1
|
Zhang H, Cao F, Zhou Y, Wu B, Li C. Peripheral Immune Cells Contribute to the Pathogenesis of Alzheimer's Disease. Mol Neurobiol 2024:10.1007/s12035-024-04266-6. [PMID: 38842674 DOI: 10.1007/s12035-024-04266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/26/2024] [Indexed: 06/07/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder with progressive memory and cognitive loss. Neuroinflammation is a central mechanism involved in the progression of AD. With the disruption of the blood-brain barrier (BBB), peripheral immune cells and inflammatory molecules enter into AD brain. However, the exact relationship between peripheral immune cells and AD remains unknown due to various challenges. This study aimed to investigate the potential causal association between peripheral immune cells and AD by using a two-sample Mendelian randomization (TSMR) analysis. We conducted a TSMR to decipher the causal relationship between AD and 731 types of peripheral immune cell parameters from the TBNK, regulatory T cell (Treg), myeloid cell, monocyte, maturation stages of T cell, dendritic cell (DC), and B cell panels. Various analytical methods were employed, including inverse variance weighting (IVW), MR Egger, and weighted median methods. The Cochran's Q statistic, MR-Egger intercept, and MR-PRESSO tests were used to verify the heterogeneity and horizontal pleiotropy of the results. To further verify our results, we also conducted a replication analysis. The analysis identified CD33 on CD14 + monocyte (OR = 1.03; 95% CI, 1.01-1.04; p = 1.14E-04; adjust-p = 0.042) had an increased risk association for AD, which was verified by the replication study. CD33 on CD33dim HLA DR + CD11b- cell (OR = 1.02; 95% CI, 1.01-1.04; p = 2.87E-04; adjust-p = 0.035) had an increased risk association for AD, while secreting CD4 regulatory T cell %CD4 regulatory T cell (OR = 0.97; 95% CI, 0.96-0.99; p = 1.90E-04; adjust-p = 0.046) and CD25 on switched memory B cell (OR = 0.95; 95% CI, 0.92-0.98; p = 2.87E-04; adjust-p = 0.042) were discovered to be related to a lower risk of AD. However, the causal effect of these three immune cells on AD was insufficiently validated in the replication analysis. The MR analysis suggests a potential causal relationship between peripheral immune cells and the risk of AD. Further extensive research is needed on the specific role of peripheral immune cells in AD.
Collapse
Affiliation(s)
- Houwen Zhang
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangzheng Cao
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Zhou
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Wu
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chunrong Li
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
2
|
Etayo A, Bjørgen H, Koppang EO, Lie KK, Bjelland RM, Hordvik I, Øvergård AC, Sæle Ø. The ontogeny of lymphoid organs and IgM + B-cells in ballan wrasse (Labrus bergylta) reveals a potential site for extrarenal B-cell lymphopoiesis: The pancreas. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109273. [PMID: 38072139 DOI: 10.1016/j.fsi.2023.109273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Vaccination of farmed fish is the most effective prophylactic measure against contagious diseases but requires specific knowledge on when the adaptive immune system is fully developed. The present work describes kidney and spleen morphogenesis as well as B-cell development in the ballan wrasse (Labrus bergylta). The kidney was present at hatching (0 days pot hatching, dph) but was not lymphoid before larvae was 50-60 dph (stage 5), containing abundant Igμ+ cells. The spleen anlage was first observed in larvae at 20-30 dph and was later populated with B-cells. Unexpectedly, we found strong RAG1 signal together with abundant Igμ+ and IgM + cells in the exocrine pancreas of larvae from when the kidney was lymphoid and onwards, suggesting that B-cell lymphopoiesis occurs not only in the head kidney (HK) but also in pancreatic tissue. In this agastric fish, the pancreas is diffused along the intestine and the early presence of IgM+ B-cells in pancreatic tissue might have a role in maintain immune homeostasis in the peritoneal cavity, making a substantial contribution to early protection. IgM-secreting cells in HK indicate the presence of systemic IgM at stage 5, before the first IgM+ cells were identified in mucosal sites. This work together with our previous study on T-cell development in this species indicates that although T- and B-cells start to develop around the same time, B-cells migrate to mucosal tissues ahead of T-cells. This early migration likely involves the production of natural antibodies, contributing significantly to early protection. Moreover, a diet composed of barnacle nauplii did not result in an earlier onset of B-cell lymphopoiesis, as seen in the previous study analysing T-cell development. Nevertheless, components for adaptive immunity indicating putative immunocompetence is likely achieved in early juveniles (>100 dph). Additionally, maternal transfer of IgM to the offspring is also described. These findings provide important insights into the development of the immune system in ballan wrasse and lay the foundation for optimizing prophylactic strategies in the future. Furthermore, this work adds valuable information to broaden the knowledge on the immune system in lower vertebrates.
Collapse
Affiliation(s)
- Angela Etayo
- Institute of Marine Research, Bergen, Norway; Fish Health group, Department of Biological Sciences, University of Bergen, Norway.
| | - Håvard Bjørgen
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Erling O Koppang
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Kai K Lie
- Institute of Marine Research, Bergen, Norway
| | - Reidun M Bjelland
- Institute of Marine Research, Austevoll Research Station, 5392, Storebø, Norway
| | - Ivar Hordvik
- Fish Health group, Department of Biological Sciences, University of Bergen, Norway
| | | | | |
Collapse
|
3
|
Davies AM, Beavil RL, Barbolov M, Sandhar BS, Gould HJ, Beavil AJ, Sutton BJ, McDonnell JM. Crystal structures of the human IgD Fab reveal insights into C H1 domain diversity. Mol Immunol 2023; 159:28-37. [PMID: 37267832 DOI: 10.1016/j.molimm.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023]
Abstract
Antibodies of the IgD isotype remain the least well characterized of the mammalian immunoglobulin isotypes. Here we report three-dimensional structures for the Fab region of IgD, based on four different crystal structures, at resolutions of 1.45-2.75 Å. These IgD Fab crystals provide the first high-resolution views of the unique Cδ1 domain. Structural comparisons identify regions of conformational diversity within the Cδ1 domain, as well as among the homologous domains of Cα1, Cγ1 and Cμ1. The IgD Fab structure also possesses a unique conformation of the upper hinge region, which may contribute to the overall disposition of the very long linker sequence between the Fab and Fc regions found in human IgD. Structural similarities observed between IgD and IgG, and differences with IgA and IgM, are consistent with predicted evolutionary relationships for the mammalian antibody isotypes.
Collapse
Affiliation(s)
- Anna M Davies
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Rebecca L Beavil
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Momchil Barbolov
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Balraj S Sandhar
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Hannah J Gould
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Andrew J Beavil
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Brian J Sutton
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - James M McDonnell
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom.
