1
|
Maiti AK. MDA5 Is a Major Determinant of Developing Symptoms in Critically Ill COVID-19 Patients. Clin Rev Allergy Immunol 2024; 67:58-72. [PMID: 39460899 DOI: 10.1007/s12016-024-09008-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Apart from the skin and mucosal immune barrier, the first line of defense of the human immune system includes MDA5 (ifih1 gene) which acts as a cellular sensor protein for certain viruses including SARS-CoV-2. Upon binding with viral RNA, MDA5 activates cell-intrinsic innate immunity, humoral responses, and MAVS (mitochondrial antiviral signaling). MAVS signaling induces type I and III interferon (IFN) expressions that further induce ISGs (interferon stimulatory genes) expressions to initiate human cell-mediated immune responses and attenuate viral replication. SARS-CoV-2 counteracts by producing NSP1, NSP2, NSP3, NSP5, NSP7, NSP12, ORF3A, ORF9, N, and M protein and directs anti-MDA5 antibody production presumably to antagonize IFN signaling. Furthermore, COVID-19 resembles several diseases that carry anti-MDA5 antibodies and the current COVID-19 vaccines induced anti-MDA5 phenotypes in healthy individuals. GWAS (genome-wide association studies) identified several polymorphisms (SNPs) in the ifih1-ifn pathway genes including rs1990760 in ifih1 that are strongly associated with COVID-19, and the associated risk allele is correlated with reduced IFN production. The genetic association of SNPs in ifih1 and ifih1-ifn pathway genes reinforces the molecular findings of the critical roles of MDA5 in sensing SARS-CoV-2 and subsequently the IFN responses to inhibit viral replication and host immune evasion. Thus, MDA5 or its pathway genes could be targeted for therapeutic development of COVID-19.
Collapse
Affiliation(s)
- Amit K Maiti
- Mydnavar, Department of Genetics and Genomics, 28475 Greenfield Rd, Southfield, MI, USA.
| |
Collapse
|
2
|
Kehs Z, Cross AC, Li YM. From defense to disease: IFITM3 in immunity and Alzheimer's disease. Neurotherapeutics 2024:e00482. [PMID: 39516072 DOI: 10.1016/j.neurot.2024.e00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Innate immunity protein interferon induced transmembrane protein 3 (IFITM3) is a transmembrane protein that has a wide array of functions, including in viral infections, Alzheimer's Disease (AD), and cancer. As an interferon stimulated gene (ISG), IFITM3's expression is upregulated by type-I, II, and III interferons. Moreover, the antiviral activity of IFITM3 is modulated by post-translational modifications. IFITM3 functions in innate immunity to disrupt viral fusion and entry to the plasma membrane as well as prevent viral escape from endosomes. As a γ-secretase modulatory protein, IFITM3 distinctly modulates the processing of amyloid precursor protein (APP) to generate amyloid beta peptides (Aβ) and Notch1 cleavages. Increased IFITM3 expression, which can result from aging, cytokine activation, inflammation, and infection, can lead to an upregulation of γ-secretase for Aβ production that causes a risk of AD. Therefore, the prevention of IFITM3 upregulation has potential in the development of novel therapies for the treatment of AD.
Collapse
Affiliation(s)
- Zoe Kehs
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Abigail C Cross
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Programs of Neuroscience, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY, USA.
| |
Collapse
|
3
|
Singh H, Nair A, Mahajan SD. Impact of genetic variations of gene involved in regulation of metabolism, inflammation and coagulation on pathogenesis of cardiac injuries associated with COVID-19. Pathol Res Pract 2024; 263:155608. [PMID: 39447244 DOI: 10.1016/j.prp.2024.155608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/29/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND SARS-CoV-2 infection can result in long-term chronic cardiovascular (CV) damage after the acute phase of the illness. COVID-19 frequently causes active myocarditis, SARS-CoV-2 can directly infect and kill cardiac cells, causing severe pathology and dysfunction across the organs and cells. Till now, the pathogenesis of COVID-19-associated cardiac injuries has not been understood, but there are several factors that contribute to the progression of cardiac injuries, such as genetic, dietary, and environmental. Among them ranges of host genetic factor including metabolizing, inflammation, and coagulation related genes have a role to contribute the cardiac injuries induced by COVID-19. Hereditary DNA sequence variations contribute to the risk of illness in almost all of these diseases. Hence, we comprehended the occurrence of genetic variations of metabolizing, inflammation and coagulation-related genes in the general population, their expression in various diseases, and their impact on cardiac injuries induced by COVID-19. METHOD We utilized multiple databases, including PubMed (Medline), EMBASE, and Google Scholar, for literature searches. DESCRIPTION The genes involved in metabolism (APOE, MTHFR), coagulation (PAI-1, ACE2), and immune factors (CRP, ESR, and troponin I) may have a role in the progression of COVID-19-associated cardiac injuries. The risk factors for CVD are significantly varied between and within different regions. In healthy individuals, the ACE I allele is responsible for the predisposition to CAD, but the ACE D haplotype is responsible for susceptibility and severity, which ultimately leads to heart failure. Patients who carry the T allele of rs12329760 in the TMPRSS2 gene are at risk for developing the severe form of COVID-19. IL-6 (rs1800796/rs1800795) polymorphism is associated with an increased mortality rate and susceptibility to severe COVID-19 disease. While the putative role of IL-6 associated with chronic, inflammatory diseases like cardiac and cerebrovascular disease is well known. CONCLUSION The occurrence of genetic variations in the ACE-2, AGT, DPP-IV, TMPRSS2, FUIRN, IL-4, IL-6, IFN-γ, and CYP2D6 genes is varied among different populations. Examining the correlation between these variations and their protein levels and cardiac injuries induced by COVID-19 may provide valuable insights into the pathogenesis of cardiac injuries induced by COVID-19.
Collapse
Affiliation(s)
- HariOm Singh
- Department of Molecular Biology, National AIDS Research Institute, Pune 411026, India.
| | - Aishwarya Nair
- Department of Molecular Biology, National AIDS Research Institute, Pune 411026, India
| | - Supriya D Mahajan
- Department of Medicine, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo's Clinical Translational Research Center, 875 Ellicott Street, Buffalo, NY 14203, USA
| |
Collapse
|
4
|
Bader El Din N, Moustafa R, Ghaleb E, El‑Shenawy R, Agwa M, Helmy N, El‑Shiekh M, Yousif A, Mahfouz M, Seif A, Abdelghaffar M, Elsayed H. Association of OAS1 gene polymorphism with the severity of COVID‑19 infection. WORLD ACADEMY OF SCIENCES JOURNAL 2024; 6:72. [DOI: 10.3892/wasj.2024.287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Noha Bader El Din
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Rehab Moustafa
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Enaya Ghaleb
- School of Pharmacy, Newgiza University (NGU), Newgiza, Giza 12577, Egypt
| | - Reem El‑Shenawy
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Mona Agwa
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo 12622, Egypt
| | - Naiera Helmy
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt
| | | | - Ahmed Yousif
- Department of Gastroenterology and Infectious Diseases, Ahmed Maher Teaching Hospital, Cairo 11562, Egypt
| | - Mohammad Mahfouz
- Department of Gastroenterology and Infectious Diseases, Ahmed Maher Teaching Hospital, Cairo 11562, Egypt
| | - Ahmed Seif
- Department of Hepatogastroenterology and Infectious Diseases, Shebin Elkom Teaching Hospital, Cairo 32511, Egypt
| | - Muhammad Abdelghaffar
- General Organization for Teaching Hospitals and Institutes (GOTHI), Cairo 11819, Egypt
| | - Hassan Elsayed
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
5
|
Deng X, Tang K, Wang Z, He S, Luo Z. Impacts of Inflammatory Cytokines Variants on Systemic Inflammatory Profile and COVID-19 Severity. J Epidemiol Glob Health 2024; 14:363-378. [PMID: 38376765 PMCID: PMC11176143 DOI: 10.1007/s44197-024-00204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Cytokine storm is known to impact the prognosis of coronavirus disease 2019 (COVID-19), since pro-inflammatory cytokine variants are associated with cytokine storm. It is tempting to speculate that pro-inflammatory cytokines variants may impact COVID-19 outcomes by modulating cytokine storm. Here, we verified this hypothesis via a comprehensive analysis. METHODS PubMed, Cochrane Library, Central, CINAHL, and ClinicalTrials.gov were searched until December 15, 2023. Case-control or cohort studies that investigated the impacts of rs1800795 or rs1800629 on COVID-19 susceptibility, severity, mortality, IL-6, TNF-α, or CRP levels were included after an anonymous review by two independent reviewers and consultations of disagreement by a third independent reviewer. RESULTS 47 studies (8305 COVID-19 individuals and 17,846 non-COVID-19 individuals) were analyzed. The rs1800629 A allele (adenine at the -308 position of the promoter was encoded by the A allele) was associated with higher levels of tumor necrosis factor-α (TNF-α) and C-reactive protein (CRP). In contrast, the rs1800795 C allele (cytosine at the -174 position of the promoter was encoded by the C allele) was linked to higher levels of interleukin-6 (IL-6) and CRP. In addition, the A allele of rs1800629 increased the severity and mortality of COVID-19. However, the C allele of rs1800795 only increased COVID-19 susceptibility. CONCLUSIONS rs1800629 and rs1800795 variants of pro-inflammatory cytokines have significant impacts on systemic inflammatory profile and COVID-19 clinical outcomes. rs1800629 may serve as a genetic marker for severe COVID-19.
Collapse
Affiliation(s)
- XueJun Deng
- Department of Cardiology, Suining Central Hospital, Suining, 629000, Sichuan, China
| | - Kai Tang
- Department of Cardiology, Suining Central Hospital, Suining, 629000, Sichuan, China
| | - Zhiqiang Wang
- Orthopedic Center 1 Department of Orthopedic Trauma, Suining Central Hospital, Suining, Sichuan, China.
| | - Suyu He
- The Fourth Department of Digestive Disease Center, Suining Central Hospital, Suining, 629000, Sichuan, China.
| | - Zhi Luo
- Department of Cardiology, Suining Central Hospital, Suining, 629000, Sichuan, China.
| |
Collapse
|
6
|
Araújo JLFDE, Bonifácio VF, Batista LM, Ávila REDE, Aguiar RS, Bastos-Rodrigues L, Souza RPDE. IFITM3 rs12252 polymorphism association with COVID-19 severity and mortality in a Brazilian sample: an update and a meta-analysis. AN ACAD BRAS CIENC 2024; 96:e20231160. [PMID: 38808879 DOI: 10.1590/0001-3765202420231160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/04/2024] [Indexed: 05/30/2024] Open
Abstract
This study investigated the association between the IFITM3 rs12252 polymorphism and the severity and mortality of COVID-19 in hospitalized Brazilian patients. A total of 102 COVID-19 patients were included, and the outcomes of interest were defined as death and the need for mechanical ventilation. Genotypes were assessed using Taqman probes. No significant associations were found between the rs12252 polymorphism and COVID-19 outcomes in the original sample, both for death and the need for mechanical ventilation. A meta-analysis, incorporating previous studies that used death as a severity indicator, revealed no association in the allelic and C-recessive models. However, due to the rarity of the T allele and its absence in the sample, further replication studies in larger and more diverse populations are needed to clarify the role of rs12252 in COVID-19 prognosis.
Collapse
Affiliation(s)
- João L F DE Araújo
- Universidade Federal de Minas Gerais, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Laboratório de Biologia Integrativa, Grupo de Pesquisa em Bioestatística e Epidemiologia Molecular, Av. Presidente Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - Victória F Bonifácio
- Universidade Federal de Minas Gerais, Departamento de Nutrição, Escola de Enfermagem, Av. Alfredo Balena, 190, Santa Efigência, 30130-100 Belo Horizonte, MG, Brazil
| | - Lorena M Batista
- Universidade Federal de Minas Gerais, Departamento de Nutrição, Escola de Enfermagem, Av. Alfredo Balena, 190, Santa Efigência, 30130-100 Belo Horizonte, MG, Brazil
| | - Renata Eliane DE Ávila
- Hospital Eduardo de Menezes, Rua Doutor Cristiano Resende, 2213, Bonsucesso, 30622-020 Belo Horizonte, MG, Brazil
| | - Renato S Aguiar
- Universidade Federal de Minas Gerais, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Laboratório de Biologia Integrativa, Grupo de Pesquisa em Bioestatística e Epidemiologia Molecular, Av. Presidente Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
- Instituto D'OR de Pesquisa e Ensino, Rua Diniz Cordeiro, 30, Botafogo, 22281-100 Rio de Janeiro, RJ, Brazil
| | - Luciana Bastos-Rodrigues
- Universidade Federal de Minas Gerais, Departamento de Nutrição, Escola de Enfermagem, Av. Alfredo Balena, 190, Santa Efigência, 30130-100 Belo Horizonte, MG, Brazil
| | - Renan P DE Souza
- Universidade Federal de Minas Gerais, Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Laboratório de Biologia Integrativa, Grupo de Pesquisa em Bioestatística e Epidemiologia Molecular, Av. Presidente Antônio Carlos, 6627, Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
7
|
Elessawy SM, Shehab A, Soliman DA, Eldeeb MA, Taha SI. Interferon-Induced Transmembrane Protein-3 Rs12252-G Variant Increases COVID-19 Mortality Potential in Egyptian Population. Viral Immunol 2024; 37:186-193. [PMID: 38717821 DOI: 10.1089/vim.2024.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) represented an international health risk. Variants of the interferon-induced transmembrane protein-3 (IFITM3) gene can increase the risk of developing severe viral infections. This cross-sectional study investigated the association between IFITM3 rs12252A>G single nucleotide polymorphism (SNP) and COVID-19 severity and mortality in 100 Egyptian patients. All participants were subjected to serum interleukin-6 (IL-6) determination by ELISA and IFITM3 rs12252 genotyping by real-time polymerase chain reaction. Of all participants, 85.0% had the IFITM3 rs12252 homozygous AA genotype, whereas 15.0% had the heterozygous AG genotype. None of our participants had the homozygous GG genotype. The IFITM3 rs12252A allele was found in 92.5% and the G allele in only 7.5%. There was no significant association (p > 0.05) between the IFITM3 rs12252 SNP and COVID-19 severity, intensive care unit (ICU) admission, or IL-6 serum levels. The heterozygous AG genotype frequency showed a significant increase among participants who died (32.0%) compared with those who had been cured (9.3%). The mutant G allele was associated with patients' death. Its frequency among cured participants was 8.5%, whereas in those who died was 24.2% (p = 0.024) with 3.429 odds ratio [95% confidence interval: 1.1-10.4]. In conclusion, this study revealed a significant association between the G allele variant of IFITM3 rs12252 and COVID-19 mortality. However, results were unable to establish a significant link between rs12252 polymorphism, disease severity, ICU admission, or serum IL-6 levels.
