1
|
Sinha B, Biswas A, Kaushik S, Soni GV. Cellular and Nuclear Forces: An Overview. Methods Mol Biol 2025; 2881:3-39. [PMID: 39704936 DOI: 10.1007/978-1-0716-4280-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Biological cells sample their surrounding microenvironments using nanoscale force sensors on the cell surfaces. These surface-based force and stress sensors generate physical and chemical responses inside the cell. The inherently well-connected cytoskeleton and its physical contacts with the force elements on the nuclear membrane lead these physicochemical responses to cascade all the way inside the cell nucleus, physically altering the nuclear state. These physical alterations of the cell nucleus, through yet-unknown complex steps, elicit physical and functional responses from the chromatin in the form of altered gene expression profiles. This mechanism of force/stress sensing by the cell and then its nuclear response has been shown to play a vital role in maintaining robust cellular homeostasis, controlling gene expression profiles during developmental phases as well as cell differentiation. In the last few years, there has been appreciable progress toward the identification of the molecular players responsible for force sensing. However, the actual sensing mechanism of cell surface-bound force sensors and more importantly cascading of the signals, both physical (via cytosolic force sensing elements such as microtubule and actin framework) as well as chemical (cascade of biochemical signaling from cell surface to nuclear surface and further to the chromatin), inside the cell is poorly understood. In this chapter, we present a review of the currently known molecular players in cellular as well as nuclear force sensing repertoire and their possible mechanistic aspects. We also introduce various biophysical concepts and review some frequently used techniques that are used to describe the force/stress sensing and response of a cell. We hope that this will help in asking clearer questions and designing pointed experiments for better understanding of the force-dependent design principles of the cell surface, nuclear surface, and gene expression.
Collapse
Affiliation(s)
- Bidisha Sinha
- Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Arikta Biswas
- Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | | | - Gautam V Soni
- Raman Research Institute, Bangalore, Karnataka, India.
| |
Collapse
|
2
|
Serrano T, Casartelli N, Ghasemi F, Wioland H, Cuvelier F, Salles A, Moya-Nilges M, Welker L, Bernacchi S, Ruff M, Jégou A, Romet-Lemonne G, Schwartz O, Frémont S, Echard A. HIV-1 budding requires cortical actin disassembly by the oxidoreductase MICAL1. Proc Natl Acad Sci U S A 2024; 121:e2407835121. [PMID: 39556735 PMCID: PMC11621841 DOI: 10.1073/pnas.2407835121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/30/2024] [Indexed: 11/20/2024] Open
Abstract
Many enveloped viruses bud from the plasma membrane that is tightly associated with a dense and thick actin cortex. This actin network represents a significant challenge for membrane deformation and scission, and how it is remodeled during the late steps of the viral cycle is largely unknown. Using superresolution microscopy, we show that HIV-1 buds in areas of the plasma membrane with low cortical F-actin levels. We find that the cellular oxidoreductase MICAL1 locally depolymerizes actin at budding sites to promote HIV-1 budding and release. Upon MICAL1 depletion, F-actin abnormally remains at viral budding sites, incompletely budded viruses accumulate at the plasma membrane and viral release is impaired. Remarkably, normal viral release can be restored in MICAL1-depleted cells by inhibiting Arp2/3-dependent branched actin networks. Mechanistically, we find that MICAL1 directly disassembles branched-actin networks and controls the timely recruitment of the Endosomal Sorting Complexes Required for Transport scission machinery during viral budding. In addition, the MICAL1 activator Rab35 is recruited at budding sites, functions in the same pathway as MICAL1, and is also required for viral release. This work reveals a role for oxidoreduction in triggering local actin depolymerization to control HIV-1 budding, a mechanism that may be widely used by other viruses. The debranching activity of MICAL1 could be involved beyond viral budding in various other cellular functions requiring local plasma membrane deformation.
Collapse
Affiliation(s)
- Thomas Serrano
- Membrane Traffic and Cell Division Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3691, ParisF-75015, France
| | - Nicoletta Casartelli
- Virology department, Virus and Immunity Lab, Institut Pasteur, Université Paris Cité, ParisF-75015, France
| | - Foad Ghasemi
- Université Paris Cité, CNRS, Institut Jacques Monod, ParisF-75013, France
| | - Hugo Wioland
- Université Paris Cité, CNRS, Institut Jacques Monod, ParisF-75013, France
| | - Frédérique Cuvelier
- Membrane Traffic and Cell Division Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3691, ParisF-75015, France
| | - Audrey Salles
- Institut Pasteur, Université Paris Cité, Photonic Bio-Imaging Unit, Centre de Ressources et Recherches Technologiques (UTechS-PBI, C2RT), ParisF-75015, France
| | - Maryse Moya-Nilges
- Institut Pasteur, Université Paris Cité, Ultrastructural BioImaging, ParisF-75015, France
| | - Lisa Welker
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, CNRS UPR9002, StrasbourgF-67084, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Integrated Structural Biology, CNRS UMR 7104, Inserm U 1258, University of Strasbourg, IllkirchF-67404, France
| | - Serena Bernacchi
- Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, Architecture et Réactivité de l’ARN, CNRS UPR9002, StrasbourgF-67084, France
| | - Marc Ruff
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Integrated Structural Biology, CNRS UMR 7104, Inserm U 1258, University of Strasbourg, IllkirchF-67404, France
| | - Antoine Jégou
- Université Paris Cité, CNRS, Institut Jacques Monod, ParisF-75013, France
| | | | - Olivier Schwartz
- Virology department, Virus and Immunity Lab, Institut Pasteur, Université Paris Cité, ParisF-75015, France
| | - Stéphane Frémont
- Membrane Traffic and Cell Division Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3691, ParisF-75015, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Unit, Institut Pasteur, Université Paris Cité, CNRS UMR3691, ParisF-75015, France
| |
Collapse
|
3
|
Scholz J, Stephan T, Pérez AG, Csiszár A, Hersch N, Fischer LS, Brühmann S, Körber S, Litschko C, Mijanovic L, Kaufmann T, Lange F, Springer R, Pich A, Jakobs S, Peckham M, Tarantola M, Grashoff C, Merkel R, Faix J. Decisive role of mDia-family formins in cell cortex function of highly adherent cells. SCIENCE ADVANCES 2024; 10:eadp5929. [PMID: 39475610 PMCID: PMC11524191 DOI: 10.1126/sciadv.adp5929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/20/2024] [Indexed: 11/02/2024]
Abstract
Cortical formins, pivotal for the assembly of linear actin filaments beneath the membrane, exert only minor effects on unconfined cell migration of weakly and moderately adherent cells. However, their impact on migration and mechanostability of highly adherent cells remains poorly understood. Here, we demonstrate that loss of cortical actin filaments generated by the formins mDia1 and mDia3 drastically compromises cell migration and mechanics in highly adherent fibroblasts. Biophysical analysis of the mechanical properties of the mutant cells revealed a markedly softened cell cortex in the poorly adherent state. Unexpectedly, in the highly adherent state, associated with a hyperstretched morphology with exaggerated focal adhesions and prominent high-strain stress fibers, they exhibited even higher cortical tension compared to control. Notably, misguidance of intracellular forces, frequently accompanied by stress-fiber rupture, culminated in the formation of tension- and contractility-induced macroapertures, which was instantly followed by excessive lamellipodial protrusion at the periphery, providing critical insights into mechanotransduction of mechanically stressed and highly adherent cells.
Collapse
Affiliation(s)
- Jonas Scholz
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Till Stephan
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Aina Gallemí Pérez
- Institute for Dynamics of Complex Systems, Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Department LFPB, Göttingen, Germany
| | - Agnes Csiszár
- Institute of Biological Information Processing 2: Mechanobiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Nils Hersch
- Institute of Biological Information Processing 2: Mechanobiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Lisa S. Fischer
- Institute of Integrative Cell Biology and Physiology, University of Münster, Münster, Germany
| | - Stefan Brühmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Sarah Körber
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Christof Litschko
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Lucija Mijanovic
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Thomas Kaufmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Felix Lange
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Ronald Springer
- Institute of Biological Information Processing 2: Mechanobiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Andreas Pich
- Research Core Unit Proteomics and Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Michelle Peckham
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Marco Tarantola
- Institute for Dynamics of Complex Systems, Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Department LFPB, Göttingen, Germany
| | - Carsten Grashoff
- Institute of Integrative Cell Biology and Physiology, University of Münster, Münster, Germany
| | - Rudolf Merkel
- Institute of Biological Information Processing 2: Mechanobiology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Qiao E, Baek J, Fulmore C, Song M, Kim TS, Kumar S, Schaffer DV. Spectrin mediates 3D-specific matrix stress-relaxation response in neural stem cell lineage commitment. SCIENCE ADVANCES 2024; 10:eadk8232. [PMID: 39093963 PMCID: PMC11296331 DOI: 10.1126/sciadv.adk8232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
While extracellular matrix (ECM) stress relaxation is increasingly appreciated to regulate stem cell fate commitment and other behaviors, much remains unknown about how cells process stress-relaxation cues in tissue-like three-dimensional (3D) geometries versus traditional 2D cell culture. Here, we develop an oligonucleotide-crosslinked hyaluronic acid-based ECM platform with tunable stress relaxation properties capable of use in either 2D or 3D. Strikingly, stress relaxation favors neural stem cell (NSC) neurogenesis in 3D but suppresses it in 2D. RNA sequencing and functional studies implicate the membrane-associated protein spectrin as a key 3D-specific transducer of stress-relaxation cues. Confining stress drives spectrin's recruitment to the F-actin cytoskeleton, where it mechanically reinforces the cortex and potentiates mechanotransductive signaling. Increased spectrin expression is also accompanied by increased expression of the transcription factor EGR1, which we previously showed mediates NSC stiffness-dependent lineage commitment in 3D. Our work highlights spectrin as an important molecular sensor and transducer of 3D stress-relaxation cues.
Collapse
Affiliation(s)
- Eric Qiao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jieung Baek
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Mechanical and Biomedical Engineering, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Camille Fulmore
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Myoung Song
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sanjay Kumar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David V. Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Lloyd VJ, Burg SL, Harizanova J, Garcia E, Hill O, Enciso-Romero J, Cooper RL, Flenner S, Longo E, Greving I, Nadeau NJ, Parnell AJ. The actin cytoskeleton plays multiple roles in structural colour formation in butterfly wing scales. Nat Commun 2024; 15:4073. [PMID: 38769302 PMCID: PMC11106069 DOI: 10.1038/s41467-024-48060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
Vivid structural colours in butterflies are caused by photonic nanostructures scattering light. Structural colours evolved for numerous biological signalling functions and have important technological applications. Optically, such structures are well understood, however insight into their development in vivo remains scarce. We show that actin is intimately involved in structural colour formation in butterfly wing scales. Using comparisons between iridescent (structurally coloured) and non-iridescent scales in adult and developing H. sara, we show that iridescent scales have more densely packed actin bundles leading to an increased density of reflective ridges. Super-resolution microscopy across three distantly related butterfly species reveals that actin is repeatedly re-arranged during scale development and crucially when the optical nanostructures are forming. Furthermore, actin perturbation experiments at these later developmental stages resulted in near total loss of structural colour in H. sara. Overall, this shows that actin plays a vital and direct templating role during structural colour formation in butterfly scales, providing ridge patterning mechanisms that are likely universal across lepidoptera.