| |
Collapse
|
4
|
Wu S, Meng K, Wu Z, Sun R, Han G, Qin D, He Y, Qin C, Deng P, Cao J, Ji W, Zhang L, Xu Z. Expression analysis of Igs and mucosal immune responses upon SVCV infection in common carp (Cyprinus carpio L.). FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 3:100048. [PMID: 36419606 PMCID: PMC9680059 DOI: 10.1016/j.fsirep.2021.100048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 12/03/2022] Open
Abstract
The immunoglobulin (Ig) is a crucial component of adaptive immune system in vertebrates including teleost fish. Here complete cDNA sequence of IgD heavy chain gene from common carp (Cyprinus carpio) was cloned and analyzed. The full-length cDNA of IgD heavy chain gene contained an open reading frame (ORF) of 2460 bp encoding 813 amino acids. According to amino acids sequence, multiple alignment and phylogenetic analysis showed that carp Igs are closely related to those of Cyprinidae fish. Transcriptional expression of IgD as well as IgM, IgZ1 and IgZ2 showed similar expression patterns in different organs, this is, high expression level in systemic immune tissues (ie, head kidney, heart and spleen) and low expression in mucosal tissues (ie, gill, skin and gut). Following viral infection with spring viraemia of carp virus (SVCV), obvious pathological changes in skin, gill and gut mucosa and up-regulated expression of antiviral related genes in skin, gill, gut and spleen were observed, indicating that SVCV successfully infected common carp and activated the systemic and mucosal immune system. Interestingly, IgM showed a significant up-regulation only in systemic tissue (spleen), but not in mucosal tissues (gut, gills and skin), while increased expression of IgZ1 and IgZ2 was found in gut. In contrast, the expression of IgD increased significantly in spleen, gills and skin. These strongly suggest that fish Ig isotypes play different roles in mucosal and systemic immunity during viral infection. Common carp (Cyprinus carpio); Igs; Spring viraemia of carp virus (SVCV)
Collapse
|
5
|
Han L, Li J, Wang W, Luo K, Chai M, Xiang C, Luo Z, Ren L, Gu Q, Tao M, Zhang C, Wang J, Liu S. Immunoglobulin heavy-chain loci in ancient allotetraploid goldfish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104476. [PMID: 35718131 DOI: 10.1016/j.dci.2022.104476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
As an ancient allotetraploid species, goldfish (Carassius auratus) have two sets of subgenomes. In this study, immunoglobulin heavy-chain (IGH) genes were cloned from the red crucian carp (Carassius auratus red var.), and the corresponding loci were identified in the gynogenetic diploid red crucian carp (GRCC) genome as well as the genomes of three other goldfish strains (Wakin, G-12, and CaTCV-1). Examination showed that each goldfish strain possessed two sets of parallel IGH loci: a complete IGHA locus and a degenerated IGHB locus that was nearly 40 × smaller. In the IGHA locus, multiple τ chain loci were arranged in tandem between the μ&δ chain locus and the variable genes, but no τ-like genes were found in the IGHB locus.
Collapse
Affiliation(s)
- Linmei Han
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Jihong Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Wen Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Kaikun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Mingli Chai
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Caixia Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Ziye Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Li Ren
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Qianhong Gu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Min Tao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Chun Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Jing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Engineering Research Center of Polyploid Fish Reproduction and Breeding of the State Education Ministry, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| |
Collapse
|
6
|
Han Q, Mo Z, Lai X, Guo W, Hu Y, Chen H, He Z, Dan X, Li Y. Mucosal immunoglobulin response in Epinephelus coioides after Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2022; 128:436-446. [PMID: 35985626 DOI: 10.1016/j.fsi.2022.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/23/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The teleost mucosal immune system consists mainly of the skin, gills and gut, which play crucial roles in local immune responses against invading organisms. Immunoglobulins are essential molecules in adaptive immunity that perform crucial biological functions. In our study, a mucosal immunity model was constructed in Epinephelus coioides groupers after Cryptocaryon irritans infection, according to previous experience. Total IgM and IgT in the groupers increased in the serum and mucus in the immune group, whereas only pathogen-specific IgM were detected existence. More critically, pathogen-specific IgM was detected in the head kidney, gill and skin supernatants, thus suggesting that the systematic immune and mucosal immune system secreted immunoglobulins. Furthermore, an early response in the skin was observed, on the basis of the detection of pathogen-specific IgM in the skin supernatant. In conclusion, this research characterized the grouper IgM and IgT in mucosal immune responses to pathogens in the gills and skin, thus providing a theoretical basis for future studies on vaccines against C. irritans.
Collapse
Affiliation(s)
- Qing Han
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, China
| | - Zequan Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xueli Lai
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjie Guo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yingtong Hu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hongping Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhichang He
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xueming Dan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanwei Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Identification and Characterization of Immunoglobulin T Heavy Chain in Large Yellow Croaker (Larimichthys crocea). FISHES 2022. [DOI: 10.3390/fishes7010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Three immunoglobulin (Ig) isotypes have been identified in teleosts, IgM, IgD, and IgT or IgZ. IgT, a new teleost Ig isotype, plays a vital role in mucosal immunity. However, information on molecular and functional characteristics of fish IgT is still limited. In this study, an IgT heavy chain (LcIgT) gene was cloned and characterized in large yellow croaker (Larimichthys crocea). Complete cDNA of LcIgT was 1930 bp in length, encoding a protein of 554 amino acids. The deduced LcIgT contains a VH region and only three CH regions (CH1, CH2, CH4), but no transmembrane region was predicted. Phylogenetic analysis showed that IgT heavy chain sequences from all fish species are grouped together. Homology comparison showed that LcIgT shares the highest amino acid identity of 58.73% with IgT heavy chain in Scophthalmus maximus. The VH domain of LcIgT has the highest identity of 72.50% with that of Scophthalmus maximus IgT. Relatively, each constant domain of LcIgT exhibits the highest amino acid identity with that of IgT in Oreochromis niloticus (67.61% identity for CH1, 61.11% identity for CH2, and 63.74% identity for CH4). LcIgT was constitutively expressed in various tissues tested, with the highest levels in mucosa-associated tissues such as gills and skin. After Cryptocaryon irritans infection, the mRNA levels of LcIgT were significantly up-regulated in the spleen (3.27-fold) at 4 d, in the head kidney (3.98-fold) and skin (2.11-fold) at 7 d, and in gills (4.45-fold) at 14 d. The protein levels in these detected tissues were all significantly up-regulated; the peak of its up-regulation was 6.33-fold at 28d in gills, 3.44-fold at 7d in skin, and 3.72-fold at 14d in spleen. These results showed that IgT response could be simultaneously induced in both systemic and mucosal tissues after parasitic infection and that IgT may be involved in systemic immunity and mucosal immunity against parasitic infection.
Collapse
|
8
|
Wan Z, Zhao Y, Sun Y. Immunoglobulin D and its encoding genes: An updated review. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 124:104198. [PMID: 34237381 DOI: 10.1016/j.dci.2021.104198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/03/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
Since the identification of a functional Cδ gene in ostriches, immunoglobulin (Ig) D has been considered to be an extremely evolutionarily conserved Ig isotype besides the IgM found in all classes of jawed vertebrates. However, in contrast to IgM (which remains stable over evolutionary time), IgD shows considerable structural plasticity among vertebrate species and, moreover, its functions are far from elucidated even in humans and mice. Recently, several studies have shown that high expression of the IgD-B-cell receptor (IgD-BCR) may help physiologically autoreactive B cells survive in peripheral lymphoid tissues thanks to unresponsiveness to self-antigens and help their entry into germinal centers to "redeem" autoreactivity via somatic hypermutation. Other studies have demonstrated that secreted IgD may enhance mucosal homeostasis and immunity by linking B cells with basophils to optimize T-helper-2 cell-mediated responses and to constrain IgE-mediated basophil degranulation. Herein, we review the new discoveries on IgD-encoding genes in jawed vertebrates in the past decade. We also highlight advances in the functions of the IgD-BCR and secreted IgD in humans and mice.
Collapse
Affiliation(s)
- Zihui Wan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, Shandong, People's Republic of China.
| |
Collapse
|
9
|
Salinas I, Fernández-Montero Á, Ding Y, Sunyer JO. Mucosal immunoglobulins of teleost fish: A decade of advances. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104079. [PMID: 33785432 PMCID: PMC8177558 DOI: 10.1016/j.dci.2021.104079] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 05/03/2023]
Abstract
Immunoglobulins (Igs) are complex glycoproteins that play critical functions in innate and adaptive immunity of all jawed vertebrates. Given the unique characteristics of mucosal barriers, secretory Igs (sIgs) have specialized to maintain homeostasis and keep pathogens at bay at mucosal tissues from fish to mammals. In teleost fish, the three main IgH isotypes, IgM, IgD and IgT/Z can be found in different proportions at the mucosal secretions of the skin, gills, gut, nasal, buccal, and pharyngeal mucosae. Similar to the role of mammalian IgA, IgT plays a predominant role in fish mucosal immunity. Recent studies in IgT have illuminated the primordial role of sIgs in both microbiota homeostasis and pathogen control at mucosal sites. Ten years ago, IgT was discovered to be an immunoglobulin class specialized in mucosal immunity. Aiming at this 10-year anniversary, the goal of this review is to summarize the current status of the field of fish Igs since that discovery, while identifying knowledge gaps and future avenues that will move the field forward in both basic and applied science areas.