Collapse
Affiliation(s)
- Sara M Elessawy
- Department of Clinical Pathology, Allergy and Clinical Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Abeer Shehab
- Department of Clinical Pathology, Allergy and Clinical Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Dina A Soliman
- Department of Clinical Pathology, Allergy and Clinical Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mai A Eldeeb
- Department of Internal Medicine, Allergy and Clinical Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sara I Taha
- Department of Clinical Pathology, Allergy and Clinical Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
8
|
Best LG, Erdei E, Haack K, Kent JW, Malloy KM, Newman DE, O’Leary M, O’Leary RA, Sun Q, Navas-Acien A, Franceschini N, Cole SA. Genetic variant rs1205 is associated with COVID-19 outcomes: The Strong Heart Study and Strong Heart Family Study. PLoS One 2024; 19:e0302464. [PMID: 38662664 PMCID: PMC11045144 DOI: 10.1371/journal.pone.0302464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Although COVID-19 infection has been associated with a number of clinical and environmental risk factors, host genetic variation has also been associated with the incidence and morbidity of infection. The CRP gene codes for a critical component of the innate immune system and CRP variants have been reported associated with infectious disease and vaccination outcomes. We investigated possible associations between COVID-19 outcome and a limited number of candidate gene variants including rs1205. METHODOLOGY/PRINCIPAL FINDINGS The Strong Heart and Strong Heart Family studies have accumulated detailed genetic, cardiovascular risk and event data in geographically dispersed American Indian communities since 1988. Genotypic data and 91 COVID-19 adjudicated deaths or hospitalizations from 2/1/20 through 3/1/23 were identified among 3,780 participants in two subsets. Among 21 candidate variants including genes in the interferon response pathway, APOE, TMPRSS2, TLR3, the HLA complex and the ABO blood group, only rs1205, a 3' untranslated region variant in the CRP gene, showed nominally significant association in T-dominant model analyses (odds ratio 1.859, 95%CI 1.001-3.453, p = 0.049) after adjustment for age, sex, center, body mass index, and a history of cardiovascular disease. Within the younger subset, association with the rs1205 T-Dom genotype was stronger, both in the same adjusted logistic model and in the SOLAR analysis also adjusting for other genetic relatedness. CONCLUSION A T-dominant genotype of rs1205 in the CRP gene is associated with COVID-19 death or hospitalization, even after adjustment for relevant clinical factors and potential participant relatedness. Additional study of other populations and genetic variants of this gene are warranted.
Collapse
Affiliation(s)
- Lyle G. Best
- Epidemiology Division, Missouri Breaks Industries Research, Inc. Eagle Butte, SD, United States of America
- Pathology Department, University of North Dakota, Grand Forks, ND, United States of America
| | - Esther Erdei
- Pharmaceutical Sciences, University of New Mexico—Albuquerque, Albuquerque, New Mexico, United States of America
| | - Karin Haack
- Texas Biomedical Research Institute, Population Health Program, San Antonio, TX, United States of America
| | - Jack W. Kent
- Texas Biomedical Research Institute, Population Health Program, San Antonio, TX, United States of America
| | - Kimberly M. Malloy
- Department of Biostatistics and Epidemiology, Center for American Indian Health Research, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Deborah E. Newman
- Texas Biomedical Research Institute, Population Health Program, San Antonio, TX, United States of America
| | - Marcia O’Leary
- Epidemiology Division, Missouri Breaks Industries Research, Inc. Eagle Butte, SD, United States of America
| | - Rae A. O’Leary
- Epidemiology Division, Missouri Breaks Industries Research, Inc. Eagle Butte, SD, United States of America
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Ana Navas-Acien
- Department of Environmental Health Science, Mailman School of Public Health, Columbia University, New York, NY, United States of America
| | - Nora Franceschini
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Shelley A. Cole
- Texas Biomedical Research Institute, Population Health Program, San Antonio, TX, United States of America
| |
Collapse
|
9
|
Sefatjoo Z, Mohebbi SR, Hosseini SM, Shoraka S, Saeedi Niasar M, Baghaei K, Meyfour A, Sadeghi A, Malekpour H, Asadzadeh Aghdaei H, Zali MR. Evaluation of long non-coding RNAs EGOT, NRAV, NRIR and mRNAs ISG15 and IFITM3 expressions in COVID-19 patients. Cytokine 2024; 175:156495. [PMID: 38184893 DOI: 10.1016/j.cyto.2023.156495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/26/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Individuals with Coronavirus Disease 2019 (COVID-19) may show no symptoms to moderate or severe complications. This variation may be due to differences in the strength of the immune response, including a delayed interferon (IFN) response in asymptomatic patients and higher IFN levels in severe patients. Some long non-coding RNAs (lncRNAs), as regulators of the IFN pathway, may contribute to the emergence of different COVID-19 symptoms. This study aimed to comparatively investigate the relationship between lncRNAs (eosinophil granule ontogeny transcript (EGOT), negative regulator of antiviral response (NRAV), and negative regulator of interferon response (NRIR)), alongside interferon-stimulated genes (ISGs) like ISG-15 and interferon-induced transmembrane protein 3 (IFITM3) in COVID-19 patients with asymptomatic, moderate, and severe symptoms. Buffy coat samples were collected from 17 asymptomatic, 23 moderate, 22 severe patients, and 44 healthy controls. Quantitative real-time PCR was utilized to determine the expression levels. In a comparison between COVID-19 patients and healthy individuals, higher expression levels of EGOT and NRAV were observed in severe and moderate patients. NRIR expression was increased across all patient groups. Meanwhile, ISG15 expression decreased in all patient groups, and the moderate group showed a significant decrease in IFITM3 expression. Comparing COVID-19 patient groups, EGOT expression was significantly higher in moderate COVID-19 patients compared to asymptomatic patients. NRAV was higher in moderate and severe patients compared to asymptomatic. NRIR levels did not differ significantly between the COVID-19 patient groups. ISG15 was higher in moderate and severe patients compared to asymptomatic. IFITM3 expression was significantly higher in severe patients compared to the moderate group. In severe COVID-19 patients, EGOT expression was positively correlated with NRAV levels. EGOT and NRAV showed a significant positive correlation in asymptomatic patients, and both were positively correlated with IFITM3 expression. This study suggests that EGOT, NRAV, NRIR, ISG15, and IFITM3 may serve as diagnostic biomarkers for COVID-19. The lncRNA NRAV may be a good biomarker in a prognostic panel between asymptomatic and severe patients in combination with other high-sensitivity biomarkers. EGOT, NRAV, and ISG15 could also be considered as specific biomarkers in a prognostic panel comparing asymptomatic and moderate patients with other high-sensitivity biomarkers.
Collapse
Affiliation(s)
- Zahra Sefatjoo
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Masoud Hosseini
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shahrzad Shoraka
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Saeedi Niasar
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anna Meyfour
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Malekpour
- Research and Development Center, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Ren H, Lin Y, Huang L, Xu W, Luo D, Zhang C. Association of genetic polymorphisms with COVID-19 infection and outcomes: An updated meta-analysis based on 62 studies. Heliyon 2024; 10:e23662. [PMID: 38187247 PMCID: PMC10767390 DOI: 10.1016/j.heliyon.2023.e23662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/23/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Background The relationship between genetic polymorphisms and coronavirus disease 2019 (COVID-19) remains to be inconsistent. This meta-analysis aimed to provide an updated evaluation of the role of genetic polymorphisms in the infection, severity and mortality of COVID-19 based on all available published studies. Methods A systematic search was performed using six databases: PubMed, Embase, Web of Science, Cochrane Library, Chinese National Knowledge Infrastructure (CNKI) and Wanfang. Summary odds ratios (ORs) and corresponding 95 % confidence intervals (CIs) were used to calculate the genotypic comparison. All statistical analyses were conducted in Stata 12.0. Results A total of 62 studies with 19600 cases and 28899 controls was included in this meta-analysis. For COVID-19 infection, ACE Ins/Del polymorphism might be related with significantly decreased risk of COVID-19 infection under dominant, homozygote and allelic models. Meanwhile, the IFITM3 rs12252 and TMPRSS2 rs12329760 polymorphisms were significantly associated with the increased risk of COVID-19 infection under one or more models. Regarding COVID-19 severity, ACE2 rs2074192, ACE2 rs2106809, IFITM3 rs12252 and VDR rs1544410 polymorphisms might be related with significantly increased risk of COVID-19 severity in one or more models. Moreover, the analysis of TMPRSS2 rs2070788 indicated that a variant A allele decreased the risk of COVID-19 severity in recessive model. For COVID-19 mortality, the variant C allele of IFITM3 rs12252 polymorphism might be related with significantly increased risk of COVID-19 mortality under all genetic models. Conclusions This meta-analysis indicated that he infection, severity or mortality of COVID-19 were related to the above genetic polymorphisms, which might provide an important theoretical basis for understanding the clinical feature of COVID-19 disease.
Collapse
Affiliation(s)
- Hongyue Ren
- Department of Basic Medicine, Zhangzhou Health Vocational College, Zhangzhou 363000, Fujian Province, China
| | - Yanyan Lin
- Department of Basic Medicine, Zhangzhou Health Vocational College, Zhangzhou 363000, Fujian Province, China
| | - Lifeng Huang
- Department of Basic Medicine, Zhangzhou Health Vocational College, Zhangzhou 363000, Fujian Province, China
| | - Wenxin Xu
- Department of Medical Technology/Collaborative Innovation Center for Translation Medical Testing and Application Technology, Zhangzhou Health Vocational College, Zhangzhou 363000, Fujian Province, China
| | - Deqing Luo
- Department of Orthopaedic Surgery, Dongnan Hospital of Xiamen University, School of Medicine, Xiamen University, Zhangzhou 363000, Fujian Province, China
| | - Chunbin Zhang
- Department of Medical Technology/Collaborative Innovation Center for Translation Medical Testing and Application Technology, Zhangzhou Health Vocational College, Zhangzhou 363000, Fujian Province, China
| |
Collapse
|
11
|
Makled AF, Ali SAM, Eldahdouh SS, Sleem AS, Eldahshan MM, Elsaadawy Y, Salman SS, Mohammed Elbrolosy A. Angiotensin-Converting Enzyme-2 ( ACE-2) with Interferon-Induced Transmembrane Protein-3 ( IFITM-3) Genetic Variants and Interleukin-6 as Severity and Risk Predictors among COVID-19 Egyptian Population. Int J Microbiol 2023; 2023:6384208. [PMID: 38155729 PMCID: PMC10754637 DOI: 10.1155/2023/6384208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction The host genetic background is a crucial factor that underlies the interindividual variability of COVID-19 fatality and outcomes. Angiotensin-converting enzyme-2 (ACE-2) and interferon-induced transmembrane protein-3 (IFITM-3) have a key role in viral cell entrance and priming. The evoked immune response will also provide a predictive prognosis for COVID-19 infection. This study aimed to explore the association between ACE-2 and IFITM-3 genotypes and their corresponding allele frequencies with disease severity indices in the Egyptian COVID-19 population. The serum level of interleukin-6, as a biomarker of hyperinflammatory response, and cytokine storm, was correlated with disease progression, single nucleotide polymorphisms (SNPs) of the selected receptors, and treatment response. Methodology. We enrolled 900 COVID-19-confirmed cases and 100 healthy controls. Genomic DNA was extracted from 200 subjects (160 patients selected based on clinical and laboratory data and 40 healthy controls). The ACE-2 rs2285666 and IFITM-3 rs12252 SNPs were genotyped using the TaqMan probe allelic discrimination assay, and the serum IL-6 level was determined by ELISA. Logistic regression analysis was applied to analyze the association between ACE-2 and IFITM-3 genetic variants, IL-6 profile, and COVID-19 severity. Results The identified genotypes and their alleles were significantly correlated with COVID-19 clinical deterioration as follows: ACE2 rs2285666 CT + TT, odds ratio (95% confidence interval): 12.136 (2.784-52.896) and IFITM-3 rs12252 AG + GG: 17.276 (3.673-81.249), both p < 0.001. Compared to the controls, the heterozygous and mutant genotypes for both SNPs were considerable risk factors for increased susceptibility to COVID-19. IL-6 levels were significantly correlated with disease progression (p < 0.001). Conclusion ACE-2 and IFITM-3 genetic variants are potential predictors of COVID-19 severity, critical outcomes, and post-COVID-19 complications. Together, these SNPs and serum IL-6 levels explain a large proportion of the variability in the severity of COVID-19 infection and its consequences among Egyptian subjects.