Collapse
Affiliation(s)
- Victoria J Lloyd
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield, S10 2TN, UK.
| | - Stephanie L Burg
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK
| | - Jana Harizanova
- Central Laser Facility-Science & Technology Facility Council, The Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0FA, UK
- Core Facility for Integrated Microscopy, Department of Biomedical Sciences, University of Copenhagen, 2200N, Copenhagen, Denmark
| | - Esther Garcia
- Central Laser Facility-Science & Technology Facility Council, The Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0FA, UK
| | - Olivia Hill
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK
| | - Juan Enciso-Romero
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield, S10 2TN, UK
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB, T1K 3M4, Canada
| | - Rory L Cooper
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield, S10 2TN, UK
- Department of Genetics and Evolution, University of Geneva, Sciences III, Geneva, 1205, Switzerland
| | - Silja Flenner
- Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, 21502, Geesthacht, Germany
| | - Elena Longo
- Elettra-Sincrotrone Trieste S.C.p.A., 34149, Basovizza, Trieste, Italy
| | - Imke Greving
- Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, 21502, Geesthacht, Germany
| | - Nicola J Nadeau
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield, S10 2TN, UK.
| | - Andrew J Parnell
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK.
| |
Collapse
|
6
|
Shiomi A, Kaneko T, Nishikawa K, Tsuchida A, Isoshima T, Sato M, Toyooka K, Doi K, Nishikii H, Shintaku H. High-throughput mechanical phenotyping and transcriptomics of single cells. Nat Commun 2024; 15:3812. [PMID: 38760380 PMCID: PMC11101642 DOI: 10.1038/s41467-024-48088-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/22/2024] [Indexed: 05/19/2024] Open
Abstract
The molecular system regulating cellular mechanical properties remains unexplored at single-cell resolution mainly due to a limited ability to combine mechanophenotyping with unbiased transcriptional screening. Here, we describe an electroporation-based lipid-bilayer assay for cell surface tension and transcriptomics (ELASTomics), a method in which oligonucleotide-labelled macromolecules are imported into cells via nanopore electroporation to assess the mechanical state of the cell surface and are enumerated by sequencing. ELASTomics can be readily integrated with existing single-cell sequencing approaches and enables the joint study of cell surface mechanics and underlying transcriptional regulation at an unprecedented resolution. We validate ELASTomics via analysis of cancer cell lines from various malignancies and show that the method can accurately identify cell types and assess cell surface tension. ELASTomics enables exploration of the relationships between cell surface tension, surface proteins, and transcripts along cell lineages differentiating from the haematopoietic progenitor cells of mice. We study the surface mechanics of cellular senescence and demonstrate that RRAD regulates cell surface tension in senescent TIG-1 cells. ELASTomics provides a unique opportunity to profile the mechanical and molecular phenotypes of single cells and can dissect the interplay among these in a range of biological contexts.
Collapse
Affiliation(s)
- Akifumi Shiomi
- Cluster for Pioneering Research, RIKEN, Saitama, Japan
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | - Mayuko Sato
- Center for Sustainable Resource Science, RIKEN, Yokohama, Japan
| | | | - Kentaro Doi
- Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Japan
| | | | - Hirofumi Shintaku
- Cluster for Pioneering Research, RIKEN, Saitama, Japan.
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
7
|
Li M, Xing X, Yuan J, Zeng Z. Research progress on the regulatory role of cell membrane surface tension in cell behavior. Heliyon 2024; 10:e29923. [PMID: 38720730 PMCID: PMC11076917 DOI: 10.1016/j.heliyon.2024.e29923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Cell membrane surface tension has emerged as a pivotal biophysical factor governing cell behavior and fate. This review systematically delineates recent advances in techniques for cell membrane surface tension quantification, mechanosensing mechanisms, and regulatory roles of cell membrane surface tension in modulating major cellular processes. Micropipette aspiration, tether pulling, and newly developed fluorescent probes enable the measurement of cell membrane surface tension with spatiotemporal precision. Cells perceive cell membrane surface tension via conduits including mechanosensitive ion channels, curvature-sensing proteins (e.g. BAR domain proteins), and cortex-membrane attachment proteins (e.g. ERM proteins). Through membrane receptors like integrins, cells convert mechanical cues into biochemical signals. This conversion triggers cytoskeletal remodeling and extracellular matrix interactions in response to environmental changes. Elevated cell membrane surface tension suppresses cell spreading, migration, and endocytosis while facilitating exocytosis. Moreover, reduced cell membrane surface tension promotes embryonic stem cell differentiation and cancer cell invasion, underscoring cell membrane surface tension as a regulator of cell plasticity. Outstanding questions remain regarding cell membrane surface tension regulatory mechanisms and roles in tissue development/disease in vivo. Emerging tools to manipulate cell membrane surface tension with high spatiotemporal control in combination with omics approaches will facilitate the elucidation of cell membrane surface tension-mediated effects on signaling networks across various cell types/states. This will accelerate the development of cell membrane surface tension-based biomarkers and therapeutics for regenerative medicine and cancer. Overall, this review provides critical insights into cell membrane surface tension as a potent orchestrator of cell function, with broader impacts across mechanobiology.
Collapse
Affiliation(s)
- Manqing Li
- School of Public Health, Sun Yat-sen University, Guangzhou, 5180080, China
| | - Xiumei Xing
- School of Public Health, Sun Yat-sen University, Guangzhou, 5180080, China
| | - Jianhui Yuan
- Nanshan District Center for Disease Control and Prevention, Shenzhen, 518054, China
| | - Zhuoying Zeng
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen University, Shenzhen, 518035, China
- Chemical Analysis & Physical Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| |
Collapse
|
8
|
Yang Y, Han K, Huang S, Wang K, Wang Y, Ding S, Zhang L, Zhang M, Xu B, Ma S, Wang Y, Wu S, Wang X. Revelation of adhesive proteins affecting cellular contractility through reference-free traction force microscopy. J Mater Chem B 2024; 12:3249-3261. [PMID: 38466580 DOI: 10.1039/d4tb00065j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Over the past few decades, the critical role played by cellular contractility associated mechanotransduction in the regulation of cell functions has been revealed. In this case, numerous biomaterials have been chemically or structurally designed to manipulate cell behaviors through the regulation of cellular contractility. In particular, adhesive proteins including fibronectin, poly-L-lysine and collagen type I have been widely applied in various biomaterials to improve cell adhesion. Therefore, clarifying the effects of adhesive proteins on cellular contractility has been valuable for the development of biomaterial design. In this study, reference-free traction force microscopy with a well-organized microdot array was designed and prepared to investigate the relationship between adhesive proteins, cellular contractility, and mechanotransduction. The results showed that fibronectin and collagen type I were able to promote the assembly of focal adhesions and further enhance cellular contraction and YAP activity. In contrast, although poly-L-lysine supported cell spreading and elongation, it was inefficient at inducing cell contractility and activating YAP. Additionally, compared with cellular morphogenesis, cellular contraction was essential for YAP activation.
Collapse
Affiliation(s)
- Yingjun Yang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, P. R. China
| | - Kuankuan Han
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Siyuan Huang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
- Department of Basic Medical Sciences, Sichuan Vocational College of Health and Rehabilitation, Zigong, China
| | - Kai Wang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Yuchen Wang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Shukai Ding
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Le Zhang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Miao Zhang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, P. R. China
- Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan, China
| | - Shufang Ma
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an, P. R. China
| | - Yongtao Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, China.
| | - Shengli Wu
- Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Xinlong Wang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
9
|
Burcklé C, Raitière J, Michaux G, Kodjabachian L, Le Bivic A. Crb3 is required to organize the apical domain of multiciliated cells. J Cell Sci 2024; 137:jcs261046. [PMID: 37840525 DOI: 10.1242/jcs.261046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023] Open
Abstract
Cell shape changes mainly rely on the remodeling of the actin cytoskeleton. Multiciliated cells (MCCs) of the mucociliary epidermis of Xenopus laevis embryos, as they mature, dramatically reshape their apical domain to grow cilia, in coordination with the underlying actin cytoskeleton. Crumbs (Crb) proteins are multifaceted transmembrane apical polarity proteins known to recruit actin linkers and promote apical membrane growth. Here, we identify the homeolog Crb3.L as an important player for the migration of centrioles or basal bodies (collectively centrioles/BBs) and apical domain morphogenesis in MCCs. Crb3.L is present in cytoplasmic vesicles close to the ascending centrioles/BBs, where it partially colocalizes with Rab11a. Crb3.L morpholino-mediated depletion in MCCs caused abnormal migration of centrioles/BBs, a reduction of their apical surface, disorganization of their apical actin meshwork and defective ciliogenesis. Rab11a morpholino-mediated depletion phenocopied Crb3.L loss-of-function in MCCs. Thus, the control of centrioles/BBs migration by Crb3.L might be mediated by Rab11a-dependent apical trafficking. Furthermore, we show that both phospho-activated ERM (pERM; Ezrin-Radixin-Moesin) and Crb3.L are recruited to the growing apical domain of MCCs, where Crb3.L likely anchors pERM, allowing actin-dependent expansion of the apical membrane.
Collapse
Affiliation(s)
- Céline Burcklé
- Aix-Marseille University, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), Marseille, F-13288 France
| | - Juliette Raitière
- Aix-Marseille University, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), Marseille, F-13288 France
| | - Grégoire Michaux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, F-35000 Rennes, France
| | - Laurent Kodjabachian
- Aix Marseille University, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), Turing Centre for Living Systems, Marseille, F-13288 France
| | - André Le Bivic
- Aix-Marseille University, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), Marseille, F-13288 France
| |
Collapse
|
10
|
Olver DJ, Benson JD. Meta-analysis of the Boyle van 't Hoff relation: Turgor and leak models explain non-ideal volume equilibrium. Cryobiology 2023; 113:104581. [PMID: 37661046 DOI: 10.1016/j.cryobiol.2023.104581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/06/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
There has been much recent attention paid to the interaction of cell volume, its regulation, and the molecular biology of the cell. Cells are generally assumed to behave as linear osmometers, with their water volume linearly proportionate to the inverse of osmotic pressure as described by the Boyle van 't Hoff (BvH) relation. This study evaluates the generality of this and other long-standing assumptions about cell responses to anisotonic conditions. We present alternative models that account for osmoregulation including mechanical resistance to volumetric expansion (the turgor model) and ion-osmolyte leakage (the leak model). To evaluate the generality of the BvH relation and determine the suitability of alternative models, we performed a comprehensive survey of the literature and a careful analysis of the resulting data, and then we used these data to compare among models. We identified 137 articles published from 1964 to 2019 spanning 14 animal species and 26 cell types and determined the BvH relation is not an appropriate general model but is adequate when restricted to the hypertonic region. In contrast, models that account for either mechanical resistance or ion-osmolyte leakage fit well to almost all collected data. The leak model has fitted parameters that are in the same range as the current literature estimate, while the turgor model typically requires an elastic modulus value of one or multiple orders of magnitude larger than literature values. However, confirmation of the underlying mechanism of osmotic regulation is required at the cell-specific level and cannot be assumed a priori.
