 (M144D/R313H/E271F) were then designed, generated and characterized. Compared with PMG2, triple mutants showed slightly improved α2,3-sialyltransferase activity, but their α2,3-sialidase activities were increased by 2.1–2.9 fold. In summary, PMG2 was used for preparative-scale production of 3′-SL (3′-sialyllactose) with a yield of >95%. These new PmST1 mutants could be potentially utilized for efficient synthesis of α2,3-linked sialosides. This work provides a guide to designing and constructing efficient sialyltransferases.
Collapse
|
26
|
Adaptation of the H7N2 Feline Influenza Virus to Human Respiratory Cell Culture. Viruses 2022; 14:v14051091. [PMID: 35632832 PMCID: PMC9144431 DOI: 10.3390/v14051091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
During 2016–2017, the H7N2 feline influenza virus infected more than 500 cats in animal shelters in New York, USA. A veterinarian who had treated the cats became infected with this feline virus and showed mild respiratory symptoms. This suggests that the H7N2 feline influenza virus may evolve into a novel pandemic virus with a high pathogenicity and transmissibility as a result of mutations in humans. In this study, to gain insight into the molecular basis of the transmission of the feline virus to humans, we selected mutant viruses with enhanced growth in human respiratory A549 cells via successive passages of the virus and found almost all mutations to be in the envelope glycoproteins, such as hemagglutinin (HA) and neuraminidase (NA). The reverse genetics approach revealed that the HA mutations, HA1-H16Q, HA2-I47T, or HA2-Y119H, in the stalk region can lead to a high growth of mutant viruses in A549 cells, possibly by changing the pH threshold for membrane fusion. Furthermore, NA mutation, I28S/L, or three-amino-acid deletion in the transmembrane region can enhance viral growth in A549 cells, possibly by changing the HA–NA functional balance. These findings suggest that the H7N2 feline influenza virus has the potential to become a human pathogen by adapting to human respiratory cells, owing to the synergistic biological effect of the mutations in its envelope glycoproteins.
Collapse
|
27
|
Matsubara T, Ogami A, Kori H, Hashizume M, Sato T. Detection of Influenza Virus by Agglutination of Microparticles Immobilized a Mixed Glycan Receptor Produced from Cells. ACS APPLIED BIO MATERIALS 2022; 5:2130-2134. [DOI: 10.1021/acsabm.2c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Teruhiko Matsubara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi,
Kouhoku-ku, Yokohama 223-8522, Japan
| | - Ayaka Ogami
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi,
Kouhoku-ku, Yokohama 223-8522, Japan
| | - Haruka Kori
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi,
Kouhoku-ku, Yokohama 223-8522, Japan
| | - Mineo Hashizume
- Department of Industrial Chemistry, Tokyo University of Science, 12-1 Ichigayafunagawara-machi, Shinjuku-ku, Tokyo 162-0826, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi,
Kouhoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
28
|
Upregulated influenza A viral entry factors and enhanced interferon-alpha response in the nasal epithelium of pregnant rats. Heliyon 2022; 8:e09407. [PMID: 35592667 PMCID: PMC9111991 DOI: 10.1016/j.heliyon.2022.e09407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/02/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022] Open
Abstract
Despite the increased severity of influenza A infection in pregnancy, knowledge about the expression of cell entry factors for influenza A virus (IAV) and the innate immune response in the nasal epithelium, the primary portal of viral entry, is limited. Here, we compared the expression of IAV cell entry factors and the status of the innate immune response in the nasal epithelium of pregnant vs. non-pregnant female rats. IAV cell entry factors — sialic acid [SA] α-2,3- and α-2,6-linked glycans for avian and human IAV, respectively — were detected and quantified with lectin-based immunoblotting and flow cytometry. Baseline frequencies of innate immune cell phenotypes in single cell suspensions of the nasal epithelium were studied with flow cytometry. Subsequently, the magnitude of interferon and cytokine responses was studied with ELISA and cytokine arrays after intranasal resiquimod, a Toll-like receptor 7/8 agonist that mimics IAV infection. We noted substantially increased expression of cell entry factors for both avian and human IAV in the nasal epithelium during pregnancy. Assessment of the innate immune state of the nasal epithelium during pregnancy revealed two previously unreported features: (i) increased presence of tissue-resident plasmacytoid dendritic cells, and (ii) markedly enhanced release of interferon-α but not of the other interferons or cytokines 2 h after intranasal resiquimod. Collectively, our findings challenge the conventional notion of pregnancy-induced immunosuppression as a cause for severe influenza A disease and suggest the need for focused studies on viral tropism during pregnancy to better understand the proximate cause for the observed immunopathology.