Collapse
Affiliation(s)
- Amal F. Makled
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| | - Sahar A. M. Ali
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| | - S. S. Eldahdouh
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| | - Asmaa S. Sleem
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| | - Maha M. Eldahshan
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| | - Yara Elsaadawy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Samar S. Salman
- Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| | - Asmaa Mohammed Elbrolosy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Shebin al Kom, Egypt
| |
Collapse
|
12
|
Carriazo S, Ribagorda M, Pintor-Chocano A, Perez-Gomez MV, Ortiz A, Sanchez-Niño MD. Increased expression of SCARF genes favoring SARS-CoV-2 infection in key target organs in CKD. Clin Kidney J 2023; 16:2672-2682. [PMID: 38046008 PMCID: PMC10689187 DOI: 10.1093/ckj/sfad220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 12/05/2023] Open
Abstract
Background Chronic kidney disease (CKD), especially diabetic CKD, is the condition that most increases the risk of lethal coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the underlying molecular mechanisms are unclear. SARS-CoV-2 and coronavirus-associated receptors and factors (SCARFs) regulate coronavirus cell entry and/or replication. We hypothesized that CKD may alter the expression of SCARF genes. Methods A literature search identified 34 SCARF genes of which we selected 21 involved in interactions between SARS-CoV/SARS-CoV-2 and host cells, and assessed their mRNA expression in target tissues of COVID-19 (kidneys, lungs, aorta and heart) in mice with adenine-induced CKD. Results Twenty genes were differentially expressed in at least one organ in mice with CKD. For 15 genes, the differential expression would be expected to favor SARS-CoV-2 infection and/or severity. Of these 15 genes, 13 were differentially expressed in the kidney and 8 were validated in human CKD kidney transcriptomics datasets, including those for the most common cause of CKD, diabetic nephropathy. Two genes reported to protect from SARS-CoV-2 were downregulated in at least two non-kidney target organs: Ifitm3 encoding interferon-induced transmembrane protein 3 (IFITM3) in lung and Ly6e encoding lymphocyte antigen 6 family member 6 (LY6E) in aorta. Conclusion CKD, including diabetic CKD, is associated with the differential expression of multiple SCARF genes in target organs of COVID-19, some of which may sensitize to SARS-CoV-2 infection. This information may facilitate developing therapeutic strategies aimed at decreasing COVID-19 severity in patients with CKD.
Collapse
Affiliation(s)
- Sol Carriazo
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, RICORS2040, Madrid, Spain
| | - Marta Ribagorda
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, RICORS2040, Madrid, Spain
| | - Aranzazu Pintor-Chocano
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, RICORS2040, Madrid, Spain
| | - Maria Vanessa Perez-Gomez
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, RICORS2040, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, RICORS2040, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, RICORS2040, Madrid, Spain
- Departamento de Farmacología, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Pecoraro V, Cuccorese M, Trenti T. Genetic polymorphisms of ACE1, ACE2, IFTM3, TMPRSS2 and TNFα genes associated with susceptibility and severity of SARS-CoV-2 infection: a systematic review and meta-analysis. Clin Exp Med 2023; 23:3251-3264. [PMID: 37055652 PMCID: PMC10101542 DOI: 10.1007/s10238-023-01038-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/01/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Some human polymorphisms of ACE1, ACE2, IFITM3, TMPRSS2 and TNFα genes may have an effect on the susceptibility to SARS-CoV-2 infection and increase the risk to develop severe COVID-19. We conducted a systematic review of current evidence to investigate the association of genetic variants of these genes with the susceptibility to virus infection and patient prognosis. METHODS We systematically searched Medline, Embase and The Cochrane Library for articles published until May 2022, and included observational studies covering genetic association of ACE1, ACE2, IFITM3, TMPRSS2 and TNFα genes with COVID-19 susceptibility or prognosis. We evaluated the methodological quality of included studies, and pooled data as convenient in meta-analysis (MA). Odds ratio (OR) values and 95% confidence intervals were calculated. RESULTS We included 35 studies (20 on ACE, 5 each on IFITM3, TMPRSS2, TNFα), enrolling 21,452 participants, of them 9401 were COVID-19 confirmed cases. ACE1 rs4646994 and rs1799752, ACE2 rs2285666, TMPRSS2 rs12329760, IFITM3 rs12252 and TNFα rs1800629 were identifies as common polymorphisms. Our MA showed an association between genetic polymorphisms and susceptibility to SARS-CoV-2 infection for IFITM3 rs12252 CC (OR 5.67) and CT (OR 1.64) genotypes. Furthermore, MA uncovered that both ACE DD (OR 1.27) and IFITM3 CC (OR 2.26) genotypes carriers had a significantly increased risk of developing severe COVID-19. DISCUSSION These results provide a critical evaluation of genetic polymorphisms as predictors in SARS-CoV-2 infection. ACE1 DD and IFITM3 CC polymorphisms would lead to a genetic predisposition for severe lung injury in patients with COVID-19.
Collapse
Affiliation(s)
- Valentina Pecoraro
- Department of Laboratory Medicine and Pathology, Azienda USL of Modena, Modena, Italy
| | - Michela Cuccorese
- Department of Laboratory Medicine and Pathology, Azienda USL of Modena, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Azienda USL of Modena, Modena, Italy
| |
Collapse
|
14
|
Sahranavard-Pirbazari P, Khoshghiafeh A, Kamali MJ, Esfandiar H, Bakhtiari M, Ahmadifard M. A comprehensive review of ACE2, ACE1, TMPRSS2 and IFITM3 gene polymorphisms and their effect on the severity of COVID-19. Adv Med Sci 2023; 68:450-463. [PMID: 37926001 DOI: 10.1016/j.advms.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/01/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Recent events have raised concerns about the outbreak of a pandemic by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). An infection caused by a virus can provoke an inflammatory reaction, which can result in severe lung damage, failure of several organs, and death. The unique genetic makeup of each individual may be a component in the development of each of these responses. In this context, genetic variants of the genes linked to the invasion of the virus into the host's body can be analyzed. Various elements have a function in viral entry. ACE2 is used by SARS-CoV-2 as a receptor to enter the cell. TMPRSS2 is then responsible for cutting the virus into its components. In addition, lung damage occurs when there is an imbalance between ACE1 and ACE2. Another component that plays a significant role in virus penetration is called IFITM3, which is created as a reaction to interferon. This protein prevents viruses in the Coronaviridae family from entering cells. This study aimed to analyze DNA polymorphisms in the ACE2, ACE1, TMPRSS2, and IFITM3 genes. Findings showed certain polymorphisms appear to be associated with the severity of the disease, including respiratory, coronary, and neurological disorders. The results also indicated that certain polymorphisms were protective against this virus. Varying populations have a different frequency of high-risk polymorphisms, so different treatment and preventative techniques must be implemented. Additional population studies should be conducted in this region to reduce the incidence of COVID-19-related morbidity and mortality.
Collapse
Affiliation(s)
| | - Azin Khoshghiafeh
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Javad Kamali
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hanieh Esfandiar
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Marzieh Bakhtiari
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohamadreza Ahmadifard
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
15
|
Čiučiulkaitė I, Siffert W, Elsner C, Dittmer U, Wichert M, Wagner B, Volbracht L, Mosel F, Möhlendick B. Influence of the Single Nucleotide Polymorphisms rs12252 and rs34481144 in IFITM3 on the Antibody Response after Vaccination against COVID-19. Vaccines (Basel) 2023; 11:1257. [PMID: 37515072 PMCID: PMC10384856 DOI: 10.3390/vaccines11071257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
The COVID-19 mRNA vaccine is the first mRNA vaccine approved for human administration by both the U.S. Food and Drug Administration and the European Medicines Agency. Studies have shown that the immune response and the decay of immunity after vaccination with the COVID-19 vaccines are variable within a population. Host genetic factors probably contribute to this variability. In this study, we investigated the effect of the single-nucleotide polymorphisms rs12252 and rs34481144 in the interferon-induced transmembrane protein (IFITM) 3 gene on the humoral immune response after vaccination against COVID-19 with mRNA vaccines. Blood samples were collected from 1893 healthcare workers and medical students at multiple time points post-vaccination and antibody titers against the SARS-CoV-2 S1 protein receptor binding domain were determined at all time points. All participants were genotyped for the rs34481144 and rs12252 polymorphisms in the IFITM3 gene. After the second and third vaccinations, antibody titer levels increased at one month and decreased at six months (p < 0.0001) and were higher after the booster vaccination than after the basic immunization (p < 0.0001). Participants vaccinated with mRNA-1273 had a higher humoral immune response than participants vaccinated with BNT162b2. rs12252 had no effect on the antibody response. In contrast, carriers of the GG genotype in rs34481144 vaccinated with BNT162b2 had a lower humoral immune response compared to A allele carriers, which reached statistical significance on the day of the second vaccination (p = 0.03) and one month after the second vaccination (p = 0.04). Further studies on the influence of rs12252 and rs34481144 on the humoral immune response after vaccination against COVID-19 are needed.
Collapse
Affiliation(s)
- Ieva Čiučiulkaitė
- Institute of Pharmacogenetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Winfried Siffert
- Institute of Pharmacogenetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Carina Elsner
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Marc Wichert
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Bernd Wagner
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Lothar Volbracht
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Frank Mosel
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Birte Möhlendick
- Institute of Pharmacogenetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
16
|
Barkhordarian M, Behbood A, Ranjbar M, Rahimian Z, Prasad A. Overview of the cardio-metabolic impact of the COVID-19 pandemic. Endocrine 2023; 80:477-490. [PMID: 37103684 PMCID: PMC10133915 DOI: 10.1007/s12020-023-03337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/21/2023] [Indexed: 04/28/2023]
Abstract
Evidence has shown that cardiometabolic disorders (CMDs) are amongst the top contributors to COVID-19 infection morbidity and mortality. The reciprocal impact of COVID-19 infection and the most common CMDs, the risk factors for poor composite outcome among patients with one or several underlying diseases, the effect of common medical management on CMDs and their safety in the context of acute COVID-19 infection are reviewed. Later on, the changes brought by the COVID-19 pandemic quarantine on the general population's lifestyle (diet, exercise patterns) and metabolic health, acute cardiac complications of different COVID-19 vaccines and the effect of CMDs on the vaccine efficacy are discussed. Our review identified that the incidence of COVID-19 infection is higher among patients with underlying CMDs such as hypertension, diabetes, obesity and cardiovascular disease. Also, CMDs increase the risk of COVID-19 infection progression to severe disease phenotypes (e.g. hospital and/or ICU admission, use of mechanical ventilation). Lifestyle modification during COVID-19 era had a great impact on inducing and worsening of CMDs. Finally, the lower efficacy of COVID-19 vaccines was found in patients with metabolic disease.
Collapse
Affiliation(s)
- Maryam Barkhordarian
- Department of Medicine, Division of Cardiology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Arezoo Behbood
- MPH department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Maryam Ranjbar
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Zahra Rahimian
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Anand Prasad
- Division of Cardiology, Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
17
|
Kenney AD, Zani A, Kawahara J, Eddy AC, Wang X, Mahesh KC, Lu M, Thomas J, Kohlmeier JE, Suthar MS, Hemann EA, Li J, Peeples ME, Hall‐Stoodley L, Forero A, Cai C, Ma J, Yount JS. Interferon-induced transmembrane protein 3 (IFITM3) limits lethality of SARS-CoV-2 in mice. EMBO Rep 2023; 24:e56660. [PMID: 36880581 PMCID: PMC10074051 DOI: 10.15252/embr.202256660] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) is an antiviral protein that alters cell membranes to block fusion of viruses. Conflicting reports identified opposing effects of IFITM3 on SARS-CoV-2 infection of cells, and its impact on viral pathogenesis in vivo remains unclear. Here, we show that IFITM3 knockout (KO) mice infected with SARS-CoV-2 experience extreme weight loss and lethality compared to mild infection in wild-type (WT) mice. KO mice have higher lung viral titers and increases in inflammatory cytokine levels, immune cell infiltration, and histopathology. Mechanistically, we observe disseminated viral antigen staining throughout the lung and pulmonary vasculature in KO mice, as well as increased heart infection, indicating that IFITM3 constrains dissemination of SARS-CoV-2. Global transcriptomic analysis of infected lungs shows upregulation of gene signatures associated with interferons, inflammation, and angiogenesis in KO versus WT animals, highlighting changes in lung gene expression programs that precede severe lung pathology and fatality. Our results establish IFITM3 KO mice as a new animal model for studying severe SARS-CoV-2 infection and overall demonstrate that IFITM3 is protective in SARS-CoV-2 infections in vivo.
Collapse
Affiliation(s)
- Adam D Kenney
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Ashley Zani
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Jeffrey Kawahara
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Adrian C Eddy
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | | | - KC Mahesh
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
- Center for Vaccines and ImmunityAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOHUSA
| | - Mijia Lu
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
- Department of Veterinary BiosciencesThe Ohio State UniversityColumbusOHUSA
| | - Jeronay Thomas
- Department of Microbiology and ImmunologyEmory UniversityAtlantaGAUSA
| | - Jacob E Kohlmeier
- Department of Microbiology and ImmunologyEmory UniversityAtlantaGAUSA
| | - Mehul S Suthar
- Department of Microbiology and ImmunologyEmory UniversityAtlantaGAUSA
- Department of PediatricsEmory University School of MedicineAtlantaGAUSA
- Emory Vaccine Center, Yerkes National Primate Research CenterEmory UniversityAtlantaGAUSA
| | - Emily A Hemann
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Jianrong Li
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
- Department of Veterinary BiosciencesThe Ohio State UniversityColumbusOHUSA
| | - Mark E Peeples
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
- Center for Vaccines and ImmunityAbigail Wexner Research Institute at Nationwide Children's HospitalColumbusOHUSA
- Department of PediatricsThe Ohio State UniversityColumbusOHUSA
| | - Luanne Hall‐Stoodley
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Adriana Forero
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| | - Chuanxi Cai
- Department of SurgeryThe Ohio State UniversityColumbusOHUSA
| | - Jianjie Ma
- Department of SurgeryThe Ohio State UniversityColumbusOHUSA
| | - Jacob S Yount
- Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusOHUSA
- Infectious Diseases InstituteThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
18
|
Scaramuzzo G, Nucera F, Asmundo A, Messina R, Mari M, Montanaro F, Johansen MD, Monaco F, Fadda G, Tuccari G, Hansbro NG, Hansbro PM, Hansel TT, Adcock IM, David A, Kirkham P, Caramori G, Volta CA, Spadaro S. Cellular and molecular features of COVID-19 associated ARDS: therapeutic relevance. J Inflamm (Lond) 2023; 20:11. [PMID: 36941580 PMCID: PMC10027286 DOI: 10.1186/s12950-023-00333-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/08/2023] [Indexed: 03/23/2023] Open
Abstract
The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection can be asymptomatic or cause a disease (COVID-19) characterized by different levels of severity. The main cause of severe COVID-19 and death is represented by acute (or acute on chronic) respiratory failure and acute respiratory distress syndrome (ARDS), often requiring hospital admission and ventilator support.The molecular pathogenesis of COVID-19-related ARDS (by now termed c-ARDS) is still poorly understood. In this review we will discuss the genetic susceptibility to COVID-19, the pathogenesis and the local and systemic biomarkers correlated with c-ARDS and the therapeutic options that target the cell signalling pathways of c-ARDS.