Collapse
Affiliation(s)
- Dominic J Olver
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada
| | - James D Benson
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada.
| |
Collapse
|
11
|
Sokac AM, Biel N, De Renzis S. Membrane-actin interactions in morphogenesis: Lessons learned from Drosophila cellularization. Semin Cell Dev Biol 2023; 133:107-122. [PMID: 35396167 PMCID: PMC9532467 DOI: 10.1016/j.semcdb.2022.03.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 01/12/2023]
Abstract
During morphogenesis, changes in the shapes of individual cells are harnessed to mold an entire tissue. These changes in cell shapes require the coupled remodeling of the plasma membrane and underlying actin cytoskeleton. In this review, we highlight cellularization of the Drosophila embryo as a model system to uncover principles of how membrane and actin dynamics are co-regulated in space and time to drive morphogenesis.
Collapse
Affiliation(s)
- Anna Marie Sokac
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA; Graduate Program in Integrative and Molecular Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Natalie Biel
- Department of Cell and Developmental Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA; Graduate Program in Integrative and Molecular Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stefano De Renzis
- European Molecular Biology Laboratory Heidelberg, 69117 Heidelberg, Germany
| |
Collapse
|
12
|
Torres-Sánchez A, Kerr Winter M, Salbreux G. Interacting active surfaces: A model for three-dimensional cell aggregates. PLoS Comput Biol 2022; 18:e1010762. [PMID: 36525467 PMCID: PMC9803321 DOI: 10.1371/journal.pcbi.1010762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 12/30/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022] Open
Abstract
We introduce a modelling and simulation framework for cell aggregates in three dimensions based on interacting active surfaces. Cell mechanics is captured by a physical description of the acto-myosin cortex that includes cortical flows, viscous forces, active tensions, and bending moments. Cells interact with each other via short-range forces capturing the effect of adhesion molecules. We discretise the model equations using a finite element method, and provide a parallel implementation in C++. We discuss examples of application of this framework to small and medium-sized aggregates: we consider the shape and dynamics of a cell doublet, a planar cell sheet, and a growing cell aggregate. This framework opens the door to the systematic exploration of the cell to tissue-scale mechanics of cell aggregates, which plays a key role in the morphogenesis of embryos and organoids.
Collapse
Affiliation(s)
| | - Max Kerr Winter
- Theoretical Physics of Biology laboratory, The Francis Crick Institute, London, United Kingdom
| | - Guillaume Salbreux
- Theoretical Physics of Biology laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Genetics and Evolution, University of Geneva, Genève, Switzerland
| |
Collapse
|
13
|
De Belly H, Paluch EK, Chalut KJ. Interplay between mechanics and signalling in regulating cell fate. Nat Rev Mol Cell Biol 2022; 23:465-480. [PMID: 35365816 DOI: 10.1038/s41580-022-00472-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 12/11/2022]
Abstract
Mechanical signalling affects multiple biological processes during development and in adult organisms, including cell fate transitions, cell migration, morphogenesis and immune responses. Here, we review recent insights into the mechanisms and functions of two main routes of mechanical signalling: outside-in mechanical signalling, such as mechanosensing of substrate properties or shear stresses; and mechanical signalling regulated by the physical properties of the cell surface itself. We discuss examples of how these two classes of mechanical signalling regulate stem cell function, as well as developmental processes in vivo. We also discuss how cell surface mechanics affects intracellular signalling and, in turn, how intracellular signalling controls cell surface mechanics, generating feedback into the regulation of mechanosensing. The cooperation between mechanosensing, intracellular signalling and cell surface mechanics has a profound impact on biological processes. We discuss here our understanding of how these three elements interact to regulate stem cell fate and development.
Collapse
Affiliation(s)
- Henry De Belly
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Ewa K Paluch
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Kevin J Chalut
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
- Wellcome/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
14
|
Özgüç Ö, de Plater L, Kapoor V, Tortorelli AF, Clark AG, Maître JL. Cortical softening elicits zygotic contractility during mouse preimplantation development. PLoS Biol 2022; 20:e3001593. [PMID: 35324889 PMCID: PMC8982894 DOI: 10.1371/journal.pbio.3001593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/05/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
Actomyosin contractility is a major engine of preimplantation morphogenesis, which starts at the 8-cell stage during mouse embryonic development. Contractility becomes first visible with the appearance of periodic cortical waves of contraction (PeCoWaCo), which travel around blastomeres in an oscillatory fashion. How contractility of the mouse embryo becomes active remains unknown. We have taken advantage of PeCoWaCo to study the awakening of contractility during preimplantation development. We find that PeCoWaCo become detectable in most embryos only after the second cleavage and gradually increase their oscillation frequency with each successive cleavage. To test the influence of cell size reduction during cleavage divisions, we use cell fusion and fragmentation to manipulate cell size across a 20- to 60-μm range. We find that the stepwise reduction in cell size caused by cleavage divisions does not explain the presence of PeCoWaCo or their accelerating rhythm. Instead, we discover that blastomeres gradually decrease their surface tensions until the 8-cell stage and that artificially softening cells enhances PeCoWaCo prematurely. We further identify the programmed down-regulation of the formin Fmnl3 as a required event to soften the cortex and expose PeCoWaCo. Therefore, during cleavage stages, cortical softening, mediated by Fmnl3 down-regulation, awakens zygotic contractility before preimplantation morphogenesis. During preimplantation morphogenesis, the mouse embryo relies on forces generated by the actomyosin cytoskeleton. This study uncovers how periodic actomyosin contractions increase in frequency during cleavage stages as blastomeres soften with each cleavage division.
Collapse
Affiliation(s)
- Özge Özgüç
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Ludmilla de Plater
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Varun Kapoor
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Anna Francesca Tortorelli
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
| | - Andrew G. Clark
- Institute of Cell Biology and Immunology, Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
- Center for Personalized Medicine, University of Tübingen, Tübingen, Germany
| | - Jean-Léon Maître
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM U934, Paris, France
- * E-mail:
| |
Collapse
|
15
|
Kislev N, Mor-Yossef Moldovan L, Barak R, Egozi M, Benayahu D. MYH10 Governs Adipocyte Function and Adipogenesis through Its Interaction with GLUT4. Int J Mol Sci 2022; 23:ijms23042367. [PMID: 35216482 PMCID: PMC8875441 DOI: 10.3390/ijms23042367] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/10/2022] Open
Abstract
Adipogenesis is dependent on cytoskeletal remodeling that determines and maintains cellular shape and function. Cytoskeletal proteins contribute to the filament-based network responsible for controlling the shape of adipocytes and promoting the intracellular trafficking of cellular components. Currently, the understanding of these mechanisms and their effect on differentiation and adipocyte function remains incomplete. In this study, we identified the non-muscle myosin 10 (MYH10) as a novel regulator of adipogenesis and adipocyte function through its interaction with the insulin-dependent glucose transporter 4 (GLUT4). MYH10 depletion in preadipocytes resulted in impaired adipogenesis, with knockdown cells exhibiting an absence of morphological alteration and molecular signals. MYH10 was shown in a complex with GLUT4 in adipocytes, an interaction regulated by insulin induction. The missing adipogenic capacity of MYH10 knockdown cells was restored when the cells took up GLUT4 vesicles from neighbor wildtype cells in a co-culture system. This signaling cascade is regulated by the protein kinase C ζ (PKCζ), which interacts with MYH10 to modify the localization and interaction of both GLUT4 and MYH10 in adipocytes. Overall, our study establishes MYH10 as an essential regulator of GLUT4 translocation, affecting both adipogenesis and adipocyte function, highlighting its importance in future cytoskeleton-based studies in adipocytes.
Collapse
|
16
|
Nietmann P, Bodenschatz JE, Cordes AM, Gottwald J, Rother-Nöding H, Oswald T, Janshoff A. Epithelial cells fluidize upon adhesion but display mechanical homeostasis in the adherent state. Biophys J 2022; 121:361-373. [PMID: 34998827 PMCID: PMC8822618 DOI: 10.1016/j.bpj.2021.12.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/02/2021] [Accepted: 12/28/2021] [Indexed: 02/03/2023] Open
Abstract
Atomic force microscopy is used to study the viscoelastic properties of epithelial cells in three different states. Force relaxation data are acquired from cells in suspension, adhered but single cells, and polarized cells in a confluent monolayer using different indenter geometries comprising flat bars, pyramidal cones, and spheres. We found that the fluidity of cells increased substantially from the suspended to the adherent state. Along this line, the prestress of suspended cells generated by cortical contractility is also greater than that of cells adhering to a surface. Polarized cells that are part of a confluent monolayer form an apical cap that is soft and fluid enough to respond rapidly to mechanical challenges from wounding, changes in the extracellular matrix, osmotic stress, and external deformation. In contrast to adherent cells, cells in the suspended state show a pronounced dependence of fluidity on the external areal strain. With increasing areal strain, the suspended cells become softer and more fluid. We interpret the results in terms of cytoskeletal remodeling that softens cells in the adherent state to facilitate adhesion and spreading by relieving internal active stress. However, once the cells spread on the surface they maintain their mechanical phenotype displaying viscoelastic homeostasis.
Collapse
Affiliation(s)
- Peter Nietmann
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | | | - Andrea M. Cordes
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | - Jannis Gottwald
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | - Helen Rother-Nöding
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany
| | - Tabea Oswald
- Georg-August Universität, Institute for Organic and Biomolecular Chemistry, Göttingen, Germany
| | - Andreas Janshoff
- Georg-August Universität, Institute for Physical Chemistry, Göttingen, Germany,Corresponding author
| |
Collapse
|
17
|
Kreysing E, Hugh JM, Foster SK, Andresen K, Greenhalgh RD, Pillai EK, Dimitracopoulos A, Keyser UF, Franze K. Effective cell membrane tension is independent of polyacrylamide substrate stiffness. PNAS NEXUS 2022; 2:pgac299. [PMID: 36733291 PMCID: PMC9887938 DOI: 10.1093/pnasnexus/pgac299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Most animal cells are surrounded by a cell membrane and an underlying actomyosin cortex. Both structures are linked, and they are under tension. In-plane membrane tension and cortical tension both influence many cellular processes, including cell migration, division, and endocytosis. However, while actomyosin tension is regulated by substrate stiffness, how membrane tension responds to mechanical substrate properties is currently poorly understood. Here, we probed the effective membrane tension of neurons and fibroblasts cultured on glass and polyacrylamide substrates of varying stiffness using optical tweezers. In contrast to actomyosin-based traction forces, both peak forces and steady-state tether forces of cells cultured on hydrogels were independent of substrate stiffness and did not change after blocking myosin II activity using blebbistatin, indicating that tether and traction forces are not directly linked. Peak forces in fibroblasts on hydrogels were about twice as high as those in neurons, indicating stronger membrane-cortex adhesion in fibroblasts. Steady-state tether forces were generally higher in cells cultured on hydrogels than on glass, which we explain by a mechanical model. Our results provide new insights into the complex regulation of effective membrane tension and pave the way for a deeper understanding of the biological processes it instructs.
