1
|
Cherif M, Brose U, Hirt MR, Ryser R, Silve V, Albert G, Arnott R, Berti E, Cirtwill A, Dyer A, Gauzens B, Gupta A, Ho HC, Portalier SMJ, Wain D, Wootton K. The environment to the rescue: can physics help predict predator-prey interactions? Biol Rev Camb Philos Soc 2024; 99:1927-1947. [PMID: 38855988 DOI: 10.1111/brv.13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
Understanding the factors that determine the occurrence and strength of ecological interactions under specific abiotic and biotic conditions is fundamental since many aspects of ecological community stability and ecosystem functioning depend on patterns of interactions among species. Current approaches to mapping food webs are mostly based on traits, expert knowledge, experiments, and/or statistical inference. However, they do not offer clear mechanisms explaining how trophic interactions are affected by the interplay between organism characteristics and aspects of the physical environment, such as temperature, light intensity or viscosity. Hence, they cannot yet predict accurately how local food webs will respond to anthropogenic pressures, notably to climate change and species invasions. Herein, we propose a framework that synthesises recent developments in food-web theory, integrating body size and metabolism with the physical properties of ecosystems. We advocate for combination of the movement paradigm with a modular definition of the predation sequence, because movement is central to predator-prey interactions, and a generic, modular model is needed to describe all the possible variation in predator-prey interactions. Pending sufficient empirical and theoretical knowledge, our framework will help predict the food-web impacts of well-studied physical factors, such as temperature and oxygen availability, as well as less commonly considered variables such as wind, turbidity or electrical conductivity. An improved predictive capability will facilitate a better understanding of ecosystem responses to a changing world.
Collapse
Affiliation(s)
- Mehdi Cherif
- Aquatic Ecosystems and Global Change Research Unit, National Research Institute for Agriculture Food and the Environment, 50 avenue de Verdun, Cestas Cedex, 33612, France
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Myriam R Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Remo Ryser
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Violette Silve
- Aquatic Ecosystems and Global Change Research Unit, National Research Institute for Agriculture Food and the Environment, 50 avenue de Verdun, Cestas Cedex, 33612, France
| | - Georg Albert
- Department of Forest Nature Conservation, Georg-August-Universität, Büsgenweg 3, Göttingen, 37077, Germany
| | - Russell Arnott
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, Cambridgeshire, CB2 1LR, UK
| | - Emilio Berti
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Alyssa Cirtwill
- Spatial Foodweb Ecology Group, Research Centre for Ecological Change (REC), Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 4 (Yliopistonkatu 3), Helsinki, 00014, Finland
| | - Alexander Dyer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Benoit Gauzens
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Anhubav Gupta
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland
| | - Hsi-Cheng Ho
- Institute of Ecology and Evolutionary Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 106, Taiwan
| | - Sébastien M J Portalier
- Department of Mathematics and Statistics, University of Ottawa, STEM Complex, room 342, 150 Louis-Pasteur Pvt, Ottawa, Ontario, K1N 6N5, Canada
| | - Danielle Wain
- 7 Lakes Alliance, Belgrade Lakes, 137 Main St, Belgrade Lakes, ME, 04918, USA
| | - Kate Wootton
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| |
Collapse
|
2
|
Li G, Chang YL, Miyazawa Y, Müller UK. The calculated voyage: benchmarking optimal strategies and consumptions in the Japanese eel's spawning migration. Sci Rep 2024; 14:26024. [PMID: 39482316 PMCID: PMC11528122 DOI: 10.1038/s41598-024-74979-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Eels migrate along largely unknown routes to their spawning ground. By coupling Zermelo's navigation solution and data from the Japan Coastal Ocean Predictability Experiment 2 (JCOPE2M), we simulated a range of seasonal scenarios, swimming speeds, and swimming depths to predict paths that minimize migration duration and energy cost. Our simulations predict a trade-off between migration duration and energy cost. Given that eels do not refuel during their migration, our simulations suggest eels should travel at speeds of 0.4-0.6 body-length per second to retain enough energy reserves for reproduction. For real eels without full information of the ocean currents, they cannot optimize their migration in strong surface currents, thus when swimming at slow swimming speeds, they should swim at depths of 200 m or greater. Eels swimming near the surface are also influenced by seasonal factors, however, migrating at greater depths mitigates these effects. While greater depths present more favorable flow conditions, water temperature may become increasingly unfavorable, dropping near or below 5 °C. Our results serve as a benchmark, demonstrating the complex interplay between swimming speed, depth, seasonal factors, migration time, and energy consumption, to comprehend the migratory behaviors of Japanese eels and other migratory fish.
Collapse
Affiliation(s)
- Gen Li
- Center for Mathematical Science and Advanced Technology, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan.
| | - Yu-Lin Chang
- Application Laboratory, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
| | - Yasumasa Miyazawa
- Application Laboratory, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan
| | - Ulrike K Müller
- Department of Biology, California State University, Fresno, USA
| |
Collapse
|
3
|
Kao AB, Banerjee SC, Francisco FA, Berdahl AM. Timing decisions as the next frontier for collective intelligence. Trends Ecol Evol 2024; 39:904-912. [PMID: 38964933 DOI: 10.1016/j.tree.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
The past decade has witnessed a growing interest in collective decision making, particularly the idea that groups can make more accurate decisions compared with individuals. However, nearly all research to date has focused on spatial decisions (e.g., food patches). Here, we highlight the equally important, but severely understudied, realm of temporal collective decision making (i.e., decisions about when to perform an action). We illustrate differences between temporal and spatial decisions, including the irreversibility of time, cost asymmetries, the speed-accuracy tradeoff, and game theoretic dynamics. Given these fundamental differences, temporal collective decision making likely requires different mechanisms to generate collective intelligence. Research focused on temporal decisions should lead to an expanded understanding of the adaptiveness and constraints of living in groups.
Collapse
Affiliation(s)
- Albert B Kao
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA.
| | | | - Fritz A Francisco
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA.
| | - Andrew M Berdahl
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
4
|
Conners MG, Green JA, Phillips RA, Orben RA, Cui C, Djurić PM, Heywood E, Vyssotski AL, Thorne LH. Dynamic soaring decouples dynamic body acceleration and energetics in albatrosses. J Exp Biol 2024; 227:jeb247431. [PMID: 39246116 DOI: 10.1242/jeb.247431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Estimates of movement costs are essential for understanding energetic and life-history trade-offs. Although overall dynamic body acceleration (ODBA) derived from accelerometer data is widely used as a proxy for energy expenditure (EE) in free-ranging animals, its utility has not been tested in species that predominately use body rotations or exploit environmental energy for movement. We tested a suite of sensor-derived movement metrics as proxies for EE in two species of albatrosses, which routinely use dynamic soaring to extract energy from the wind to reduce movement costs. Birds were fitted with a combined heart-rate, accelerometer, magnetometer and GPS logger, and relationships between movement metrics and heart rate-derived V̇O2, an indirect measure of EE, were analyzed during different flight and activity modes. When birds were exclusively soaring, a metric derived from angular velocity on the yaw axis provided a useful proxy of EE. Thus, body rotations involved in dynamic soaring have clear energetic costs, albeit considerably lower than those of the muscle contractions required for flapping flight. We found that ODBA was not a useful proxy for EE in albatrosses when birds were exclusively soaring. As albatrosses spend much of their foraging trips soaring, ODBA alone was a poor predictor of EE in albatrosses. Despite the lower percentage of time flapping, the number of flaps was a useful metric when comparing EE across foraging trips. Our findings highlight that alternative metrics, beyond ODBA, may be required to estimate energy expenditure from inertial sensors in animals whose movements involve extensive body rotations.
Collapse
Affiliation(s)
- Melinda G Conners
- School of Marine and Atmospheric Sciences, Stony Brook University, NY 11794-5000, USA
- Western EcoSystems Technology, Inc., 415 West 17th Street, Cheyenne, WY 82001, USA
| | - Jonathan A Green
- School of Environmental Sciences, University of Liverpool, Liverpool L69 3GP, UK
| | - Richard A Phillips
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Rachael A Orben
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Hatfield Marine Science Center, 2030 SE Marine Science Dr., Newport, OR 97365, USA
| | - Chen Cui
- Department of Electrical and Computer Engineering, Stony Brook University, NY 11794-5000, USA
| | - Petar M Djurić
- Department of Electrical and Computer Engineering, Stony Brook University, NY 11794-5000, USA
| | - Eleanor Heywood
- School of Marine and Atmospheric Sciences, Stony Brook University, NY 11794-5000, USA
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zurich and Swiss Federal Institute of Technology (ETH), Zurich 8057, Switzerland
| | - Lesley H Thorne
- School of Marine and Atmospheric Sciences, Stony Brook University, NY 11794-5000, USA
| |
Collapse
|
5
|
Malul D, Berman H, Solodoch A, Tal O, Barak N, Mizrahi G, Berenshtein I, Toledo Y, Lotan T, Sher D, Shavit U, Lehahn Y. Directional swimming patterns in jellyfish aggregations. Curr Biol 2024; 34:4033-4038.e5. [PMID: 39106864 DOI: 10.1016/j.cub.2024.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 08/09/2024]
Abstract
Having a profound influence on marine and coastal environments worldwide, jellyfish hold significant scientific, economic, and public interest.1,2,3,4,5 The predictability of outbreaks and dispersion of jellyfish is limited by a fundamental gap in our understanding of their movement. Although there is evidence that jellyfish may actively affect their position,6,7,8,9,10 the role of active swimming in controlling jellyfish movement, and the characteristics of jellyfish swimming behavior, are not well understood. Consequently, jellyfish are often regarded as passively drifting or randomly moving organisms, both conceptually2,11 and in process studies.12,13,14 Here we show that the movement of jellyfish is modulated by distinctly directional swimming patterns that are oriented away from the coast and against the direction of surface gravity waves. Taking a Lagrangian viewpoint from drone videos that allows the tracking of multiple adjacent jellyfish, and focusing on the scyphozoan jellyfish Rhopilema nomadica as a model organism, we show that the behavior of individual jellyfish translates into a synchronized directional swimming of the aggregation as a whole. Numerical simulations show that this counter-wave swimming behavior results in biased correlated random-walk movement patterns that reduce the risk of stranding, thus providing jellyfish with an adaptive advantage critical to their survival. Our results emphasize the importance of active swimming in regulating jellyfish movement and open the way for a more accurate representation in model studies, thus improving the predictability of jellyfish outbreaks and their dispersion and contributing to our ability to mitigate their possible impact on coastal infrastructure and populations.
Collapse
Affiliation(s)
- Dror Malul
- Department of Civil and Environmental Engineering, Technion, Technion City, Haifa 10587, Israel; Department of Marine Geosciences, University of Haifa, Abba Khoushy Ave, Haifa 3498838, Israel; The Inter-university Institute for Marine Sciences, Eilat 8810302, Israel
| | - Hadar Berman
- Department of Marine Geosciences, University of Haifa, Abba Khoushy Ave, Haifa 3498838, Israel
| | - Aviv Solodoch
- Institute of Earth Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel
| | - Omri Tal
- Department of Civil and Environmental Engineering, Technion, Technion City, Haifa 10587, Israel
| | - Noga Barak
- Department of Marine Biology, University of Haifa, Abba Khoushy Ave, Haifa 3498838, Israel
| | - Gur Mizrahi
- Department of Marine Geosciences, University of Haifa, Abba Khoushy Ave, Haifa 3498838, Israel
| | - Igal Berenshtein
- Department of Marine Biology, University of Haifa, Abba Khoushy Ave, Haifa 3498838, Israel
| | - Yaron Toledo
- School of Mechanical Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel
| | - Tamar Lotan
- Department of Marine Biology, University of Haifa, Abba Khoushy Ave, Haifa 3498838, Israel
| | - Daniel Sher
- Department of Marine Biology, University of Haifa, Abba Khoushy Ave, Haifa 3498838, Israel
| | - Uri Shavit
- Department of Civil and Environmental Engineering, Technion, Technion City, Haifa 10587, Israel
| | - Yoav Lehahn
- Department of Marine Geosciences, University of Haifa, Abba Khoushy Ave, Haifa 3498838, Israel.
| |
Collapse
|
6
|
Schekler I, Levi Y, Sapir N. Contrasting seasonal responses to wind in migrating songbirds on a globally important flyway. Proc Biol Sci 2024; 291:20240875. [PMID: 39016113 PMCID: PMC11253207 DOI: 10.1098/rspb.2024.0875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/18/2024] Open
Abstract
During spring migration, nocturnal migrants attempt to minimize their travel time to reach their breeding grounds early. However, how they behave and respond to unfavourable conditions during their springtime travels is much less understood. In this study, we reveal the effects of atmospheric factors on nocturnal bird migration under adverse conditions during spring and autumn, based on one of the most detailed bird migration studies globally, using radar data from 13 deployments over a period of seven years (2014-2020) in the Levant region. Using ERA5 reanalysis data, we found that migratory birds maintain similar ground speeds in both autumn and spring migrations, but during spring, when encountering unfavourable winds, they put more effort into maintaining their travel speed by increasing self-powered airspeed by 18%. Moreover, we report for the first time that spring migrants showed less selectivity to wind conditions and migrated even under unfavourable headwind and crosswind conditions. Interestingly, we discovered that temperature was the most important weather parameter, such that warm weather substantially increased migration intensities in both seasons. Our results enhance our understanding of bird migration over the Levant region, one of the world's largest and most important migration flyways, and the factors controlling it. This information is essential for predicting bird migration, which-especially under the ongoing anthropogenic changes-is of high importance.