Collapse
Affiliation(s)
- Gaetano Scaramuzzo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Emergency, Section of Intensive Care and Anesthesia, Azienda Ospedaliera-Universitaria Sant’Anna, Ferrara, Italy
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Alessio Asmundo
- Medicina Legale, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Roberto Messina
- Intensive Care Unit, Dipartimento di Patologia Umana e dell’Età Evolutiva Gaetano Barresi, Università di Messina, Messina, Italy
| | - Matilde Mari
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Emergency, Section of Intensive Care and Anesthesia, Azienda Ospedaliera-Universitaria Sant’Anna, Ferrara, Italy
| | - Federica Montanaro
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Emergency, Section of Intensive Care and Anesthesia, Azienda Ospedaliera-Universitaria Sant’Anna, Ferrara, Italy
| | - Matt D. Johansen
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW Australia
| | - Francesco Monaco
- Chirurgia Toracica, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Guido Fadda
- Section of Pathological Anatomy, Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Giovanni Tuccari
- Section of Pathological Anatomy, Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Nicole G. Hansbro
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW Australia
| | - Philip M. Hansbro
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW Australia
| | - Trevor T. Hansel
- Medical Research Council and Asthma, UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Ian M. Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Antonio David
- Intensive Care Unit, Dipartimento di Patologia Umana e dell’Età Evolutiva Gaetano Barresi, Università di Messina, Messina, Italy
| | - Paul Kirkham
- Department of Biomedical Sciences, Faculty of Sciences and Engineering, University of Wolverhampton, West Midlands, Wolverhampton, UK
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Carlo Alberto Volta
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Emergency, Section of Intensive Care and Anesthesia, Azienda Ospedaliera-Universitaria Sant’Anna, Ferrara, Italy
| | - Savino Spadaro
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Emergency, Section of Intensive Care and Anesthesia, Azienda Ospedaliera-Universitaria Sant’Anna, Ferrara, Italy
| |
Collapse
|
19
|
Villanueva-Aguilar ME, Rizo-de-la-Torre LDC, Granados-Muñiz MDP, Montoya-Fuentes A, Montoya-Fuentes H. The Genetic Variant TNFA (rs361525) Is Associated with Increased Susceptibility to Developing Dengue Symptoms. Viral Immunol 2023; 36:229-237. [PMID: 36730734 DOI: 10.1089/vim.2022.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dengue virus (DENV) is the causal agent of dengue fever. The symptoms and signs of dengue vary from febrile illness to hemorrhagic syndrome. IFITM3 and TNFA are genes of the innate immune system. Variants IFITM3 (rs12252 T>C) and TNFA (rs1800629 G > A and rs361525 G>A) might alter gene expression and change the course of the disease. Our first objective was to determine whether these variants were associated with the susceptibility and severity of dengue. The second was to assess the association of these variants with each symptom. We studied 272 cases with suspected dengue infection, of which 102 were confirmed dengue cases (DENV+) and 170 were dengue-like cases without DENV infection (DENV-). Samples of 201 individuals from the general population of Mexico were included as a reference. Genotyping was performed by the polymerase chain reaction-restriction fragment length polymorphism technique. Odds ratios and confidence intervals were calculated using Pearson's chi-square test and later adjusted for age and sex with a binary logistic regression model. Haldane correction is applied when necessary. We found a significantly higher frequency of the A allele of TNFA rs361525 in both the DENV+ and DENV- groups compared with the general population. Focusing on DENV+ and DENV-, the frequency of the A allele of TNFA rs361525 was higher in the DENV+ group. A broad spectrum of symptoms was related to the A allele of both TNFA variants. We conclude that TNFA rs361525 increases the susceptibility to symptomatic dengue but can also be associated with susceptibility to other dengue-like symptoms from unknown causes.
Collapse
Affiliation(s)
- Mónica Edith Villanueva-Aguilar
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México.,Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UDG), Guadalajara, Jalisco, México
| | - Lourdes Del Carmen Rizo-de-la-Torre
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - María Del Pilar Granados-Muñiz
- Laboratorio de Apoyo a la Vigilancia e Investigación Epidemiológica (LAVIE), Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - Andrea Montoya-Fuentes
- Laboratorio de Apoyo a la Vigilancia e Investigación Epidemiológica (LAVIE), Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| | - Héctor Montoya-Fuentes
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México.,Laboratorio de Apoyo a la Vigilancia e Investigación Epidemiológica (LAVIE), Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
| |
Collapse
|
20
|
Gupta K, Kaur G, Pathak T, Banerjee I. Systematic review and meta-analysis of human genetic variants contributing to COVID-19 susceptibility and severity. Gene 2022; 844:146790. [PMID: 35987511 PMCID: PMC9384365 DOI: 10.1016/j.gene.2022.146790] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 12/12/2022]
Abstract
The COVID-19 pandemic has spawned global health crisis of unprecedented magnitude, claiming millions of lives and pushing healthcare systems in many countries to the brink. Among several factors that contribute to an increased risk of COVID-19 and progression to exacerbated manifestations, host genetic landscape is increasingly being recognized as a critical determinant of susceptibility/resistance to infection and a prognosticator of clinical outcomes in infected individuals. Recently, several case-control association studies investigated the influence of human gene variants on COVID-19 susceptibility and severity to identify the culpable mutations. However, a comprehensive synthesis of the recent advances in COVID-19 host genetics research was lacking, and the inconsistent findings of the association studies required reliable evaluation of the strength of association with greater statistical power. In this study, we embarked on a systematic search of all possible reports of genetic association with COVID-19 till April 07, 2022, and performed meta-analyses of all the genetic polymorphisms that were examined in at least three studies. After identifying a total of 84 studies that investigated the association of 130 polymorphisms in 61 genes, we performed meta-analyses of all the eligible studies. Seven genetic polymorphisms involving 15,550 cases and 444,007 controls were explored for association with COVID-19 susceptibility, of which, ACE1 I/D rs4646994/rs1799752, APOE rs429358, CCR5 rs333, and IFITM3 rs12252 showed increased risk of infection. Meta-analyses of 11 gene variants involving 6702 patients with severe COVID-19 and 8640 infected individuals with non-severe manifestations revealed statistically significant association of ACE2 rs2285666, ACE2 rs2106809, ACE2 rs2074192, AGTR1 rs5186, and TNFA rs1800629 with COVID-19 severity. Overall, our study presents a synthesis of evidence on all the genetic determinants implicated in COVID-19 to date, and provides evidence of correlation between the above polymorphisms with COVID-19 susceptibility and severity.
Collapse
Affiliation(s)
| | | | | | - Indranil Banerjee
- Cellular Virology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali), Sector 81, S.A.S Nagar, Mohali 140306, India.
| |
Collapse
|
21
|
Li P, Ke Y, Shen W, Shi S, Wang Y, Lin K, Guo X, Wang C, Zhang Y, Zhao Z. Targeted screening of genetic associations with COVID-19 susceptibility and severity. Front Genet 2022; 13:1073880. [PMID: 36531218 PMCID: PMC9747945 DOI: 10.3389/fgene.2022.1073880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/18/2022] [Indexed: 07/26/2023] Open
Abstract
The COVID-19 pandemic has resulted in great morbidity and mortality worldwide and human genetic factors have been implicated in the susceptibility and severity of COVID-19. However, few replicate researches have been performed, and studies on associated genes mainly focused on genic regions while regulatory regions were a lack of in-depth dissection. Here, based on previously reported associated variants and genes, we designed a capture panel covering 1,238 candidate variants and 25 regulatory regions of 19 candidate genes and targeted-sequenced 96 mild and 145 severe COVID-19 patients. Genetic association analysis was conducted between mild and severe COVID-19 patients, between all COVID-19 patients and general population, or between severe COVID-19 patients and general population. A total of 49 variants were confirmed to be associated with susceptibility or severity of COVID-19 (p < 0.05), corresponding to 18 independent loci. Specifically, rs1799964 in the promoter of inflammation-related gene TNF, rs9975538 in the intron of interferon receptor gene IFNAR2, rs429358 in the exon of APOE, rs1886814 in the intron of FOXP4-AS1 and a list of variants in the widely reported 3p21.31 and ABO gene were confirmed. It is worth noting that, for the confirmed variants, the phenotypes of the cases and controls were highly consistent between our study and previous reports, and the confirmed variants identified between mild and severe patients were quite different from those identified between patients and general population, suggesting the genetic basis of susceptibility and severity of SARS-CoV-2 infection might be quite different. Moreover, we newly identified 67 significant associated variants in the 12 regulatory regions of 11 candidate genes (p < 0.05). Further annotation by RegulomeDB database and GTEx eQTL data filtered out two variants (rs11246060 and rs28655829) in the enhancer of broad-spectrum antiviral gene IFITM3 that might affect disease severity by regulating the gene expression. Collectively, we confirmed a list of previously reported variants and identified novel regulatory variants associated with susceptibility and severity of COVID-19, which might provide biological and clinical insights into COVID-19 pathogenesis and treatment.
Collapse
Affiliation(s)
- Ping Li
- Beijing Institute of Biotechnology, Beijing, China
| | - Yuehua Ke
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Wenlong Shen
- Beijing Institute of Biotechnology, Beijing, China
| | - Shu Shi
- Beijing Institute of Biotechnology, Beijing, China
| | - Yahao Wang
- Beijing Institute of Biotechnology, Beijing, China
| | - Kailin Lin
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Xinjie Guo
- Beijing Institute of Biotechnology, Beijing, China
| | - Changjun Wang
- Center for Disease Control and Prevention of PLA, Beijing, China
| | - Yan Zhang
- Beijing Institute of Biotechnology, Beijing, China
| | - Zhihu Zhao
- Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
22
|
Xu F, Wang G, Zhao F, Huang Y, Fan Z, Mei S, Xie Y, Wei L, Hu Y, Wang C, Cen S, Liang C, Ren L, Guo F, Wang J. IFITM3 Inhibits SARS-CoV-2 Infection and Is Associated with COVID-19 Susceptibility. Viruses 2022; 14:2553. [PMID: 36423162 PMCID: PMC9692367 DOI: 10.3390/v14112553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
SARS-CoV-2 has become a global threat to public health. Infected individuals can be asymptomatic or develop mild to severe symptoms, including pneumonia, respiratory distress, and death. This wide spectrum of clinical presentations of SARS-CoV-2 infection is believed in part due to the polymorphisms of key genetic factors in the population. In this study, we report that the interferon-induced antiviral factor IFITM3 inhibits SARS-CoV-2 infection by preventing SARS-CoV-2 spike-protein-mediated virus entry and cell-to-cell fusion. Analysis of a Chinese COVID-19 patient cohort demonstrates that the rs12252 CC genotype of IFITM3 is associated with SARS-CoV-2 infection risk in the studied cohort. These data suggest that individuals carrying the rs12252 C allele in the IFITM3 gene may be vulnerable to SARS-CoV-2 infection and thus may benefit from early medical intervention.
Collapse
Affiliation(s)
- Fengwen Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Geng Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Department of Respiratory and Critical Care Medicine, Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fei Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yu Huang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Zhangling Fan
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Shan Mei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yu Xie
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Liang Wei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yamei Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Conghui Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Chen Liang
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fei Guo
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
23
|
Tziastoudi M, Cholevas C, Stefanidis I, Theoharides TC. Genetics of COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome: a systematic review. Ann Clin Transl Neurol 2022; 9:1838-1857. [PMID: 36204816 PMCID: PMC9639636 DOI: 10.1002/acn3.51631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/08/2023] Open
Abstract
COVID‐19 and ME/CFS present with some similar symptoms, especially physical and mental fatigue. In order to understand the basis of these similarities and the possibility of underlying common genetic components, we performed a systematic review of all published genetic association and cohort studies regarding COVID‐19 and ME/CFS and extracted the genes along with the genetic variants investigated. We then performed gene ontology and pathway analysis of those genes that gave significant results in the individual studies to yield functional annotations of the studied genes using protein analysis through evolutionary relationships (PANTHER) VERSION 17.0 software. Finally, we identified the common genetic components of these two conditions. Seventy‐one studies for COVID‐19 and 26 studies for ME/CFS were included in the systematic review in which the expression of 97 genes for COVID‐19 and 429 genes for ME/CFS were significantly affected. We found that ACE, HLA‐A, HLA‐C, HLA‐DQA1, HLA‐DRB1, and TYK2 are the common genes that gave significant results. The findings of the pathway analysis highlight the contribution of inflammation mediated by chemokine and cytokine signaling pathways, and the T cell activation and Toll receptor signaling pathways. Protein class analysis revealed the contribution of defense/immunity proteins, as well as protein‐modifying enzymes. Our results suggest that the pathogenesis of both syndromes could involve some immune dysfunction.