Collapse
Affiliation(s)
| | | | - Sarah K Foster
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK,Systems Biology of Microbial Communities, Cluster of Excellence—CMFI, University of Tübingen, 72076 Tübingen, Germany
| | - Kurt Andresen
- Department of Physics, Gettysburg College, Gettysburg, PA 17325, USA
| | - Ryan D Greenhalgh
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Eva K Pillai
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Andrea Dimitracopoulos
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | | | | |
Collapse
|
18
|
Nestor-Bergmann A, Blanchard GB, Hervieux N, Fletcher AG, Étienne J, Sanson B. Adhesion-regulated junction slippage controls cell intercalation dynamics in an Apposed-Cortex Adhesion Model. PLoS Comput Biol 2022; 18:e1009812. [PMID: 35089922 PMCID: PMC8887740 DOI: 10.1371/journal.pcbi.1009812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 03/01/2022] [Accepted: 01/06/2022] [Indexed: 02/02/2023] Open
Abstract
Cell intercalation is a key cell behaviour of morphogenesis and wound healing, where local cell neighbour exchanges can cause dramatic tissue deformations such as body axis extension. Substantial experimental work has identified the key molecular players facilitating intercalation, but there remains a lack of consensus and understanding of their physical roles. Existing biophysical models that represent cell-cell contacts with single edges cannot study cell neighbour exchange as a continuous process, where neighbouring cell cortices must uncouple. Here, we develop an Apposed-Cortex Adhesion Model (ACAM) to understand active cell intercalation behaviours in the context of a 2D epithelial tissue. The junctional actomyosin cortex of every cell is modelled as a continuous viscoelastic rope-loop, explicitly representing cortices facing each other at bicellular junctions and the adhesion molecules that couple them. The model parameters relate directly to the properties of the key subcellular players that drive dynamics, providing a multi-scale understanding of cell behaviours. We show that active cell neighbour exchanges can be driven by purely junctional mechanisms. Active contractility and cortical turnover in a single bicellular junction are sufficient to shrink and remove a junction. Next, a new, orthogonal junction extends passively. The ACAM reveals how the turnover of adhesion molecules regulates tension transmission and junction deformation rates by controlling slippage between apposed cell cortices. The model additionally predicts that rosettes, which form when a vertex becomes common to many cells, are more likely to occur in actively intercalating tissues with strong friction from adhesion molecules.
Collapse
Affiliation(s)
- Alexander Nestor-Bergmann
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Guy B. Blanchard
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Nathan Hervieux
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Alexander G. Fletcher
- School of Mathematics and Statistics and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Jocelyn Étienne
- LIPHY, CNRS, Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Bénédicte Sanson
- School of Mathematics and Statistics and Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
19
|
Mao F, Yang Y, Jiang H. Endocytosis and exocytosis protect cells against severe membrane tension variations. Biophys J 2021; 120:5521-5529. [PMID: 34838532 DOI: 10.1016/j.bpj.2021.11.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/20/2021] [Accepted: 11/15/2021] [Indexed: 01/07/2023] Open
Abstract
The ability of cells to regulate their shape and volume is critical for many cell functions. How endocytosis and exocytosis, as important ways of membrane trafficking, affect cellular volume regulation is still unclear. Here, we develop a theoretical framework to study the dynamics of cell volume, endocytosis, and exocytosis in response to osmotic shocks and mechanical loadings. This model can not only explain observed dynamics of endocytosis and exocytosis during osmotic shocks but also predict the dynamics of endocytosis and exocytosis during cell compressions. We find that a hypotonic shock stimulates exocytosis, while a hypertonic shock stimulates endocytosis; and exocytosis in turn allows cells to have a dramatic change in cell volume but a small change in membrane tension during hyposmotic swelling, protecting cells from rupture under high tension. In addition, we find that cell compressions with various loading speeds induce three distinct dynamic modes of endocytosis and exocytosis. Finally, we show that increasing endocytosis and exocytosis rates reduce the changes in cell volume and membrane tension under fast cell compression, whereas they enhance the changes in cell volume and membrane tension under slow cell compression. Together, our findings reveal critical roles of endocytosis and exocytosis in regulating cell volume and membrane tension.
Collapse
Affiliation(s)
- Fangtao Mao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuehua Yang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China.
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
20
|
Viscoelastic properties of epithelial cells. Biochem Soc Trans 2021; 49:2687-2695. [PMID: 34854895 DOI: 10.1042/bst20210476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
Epithelial cells form tight barriers that line both the outer and inner surfaces of organs and cavities and therefore face diverse environmental challenges. The response to these challenges relies on the cells' dynamic viscoelastic properties, playing a pivotal role in many biological processes such as adhesion, growth, differentiation, and motility. Therefore, the cells usually adapt their viscoelastic properties to mirror the environment that determines their fate and vitality. Albeit not a high-throughput method, atomic force microscopy is still among the dominating methods to study the mechanical properties of adherent cells since it offers a broad range of forces from Piconewtons to Micronewtons at biologically significant time scales. Here, some recent work of deformation studies on epithelial cells is reviewed with a focus on viscoelastic models suitable to describe force cycle measurements congruent with the architecture of the actin cytoskeleton. The prominent role of the cortex in the cell's response to external forces is discussed also in the context of isolated cortex extracts on porous surfaces.
Collapse
|
21
|
Abstract
The cell membrane serves as a barrier that restricts the rate of exchange of diffusible molecules. Tension in the membrane regulates many crucial cell functions involving shape changes and motility, cell signaling, endocytosis, and mechanosensation. Tension reflects the forces contributed by the lipid bilayer, the cytoskeleton, and the extracellular matrix. With a fluid-like bilayer model, membrane tension is presumed uniform and hence propagated instantaneously. In this review, we discuss techniques to measure the mean membrane tension and how to resolve the stresses in different components and consider the role of bilayer heterogeneity.
Collapse
Affiliation(s)
- Pei-Chuan Chao
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Frederick Sachs
- Department of Physiology and Biophysics, University at Buffalo, The State University of New York, Buffalo, NY, United States.
| |
Collapse
|
22
|
Marsal M, Hernández-Vega A, Pouille PA, Martin-Blanco E. Rab5ab-Mediated Yolk Cell Membrane Endocytosis Is Essential for Zebrafish Epiboly and Mechanical Equilibrium During Gastrulation. Front Cell Dev Biol 2021; 9:697097. [PMID: 34778246 PMCID: PMC8585776 DOI: 10.3389/fcell.2021.697097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Morphogenesis in early embryos demands the coordinated distribution of cells and tissues to their final destination in a spatio-temporal controlled way. Spatial and scalar differences in adhesion and contractility are essential for these morphogenetic movements, while the role that membrane remodeling may play remains less clear. To evaluate how membrane turnover modulates tissue arrangements we studied the role of endocytosis in zebrafish epiboly. Experimental analyses and modeling have shown that the expansion of the blastoderm relies on an asymmetry of mechanical tension in the yolk cell generated as a result of actomyosin-dependent contraction and membrane removal. Here we show that the GTPase Rab5ab is essential for the endocytosis and the removal of the external yolk cell syncytial layer (E-YSL) membrane. Interfering in its expression exclusively in the yolk resulted in the reduction of yolk cell actomyosin contractility, the disruption of cortical and internal flows, a disequilibrium in force balance and epiboly impairment. We conclude that regulated membrane remodeling is crucial for directing cell and tissue mechanics, preserving embryo geometry and coordinating morphogenetic movements during epiboly.
Collapse
Affiliation(s)
- Maria Marsal
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Cientific de Barcelona, Barcelona, Spain
| | - Amayra Hernández-Vega
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Cientific de Barcelona, Barcelona, Spain
| | - Philippe-Alexandre Pouille
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Cientific de Barcelona, Barcelona, Spain
| | - Enrique Martin-Blanco
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Cientific de Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Actin Cytoskeletal Dynamics in Single-Cell Wound Repair. Int J Mol Sci 2021; 22:ijms221910886. [PMID: 34639226 PMCID: PMC8509258 DOI: 10.3390/ijms221910886] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
The plasma membrane protects the eukaryotic cell from its surroundings and is essential for cell viability; thus, it is crucial that membrane disruptions are repaired quickly to prevent immediate dyshomeostasis and cell death. Accordingly, cells have developed efficient repair mechanisms to rapidly reseal ruptures and reestablish membrane integrity. The cortical actin cytoskeleton plays an instrumental role in both plasma membrane resealing and restructuring in response to damage. Actin directly aids membrane repair or indirectly assists auxiliary repair mechanisms. Studies investigating single-cell wound repair have often focused on the recruitment and activation of specialized repair machinery, despite the undeniable need for rapid and dynamic cortical actin modulation; thus, the role of the cortical actin cytoskeleton during wound repair has received limited attention. This review aims to provide a comprehensive overview of membrane repair mechanisms directly or indirectly involving cortical actin cytoskeletal remodeling.
Collapse
|
24
|
Melo PN, Souza da Silveira M, Mendes Pinto I, Relvas JB. Morphofunctional programming of microglia requires distinct roles of type II myosins. Glia 2021; 69:2717-2738. [PMID: 34329508 DOI: 10.1002/glia.24067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 11/05/2022]
Abstract
The ramified morphology of microglia and the dynamics of their membrane protrusions are essential for their functions in central nervous system development, homeostasis, and disease. Although their ability to change and control shape critically depends on the actin and actomyosin cytoskeleton, the underlying regulatory mechanisms remain largely unknown. In this study, we systematically analyzed the actomyosin cytoskeleton and regulators downstream of the small GTPase RhoA in the control of microglia shape and function. Our results reveal that (i) Myh9 controls cortical tension levels and affects microglia protrusion formation, (ii) cofilin-mediated maintenance of actin turnover regulates microglia protrusion extension, and (iii) Myh10 influences microglia inflammatory activation. Overall we uncover molecular pathways that regulate microglia morphology and identify type-II myosins as important regulators of microglia biology with differential roles in the control of cell shape (Myh9) and functions (Myh10).
Collapse
Affiliation(s)
- Pedro Neves Melo
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal.,Graduate Programme in Areas of Basic and Applied Biology (GABBA), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Mariana Souza da Silveira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal.,Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Inês Mendes Pinto
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal.,Life Sciences, International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - João Bettencourt Relvas
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
25
|
Blackley DG, Cooper JH, Pokorska P, Ratheesh A. Mechanics of developmental migration. Semin Cell Dev Biol 2021; 120:66-74. [PMID: 34275746 DOI: 10.1016/j.semcdb.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/01/2023]
Abstract
The ability to migrate is a fundamental property of animal cells which is essential for development, homeostasis and disease progression. Migrating cells sense and respond to biochemical and mechanical cues by rapidly modifying their intrinsic repertoire of signalling molecules and by altering their force generating and transducing machinery. We have a wealth of information about the chemical cues and signalling responses that cells use during migration. Our understanding of the role of forces in cell migration is rapidly evolving but is still best understood in the context of cells migrating in 2D and 3D environments in vitro. Advances in live imaging of developing embryos combined with the use of experimental and theoretical tools to quantify and analyse forces in vivo, has begun to shed light on the role of mechanics in driving embryonic cell migration. In this review, we focus on the recent studies uncovering the physical basis of embryonic cell migration in vivo. We look at the physical basis of the classical steps of cell migration such as protrusion formation and cell body translocation and review the recent research on how these processes work in the complex 3D microenvironment of a developing organism.