Collapse
|
29
|
Mei XQ, Qin P, Yang YL, Liao M, Liang QZ, Zhao Z, Shi FS, Wang B, Huang YW. First evidence that an emerging mammalian alphacoronavirus is able to infect an avian species. Transbound Emerg Dis 2022; 69:e2006-e2019. [PMID: 35340130 DOI: 10.1111/tbed.14535] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/28/2022]
Abstract
A novel swine enteric alphacoronavirus, swine acute diarrhea syndrome coronavirus (SADS-CoV), related to Rhinolophus bat CoV HKU2 in the subgenus Rhinacovirus has emerged in southern China in 2017, causing diarrhea in newborn piglets, and critical questions remain about the pathogenicity, cross-species transmission and potential animal reservoirs. Our laboratory's previous research has shown that SADS-CoV can replicate in various cell types from different species, including chickens. Here, we systematically explore the susceptibility of chicken to a cell-adapted SADS-CoV strain both in vitro and in vivo. Firstly, evidences of SADS-CoV replication in primary chicken cells including cytopathic effects, immunofluorescence staining, growth curve and structural protein expression were proven. Furthermore, we observed that SADS-CoV could replicate in chicken embryos without causing gross lesion, and that experimental infection of chicks resulted in mild respiratory symptoms. More importantly, SADS-CoV shedding and viral distribution in lungs, spleens, small intestines and large intestines of infected chickens were confirmed by quantitative RT-PCR and immunohistochemistry. The genomic sequence of the original SADS-CoV from the pig source sample in 2017 was determined to have nine nucleotide differences compared to the used cell-adapted strain; among these were three non-synonymous mutations in the spike gene. These results collectively demonstrate that chickens are susceptible to SADS-CoV infection, suggesting that they are a potential animal reservoir. To our knowledge, this study provides the first experimental evidence of cross-species infection that a mammalian alphacoronavirus is able to infect an avian species. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiao-Qiang Mei
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Pan Qin
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yong-Le Yang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Min Liao
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Qi-Zhang Liang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhuangzhuang Zhao
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Fang-Shu Shi
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Bin Wang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yao-Wei Huang
- Department of Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
30
|
Effect of serial in vivo passages on the adaptation of H1N1 avian influenza virus to pigs. J Vet Res 2022; 66:9-19. [PMID: 35582490 PMCID: PMC8959685 DOI: 10.2478/jvetres-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/02/2022] [Indexed: 11/26/2022] Open
Abstract
Introduction The lack of proofreading activity of the viral polymerase and the segmented nature of the influenza A virus (IAV) genome are responsible for the genetic diversity of IAVs and for their ability to adapt to a new host. We tried to adapt avian IAV (avIAV) to the pig by serial passages in vivo and assessed the occurrence of point mutations and their influence on viral fitness in the pig’s body. Material and Methods A total of 25 in vivo avIAV passages of the A/duck/Bavaria/77 strain were performed by inoculation of 50 piglets, and after predetermined numbers of passages 20 uninoculated piglets were exposed to the virus through contact with inoculated animals. Clinical signs of swine influenza were assessed daily. Nasal swabs and lung tissue were used to detect IAV RNA by real-time RT-PCR and isolates from selected passages were sequenced. Results Apart from a rise in rectal temperature and a sporadic cough, no typical clinical signs were observed in infected pigs. The original strain required 20 passages to improve its replication ability noticeably. A total of 29 amino-acid substitutions were identified. Eighteen of them were detected in the first sequenced isolate, of which 16 were also in all other analysed strains. Additional mutations were detected with more passages. One substitution, threonine (T) 135 to serine (S) in neuraminidase (NA), was only detected in an IAV isolate from a contact-exposed piglet. Conclusion Passaging 25 times allowed us to obtain a partially swine-adapted IAV. The improvement in isolate replication ability was most likely related to S654 to glycine (G) substitution in the basic protein (PB) 1 as well as to aspartic acid (D) 701 to asparagine (N) and arginine (R) 477 to G in PB2, glutamic acid (E) 204 to D and G239E in haemagglutinin and T135S in NA.
Collapse
|
31
|
Hanamatsu H, Furukawa JI. Comprehensive Cellular Glycan Profiling of Glycoproteins and Glycosphingolipids by Glycoblotting and BEP Methods. Methods Mol Biol 2022; 2556:1-18. [PMID: 36175622 DOI: 10.1007/978-1-0716-2635-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The glycocalyx is a layer of glycans that covers the surface of every cell. Glycans are covalently attached to proteins and lipids, and are classified into subclasses such as N-linked glycans, glycosaminoglycans, glycosphingolipid-glycans, free oligosaccharides, and O-linked glycans according to their biosynthetic pathways. These complex glycans affect various biological and pathological processes, such as cell growth, differentiation, and adhesion. During infection, bacteria and viruses often use glycans to recognize and attack host cells. In this chapter, we describe detailed protocols to prepare glycans, and perform comprehensive cellular glycomic analysis using glycoblotting and β-elimination with pyrazolone methods.
Collapse
Affiliation(s)
- Hisatoshi Hanamatsu
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Jun-Ichi Furukawa
- Department of Advanced Clinical Glycobiology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
32
|
Yuan Y, Zu S, Zhang Y, Zhao F, Jin X, Hu H. Porcine Deltacoronavirus Utilizes Sialic Acid as an Attachment Receptor and Trypsin Can Influence the Binding Activity. Viruses 2021; 13:v13122442. [PMID: 34960711 PMCID: PMC8705999 DOI: 10.3390/v13122442] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a novel coronavirus that causes diarrhea in nursing piglets. Studies showed that PDCoV uses porcine aminopeptidase N (pAPN) as an entry receptor, but the infection of pAPN-knockout cells or pigs with PDCoV revealed that pAPN might be not a critical functional receptor, implying there exists an unidentified receptor involved in PDCoV infection. Herein, we report that sialic acid (SA) can act as an attachment receptor for PDCoV invasion and facilitate its infection. We first demonstrated that the carbohydrates destroyed on the cell membrane using NaIO4 can alleviate the susceptibility of cells to PDCoV. Further study showed that the removal of SA, a typical cell-surface carbohydrate, could influence the PDCoV infectivity to the cells significantly, suggesting that SA was involved in the infection. The results of plaque assay and Western blotting revealed that SA promoted PDCoV infection by increasing the number of viruses binding to SA on the cell surface during the adsorption phase, which was also confirmed by atomic force microscopy at the microscopic level. In in vivo experiments, we found that the distribution levels of PDCoV and SA were closely relevant in the swine intestine, which contains huge amount of trypsin. We further confirmed that SA-binding capacity to PDCoV is related to the pre-treatment of PDCoV with trypsin. In conclusion, SA is a novel attachment receptor for PDCoV infection to enhance its attachment to cells, which is dependent on the pre-treatment of trypsin on PDCoV. This study paves the way for dissecting the mechanisms of PDCoV–host interactions and provides new strategies to control PDCoV infection.
Collapse
Affiliation(s)
- Yixin Yuan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Y.Y.); (S.Z.); (Y.Z.); (F.Z.); (X.J.)
| | - Shaopo Zu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Y.Y.); (S.Z.); (Y.Z.); (F.Z.); (X.J.)
| | - Yunfei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Y.Y.); (S.Z.); (Y.Z.); (F.Z.); (X.J.)
| | - Fujie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Y.Y.); (S.Z.); (Y.Z.); (F.Z.); (X.J.)
| | - Xiaohui Jin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Y.Y.); (S.Z.); (Y.Z.); (F.Z.); (X.J.)
| | - Hui Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (Y.Y.); (S.Z.); (Y.Z.); (F.Z.); (X.J.)