Collapse
Affiliation(s)
- Maria Tziastoudi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christos Cholevas
- First Department of Ophthalmology, Faculty of Health Sciences, Aristotle University, AHEPA Hospital, Thessaloniki, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Theoharis C Theoharides
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL, USA.,Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA.,School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA.,Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Vakil MK, Mansoori Y, Al‐Awsi GRL, Hosseinipour A, Ahsant S, Ahmadi S, Ekrahi M, Montaseri Z, Pezeshki B, Mohaghegh P, Sohrabpour M, Bahmanyar M, Daraei A, Dadkhah Jouybari T, Tavassoli A, Ghasemian A. Individual genetic variability mainly of Proinflammatory cytokines, cytokine receptors, and toll-like receptors dictates pathophysiology of COVID-19 disease. J Med Virol 2022; 94:4088-4096. [PMID: 35538614 PMCID: PMC9348290 DOI: 10.1002/jmv.27849] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/12/2022]
Abstract
Innate and acquired immunity responses are crucial for viral infection elimination. However, genetic variations in coding genes may exacerbate the inflammation or initiate devastating cytokine storms which poses severe respiratory conditions in coronavirus disease-19 (COVID-19). Host genetic variations in particular those related to the immune responses determine the patients' susceptibility and COVID-19 severity and pathophysiology. Gene polymorphisms such as single nucleotide polymorphisms (SNPs) of interferons, TNF, IL1, IL4, IL6, IL7, IL10, and IL17 predispose patients to the severe form of COVID-19 or severe acute respiratory syndrome coronavirus-2 (SARS-COV-2). These variations mainly alter the gene expression and cause a severe response by B cells, T cells, monocytes, neutrophils, and natural killer cells participating in a cytokine storm. Moreover, cytokines and chemokines SNPs are associated with the severity of COVID-19 and clinical outcomes depending on the corresponding effect. Additionally, genetic variations in genes encoding toll-like receptors (TLRs) mainly TLR3, TLR7, and TLR9 have been related to the COVID-19 severe respiratory symptoms. The specific relation of these mutations with the novel variants of concern (VOCs) infection remains to be elucidated. Genetic variations mainly within genes encoding proinflammatory cytokines, cytokine receptors, and TLRs predispose patients to COVID-19 disease severity. Understanding host immune gene variations associated with the SARS-COV-2 infection opens insights to control the pathophysiology of emerging viral infections.
Collapse
Affiliation(s)
- Mohammad Kazem Vakil
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Yaser Mansoori
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Ghaidaa Raheem Lateef Al‐Awsi
- University of Al‐QadisiyahCollege of ScienceAl DiwaniyahIraq
- Department of Radiological TechniquesAl‐Mustaqbal University CollegeBabylonIraq
| | - Ali Hosseinipour
- Department of Internal MedicineFasa University of Medical SciencesFasaIran
| | - Samaneh Ahsant
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Sedigheh Ahmadi
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Mohammad Ekrahi
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Zahra Montaseri
- Department of Infectious DiseasesFasa University of Medical SciencesFasaIran
| | - Babak Pezeshki
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Poopak Mohaghegh
- Pediatrics Department, School of MedicineFasa University of Medical SciencesFasaIran
| | - Mojtaba Sohrabpour
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| | - Maryam Bahmanyar
- Pediatrics Department, School of MedicineFasa University of Medical SciencesFasaIran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of MedicineBabol University of Medical SciencesBabolIran
| | | | | | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research CenterFasa University of Medical SciencesFasaIran
| |
Collapse
|
25
|
Ahmadi I, Afifipour A, Sakhaee F, Zamani MS, Mirzaei Gheinari F, Anvari E, Fateh A. Impact of interferon-induced transmembrane protein 3 gene rs12252 polymorphism on COVID-19 mortality. Cytokine 2022; 157:155957. [PMID: 35792282 PMCID: PMC9250290 DOI: 10.1016/j.cyto.2022.155957] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 01/08/2023]
|
26
|
Ishak A, Mehendale M, AlRawashdeh MM, Sestacovschi C, Sharath M, Pandav K, Marzban S. The association of COVID-19 severity and susceptibility and genetic risk factors: A systematic review of the literature. Gene 2022; 836:146674. [PMID: 35714803 PMCID: PMC9195407 DOI: 10.1016/j.gene.2022.146674] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND COVID-19 is associated with several risk factors such as distinct ethnicities (genetic ancestry), races, sexes, age, pre-existing comorbidities, smoking, and genetics. The authors aim to evaluate the correlation between variability in the host genetics and the severity and susceptibility towards COVID-19 in this study. METHODS Following the PRISMA guidelines, we retrieved all the relevant articles published until September 15, 2021, from two online databases: PubMed and Scopus. FINDINGS High-risk HLA haplotypes, higher expression of ACE polymorphisms, and several genes of cellular proteases such as TMPRSS2, FURIN, TLL-1 increase the risk of susceptibility and severity of COVID-19. In addition, upregulation of several genes encoding for both innate and acquired immune systems proteins, mainly CCR5, IFNs, TLR, DPPs, and TNF, positively correlate with COVID-19 severity. However, reduced expression or polymorphisms in genes affecting TLR and IFNλ increase COVID-19 severity. CONCLUSION Higher expression, polymorphisms, mutations, and deletions of several genes are linked with the susceptibility, severity, and clinical outcomes of COVID-19. Early treatment and vaccination of individuals with genetic predisposition could help minimize the severity and mortality associated with COVID-19.
Collapse
Affiliation(s)
- Angela Ishak
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA.
| | - Meghana Mehendale
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| | - Mousa M AlRawashdeh
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA; European University Cyprus - School of Medicine, Nicosia, Cyprus
| | - Cristina Sestacovschi
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| | - Medha Sharath
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA; Bangalore Medical College and Research Institute, Bangalore, Karnataka, India
| | - Krunal Pandav
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| | - Sima Marzban
- Department of Research & Academic Affairs, Larkin Community Hospital, South Miami, Florida, USA
| |
Collapse
|
27
|
Das T, Yang X, Lee H, Garst EH, Valencia E, Chandran K, Im W, Hang HC. S-Palmitoylation and Sterol Interactions Mediate Antiviral Specificity of IFITMs. ACS Chem Biol 2022; 17:2109-2120. [PMID: 35861660 PMCID: PMC10597057 DOI: 10.1021/acschembio.2c00176] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Interferon-induced transmembrane proteins (IFITM1, 2, and 3) are important antiviral proteins that are active against many viruses, including influenza A virus (IAV), dengue virus (DENV), Ebola virus (EBOV), Zika virus (ZIKV), and severe acute respiratory syndrome coronavirus (SARS-CoV). IFITM proteins exhibit specificity in activity, but their distinct mechanisms of action and regulation are unclear. Since S-palmitoylation and cholesterol homeostasis are crucial for viral infections, we investigated IFITM interactions with cholesterol by photoaffinity cross-linking in mammalian cells along with molecular dynamic simulations and nuclear magnetic resonance analysis in vitro. These studies suggest that cholesterol can directly interact with S-palmitoylated IFITMs in cells and alter the conformation of IFITMs in membrane bilayers. Notably, we discovered that the S-palmitoylation levels regulate differential IFITM protein interactions with cholesterol in mammalian cells and specificity of antiviral activity toward IAV, SARS-CoV-2, and EBOV. Our studies suggest that modulation of IFITM S-palmitoylation levels and cholesterol interaction influence host susceptibility to different viruses.
Collapse
Affiliation(s)
- Tandrila Das
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, United States
- Tri-Institutional Ph.D. Program in Chemical Biology, New York, NY 10065, United States
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, United States
| | - Xinglin Yang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, United States
| | - Hwayoung Lee
- Department of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA 18015, United States
| | - Emma H. Garst
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, United States
- Tri-Institutional Ph.D. Program in Chemical Biology, New York, NY 10065, United States
| | - Estefania Valencia
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Wonpil Im
- Department of Biological Sciences, Chemistry, and Bioengineering, Lehigh University, Bethlehem, PA 18015, United States
| | - Howard C. Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, United States
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, United States
| |
Collapse
|
28
|
David S, Dorado G, Duarte EL, David-Bosne S, Trigueiro-Louro J, Rebelo-de-Andrade H. COVID-19: impact on Public Health and hypothesis-driven investigations on genetic susceptibility and severity. Immunogenetics 2022; 74:381-407. [PMID: 35348847 PMCID: PMC8961091 DOI: 10.1007/s00251-022-01261-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
COVID-19 is a new complex multisystem disease caused by the novel coronavirus SARS-CoV-2. In slightly over 2 years, it infected nearly 500 million and killed 6 million human beings worldwide, causing an unprecedented coronavirus pandemic. Currently, the international scientific community is engaged in elucidating the molecular mechanisms of the pathophysiology of SARS-CoV-2 infection as a basis of scientific developments for the future control of COVID-19. Global exome and genome analysis efforts work to define the human genetics of protective immunity to SARS-CoV-2 infection. Here, we review the current knowledge regarding the SARS-CoV-2 infection, the implications of COVID-19 to Public Health and discuss genotype to phenotype association approaches that could be exploited through the selection of candidate genes to identify the genetic determinants of severe COVID-19.
Collapse
Affiliation(s)
- Susana David
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge (INSA,IP), Lisboa, Portugal.
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal.
| | - Guillermo Dorado
- Atlántida Centro de Investigación y Desarrollo de Estudios Profesionales (CIDEP), Granada, Spain
| | - Elsa L Duarte
- MED-Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Escola de Ciências e Tecnologia, Universidade de Évora, Évora, Portugal
| | | | - João Trigueiro-Louro
- Departamento de Doenças Infeciosas, INSA, IP, Lisboa, Portugal
- Host-Pathogen Interaction Unit, Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- Hospital Egas Moniz, Centro Hospitalar Lisboa Ocidental, Lisboa, Portugal
| | - Helena Rebelo-de-Andrade
- Departamento de Doenças Infeciosas, INSA, IP, Lisboa, Portugal
- Host-Pathogen Interaction Unit, Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
29
|
Pacheco-Hernández LM, Ramírez-Noyola JA, Gómez-García IA, Ignacio-Cortés S, Zúñiga J, Choreño-Parra JA. Comparing the Cytokine Storms of COVID-19 and Pandemic Influenza. J Interferon Cytokine Res 2022; 42:369-392. [PMID: 35674675 PMCID: PMC9422807 DOI: 10.1089/jir.2022.0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/19/2022] [Indexed: 12/15/2022] Open
Abstract
Emerging respiratory viruses are major health threats due to their potential to cause massive outbreaks. Over the past 2 years, the coronavirus disease 2019 (COVID-19) pandemic has caused millions of cases of severe infection and deaths worldwide. Although natural and vaccine-induced protective immune mechanisms against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been increasingly identified, the factors that determine morbimortality are less clear. Comparing the immune signatures of COVID-19 and other severe respiratory infections such as the pandemic influenza might help dissipate current controversies about the origin of their severe manifestations. As such, identifying homologies in the immunopathology of both diseases could provide targets for immunotherapy directed to block shared pathogenic mechanisms. Meanwhile, finding unique characteristics that differentiate each infection could shed light on specific immune alterations exploitable for diagnostic and individualized therapeutics for each case. In this study, we summarize immunopathological aspects of COVID-19 and pandemic influenza from the perspective of cytokine storms as the driving force underlying morbidity. Thereby, we analyze similarities and differences in the cytokine profiles of both infections, aiming to bring forward those molecules more attractive for translational medicine and drug development.
Collapse
Affiliation(s)
- Lynette Miroslava Pacheco-Hernández
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Jazmín Ariadna Ramírez-Noyola
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Programa de Maestría en Ciencias de la Salud, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón and Plan de San Luis, Mexico City, Mexico
| | - Itzel Alejandra Gómez-García
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Sergio Ignacio-Cortés
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| |
Collapse
|
30
|
Trugilho MRO, Azevedo-Quintanilha IG, Gesto JSM, Moraes ECS, Mandacaru SC, Campos MM, Oliveira DM, Dias SSG, Bastos VA, Santos MDM, Carvalho PC, Valente RH, Hottz ED, Bozza FA, Souza TML, Perales J, Bozza PT. Platelet proteome reveals features of cell death, antiviral response and viral replication in covid-19. Cell Death Discov 2022; 8:324. [PMID: 35842415 PMCID: PMC9287722 DOI: 10.1038/s41420-022-01122-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has affected over 400 million people worldwide, leading to 6 million deaths. Among the complex symptomatology of COVID-19, hypercoagulation and thrombosis have been described to directly contribute to lethality, pointing out platelets as an important SARS-CoV-2 target. In this work, we explored the platelet proteome of COVID-19 patients through a label-free shotgun proteomics approach to identify platelet responses to infection, as well as validation experiments in a larger patient cohort. Exclusively detected proteins (EPs) and differentially expressed proteins (DEPs) were identified in the proteomic dataset and thus classified into biological processes to map pathways correlated with pathogenesis. Significant changes in the expression of proteins related to platelet activation, cell death, and antiviral response through interferon type-I were found in all patients. Since the outcome of COVID-19 varies highly among individuals, we also performed a cross-comparison of proteins found in survivors and nonsurvivors. Proteins belonging to the translation pathway were strongly highlighted in the nonsurvivor group. Moreover, the SARS-CoV-2 genome was fully sequenced in platelets from five patients, indicating viral internalization and preprocessing, with CD147 as a potential entry route. In summary, platelets play a significant role in COVID-19 pathogenesis via platelet activation, antiviral response, and disease severity.