Collapse
Affiliation(s)
- Deannah G Blackley
- Warwick Medical School and Centre for Mechanochemical Cell Biology, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Jack H Cooper
- Warwick Medical School and Centre for Mechanochemical Cell Biology, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Paulina Pokorska
- Warwick Medical School and Centre for Mechanochemical Cell Biology, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK
| | - Aparna Ratheesh
- Warwick Medical School and Centre for Mechanochemical Cell Biology, Gibbet Hill Campus, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
26
|
Firmin J, Maître JL. Morphogenesis of the human preimplantation embryo: bringing mechanics to the clinics. Semin Cell Dev Biol 2021; 120:22-31. [PMID: 34253437 DOI: 10.1016/j.semcdb.2021.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/15/2021] [Accepted: 07/01/2021] [Indexed: 12/19/2022]
Abstract
During preimplantation development, the human embryo forms the blastocyst, the structure enabling uterine implantation. The blastocyst consists of an epithelial envelope, the trophectoderm, encompassing a fluid-filled lumen, the blastocoel, and a cluster of pluripotent stem cells, the inner cell mass. This specific architecture is crucial for the implantation and further development of the human embryo. Furthermore, the morphology of the human embryo is a prime determinant for clinicians to assess the implantation potential of in vitro fertilized human embryos, which constitutes a key aspect of assisted reproduction technology. Therefore, it is crucial to understand how the human embryo builds the blastocyst. As any material, the human embryo changes shape under the action of forces. Here, we review recent advances in our understanding of the mechanical forces shaping the blastocyst. We discuss the cellular processes responsible for generating morphogenetic forces that were studied mostly in the mouse and review the literature on human embryos to see which of them may be conserved. Based on the specific morphological defects commonly observed in clinics during human preimplantation development, we discuss how mechanical forces and their underlying cellular processes may be affected. Together, we propose that bringing tissue mechanics to the clinics will advance our understanding of human preimplantation development, as well as our ability to help infertile couples to have babies.
Collapse
Affiliation(s)
- Julie Firmin
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM, U934 Paris, France
| | - Jean-Léon Maître
- Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR3215, INSERM, U934 Paris, France.
| |
Collapse
|
27
|
Smoothelin-like 2 Inhibits Coronin-1B to Stabilize the Apical Actin Cortex during Epithelial Morphogenesis. Curr Biol 2021; 31:696-706.e9. [PMID: 33275893 DOI: 10.1016/j.cub.2020.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/24/2020] [Accepted: 11/03/2020] [Indexed: 11/22/2022]
Abstract
The actin cortex is involved in many biological processes and needs to be significantly remodeled during cell differentiation. Developing epithelial cells construct a dense apical actin cortex to carry out their barrier and exchange functions. The apical cortex assembles in response to three-dimensional (3D) extracellular cues, but the regulation of this process during epithelial morphogenesis remains unknown. Here, we describe the function of Smoothelin-like 2 (SMTNL2), a member of the smooth-muscle-related Smoothelin protein family, in apical cortex maturation. SMTNL2 is induced during development in multiple epithelial tissues and localizes to the apical and junctional actin cortex in intestinal and kidney epithelial cells. SMTNL2 deficiency leads to membrane herniations in the apical domain of epithelial cells, indicative of cortex abnormalities. We find that SMTNL2 binds to actin filaments and is required to slow down the turnover of apical actin. We also characterize the SMTNL2 proximal interactome and find that SMTNL2 executes its functions partly through inhibition of coronin-1B. Although coronin-1B-mediated actin dynamics are required for early morphogenesis, its sustained activity is detrimental for the mature apical shape. SMTNL2 binds to coronin-1B through its N-terminal coiled-coil region and negates its function to stabilize the apical cortex. In sum, our results unveil a mechanism for regulating actin dynamics during epithelial morphogenesis, providing critical insights on the developmental control of the cellular cortex.
Collapse
|
28
|
Müller JP, Keufgens L, Gründemann D. Hyperosmolarity stimulates transporter-mediated insertion of estrone sulfate into the plasma membrane, but inhibits the uptake by SLC10A1 (NTCP). Biochem Pharmacol 2021; 186:114484. [PMID: 33617845 DOI: 10.1016/j.bcp.2021.114484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022]
Abstract
Many drugs are largely hydrophobic molecules; a transporter might conceivably insert these into the plasma membrane. At least 18 transporters from diverse families have been reported to transport the model compound estrone sulfate alias estrone-3-sulfate (E3S). Out of these, we recently examined SLC22A11 (OAT4). We concluded from a comparison of E3S and uric acid transport that SLC22A11 does not translocate E3S into the cytosol, but into the plasma membrane. Here we present a hyperosmolarity alias hypertonicity assay to differentiate transport mechanisms. Human transporters were expressed heterologously in 293 cells. Solute uptake into intact cells was measured by LC-MS. Addition of mannitol or sucrose led to rapid cell shrinkage, but cell viability after 60 min in hyperosmolar buffer was not impaired. A decrease in substrate accumulation with increasing osmolarity as observed here for several substrates and the transporters SLC22A11, ETT (SLC22A4), OCT2 (SLC22A2), OAT3 (SLC22A8), and MATE1 (SLC47A1) suggests regular substrate translocation into the cytosol. An increase as observed for E3S transport by SLC22A11, OAT3, MATE1, SLC22A9, and SLC10A6 implies insertion into the membrane. In marked contrast to the other E3S transporters, the bile acid transporter SLC10A1 (NTCP, Na+ taurocholate co-transporting polypeptide) showed a decrease in the accumulation of E3S in hyperosmolar buffer; the same was observed with taurocholic acid. Indeed, our data from several functional assays strongly suggest that the transport mechanism is identical for both substrates. Apparently, a unique transport mechanism has been established for SLC10A1 by evolution that ensures the transport of amphipathic, detergent-like molecules into the cytosol.
Collapse
Affiliation(s)
- Julian Peter Müller
- Department of Pharmacology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Gleueler Straße 24, Cologne 50931, Germany
| | - Lena Keufgens
- Department of Pharmacology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Gleueler Straße 24, Cologne 50931, Germany
| | - Dirk Gründemann
- Department of Pharmacology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Gleueler Straße 24, Cologne 50931, Germany.
| |
Collapse
|
29
|
The Actomyosin Cortex of Cells: A Thin Film of Active Matter. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-020-00220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
How to build a larval body with less than a hundred cells? Insights from the early development of a stalked jellyfish (Staurozoa, Cnidaria). ORG DIVERS EVOL 2020. [DOI: 10.1007/s13127-020-00459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
De Belly H, Stubb A, Yanagida A, Labouesse C, Jones PH, Paluch EK, Chalut KJ. Membrane Tension Gates ERK-Mediated Regulation of Pluripotent Cell Fate. Cell Stem Cell 2020; 28:273-284.e6. [PMID: 33217323 PMCID: PMC7875115 DOI: 10.1016/j.stem.2020.10.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 09/18/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022]
Abstract
Cell fate transitions are frequently accompanied by changes in cell shape and mechanics. However, how cellular mechanics affects the instructive signaling pathways controlling cell fate is poorly understood. To probe the interplay between shape, mechanics, and fate, we use mouse embryonic stem cells (ESCs), which change shape as they undergo early differentiation. We find that shape change is regulated by a β-catenin-mediated decrease in RhoA activity and subsequent decrease in the plasma membrane tension. Strikingly, preventing a decrease in membrane tension results in early differentiation defects in ESCs and gastruloids. Decreased membrane tension facilitates the endocytosis of FGF signaling components, which activate ERK signaling and direct the exit from the ESC state. Increasing Rab5a-facilitated endocytosis rescues defective early differentiation. Thus, we show that a mechanically triggered increase in endocytosis regulates early differentiation. Our findings are of fundamental importance for understanding how cell mechanics regulates biochemical signaling and therefore cell fate.
Collapse
Affiliation(s)
- Henry De Belly
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Wellcome/MRC Cambridge Stem Cell Research Institute, Puddicombe Way, University of Cambridge, Cambridge CB2 0AW, UK; Department of Physiology, Development, and Neuroscience, Downing Street, University of Cambridge, Cambridge CB2 3DY, UK
| | - Aki Stubb
- Department of Physiology, Development, and Neuroscience, Downing Street, University of Cambridge, Cambridge CB2 3DY, UK
| | - Ayaka Yanagida
- Wellcome/MRC Cambridge Stem Cell Research Institute, Puddicombe Way, University of Cambridge, Cambridge CB2 0AW, UK; Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Céline Labouesse
- Wellcome/MRC Cambridge Stem Cell Research Institute, Puddicombe Way, University of Cambridge, Cambridge CB2 0AW, UK
| | - Philip H Jones
- Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK
| | - Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Department of Physiology, Development, and Neuroscience, Downing Street, University of Cambridge, Cambridge CB2 3DY, UK.
| | - Kevin J Chalut
- Wellcome/MRC Cambridge Stem Cell Research Institute, Puddicombe Way, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
32
|
Murakami K, Ebihara R, Kono T, Chiba T, Sakuma Y, Ziherl P, Imai M. Morphologies of Vesicle Doublets: Competition among Bending Elasticity, Surface Tension, and Adhesion. Biophys J 2020; 119:1735-1748. [PMID: 33080225 DOI: 10.1016/j.bpj.2020.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 11/20/2022] Open
Abstract
To study the mechanical laws governing the form of multicellular organisms, we examine the morphology of adhering vesicle doublets as the simplest model system. We monitor the morphological transformations of doublets induced by changes of adhesion strength and volume/area ratio, which are controlled by intermembrane interactions and thermal area expansion, respectively. When we increase the temperature in the weak adhesion regime, a dumbbell flat-contact doublet is transformed to a parallel-prolate doublet, whereas in the strong adhesion regime, heating transforms the dumbbell flat-contact doublet into a spherical sigmoid-contact doublet. We reproduce the observed doublet morphologies by numerically minimizing the total energy, including the contact-potential adhesion term as well as the surface and bending terms, using the Surface Evolver package. From the reproduced morphologies, we extract the adhesion strength, the surface tension, and the volume/area ratio of the vesicles, which reveals the detailed mechanisms of the morphological transitions in doublets.