Collapse
Affiliation(s)
- Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Álvaro Fernández-Montero
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yang Ding
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Abstract
In the past 30 years, highly specific drugs, known as antibodies, have conquered the biopharmaceutical market. In addition to monoclonal antibodies (mAbs), antibody fragments are successfully applied. However, recombinant production faces challenges. Process analytical tools for monitoring and controlling production processes are scarce and time-intensive. In the downstream process (DSP), affinity ligands are established as the primary and most important step, while the application of other methods is challenging. The use of these affinity ligands as monitoring tools would enable a platform technology to monitor process steps in the USP and DSP. In this review, we highlight the current applications of affinity ligands (proteins A, G, and L) and discuss further applications as process analytical tools.
Collapse
|
11
|
Bilal S, Etayo A, Hordvik I. Immunoglobulins in teleosts. Immunogenetics 2021; 73:65-77. [PMID: 33439286 DOI: 10.1007/s00251-020-01195-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023]
Abstract
Immunoglobulins are glycoproteins which are produced as membrane-bound receptors on B-cells or in a secreted form, known as antibodies. In teleosts, three immunoglobulin isotypes, IgM, IgT, and IgD, are present, each comprising two identical heavy and two identical light polypeptide chains. The basic mechanisms for generation of immunoglobulin diversity are similar in teleosts and higher vertebrates. The B-cell pre-immune repertoire is diversified by VDJ recombination, junctional flexibility, addition of nucleotides, and combinatorial association of light and heavy chains, while the post-immune repertoire undergoes somatic hypermutation during clonal expansion. Typically, the teleost immunoglobulin heavy chain gene complex has a modified translocon arrangement where the Dτ-Jτ-Cτ cluster of IgT is generally located between the variable heavy chain (VH) region and the Dμ/δ-Jμ/δ-Cμ-Cδ gene segments, or within the set of VH gene segments. However, multiple genome duplication and deletion events and loss of some individual genes through evolution has complicated the IgH gene organization. The IgH gene arrangement allows the expression of either IgT or IgM/IgD. Alternative splicing is responsible for the regulation of IgM/IgD expression and the secreted versus transmembrane forms of IgT, IgD, and IgM. The overall structure of IgM and IgT is usually conserved across species, whereas IgD has a large variety of structures. IgM is the main effector molecule in both systemic and mucosal immunity and shows a broad range of concentrations in different teleost species. Although IgM is usually present in higher concentrations under normal conditions, IgT is considered the main mucosal Ig.
Collapse
Affiliation(s)
- Sumaira Bilal
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Angela Etayo
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ivar Hordvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
12
|
Yu Y, Wang Q, Huang Z, Ding L, Xu Z. Immunoglobulins, Mucosal Immunity and Vaccination in Teleost Fish. Front Immunol 2020; 11:567941. [PMID: 33123139 PMCID: PMC7566178 DOI: 10.3389/fimmu.2020.567941] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Due to direct contact with aquatic environment, mucosal surfaces of teleost fish are continuously exposed to a vast number of pathogens and also inhabited by high densities of commensal microbiota. The B cells and immunoglobulins within the teleost mucosa-associated lymphoid tissues (MALTs) play key roles in local mucosal adaptive immune responses. So far, three Ig isotypes (i.e., IgM, IgD, and IgT/Z) have been identified from the genomic sequences of different teleost fish species. Moreover, teleost Igs have been reported to elicit mammalian-like mucosal immune response in six MALTs: gut-associated lymphoid tissue (GALT), skin-associated lymphoid tissue (SALT), gill-associated lymphoid tissue (GIALT), nasal-associated lymphoid tissue (NALT), and the recently discovered buccal and pharyngeal MALTs. Critically, analogous to mammalian IgA, teleost IgT represents the most ancient Ab class specialized in mucosal immunity and plays indispensable roles in the clearance of mucosal pathogens and the maintenance of microbiota homeostasis. Given these, this review summarizes the current findings on teleost Igs, MALTs, and their immune responses to pathogenic infection, vaccination and commensal microbiota, with the purpose of facilitating future evaluation and rational design of fish vaccines.
Collapse
Affiliation(s)
- Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Qingchao Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhenyu Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Liguo Ding
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
13
|
Wu L, Qin Z, Liu H, Lin L, Ye J, Li J. Recent Advances on Phagocytic B Cells in Teleost Fish. Front Immunol 2020; 11:824. [PMID: 32536909 PMCID: PMC7267004 DOI: 10.3389/fimmu.2020.00824] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/14/2020] [Indexed: 12/23/2022] Open
Abstract
The momentous discovery of phagocytic activity in teleost B cells has caused a dramatic paradigm shift from the belief that phagocytosis is performed mainly by professional phagocytes derived from common myeloid progenitor cells, such as macrophages/monocytes, neutrophils, and dendritic cells. Recent advances on phagocytic B cells and their microbicidal ability in teleost fish position B cells at the crossroads, bridging innate with adaptive immunity. Most importantly, an increasing body of experimental evidence demonstrates that, in both teleosts and mammals, phagocytic B cells can recognize, take up, and destroy particulate antigens and then present those processed antigens to CD4+ T cells to elicit adaptive immune responses and that the phagocytosis is mediated by pattern recognition receptors and involves multiple cytokines. Thus, current findings collectively indicate that teleost phagocytic B cells, as well as their counterpart mammalian B1-B cells, can be considered one kind of professional phagocyte. The aim of this review is to summarize recent advances regarding teleost phagocytic B cells, with a particular focus on the recognizing receptors and modulating mechanisms of phagocytic B cells and the process of antigen presentation for T-cell activation. We also attempt to provide new insights into the adaptive evolution of the teleost fish phagocytic B cell on the basis of its innate and adaptive roles.
Collapse
Affiliation(s)
- Liting Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Zhendong Qin
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Haipeng Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Lin
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Li
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,School of Science and Medicine, Lake Superior State University, Sault Ste. Marie, MI, United States
| |
Collapse
|
14
|
Rezaei F, Fatholahi S, Rezaei F. Assessment of salivary antioxidant status and immunoglobulin E in patients with geographic tongue. J Family Med Prim Care 2020; 9:72-76. [PMID: 32110568 PMCID: PMC7014838 DOI: 10.4103/jfmpc.jfmpc_375_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022] Open
Abstract
Objective: One of the possible ways of changing human health might be through the oral mucosa. One of tongue disorders is geographic tongue (GT), which classic manifestation is an area of erythema, with atrophy of filiform papillae of the tongue, surrounded by a serpiginous, white, hyperkeratotic border. Saliva is a rich source of antioxidant and fulfills an important role in maintaining the normal function of the oral cavity. The purpose of the present study was to investigate the status of salivary antioxidant and immunoglobulin E in patients with GT and healthy people. Materials and Methods: In this case-control study, samples were gathered from high school students in three municipal regions of Kermanshah, Iran by using multistage random cluster sampling method. The samples included 30 patients with GT (15 men and 15 women with the mean age of 17.6 ± 0.72) and 30 healthy volunteers (15 men and 15 women with the mean age of 17.1 ± 0.61). Saliva samples were collected through standard method, and total antioxidant capacity (TAC), catalase (CAT), and salivary immunoglobulin E were measured. Results: In patients with GT, unstimulated salivary shows increased level of immunoglobulin compared with that of control group (P = 0.013). However, there was no significant relationship between control and GT patient groups regarding TAC of saliva (P = 0.91) and CAT (P = 0.83). Conclusion: It seems that the activity of CAT enzyme and TAC of saliva does not play primary role in the pathogenesis of GT. However, the level of immunoglobulin E present in saliva can function as an indicator of increased sensitivity in GT.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Department of Oral Medicine, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeedeh Fatholahi
- General Dentist, Department of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farzad Rezaei
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
15
|
Løken OM, Bjørgen H, Hordvik I, Koppang EO. A teleost structural analogue to the avian bursa of Fabricius. J Anat 2019; 236:798-808. [PMID: 31877586 PMCID: PMC7163591 DOI: 10.1111/joa.13147] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2019] [Indexed: 01/26/2023] Open
Abstract
The bursa of Fabricius is a primary and secondary lymphoid organ considered exclusively present in birds, and studies of this structure have been vital to our current understanding of the adaptive immune system of vertebrates. In this study, we reveal substantial lymphoepithelial tissue in a previously undescribed bursa in Atlantic salmon (Salmo salar), situated caudal to the urogenital papilla of the cloaca and thus analogous to the anatomical placement of the bursa of Fabricius. We investigated three groups of Atlantic salmon at different maturational stages and characterized the structure by applying dissection, radiology, scanning electron microscopy and histological techniques, including immunohistochemistry and in situ hybridization. We found that the epithelial anlage of the salmon cloacal bursa developed into substantial lymphoepithelial tissue and subsequently regressed following sexual maturation. Such a dynamic development is also a key characteristic of the avian bursa. The presence of intraepithelial lymphocytes was concomitant with expression of the leukocyte-attracting chemokine CCL19, indicative of lymphoid organ functions. We did not observe recombination or gene conversion in salmon bursal lymphocytes at any developmental stage, indicating the absence of primary lymphoid organ functions in contrast to the bursa of Fabricius. However, the possibility of the bursa to trap both enteric and environmental antigens, combined with the presence of several antigen-presenting cells residing within the lymphoepithelium, suggest the structure has secondary lymphoid organ functions. We present the discovery of a lymphoid organ in Atlantic salmon with striking topographical similarities to that of the bursa of Fabricius in birds. In addition, the age-dependent dynamics of its lymphoepithelium suggest functions related to the maturation processes of lymphocytes.