- Key Laboratory for Animal-Derived Food Safety of Henan Province, Zhengzhou 450046, China
- Correspondence:
| |
Collapse
|
33
|
Li Y, Zhang X, Liu Y, Feng Y, Wang T, Ge Y, Kong Y, Sun H, Xiang H, Zhou B, Fang S, Xia Q, Hu X, Sun W, Wang X, Meng K, Lv C, Li E, Xia X, He H, Gao Y, Jin N. Characterization of Canine Influenza Virus A (H3N2) Circulating in Dogs in China from 2016 to 2018. Viruses 2021; 13:v13112279. [PMID: 34835084 PMCID: PMC8618230 DOI: 10.3390/v13112279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/21/2022] Open
Abstract
Avian H3N2 influenza virus follows cross-host transmission and has spread among dogs in Asia since 2005. After 2015–2016, a new H3N2 subtype canine influenza epidemic occurred in dogs in North America and Asia. The disease prevalence was assessed by virological and serological surveillance in dogs in China. Herein, five H3N2 canine influenza virus (CIV) strains were isolated from 1185 Chinese canine respiratory disease samples in 2017–2018; these strains were on the evolutionary branch of the North American CIVs after 2016 and genetically far from the classical canine H3N2 strain discovered in China before 2016. Serological surveillance showed an HI antibody positive rate of 6.68%. H3N2 was prevalent in the coastal areas and northeastern regions of China. In 2018, it became the primary epidemic strain in the country. The QK01 strain of H3N2 showed high efficiency in transmission among dogs through respiratory droplets. Nevertheless, the virus only replicated in the upper respiratory tract and exhibited low pathogenicity in mice. Furthermore, highly efficient transmission by direct contact other than respiratory droplet transmission was found in a guinea pig model. The low-level replication in avian species other than ducks could not facilitate contact and airborne transmission in chickens. The current results indicated that a novel H3N2 virus has become a predominant epidemic strain in dogs in China since 2016 and acquired highly efficient transmissibility but could not be replicated in avian species. Thus, further monitoring is required for designing optimal immunoprophylactic tools for dogs and estimating the zoonotic risk of CIV in China.
Collapse
Affiliation(s)
- Yuanguo Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China;
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Xinghai Zhang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yuxiu Liu
- National Research Center for Veterinary Medicine, Luoyang 471003, China;
| | - Ye Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Ye Ge
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China;
| | - Yunyi Kong
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Hongyu Sun
- College of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China;
| | - Haiyang Xiang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Bo Zhou
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Shushan Fang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Qing Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Xinyu Hu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Weiyang Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Xuefeng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Keyin Meng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Chaoxiang Lv
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Entao Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
| | - Hongbin He
- College of Life Science, Shandong Normal University, Jinan 250014, China
- Correspondence: (H.H.); (Y.G.); (N.J.)
| | - Yuwei Gao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
- Correspondence: (H.H.); (Y.G.); (N.J.)
| | - Ningyi Jin
- College of Veterinary Medicine, Jilin University, Changchun 130062, China;
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China; (X.Z.); (Y.F.); (T.W.); (Y.K.); (H.X.); (B.Z.); (S.F.); (Q.X.); (X.H.); (W.S.); (X.W.); (K.M.); (C.L.); (E.L.); (X.X.)
- Correspondence: (H.H.); (Y.G.); (N.J.)
| |
Collapse
|
34
|
Gierse LC, Meene A, Schultz D, Schwaiger T, Schröder C, Mücke P, Zühlke D, Hinzke T, Wang H, Methling K, Kreikemeyer B, Bernhardt J, Becher D, Mettenleiter TC, Lalk M, Urich T, Riedel K. Influenza A H1N1 Induced Disturbance of the Respiratory and Fecal Microbiome of German Landrace Pigs - a Multi-Omics Characterization. Microbiol Spectr 2021; 9:e0018221. [PMID: 34612695 PMCID: PMC8510242 DOI: 10.1128/spectrum.00182-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
Seasonal influenza outbreaks represent a large burden for the health care system as well as the economy. While the role of the microbiome has been elucidated in the context of various diseases, the impact of respiratory viral infections on the human microbiome is largely unknown. In this study, swine was used as an animal model to characterize the temporal dynamics of the respiratory and gastrointestinal microbiome in response to an influenza A virus (IAV) infection. A multi-omics approach was applied on fecal samples to identify alterations in microbiome composition and function during IAV infection. We observed significantly altered microbial richness and diversity in the gastrointestinal microbiome after IAV infection. In particular, increased abundances of Prevotellaceae were detected, while Clostridiaceae and Lachnospiraceae decreased. Moreover, our metaproteomics data indicated that the functional composition of the microbiome was heavily affected by the influenza infection. For instance, we identified decreased amounts of flagellin, correlating with reduced abundances of Lachnospiraceae and Clostridiaceae, possibly indicating involvement of a direct immune response toward flagellated Clostridia during IAV infection. Furthermore, enzymes involved in short-chain fatty acid (SCFA) synthesis were identified in higher abundances, while metabolome analyses revealed rather stable concentrations of SCFAs. In addition, 16S rRNA gene sequencing was used to characterize effects on the composition and natural development of the upper respiratory tract microbiome. Our results showed that IAV infection resulted in significant changes in the abundance of Moraxellaceae and Pasteurellaceae in the upper respiratory tract. Surprisingly, temporal development of the respiratory microbiome structure was not affected. IMPORTANCE Here, we used swine as a biomedical model to elucidate the impact of influenza A H1N1 infection on structure and function of the respiratory and gastrointestinal tract microbiome by employing a multi-omics analytical approach. To our knowledge, this is the first study to investigate the temporal development of the porcine microbiome and to provide insights into the functional capacity of the gastrointestinal microbiome during influenza A virus infection.
Collapse
Affiliation(s)
| | - Alexander Meene
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Daniel Schultz
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Theresa Schwaiger
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | - Charlotte Schröder
- Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Greifswald, Germany
| | - Pierre Mücke
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Daniela Zühlke
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Tjorven Hinzke
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
- Institute of Marine Biotechnology e.V., Greifswald, Germany
| | - Haitao Wang
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Karen Methling
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Bernd Kreikemeyer
- Institute for Medical Microbiology, Virology and Hygiene, Rostock University Medical Centre, Rostock, Germany
| | - Jörg Bernhardt
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | | | - Michael Lalk
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
35
|
Mutisari D, Muflihanah M, Wibawa H, Hendrawati F, Putra HH, Sulistyo KP, Ahmad A, Sjahril R, Mubin RH, Sari DK, Massi MN. Phylogenetic analysis of HPAI H5N1 virus from duck swab specimens in Indonesia. J Adv Vet Anim Res 2021; 8:346-354. [PMID: 34395607 PMCID: PMC8280988 DOI: 10.5455/javar.2021.h521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/08/2021] [Accepted: 06/20/2021] [Indexed: 11/04/2022] Open
Abstract
Objective: A phylogenetic study was carried out on the avian influenza virus (AIV) isolated from a disease outbreak in Sidenreng Rappang Regency, South Sulawesi, Indonesia, in 2018. Material and Methods: Oropharyngeal swabs and organ samples were obtained from ducks that showed clinical symptoms: torticollis, fascial edema, neurological disorders, the corneas appear cloudy, and death occurs less than 1 day after symptoms appear. In this study, isolate A/duck/Sidenreng Rappang/07180110-11/2018 from duck was sequenced and characterized. Results: It was found that each gene segment of the virus has the highest nucleotide homology to the Indonesian highly pathogenic avian influenza (HPAI) H5N1 clade 2.3.2.1c. Multiple alignments of the sample Hemagglutinin (HA) gene with the avian influenza references virus showed that the pattern of amino acid arrangement in the cleavage site PQRERRRK-RGLF is the characteristic of the HPAI virus. In addition, the HA gene contained Q222 (glutamine) and G224 (glycine), signifying a high affinity to avian receptor binding specificity (SA α2,3 Gal). Furthermore, there was no genetic reassortment of this virus based on the phylogenetic analysis of HA, NA, PB1, PB2, PA, NP, M, and NS genes. Conclusion: The HPAI H5N1 clade 2.3.2.1c virus was identified in duck farms in South Sulawesi, Indonesia.