Collapse
Affiliation(s)
- Kei Murakami
- Department of Physics, Tohoku University, Aoba, Sendai, Japan
| | - Ryuta Ebihara
- Department of Physics, Tohoku University, Aoba, Sendai, Japan
| | - Takuma Kono
- Department of Physics, Tohoku University, Aoba, Sendai, Japan
| | - Toshikaze Chiba
- Department of Physics, Tohoku University, Aoba, Sendai, Japan
| | - Yuka Sakuma
- Department of Physics, Tohoku University, Aoba, Sendai, Japan
| | - Primož Ziherl
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia; Jožef Stefan Institute, Ljubljana, Slovenia
| | - Masayuki Imai
- Department of Physics, Tohoku University, Aoba, Sendai, Japan.
| |
Collapse
|
33
|
Lomakin AJ, Cattin CJ, Cuvelier D, Alraies Z, Molina M, Nader GPF, Srivastava N, Sáez PJ, Garcia-Arcos JM, Zhitnyak IY, Bhargava A, Driscoll MK, Welf ES, Fiolka R, Petrie RJ, De Silva NS, González-Granado JM, Manel N, Lennon-Duménil AM, Müller DJ, Piel M. The nucleus acts as a ruler tailoring cell responses to spatial constraints. Science 2020; 370:eaba2894. [PMID: 33060332 PMCID: PMC8059074 DOI: 10.1126/science.aba2894] [Citation(s) in RCA: 282] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/29/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
The microscopic environment inside a metazoan organism is highly crowded. Whether individual cells can tailor their behavior to the limited space remains unclear. In this study, we found that cells measure the degree of spatial confinement by using their largest and stiffest organelle, the nucleus. Cell confinement below a resting nucleus size deforms the nucleus, which expands and stretches its envelope. This activates signaling to the actomyosin cortex via nuclear envelope stretch-sensitive proteins, up-regulating cell contractility. We established that the tailored contractile response constitutes a nuclear ruler-based signaling pathway involved in migratory cell behaviors. Cells rely on the nuclear ruler to modulate the motive force that enables their passage through restrictive pores in complex three-dimensional environments, a process relevant to cancer cell invasion, immune responses, and embryonic development.
Collapse
Affiliation(s)
- A J Lomakin
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences (ÖAW), Vienna, Austria
- Medical University of Vienna (MUV), Vienna, Austria
- Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, King's College London, London, UK
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
| | - C J Cattin
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - D Cuvelier
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
- Institut Pierre Gilles de Gennes, PSL Research University, Paris, France
| | - Z Alraies
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
- Institut Pierre Gilles de Gennes, PSL Research University, Paris, France
- Institut Curie, PSL Research University, INSERM, U 932, Paris, France
| | - M Molina
- Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, King's College London, London, UK
| | - G P F Nader
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
- Institut Pierre Gilles de Gennes, PSL Research University, Paris, France
| | - N Srivastava
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
- Institut Pierre Gilles de Gennes, PSL Research University, Paris, France
| | - P J Sáez
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
- Institut Pierre Gilles de Gennes, PSL Research University, Paris, France
| | - J M Garcia-Arcos
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
- Institut Pierre Gilles de Gennes, PSL Research University, Paris, France
| | - I Y Zhitnyak
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France
- Institut Pierre Gilles de Gennes, PSL Research University, Paris, France
- N.N. Blokhin Medical Research Center of Oncology, Moscow, Russia
| | - A Bhargava
- Institut Curie, PSL Research University, INSERM, U 932, Paris, France
| | - M K Driscoll
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - E S Welf
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - R Fiolka
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - R J Petrie
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - N S De Silva
- Institut Curie, PSL Research University, INSERM, U 932, Paris, France
| | - J M González-Granado
- LamImSys Lab, Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
| | - N Manel
- Institut Curie, PSL Research University, INSERM, U 932, Paris, France
| | | | - D J Müller
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| | - M Piel
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris, France.
- Institut Pierre Gilles de Gennes, PSL Research University, Paris, France
| |
Collapse
|
34
|
Greig J, Bulgakova NA. Interplay between actomyosin and E-cadherin dynamics regulates cell shape in the Drosophila embryonic epidermis. J Cell Sci 2020; 133:jcs242321. [PMID: 32665321 DOI: 10.1242/jcs.242321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 07/01/2020] [Indexed: 01/03/2023] Open
Abstract
Precise regulation of cell shape is vital for building functional tissues. Here, we study the mechanisms that lead to the formation of highly elongated anisotropic epithelial cells in the Drosophila epidermis. We demonstrate that this cell shape is the result of two counteracting mechanisms at the cell surface that regulate the degree of elongation: actomyosin, which inhibits cell elongation downstream of RhoA (Rho1 in Drosophila) and intercellular adhesion, modulated via clathrin-mediated endocytosis of E-cadherin (encoded by shotgun in flies), which promotes cell elongation downstream of the GTPase Arf1 (Arf79F in Drosophila). We show that these two mechanisms do not act independently but are interconnected, with RhoA signalling reducing Arf1 recruitment to the plasma membrane. Additionally, cell adhesion itself regulates both mechanisms - p120-catenin, a regulator of intercellular adhesion, promotes the activity of both Arf1 and RhoA. Altogether, we uncover a complex network of interactions between cell-cell adhesion, the endocytic machinery and the actomyosin cortex, and demonstrate how this network regulates cell shape in an epithelial tissue in vivo.
Collapse
Affiliation(s)
- Joshua Greig
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, UK
| | - Natalia A Bulgakova
- Department of Biomedical Science and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
35
|
Taubenberger AV, Baum B, Matthews HK. The Mechanics of Mitotic Cell Rounding. Front Cell Dev Biol 2020; 8:687. [PMID: 32850812 PMCID: PMC7423972 DOI: 10.3389/fcell.2020.00687] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022] Open
Abstract
When animal cells enter mitosis, they round up to become spherical. This shape change is accompanied by changes in mechanical properties. Multiple studies using different measurement methods have revealed that cell surface tension, intracellular pressure and cortical stiffness increase upon entry into mitosis. These cell-scale, biophysical changes are driven by alterations in the composition and architecture of the contractile acto-myosin cortex together with osmotic swelling and enable a mitotic cell to exert force against the environment. When the ability of cells to round is limited, for example by physical confinement, cells suffer severe defects in spindle assembly and cell division. The requirement to push against the environment to create space for spindle formation is especially important for cells dividing in tissues. Here we summarize the evidence and the tools used to show that cells exert rounding forces in mitosis in vitro and in vivo, review the molecular basis for this force generation and discuss its function for ensuring successful cell division in single cells and for cells dividing in normal or diseased tissues.
Collapse
Affiliation(s)
- Anna V. Taubenberger
- Biotechnology Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | - Helen K. Matthews
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
36
|
Özgüç Ö, Maître JL. Multiscale morphogenesis of the mouse blastocyst by actomyosin contractility. Curr Opin Cell Biol 2020; 66:123-129. [PMID: 32711300 DOI: 10.1016/j.ceb.2020.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/20/2020] [Accepted: 05/05/2020] [Indexed: 01/31/2023]
Abstract
During preimplantation development, the mouse embryo forms the blastocyst, which consists of a squamous epithelium enveloping a fluid-filled lumen and a cluster of pluripotent cells. The shaping of the blastocyst into its specific architecture is a prerequisite to implantation and further development of the embryo. Recent studies identified the central role of the actomyosin cortex in generating the forces driving the successive steps of blastocyst morphogenesis. As seen in other developing animals, actomyosin functions across spatial scales from the subcellular to the tissue levels. In addition, the slow development of the mouse embryo reveals that actomyosin contractility operates at multiple timescales with periodic cortical waves of contraction every ∼80 s and tissue remodeling over hours.
Collapse
Affiliation(s)
- Özge Özgüç
- Institut Curie, 26, rue d'Ulm - 75248 Paris Cedex 05 - France
| | | |
Collapse
|
37
|
Dehapiot B, Clément R, Alégot H, Gazsó-Gerhát G, Philippe JM, Lecuit T. Assembly of a persistent apical actin network by the formin Frl/Fmnl tunes epithelial cell deformability. Nat Cell Biol 2020; 22:791-802. [PMID: 32483386 DOI: 10.1038/s41556-020-0524-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 04/17/2020] [Indexed: 01/01/2023]
Abstract
Tissue remodelling during Drosophila embryogenesis is notably driven by epithelial cell contractility. This behaviour arises from the Rho1-Rok-induced pulsatile accumulation of non-muscle myosin II pulling on actin filaments of the medioapical cortex. While recent studies have highlighted the mechanisms governing the emergence of Rho1-Rok-myosin II pulsatility, little is known about how F-actin organization influences this process. Here, we show that the medioapical cortex consists of two entangled F-actin subpopulations. One exhibits pulsatile dynamics of actin polymerization in a Rho1-dependent manner. The other forms a persistent and homogeneous network independent of Rho1. We identify the formin Frl (also known as Fmnl) as a critical nucleator of the persistent network, since modulating its level in mutants or by overexpression decreases or increases the network density. Absence of this network yields sparse connectivity affecting the homogeneous force transmission to the cell boundaries. This reduces the propagation range of contractile forces and results in tissue-scale morphogenetic defects.
Collapse
Affiliation(s)
- Benoit Dehapiot
- Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems, Marseille, France
| | - Raphaël Clément
- Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems, Marseille, France
| | - Hervé Alégot
- Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems, Marseille, France
| | - Gabriella Gazsó-Gerhát
- Institute of Genetics, Biological Research Centre, HAS, Szeged, Hungary.,Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Jean-Marc Philippe
- Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems, Marseille, France
| | - Thomas Lecuit
- Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems, Marseille, France. .,Collège de France, Paris, France.
| |
Collapse
|
38
|
On the mechanical response of the actomyosin cortex during cell indentations. Biomech Model Mechanobiol 2020; 19:2061-2079. [PMID: 32356071 DOI: 10.1007/s10237-020-01324-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/02/2020] [Indexed: 01/01/2023]
Abstract
A mechanical model is presented to analyze the mechanics and dynamics of the cell cortex during indentation. We investigate the impact of active contraction on the cross-linked actin network for different probe sizes and indentation rates. The essential molecular mechanisms of filament stretching, cross-linking and motor activity, are represented by an active and viscous mechanical continuum. The filaments behave as worm-like chains linked either by passive rigid linkers or by myosin motors. In the first example, the effects of probe size and loading rate are evaluated using the model for an idealized rounded cell shape in which properties are based on the results of parallel-plate rheometry available in the literature. Extreme cases of probe size and indentation rate are taken into account. Afterward, AFM experiments were done by engaging smooth muscle cells with both sharp and spherical probes. By inverse analysis with finite element software, our simulations mimicking the experimental conditions show the model is capable of fitting the AFM data. The results provide spatiotemporal dependence on the size and rate of the mechanical stimuli. The model captures the general features of the cell response. It characterizes the actomyosin cortex as an active solid at short timescales and as a fluid at longer timescales by showing (1) higher levels of contraction in the zones of high curvature; (2) larger indentation forces as the probe size increases; and (3) increase in the apparent modulus with the indentation depth but no dependence on the rate of the mechanical stimuli. The methodology presented in this work can be used to address and predict microstructural dependence on the force generation of living cells, which can contribute to understanding the broad spectrum of results in cell experiments.