Collapse
Affiliation(s)
- Inbal Schekler
- Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, Haifa3498838, Israel
| | - Yoav Levi
- Israel Meteorological Service, Bet Dagan, Israel
| | - Nir Sapir
- Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, Haifa3498838, Israel
| |
Collapse
|
7
|
Ventura F, Sander N, Catry P, Wakefield E, De Pascalis F, Richardson PL, Granadeiro JP, Silva MC, Ummenhofer CC. Oceanic seabirds chase tropical cyclones. Curr Biol 2024; 34:3279-3285.e3. [PMID: 38986616 DOI: 10.1016/j.cub.2024.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
In late summer and autumn, the passage of intense tropical cyclones can profoundly perturb oceanic and coastal ecosystems. Direct negative effects on individuals and marine communities can be dramatic, especially in the coastal zone,1,2,3,4 but cyclones can also enhance pelagic primary and secondary production.5,6,7,8,9 However, cyclone impacts on open ocean marine life remain poorly understood. Here, we investigate their effects on the foraging movements of a wide-ranging higher predator, the Desertas petrel (Pterodroma deserta), in the mid-latitude North Atlantic during hurricane season. Contrary to previously studied pelagic seabirds in tropical and mid-latitude regions,10,11 Desertas petrels did not avoid cyclones by altering course, nor did they seek calmer conditions within the cyclone eye. Approximately one-third of petrels tracked from their breeding colony interacted with approaching cyclones. Upon encountering strong winds, the birds reduced ground speed, likely by spending less time in flight. A quarter of birds followed cyclone wakes for days and over thousands of kilometers, a behavior documented here for the first time. Within these wakes, tailwind support was higher than along alternative routes. Furthermore, at the mesoscale (hours-weeks and hundreds of kilometers), sea surface temperature dropped and surface chlorophyll sharply increased, suggesting direct effects on ocean stratification, primary production, and therefore presumably prey abundance and accessibility for surface-feeding petrels. We therefore hypothesize that cyclone wakes provide both predictably favorable wind conditions and foraging opportunities. As such, cyclones may have positive net effects on the demography of many mid-latitude pelagic seabirds and, likely, other marine top-predators.
Collapse
Affiliation(s)
- Francesco Ventura
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - Neele Sander
- Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA, USA; Christian-Albrechts-Universität zu Kiel, Geomar Helmholtz-Center for Ocean Research, Kiel, Germany
| | - Paulo Catry
- MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Ispa Instituto Universitário, Lisbon, Portugal
| | | | - Federico De Pascalis
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano dell'Emilia, Italy
| | - Philip L Richardson
- Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - José Pedro Granadeiro
- Centre for Environmental and Marine Studies (CESAM), Departmento de Biologia Animal, Universidade de Lisboa, Lisbon, Portugal
| | - Mónica C Silva
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Departmento de Biologia Animal, Universidade de Lisboa, Lisbon, Portugal
| | - Caroline C Ummenhofer
- Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
8
|
González-Rueda A, Jensen K, Noormandipour M, de Malmazet D, Wilson J, Ciabatti E, Kim J, Williams E, Poort J, Hennequin G, Tripodi M. Kinetic features dictate sensorimotor alignment in the superior colliculus. Nature 2024; 631:378-385. [PMID: 38961292 PMCID: PMC11236723 DOI: 10.1038/s41586-024-07619-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/28/2024] [Indexed: 07/05/2024]
Abstract
The execution of goal-oriented behaviours requires a spatially coherent alignment between sensory and motor maps. The current model for sensorimotor transformation in the superior colliculus relies on the topographic mapping of static spatial receptive fields onto movement endpoints1-6. Here, to experimentally assess the validity of this canonical static model of alignment, we dissected the visuo-motor network in the superior colliculus and performed in vivo intracellular and extracellular recordings across layers, in restrained and unrestrained conditions, to assess both the motor and the visual tuning of individual motor and premotor neurons. We found that collicular motor units have poorly defined visual static spatial receptive fields and respond instead to kinetic visual features, revealing the existence of a direct alignment in vectorial space between sensory and movement vectors, rather than between spatial receptive fields and movement endpoints as canonically hypothesized. We show that a neural network built according to these kinetic alignment principles is ideally placed to sustain ethological behaviours such as the rapid interception of moving and static targets. These findings reveal a novel dimension of the sensorimotor alignment process. By extending the alignment from the static to the kinetic domain this work provides a novel conceptual framework for understanding the nature of sensorimotor convergence and its relevance in guiding goal-directed behaviours.
Collapse
Affiliation(s)
- Ana González-Rueda
- MRC Laboratory of Molecular Biology, Cambridge, UK.
- St Edmund's College, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | | - Jisoo Kim
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | - Jasper Poort
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Guillaume Hennequin
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Engineering, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
9
|
Sappington TW. Aseasonal, undirected migration in insects: 'Invisible' but common. iScience 2024; 27:110040. [PMID: 38883831 PMCID: PMC11177203 DOI: 10.1016/j.isci.2024.110040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024] Open
Abstract
Many insect pests are long-distance migrants, moving from lower latitudes where they overwinter to higher latitudes in spring to exploit superabundant, but seasonally ephemeral, host crops. These seasonal long-distance migration events are relatively easy to recognize, and justifiably garner much research attention. Evidence indicates several pest species that overwinter in diapause, and thus inhabit a year-round range, also engage in migratory flight, which is somewhat "invisible" because displacement is nondirectional and terminates among conspecifics. Support for aseasonal, undirected migration is related to recognizing true migratory flight behavior, which differs fundamentally from most other kinds of flight in that it is nonappetitive. Migrating adults are not searching for resources and migratory flight is not arrested by encounters with potential resources. The population-level consequence of aseasonal, undirected migration is spatial mixing of individuals within the larger metapopulation, which has important implications for population dynamics, gene flow, pest management, and insect resistance management.
Collapse
Affiliation(s)
- Thomas W Sappington
- USDA, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
10
|
Goto Y, Weimerskirch H, Fukaya K, Yoda K, Naruoka M, Sato K. Albatrosses employ orientation and routing strategies similar to yacht racers. Proc Natl Acad Sci U S A 2024; 121:e2312851121. [PMID: 38771864 PMCID: PMC11161812 DOI: 10.1073/pnas.2312851121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/15/2024] [Indexed: 05/23/2024] Open
Abstract
The way goal-oriented birds adjust their travel direction and route in response to wind significantly affects their travel costs. This is expected to be particularly pronounced in pelagic seabirds, which utilize a wind-dependent flight style called dynamic soaring. Dynamic soaring seabirds in situations without a definite goal, e.g. searching for prey, are known to preferentially fly with crosswinds or quartering-tailwinds to increase the speed and search area, and reduce travel costs. However, little is known about their reaction to wind when heading to a definite goal, such as homing. Homing tracks of wandering albatrosses (Diomedea exulans) vary from beelines to zigzags, which are similar to those of sailboats. Here, given that both albatrosses and sailboats travel slower in headwinds and tailwinds, we tested whether the time-minimizing strategies used by yacht racers can be compared to the locomotion patterns of wandering albatrosses. We predicted that when the goal is located upwind or downwind, albatrosses should deviate their travel directions from the goal on the mesoscale and increase the number of turns on the macroscale. Both hypotheses were supported by track data from albatrosses and racing yachts in the Southern Ocean confirming that albatrosses qualitatively employ the same strategy as yacht racers. Nevertheless, albatrosses did not strictly minimize their travel time, likely making their flight robust against wind fluctuations to reduce flight costs. Our study provides empirical evidence of tacking in albatrosses and demonstrates that man-made movement strategies provide a new perspective on the laws underlying wildlife movement.
Collapse
Affiliation(s)
- Yusuke Goto
- Graduate School of Environmental Studies, Nagoya University, Furo, Chikusa, Nagoya464-8601, Japan
| | - Henri Weimerskirch
- Centre d’Etudes Biologiques Chizé (CEBC), UMR 7372 CNRS–Université de la Rochelle, Villiers En Bois79360, France
| | - Keiichi Fukaya
- National Institute for Environmental Studies, Tsukuba, Ibaraki305-8506, Japan
| | - Ken Yoda
- Graduate School of Environmental Studies, Nagoya University, Furo, Chikusa, Nagoya464-8601, Japan
| | - Masaru Naruoka
- Aeronautical Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Mitaka, Tokyo181-0015, Japan
| | - Katsufumi Sato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba277-8564, Japan
| |
Collapse
|
11
|
Wang X, Ma H, Zhao Y, Gao Y, Wu K. Abundance and Seasonal Migration Patterns of Green Lacewings (Neuroptera: Chrysopidae) across the Bohai Strait in Eastern Asia. INSECTS 2024; 15:321. [PMID: 38786877 PMCID: PMC11121799 DOI: 10.3390/insects15050321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/24/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024]
Abstract
Many insects, including green lacewings, migrate seasonally to exploit suitable breeding and winter habitats. Green lacewings are important natural enemies of insect pests worldwide. Here, four dominant green lacewing species, Chrysoperla nipponensis (Okamoto), Chrysopa pallens (Rambur), Chrysoperla furcifera (Okamoto), and Chrysopa formosa Brauer, were investigated for their ability to migrate between northern and northeastern China across the Bohai Strait from late May to late October each year. Furthermore, there were significant interannual and seasonal differences in the number of migratory green lacewings collected. The number of green lacewings in spring was significantly lower than that in summer and autumn, and the highest average number of green lacewings occurred in June. In addition, there were differences in the sex ratio of migrating green lacewings between months, with a greater proportion of females than males. Finally, the seasonal migration trajectories simulated by the HYSPLIT model revealed that the green lacewings captured on Beihuang Island primarily originated from Shandong Province. Accordingly, these findings contribute to our understanding of green lacewing migration in eastern Asia and aid its incorporation within integrated pest management (IPM) packages for several crop pests. Furthermore, long-term tracking of migrant insect populations can reveal ecosystem services and trophic dynamic processes at the macroscale.
Collapse
Affiliation(s)
- Xingya Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (X.W.); (H.M.); (Y.Z.); (Y.G.)
| | - Haotian Ma
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (X.W.); (H.M.); (Y.Z.); (Y.G.)
| | - Yuechao Zhao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (X.W.); (H.M.); (Y.Z.); (Y.G.)
| | - Ying Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (X.W.); (H.M.); (Y.Z.); (Y.G.)