Collapse
Affiliation(s)
- Monique R O Trugilho
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
- Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| | | | - João S M Gesto
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Emilly Caroline S Moraes
- Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Samuel C Mandacaru
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Mariana M Campos
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Douglas M Oliveira
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Suelen S G Dias
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Viviane A Bastos
- Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Marlon D M Santos
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
| | - Paulo C Carvalho
- Laboratory for Structural and Computational Proteomics, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
| | - Richard H Valente
- Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Eugenio D Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Fernando A Bozza
- National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, and D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Thiago Moreno L Souza
- Center for Technological Development in Health, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute for Science and Technology on Innovation on Diseases of Neglected Populations, Rio de Janeiro, Brazil
| | - Jonas Perales
- Laboratory of Toxinology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Patrícia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
31
|
Dieter C, Brondani LDA, Leitão CB, Gerchman F, Lemos NE, Crispim D. Genetic polymorphisms associated with susceptibility to COVID-19 disease and severity: A systematic review and meta-analysis. PLoS One 2022; 17:e0270627. [PMID: 35793369 PMCID: PMC9258831 DOI: 10.1371/journal.pone.0270627] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/15/2022] [Indexed: 12/17/2022] Open
Abstract
Although advanced age and presence of comorbidities significantly impact the variation observed in the clinical symptoms of COVID-19, it has been suggested that genetic variants may also be involved in the disease. Thus, the aim of this study was to perform a systematic review with meta-analysis of the literature to identify genetic polymorphisms that are likely to contribute to COVID-19 pathogenesis. Pubmed, Embase and GWAS Catalog repositories were systematically searched to retrieve articles that investigated associations between polymorphisms and COVID-19. For polymorphisms analyzed in 3 or more studies, pooled OR with 95% CI were calculated using random or fixed effect models in the Stata Software. Sixty-four eligible articles were included in this review. In total, 8 polymorphisms in 7 candidate genes and 74 alleles of the HLA loci were analyzed in 3 or more studies. The HLA-A*30 and CCR5 rs333Del alleles were associated with protection against COVID-19 infection, while the APOE rs429358C allele was associated with risk for this disease. Regarding COVID-19 severity, the HLA-A*33, ACE1 Ins, and TMPRSS2 rs12329760T alleles were associated with protection against severe forms, while the HLA-B*38, HLA-C*6, and ApoE rs429358C alleles were associated with risk for severe forms of COVID-19. In conclusion, polymorphisms in the ApoE, ACE1, TMPRSS2, CCR5, and HLA loci appear to be involved in the susceptibility to and/or severity of COVID-19.
Collapse
Affiliation(s)
- Cristine Dieter
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Letícia de Almeida Brondani
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristiane Bauermann Leitão
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fernando Gerchman
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Natália Emerim Lemos
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- Endocrine and Metabolism Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
32
|
Kim YC, Jeong MJ, Jeong BH. Development of a chicken interferon-induced transmembrane protein 3 (IFITM3)-specific monoclonal antibody using phage display. Acta Vet Hung 2022. [PMID: 35895533 DOI: 10.1556/004.2022.00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/19/2022] [Indexed: 02/18/2024]
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) has potent antiviral activity against several viruses. Recent studies have reported that the chicken IFITM3 gene also plays a pivotal role in blocking viral replication, but these studies are considerably limited due to being conducted at the RNA level only. Thus, the development of a chicken IFITM3 protein-specific antibody is needed to validate the function of IFITM3 at the protein level. Epitope prediction was performed with the immune epitope database analysis resource (IEDB-AR) program. The epitope was validated by four in silico programs, Jped4, Clustal Omega, TMpred and SOSUI. Chicken IFITM3 protein-specific monoclonal antibodies were screened by enzyme-linked immunosorbent assay through affinity between recombinant IFITM3 protein and phage-displayed candidate antibodies. Validation of the reactivity of the chicken IFITM3 protein-specific antibody to chicken tissues was carried out using western blotting. We developed a chicken IFITM3 protein-specific monoclonal antibody using phage display. The reactivity of the antibody with peripheral chicken tissues was confirmed using western blotting. To the best of our knowledge, this was the first development of a chicken IFITM3 protein-specific monoclonal antibody using phage display.
Collapse
Affiliation(s)
- Yong-Chan Kim
- 1 Korea Zoonosis Research Institute, Jeonbuk National University, Hana-ro, Iksan, Jeonbuk 54531, Republic of Korea
- 2 Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Min-Ju Jeong
- 1 Korea Zoonosis Research Institute, Jeonbuk National University, Hana-ro, Iksan, Jeonbuk 54531, Republic of Korea
- 2 Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Byung-Hoon Jeong
- 1 Korea Zoonosis Research Institute, Jeonbuk National University, Hana-ro, Iksan, Jeonbuk 54531, Republic of Korea
- 2 Department of Bioactive Material Sciences and Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| |
Collapse
|
33
|
Regino-Zamarripa NE, Ramírez-Martínez G, Jiménez-Álvarez LA, Cruz-Lagunas A, Gómez-García IA, Ignacio-Cortés S, Márquez-García JE, Pacheco-Hernández LM, Ramírez-Noyola JA, Barquera R, Mendoza-Milla C, Luna-Rivero C, Domínguez-Cherit JG, Ramírez-Rangel R, Rodríguez-Reyna TS, Hernández-Cárdenas CM, Choreño-Parra JA, León-Ávila G, Zúñiga J. Differential Leukocyte Expression of IFITM1 and IFITM3 in Patients with Severe Pandemic Influenza A(H1N1) and COVID-19. J Interferon Cytokine Res 2022; 42:430-443. [PMID: 35708622 PMCID: PMC9422779 DOI: 10.1089/jir.2022.0036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Interferon-induced transmembrane (IFITM) proteins mediate protection against enveloped viruses by blocking membrane fusion at endosomes. IFITM1 and IFITM3 are crucial for protection against influenza, and various single nucleotide polymorphisms altering their function have been linked to disease susceptibility. However, bulk IFITM1 and IFITM3 mRNA expression dynamics and their correlation with clinical outcomes have not been extensively addressed in patients with respiratory infections. In this study, we evaluated the expression of IFITM1 and IFITM3 in peripheral leukocytes from healthy controls and individuals with severe pandemic influenza A(H1N1) or coronavirus disease 2019 (COVID-19). Comparisons between participants grouped according to their clinical characteristics, underlying disease, and outcomes showed that the downregulation of IFITM1 was a distinctive characteristic of severe pandemic influenza A(H1N1) that correlated with outcomes, including mortality. Conversely, increased IFITM3 expression was a common feature of severe pandemic influenza A(H1N1) and COVID-19. Using a high-dose murine model of infection, we confirmed not only the downregulation of IFITM1 but also of IFITM3 in the lungs of mice with severe influenza, as opposed to humans. Analyses in the comparative cohort also indicate the possible participation of IFITM3 in COVID-19. Our results add to the evidence supporting a protective function of IFITM proteins against viral respiratory infections in humans.
Collapse
Affiliation(s)
- Nora E Regino-Zamarripa
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Programa de Doctorado en Ciencias Quimicobiológicas, Sección de Estudios de Posgrado e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio and Plan de Ayala s/n, Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Gustavo Ramírez-Martínez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Luis Armando Jiménez-Álvarez
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Alfredo Cruz-Lagunas
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Itzel Alejandra Gómez-García
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Sergio Ignacio-Cortés
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - José Eduardo Márquez-García
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - Lynette Miroslava Pacheco-Hernández
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Jazmín Ariadna Ramírez-Noyola
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Programa de Maestría en Ciencias de la Salud, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón and Plan de San Luis, Mexico City, Mexico
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for Science of Human History, Jena, Germany
| | - Criselda Mendoza-Milla
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Cesar Luna-Rivero
- Deparment of Pathology, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - José Guillermo Domínguez-Cherit
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico.,Critical Care Unit, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán, Mexico City, Mexico
| | - Remedios Ramírez-Rangel
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Investigación Científica, Mexico City, Mexico
| | - Tatiana Sofía Rodríguez-Reyna
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán, Mexico City, Mexico
| | - Carmen M Hernández-Cárdenas
- Respiratory Critical Care Unit, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Gloria León-Ávila
- Zoology Deparment, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio and Plan de Ayala s/n, Mexico City, Mexico
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas," Mexico City, Mexico.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| |
Collapse
|
34
|
Wen S, Song Y, Li C, Jin N, Zhai J, Lu H. Positive Regulation of the Antiviral Activity of Interferon-Induced Transmembrane Protein 3 by S-Palmitoylation. Front Immunol 2022; 13:919477. [PMID: 35769480 PMCID: PMC9236556 DOI: 10.3389/fimmu.2022.919477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
The interferon-induced transmembrane protein 3 (IFITM3), a small molecule transmembrane protein induced by interferon, is generally conserved in vertebrates, which can inhibit infection by a diverse range of pathogenic viruses such as influenza virus. However, the precise antiviral mechanisms of IFITM3 remain unclear. At least four post-translational modifications (PTMs) were found to modulate the antiviral effect of IFITM3. These include positive regulation provided by S-palmitoylation of cysteine and negative regulation provided by lysine ubiquitination, lysine methylation, and tyrosine phosphorylation. IFITM3 S-palmitoylation is an enzymatic addition of a 16-carbon fatty acid on the three cysteine residues within or adjacent to its two hydrophobic domains at positions 71, 72, and 105, that is essential for its proper targeting, stability, and function. As S-palmitoylation is the only PTM known to enhance the antiviral activity of IFITM3, enzymes that add this modification may play important roles in IFN-induced immune responses. This study mainly reviews the research progresses on the antiviral mechanism of IFITM3, the regulation mechanism of S-palmitoylation modification on its subcellular localization, stability, and function, and the enzymes that mediate the S-palmitoylation modification of IFITM3, which may help elucidate the mechanism by which this IFN effector restrict virus replication and thus aid in the design of therapeutics targeted at pathogenic viruses.
Collapse
Affiliation(s)
- Shubo Wen
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
| | - Yang Song
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
| | - Chang Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ningyi Jin
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Jingbo Zhai
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
| | - Huijun Lu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
35
|
Li Y, Wei L, He L, Sun J, Liu N. Interferon-induced transmembrane protein 3 gene polymorphisms are associated with COVID-19 susceptibility and severity: A meta-analysis. J Infect 2022; 84:825-833. [PMID: 35461906 PMCID: PMC9022375 DOI: 10.1016/j.jinf.2022.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/01/2022] [Accepted: 04/15/2022] [Indexed: 01/17/2023]
Abstract
BACKGROUND Recent evidence has linked the interferon-induced transmembrane protein 3 gene (IFITM3) to coronavirus disease 2019 (COVID-19) outcomes, but the results are inconsistent. The purpose of this meta-analysis was to evaluate the association of IFITM3 gene polymorphisms with COVID-19 susceptibility and severity. METHOD A systematic search was performed with PubMed, Web of Science, Cochrane Library, and Embase from the date of inception to 20 December 2021. The results were analyzed with pooled odds ratios (ORs) and 95% confidence intervals (95% CIs). The robustness was performed using the method of sequential removal for each trial. RESULTS Four studies involving 1989 subjects were included, from which 1114 patients were positive for COVID-19. For IFITM3 rs12252, the pooled OR showed that there was a significant association between the genotype frequencies and infection with COVID-19 in any of the gene models, i.e., the allelic model (OR = 1.91, 95% CI, 1.36-2.68), the dominant model (OR = 1.80, 95% CI, 1.27-2.56), the recessive model (OR = 5.67, 95% CI, 1.01-31.77), the heterozygous model (OR = 1.65, 95% CI, 1.16-2.36) and the homozygous model (OR = 5.88, 95% CI, 1.05-32.98). The results stratified by severity showed that there was a significant correlation only between the allelic (OR = 0.69, 95% CI, 0.49-0.97) and recessive (OR = 0.43, 95% CI, 0.20-0.93) models. Our results did not support the associations between the IFITM3 rs34481144 gene polymorphism and COVID-19 susceptibility or severity in any of the gene models. CONCLUSIONS The findings indicated that IFITM3 rs12252 gene polymorphisms were associated with COVID-19 susceptibility and that the rs12252-C variant was particularly critical for severity. Genetic factors should be considered in future vaccine development.
Collapse
Affiliation(s)
- Yapeng Li
- Rehabilitation Therapy Center, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, China
| | - Lanlan Wei
- Inspection and Monitoring Center, Luoyang Center for Disease Control and Prevention, Luoyang, China
| | - Lanye He
- Department of Geratology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiahui Sun
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Nanyang Liu
- Department of Geratology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Corresponding author
| |
Collapse
|
36
|
Sagulkoo P, Plaimas K, Suratanee A, Colado Simão AN, Vissoci Reiche EM, Maes M. Immunopathogenesis and immunogenetic variants in COVID-19. Curr Pharm Des 2022; 28:1780-1797. [PMID: 35598232 DOI: 10.2174/1381612828666220519150821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Coronavirus disease 2019 (COVID-19) continues to spread globally despite the discovery of vaccines. Many people die due to COVID-19 as a result of catastrophic consequences, such as acute respiratory distress syndrome, pulmonary embolism, and disseminated intravascular coagulation caused by a cytokine storm. Immunopathology and immunogenetic research may assist in diagnosing, predicting, and treating severe COVID-19 and the cytokine storm associated with COVID-19. This paper reviews the immunopathogenesis and immunogenetic variants that play a role in COVID-19. Although various immune-related genetic variants have been investigated in relation to severe COVID-19, the NOD-like receptor protein 3 (NLRP3) and interleukin 18 (IL-18) have not been assessed for their potential significance in the clinical outcome. Here, we a) summarize the current understanding of the immunogenetic etiology and pathophysiology of COVID-19 and the associated cytokine storm; and b) construct and analyze protein-protein interaction (PPI) networks (using enrichment and annotation analysis) based on the NLRP3 and IL18 variants and all genes, which were established in severe COVID-19. Our PPI network and enrichment analyses predict a) useful drug targets to prevent the onset of severe COVID-19 including key antiviral pathways such as Toll-Like-Receptor cascades, NOD-like receptor signaling, RIG-induction of interferon (IFN) α/β, and interleukin (IL)-1, IL-6, IL-12, IL-18, and tumor necrosis factor signaling; and b) SARS-CoV-2 innate immune evasion and the participation of MYD88 and MAVS in the pathophysiology of severe COVID-19. The PPI network genetic variants may be used to predict more severe COVID-19 outcomes, thereby opening the door for targeted preventive treatments.