Collapse
|
39
|
Decoupling the Roles of Cell Shape and Mechanical Stress in Orienting and Cueing Epithelial Mitosis. Cell Rep 2020; 26:2088-2100.e4. [PMID: 30784591 PMCID: PMC6381790 DOI: 10.1016/j.celrep.2019.01.102] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/11/2018] [Accepted: 01/28/2019] [Indexed: 01/08/2023] Open
Abstract
Distinct mechanisms involving cell shape and mechanical force are known to influence the rate and orientation of division in cultured cells. However, uncoupling the impact of shape and force in tissues remains challenging. Combining stretching of Xenopus tissue with mathematical methods of inferring relative mechanical stress, we find separate roles for cell shape and mechanical stress in orienting and cueing division. We demonstrate that division orientation is best predicted by an axis of cell shape defined by the position of tricellular junctions (TCJs), which align with local cell stress rather than tissue-level stress. The alignment of division to cell shape requires functional cadherin and the localization of the spindle orientation protein, LGN, to TCJs but is not sensitive to relative cell stress magnitude. In contrast, proliferation rate is more directly regulated by mechanical stress, being correlated with relative isotropic stress and decoupled from cell shape when myosin II is depleted. Tissue stretching increases division rate and reorients divisions with stretch Division orientation is regulated by cell shape defined by tricellular junctions Cadherin and LGN localize to tricellular junctions aligning division to cell shape Division rate is linked to mechanical stress and can be decoupled from cell shape
Collapse
|
40
|
Bui VC, Nguyen TH. Direct monitoring of drug-induced mechanical response of individual cells by atomic force microscopy. J Mol Recognit 2020; 33:e2847. [PMID: 32212218 DOI: 10.1002/jmr.2847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 01/12/2023]
Abstract
Mechanical characteristics of individual cells play a vital role in many biological processes and are considered as indicators of the cells' states. Disturbances including methyl-β-cyclodextrin (MβCD) and cytochalasin D (cytoD) are known to significantly affect the state of cells, but little is known about the real-time response of single cells to these drugs in their physiological condition. Here, nanoindentation-based atomic force microscopy (AFM) was used to measure the elasticity of human embryonic kidney cells in the presence and absence of these pharmaceuticals. The results showed that depletion of cholesterol in the plasma membrane with MβCD resulted in cell stiffening whereas depolymerization of the actin cytoskeleton by cytoD resulted in cell softening. Using AFM for real-time measurements, we observed that cells mechanically responded right after these drugs were added. In more detail, the cell´s elasticity suddenly increased with increasing instability upon cholesterol extraction while it is rapidly decreased without changing cellular stability upon depolymerizing actin cytoskeleton. These results demonstrated that actin cytoskeleton and cholesterol contributed differently to the cell mechanical characteristics.
Collapse
Affiliation(s)
- Van-Chien Bui
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany.,ZIK HIKE, University of Greifswald, Greifswald, Germany
| | - Thi-Huong Nguyen
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany.,Institute for Bioprocessing and Analytical Measurement Techniques, Heilbad Heiligenstadt, Germany
| |
Collapse
|
41
|
The cellular and molecular mechanisms that establish the mechanics of Drosophila gastrulation. Curr Top Dev Biol 2020; 136:141-165. [DOI: 10.1016/bs.ctdb.2019.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
42
|
Bashirzadeh Y, Liu AP. Encapsulation of the cytoskeleton: towards mimicking the mechanics of a cell. SOFT MATTER 2019; 15:8425-8436. [PMID: 31621750 DOI: 10.1039/c9sm01669d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The cytoskeleton of a cell controls all the aspects of cell shape changes and motility from its physiological functions for survival to reproduction to death. The structure and dynamics of the cytoskeletal components: actin, microtubules, intermediate filaments, and septins - recently regarded as the fourth member of the cytoskeleton family - are conserved during evolution. Such conserved and effective control over the mechanics of the cell makes the cytoskeletal components great candidates for in vitro reconstitution and bottom-up synthetic biology studies. Here, we review the recent efforts in reconstitution of the cytoskeleton in and on membrane-enclosed biomimetic systems and argue that co-reconstitution and synergistic interplay between cytoskeletal filaments might be indispensable for efficient mechanical functionality of active minimal cells. Further, mechanical equilibrium in adherent eukaryotic cells is achieved by the formation of integrin-based focal contacts with extracellular matrix (ECM) and the transmission of stresses generated by actomyosin contraction to ECM. Therefore, a minimal mimic of such balance of forces and quasi-static kinetics of the cell by bottom-up reconstitution requires a careful construction of contractile machineries and their link with adhesive contacts. In this review, in addition to cytoskeletal crosstalk, we provide a perspective on reconstruction of cell mechanical equilibrium by reconstitution of cortical actomyosin networks in lipid membrane vesicles adhered on compliant substrates and also discuss future perspectives of this active research area.
Collapse
Affiliation(s)
- Yashar Bashirzadeh
- Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, Michigan, USA.
| | | |
Collapse
|
43
|
Le Roux AL, Quiroga X, Walani N, Arroyo M, Roca-Cusachs P. The plasma membrane as a mechanochemical transducer. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180221. [PMID: 31431176 PMCID: PMC6627014 DOI: 10.1098/rstb.2018.0221] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Cells are constantly submitted to external mechanical stresses, which they must withstand and respond to. By forming a physical boundary between cells and their environment that is also a biochemical platform, the plasma membrane (PM) is a key interface mediating both cellular response to mechanical stimuli, and subsequent biochemical responses. Here, we review the role of the PM as a mechanosensing structure. We first analyse how the PM responds to mechanical stresses, and then discuss how this mechanical response triggers downstream biochemical responses. The molecular players involved in PM mechanochemical transduction include sensors of membrane unfolding, membrane tension, membrane curvature or membrane domain rearrangement. These sensors trigger signalling cascades fundamental both in healthy scenarios and in diseases such as cancer, which cells harness to maintain integrity, keep or restore homeostasis and adapt to their external environment. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
- Anabel-Lise Le Roux
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Xarxa Quiroga
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Nikhil Walani
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, Spain
| | - Marino Arroyo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
- Department of Biomedical Sciences, Universitat de Barcelona, Barcelona 08036, Spain
| |
Collapse
|
44
|
Bächer C, Gekle S. Computational modeling of active deformable membranes embedded in three-dimensional flows. Phys Rev E 2019; 99:062418. [PMID: 31330647 DOI: 10.1103/physreve.99.062418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 06/10/2023]
Abstract
Active gel theory has recently been very successful in describing biologically active materials such as actin filaments or moving bacteria in temporally fixed and simple geometries such as cubes or spheres. Here we develop a computational algorithm to compute the dynamic evolution of an arbitrarily shaped, deformable thin membrane of active material embedded in a three-dimensional flowing liquid. For this, our algorithm combines active gel theory with the classical theory of thin elastic shells. To compute the actual forces resulting from active stresses, we apply a parabolic fitting procedure to the triangulated membrane surface. Active forces are then dynamically coupled via an immersed-boundary method to the surrounding fluid whose dynamics can be solved by any standard, e.g., Lattice-Boltzmann, flow solver. We validate our algorithm using the Green's functions of Berthoumieux et al. [New J. Phys. 16, 065005 (2014)10.1088/1367-2630/16/6/065005] for an active cylindrical membrane subjected (i) to a locally increased active stress and (ii) to a homogeneous active stress. For the latter scenario, we predict in addition a nonaxisymmetric instability. We highlight the versatility of our method by analyzing the flow field inside an actively deforming cell embedded in external shear flow. Further applications may be cytoplasmic streaming or active membranes in blood flows.
Collapse
Affiliation(s)
- Christian Bächer
- Biofluid Simulation and Modeling, Theoretische Physik VI, Universität Bayreuth, Universitätsstrasse 30, Bayreuth, Germany
| | - Stephan Gekle
- Biofluid Simulation and Modeling, Theoretische Physik VI, Universität Bayreuth, Universitätsstrasse 30, Bayreuth, Germany
| |
Collapse
|
45
|
Zhang X, Li G, Guo Y, Song Y, Chen L, Ruan Q, Wang Y, Sun L, Hu Y, Zhou J, Ren B, Guo J. Regulation of ezrin tension by S-nitrosylation mediates non-small cell lung cancer invasion and metastasis. Theranostics 2019; 9:2555-2571. [PMID: 31131053 PMCID: PMC6525990 DOI: 10.7150/thno.32479] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/18/2019] [Indexed: 12/23/2022] Open
Abstract
Cancer invasion and metastasis depend on accurate and rapid modulation of both chemical and mechanical activities. The S-nitrosylation (SNO) of membrane cytoskeletal cross-linker protein ezrin may regulate the malignant process in a tension-dependent manner. Methods: The level of nitrosylated ezrin in non-small cell lung cancer (NSCLC) tissues and A549 cell line were evaluated by biotin-switch assay. A few cysteine mutated plasmids of ezrin were used to identify active site for SNO. Newly designed ezrin or mutated-ezrin tension probes based on Förster resonance energy transfer (FRET) theory were applied to visually observe real-time tension changes. Cytoskeleton depolymerizing and motor molecular inhibiting experiments were performed to reveal the alternation of the mechanical property of ezrin after SNO. Transwell assays and xenograft mouse model were used to assess aggressiveness of A549 cells in different groups. Fluorescent staining was also applied to examine cellular location and structures. Results: High inducible nitric oxide synthase (iNOS) levels were observed to induce ezrin-SNO, and then promote malignant behaviors of NSCLC cells both in vitro and in vivo. Cys117 was identified as the only active site for ezrin-SNO. Meanwhile, an increased level of ezrin tension was observed after iNOS-induced SNO. Enhanced ezrin tension was positively correlated with aggressiveness of NSCLC. Moreover, Microfilament (MF) forces instead of microtubule (MT) forces played dominant roles in modulating ezrin tension, especially after ezrin nitrosylation. Conclusion: This study revealed a SNO-associated mechanism underlying the mechanical tension of ezrin. Ezrin-SNO promotes NSCLC cells invasion and metastasis through facilitating mechanical transduction from the cytoskeleton to the membrane. These studies implicate the therapeutic potential by targeting ezrin in the inhibition NSCLC invasion and metastasis.
Collapse
Affiliation(s)
- Xiaolong Zhang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Guangming Li
- Department of Anesthesiology, Huaian First People's Hospital, Nanjing Medical University, Huaian 223001, Jiangsu, PR China
| | - Yichen Guo
- Department of Surgery and Biomedical Engineering, University of Alabama at Birmingham (UAB), Birmingham, Alabama. 35294, USA
| | - Ying Song
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Linlin Chen
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Qinli Ruan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Yifan Wang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Lixia Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Yunfeng Hu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| | - Jingwen Zhou
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, PR China
| | - Bin Ren
- Department of Surgery and Biomedical Engineering, University of Alabama at Birmingham (UAB), Birmingham, Alabama. 35294, USA
| | - Jun Guo
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, PR China
| |
Collapse
|
46
|
Pham TT, Monnard A, Helenius J, Lund E, Lee N, Müller DJ, Cabernard C. Spatiotemporally Controlled Myosin Relocalization and Internal Pressure Generate Sibling Cell Size Asymmetry. iScience 2019; 13:9-19. [PMID: 30785031 PMCID: PMC6383127 DOI: 10.1016/j.isci.2019.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 11/12/2018] [Accepted: 01/30/2019] [Indexed: 11/24/2022] Open
Abstract
Metazoan cells can generate unequal-sized sibling cells during cell division. This form of asymmetric cell division depends on spindle geometry and Myosin distribution, but the underlying mechanics are unclear. Here, we use atomic force microscopy and live cell imaging to elucidate the biophysical forces involved in the establishment of physical asymmetry in Drosophila neural stem cells. We show that initial apical cortical expansion is driven by hydrostatic pressure, peaking shortly after anaphase onset, and enabled by a relief of actomyosin contractile tension on the apical cell cortex. An increase in contractile tension at the cleavage furrow combined with the relocalization of basally located Myosin initiates basal and sustains apical extension. We propose that spatiotemporally controlled actomyosin contractile tension and hydrostatic pressure enable biased cortical expansion to generate sibling cell size asymmetry. However, dynamic cleavage furrow repositioning can compensate for the lack of biased expansion to establish physical asymmetry.