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
12
|
Huang J, Feng H, Drake VA, Reynolds DR, Gao B, Chen F, Zhang G, Zhu J, Gao Y, Zhai B, Li G, Tian C, Huang B, Hu G, Chapman JW. Massive seasonal high-altitude migrations of nocturnal insects above the agricultural plains of East China. Proc Natl Acad Sci U S A 2024; 121:e2317646121. [PMID: 38648486 PMCID: PMC11067063 DOI: 10.1073/pnas.2317646121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/13/2024] [Indexed: 04/25/2024] Open
Abstract
Long-distance migrations of insects contribute to ecosystem functioning but also have important economic impacts when the migrants are pests or provide ecosystem services. We combined radar monitoring, aerial sampling, and searchlight trapping, to quantify the annual pattern of nocturnal insect migration above the densely populated agricultural lands of East China. A total of ~9.3 trillion nocturnal insect migrants (15,000 t of biomass), predominantly Lepidoptera, Hemiptera, and Diptera, including many crop pests and disease vectors, fly at heights up to 1 km above this 600 km-wide region every year. Larger migrants (>10 mg) exhibited seasonal reversal of movement directions, comprising northward expansion during spring and summer, followed by southward movements during fall. This north-south transfer was not balanced, however, with southward movement in fall 0.66× that of northward movement in spring and summer. Spring and summer migrations were strongest when the wind had a northward component, while in fall, stronger movements occurred on winds that allowed movement with a southward component; heading directions of larger insects were generally close to the track direction. These findings indicate adaptations leading to movement in seasonally favorable directions. We compare our results from China with similar studies in Europe and North America and conclude that ecological patterns and behavioral adaptations are similar across the Northern Hemisphere. The predominance of pests among these nocturnal migrants has severe implications for food security and grower prosperity throughout this heavily populated region, and knowledge of their migrations is potentially valuable for forecasting pest impacts and planning timely management actions.
Collapse
Affiliation(s)
- Jianrong Huang
- Henan Key Laboratory of Crop Pest Control, Key Laboratory for Integrated Crop Pests Management on Crops in Southern Region of North China, International Joint Research Laboratory for Crop Protection of Henan, No. 0 Entomological Radar Field Scientific Observation and Research Station of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan450002, China
- Centre for Ecology and Conservation, and Environment and Sustainability Institute, University of Exeter, Penryn, CornwallTR10 9FE, United Kingdom
| | - Hongqiang Feng
- Henan Key Laboratory of Crop Pest Control, Key Laboratory for Integrated Crop Pests Management on Crops in Southern Region of North China, International Joint Research Laboratory for Crop Protection of Henan, No. 0 Entomological Radar Field Scientific Observation and Research Station of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan450002, China
| | - V. Alistair Drake
- School of Science, UNSW Canberra, The University of New South Wales, Canberra, ACT2610, Australia
- Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, ACT2617, Australia
| | - Don R. Reynolds
- Natural Resources Institute, University of Greenwich, Chatham, KentME4 4 TB, United Kingdom
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, HertsAL5 2JQ, United Kingdom
| | - Boya Gao
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Fajun Chen
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Guoyan Zhang
- Plant Protection and Quarantine Station of Henan Province, Zhengzhou, Henan450002, China
| | - Junsheng Zhu
- Shandong Agricultural Technology Extension Center, Jinan, Shandong250100, China
| | - Yuebo Gao
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin136100, China
| | - Baoping Zhai
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Guoping Li
- Henan Key Laboratory of Crop Pest Control, Key Laboratory for Integrated Crop Pests Management on Crops in Southern Region of North China, International Joint Research Laboratory for Crop Protection of Henan, No. 0 Entomological Radar Field Scientific Observation and Research Station of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan450002, China
| | - Caihong Tian
- Henan Key Laboratory of Crop Pest Control, Key Laboratory for Integrated Crop Pests Management on Crops in Southern Region of North China, International Joint Research Laboratory for Crop Protection of Henan, No. 0 Entomological Radar Field Scientific Observation and Research Station of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan450002, China
| | - Bo Huang
- Henan Key Laboratory of Crop Pest Control, Key Laboratory for Integrated Crop Pests Management on Crops in Southern Region of North China, International Joint Research Laboratory for Crop Protection of Henan, No. 0 Entomological Radar Field Scientific Observation and Research Station of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan450002, China
| | - Gao Hu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| | - Jason W. Chapman
- Centre for Ecology and Conservation, and Environment and Sustainability Institute, University of Exeter, Penryn, CornwallTR10 9FE, United Kingdom
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu210095, China
| |
Collapse
|
13
|
Hintz WD, Porreca AP, Garvey JE. Water velocity shapes fish movement behavior. JOURNAL OF FISH BIOLOGY 2024; 104:1223-1230. [PMID: 38273426 DOI: 10.1111/jfb.15669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Stream and river ecosystems present fluvial fishes with a dynamic energy landscape because moving water generates heterogeneous flow fields that are rarely static in space and time. Fish movement behavior should be consistent with conserving energy in these dynamic flowing environments, but little evidence supporting this hypothesis exists. Here, we tested experimentally whether three general movement behaviors-against the current, with the current, or holding position (i.e., staying in one position and location)-were performed in a way consistent with minimizing the cost of swimming in a heterogeneous flow field. We tested the effects of water velocity on movement behavior across three age classes (0, 1, and 5 years) of two different fluvial specialist fishes, the pallid sturgeon (Scaphirhynchus albus) and shovelnose sturgeon (Scaphirhynchus platorynchus). Individuals from the three age classes were exposed to a continuous and dynamic velocity field ranging from 0.02 to 0.53 m s-1, which represented natural benthic flow regimes occupied by these species in rivers. Both sturgeon species exhibited the same pattern with regard to their tendency to hold position, move upstream, or move downstream. Moving downstream was positively associated with velocity for all age groups. Moving upstream was inversely related to velocity for young fish, but as the fish aged, moving upstream was not related to water velocity. The oldest fish (age 5) moved upstream more frequently compared to the younger age classes. Holding position within a water current was the most frequent behavior and occurred with similar probability across the range of experimental velocity for youngest fish (age 0), but was inversely related to velocity in older fish. Our experiment across age classes suggests that the suite of swimming behaviors exhibited by fluvial specialists might have evolved to mitigate the energetic costs of complex energy landscapes generated by moving water to ultimately maximize net energy gain.
Collapse
Affiliation(s)
- William D Hintz
- Department of Environmental Sciences and Lake Erie Center, The University of Toledo, Toledo, Ohio, USA
| | - Anthony P Porreca
- Kaskaskia Biological Station, Illinois Natural History Survey, University of Illinois, Sullivan, Illinois, USA
| | - James E Garvey
- Center for Fisheries, Aquaculture, and Aquatic Sciences, Department of Zoology, Southern Illinois University, Carbondale, Illinois, USA
| |
Collapse
|
14
|
Johnston ST, Painter KJ. Avoidance, confusion or solitude? Modelling how noise pollution affects whale migration. MOVEMENT ECOLOGY 2024; 12:17. [PMID: 38374001 PMCID: PMC10875784 DOI: 10.1186/s40462-024-00458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
Many baleen whales are renowned for their acoustic communication. Under pristine conditions, this communication can plausibly occur across hundreds of kilometres. Frequent vocalisations may allow a dispersed migrating group to maintain contact, and therefore benefit from improved navigation via the "wisdom of the crowd". Human activities have considerably inflated ocean noise levels. Here we develop a data-driven mathematical model to investigate how ambient noise levels may inhibit whale migration. Mathematical models allow us to simultaneously simulate collective whale migration behaviour, auditory cue detection, and noise propagation. Rising ambient noise levels are hypothesised to influence navigation through three mechanisms: (i) diminished communication space; (ii) reduced ability to hear external sound cues and; (iii) triggering noise avoidance behaviour. Comparing pristine and current soundscapes, we observe navigation impairment that ranges from mild (increased journey time) to extreme (failed navigation). Notably, the three mechanisms induce qualitatively different impacts on migration behaviour. We demonstrate the model's potential predictive power, exploring the extent to which migration may be altered under future shipping and construction scenarios.
Collapse
Affiliation(s)
- Stuart T Johnston
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Kevin J Painter
- Dipartimento Interateneo di Scienze, Progetto e Politiche del Territorio (DIST), Politecnico di Torino, 39, 10125, Turin, Italy
| |
Collapse
|
15
|
Jongsomjit D, Lescroël A, Schmidt AE, Lisovski S, Ainley DG, Hines E, Elrod M, Dugger KM, Ballard G. Going with the floe: Sea-ice movement affects distance and destination during Adélie penguin winter movements. Ecology 2024; 105:e4196. [PMID: 37885122 DOI: 10.1002/ecy.4196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
Seasonal migration, driven by shifts in annual climate cycles and resources, is a key part of the life history and ecology of species across taxonomic groups. By influencing the amount of energy needed to move, external forces such as wind and ocean currents are often key drivers of migratory pathways exposing individuals to varying resources, environmental conditions, and competition pressures impacting individual fitness and population dynamics. Although wildlife movements in connection with wind and ocean currents are relatively well understood, movements within sea-ice fields have been much less studied, despite sea ice being an integral part of polar ecology. Adélie penguins (Pygoscelis adeliae) in the southern Ross Sea, Antarctica, currently exist at the southernmost edge of their range and undergo the longest (~12,000 km) winter migration known for the species. Within and north of the Ross Sea, the Ross Gyre drives ocean circulation and the large-scale movement of sea ice. We used remotely sensed sea-ice movement data together with geolocation-based penguin movement data to test the hypothesis that penguins use gyre-driven sea-ice movement to aid their migration. We found that penguins traveled greater distances when their movement vectors were aligned with those of sea ice (i.e., ice support) and the amount of ice support received depended on which route a penguin took. We also found that birds that took an eastern route traveled significantly further north in two of the 3 years we examined, coinciding with higher velocities of sea ice in those years. We compare our findings to patterns observed in migrating species that utilize air or water currents for their travel and with other studies showing the importance of ocean/sea-ice circulation patterns to wildlife movement and life history patterns within the Ross Sea. Changes in sea ice may have consequences not only for energy expenditure but, by altering migration and movement pathways, to the ecological interactions that exist in this region.
Collapse
Affiliation(s)
- Dennis Jongsomjit
- Point Blue Conservation Science, Petaluma, California, USA
- Department of Geography and Environment, San Francisco State University, San Francisco, California, USA
| | | | | | - Simeon Lisovski
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | | | - Ellen Hines
- Department of Geography and Environment, San Francisco State University, San Francisco, California, USA
- Estuary & Ocean Science Center, San Francisco State University, Tiburon, California, USA
| | - Megan Elrod
- Point Blue Conservation Science, Petaluma, California, USA
| | - Katie M Dugger
- US Geological Survey, Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Grant Ballard
- Point Blue Conservation Science, Petaluma, California, USA
| |
Collapse
|
16
|
Chen H, Wan G, Li J, Ma Y, Reynolds DR, Dreyer D, Warrant EJ, Chapman JW, Hu G. Adaptive migratory orientation of an invasive pest on a new continent. iScience 2023; 26:108281. [PMID: 38187194 PMCID: PMC10767162 DOI: 10.1016/j.isci.2023.108281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 01/09/2024] Open
Abstract
Many species of insects undertake long-range, seasonally reversed migrations, displaying sophisticated orientation behaviors to optimize their migratory trajectories. However, when invasive insects arrive in new biogeographical regions, it is unclear if migrants retain (or how quickly they regain) ancestral migratory traits, such as seasonally preferred flight headings. Here we present behavioral evidence that an invasive migratory pest, the fall armyworm moth (Spodoptera frugiperda), a native of the Americas, exhibited locally adaptive migratory orientation less than three years after arriving on a new continent. Specimens collected from China showed flight orientations directed north-northwest in spring and southwest in autumn, and this would promote seasonal forward and return migrations in East Asia. We also show that the driver of the seasonal switch in orientation direction is photoperiod. Our results thus provide a clear example of an invasive insect that has rapidly exhibited adaptive migratory behaviors, either inherited or newly evolved, in a completely alien environment.