Collapse
Affiliation(s)
- Oskar M Løken
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Håvard Bjørgen
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Ivar Hordvik
- Institute of Biology, University of Bergen, Bergen, Norway
| | - Erling O Koppang
- Section of Anatomy, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
16
|
Smith NC, Rise ML, Christian SL. A Comparison of the Innate and Adaptive Immune Systems in Cartilaginous Fish, Ray-Finned Fish, and Lobe-Finned Fish. Front Immunol 2019; 10:2292. [PMID: 31649660 PMCID: PMC6795676 DOI: 10.3389/fimmu.2019.02292] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
The immune system is composed of two subsystems-the innate immune system and the adaptive immune system. The innate immune system is the first to respond to pathogens and does not retain memory of previous responses. Innate immune responses are evolutionarily older than adaptive responses and elements of innate immunity can be found in all multicellular organisms. If a pathogen persists, the adaptive immune system will engage the pathogen with specificity and memory. Several components of the adaptive system including immunoglobulins (Igs), T cell receptors (TCR), and major histocompatibility complex (MHC), are assumed to have arisen in the first jawed vertebrates-the Gnathostomata. This review will discuss and compare components of both the innate and adaptive immune systems in Gnathostomes, particularly in Chondrichthyes (cartilaginous fish) and in Osteichthyes [bony fish: the Actinopterygii (ray-finned fish) and the Sarcopterygii (lobe-finned fish)]. While many elements of both the innate and adaptive immune systems are conserved within these species and with higher level vertebrates, some elements have marked differences. Components of the innate immune system covered here include physical barriers, such as the skin and gastrointestinal tract, cellular components, such as pattern recognition receptors and immune cells including macrophages and neutrophils, and humoral components, such as the complement system. Components of the adaptive system covered include the fundamental cells and molecules of adaptive immunity: B lymphocytes (B cells), T lymphocytes (T cells), immunoglobulins (Igs), and major histocompatibility complex (MHC). Comparative studies in fish such as those discussed here are essential for developing a comprehensive understanding of the evolution of the immune system.
Collapse
Affiliation(s)
- Nicole C Smith
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sherri L Christian
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
17
|
Park J, Kwon W, Kim WS, Jeong HD, Hong S. Cloning and expressional analysis of secretory and membrane-bound IgM in rock bream (Oplegnathus fasciatus) under megalocytivirus infection and vaccination. FISH & SHELLFISH IMMUNOLOGY 2019; 87:275-285. [PMID: 30668998 DOI: 10.1016/j.fsi.2019.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/28/2018] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
In this study, for better understanding the humoral immunity of rock bream (Oplegnathus fasciatus), 2 transcripts of immunoglobulin M (IgM) heavy chain gene including membrane bound (m-IgM) and secretory (s-IgM) forms were sequenced and analyzed their tissue distribution and differential expression in rock bream under rock bream iridovirus (RBIV) infection and vaccination since RBIV has caused mass mortality in rock bream aquaculture in Korea. Consequently, s-IgM cDNA was 1902 bp in length encoding a leader region, a variable region, four constant regions (CH1, CH2, CH3, CH4) and a C-terminal region while m-IgM cDNA was 1689 bp in length encoding shorter three constant regions (CH1, CH2, CH3) and two transmembrane regions. The predicted s-IgM and m-IgM represent a high structural similarity to other species including human. In tissue distribution analysis in healthy fish, the highest expression of s-IgM was observed in head kidney followed by body kidney, spleen, and mid gut whereas m-IgM expression was the highest in blood followed by head kidney and spleen. In vitro, s-IgM expression was up-regulated by LPS in head kidney and spleen cells at 24 h with no change of m-IgM expression. In vivo upon vaccination, s-IgM expression was up-regulated in liver and blood but not in head kidney while m-IgM expression was only up-regulated in head kidney. After challenge with RBIV, s-IgM expression level was higher in vaccinated fish than in unvaccinated fish and m-IgM expression was up-regulated in head kidney of vaccinated group. In conclusion, differential expression of m-IgM and s-IgM may indicate their differential functions to produce the most effective IgM during adaptive immune response. Although it is not able to assess specific IgM at protein level due to a lack of antibody against rock bream IgM, the present study on s-IgM and m-IgM gene expressions upon infection and vaccination will be useful in developing efficient vaccines in the future.
Collapse
Affiliation(s)
- Jinhwan Park
- Department of Wellness Bio-Industrial, Gangneung Wonju National University, South Korea
| | - Wooju Kwon
- Department of Aquatic Life Medicine, Pukyung National University, South Korea
| | - Wi-Sik Kim
- Department of Aquatic Life Medicine, Chonnam National University, South Korea
| | - Hyun-Do Jeong
- Department of Aquatic Life Medicine, Pukyung National University, South Korea
| | - Suhee Hong
- Department of Wellness Bio-Industrial, Gangneung Wonju National University, South Korea.
| |
Collapse
|
18
|
Martínez-Orellana P, Maristany C, Baxarias M, Álvarez-Fernández A, Baldassarre A, Ordeix L, Solano-Gallego L. Total serum IgD from healthy and sick dogs with leishmaniosis. Parasit Vectors 2019; 12:119. [PMID: 30909975 PMCID: PMC6434875 DOI: 10.1186/s13071-019-3384-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Background Canine leishmaniosis (CanL) due to Leishmania infantum is characterized by the development of both cellular and humoral immune responses. The dysfunction of T cell-mediated immunity leads to a lack of proliferation of T cells in response to Leishmania antigens with the consequence of parasite dissemination that seems to be related to a T cell exhaustion mediated by regulatory B cells expressing immunoglobulin D (IgD). The aim of this study was to determine and compare the total serum IgD in dogs with clinical leishmaniosis and in clinically healthy dogs. Results A total of 147 dog sera were studied. All dogs were tested for L. infantum-specific antibodies by quantitative ELISA. Interferon-gamma (IFN-γ) production was also determined by sandwich ELISA after blood stimulation with L. infantum soluble antigen (LSA) or concanavalin A (ConA). The quantification of total IgD was performed using a human IgD sandwich ELISA quantification set. Dogs were classified in three different groups. Group 1 included 40 clinically healthy non-infected dogs, all serologically negative to L. infantum-specific antibodies and non-producers of IFN-γ upon LSA stimulation. Group 2 included 63 clinically healthy infected dogs that were LSA IFN-γ producers (n = 61) and/or IFN-γ non-producers (n = 2) as well as negative to medium seropositive to L. infantum antigen. Finally, Group 3 included 44 dogs with clinical leishmaniosis (IFN-γ producers, n = 23; and IFN-γ non-producers, n = 21) that were negative to highly positive to L. infantum-specific antibodies. No significant differences were observed when the total IgD concentration was compared within groups. Additionally, total IgD of sick IFN-γ producers and IFN-γ non-producers was not significantly different. Finally, total IgD concentration was not statistically related to demographic parameters such as age, sex and breed. Conclusions The results of this study demonstrated that there were no differences between groups in total serum IgD. Total serum IgD does not appear to be a marker of disease in CanL.