Collapse
Affiliation(s)
- Tri Thanh Pham
- Department of Biology, University of Washington, Life Science Building, Seattle, WA 98195, USA
| | - Arnaud Monnard
- Department of Biology, University of Washington, Life Science Building, Seattle, WA 98195, USA; Biozentrum, University of Basel, Klingelbergstrasse 50-70, 4056 Basel, Switzerland
| | - Jonne Helenius
- Eidgenössische Technische Hochschule (ETH) Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Erik Lund
- Department of Biology, University of Washington, Life Science Building, Seattle, WA 98195, USA
| | - Nicole Lee
- Department of Biology, University of Washington, Life Science Building, Seattle, WA 98195, USA; Cancer Science Institute, National University of Singapore, 14 Medical Dr., Singapore 117599, Singapore
| | - Daniel J Müller
- Eidgenössische Technische Hochschule (ETH) Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Clemens Cabernard
- Department of Biology, University of Washington, Life Science Building, Seattle, WA 98195, USA.
| |
Collapse
|
47
|
Influence of cross-linking and retrograde flow on formation and dynamics of lamellipodium. PLoS One 2019; 14:e0213810. [PMID: 30897104 PMCID: PMC6428246 DOI: 10.1371/journal.pone.0213810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/01/2019] [Indexed: 11/19/2022] Open
Abstract
The forces that arise from the actin cortex play a crucial role in determining the membrane deformation. These include protrusive forces due to actin polymerization, pulling forces due to transient attachment of actin filaments to the membrane, retrograde flow powered by contraction of actomyosin network, and adhesion to the extracellular matrix. Here we present a theoretical model for membrane deformation resulting from the feedback between the membrane shape and the forces acting on the membrane. We model the membrane as a series of beads connected by springs and determine the final steady-state shape of the membrane arising from the interplay between pushing/pulling forces of the actin network and the resisting membrane tension. We specifically investigate the effect of the gel dynamics on the spatio-temporal deformation of the membrane until a stable lamellipodium is formed. We show that the retrograde flow and the cross-linking velocity play an essential role in the final elongation of the membrane. Interestingly, in the simulations where motor-induced contractility is switched off, reduced retrograde flow results in an increase in the rate and amplitude of membrane protrusion. These simulations are consistent with experimental observations that report an enhancement in protrusion efficiency as myosin II molecular motors are inhibited.
Collapse
|
48
|
Torrino S, Roustan FR, Kaminski L, Bertero T, Pisano S, Ambrosetti D, Dufies M, Uhler JP, Lemichez E, Mettouchi A, Gesson M, Laurent K, Gaggioli C, Michiels JF, Lamaze C, Bost F, Clavel S. UBTD1 is a mechano-regulator controlling cancer aggressiveness. EMBO Rep 2019; 20:embr.201846570. [PMID: 30804013 DOI: 10.15252/embr.201846570] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 01/18/2019] [Accepted: 01/29/2019] [Indexed: 12/18/2022] Open
Abstract
Ubiquitin domain-containing protein 1 (UBTD1) is highly evolutionary conserved and has been described to interact with E2 enzymes of the ubiquitin-proteasome system. However, its biological role and the functional significance of this interaction remain largely unknown. Here, we demonstrate that depletion of UBTD1 drastically affects the mechanical properties of epithelial cancer cells via RhoA activation and strongly promotes their aggressiveness. On a stiff matrix, UBTD1 expression is regulated by cell-cell contacts, and the protein is associated with β-catenin at cell junctions. Yes-associated protein (YAP) is a major cell mechano-transducer, and we show that UBTD1 is associated with components of the YAP degradation complex. Interestingly, UBTD1 promotes the interaction of YAP with its E3 ubiquitin ligase β-TrCP Consequently, in cancer cells, UBTD1 depletion decreases YAP ubiquitylation and triggers robust ROCK2-dependent YAP activation and downstream signaling. Data from lung and prostate cancer patients further corroborate the in cellulo results, confirming that low levels of UBTD1 are associated with poor patient survival, suggesting that biological functions of UBTD1 could be beneficial in limiting cancer progression.
Collapse
Affiliation(s)
- Stéphanie Torrino
- Centre Méditerranéen de Médecine Moléculaire (C3M), Inserm U1065, Nice Cedex 3, France
| | - François-René Roustan
- Centre Méditerranéen de Médecine Moléculaire (C3M), Inserm U1065, Nice Cedex 3, France
| | - Lisa Kaminski
- Centre Méditerranéen de Médecine Moléculaire (C3M), Inserm U1065, Nice Cedex 3, France
| | - Thomas Bertero
- Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS, UMR7284/INSERM U1081, Université Côte d'Azur, Nice, France
| | - Sabrina Pisano
- Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS, UMR7284/INSERM U1081, Université Côte d'Azur, Nice, France
| | - Damien Ambrosetti
- Department of Pathology, Nice University Hospital University of Nice Sophia Antipolis, Nice, France
| | - Maeva Dufies
- Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS, UMR7284/INSERM U1081, Université Côte d'Azur, Nice, France
| | - Jay P Uhler
- Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Emmanuel Lemichez
- Département de Microbiologie, Institut Pasteur, Unité des Toxines Bactériennes, Université Paris Descartes, Paris, France
| | - Amel Mettouchi
- Département de Microbiologie, Institut Pasteur, Unité des Toxines Bactériennes, Université Paris Descartes, Paris, France
| | - Maeva Gesson
- Centre Méditerranéen de Médecine Moléculaire (C3M), Inserm U1065, Nice Cedex 3, France
| | - Kathiane Laurent
- Centre Méditerranéen de Médecine Moléculaire (C3M), Inserm U1065, Nice Cedex 3, France
| | - Cedric Gaggioli
- Institute for Research on Cancer and Aging, Nice (IRCAN), CNRS, UMR7284/INSERM U1081, Université Côte d'Azur, Nice, France
| | - Jean-Francois Michiels
- Department of Pathology, Nice University Hospital University of Nice Sophia Antipolis, Nice, France
| | - Christophe Lamaze
- CNRS UMR3666, INSERM U1143, Membrane Dynamics and Mechanics of Intracellular Signaling Laboratory, Institut Curie - Centre de Recherche, PSL Research University, Paris, France
| | - Frédéric Bost
- Centre Méditerranéen de Médecine Moléculaire (C3M), Inserm U1065, Nice Cedex 3, France
| | - Stéphan Clavel
- Centre Méditerranéen de Médecine Moléculaire (C3M), Inserm U1065, Nice Cedex 3, France
| |
Collapse
|
49
|
Functional integrity of the contractile actin cortex is safeguarded by multiple Diaphanous-related formins. Proc Natl Acad Sci U S A 2019; 116:3594-3603. [PMID: 30808751 DOI: 10.1073/pnas.1821638116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The contractile actin cortex is a thin layer of filamentous actin, myosin motors, and regulatory proteins beneath the plasma membrane crucial to cytokinesis, morphogenesis, and cell migration. However, the factors regulating actin assembly in this compartment are not well understood. Using the Dictyostelium model system, we show that the three Diaphanous-related formins (DRFs) ForA, ForE, and ForH are regulated by the RhoA-like GTPase RacE and synergize in the assembly of filaments in the actin cortex. Single or double formin-null mutants displayed only moderate defects in cortex function whereas the concurrent elimination of all three formins or of RacE caused massive defects in cortical rigidity and architecture as assessed by aspiration assays and electron microscopy. Consistently, the triple formin and RacE mutants encompassed large peripheral patches devoid of cortical F-actin and exhibited severe defects in cytokinesis and multicellular development. Unexpectedly, many forA - /E -/H - and racE - mutants protruded efficiently, formed multiple exaggerated fronts, and migrated with morphologies reminiscent of rapidly moving fish keratocytes. In 2D-confinement, however, these mutants failed to properly polarize and recruit myosin II to the cell rear essential for migration. Cells arrested in these conditions displayed dramatically amplified flow of cortical actin filaments, as revealed by total internal reflection fluorescence (TIRF) imaging and iterative particle image velocimetry (PIV). Consistently, individual and combined, CRISPR/Cas9-mediated disruption of genes encoding mDia1 and -3 formins in B16-F1 mouse melanoma cells revealed enhanced frequency of cells displaying multiple fronts, again accompanied by defects in cell polarization and migration. These results suggest evolutionarily conserved functions for formin-mediated actin assembly in actin cortex mechanics.
Collapse
|
50
|
Messal HA, Alt S, Ferreira RMM, Gribben C, Wang VMY, Cotoi CG, Salbreux G, Behrens A. Tissue curvature and apicobasal mechanical tension imbalance instruct cancer morphogenesis. Nature 2019; 566:126-130. [PMID: 30700911 PMCID: PMC7025886 DOI: 10.1038/s41586-019-0891-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023]
Abstract
Tubular epithelia are a basic building block of organs and a common site of cancer occurrence1-4. During tumorigenesis, transformed cells overproliferate and epithelial architecture is disrupted. However, the biophysical parameters that underlie the adoption of abnormal tumour tissue shapes are unknown. Here we show in the pancreas of mice that the morphology of epithelial tumours is determined by the interplay of cytoskeletal changes in transformed cells and the existing tubular geometry. To analyse the morphological changes in tissue architecture during the initiation of cancer, we developed a three-dimensional whole-organ imaging technique that enables tissue analysis at single-cell resolution. Oncogenic transformation of pancreatic ducts led to two types of neoplastic growth: exophytic lesions that expanded outwards from the duct and endophytic lesions that grew inwards to the ductal lumen. Myosin activity was higher apically than basally in wild-type cells, but upon transformation this gradient was lost in both lesion types. Three-dimensional vertex model simulations and a continuum theory of epithelial mechanics, which incorporate the cytoskeletal changes observed in transformed cells, indicated that the diameter of the source epithelium instructs the morphology of growing tumours. Three-dimensional imaging revealed that-consistent with theory predictions-small pancreatic ducts produced exophytic growth, whereas large ducts deformed endophytically. Similar patterns of lesion growth were observed in tubular epithelia of the liver and lung; this finding identifies tension imbalance and tissue curvature as fundamental determinants of epithelial tumorigenesis.
Collapse
Affiliation(s)
- Hendrik A Messal
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - Silvanus Alt
- Theoretical Physics of Biology Laboratory, The Francis Crick Institute, London, UK
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Rute M M Ferreira
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK
- Cell Death, Cancer and Inflammation Laboratory, University College London Cancer Institute, London, UK
| | | | | | - Corina G Cotoi
- Institute of Liver Studies, King's College Hospital, London, UK
- Department of Cellular Pathology, The Royal Free Hospital, London, UK
| | - Guillaume Salbreux
- Theoretical Physics of Biology Laboratory, The Francis Crick Institute, London, UK.
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK.
- Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|