Collapse
Affiliation(s)
- Hui Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Guijun Wan
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianchun Li
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Yibo Ma
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Don R. Reynolds
- Natural Resources Institute, University of Greenwich, Chatham ME4 4TB, UK
- Rothamsted Research, Harpenden AL5 2JQ, UK
| | - David Dreyer
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Eric J. Warrant
- Lund Vision Group, Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | - Jason W. Chapman
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Gao Hu
- Department of Entomology, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
17
|
Sappington TW, Spencer JL. Movement Ecology of Adult Western Corn Rootworm: Implications for Management. INSECTS 2023; 14:922. [PMID: 38132596 PMCID: PMC10744206 DOI: 10.3390/insects14120922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Movement of adult western corn rootworm, Diabrotica virgifera virgifera LeConte, is of fundamental importance to this species' population dynamics, ecology, evolution, and interactions with its environment, including cultivated cornfields. Realistic parameterization of dispersal components of models is needed to predict rates of range expansion, development, and spread of resistance to control measures and improve pest and resistance management strategies. However, a coherent understanding of western corn rootworm movement ecology has remained elusive because of conflicting evidence for both short- and long-distance lifetime dispersal, a type of dilemma observed in many species called Reid's paradox. Attempts to resolve this paradox using population genetic strategies to estimate rates of gene flow over space likewise imply greater dispersal distances than direct observations of short-range movement suggest, a dilemma called Slatkin's paradox. Based on the wide-array of available evidence, we present a conceptual model of adult western corn rootworm movement ecology under the premise it is a partially migratory species. We propose that rootworm populations consist of two behavioral phenotypes, resident and migrant. Both engage in local, appetitive flights, but only the migrant phenotype also makes non-appetitive migratory flights, resulting in observed patterns of bimodal dispersal distances and resolution of Reid's and Slatkin's paradoxes.
Collapse
Affiliation(s)
- Thomas W. Sappington
- Corn Insects and Crop Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Ames, IA 50011, USA
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Joseph L. Spencer
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| |
Collapse
|
18
|
Hodgson TM, Johnston ST, Ottobre M, Painter KJ. Intent matters: how flow and forms of information impact collective navigation. J R Soc Interface 2023; 20:20230356. [PMID: 37817582 PMCID: PMC10565391 DOI: 10.1098/rsif.2023.0356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/15/2023] [Indexed: 10/12/2023] Open
Abstract
The phenomenon of collective navigation has received considerable interest in recent years. A common line of thinking, backed by theoretical studies, is that collective navigation can improve navigation efficiency through the 'many-wrongs' principle, whereby individual error is reduced by comparing the headings of neighbours. When navigation takes place in a flowing environment, each individual's trajectory is influenced by drift. Consequently, a potential discrepancy emerges between an individual's intended heading and its actual heading. In this study, we develop a theoretical model to explore whether collective navigation benefits are altered according to the form of heading information transmitted between neighbours. Navigation based on each individual's intended heading is found to confer robust advantages across a wide spectrum of flows, via both a marked improvement in migration times and a capacity for a group to overcome flows unnavigable by solitary individuals. Navigation based on individual's actual headings is far less effective, only offering an improvement under highly favourable currents. For many currents, sharing actual heading information can even lead to journey times that exceed those of individual navigators.
Collapse
Affiliation(s)
- T. M. Hodgson
- Maxwell Institute for Mathematical Sciences and Mathematics Department, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - S. T. Johnston
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - M. Ottobre
- Maxwell Institute for Mathematical Sciences and Mathematics Department, Heriot-Watt University, Edinburgh EH14 4AS, UK
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - K. J. Painter
- DIST, Politecnico di Torino, Viale Pier Andrea Mattioli 39, 10125 Torino, Italy
| |
Collapse
|
19
|
Ortega AC, Aikens EO, Merkle JA, Monteith KL, Kauffman MJ. Migrating mule deer compensate en route for phenological mismatches. Nat Commun 2023; 14:2008. [PMID: 37037806 PMCID: PMC10086060 DOI: 10.1038/s41467-023-37750-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/29/2023] [Indexed: 04/12/2023] Open
Abstract
Billions of animals migrate to track seasonal pulses in resources. Optimally timing migration is a key strategy, yet the ability of animals to compensate for phenological mismatches en route is largely unknown. Using GPS movement data collected from 72 adult female deer over a 10-year duration, we study a population of mule deer (Odocoileus hemionus) in Wyoming that lack reliable cues on their desert winter range, causing them to start migration 70 days ahead to 52 days behind the wave of spring green-up. We show that individual deer arrive at their summer range within an average 6-day window by adjusting movement speed and stopover use. Late migrants move 2.5 times faster and spend 72% less time on stopovers than early migrants, which allows them to catch the green wave. Our findings suggest that ungulates, and potentially other migratory species, possess cognitive abilities to recognize where they are in space and time relative to key resources. Such behavioral capacity may allow migratory taxa to maintain foraging benefits amid rapidly changing phenology.
Collapse
Affiliation(s)
- Anna C Ortega
- Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, 82071, USA.
- Program in Ecology, University of Wyoming, Laramie, WY, 82071, USA.
| | - Ellen O Aikens
- U.S. Geological Survey, South Dakota Cooperative Fish and Wildlife Research Unit, Department of Natural Resource Management, Brookings, SD, 57006, USA
| | - Jerod A Merkle
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, 82071, USA
| | - Kevin L Monteith
- Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, 82071, USA
- Haub School of Environment and Natural Resources, University of Wyoming, Laramie, WY, 82072, USA
| | - Matthew J Kauffman
- U.S. Geological Survey, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, 82071, USA
| |
Collapse
|
20
|
Timing rather than movement decisions explains age-related differences in wind support for a migratory bird. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
陈 温. Discussion on Key Factors of Restoration of Juvenile Tachypleus tridentatus (Leach, 1819) in Chingluo Wetland of Penghu, Taiwan. INTERNATIONAL JOURNAL OF ECOLOGY 2023. [DOI: 10.12677/ije.2023.121009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
22
|
Freas CA, Spetch ML. Varieties of visual navigation in insects. Anim Cogn 2023; 26:319-342. [PMID: 36441435 PMCID: PMC9877076 DOI: 10.1007/s10071-022-01720-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
The behaviours and cognitive mechanisms animals use to orient, navigate, and remember spatial locations exemplify how cognitive abilities have evolved to suit a number of different mobile lifestyles and habitats. While spatial cognition observed in vertebrates has been well characterised in recent decades, of no less interest are the great strides that have also been made in characterizing and understanding the behavioural and cognitive basis of orientation and navigation in invertebrate models and in particular insects. Insects are known to exhibit remarkable spatial cognitive abilities and are able to successfully migrate over long distances or pinpoint known locations relying on multiple navigational strategies similar to those found in vertebrate models-all while operating under the constraint of relatively limited neural architectures. Insect orientation and navigation systems are often tailored to each species' ecology, yet common mechanistic principles can be observed repeatedly. Of these, reliance on visual cues is observed across a wide number of insect groups. In this review, we characterise some of the behavioural strategies used by insects to solve navigational problems, including orientation over short-distances, migratory heading maintenance over long distances, and homing behaviours to known locations. We describe behavioural research using examples from a few well-studied insect species to illustrate how visual cues are used in navigation and how they interact with non-visual cues and strategies.
Collapse
Affiliation(s)
- Cody A. Freas
- Department of Psychology, University of Alberta, Edmonton, AB Canada ,School of Natural Sciences, Macquarie University, Sydney, NSW Australia
| | - Marcia L. Spetch
- Department of Psychology, University of Alberta, Edmonton, AB Canada
| |
Collapse
|
23
|
Tong D, Zhang L, Wu N, Xie D, Fang G, Coates BS, Sappington TW, Liu Y, Cheng Y, Xia J, Jiang X, Zhan S. The oriental armyworm genome yields insights into the long-distance migration of noctuid moths. Cell Rep 2022; 41:111843. [PMID: 36543122 DOI: 10.1016/j.celrep.2022.111843] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 07/28/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
The oriental armyworm, Mythimna separata, is known for its long-distance seasonal migration and environment-dependent phase polymorphisms. Here, we present a chromosome-level genome reference and integrate multi-omics, functional genetics, and behavioral assays to explore the genetic bases of the hallmark traits of M. separata migration. Gene family comparisons show expansion of gustatory receptor genes in this cereal crop pest. Functional investigation of magnetoreception-related genes and associated flight behaviors suggest that M. separata may use the geomagnetic field to guide orientation in its nocturnal flight. Comparative transcriptome characterizes a suite of genes that may confer the observed plasticity between phases, including genes involved in protein processing, hormone regulation, and dopamine metabolism. We further report molecular signatures that underlie the dynamic regulation of a migratory syndrome coordinating reproduction and flight. Our study yields insights into environment-dependent developmental plasticity in moths and advances our understanding of long-distance migration in nocturnal insect pests.
Collapse
Affiliation(s)
- Dandan Tong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ningning Wu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Dianjie Xie
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Gangqi Fang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Brad S Coates
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Science Hall II, 2310 Pammel Dr., Ames, IA 50011, USA
| | - Thomas W Sappington
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Science Hall II, 2310 Pammel Dr., Ames, IA 50011, USA
| | - Yueqiu Liu
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Yunxia Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jixing Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingfu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Zhu J, Chen X, Liu J, Jiang Y, Chen F, Lu J, Chen H, Zhai B, Reynolds DR, Chapman JW, Hu G. A cold high-pressure system over North China hinders the southward migration of Mythimna separata in autumn. MOVEMENT ECOLOGY 2022; 10:54. [PMID: 36457049 PMCID: PMC9716675 DOI: 10.1186/s40462-022-00360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND In warm regions or seasons of the year, the planetary boundary layer is occupied by a huge variety and quantity of insects, but the southward migration of insects (in East Asia) in autumn is still poorly understood. METHODS We collated daily catches of the oriental armyworm (Mythimna separata) moth from 20 searchlight traps from 2014 to 2017 in China. In order to explore the autumn migratory connectivity of M. separata in East China, we analyzed the autumn climate and simulated the autumn migration process of moths. RESULTS The results confirmed that northward moth migration in spring and summer under the East Asian monsoon system can bring rapid population growth. However, slow southerly wind (blowing towards the north) prevailed over the major summer breeding area in North China (33°-40° N) due to a cold high-pressure system located there, and this severely disrupts the autumn 'return' migration of this pest. Less than 8% of moths from the summer breeding area successfully migrated back to their winter-breeding region, resulting in a sharp decline of the population abundance in autumn. As northerly winds (blowing towards the south) predominate at the eastern periphery of a high-pressure system, the westward movement of the high-pressure system leads to more northerlies over North China, increasing the numbers of moths migrating southward successfully. Therefore, an outbreak year of M. separata larvae was associated with a more westward position of the high-pressure system during the previous autumn. CONCLUSION These results indicate that the southward migration in autumn is crucial for sustaining pest populations of M. separata, and the position of the cold high-pressure system in September is a key environmental driver of the population size in the next year. This study indicates that the autumn migration of insects in East China is more complex than previously recognized, and that the meteorological conditions in autumn are an important driver of migratory insects' seasonal and interannual population dynamics.
Collapse
Affiliation(s)
- Jian Zhu
- Department of Entomology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao Chen
- College of Life Science, International Cooperative Research Centre for Cross-Border Pest Management in Central Asia, Xinjiang Normal University, Urumqi, 830054, China
| | - Jie Liu
- China National Agro-Tech Extension and Service Center, Beijing, 100125, China
| | - Yuying Jiang
- China National Agro-Tech Extension and Service Center, Beijing, 100125, China
| | - Fajun Chen
- Department of Entomology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Jiahao Lu
- Department of Entomology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China
- Songjiang District Agro-Technology Extension Center, Shanghai, 201613, China
| | - Hui Chen
- Department of Entomology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baoping Zhai
- Department of Entomology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
| | - Don R Reynolds
- Natural Resources Institute, University of Greenwich, Chatham, ME4 4TB, UK
- Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Jason W Chapman
- Department of Entomology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China
- Centre of Ecology and Conservation, and Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Gao Hu
- Department of Entomology, Nanjing Agricultural University, 1 Weigang Road, Nanjing, 210095, China.