Collapse
Affiliation(s)
- Dewi Mutisari
- Master of Biomedical Sciences, Graduate School Hasanuddin University, Makassar, Indonesia.,Disease Investigation Center Maros, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture, Maros, Indonesia
| | - Muflihanah Muflihanah
- Disease Investigation Center Maros, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture, Maros, Indonesia
| | - Hendra Wibawa
- Disease Investigation Center Wates, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture, Yogyakarta, Indonesia
| | - Ferra Hendrawati
- Disease Investigation Center Maros, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture, Maros, Indonesia
| | - Hamdu Hamjaya Putra
- Disease Investigation Center Maros, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture, Maros, Indonesia
| | - Kartika Priscillia Sulistyo
- Disease Investigation Center Maros, Directorate General of Livestock and Animal Health Services, Ministry of Agriculture, Maros, Indonesia
| | - Ahyar Ahmad
- Departement of Chemistry, Mathematics and Natural Science Faculty, Hasanuddin University, Makassar, Indonesia
| | - Rizalinda Sjahril
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Risna Halim Mubin
- Departement of Internal Medicine, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Dwi Kesuma Sari
- Veterinary Medicine Study Program, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Muhammad Nasrum Massi
- Department of Microbiology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
36
|
Carpentieri C, Farrow N, Cmielewski P, Rout-Pitt N, McCarron A, Knight E, Parsons D, Donnelley M. The Effects of Conditioning and Lentiviral Vector Pseudotype on Short- and Long-Term Airway Reporter Gene Expression in Mice. Hum Gene Ther 2021; 32:817-827. [PMID: 33947249 DOI: 10.1089/hum.2021.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A gene addition therapy into the conducting airway epithelium is a potential cure for cystic fibrosis lung disease. Achieving sustained lung gene expression has proven difficult due to the natural barriers of the lung. The development of lentiviral (LV) vectors pseudotyped with viral envelopes that have a natural tropism to the airway has enabled persistent gene expression to be achieved in vivo. The aims of this study were to compare the yields of hemagglutinin (HA) and vesicular stomatitis virus-glycoprotein (VSV-G) pseudotyped HIV-1 vectors produced under the same conditions by our standard LV vector production method. We then sought to measure gene expression in mouse airways and to determine whether lysophosphatidylcholine (LPC) conditioning enhances short- and long-term gene expression. C57Bl/6 mouse airways were conditioned with 10 μL of 0.1% LPC or saline control, followed 1 h later by a 30 μL dose of an HA or VSV-G pseudotyped vector carrying either the LacZ or luciferase reporter genes. LacZ expression was assessed by X-gal staining after 7 days, while lung luminescence was quantified regularly for up to 18 months by bioluminescent imaging. The HA pseudotyped vectors had functional titers 25 to 60 times lower than the VSV-G pseudotyped vectors. Conditioning the lung with LPC significantly increased the total number of LacZ-transduced cells for both pseudotypes compared to saline control. Regardless of LPC conditioning, the VSV-G pseudotype produced higher initial levels of gene expression compared to HA. LPC conditioning did not increase the number of transduced basal cells for either pseudotype compared to saline, and was not required for long-term gene expression. Both pseudotyped vectors effectively transduced the upper conducting airways of wild-type mice. The use of LPC conditioning before vector delivery was not required in mouse lungs to produce long-term gene expression, but did improve short-term gene expression.
Collapse
Affiliation(s)
- Chantelle Carpentieri
- Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Nigel Farrow
- Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Patricia Cmielewski
- Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Nathan Rout-Pitt
- Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Alexandra McCarron
- Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Emma Knight
- South Australian Health and Medical Research Institute, Adelaide, Australia.,School of Public Health, University of Adelaide, Adelaide, Australia
| | - David Parsons
- Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Martin Donnelley
- Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, Australia
| |
Collapse
|
37
|
Yin R, Luo Z, Zhuang P, Lin Z, Kwoh CK. VirPreNet: a weighted ensemble convolutional neural network for the virulence prediction of influenza A virus using all eight segments. Bioinformatics 2021; 37:737-743. [PMID: 33241321 DOI: 10.1093/bioinformatics/btaa901] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 01/16/2023] Open
Abstract
MOTIVATION Influenza viruses are persistently threatening public health, causing annual epidemics and sporadic pandemics. The evolution of influenza viruses remains to be the main obstacle in the effectiveness of antiviral treatments due to rapid mutations. Previous work has been investigated to reveal the determinants of virulence of the influenza A virus. To further facilitate flu surveillance, explicit detection of influenza virulence is crucial to protect public health from potential future pandemics. RESULTS In this article, we propose a weighted ensemble convolutional neural network (CNN) for the virulence prediction of influenza A viruses named VirPreNet that uses all eight segments. Firstly, mouse lethal dose 50 is exerted to label the virulence of infections into two classes, namely avirulent and virulent. A numerical representation of amino acids named ProtVec is applied to the eight-segments in a distributed manner to encode the biological sequences. After splittings and embeddings of influenza strains, the ensemble CNN is constructed as the base model on the influenza dataset of each segment, which serves as the VirPreNet's main part. Followed by a linear layer, the initial predictive outcomes are integrated and assigned with different weights for the final prediction. The experimental results on the collected influenza dataset indicate that VirPreNet achieves state-of-the-art performance combining ProtVec with our proposed architecture. It outperforms baseline methods on the independent testing data. Moreover, our proposed model reveals the importance of PB2 and HA segments on the virulence prediction. We believe that our model may provide new insights into the investigation of influenza virulence. AVAILABILITY AND IMPLEMENTATION Codes and data to generate the VirPreNet are publicly available at https://github.com/Rayin-saber/VirPreNet. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Rui Yin
- School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Zihan Luo
- School of Electronic Information and Communication, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pei Zhuang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Zhuoyi Lin
- School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Chee Keong Kwoh
- School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
38
|