Collapse
Affiliation(s)
- Pakorn Sagulkoo
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kitiporn Plaimas
- Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Andrea Name Colado Simão
- Department of Pathology Clinical Analysis and Toxicology, Health Sciences Center, Londrina State University, Londrina, Brazil
| | - Edna Maria Vissoci Reiche
- Department of Pathology Clinical Analysis and Toxicology, Health Sciences Center, Londrina State University, Londrina, Brazil
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
37
|
Chen J, Wu Z, Wang J, Si X, Zhang R, Sun T, Dong Q, Wu W, Qiu Y. Docosahexaenoic acid ester of phloridzin reduces inflammation and insulin resistance via AMPK. Curr Pharm Des 2022; 28:1854-1862. [PMID: 35585811 DOI: 10.2174/1381612828666220518102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Docosahexaenoic acid-acylated phloridzin (PZ-DHA), a novel polyphenol fatty acid ester derivative, is synthesized through an acylation reaction of phloridzin (PZ) and docosahexaenoic acid (DHA). PZ-DHA is more stable than DHA and exhibits higher cellular uptake and bioavailability than PZ. OBJECTIVE To investigate the effects of PZ-DHA on insulin resistance in the skeletal muscle and the related mechanisms, we used palmitic acid (PA)-treated C2C12 myotubes as an insulin resistance model. RESULTS We found that PZ-DHA increased the activity of AMP-activated protein kinase (AMPK) and improved glucose uptake and mitochondrial function in an AMPK-dependent manner in untreated C2C12 myotubes. PZ-DHA treatment of the myotubes reversed PA-induced insulin resistance; this was indicated by increases in glucose uptake and the expression of membrane glucose transporter 4 (Glut4) and phosphorylated Akt. Moreover, PZ-DHA treatment reversed PA-induced inflammation and oxidative stress. These effects of PZ-DHA were mediated by AMPK. Furthermore, the increase in AMPK activity, improvement in insulin resistance, and decrease in inflammatory and oxidative responses after PZ-DHA treatment diminished upon co-treatment with a liver kinase B1 (LKB1) inhibitor, suggesting that PZ-DHA improved AMPK activity by regulating its upstream kinase, LKB1. CONCLUSION The effects of PZ-DHA on insulin resistance in C2C12 myotubes may be mediated by the LKB1-AMPK signaling pathway. Hence, PZ-DHA is a promising therapeutic agent for insulin resistance in type 2 diabetes.
Collapse
Affiliation(s)
- Jingqing Chen
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, 100193, China.,State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Jin Wang
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, 100193, China
| | - Xuemeng Si
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193, China
| | - Rui Zhang
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, 100193, China
| | - Tianqi Sun
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, 100193, China
| | - Qiaoyan Dong
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, 100193, China
| | - Wenqing Wu
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, 100193, China
| | - Yefeng Qiu
- Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing, 100193, China
| |
Collapse
|
38
|
The Evolutionary Dance between Innate Host Antiviral Pathways and SARS-CoV-2. Pathogens 2022; 11:pathogens11050538. [PMID: 35631059 PMCID: PMC9147806 DOI: 10.3390/pathogens11050538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/04/2023] Open
Abstract
Compared to what we knew at the start of the SARS-CoV-2 global pandemic, our understanding of the interplay between the interferon signaling pathway and SARS-CoV-2 infection has dramatically increased. Innate antiviral strategies range from the direct inhibition of viral components to reprograming the host’s own metabolic pathways to block viral infection. SARS-CoV-2 has also evolved to exploit diverse tactics to overcome immune barriers and successfully infect host cells. Herein, we review the current knowledge of the innate immune signaling pathways triggered by SARS-CoV-2 with a focus on the type I interferon response, as well as the mechanisms by which SARS-CoV-2 impairs those defenses.
Collapse
|
39
|
de Araújo JLF, Menezes D, de Aguiar RS, de Souza RP. IFITM3, FURIN, ACE1, and TNF-α Genetic Association With COVID-19 Outcomes: Systematic Review and Meta-Analysis. Front Genet 2022; 13:775246. [PMID: 35432458 PMCID: PMC9010674 DOI: 10.3389/fgene.2022.775246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/11/2022] [Indexed: 12/18/2022] Open
Abstract
Human polymorphisms may contribute to SARS-CoV-2 infection susceptibility and COVID-19 outcomes (asymptomatic presentation, severe COVID-19, death). We aimed to evaluate the association of IFITM3, FURIN, ACE1, and TNF-α genetic variants with both phenotypes using meta-analysis. The bibliographic search was conducted on the PubMed and Scielo databases covering reports published until February 8, 2022. Two independent researchers examined the study quality using the Q-Genie tool. Using the Mantel–Haenszel weighted means method, odds ratios were combined under both fixed- and random-effect models. Twenty-seven studies were included in the systematic review (five with IFITM3, two with Furin, three with TNF-α, and 17 with ACE1) and 22 in the meta-analysis (IFITM3 n = 3, TNF-α, and ACE1 n = 16). Meta-analysis indicated no association of 1) ACE1 rs4646994 and susceptibility, 2) ACE1 rs4646994 and asymptomatic COVID-19, 3) IFITM3 rs12252 and ICU hospitalization, and 4) TNF-α rs1800629 and death. On the other hand, significant results were found for ACE1 rs4646994 association with COVID-19 severity (11 studies, 692 severe cases, and 1,433 nonsevere controls). The ACE1 rs4646994 deletion allele showed increased odds for severe manifestation (OR: 1.45; 95% CI: 1.26–1.66). The homozygous deletion was a risk factor (OR: 1.49, 95% CI: 1.22–1.83), while homozygous insertion presented a protective effect (OR: 0.57, 95% CI: 0.45–0.74). Further reports are needed to verify this effect on populations with different ethnic backgrounds.Systematic Review Registration: https://www.crd.york.ac.uk/prosperodisplay_record.php?ID=CRD42021268578, identifier CRD42021268578
Collapse
|
40
|
Ramezankhani R, Solhi R, Chai YC, Vosough M, Verfaillie C. Organoid and microfluidics-based platforms for drug screening in COVID-19. Drug Discov Today 2022; 27:1062-1076. [PMID: 34954328 PMCID: PMC8695520 DOI: 10.1016/j.drudis.2021.12.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/09/2021] [Accepted: 12/18/2021] [Indexed: 01/06/2023]
Abstract
Proposing efficient prophylactic and therapeutic strategies for coronavirus 2019 (COVID-19) requires precise knowledge of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pathogenesis. An array of platforms, including organoids and microfluidic devices, have provided a basis for studies of SARS-CoV-2. Here, we summarize available models as well as novel drug screening approaches, from simple to more advanced platforms. Notably, organoids and microfluidic devices offer promising perspectives for the clinical translation of basic science, such as screening therapeutics candidates. Overall, modifying these advanced micro and macro 3D platforms for disease modeling and combining them with recent advances in drug screening has significant potential for the discovery of novel potent drugs against COVID-19.
Collapse
Affiliation(s)
- Roya Ramezankhani
- Department of Applied Cell Sciences, Faculty of Basic Science and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran,Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium,Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, ACECR, Tehran, Iran
| | - Roya Solhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, ACECR, Tehran, Iran,Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yoke Chin Chai
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium
| | - Massoud Vosough
- Department of Applied Cell Sciences, Faculty of Basic Science and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, ACECR, Tehran, Iran.
| | - Catherine Verfaillie
- Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium.
| |
Collapse
|
41
|
Zhao X, Chen D, Li X, Griffith L, Chang J, An P, Guo JT. Interferon Control of Human Coronavirus Infection and Viral Evasion: Mechanistic Insights and Implications for Antiviral Drug and Vaccine Development. J Mol Biol 2022; 434:167438. [PMID: 34990653 PMCID: PMC8721920 DOI: 10.1016/j.jmb.2021.167438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/16/2022]
Abstract
Recognition of viral infections by various pattern recognition receptors (PRRs) activates an inflammatory cytokine response that inhibits viral replication and orchestrates the activation of adaptive immune responses to control the viral infection. The broadly active innate immune response puts a strong selective pressure on viruses and drives the selection of variants with increased capabilities to subvert the induction and function of antiviral cytokines. This revolutionary process dynamically shapes the host ranges, cell tropism and pathogenesis of viruses. Recent studies on the innate immune responses to the infection of human coronaviruses (HCoV), particularly SARS-CoV-2, revealed that HCoV infections can be sensed by endosomal toll-like receptors and/or cytoplasmic RIG-I-like receptors in various cell types. However, the profiles of inflammatory cytokines and transcriptome response induced by a specific HCoV are usually cell type specific and determined by the virus-specific mechanisms of subverting the induction and function of interferons and inflammatory cytokines as well as the genetic trait of the host genes of innate immune pathways. We review herein the recent literatures on the innate immune responses and their roles in the pathogenesis of HCoV infections with emphasis on the pathobiological roles and therapeutic effects of type I interferons in HCoV infections and their antiviral mechanisms. The knowledge on the mechanism of innate immune control of HCoV infections and viral evasions should facilitate the development of therapeutics for induction of immune resolution of HCoV infections and vaccines for efficient control of COVID-19 pandemics and other HCoV infections.
Collapse
Affiliation(s)
- Xuesen Zhao
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Institute of Infectious Diseases, Beijing 100015, China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China.
| | - Danying Chen
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Institute of Infectious Diseases, Beijing 100015, China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xinglin Li
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Institute of Infectious Diseases, Beijing 100015, China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Lauren Griffith
- Baruch S. Blumberg Institute, Hepatitis B Foundation, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Jinhong Chang
- Baruch S. Blumberg Institute, Hepatitis B Foundation, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | - Ping An
- Basic Research Laboratory, National Cancer Institute, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, Hepatitis B Foundation, 3805 Old Easton Road, Doylestown, PA 18902, USA.
| |
Collapse
|
42
|
The Role of Genetic Factors in the Development of Acute Respiratory Viral Infection COVID-19: Predicting Severe Course and Outcomes. Biomedicines 2022; 10:biomedicines10030549. [PMID: 35327350 PMCID: PMC8945420 DOI: 10.3390/biomedicines10030549] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to identify single nucleotide variants in genes associated with susceptibility to or severe outcomes of COVID-19. A total of 319 genomic DNA samples from patients with varying degrees of disease severity and 78 control DNA samples from people who had regular or prolonged contact with patients with COVID-19 but did not have clinical manifestations and/or antibodies to SARS-CoV-2. Seven SNPs were identified that were statistically associated with disease risk or severe course, rs1799864 in the CCR2 gene (OR = 2.21), rs1990760 in the IFIH1 gene (OR = 2.41), rs1800629 in the TNF gene (OR = 1.98), rs75603675 in the TMPRSS2 gene (OR = 1.86), rs7842 in the C3AR1 gene (OR = 2.08), rs179008 in the gene TLR7 (OR = 1.85), rs324011 in the C3AR1 gene (OR = 2.08), rs179008 in the TLR7 gene (OR = 1.85), and rs324011 in the STAT6 gene (OR = 1.84), as well as two variants associated with protection from COVID-19, rs744166 in the STAT3 gene (OR = 0.36) and rs1898830 in the TLR2 gene (OR = 0.47). The genotype in the region of these markers can be the criterion of the therapeutic approach for patients with COVID-19.
Collapse
|
43
|
Adli A, Rahimi M, Khodaie R, Hashemzaei N, Hosseini SM. Role of Genetic Variants and Host Polymorphisms on COVID‐19: From Viral Entrance Mechanisms to Immunological Reactions. J Med Virol 2022; 94:1846-1865. [PMID: 35076118 PMCID: PMC9015257 DOI: 10.1002/jmv.27615] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 11/24/2022]
Abstract
Coronavirus disease 2019 (COVID‐19), caused by a highly pathogenic emerging virus, is called severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). Knowledge regarding the pathogenesis of this virus is in infancy; however, investigation on the pathogenic mechanisms of the SARS‐CoV‐2 is underway. In COVID‐19, one of the most remarkable characteristics is the wide range of disease manifestation and severity seen across individuals of different ethnic backgrounds and geographical locations. To effectively manage COVID‐19 in the populations, beyond SARS‐CoV‐2 detection, serological response assessment, and analytic techniques, it is critical to obtain knowledge about at‐risk individuals and comprehend the identified variations in the disease's severity in general and also in the populations' levels. Several factors can contribute to variation in disease presentation, including population density, gender and age differences, and comorbid circumstances including diabetes mellitus, hypertension, and obesity. Genetic factors presumably influence SARS‐CoV‐2 infection susceptibility. Besides this, COVID‐19 has also been linked with a higher risk of mortality in men and certain ethnic groups, revealing that host genetic characteristics may affect the individual risk of death. Also, genetic variants involved in pathologic processes, including virus entrance into cells, antiviral immunity, and inflammatory response, are not entirely understood. Regarding SARS‐CoV‐2 infection characteristics, the present review suggests that various genetic polymorphisms influence virus pathogenicity and host immunity, which might have significant implications for understanding and interpreting the matter of genetics in SARS‐CoV‐2 pathogenicity and customized integrative medical care based on population investigation. Genetic factors presumably influence SARS‐CoV‐2 infection susceptibility. Genetic variants were involved in the pathologic processes of SARS‐CoV‐2 infection. Various genetic polymorphisms influence virus pathogenicity and host immunity. Human leukocyte antigens (HLAs) may play a vital role in SARS‐CoV‐2 susceptibility. Polymorphisms in several genes such as IL‐6, TMPRSS2, IFITM3, CD26, ACE, and DBP were associated with the COVID‐19 severity.