- State Key Laboratory of Biological Interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
25
|
Wainwright CE, Volponi SN, Stepanian PM, Reynolds DR, Richter DH. Using cloud radar to investigate the effect of rainfall on migratory insect flight. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.14023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Charlotte E. Wainwright
- Department of Civil & Environmental Engineering & Earth Sciences University of Notre Dame Notre Dame Indiana USA
| | - Sabrina N. Volponi
- Department of Civil & Environmental Engineering & Earth Sciences University of Notre Dame Notre Dame Indiana USA
| | - Phillip M. Stepanian
- Department of Civil & Environmental Engineering & Earth Sciences University of Notre Dame Notre Dame Indiana USA
| | - Don R. Reynolds
- Natural Resources Institute University of Greenwich Kent UK
- Rothamsted Research Harpenden UK
| | - David H. Richter
- Department of Civil & Environmental Engineering & Earth Sciences University of Notre Dame Notre Dame Indiana USA
| |
Collapse
|
26
|
Hou Y, Pan B, Jiang X, Li D, Jiang W, Zhao G. Directional spatial processes override non-directional ones in structuring communities of lotic macroinvertebrates differing in dispersal ability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115310. [PMID: 35642809 DOI: 10.1016/j.jenvman.2022.115310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Dispersal is an essential natural process that influences community assembly, yet directional dispersal through wind and water may have distinctive effects. Environmental and spatial factors jointly influence community structure, but their relative importance is anticipated to vary with spatial distance, dispersal mode, and season. Accordingly, a systemic survey was conducted in subtropical Chinese mountain lotic systems to distinguish the relative contributions of environmental control and spatial structuring upon communities of macroinvertebrates with different dispersal ability. Macroinvertebrate samples were collected from the upper reaches and five tributaries of the Hanjiang River in October 2017 (autumn) and April 2018 (spring). These macroinvertebrates were identified and classified into three dispersal groups: aquatic passive (AqPa), terrestrial passive (TePa), and terrestrial active (TeAc). Variation partitioning analyses were performed on environmental factors and different sets of spatial factors (overland dispersal: Overland, directional downwind dispersal: AEM_Wind, along watercourse dispersal: Watercourse, and directional downstream dispersal: AEM_Water). Findings showed that both environmental filtering and spatial structuring influenced the structure of macroinvertebrate metacommunities. For AqPa and TePa groups, pure environmental effects were stronger than pure spatial effects based on most distance matrices; however, in AEM_Water, the effects of spatial processes surpassed those of environmental filtering. For TeAc group, the role of environmental control and spatial structuring varied depending on different spatial models. The results also highlighted seasonal shifts in metacommunity structuring processes. Spatial structures featuring direction, especially AEM_Water, were predominant in explaining the construction of macroinvertebrate communities. This work suggests that directional dispersal should be explicitly considered when examining the structure of ecological communities.
Collapse
Affiliation(s)
- Yiming Hou
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China.
| | - Xiaoming Jiang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| | - Dianbao Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| | - Wanxiang Jiang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| | - Gengnan Zhao
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| |
Collapse
|
27
|
Menz MHM, Scacco M, Bürki-Spycher HM, Williams HJ, Reynolds DR, Chapman JW, Wikelski M. Individual tracking reveals long-distance flight-path control in a nocturnally migrating moth. Science 2022; 377:764-768. [PMID: 35951704 DOI: 10.1126/science.abn1663] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Each year, trillions of insects make long-range seasonal migrations. These movements are relatively well understood at a population level, but how individual insects achieve them remains elusive. Behavioral responses to conditions en route are little studied, primarily owing to the challenges of tracking individual insects. Using a light aircraft and individual radio tracking, we show that nocturnally migrating death's-head hawkmoths maintain control of their flight trajectories over long distances. The moths did not just fly with favorable tailwinds; during a given night, they also adjusted for head and crosswinds to precisely hold course. This behavior indicates that the moths use a sophisticated internal compass to maintain seasonally beneficial migratory trajectories independent of wind conditions, illuminating how insects traverse long distances to take advantage of seasonal resources.
Collapse
Affiliation(s)
- Myles H M Menz
- Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany.,College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.,Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Martina Scacco
- Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany.,Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | | | - Hannah J Williams
- Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany.,Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Don R Reynolds
- Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK.,Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Jason W Chapman
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9FE, UK.,Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK.,Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Martin Wikelski
- Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany.,Department of Biology, University of Konstanz, 78464 Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
28
|
King DT, Wang G, Cunningham FL. Seasonal climatic niche and migration movements of Double-crested Cormorants. Ecol Evol 2022; 12:e9153. [PMID: 36016816 PMCID: PMC9396706 DOI: 10.1002/ece3.9153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 11/08/2022] Open
Abstract
Avian migrants are challenged by seasonal adverse climatic conditions and energetic costs of long-distance flying. Migratory birds may track or switch seasonal climatic niche between the breeding and non-breeding grounds. Satellite tracking enables avian ecologists to investigate seasonal climatic niche and circannual movement patterns of migratory birds. The Double-crested Cormorant (Nannopterum auritum, hereafter cormorant) wintering in the Gulf of Mexico (GOM) migrates to the Northern Great Plains and Great Lakes and is of economic importance because of its impacts on aquaculture. We tested the climatic niche switching hypothesis that cormorants would switch climatic niche between summer and winter because of substantial differences in climate between the non-breeding grounds in the subtropical region and breeding grounds in the northern temperate region. The ordination analysis of climatic niche overlap indicated that cormorants had separate seasonal climatic niche consisting of seasonal mean monthly minimum and maximum temperature, seasonal mean monthly precipitation, and seasonal mean wind speed. Despite non-overlapping summer and winter climatic niches, cormorants appeared to be subjected to similar wind speed between winter and summer habitats and were consistent with similar hourly flying speed between winter and summer. Therefore, substantial differences in temperature and precipitation may lead to the climatic niche switching of fish-eating cormorants, a dietary specialist, between the breeding and non-breeding grounds.
Collapse
Affiliation(s)
- D. Tommy King
- U. S. Department of Agriculture, Wildlife ServicesNational Wildlife Research CenterMississippi StateMississippiUSA
| | - Guiming Wang
- Department of Wildlife, Fisheries and AquacultureMississippi State UniversityMississippi StateMississippiUSA
| | - Fred L. Cunningham
- U. S. Department of Agriculture, Wildlife ServicesNational Wildlife Research CenterMississippi StateMississippiUSA
| |
Collapse
|
29
|
Sergio F, Barbosa JM, Tanferna A, Silva R, Blas J, Hiraldo F. Compensation for wind drift during raptor migration improves with age through mortality selection. Nat Ecol Evol 2022; 6:989-997. [PMID: 35680999 DOI: 10.1038/s41559-022-01776-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 04/20/2022] [Indexed: 11/09/2022]
Abstract
Each year, billions of flying and swimming migrants negotiate the challenging displacement imposed by travelling through a flowing medium. However, little is known about how the ability to cope with drift improves through life and what mechanisms drive its development. We examined 3,140 days of migration by 90 GPS-tagged raptorial black kites (Milvus migrans) aged 1-27 years to show that the ability to compensate for lateral drift develops gradually through many more years than previously appreciated. Drift negotiation was under strong selective pressure, with inferior navigators subject to increased mortality. This progressively selected for adults able to compensate for current cross flows and for previously accumulated drift in a flexible, context-dependent and risk-dependent manner. Displacements accumulated en route carried over to shape the wintering distribution of the population. For many migrants, migratory journeys by younger individuals represent concentrated episodes of trait selection that shape adult populations and mediate their adaptation to climate change.
Collapse
Affiliation(s)
- Fabrizio Sergio
- Department of Conservation Biology, Estación Biológica de Doñana-CSIC, Seville, Spain.
| | - Jomar M Barbosa
- Department of Applied Biology, Universidad Miguel Hernández, Elche, Spain
| | - Alessandro Tanferna
- Department of Conservation Biology, Estación Biológica de Doñana-CSIC, Seville, Spain
| | - Rafa Silva
- Department of Conservation Biology, Estación Biológica de Doñana-CSIC, Seville, Spain
| | - Julio Blas
- Department of Conservation Biology, Estación Biológica de Doñana-CSIC, Seville, Spain
| | - Fernando Hiraldo
- Department of Conservation Biology, Estación Biológica de Doñana-CSIC, Seville, Spain
| |
Collapse
|
30
|
Porfiri M, Zhang P, Peterson SD. Hydrodynamic model of fish orientation in a channel flow. eLife 2022; 11:75225. [PMID: 35666104 PMCID: PMC9292998 DOI: 10.7554/elife.75225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/31/2022] [Indexed: 12/05/2022] Open
Abstract
For over a century, scientists have sought to understand how fish orient against an incoming flow, even without visual and flow cues. Here, we elucidate a potential hydrodynamic mechanism of rheotaxis through the study of the bidirectional coupling between fish and the surrounding fluid. By modeling a fish as a vortex dipole in an infinite channel with an imposed background flow, we establish a planar dynamical system for the cross-stream coordinate and orientation. The system dynamics captures the existence of a critical flow speed for fish to successfully orient while performing cross-stream, periodic sweeping movements. Model predictions are examined in the context of experimental observations in the literature on the rheotactic behavior of fish deprived of visual and lateral line cues. The crucial role of bidirectional hydrodynamic interactions unveiled by this model points at an overlooked limitation of existing experimental paradigms to study rheotaxis in the laboratory. One fascinating and perplexing fact about fish is that they tend to orient themselves and swim against the flow, rather than with it. This phenomenon is called rheotaxis, and it has countless examples, from salmon migrating upstream to lay their eggs to trout drift-foraging in a current. Yet, despite over a century of experimental studies, the mechanisms underlying rheotaxis remain poorly understood. There is general consensus that fish rely on water- and body-motion cues to vision, vestibular, tactile, and other senses. However, several questions remain unanswered, including how blind fish can perform rheotaxis or whether a passive hydrodynamic mechanism can support the phenomenon. One aspect that has been overlooked in studies of rheotaxis is the bidirectional hydrodynamic interaction between the fish and the surrounding flow, that is, how the presence of the fish alters the flow, which, in turn, affects the fish. To address these open questions about rheotaxis, Porfiri, Zhang and Peterson wanted to develop a mathematical model of fish swimming, one that could help understand the passive hydrodynamic pathway that leads to swimming against a flow. Unlike experiments on live animals, a mathematical model offers the ability to remove cues to certain senses without interfering with animal behavior. Porfiri, Zhang and Peterson modeled a fish as a pair of vortices located infinitely close to each other, rotating in opposite directions with the same strength. The vortex pair could freely move through an infinitely long channel with an imposed background flow, devoid of all sensory information expect of that accessed through the lateral line. Analyzing the resulting system revealed that there is a critical speed for the background flow above which the fish successfully orients itself against the flow, resulting in rheotaxis. This critical speed depends on the width of the channel the fish is swimming in. Depriving the fish of sensory information received through the lateral line does not preclude rheotaxis, indicating that rheotaxis could emerge in a completely passive manner. The finding that the critical speed for rheotaxis depends on channel width could improve the design of experiments studying the phenomenon, since this effect could confound experiments where fish are confined in narrow channels. In this vein, Porfiri, Zhang and Peterson’s model could assist biologists in designing experiments detailing the multisensory nature of rheotaxis. Evidence of the importance of bidirectional hydrodynamic interactions on fish orientation may also inform modeling research on fish behavior.
Collapse
Affiliation(s)
- Maurizio Porfiri
- Department of Biomedical Engineering, New York University, Brooklyn, United States
| | - Peng Zhang
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, United States
| | - Sean D Peterson
- Mechanical and Mechatronics Engineering Department, University of Waterloo, Waterloo, Canada
| |
Collapse
|
31
|
Cheu AY, Reed SA, Mann SD, Bergmann PJ. Performance and Kinematic Differences Between Terrestrial and Aquatic Running in Anolis Sagrei. Integr Comp Biol 2022; 62:840-851. [PMID: 35561728 DOI: 10.1093/icb/icac031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Many animals frequently transition between different media while navigating their heterogeneous environments. These media vary in compliance, moisture content, and other characteristics that affect their physical properties. As a result, animals may need to alter their kinematics to adapt to potential changes in media while maintaining performance during predator escape and foraging. Due to its fluid nature, water is highly compliant, and although usually associated with swimming, water running has evolved in a variety of animals ranging from insects to mammals. While the best studied large water runners are the bipedal basilisk lizards (Basiliscus spp.), other lizards have also been observed to run across the surface of water, namely Hemidactylus platyurus, a house gecko, and in this study, Anolis sagrei, the brown anole. Unlike the basilisk lizard, the primarily arboreal Anolis sagrei is not adapted for water running. Moreover, water running in A. sagrei, similar to that of the house gecko, was primarily quadrupedal. Here, we tested for performance and kinematic differences between aquatic and terrestrial running and if the variance in performance and kinematic variables differed between the two media. We found no difference in average and maximum velocity between running on land and water. We also found that Anolis sagrei had higher hindlimb stride frequencies, decreased duty factor, and shorter stride lengths on water, as well as more erect postures. Finally, we found that most kinematics did not differ in variance between the two media, but of those that were different, almost all were more variable during terrestrial running. Our findings show that animals may be capable of specialized modes of locomotion, even if they are not obviously adapted for them, and that they may do this by modulating their kinematics to facilitate locomotion through novel environments.