Powell H, Liu H, Pekosz A. Changes in sialic acid binding associated with egg adaptation decrease live attenuated influenza virus replication in human nasal epithelial cell cultures. Vaccine 2021; 39:3225-3235. [PMID: 33985852 PMCID: PMC8184632 DOI: 10.1016/j.vaccine.2021.04.057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 04/11/2021] [Accepted: 04/28/2021] [Indexed: 11/26/2022]
Abstract
Live Attenuated Influenza Virus (LAIV) is administered to and replicates in the sinonasal epithelium. Candidate LAIV vaccine strains are selected based on their ability to replicate to a high titer in embryonated hen's eggs, a process that can lead to mutations which alter the receptor binding and antigenic structure of the hemagglutinin (HA) protein. In the 2012-2013 northern hemisphere vaccine, the H3N2 HA vaccine strain contained three amino acid changes - H156Q, G186V and S219Y - which altered HA antigenic structure and thus presumably decreased vaccine efficacy. To determine if these mutations also altered LAIV replication, reabcombinant viruses were created that encoded the wild-type (WT) parental HA of A/Victoria/361/2011 (WT HA LAIV), the egg adapted HA (EA HA LAIV) from the A/Victoria/361/2011 vaccine strain and an HA protein with additional amino acid changes to promote α2,3 sialic acid binding (2,3 EA HA LAIV). The WT HA LAIV bound α2,6 sialic compared to the EA HA LAIV and 2,3 EA HA LAIV which both demonstrated an increased preference for α2,3 sialic acid. On MDCKs, the WT HA and EA HA LAIVs showed similar replication at 32 °C but at 37 °C the EA HA LAIV replicated to lower infectious virus titers. The 2,3 EA HA LAIV replicated poorly at both temperatures. This replication phenotype was similar on human nasal epithelial cell (hNEC) cultures, however the WT HA LAIV induced the highest amount of IFN-λ and infected more nasal epithelial cells compared to the other viruses. Together, these data indicate that egg adaption mutations in the HA protein that confer preferential α2,3 sialic acid binding may adversely affect LAIV replication and contribute to reduced vaccine efficacy.
Collapse
Affiliation(s)
- Harrison Powell
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, United States
| | - Hsuan Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, United States
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, United States.
| |
Collapse
|
39
|
Mettelman RC, Thomas PG. Human Susceptibility to Influenza Infection and Severe Disease. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038711. [PMID: 31964647 PMCID: PMC8091954 DOI: 10.1101/cshperspect.a038711] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Influenza viruses are a persistent threat to global human health. Increased susceptibility to infection and the risk factors associated with progression to severe influenza-related disease are determined by a multitude of viral, host, and environmental conditions. Decades of epidemiologic research have broadly defined high-risk groups, while new genomic association studies have identified specific host factors impacting an individual's response to influenza. Here, we review and highlight both human susceptibility to influenza infection and the conditions that lead to severe influenza disease.
Collapse
Affiliation(s)
- Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| |
Collapse
|
40
|
Harrington WN, Kackos CM, Webby RJ. The evolution and future of influenza pandemic preparedness. Exp Mol Med 2021; 53:737-749. [PMID: 33953324 PMCID: PMC8099712 DOI: 10.1038/s12276-021-00603-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022] Open
Abstract
The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred years. As our knowledge of influenza virus evolution, distribution, and transmission has increased, paths to pandemic preparedness have become apparent. In the 1950s, the World Health Organization (WHO) established a global influenza surveillance network that is now composed of institutions in 122 member states. This and other surveillance networks monitor circulating influenza strains in humans and animal reservoirs and are primed to detect influenza strains with pandemic potential. Both the United States Centers for Disease Control and Prevention and the WHO have also developed pandemic risk assessment tools that evaluate specific aspects of emerging influenza strains to develop a systematic process of determining research and funding priorities according to the risk of emergence and potential impact. Here, we review the history of influenza pandemic preparedness and the current state of preparedness, and we propose additional measures for improvement. We also comment on the intersection between the influenza pandemic preparedness network and the current SARS-CoV-2 crisis. We must continually evaluate and revise our risk assessment and pandemic preparedness plans and incorporate new information gathered from research and global crises.
Collapse
Affiliation(s)
- Walter N Harrington
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christina M Kackos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Children's Research Hospital, Graduate School of Biomedical Sciences, Memphis, TN, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
41
|
Chiang YW, Li CJ, Su HY, Hsieh KT, Weng CW, Chen HW, Chang SC. Development of mouse monoclonal antibody for detecting hemagglutinin of avian influenza A(H7N9) virus and preventing virus infection. Appl Microbiol Biotechnol 2021; 105:3235-3248. [PMID: 33770244 PMCID: PMC7995400 DOI: 10.1007/s00253-021-11253-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 12/29/2022]
Abstract
Abstract Many cases of avian influenza A(H7N9) virus infection in humans have been reported since its first emergence in 2013. The disease is of concern because most patients have become severely ill with roughly 30% mortality rate. Because the threat in public health caused by H7N9 virus remains high, advance preparedness is essentially needed. In this study, the recombinant H7N9 hemagglutinin (HA) was expressed in insect cells and purified for generation of two monoclonal antibodies, named F3-2 and 1C6B. F3-2 can only recognize the H7N9 HA without having cross-reactivity with HA proteins of H1N1, H3N2, H5N1, and H7N7. 1C6B has the similar specificity with F3-2, but 1C6B can also bind to H7N7 HA. The binding epitope of F3-2 is mainly located in the region of H7N9 HA(299–307). The binding epitope of 1C6B is located in the region of H7N9 HA(489–506). F3-2 and 1C6B could not effectively inhibit the hemagglutination activity of H7N9 HA. However, F3-2 can prevent H7N9 HA from trypsin cleavage and can bind to H7N9 HA which has undergone pH-induced conformational change. F3-2 also has the ability of binding to H7N9 viral particles and inhibiting H7N9 virus infection to MDCK cells with the IC50 value of 22.18 μg/mL. In addition, F3-2 and 1C6B were utilized for comprising a lateral flow immunochromatographic test strip for specific detection of H7N9 HA. Key points • Two mouse monoclonal antibodies, F3-2 and 1C6B, were generated for recognizing the novel binding epitopes in H7N9 HA. • F3-2 can prevent H7N9 HA from trypsin cleavage and inhibit H7N9 virus infection to MDCK cells. • F3-2 and 1C6B were developed as a lateral flow immunochromatographic test for specific detection of H7N9 HA.