Collapse
Affiliation(s)
- Pamela Martínez-Orellana
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Cristina Maristany
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Marta Baxarias
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Alejandra Álvarez-Fernández
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | - Laura Ordeix
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.,Hospital Clínic Veterinari, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laia Solano-Gallego
- Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
19
|
Muñoz-Atienza E, Távara C, Díaz-Rosales P, Llanco L, Serrano-Martínez E, Tafalla C. Local regulation of immune genes in rainbow trout (Oncorhynchus mykiss) naturally infected with Flavobacterium psychrophilum. FISH & SHELLFISH IMMUNOLOGY 2019; 86:25-34. [PMID: 30439501 DOI: 10.1016/j.fsi.2018.11.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/07/2018] [Accepted: 11/11/2018] [Indexed: 06/09/2023]
Abstract
Flavobacterium psychrophilum is the etiological agent of bacterial cold water disease (BCWD), also referred to as rainbow trout fry syndrome (RTFS), a disease with great economic impact in salmonid aquaculture. Despite this, to date, not many studies have analyzed in depth how the immune system is regulated during the course of the disease. In the current study, we have studied the transcription of several immune genes related to T and B cell activity in the skin of rainbow trout (Oncorhynchus mykiss) naturally infected with F. psychrophilum in a farm located in Lake Titicaca (Peru). The levels of expression of these genes were tested and compared to those obtained in asymptomatic and apparently healthy rainbow trout. In the case of symptomatic fish, skin samples containing characteristic ulcerative lesions were taken, as well as skin samples with no lesions. Our results pointed to a significant local up-regulation of IgD, CD4, CD8, perforin and IFNγ within the ulcerative lesions. On the other hand, no differences between the levels of expression of these genes were visible in the spleen. To confirm these results, the distribution of IgD+ and CD3+ cells was studied through immunohistochemical techniques in the ulcerative lesions. Our results demonstrate a strong local response to F. psychrophilum in rainbow trout in which IgD and T cells seem to play a major role.
Collapse
Affiliation(s)
| | - Carlos Távara
- Veterinary Medicine and Zootechny Faculty, Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | | | - Luis Llanco
- Veterinary Medicine and Zootechny Faculty, Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Enrique Serrano-Martínez
- Veterinary Medicine and Zootechny Faculty, Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Carolina Tafalla
- Animal Health Research Centre (CISA-INIA), 28130, Valdeolmos, Madrid, Spain.
| |
Collapse
|
20
|
Collins C, Lorenzen N, Collet B. DNA vaccination for finfish aquaculture. FISH & SHELLFISH IMMUNOLOGY 2019; 85:106-125. [PMID: 30017931 DOI: 10.1016/j.fsi.2018.07.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
In fish, DNA vaccines have been shown to give very high protection in experimental facilities against a number of viral diseases, particularly diseases caused by rhabdoviruses. However, their efficacy in generating protection against other families of fish viral pathogens is less clear. One DNA vaccine is currently in use commercially in fish farms in Canada and the commercialisation of another was authorised in Europe in 2017. The mechanism of action of DNA vaccines, including the role of the innate immune responses induced shortly after DNA vaccination in the activation of the adaptive immunity providing longer term specific protection, is still not fully understood. In Europe the procedure for the commercialisation of a veterinary DNA vaccine requires the resolution of certain concerns particularly about safety for the host vaccinated fish, the consumer and the environment. Relating to consumer acceptance and particularly environmental safety, a key question is whether a DNA vaccinated fish is considered a Genetically Modified Organism (GMO). In the present opinion paper these key aspects relating to the mechanisms of action, and to the development and the use of DNA vaccines in farmed fish are reviewed and discussed.
Collapse
Affiliation(s)
| | | | - Bertrand Collet
- Marine Scotland, Aberdeen, United Kingdom; Virologie et Immunologie Moléculaires, Institut National de la Recherche Agronomique (INRA), Université Paris-Saclay, Jouy-en-Josas, France.
| |
Collapse
|
21
|
Peñaranda MMD, Jensen I, Tollersrud LG, Bruun JA, Jørgensen JB. Profiling the Atlantic Salmon IgM + B Cell Surface Proteome: Novel Information on Teleost Fish B Cell Protein Repertoire and Identification of Potential B Cell Markers. Front Immunol 2019; 10:37. [PMID: 30761128 PMCID: PMC6362898 DOI: 10.3389/fimmu.2019.00037] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/08/2019] [Indexed: 01/04/2023] Open
Abstract
Fish immunology research is at a pivotal point with the increasing availability of functional immunoassays and major advances in omics approaches. However, studies on fish B cells and their distinct subsets remain a challenge due to the limited availability of differentially expressed surface markers. To address this constraint, cell surface proteome of Atlantic salmon IgM+ B cells were analyzed by mass spectrometry and compared to surface proteins detected from two adherent salmon head kidney cell lines, ASK and SSP-9. Out of 21 cluster of differentiation (CD) molecules identified on salmon IgM+ B cells, CD22 and CD79A were shortlisted as potential markers based on the reported B cell-specific surface expression of their mammalian homologs. Subsequent RT-qPCR analyses of flow cytometry-sorted subpopulations from head kidney leukocytes confirmed that both cd22 and cd79a genes were highly expressed in IgM+ lymphoid cells but were observed in barely detectable levels in IgM- non-lymphoid suspension and adherent cells. Similarly, significantly high cd22 and cd79a mRNA levels were observed in IgM+ or IgT+ lymphoid cells from the spleen and peritoneal cavity, but not in their corresponding IgM- IgT- non-lymphoid fractions. This suggests that the B cell restrictive expression of CD22 and CD79A extend down to the transcription level, which was consistent across different lymphoid compartments and immunoglobulin isotypes, thus strongly supporting the potential of CD22 and CD79A as pan-B cell markers for salmon. In addition, this study provides novel information on the salmon B cell surface protein repertoire, as well as insights on B cell evolution. Further investigation of the identified salmon CD molecules, including development of immunological tools for detection, will help advance our understanding of the dynamics of salmon B cell responses such as during infection, vaccination, or immunostimulation.
Collapse
Affiliation(s)
- Ma Michelle D Peñaranda
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ingvill Jensen
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Linn G Tollersrud
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jack-Ansgar Bruun
- Tromsø University Proteomics Platform, Institute of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jorunn B Jørgensen
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
22
|
Cabas I, Chaves-Pozo E, Mulero V, García-Ayala A. Role of estrogens in fish immunity with special emphasis on GPER1. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 89:102-110. [PMID: 30092317 DOI: 10.1016/j.dci.2018.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
It is well accepted that estrogens, the primary female sex hormones, play a key role in modulating different aspects of the immune response. Moreover, estrogens have been linked with the sexual dimorphism observed in some immune disorders, such as chronic inflammatory and autoimmune diseases. Nevertheless, their effects are often controversial and depend on several factors, such as the pool of estrogen receptors (ERs) involved in the response. Their classical mode of action is through nuclear ERs, which act as transcription factors, promoting the regulation of target genes. However, it has long been noted that some of the estrogen-mediated effects cannot be explained by these classical receptors, since they are rapid and mediated by non-genomic signaling pathways. Hence, the interest in membrane ERs, especially in G protein-coupled estrogen receptor 1 (GPER1), has grown in recent years. Although the presence of nuclear ERs, and ER signaling, in immune cells in mammals and fish has been well documented, information on membrane ERs is much scarcer. In this context, the present manuscript aims to review our knowledge concerning the effect of estrogens on fish immunity, with special emphasis on GPER1. For example, the numerous tools developed over recent years allowed us to report for the first time that the regulation of fish granulocyte functions by estrogens through GPER1 predates the split of fish and tetrapods more than 450 million years ago, pointing to the relevance of estrogens as modulators of the immune responses, and the pivotal role of GPER1 in immunity.