Collapse
Affiliation(s)
- Amy Y Cheu
- Department of Biology, Clark University, Worcester, MA, USA
| | | | - Sara D Mann
- Department of Biology, Clark University, Worcester, MA, USA
| | | |
Collapse
|
32
|
Cestari C, Melo C. Shorebirds adjust resting orientation in response to solar radiation and wind speed. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- César Cestari
- Instituto de Biologia Universidade Federal de Uberlândia (UFU) Campus Umuarama – Bloco 2D. Avenida Pará, 1720 Uberlândia MG CEP 1720 Brazil
| | - Celine Melo
- Instituto de Biologia Universidade Federal de Uberlândia (UFU) Campus Umuarama – Bloco 2D. Avenida Pará, 1720 Uberlândia MG CEP 1720 Brazil
| |
Collapse
|
33
|
Linscott JA, Navedo JG, Clements SJ, Loghry JP, Ruiz J, Ballard BM, Weegman MD, Senner NR. Compensation for wind drift prevails for a shorebird on a long-distance, transoceanic flight. MOVEMENT ECOLOGY 2022; 10:11. [PMID: 35255994 PMCID: PMC8900403 DOI: 10.1186/s40462-022-00310-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/18/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Conditions encountered en route can dramatically impact the energy that migratory species spend on movement. Migratory birds often manage energetic costs by adjusting their behavior in relation to wind conditions as they fly. Wind-influenced behaviors can offer insight into the relative importance of risk and resistance during migration, but to date, they have only been studied in a limited subset of avian species and flight types. We add to this understanding by examining in-flight behaviors over a days-long, barrier-crossing flight in a migratory shorebird. METHODS Using satellite tracking devices, we followed 25 Hudsonian godwits (Limosa haemastica) from 2019-2021 as they migrated northward across a largely transoceanic landscape extending > 7000 km from Chiloé Island, Chile to the northern coast of the Gulf of Mexico. We identified in-flight behaviors during this crossing by comparing directions of critical movement vectors and used mixed models to test whether the resulting patterns supported three classical predictions about wind and migration. RESULTS Contrary to our predictions, compensation did not increase linearly with distance traveled, was not constrained during flight over open ocean, and did not influence where an individual ultimately crossed over the northern coast of the Gulf of Mexico at the end of this flight. Instead, we found a strong preference for full compensation throughout godwit flight paths. CONCLUSIONS Our results indicate that compensation is crucial to godwits, emphasizing the role of risk in shaping migratory behavior and raising questions about the consequences of changing wind regimes for other barrier-crossing aerial migrants.
Collapse
Affiliation(s)
- Jennifer A Linscott
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC, 29208, USA.
| | - Juan G Navedo
- Estacion Experimental Quempillén, Facultad de Ciencias, Universidad Austral de Chile, Ancud, Chiloé, Chile
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Sarah J Clements
- School of Natural Resources, University of Missouri, 103 Anheuser-Busch Natural Resources Building, Columbia, MO, 65211, USA
| | - Jason P Loghry
- Texas A&M University, Kingsville, 700 University Blvd., MSC 218, Kingsville, TX, 78363, USA
| | - Jorge Ruiz
- Estacion Experimental Quempillén, Facultad de Ciencias, Universidad Austral de Chile, Ancud, Chiloé, Chile
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
| | - Bart M Ballard
- Texas A&M University, Kingsville, 700 University Blvd., MSC 218, Kingsville, TX, 78363, USA
| | - Mitch D Weegman
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - Nathan R Senner
- Department of Biological Sciences, University of South Carolina, 715 Sumter Street, Columbia, SC, 29208, USA
| |
Collapse
|
34
|
MI C, LI X, HUETTMANN F, GOROSHKO O, GUO Y. Time and energy minimization strategy codetermine the loop migration of demoiselle cranes around the Himalayas. Integr Zool 2022; 17:715-730. [DOI: 10.1111/1749-4877.12632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chunrong MI
- School of Ecology and Nature Conservation Beijing Forestry University China
- Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Xinhai LI
- Institute of Zoology Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Falk HUETTMANN
- Daursky State Nature Biosphere Reserve Institute of Nature Resources, Ecology and Cryology RAS Russia
| | - Oleg GOROSHKO
- EWHALE Lab, Department of Biology and Wildlife, Institute of Arctic Biology University of Alaska‐Fairbanks Fairbanks USA
| | - Yumin GUO
- School of Ecology and Nature Conservation Beijing Forestry University China
| |
Collapse
|
35
|
Wang Y, Li S, Du G, Hu G, Zhang Y, Tu X, Zhang Z. An Analysis of the Possible Migration Routes of Oedaleus decorus asiaticus Bey-Bienko (Orthoptera: Acrididae) from Mongolia to China. INSECTS 2022; 13:insects13010072. [PMID: 35055915 PMCID: PMC8781545 DOI: 10.3390/insects13010072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Airflow is very important for the long-distance migration of O. decorus asiaticus, and wind shear, in particular, is the main factor related to forced landing. Analyzing the weather records, we found that the northwest wind prevailed when the population invaded. Specifically, from July to August, a large number of emerging adults appeared in the source areas of Mongolia, and the large-scale northwest wind was the decisive condition for the successful long-distance migration of O. decorus asiaticus. The species has a strong migratory ability, flying along the airflow for several nights. If the northwest air current meets the southwest warm current going north, a large number of O. decorus asiaticus will drop due to wind shear, and then a major outbreak will occur. Analysis of the source of the insects shows that the O. decorus asiaticus break outs in China may have originated from Mongolia. They were brought into China by the southerly airflow at night, and they likely made a forced landing in Beijing due to wind shear, sinking airflow, rainfall and other reasons. In summary, through analysis of the insect’s prevalence and the meteorological conditions in Mongolia, we can provide a basis for predicting the occurrence of O. decorus asiaticus in China. Abstract Oedaleus decorus asiaticus (Bey-Bienko) is a destructive pest in grasslands and adjacent farmland in northern China, Mongolia, and other countries in Asia. It has been supposed that this insect pest can migrate a long distance and then induce huge damages, however, the migration mechanism is still unrevealed. The current study uses insect light trap data from Yanqing (Beijing), together with regional meteorological data to determine how air flow contributes to the long-distance migration of O. decorus asiaticus. Our results indicate that sinking airflow is the main factor leading to the insects’ forced landing, and the prevailing northwest wind was associated with O. decorus asiaticus taking off in the northwest and moving southward with the airflow from July to September. Meanwhile, the insects have a strong migratory ability, flying along the airflow for several nights. Thus, when the airflow from the northwest met the northward-moving warm current from the southwest, a large number of insects were dropped due to sinking airflow, resulting in a large outbreak. Our simulations suggest that the source of the grasshoppers involved in these outbreaks during early 2000s in northern China probably is in Mongolia, and all evidence indicates that there are two important immigrant routes for O. decorus asiaticus migration from Mongolia to Beijing. These findings improves our understanding of the factors guiding O. decorus asiaticus migration, providing valuable information to reduce outbreaks in China that have origins from outside the country.
Collapse
Affiliation(s)
- Yunping Wang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100125, China; (Y.W.); (S.L.); (Z.Z.)
- Institute of Applied Agricultural Micro-Organisms, Jiangxi Academy of Agricultural Science, Nanchang 330008, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Shuang Li
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100125, China; (Y.W.); (S.L.); (Z.Z.)
- Scientific Observation and Experimental Station of Pests in Xilin Gol Rangeland, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Xilinhot 026000, China
| | - Guilin Du
- National Animal Husbandry Service, Ministry of Agriculture and Rural Affairs, Beijing 100125, China;
| | - Gao Hu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yunhui Zhang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100125, China; (Y.W.); (S.L.); (Z.Z.)
- Correspondence: (Y.Z.); (X.T.); Tel.: +86-10-82109569 (Y.Z. & X.T.)
| | - Xiongbing Tu
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100125, China; (Y.W.); (S.L.); (Z.Z.)
- Scientific Observation and Experimental Station of Pests in Xilin Gol Rangeland, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Xilinhot 026000, China
- Correspondence: (Y.Z.); (X.T.); Tel.: +86-10-82109569 (Y.Z. & X.T.)
| | - Zehua Zhang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100125, China; (Y.W.); (S.L.); (Z.Z.)
- Scientific Observation and Experimental Station of Pests in Xilin Gol Rangeland, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Xilinhot 026000, China
| |
Collapse
|
36
|
Abstract
Dispersed populations often need to organize into groups. Chemical attractants provide one means of directing individuals into an aggregate, but whether these structures emerge can depend on various factors, such as there being a sufficiently large population or the response to the attractant being sufficiently sensitive. In an aquatic environment, fluid flow may heavily impact on population distribution and many aquatic organisms adopt a rheotaxis response when exposed to a current, orienting and swimming according to the flow field. Consequently, flow-induced transport could be substantially different for the population members and any aggregating signal they secrete. With the aim of investigating how flows and rheotaxis responses impact on an aquatic population's ability to form and maintain an aggregated profile, we develop and analyse a mathematical model that incorporates these factors. Through a systematic analysis into the effect of introducing rheotactic behaviour under various forms of environmental flow, we demonstrate that each of flow and rheotaxis can act beneficially or detrimentally on the ability to form and maintain a cluster. Synthesizing these findings, we test a hypothesis that density-dependent rheotaxis may be optimal for group formation and maintenance, in which individuals increase their rheotactic effort as they approach an aggregated state.
Collapse
Affiliation(s)
- K J Painter
- Dipartimento Interateneo di Scienze, Progetto e Politiche del Territorio (DIST), Politecnico di Torino, Viale Pier Andrea Mattioli, 39 10125 Torino, Italy
| |
Collapse
|
37
|
Gunner RM, Holton MD, Scantlebury DM, Hopkins P, Shepard ELC, Fell AJ, Garde B, Quintana F, Gómez-Laich A, Yoda K, Yamamoto T, English H, Ferreira S, Govender D, Viljoen P, Bruns A, van Schalkwyk OL, Cole NC, Tatayah V, Börger L, Redcliffe J, Bell SH, Marks NJ, Bennett NC, Tonini MH, Williams HJ, Duarte CM, van Rooyen MC, Bertelsen MF, Tambling CJ, Wilson RP. How often should dead-reckoned animal movement paths be corrected for drift? ANIMAL BIOTELEMETRY 2021; 9:43. [PMID: 34900262 PMCID: PMC7612089 DOI: 10.1186/s40317-021-00265-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/25/2021] [Indexed: 05/19/2023]
Abstract
BACKGROUND Understanding what animals do in time and space is important for a range of ecological questions, however accurate estimates of how animals use space is challenging. Within the use of animal-attached tags, radio telemetry (including the Global Positioning System, 'GPS') is typically used to verify an animal's location periodically. Straight lines are typically drawn between these 'Verified Positions' ('VPs') so the interpolation of space-use is limited by the temporal and spatial resolution of the system's measurement. As such, parameters such as route-taken and distance travelled can be poorly represented when using VP systems alone. Dead-reckoning has been suggested as a technique to improve the accuracy and resolution of reconstructed movement paths, whilst maximising battery life of VP systems. This typically involves deriving travel vectors from motion sensor systems and periodically correcting path dimensions for drift with simultaneously deployed VP systems. How often paths should be corrected for drift, however, has remained unclear. METHODS AND RESULTS Here, we review the utility of dead-reckoning across four contrasting model species using different forms of locomotion (the African lion Panthera leo, the red-tailed tropicbird Phaethon rubricauda, the Magellanic penguin Spheniscus magellanicus, and the imperial cormorant Leucocarbo atriceps). Simulations were performed to examine the extent of dead-reckoning error, relative to VPs, as a function of Verified Position correction (VP correction) rate and the effect of this on estimates of distance moved. Dead-reckoning error was greatest for animals travelling within air and water. We demonstrate how sources of measurement error can arise within VP-corrected dead-reckoned tracks and propose advancements to this procedure to maximise dead-reckoning accuracy. CONCLUSIONS We review the utility of VP-corrected dead-reckoning according to movement type and consider a range of ecological questions that would benefit from dead-reckoning, primarily concerning animal-barrier interactions and foraging strategies.