Collapse
Affiliation(s)
- Yi-Wei Chiang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Chia-Jung Li
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Heng-Yi Su
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Kai-Ting Hsieh
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Chia-Wei Weng
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, Taipei, 106, Taiwan
| | - Shih-Chung Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, 106, Taiwan.
- Center of Biotechnology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
42
|
Salvesen HA, Whitelaw CBA. Current and prospective control strategies of influenza A virus in swine. Porcine Health Manag 2021; 7:23. [PMID: 33648602 PMCID: PMC7917534 DOI: 10.1186/s40813-021-00196-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Influenza A Viruses (IAV) are endemic pathogens of significant concern in humans and multiple keystone livestock species. Widespread morbidity in swine herds negatively impacts animal welfare standards and economic performance whilst human IAV pandemics have emerged from pigs on multiple occasions. To combat the rising prevalence of swine IAV there must be effective control strategies available. MAIN BODY The most basic form of IAV control on swine farms is through good animal husbandry practices and high animal welfare standards. To control inter-herd transmission, biosecurity considerations such as quarantining of pigs and implementing robust health and safety systems for workers help to reduce the likelihood of swine IAV becoming endemic. Closely complementing the physical on-farm practices are IAV surveillance programs. Epidemiological data is critical in understanding regional distribution and variation to assist in determining an appropriate response to outbreaks and understanding the nature of historical swine IAV epidemics and zoonoses. Medical intervention in pigs is restricted to vaccination, a measure fraught with the intrinsic difficulties of mounting an immune response against a highly mutable virus. It is the best available tool for controlling IAV in swine but is far from being a perfect solution due to its unreliable efficacy and association with an enhanced respiratory disease. Because IAV generally has low mortality rates there is a reticence in the uptake of vaccination. Novel genetic technologies could be a complementary strategy for IAV control in pigs that confers broad-acting resistance. Transgenic pigs with IAV resistance are useful as models, however the complexity of these reaching the consumer market limits them to research models. More promising are gene-editing approaches to prevent viral exploitation of host proteins and modern vaccine technologies that surpass those currently available. CONCLUSION Using the suite of IAV control measures that are available for pigs effectively we can improve the economic productivity of pig farming whilst improving on-farm animal welfare standards and avoid facing the extensive social and financial costs of a pandemic. Fighting 'Flu in pigs will help mitigate the very real threat of a human pandemic emerging, increase security of the global food system and lead to healthier pigs.
Collapse
Affiliation(s)
- Hamish A. Salvesen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, UK
| | - C. Bruce A. Whitelaw
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, UK
| |
Collapse
|
43
|
Nomura N, Matsuno K, Shingai M, Ohno M, Sekiya T, Omori R, Sakoda Y, Webster RG, Kida H. Updating the influenza virus library at Hokkaido University -It's potential for the use of pandemic vaccine strain candidates and diagnosis. Virology 2021; 557:55-61. [PMID: 33667751 DOI: 10.1016/j.virol.2021.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/04/2020] [Accepted: 02/16/2021] [Indexed: 11/25/2022]
Abstract
Genetic reassortment of influenza A viruses through cross-species transmission contributes to the generation of pandemic influenza viruses. To provide information on the ecology of influenza viruses, we have been conducting a global surveillance of zoonotic influenza and establishing an influenza virus library. Of 4580 influenza virus strains in the library, 3891 have been isolated from over 70 different bird species. The remaining 689 strains were isolated from humans, pigs, horses, seal, whale, and the environment. Phylogenetic analyses of the HA genes of the library isolates demonstrate that the library strains are distributed to all major known clusters of the H1, H2 and H3 subtypes of HA genes that are prevalent in humans. Since past pandemic influenza viruses are most likely genetic reassortants of zoonotic and seasonal influenza viruses, a vast collection of influenza A virus strains from various hosts should be useful for vaccine preparation and diagnosis for future pandemics.
Collapse
Affiliation(s)
- Naoki Nomura
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Keita Matsuno
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masashi Shingai
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan
| | - Marumi Ohno
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Toshiki Sekiya
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan; Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Ryosuke Omori
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Sakoda
- Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan
| | | | - Hiroshi Kida
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) Hokkaido University, Sapporo, Japan; Collaborating Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
44
|
Kohil A, Jemmieh S, Smatti MK, Yassine HM. Viral meningitis: an overview. Arch Virol 2021; 166:335-345. [PMID: 33392820 PMCID: PMC7779091 DOI: 10.1007/s00705-020-04891-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/04/2020] [Indexed: 12/14/2022]
Abstract
Meningitis is a serious condition that affects the central nervous system. It is an inflammation of the meninges, which is the membrane that surrounds both the brain and the spinal cord. Meningitis can be caused by bacterial, viral, or fungal infections. Many viruses, such as enteroviruses, herpesviruses, and influenza viruses, can cause this neurological disorder. However, enteroviruses have been found to be the underlying cause of most viral meningitis cases worldwide. With few exceptions, the clinical manifestations and symptoms associated with viral meningitis are similar for the different causative agents, which makes it difficult to diagnose the disease at early stages. The pathogenesis of viral meningitis is not clearly defined, and more studies are needed to improve the health care of patients in terms of early diagnosis and management. This review article discusses the most common causative agents, epidemiology, clinical features, diagnosis, and pathogenesis of viral meningitis.