Collapse
Affiliation(s)
- Abolfazl Adli
- Human Genetic Research Center, Baqiyatallah University of Medical SciencesTehran1435916471Iran
| | - Mandana Rahimi
- Department of Pathology, School of Medicine, Hasheminejad Kidney Center, Iran University of Medical SciencesTehranIran
| | - Reza Khodaie
- Department of Biology, East Tehran Branch, Islamic Azad UniversityTehranIran
| | | | - Sayed Mostafa Hosseini
- Human Genetic Research Center, Baqiyatallah University of Medical SciencesTehran1435916471Iran
| |
Collapse
|
44
|
Amado-Rodríguez L, Salgado del Riego E, Gomez de Ona J, López Alonso I, Gil-Pena H, López-Martínez C, Martín-Vicente P, Lopez-Vazquez A, Gonzalez Lopez A, Cuesta-Llavona E, Rodriguez-Garcia R, Boga JA, Elena alvarez-Arguelles M, Mayordomo-Colunga J, Vidal-Castineira JR, Crespo I, Fernandez M, Criado L, Salvadores V, Jimeno-Demuth FJ, Blanch L, Prieto B, Fernandez-Fernandez A, Lopez-Larrea C, Coto E, Albaiceta GM. Effects of IFIH1 rs1990760 variants on systemic inflammation and outcome in critically ill COVID-19 patients in an observational translational study. eLife 2022; 11:73012. [PMID: 35060899 PMCID: PMC8782569 DOI: 10.7554/elife.73012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Background:Variants in IFIH1, a gene coding the cytoplasmatic RNA sensor MDA5, regulate the response to viral infections. We hypothesized that IFIH1 rs199076 variants would modulate host response and outcome after severe COVID-19.Methods:Patients admitted to an intensive care unit (ICU) with confirmed COVID-19 were prospectively studied and rs1990760 variants determined. Peripheral blood gene expression, cell populations, and immune mediators were measured. Peripheral blood mononuclear cells from healthy volunteers were exposed to an MDA5 agonist and dexamethasone ex-vivo, and changes in gene expression assessed. ICU discharge and hospital death were modeled using rs1990760 variants and dexamethasone as factors in this cohort and in-silico clinical trials.Results:About 227 patients were studied. Patients with the IFIH1 rs1990760 TT variant showed a lower expression of inflammation-related pathways, an anti-inflammatory cell profile, and lower concentrations of pro-inflammatory mediators. Cells with TT variant exposed to an MDA5 agonist showed an increase in IL6 expression after dexamethasone treatment. All patients with the TT variant not treated with steroids survived their ICU stay (hazard ratio [HR]: 2.49, 95% confidence interval [CI]: 1.29–4.79). Patients with a TT variant treated with dexamethasone showed an increased hospital mortality (HR: 2.19, 95% CI: 1.01–4.87) and serum IL-6. In-silico clinical trials supported these findings.Conclusions:COVID-19 patients with the IFIH1 rs1990760 TT variant show an attenuated inflammatory response and better outcomes. Dexamethasone may reverse this anti-inflammatory phenotype.Funding:Centro de Investigación Biomédica en Red (CB17/06/00021), Instituto de Salud Carlos III (PI19/00184 and PI20/01360), and Fundació La Marató de TV3 (413/C/2021).
Collapse
|
45
|
Suh S, Lee S, Gym H, Yoon S, Park S, Cha J, Kwon DH, Yang Y, Jee SH. A systematic review on papers that study on Single Nucleotide Polymorphism that affects coronavirus 2019 severity. BMC Infect Dis 2022; 22:47. [PMID: 35022007 PMCID: PMC8753023 DOI: 10.1186/s12879-022-07034-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 01/05/2022] [Indexed: 12/18/2022] Open
Abstract
Background COVID-19, caused by SARS-CoV-2 has become the most threatening issue to all populations around the world. It is, directly and indirectly, affecting all of us and thus, is an emerging topic dealt in global health. To avoid the infection, various studies have been done and are still ongoing. COVID-19 cases are reported all over the globe, and among the millions of cases, genetic similarity may be seen. The genetical common features seen within confirmed cases may help outline the tendency of infection and degree severity of the disease. Here, we reviewed multiple papers on SNPs related to SARS-CoV-2 infection and analyzed their results. Methods The PubMed databases were searched for papers discussing SNPs associated with SARS-CoV-2 infection and severity. Clinical studies with human patients and statistically showing the relevance of the SNP with virus infection were included. Quality Assessment of all papers was done with Newcastle Ottawa Scale. Results In the analysis, 21 full-text literature out of 2956 screened titles and abstracts, including 63,496 cases, were included. All were human-based clinical studies, some based on certain regions gathered patient data and some based on big databases obtained online. ACE2, TMPRSS2, and IFITM3 are the genes mentioned most frequently that are related to SARS-CoV-2 infection. 20 out of 21 studies mentioned one or more of those genes. The relevant genes according to SNPs were also analyzed. rs12252-C, rs143936283, rs2285666, rs41303171, and rs35803318 are the SNPs that were mentioned at least twice in two different studies. Conclusions We found that ACE2, TMPRSS2, and IFITM3 are the major genes that are involved in SARS-CoV-2 infection. The mentioned SNPs were all related to one or more of the above-mentioned genes. There were discussions on certain SNPs that increased the infection and severity to certain groups more than the others. However, as there is limited follow-up and data due to a shortage of time history of the disease, studies may be limited.
Collapse
|
46
|
Zani A, Kenney AD, Kawahara J, Eddy AC, Wang XL, Kc M, Lu M, Hemann EA, Li J, Peeples ME, Hall-Stoodley L, Forero A, Cai C, Ma J, Yount JS. Interferon-induced transmembrane protein 3 (IFITM3) limits lethality of SARS-CoV-2 in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.12.22.473914. [PMID: 34981061 PMCID: PMC8722598 DOI: 10.1101/2021.12.22.473914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Interferon-induced transmembrane protein 3 (IFITM3) is a host antiviral protein that alters cell membranes to block fusion of viruses. Published reports have identified conflicting pro- and antiviral effects of IFITM3 on SARS-CoV-2 in cultured cells, and its impact on viral pathogenesis in vivo remains unclear. Here, we show that IFITM3 knockout (KO) mice infected with mouse-adapted SARS-CoV-2 experienced extreme weight loss and lethality, while wild type (WT) mice lost minimal weight and recovered. KO mice had higher lung viral titers and increases in lung inflammatory cytokine levels, CD45-positive immune cell infiltration, and histopathology, compared to WT mice. Mechanistically, we observed disseminated viral antigen staining throughout the lung tissue and pulmonary vasculature in KO mice, while staining was observed in confined regions in WT lungs. Global transcriptomic analysis of infected lungs identified upregulation of gene signatures associated with interferons, inflammation, and angiogenesis in KO versus WT animals, highlighting changes in lung gene expression programs that precede severe lung pathology and fatality. Corroborating the protective effect of IFITM3 in vivo , K18-hACE2/IFITM3 KO mice infected with non-adapted SARS-CoV-2 showed enhanced, rapid weight loss and early death compared to control mice. Increased heart infection was observed in both mouse models in the absence of IFITM3, indicating that IFITM3 constrains extrapulmonary dissemination of SARS-CoV-2. Our results establish IFITM3 KO mice as a new animal model for studying severe SARS-CoV-2 infection of the lung and cardiovascular system, and overall demonstrate that IFITM3 is protective in SARS-CoV-2 infections of mice.
Collapse
|
47
|
Cuesta-Llavona E, Albaiceta GM, García-Clemente M, Duarte-Herrera ID, Amado-Rodríguez L, Hermida-Valverde T, Enríquez-Rodriguez AI, Hernández-González C, Melón S, Alvarez-Argüelles ME, Boga JA, Rojo-Alba S, Vázquez-Coto D, Gómez J, Coto E. Association between the interferon-induced transmembrane protein 3 gene ( IFITM3) rs34481144 / rs12252 haplotypes and COVID-19. CURRENT RESEARCH IN VIROLOGICAL SCIENCE 2021; 2:100016. [PMID: 34870250 PMCID: PMC8629514 DOI: 10.1016/j.crviro.2021.100016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/26/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022]
Abstract
The interferon induced transmembrane-protein 3 (IFITM3) plays an important role in the defence against viral infection. IFITM3 gene variants have been linked to differences in expression and associated with the risk of severe influenza by some authors. More recently, these variants have been associated with the risk of COVID-19 after SARS-CoV-2 infection. We determined the effect of two common IFITM3 polymorphisms (rs34481144 C/T and rs12252 A/G) on the risk of hospitalization due to COVID-19 by comparing 484 patients (152 required support in thr intensive care unit, ICU) and 182 age and sex matched controls (no disease symptoms). We found significantly higher frequencies of rs34481144 T and rs12252 G carriers among the patients (OR = 2.02 and OR = 1.51, respectively). None of the two variants were associated with ICU-admission or death. We found a significantly higher frequency of rs34481144 CC + rs12252 AA genotype carriers among the controls, suggesting a protective effect (p = 0.001, OR = 0.56, 95%CI = 0.40–0.80). Moreover, haplotype rs34481144 C - rs12252 A was significantly increased in the controls (p = 0.008, OR = 0.71, 95%CI = 0.55–0.91). Our results showed a significant effect of the IFITM3 variants in the risk for hospitalization after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Elías Cuesta-Llavona
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Guillermo M Albaiceta
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain.,Universidad de Oviedo, Oviedo, Spain.,CIBER-Enfermedades Respiratorias. Instituto de Salud Carlos III. Madrid, Spain.,Instituto Universitario de Oncología del Principado de Asturias. Oviedo, Spain
| | - Marta García-Clemente
- Neumología, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | | | - Laura Amado-Rodríguez
- Unidad de Cuidados Intensivos Cardiológicos, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain.,Universidad de Oviedo, Oviedo, Spain.,CIBER-Enfermedades Respiratorias. Instituto de Salud Carlos III. Madrid, Spain.,Instituto Universitario de Oncología del Principado de Asturias. Oviedo, Spain
| | - Tamara Hermida-Valverde
- Neumología, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Ana I Enríquez-Rodriguez
- Neumología, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Cristina Hernández-González
- Neumología, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Santiago Melón
- Microbiologia, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Marta E Alvarez-Argüelles
- Microbiologia, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - José A Boga
- Microbiologia, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Susana Rojo-Alba
- Microbiologia, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | | | - Juan Gómez
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain
| | - Eliecer Coto
- Genética Molecular, Hospital Universitario Central Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado deAsturias, ISPA, Oviedo, Spain.,Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
48
|
Deng H, Yan X, Yuan L. Human genetic basis of coronavirus disease 2019. Signal Transduct Target Ther 2021; 6:344. [PMID: 34545062 PMCID: PMC8450706 DOI: 10.1038/s41392-021-00736-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 02/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in considerable morbidity and mortality worldwide. COVID-19 incidence, severity, and mortality rates differ greatly between populations, genders, ABO blood groups, human leukocyte antigen (HLA) genotypes, ethnic groups, and geographic backgrounds. This highly heterogeneous SARS-CoV-2 infection is multifactorial. Host genetic factors such as variants in the angiotensin-converting enzyme gene (ACE), the angiotensin-converting enzyme 2 gene (ACE2), the transmembrane protease serine 2 gene (TMPRSS2), along with HLA genotype, and ABO blood group help to explain individual susceptibility, severity, and outcomes of COVID-19. This review is focused on COVID-19 clinical and viral characteristics, pathogenesis, and genetic findings, with particular attention on genetic diversity and variants. The human genetic basis could provide scientific bases for disease prediction and targeted therapy to address the COVID-19 scourge.
Collapse
Affiliation(s)
- Hao Deng
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China.
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China.
- Disease Genome Research Center, Central South University, Changsha, China.
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China.
| | - Xue Yan
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Disease Genome Research Center, Central South University, Changsha, China
| | - Lamei Yuan
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Disease Genome Research Center, Central South University, Changsha, China
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
49
|
Mohammed FS, Farooqi YN, Mohammed S. The Interferon-Induced Transmembrane Protein 3 -rs12252 Allele May Predict COVID-19 Severity Among Ethnic Minorities. Front Genet 2021; 12:692254. [PMID: 34434219 PMCID: PMC8380955 DOI: 10.3389/fgene.2021.692254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/15/2021] [Indexed: 12/30/2022] Open
Affiliation(s)
- Fahad S Mohammed
- Trinity College of Arts and Sciences, Duke University, Durham, NC, United States
| | | | - Suneel Mohammed
- Department of Medicine, Carolinas HealthCare System - Blue Ridge, Morganton, NC, United States
| |
Collapse
|
50
|
Abstract
Coronavirus disease (COVID-19) is an infectious disease caused by a newly discovered coronavirus, severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). There is growing evidence that host genetics play an important role in COVID-19 severity. Based on current knowledge about the human protein machinery for SARS-CoV-2 entry, the host innate immune response, and virus-host interactions, the potential effects of human genetic polymorphisms, which may contribute to clinical differences in SARS-CoV-2 pathogenesis, may help to determine the individual risk for COVID-19 infection and outcome.
Collapse
Affiliation(s)
- Joris R Delanghe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.
| | - Marijn M Speeckaert
- Department of Nephrology, Ghent University Hospital, Ghent, Belgium; Research Foundation-Flanders (FWO), Brussels, Belgium
| |
Collapse
|