Collapse
Affiliation(s)
- Richard M. Gunner
- Swansea Lab for Animal Movement, Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Mark D. Holton
- Swansea Lab for Animal Movement, Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - David M. Scantlebury
- School of Biological Sciences, Queen’s University Belfast, Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK
| | - Phil Hopkins
- Swansea Lab for Animal Movement, Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Emily L. C. Shepard
- Swansea Lab for Animal Movement, Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Adam J. Fell
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, Scotland, UK
| | - Baptiste Garde
- Swansea Lab for Animal Movement, Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Flavio Quintana
- Instituto de Biología de Organismos Marinos (IBIOMAR), CONICET. Boulevard Brown, 2915, U9120ACD Puerto Madryn, Chubut, Argentina
| | - Agustina Gómez-Laich
- Departamento de Ecología, Genética y Evolución & Instituto de Ecología, Genética Y Evolución de Buenos Aires (IEGEBA), CONICET, Pabellón II Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
| | - Ken Yoda
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Takashi Yamamoto
- Organization for the Strategic Coordination of Research and Intellectual Properties, Meiji University, Nakano, Tokyo, Japan
| | - Holly English
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Sam Ferreira
- Savanna and Grassland Research Unit, Scientific Services Skukuza, South African National Parks, Kruger National Park, Skukuza 1350, South Africa
| | - Danny Govender
- Savanna and Grassland Research Unit, Scientific Services Skukuza, South African National Parks, Kruger National Park, Skukuza 1350, South Africa
| | - Pauli Viljoen
- Savanna and Grassland Research Unit, Scientific Services Skukuza, South African National Parks, Kruger National Park, Skukuza 1350, South Africa
| | - Angela Bruns
- Veterinary Wildlife Services, South African National Parks, 97 Memorial Road, Old Testing Grounds, Kimberley 8301, South Africa
| | - O. Louis van Schalkwyk
- Department of Agriculture, Government of South Africa, Land Reform and Rural Development, Pretoria 001, South Africa
- Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort 0110, South Africa
| | - Nik C. Cole
- Durrell Wildlife Conservation Trust, Les Augrès Manor, Channel Islands, Trinity JE3 5BP, Jersey, UK
- Mauritian Wildlife Foundation, Grannum Road, Indian Ocean, Vacoas, Mauritius
| | - Vikash Tatayah
- Mauritian Wildlife Foundation, Grannum Road, Indian Ocean, Vacoas, Mauritius
| | - Luca Börger
- Swansea Lab for Animal Movement, Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
- Centre for Biomathematics, Swansea University, Swansea SA2 8PP, UK
| | - James Redcliffe
- Swansea Lab for Animal Movement, Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| | - Stephen H. Bell
- School of Biological Sciences, Queen’s University Belfast, Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK
| | - Nikki J. Marks
- School of Biological Sciences, Queen’s University Belfast, Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK
| | - Nigel C. Bennett
- Mammal Research Institute. Department of Zoology and Entomology, University of Pretoria, Pretoria 002., South Africa
| | - Mariano H. Tonini
- Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales, Grupo GEA, IPATEC-UNCO-CONICET, San Carlos de Bariloche, Río Negro, Argentina
| | - Hannah J. Williams
- Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany
| | - Carlos M. Duarte
- Red Sea Research Centre, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Martin C. van Rooyen
- Mammal Research Institute. Department of Zoology and Entomology, University of Pretoria, Pretoria 002., South Africa
| | - Mads F. Bertelsen
- Center for Zoo and Wild Animal Health, Copenhagen Zoo, Roskildevej 38, DK-2000 Frederiksberg, Denmark
| | - Craig J. Tambling
- Department of Zoology and Entomology, University of Fort Hare, Alice Campus, Ring Road, Alice 5700, South Africa
| | - Rory P. Wilson
- Swansea Lab for Animal Movement, Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, Wales, UK
| |
Collapse
|
38
|
Vansteelant WMG, Gangoso L, Bouten W, Viana DS, Figuerola J. Adaptive drift and barrier-avoidance by a fly-forage migrant along a climate-driven flyway. MOVEMENT ECOLOGY 2021; 9:37. [PMID: 34253264 PMCID: PMC8276455 DOI: 10.1186/s40462-021-00272-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/10/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Route choice and travel performance of fly-forage migrants are partly driven by large-scale habitat availability, but it remains unclear to what extent wind support through large-scale wind regimes moulds their migratory behaviour. We aimed to determine to what extent a trans-equatorial fly-forage migrant engages in adaptive drift through distinct wind regimes and biomes across Africa. The Inter-tropical Front (ITF) marks a strong and seasonally shifting climatic boundary at the thermal equator, and we assessed whether migratory detours were associated with this climatic feature. Furthermore, we sought to disentangle the influence of wind and biome on daily, regional and seasonal travel performance. METHODS We GPS-tracked 19 adult Eleonora's falcons Falco eleonorae from the westernmost population on the Canary Islands across 39 autumn and 36 spring migrations to and from Madagascar. Tracks were annotated with wind data to assess the falcons' orientation behaviour and the wind support they achieved in each season and distinct biomes. We further tested whether falcon routes across the Sahel were correlated with the ITF position, and how realized wind support and biome affect daily travel times, distances and speeds. RESULTS Changes in orientation behaviour across Africa's biomes were associated with changes in prevailing wind fields. Falcons realized higher wind support along their detours than was available along the shortest possible route by drifting through adverse autumn wind fields, but compromised wind support while detouring through supportive spring wind fields. Movements across the Sahel-Sudan zone were strongly associated to the ITF position in autumn, but were more individually variable in spring. Realized wind support was an important driver of daily travel speeds and distances, in conjunction with regional wind-independent variation in daily travel time budgets. CONCLUSIONS Although daily travel time budgets of falcons vary independently from wind, their daily travel performance is strongly affected by orientation-dependent wind support. Falcons thereby tend to drift to minimize or avoid headwinds through opposing wind fields and over ecological barriers, while compensating through weak or supportive wind fields and over hospitable biomes. The ITF may offer a climatic leading line to fly-forage migrants in terms of both flight and foraging conditions.
Collapse
Affiliation(s)
- Wouter M G Vansteelant
- Estación Biológica de Doñana, CSIC. Cartuja TA-10, Edificio I, Calle Américo Vespucio, s/n, 41092, Sevilla, Spain.
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Sciencepark 904, 1098 XH, Amsterdam, The Netherlands.
| | - Laura Gangoso
- Estación Biológica de Doñana, CSIC. Cartuja TA-10, Edificio I, Calle Américo Vespucio, s/n, 41092, Sevilla, Spain
- Department of Biodiversity, Ecology and Evolution. Faculty of Biology, Complutense University of Madrid, C/ José Antonio Novais 2, 28040, Madrid, Spain
| | - Willem Bouten
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Sciencepark 904, 1098 XH, Amsterdam, The Netherlands
| | - Duarte S Viana
- German Center for Integrative Biodiversity Research (iDiv), Deutscher Platz 5e, Halle-Jena-Leipzig, Leipzig, Germany
| | - Jordi Figuerola
- Estación Biológica de Doñana, CSIC. Cartuja TA-10, Edificio I, Calle Américo Vespucio, s/n, 41092, Sevilla, Spain
| |
Collapse
|
39
|
Autumn southward migration of dragonflies along the Baltic coast and the influence of weather on flight behaviour. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Cerritelli G, Benhamou S, Luschi P. Evaluating vector navigation in green turtles migrating in a dynamic oceanic environment. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1878281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Giulia Cerritelli
- Department of Biology, University of Pisa, Via A. Volta 6, Pisa 56126, Italy
| | - Simon Benhamou
- CNRS, Montpellier, and Cogitamus Lab, Centre d’Écologie Fonctionnelle et Evolutive, Montpellier, France
| | - Paolo Luschi
- Department of Biology, University of Pisa, Via A. Volta 6, Pisa 56126, Italy
| |
Collapse
|
41
|
Origins of Six Species of Butterflies Migrating through Northeastern Mexico: New Insights from Stable Isotope (δ2H) Analyses and a Call for Documenting Butterfly Migrations. DIVERSITY 2021. [DOI: 10.3390/d13030102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Determining migratory connectivity within and among diverse taxa is crucial to their conservation. Insect migrations involve millions of individuals and are often spectacular. However, in general, virtually nothing is known about their structure. With anthropogenically induced global change, we risk losing most of these migrations before they are even described. We used stable hydrogen isotope (δ2H) measurements of wings of seven species of butterflies (Libytheana carinenta, Danaus gilippus, Phoebis sennae, Asterocampa leilia, Euptoieta claudia, Euptoieta hegesia, and Zerene cesonia) salvaged as roadkill when migrating in fall through a narrow bottleneck in northeast Mexico. These data were used to depict the probabilistic origins in North America of six species, excluding the largely local E. hegesia. We determined evidence for long-distance migration in four species (L. carinenta, E. claudia, D. glippus, Z. cesonia) and present evidence for panmixia (Z. cesonia), chain (Libytheana carinenta), and leapfrog (Danaus gilippus) migrations in three species. Our investigation underlines the utility of the stable isotope approach to quickly establish migratory origins and connectivity in butterflies and other insect taxa, especially if they can be sampled at migratory bottlenecks. We make the case for a concerted effort to atlas butterfly migrations using the stable isotope approach.
Collapse
|
42
|
Burbano-L. DA, Porfiri M. Modeling multi-sensory feedback control of zebrafish in a flow. PLoS Comput Biol 2021; 17:e1008644. [PMID: 33481795 PMCID: PMC7857640 DOI: 10.1371/journal.pcbi.1008644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 02/03/2021] [Accepted: 12/18/2020] [Indexed: 11/18/2022] Open
Abstract
Understanding how animals navigate complex environments is a fundamental challenge in biology and a source of inspiration for the design of autonomous systems in engineering. Animal orientation and navigation is a complex process that integrates multiple senses, whose function and contribution are yet to be fully clarified. Here, we propose a data-driven mathematical model of adult zebrafish engaging in counter-flow swimming, an innate behavior known as rheotaxis. Zebrafish locomotion in a two-dimensional fluid flow is described within the finite-dipole model, which consists of a pair of vortices separated by a constant distance. The strength of these vortices is adjusted in real time by the fish to afford orientation and navigation control, in response to of the multi-sensory input from vision, lateral line, and touch. Model parameters for the resulting stochastic differential equations are calibrated through a series of experiments, in which zebrafish swam in a water channel under different illumination conditions. The accuracy of the model is validated through the study of a series of measures of rheotactic behavior, contrasting results of real and in-silico experiments. Our results point at a critical role of hydromechanical feedback during rheotaxis, in the form of a gradient-following strategy.
Collapse
Affiliation(s)
- Daniel A. Burbano-L.
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, New York City, New York, USA
| | - Maurizio Porfiri
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, New York City, New York, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York City, New York, USA
- Center for Urban Sciences and Progress, Tandon School of Engineering, New York University, New York City, New York, USA
- * E-mail:
| |
Collapse
|
43
|
Currier TA, Matheson AMM, Nagel KI. Encoding and control of orientation to airflow by a set of Drosophila fan-shaped body neurons. eLife 2020; 9:e61510. [PMID: 33377868 PMCID: PMC7793622 DOI: 10.7554/elife.61510] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022] Open
Abstract
The insect central complex (CX) is thought to underlie goal-oriented navigation but its functional organization is not fully understood. We recorded from genetically-identified CX cell types in Drosophila and presented directional visual, olfactory, and airflow cues known to elicit orienting behavior. We found that a group of neurons targeting the ventral fan-shaped body (ventral P-FNs) are robustly tuned for airflow direction. Ventral P-FNs did not generate a 'map' of airflow direction. Instead, cells in each hemisphere were tuned to 45° ipsilateral, forming a pair of orthogonal bases. Imaging experiments suggest that ventral P-FNs inherit their airflow tuning from neurons that provide input from the lateral accessory lobe (LAL) to the noduli (NO). Silencing ventral P-FNs prevented flies from selecting appropriate corrective turns following changes in airflow direction. Our results identify a group of CX neurons that robustly encode airflow direction and are required for proper orientation to this stimulus.