Collapse
Affiliation(s)
- Amira Kohil
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Sara Jemmieh
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Maria K Smatti
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Hadi M Yassine
- Biomedical Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
45
|
Zhang C, Cui H, Wang Z, Dong S, Zhang C, Li J, Meng K, Sun Y, Liu J, Guo Z, Chen L. Pathogenicity and transmissibility assessment of two strains of human influenza virus isolated in China in 2018. J Int Med Res 2021; 49:300060520982832. [PMID: 33472481 PMCID: PMC7829534 DOI: 10.1177/0300060520982832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Influenza season occurs every year in China, but its presentation was unusual in the period from December 2017 to early 2018. During this period, influenza activity was increasing across the country and was much greater than during the same period in previous years, with great harm to people's health. METHODS In this study, we isolated two human influenza virus strains-A/Hebei/F076/2018(H1N1) and B/Hebei/16275B/2018-from patients with severe influenza in Hebei, China, during the flu season in January 2018, and explored their genetic characteristics, pathogenicity, and transmissibility. RESULTS A/Hebei/F076/2018(H1N1) belongs to the human-like H1N1 influenza virus lineage, whereas B/Hebei/16275B/2018 belongs to the Victoria lineage and is closely related to the World Health Organization reference strain B/Brisbane/60/2008. Pathogenicity tests revealed that A/Hebei/F076/2018(H1N1) replicated much more strongly in mice, with mice exhibiting 40% mortality, whereas B/Hebei/16275B/2018 was not lethal. Both viruses could be transmitted through direct contact and by the aerosol route between guinea pigs, but the H1N1 strain exhibited higher airborne transmissibility. CONCLUSIONS These results may contribute to the monitoring of influenza mutation and the prevention of an influenza outbreak.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University,
Baoding, Hebei, China
| | - Huan Cui
- College of Veterinary Medicine, Hebei Agricultural University,
Baoding, Hebei, China
| | - Zhongyi Wang
- Institute of Military Veterinary, Academy of Military Medical
Sciences, Changchun, Jilin, China
| | - Shishan Dong
- College of Veterinary Medicine, Hebei Agricultural University,
Baoding, Hebei, China
| | - Chunmao Zhang
- Institute of Military Veterinary, Academy of Military Medical
Sciences, Changchun, Jilin, China
| | - Jiaming Li
- Institute of Military Veterinary, Academy of Military Medical
Sciences, Changchun, Jilin, China
| | - Keyin Meng
- Institute of Military Veterinary, Academy of Military Medical
Sciences, Changchun, Jilin, China
| | - Yucheng Sun
- Institute of Military Veterinary, Academy of Military Medical
Sciences, Changchun, Jilin, China
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University,
Baoding, Hebei, China
| | - Zhendong Guo
- Institute of Military Veterinary, Academy of Military Medical
Sciences, Changchun, Jilin, China
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University,
Baoding, Hebei, China
| |
Collapse
|
46
|
Liu Y, Li S, Sun H, Pan L, Cui X, Zhu X, Feng Y, Li M, Yu Y, Wu M, Lin J, Xu F, Yuan S, Huang S, Sun H, Liao M. Variation and Molecular Basis for Enhancement of Receptor Binding of H9N2 Avian Influenza Viruses in China Isolates. Front Microbiol 2020; 11:602124. [PMID: 33391219 PMCID: PMC7773702 DOI: 10.3389/fmicb.2020.602124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/03/2020] [Indexed: 11/13/2022] Open
Abstract
Currently, H9N2 avian influenza viruses (H9N2 AIVs) globally circulate in poultry and have acquired some adaptation to mammals. However, it is not clear what the molecular basis is for the variation in receptor-binding features of the H9N2 AIVs. The receptor-binding features of 92 H9N2 AIVs prevalent in China during 1994-2017 were characterized through solid-phase ELISA assay and reverse genetics. H9N2 AIVs that circulated in this period mostly belonged to clade h9.4.2. Two increasing incidents occurred in the ability of H9N2 AIVs to bind to avian-like receptors in 2002-2005 and 2011-2014. Two increasing incidents occurred in the strength of H9N2 AIVs to bind to human-like receptors in 2002-2005 and 2011-2017. We found that Q227M, D145G/N, S119R, and R246K mutations can significantly increase H9N2 AIVs to bind to both avian- and human-like receptors. A160D/N, Q156R, T205A, Q226L, V245I, V216L, D208E, T212I, R172Q, and S175N mutations can significantly enhance the strength of H9N2 AIVs to bind to human-like receptors. Our study also identified mutations T205A, D208E, V216L, Q226L, and V245I as the key sites leading to enhanced receptor binding of H9N2 AIVs during 2002-2005 and mutations S119R, D145G, Q156R, A160D, T212I, Q227M, and R246K as the key sites leading to enhanced receptor binding of H9N2 AIVs during 2011-2017. These findings further illustrate the receptor-binding characteristics of avian influenza viruses, which can be a potential threat to public health.
Collapse
Affiliation(s)
- Yang Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Shuo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Huapeng Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Liangqi Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Xinxin Cui
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Xuhui Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Yaling Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Mingliang Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Yanan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Meihua Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Jiate Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Fengxiang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Shaohua Yuan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Shujian Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Hailiang Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonoses Control and Prevention of Guangdong, Guangzhou, China
| |
Collapse
|
47
|
Salahudeen AA, Choi SS, Rustagi A, Zhu J, van Unen V, de la O SM, Flynn RA, Margalef-Català M, Santos AJM, Ju J, Batish A, Usui T, Zheng GXY, Edwards CE, Wagar LE, Luca V, Anchang B, Nagendran M, Nguyen K, Hart DJ, Terry JM, Belgrader P, Ziraldo SB, Mikkelsen TS, Harbury PB, Glenn JS, Garcia KC, Davis MM, Baric RS, Sabatti C, Amieva MR, Blish CA, Desai TJ, Kuo CJ. Progenitor identification and SARS-CoV-2 infection in human distal lung organoids. Nature 2020; 588:670-675. [PMID: 33238290 PMCID: PMC8003326 DOI: 10.1038/s41586-020-3014-1] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 11/18/2020] [Indexed: 12/17/2022]
Abstract
The distal lung contains terminal bronchioles and alveoli that facilitate gas exchange. Three-dimensional in vitro human distal lung culture systems would strongly facilitate the investigation of pathologies such as interstitial lung disease, cancer and coronavirus disease 2019 (COVID-19) pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we describe the development of a long-term feeder-free, chemically defined culture system for distal lung progenitors as organoids derived from single adult human alveolar epithelial type II (AT2) or KRT5+ basal cells. AT2 organoids were able to differentiate into AT1 cells, and basal cell organoids developed lumens lined with differentiated club and ciliated cells. Single-cell analysis of KRT5+ cells in basal organoids revealed a distinct population of ITGA6+ITGB4+ mitotic cells, whose offspring further segregated into a TNFRSF12Ahi subfraction that comprised about ten per cent of KRT5+ basal cells. This subpopulation formed clusters within terminal bronchioles and exhibited enriched clonogenic organoid growth activity. We created distal lung organoids with apical-out polarity to present ACE2 on the exposed external surface, facilitating infection of AT2 and basal cultures with SARS-CoV-2 and identifying club cells as a target population. This long-term, feeder-free culture of human distal lung organoids, coupled with single-cell analysis, identifies functional heterogeneity among basal cells and establishes a facile in vitro organoid model of human distal lung infections, including COVID-19-associated pneumonia.