Collapse
Affiliation(s)
- Isabel Cabas
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, Murcia, Spain.
| | - Elena Chaves-Pozo
- Centro Oceanográfico de Murcia, Instituto Español de Oceanografía (IEO), Murcia, Spain
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Alfonsa García-Ayala
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| |
Collapse
|
23
|
Stosik MP, Tokarz-Deptuła B, Deptuła W. Specific humoral immunity in Osteichthyes. Cent Eur J Immunol 2018; 43:335-340. [PMID: 30588178 PMCID: PMC6305611 DOI: 10.5114/ceji.2018.80054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022] Open
Abstract
The fish immune system is extremely complex and has considerable adaptive potential. In Osteichthyes, the system is formed by lymphopoietic organs which are important for the differentiation and maturation of the immune system cells. These organs include the anterior kidney (phronephros), the thymus, the spleen, the posterior kidney (mesonephros), and mucosa-associated lymphoid tissues (MALT). Apart from the lymphocytic organs and the MALT system, the immune system components include defensive cells and their products. Those identified in fish include, inter alia, monocytes/macrophages, melanomacrophages, neutrophilic granulocytes, thrombocytes, B cells, plasma cells, and T cells. The roles of the individual components of the organisation of the immune system, the organs, and lymphoid tissue as well as the constituents conditioning the innate and adaptive immunity mechanisms are considered equally important, especially in the context of functional interdependence. The progress in the exploration of the processes of specific humoral immunity in Osteichthyes and the possibilities of their practical application is increasingly promising in view of the expected need for protection of fish against diseases. The paper discusses selected issues concerning recent knowledge about haematopoiesis of B cells, plasmablasts, plasma cells, and immunoglobulins (IgM, IgD, IgT/IgZ).
Collapse
Affiliation(s)
- Michał P. Stosik
- Department of Microbiology and Genetics, Faculty of Biological Sciences, University of Zielona Gora, Zielona Gora, Poland
| | - Beata Tokarz-Deptuła
- Department of Immunology, Faculty of Biology, University of Szczecin, Szczecin, Poland
| | - Wiesław Deptuła
- Department of Microbiology, Faculty of Biology, University of Szczecin, Szczecin, Poland
| |
Collapse
|
24
|
Han Y, Jin Y, Miao Y, Shi T, Lin X. Switched memory B cells promote alveolar bone damage during periodontitis: An adoptive transfer experiment. Int Immunopharmacol 2018; 62:147-154. [PMID: 30015235 DOI: 10.1016/j.intimp.2018.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/09/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
Abstract
Periodontitis is a bacteria-induced disease that often leads to alveolar bone damage. We sought to determine the role and mechanism of switched memory B cells in alveolar bone destruction during periodontitis. Sensitized B cells were sorted and cultured, then their expression of receptor activator for nuclear factor-κB ligand (RANKL), interleukin-6 (IL-6), and interleukin-12 (IL-12) was detected. Using these cells, we prepared adoptive transfer models in which we induced periodontitis. We found that switched memory B cells produced more RANKL in terms of both protein and mRNA levels than other subpopulations. Switched memory B cells expressed more IL-6 and IL-12 mRNA than other subpopulations, but differences in respective protein levels were not significant. Moreover, we found that switched memory B cell transfer resulted in increased alveolar bone loss and periodontal osteoclastogenesis. Moreover, switched memory B cell transfer increased the proportion of Th1 and Th17 cells as well as the expression of RANKL, osteoprotegerin (OPG), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), IL-1β, IL-6, IL-17A in gingiva, and cervical lymph nodes (CLNs). The outcomes of the present study indicate that switched memory B cells regulate alveolar bone homeostasis via enhancing cytokine expression and increasing proliferation of Th1 and Th17 cells.
Collapse
Affiliation(s)
- Yakun Han
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Jin
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yibin Miao
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tie Shi
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaoping Lin
- Department of Stomatology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
25
|
Abstract
The adaptive immune system arose 500 million years ago in ectothermic (cold-blooded) vertebrates. Classically, the adaptive immune system has been defined by the presence of lymphocytes expressing recombination-activating gene (RAG)-dependent antigen receptors and the MHC. These features are found in all jawed vertebrates, including cartilaginous and bony fish, amphibians and reptiles and are most likely also found in the oldest class of jawed vertebrates, the extinct placoderms. However, with the discovery of an adaptive immune system in jawless fish based on an entirely different set of antigen receptors - the variable lymphocyte receptors - the divergence of T and B cells, and perhaps innate-like lymphocytes, goes back to the origin of all vertebrates. This Review explores how recent developments in comparative immunology have furthered our understanding of the origins and function of the adaptive immune system.
Collapse
Affiliation(s)
- Martin F Flajnik
- Department of Microbiology and Immunology, University of Maryland Baltimore, Baltimore, MD, USA.
| |
Collapse
|
26
|
Odaka T, Suetake H, Maeda T, Miyadai T. Teleost Basophils Have IgM-Dependent and Dual Ig-Independent Degranulation Systems. THE JOURNAL OF IMMUNOLOGY 2018. [PMID: 29514952 DOI: 10.4049/jimmunol.1701051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recently, mammalian basophils have been highlighted as having roles in allergy and antiparasitic immunity; however, there is little information about the functions and evolutionary origin of basophils, because they are the least abundant leukocyte in most vertebrates. In this study, we characterized the teleost basophils that are abundant in the peripheral blood of fugu (Takifugu rubripes). Fugu basophils have two distinct granules: reddish-purple and dark violet ones. Teleost fish do not have IgG and IgE, but we found that fugu IgM bound on the surface of the basophils, and the cross-linked IgM induced degranulation of both types of granules. This indicates that teleost basophils can be activated in an Ab-dependent manner. Furthermore, papain induced the degranulation of the reddish-purple granules, which contain histamine, and the released granules stimulated the migration of various leukocytes. In contrast, chitin elicited the degranulation of the dark violet granules, which resulted in CD4+ T cell-specific migration. Thus, fugu basophils control immune responses via two distinct Ab-independent mechanisms. In addition, fugu basophils endocytosed soluble Ag and expressed MHC class II and B7-H1/DC. These findings suggested that fugu basophils can interact with T cells as APCs. Thus, the Ab-dependent basophil activation predates the emergence of IgG and IgE, and fish basophils exhibit different dynamics and features of degranulation to distinct stimuli compared with mammalian basophils. Some features of teleost basophils are more similar to those of mammalian mast cells than to those of mammalian basophils.