Collapse
Affiliation(s)
- Timothy A Currier
- Neuroscience Institute, New York University Langone Medical CenterNew YorkUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
| | - Andrew MM Matheson
- Neuroscience Institute, New York University Langone Medical CenterNew YorkUnited States
| | - Katherine I Nagel
- Neuroscience Institute, New York University Langone Medical CenterNew YorkUnited States
- Center for Neural Science, New York UniversityNew YorkUnited States
| |
Collapse
|
44
|
Cassola FM, Henaut Y, Cedeño-Vázquez JR, Méndez-de la Cruz FR, Morales-Vela B. Temperament and sexual behaviour in the Furrowed Wood Turtle Rhinoclemmys areolata. PLoS One 2020; 15:e0244561. [PMID: 33378375 PMCID: PMC7773281 DOI: 10.1371/journal.pone.0244561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 12/13/2020] [Indexed: 11/19/2022] Open
Abstract
The variation in temperament among animals has consequences for evolution and ecology. One of the primary effects of consistent behavioral differences is on reproduction. In chelonians some authors have focused on the study of temperament using different methods. In our research our first aim was i) establish a methodology to determine the degree of boldness among individuals Rhinoclemmys areolata. Our second aim was to ii) determine the role boldness plays during reproduction, with emphasis on courtship and copulation, considering a) the interactions between males and females, and b) competition between males. We used 16 sexually mature individuals of each sex. Males were observed in four different situations and 17 behavioral traits were recorded. We selected 12 traits that allowed us distinguish between the bolder and the shier individuals and found that five behavioral traits were specific for bolder individuals and five others for shier individuals. In a second step, we observed a male in presence of a female and recorded courtship behaviors and breeding attempts. Bolder individuals did not display courtship behaviors and just attempted to copulate. Shier individuals displayed courtship behaviors and copulation attempts were rarely observed. Finally, in the simulations that compared two males in the presence of a female we noticed that bolder individuals displayed courtship behaviors while the shier ones simply ignored the female. Our results first allowed us to determine which methodology is the best to determine temperament in turtles. Secondly, temperament seems to be an important factor in modulating interaction between males and females. Bolder individuals have an advantage during competition and display courtship behaviours only if other males are present. Shier males displayed courtship behaviors and only try to copulate when no competitors were present. These two different temperament-dependant strategies are discussed in terms of ecology, evolution and management.
Collapse
Affiliation(s)
| | - Yann Henaut
- El Colegio de la Frontera Sur, Unidad Chetumal, Chetumal, Quintana Roo, México
- * E-mail:
| | | | - Fausto Roberto Méndez-de la Cruz
- Laboratorio de Herpetología, Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, México
| | | |
Collapse
|
45
|
Gao B, Hedlund J, Reynolds DR, Zhai B, Hu G, Chapman JW. The 'migratory connectivity' concept, and its applicability to insect migrants. MOVEMENT ECOLOGY 2020; 8:48. [PMID: 33292576 PMCID: PMC7718659 DOI: 10.1186/s40462-020-00235-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/25/2020] [Indexed: 05/06/2023]
Abstract
Migratory connectivity describes the degree of linkage between different parts of an animal's migratory range due to the movement trajectories of individuals. High connectivity occurs when individuals from one particular part of the migratory range move almost exclusively to another localized part of the migratory range with little mixing with individuals from other regions. Conversely, low migratory connectivity describes the situation where individuals spread over a wide area during migration and experience a large degree of mixing with individuals from elsewhere. The migratory connectivity concept is frequently applied to vertebrate migrants (especially birds), and it is highly relevant to conservation and management of populations. However, it is rarely employed in the insect migration literature, largely because much less is known about the migration circuits of most migratory insects than is known about birds. In this review, we discuss the applicability of the migratory connectivity concept to long-range insect migrations. In contrast to birds, insect migration circuits typically comprise multigenerational movements of geographically unstructured (non-discrete) populations between broad latitudinal zones. Also, compared to the faster-flying birds, the lower degree of control over movement directions would also tend to reduce connectivity in many insect migrants. Nonetheless, after taking account of these differences, we argue that the migratory connectivity framework can still be applied to insects, and we go on to consider postulated levels of connectivity in some of the most intensively studied insect migrants. We conclude that a greater understanding of insect migratory connectivity would be of value for conserving threatened species and managing pests.
Collapse
Affiliation(s)
- Boya Gao
- Department of Entomology, Nanjing Agricultural University, Nanjing, China.
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, UK.
| | - Johanna Hedlund
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, UK
- Lund University, Department of Biology, Centre for Animal Movement Research, Ecology Building, SE-223 62, Lund, Sweden
| | - Don R Reynolds
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Baoping Zhai
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Gao Hu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jason W Chapman
- Department of Entomology, Nanjing Agricultural University, Nanjing, China.
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall, UK.
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, UK.
| |
Collapse
|
46
|
Nearshore neonate dispersal of Atlantic leatherback turtles (Dermochelys coriacea) from a non-recovering subpopulation. Sci Rep 2020; 10:18748. [PMID: 33128021 PMCID: PMC7603482 DOI: 10.1038/s41598-020-75769-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/13/2020] [Indexed: 11/24/2022] Open
Abstract
The cryptic ‘lost years’ of sea turtles challenge conservation efforts due to unknown movements and habitat utilisation of young life stages. Behavioural information strengthens dispersal and habitat utilisation models estimating unidentified movements. In this study, leatherback hatchlings were actively tracked with miniature acoustic tags off the east coast of Costa Rica for 83.15 min (± 9.12 SD) to determine their movements and swimming behaviour. Drifters were deployed throughout the tracking process to obtain surface current data. Hatchling (n = 42) over-ground and in-water swimming speed and bearing were calculated. Mean over-ground distance travelled was 2.03 km (± 0.71 km SD) with an over-ground average swim speed of 0.41 m/s (± 0.15 m/s SD). Mean bearing was 108.08° (± 20.19° SD) compared to the 137.56° (± 44.00° SD) bearing of nearshore ocean currents during tracking. Hatchling mean in-water swimming speed was 0.25 m/s (± 0.09 m/s SD). The lower in-water speed suggests hatchlings were advected by the currents, with overall movement strongly influenced by the current direction. This information can be assimilated into broader spatiotemporal distribution models to interpret the influence of directional swimming on ecosystem utilisation and help to achieve informed management decisions across all life stages of the population.
Collapse
|
47
|
Wynn J, Collet J, Prudor A, Corbeau A, Padget O, Guilford T, Weimerskirch H. Young frigatebirds learn how to compensate for wind drift. Proc Biol Sci 2020; 287:20201970. [PMID: 33081617 PMCID: PMC7661306 DOI: 10.1098/rspb.2020.1970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/28/2020] [Indexed: 11/12/2022] Open
Abstract
Compensating for wind drift can improve goalward flight efficiency in animal taxa, especially among those that rely on thermal soaring to travel large distances. Little is known, however, about how animals acquire this ability. The great frigatebird (Fregata minor) exemplifies the challenges of wind drift compensation because it lives a highly pelagic lifestyle, travelling very long distances over the open ocean but without the ability to land on water. Using GPS tracks from fledgling frigatebirds, we followed young frigatebirds from the moment of fledging to investigate whether wind drift compensation was learnt and, if so, what sensory inputs underpinned it. We found that the effect of wind drift reduced significantly with both experience and access to visual landmark cues. Further, we found that the effect of experience on wind drift compensation was more pronounced when birds were out of sight of land. Our results suggest that improvement in wind drift compensation is not solely the product of either physical maturation or general improvements in flight control. Instead, we believe it is likely that they reflect how frigatebirds learn to process sensory information so as to reduce wind drift and maintain a constant course during goalward movement.
Collapse
Affiliation(s)
- Joe Wynn
- Oxford Navigation Group, Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Julien Collet
- Oxford Navigation Group, Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Aurélien Prudor
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS-Université de la Rochelle, Carrefour de la Canauderie, 79360 Villiers en Bois, France
| | - Alexandre Corbeau
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS-Université de la Rochelle, Carrefour de la Canauderie, 79360 Villiers en Bois, France
| | - Oliver Padget
- Oxford Navigation Group, Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Tim Guilford
- Oxford Navigation Group, Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Henri Weimerskirch
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS-Université de la Rochelle, Carrefour de la Canauderie, 79360 Villiers en Bois, France
| |
Collapse
|
48
|
Luschi P, Sözbilen D, Cerritelli G, Ruffier F, Başkale E, Casale P. A biphasic navigational strategy in loggerhead sea turtles. Sci Rep 2020; 10:18130. [PMID: 33093603 PMCID: PMC7581759 DOI: 10.1038/s41598-020-75183-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/05/2020] [Indexed: 11/22/2022] Open
Abstract
The homing journeys of nine loggerhead turtles translocated from their nesting beach to offshore release sites, were reconstructed through Argos and GPS telemetry while their water-related orientation was simultaneously recorded at high temporal resolution by multi-sensor data loggers featuring a three-axis magnetic sensor. All turtles managed to return to the nesting beach area, although with indirect routes encompassing an initial straight leg not precisely oriented towards home, and a successive homebound segment carried out along the coast. Logger data revealed that, after an initial period of disorientation, turtles were able to precisely maintain a consistent direction for several hours while moving in the open sea, even during night-time. Their water-related headings were in accordance with the orientation of the resulting route, showing little or no effect of current drift. This study reveals a biphasic homing strategy of displaced turtles involving an initial orientation weakly related to home and a successive shift to coastal navigation, which is in line with the modern conceptual framework of animal migratory navigation as deriving from sequential mechanisms acting at different spatial scales.
Collapse
Affiliation(s)
- Paolo Luschi
- Department of Biology, University of Pisa, Pisa, Italy.
| | - Dogan Sözbilen
- Department of Veterinary, Acıpayam Vocational School, Pamukkale University, Denizli, Turkey
| | | | | | - Eyup Başkale
- Department of Biology, Faculty of Arts and Sciences, Pamukkale University, Denizli, Turkey
| | - Paolo Casale
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
49
|
Rahi JE, Weeber MP, Serafy GE. Modelling the effect of behavior on the distribution of the jellyfish Mauve stinger (Pelagia noctiluca) in the Balearic Sea using an individual-based model. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Hays GC, Cerritelli G, Esteban N, Rattray A, Luschi P. Open Ocean Reorientation and Challenges of Island Finding by Sea Turtles during Long-Distance Migration. Curr Biol 2020; 30:3236-3242.e3. [PMID: 32679095 DOI: 10.1016/j.cub.2020.05.086] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/20/2020] [Accepted: 05/27/2020] [Indexed: 01/24/2023]
Abstract
In 1873, Charles Darwin marveled at the ability of sea turtles to find isolated island breeding sites [1], but the details of how sea turtles and other taxa navigate during these migrations remains an open question [2]. Exploring this question using free-living individuals is difficult because, despite thousands of sea turtles being satellite tracked across hundreds of studies [3], most are tracked to mainland coasts where the navigational challenges are easiest. We overcame this problem by recording unique tracks of green turtles (Chelonia mydas) migrating long distances in the Indian Ocean to small oceanic islands. Our work provides some of the best evidence to date, from naturally migrating sea turtles, for an ability to reorient in the open ocean, but only at a crude level. Using individual-based models that incorporated ocean currents, we compared actual migration tracks against candidate navigational models to show that turtles do not reorient at fine scales (e.g., daily), but rather can travel several 100 km off the direct routes to their goal before reorienting, often in the open ocean. Frequently, turtles did not home to small islands with pinpoint accuracy, but rather overshot and/or searched for the target in the final stages of migration. These results from naturally migrating individuals support the suggestion from previous laboratory work [4-6] that turtles use a true navigation system in the open ocean, but their map sense is coarse scale.
Collapse
Affiliation(s)
| | - Giulia Cerritelli
- Department of Biology, University of Pisa, Via A. Volta 6, Pisa I-56126, Italy
| | - Nicole Esteban
- Department of Biosciences, Swansea University, Swansea SA2 8PP, Wales, UK
| | | | - Paolo Luschi
- Department of Biology, University of Pisa, Via A. Volta 6, Pisa I-56126, Italy
| |
Collapse
|