Collapse
Affiliation(s)
- Ameen A Salahudeen
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Hematology and Oncology, Department of Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Shannon S Choi
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Arjun Rustagi
- Division of Infectious Disease and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Junjie Zhu
- Stanford University School of Engineering, Department of Electrical Engineering, Stanford, CA, USA
| | - Vincent van Unen
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean M de la O
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan A Flynn
- Stanford ChEM-H, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Mar Margalef-Català
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - António J M Santos
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jihang Ju
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Arpit Batish
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Tatsuya Usui
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Caitlin E Edwards
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lisa E Wagar
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Vincent Luca
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Benedict Anchang
- Division of Biomedical Data Science, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Monica Nagendran
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Khanh Nguyen
- Division of Gastroenterology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel J Hart
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | - Pehr B Harbury
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Jeffrey S Glenn
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Division of Gastroenterology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chiara Sabatti
- Division of Biomedical Data Science, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Manuel R Amieva
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Catherine A Blish
- Division of Infectious Disease and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Tushar J Desai
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Calvin J Kuo
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
48
|
Liquid-Phase and Ultrahigh-Frequency-Acoustofluidics-Based Solid-Phase Synthesis of Biotin-Tagged 6′/3′-Sialyl-N-Acetylglucosamine by Sequential One-Pot Multienzyme System. Catalysts 2020. [DOI: 10.3390/catal10111347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
6′/3′-Sialylated N-acetyllactosamine (6′/3′-SLN) is important for discrimination of the source (human or avian) of influenza virus strains. Biotinylated oligosaccharides have been widely used for analysis and quick detection. The development of efficient strategies to synthesize biotin-tagged 6′/3′-SLN have become necessary. Effective mixing is essential for enzymatic solid-phase oligosaccharide synthesis (SPOS). In the current study, newly developed technology ultrahigh-frequency-acoustofluidics (UHFA), which can provide a powerful source for efficient microfluidic mixing, solid-phase oligosaccharide synthesis and one-pot multienzyme (OPME) system, were used to develop a new strategy for oligosaccharide synthesis. Firstly, biotinylated N-acetylglucosamine was designed and chemically synthesized through traditional approaches. Secondly, biotinylated 6′- and 3′-sialyl-N-acetylglucosamines were prepared in solution through two sequential OPME modules in with a yield of ~95%. Thirdly, 6′-SLN was also prepared through UHFA-based enzymatic solid-phase synthesis on magnetic beads with a yield of 64.4%. The current strategy would be potentially used for synthesis of functional oligosaccharides.
Collapse
|
49
|
Jerry C, Stallknecht D, Leyson C, Berghaus R, Jordan B, Pantin-Jackwood M, Hitchener G, França M. Recombinant hemagglutinin glycoproteins provide insight into binding to host cells by H5 influenza viruses in wild and domestic birds. Virology 2020; 550:8-20. [PMID: 32861143 PMCID: PMC7554162 DOI: 10.1016/j.virol.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 12/21/2022]
Abstract
Clade 2.3.4.4, H5 subtype highly pathogenic avian influenza viruses (HPAIVs) have caused devastating effects across wild and domestic bird populations. We investigated differences in the intensity and distribution of the hemagglutinin (HA) glycoprotein binding of a clade 2.3.4.4 H5 HPAIV compared to a H5 low pathogenic avian influenza virus (LPAIV). Recombinant HA from gene sequences from a HPAIV, A/Northern pintail/Washington/40964/2014(H5N2) and a LPAIV, A/mallard/MN/410/2000(H5N2) were generated and, via protein histochemistry, HA binding in respiratory, intestinal and cloacal bursal tissue was quantified as median area of binding (MAB). Poultry species, shorebirds, ducks and terrestrial birds were used. Differences in MAB were observed between the HPAIV and LPAIV H5 HAs. We demonstrate that clade 2.3.4.4 HPAIV H5 HA has a broader host cell binding across a variety of bird species compared to the LPAIV H5 HA. These findings support published results from experimental trials, and outcomes of natural disease outbreaks with these viruses.
Collapse
Affiliation(s)
- Carmen Jerry
- Poultry Diagnostic and Research Center, 953 College, Station Road, Athens, GA, 30605, USA; The Department of Pathology, College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
| | - David Stallknecht
- Southeastern Cooperative Wildlife Disease Study, 589 D.W Brooks Drive, Athens, GA, 30602, USA
| | - Christina Leyson
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Dept. of Agriculture, Agricultural Research Service, 934 College Station Road, Athens, GA, 30605, USA
| | - Roy Berghaus
- Food Animal Health and Management Program, Veterinary Medical Center, 2200 College Station Road, Athens, GA, 30602, USA
| | - Brian Jordan
- Poultry Diagnostic and Research Center, 953 College, Station Road, Athens, GA, 30605, USA
| | - Mary Pantin-Jackwood
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, U.S. Dept. of Agriculture, Agricultural Research Service, 934 College Station Road, Athens, GA, 30605, USA
| | - Gavin Hitchener
- Cornell University Duck Research Laboratory, 192 Old Country Road, Eastport, NY, 11941, USA
| | - Monique França
- Poultry Diagnostic and Research Center, 953 College, Station Road, Athens, GA, 30605, USA.
| |
Collapse
|
50
|
Hartshorn KL. Innate Immunity and Influenza A Virus Pathogenesis: Lessons for COVID-19. Front Cell Infect Microbiol 2020; 10:563850. [PMID: 33194802 PMCID: PMC7642997 DOI: 10.3389/fcimb.2020.563850] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/11/2020] [Indexed: 12/15/2022] Open
Abstract
There is abundant evidence that the innate immune response to influenza A virus (IAV) is highly complex and plays a key role in protection against IAV induced infection and illness. Unfortunately it also clear that aspects of innate immunity can lead to severe morbidity or mortality from IAV, including inflammatory lung injury, bacterial superinfection, and exacerbation of reactive airways disease. We review broadly the virus and host factors that result in adverse outcomes from IAV and show evidence that inflammatory responses can become damaging even apart from changes in viral replication per se, with special focus on the positive and adverse effects of neutrophils and monocytes. We then evaluate in detail the role of soluble innate inhibitors including surfactant protein D and antimicrobial peptides that have a potential dual capacity for down-regulating viral replication and also inhibiting excessive inflammatory responses and how these innate host factors could possibly be harnessed to treat IAV infection. Where appropriate we draw comparisons and contrasts the SARS-CoV viruses and IAV in an effort to point out where the extensive knowledge existing regarding severe IAV infection could help guide research into severe COVID 19 illness or vice versa.
Collapse
Affiliation(s)
- Kevan L Hartshorn
- Section of Hematology Oncology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|