Collapse
Affiliation(s)
- Tomoyuki Odaka
- Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Hiroaki Suetake
- Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Tomoki Maeda
- Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Toshiaki Miyadai
- Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| |
Collapse
|
27
|
Effects of Sex Steroids on Fish Leukocytes. BIOLOGY 2018; 7:biology7010009. [PMID: 29315244 PMCID: PMC5872035 DOI: 10.3390/biology7010009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/29/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022]
Abstract
In vertebrates, in addition to their classically reproductive functions, steroids regulate the immune system. This action is possible mainly due to the presence of steroid receptors in the different immune cell types. Much evidence suggests that the immune system of fish is vulnerable to xenosteroids, which are ubiquitous in the aquatic environment. In vivo and in vitro assays have amply demonstrated that oestrogens interfere with both the innate and the adaptive immune system of fish by regulating the main leukocyte activities and transcriptional genes. They activate nuclear oestrogen receptors and/or G-protein coupled oestrogen receptor. Less understood is the role of androgens in the immune system, mainly due to the complexity of the transcriptional regulation of androgen receptors in fish. The aim of this manuscript is to review our present knowledge concerning the effect of sex steroid hormones and the presence of their receptors on fish leukocytes, taking into consideration that the studies performed vary as regard the fish species, doses, exposure protocols and hormones used. Moreover, we also include evidence of the probable role of progestins in the regulation of the immune system of fish.
Collapse
|
28
|
Breaux B, Deiss TC, Chen PL, Cruz-Schneider MP, Sena L, Hunter ME, Bonde RK, Criscitiello MF. The Florida manatee (Trichechus manatus latirostris) immunoglobulin heavy chain suggests the importance of clan III variable segments in repertoire diversity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 72:57-68. [PMID: 28131767 DOI: 10.1016/j.dci.2017.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
Manatees are a vulnerable, charismatic sentinel species from the evolutionarily divergent Afrotheria. Manatee health and resistance to infectious disease is of great concern to conservation groups, but little is known about their immune system. To develop manatee-specific tools for monitoring health, we first must have a general knowledge of how the immunoglobulin heavy (IgH) chain locus is organized and transcriptionally expressed. Using the genomic scaffolds of the Florida manatee (Trichechus manatus latirostris), we characterized the potential IgH segmental diversity and constant region isotypic diversity and performed the first Afrotherian repertoire analysis. The Florida manatee has low V(D)J combinatorial diversity (3744 potential combinations) and few constant region isotypes. They also lack clan III V segments, which may have caused reduced VH segment numbers. However, we found productive somatic hypermutation concentrated in the complementarity determining regions. In conclusion, manatees have limited IGHV clan and combinatorial diversity. This suggests that clan III V segments are essential for maintaining IgH locus diversity.
Collapse
Affiliation(s)
- Breanna Breaux
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Thaddeus C Deiss
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Patricia L Chen
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | | | - Leonardo Sena
- Laboratory of Medical and Human Genetics, Federal University of Pará, Belém, Pará, Brazil.
| | - Margaret E Hunter
- Wetland and Aquatic Research Center, U.S. Geological Survey, 7920 NW 71st Street, Gainesville, FL 32653, USA.
| | - Robert K Bonde
- Wetland and Aquatic Research Center, U.S. Geological Survey, 7920 NW 71st Street, Gainesville, FL 32653, USA.
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA; Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
29
|
Tang X, Liu F, Sheng X, Xing J, Zhan W. Production, characterization and application of monoclonal antibody against immunoglobulin D heavy chain of flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2017; 64:401-406. [PMID: 28359942 DOI: 10.1016/j.fsi.2017.03.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 03/22/2017] [Accepted: 03/26/2017] [Indexed: 06/07/2023]
Abstract
Immunoglobulin D (IgD) is considered to be an enigmatic Ig molecule because of the lack understanding of its immunological functions. In the present study, a partial δ region of the flounder IgD was recombinantly expressed, purified and used as an immunogen to produce monoclonal antibodies (MAbs) against the H chain of flounder IgD. After fusion, a total of 97 hybridomas were generated and observed under an inverted microscope One of the hybridomas, designated 5G7, gave strong positive results in an indirect enzyme-linked immunosorbent assay (ELISA) and was cloned and subcloned by limiting dilution. Western blot analysis showed that MAb 5G7 could specifically recognize a 118 kDa protein from peripheral blood lymphocytes (PBLs), which was identified to be the H chain of flounder IgD by mass spectrometric analysis. Indirect immunofluorescence assay tests (IIFAT) showed that specific fluorescence signals were observed on the membranes of the PBLs, which suggests that MAb 5G7 could recognize the membrane-bound IgD molecule. Moreover, only the subset of IgD+/IgM + B cells were observed in the PBLs of healthy flounder when tested by flow cytometry analysis. Consistent with the results of flow cytometry, a double immunofluorescence assay test (DIFAT) showed that the positive lymphocytes were stained with both green and red fluorescence signals, which represent the IgM+/IgD + lymphocytes subset. These results demonstrate that the produced MAb 5G7 could specifically recognize the flounder IgD, which provides a useful tool to study the functions of flounder IgD.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Fuguo Liu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No.1 Wenhai Road, Aoshanwei Town, Jimo, Qingdao 266071, PR China.
| |
Collapse
|
30
|
Zhang N, Zhang XJ, Chen DD, Oriol Sunyer J, Zhang YA. Molecular characterization and expression analysis of three subclasses of IgT in rainbow trout (Oncorhynchus mykiss). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 70:94-105. [PMID: 28062226 PMCID: PMC5701746 DOI: 10.1016/j.dci.2017.01.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/02/2017] [Accepted: 01/02/2017] [Indexed: 05/21/2023]
Abstract
As the teleost specific immunoglobulin, IgT plays important roles in systemic and mucosal immunity. In the current study, in rainbow trout, we have cloned the heavy chain (Igτ) genes of a secretory form of IgT2 as well as the membrane and secretory forms of a third IgT subclass, termed IgT3. Conserved cysteine and tryptophan residues that are crucial for the folding of the immunoglobulin domain as well as hydrophobic and hydrophilic residues within CART motif were identified in all IgT subclasses. Through analysis of the rainbow trout genome assembly, Igτ3 gene was found localized upstream of Igτ1 gene, while Igτ2 gene situated on another scaffold. At the transcriptional level, Igτ1 was mainly expressed in both systemic and mucosal lymphoid tissues, while Igτ2 was largely expressed in systemic lymphoid organs. After LPS and poly (I:C) treatment, Igτ1 and Igτ2 genes exhibited different expression profiles. Interestingly the transcriptional level of Igτ3 was negligible, although its protein product could be identified in trout serum. Importantly, a previously reported monoclonal antibody directed against trout IgT1 was able to recognize IgT2 and IgT3. These data demonstrate that there exist three subclasses of IgT in rainbow trout, and that their heavy chain genes display different expression patterns during stimulation. Overall, our data reflect the diversity and complexity of immunoglobulin in trout, thus provide a better understanding of the IgT system in the immune response of teleost fish.
Collapse
Affiliation(s)
- Nu Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Jie Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Dan-Dan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Yong-An Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
31
|
Patel B, Banerjee R, Basu M, Lenka S, Samanta M, Das S. Molecular cloning of IgZ heavy chain isotype in Catla catla and comparative expression profile of IgZ and IgM following pathogenic infection. Microbiol Immunol 2017; 60:561-7. [PMID: 27301776 DOI: 10.1111/1348-0421.12399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/27/2016] [Accepted: 06/07/2016] [Indexed: 11/28/2022]
Abstract
Immunoglobulins serve as a crucial arm of the adaptive immune system against detrimental pathogenic threats in teleosts. However, whether the novel Ig isotype IgZ is present in the Indian major carp, Catla catla, has not yet been elucidated. The present study reports the presence of IgZ ortholog in C. catla (CcIgZ) and further demonstrates its comparative tissue specific expression with IgM (CcIgM) in response to bacterial and parasitic stimulation. The putative 139 amino acid sequence of IgZ heavy chain cDNA of C. catla showed homology with IgZ constant domains of other teleosts. Phylogenetic analysis of the predicted IgZ transcript sequence clustered with previously identified IgZ heavy chain sequences of Cyprinidae family members. The inductive expression profiles of IgZ and IgM genes were evaluated in immunologically relevant tissues at 24, 48 and 72 hr post infection with Aeromonas hydrophila, Streptococcus uberis and Argulus sp. Both CcIgZ and CcIgM were expressed most strongly in the kidneys of healthy fish. Basal expression of CcIgM transcript was higher than that of CcIgZ in all the examined tissues. Stimulation with bacteria triggered significant increase of IgZ in the intestine (P < 0.001) and spleen (P < 0.01), whereas IgM was relatively up-regulated in blood (P < 0.001) after stimulation with each of the three pathogens assessed. The study is the first to report identification of IgZ in C. catla. Further, it provides insights into the differential expression profiles of IgZ and IgM isotypes against various pathogenic infection in C. catla, which may facilitate better prophylaxis again such infections.
Collapse
Affiliation(s)
- Bhakti Patel
- Laboratory of Environmental Microbiology and Ecology, Department of Life Science, National Institute of Technology, Rourkela 769 008
| | - Rajanya Banerjee
- Laboratory of Environmental Microbiology and Ecology, Department of Life Science, National Institute of Technology, Rourkela 769 008
| | - Madhubanti Basu
- Fish Health Management Division, Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Saswati Lenka
- Fish Health Management Division, Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Mrinal Samanta
- Fish Health Management Division, Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology, Department of Life Science, National Institute of Technology, Rourkela 769 008
| |
Collapse
|
32
|
Carballo I, Rabuñal N, Alvela L, Pérez LF, Vidal C, Alonso M, Sopeña B, Gude F, Gonzalez-Quintela A. Factors Influencing Serum Concentrations of Immunoglobulin D in the Adult Population: An Observational Study in Spain. Scand J Immunol 2017; 85:272-279. [DOI: 10.1111/sji.12529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 01/23/2017] [Indexed: 12/19/2022]
Affiliation(s)
- I. Carballo
- Department of Internal Medicine; Complejo Hospitalario Universitario; University of Santiago de Compostela; Spain
| | - N. Rabuñal
- Department of Internal Medicine; Complejo Hospitalario Universitario; University of Santiago de Compostela; Spain
| | - L. Alvela
- Department of Internal Medicine; Complejo Hospitalario Universitario; University of Santiago de Compostela; Spain
| | - L.-F. Pérez
- Department of Clinical Biochemistry; Complejo Hospitalario Universitario; Santiago de Compostela Spain
| | - C. Vidal
- Department of Allergy; Complejo Hospitalario Universitario; Santiago de Compostela Spain
| | - M. Alonso
- Department of Internal Medicine; Complejo Hospitalario Universitario; University of Santiago de Compostela; Spain
- Department of Clinical Epidemiology; Complejo Hospitalario Universitario; Santiago de Compostela Spain
| | - B. Sopeña
- Department of Internal Medicine; Complejo Hospitalario Universitario; University of Santiago de Compostela; Spain
| | - F. Gude
- Department of Clinical Epidemiology; Complejo Hospitalario Universitario; Santiago de Compostela Spain
| | - A. Gonzalez-Quintela
- Department of Internal Medicine; Complejo Hospitalario Universitario; University of Santiago de Compostela; Spain
| |
Collapse
|
33
|
Buonocore F, Stocchi V, Nunez-Ortiz N, Randelli E, Gerdol M, Pallavicini A, Facchiano A, Bernini C, Guerra L, Scapigliati G, Picchietti S. Immunoglobulin T from sea bass (Dicentrarchus labrax L.): molecular characterization, tissue localization and expression after nodavirus infection. BMC Mol Biol 2017; 18:8. [PMID: 28298204 PMCID: PMC5353873 DOI: 10.1186/s12867-017-0085-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/11/2017] [Indexed: 11/10/2022] Open
Abstract
Background Immunoglobulins (Igs) are fundamental components of the adaptive immune system of vertebrates, with the IgT/IgZ isotype specific of Teleosts. In this paper we describe the identification of an IgT heavy chain from the European sea bass (Dicentrarchus labrax L.), its molecular characterization and tissue mRNA localization by in situ hybridization. Results Sea bass IgT consists of 552 aa (Accession Number KM410929) and it contains a putative 19 amino acids long signal peptide and one potential N-glycosylation site. The C-region consists of four CH domains; each contains the cysteine and tryptophan residues required for their correct folding. Based on the recent sequencing of sea bass genome, we have identified five different genomic contigs bearing exons unequivocally pertaining to IgT (CH2, CH3 and CH4), but none corresponded to a complete IgH locus as IgT sequences were found in the highly fragmented assembled genomic regions which could not be assigned to any major scaffold. The 3D structure of sea bass IgT has been modelled using the crystal structure of a mouse Ig gamma as a template, thus showing that the amino acid sequence is suitable for the expected topology referred to an immunoglobulin-like architecture. The basal expression of sea bass IgT and IgM in different organs has been analysed: gut and gills, important mucosal organs, showed high IgT transcripts levels and this was the first indication of the possible involvement of sea bass IgT in mucosal immune responses. Moreover, sea bass IgT expression increased in gills and spleen after infection with nodavirus, highlighting the importance of IgT in sea bass immune responses. In situ hybridization confirmed the presence of IgT transcripts in the gut and it revealed a differential expression along the intestinal tract, with a major expression in the posterior intestine, suggesting the hindgut as a site for the recruitment of IgT+ cells in this species. IgT transcripts were also found in gill filaments and parallel lamellae and, for the first time, we identified scattered IgT positive cells in the liver, with a strong signal in the hepatic parenchyma. Conclusions In conclusion, we performed a full molecular characterization of IgT in sea bass that points out its possible involvement in mucosal immune responses of this species.
Collapse
Affiliation(s)
- Francesco Buonocore
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy.
| | - Valentina Stocchi
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy
| | - Noelia Nunez-Ortiz
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy
| | - Elisa Randelli
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127, Trieste, TS, Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127, Trieste, TS, Italy
| | - Angelo Facchiano
- Institute of Food Science, CNR, Via Roma, 64, 83100, Avellino, AV, Italy
| | - Chiara Bernini
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy
| | - Laura Guerra
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Largo dell'Università snc, 05100, Viterbo, VT, Italy
| |
Collapse
|
34
|
Bilal S, Lie KK, Karlsen OA, Hordvik I. Characterization of IgM in Norwegian cleaner fish (lumpfish and wrasses). FISH & SHELLFISH IMMUNOLOGY 2016; 59:9-17. [PMID: 27702679 DOI: 10.1016/j.fsi.2016.09.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/24/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
The use of cleaner fish in Norwegian aquaculture has to a large extent been based on wild catches, but breeding of lumpfish and ballan wrasse is currently increasing. Due to disease problems and required vaccine development, tools to study immune responses and a better understanding of the immune system in these species is demanded. The present study comprises lumpfish (Cyclopterus lumpus) and five species of wrasses: Ballan wrasse (Labrus bergylta), rock cook (Centrolabrus exoletus), cuckoo wrasse (Labrus mixtus), corkwing wrasse (Symphodus melops), and goldsinny wrasse (Ctenolabrus rupestris). We present a comparison of the IgM sequences, phylogenetic relationship to other teleosts and characteristic features of IgM in the species studied. The lumpfish IgM heavy chain sequence was assembled from high throughput cDNA sequencing whereas the wrasse sequences were determined by molecular cloning. The secreted form of the IgM heavy chain from all species consisted of four constant Ig domains. IgM was purified from lumpfish and ballan wrasse sera by gel filtration followed by anion exchange chromatography, and polyclonal sera were produced against these proteins. Antisera against ballan wrasse IgM showed cross-reactivity to all analyzed species of wrasses, some cross-reactivity to lumpfish, very low reaction to salmon, and no reaction to cod. Anti- IgM sera against lumpfish cross-reacted to the light chain of all species studied. Wrasses and lumpfish IgM showed high binding affinities for protein A. IgM concentration in adult ballan wrasse (700-800 g) was measured by single radial immunodiffusion assay and found to be 13.4 mg/ml which is about 36% of the total protein concentration. The IgM concentration in lumpfish (600-3600 g) was estimated to 1-2.6 mg/ml, which corresponds to approximately 3% of the total protein concentration.
Collapse
Affiliation(s)
- Sumaira Bilal
- Department of Biology, University of Bergen, Norway.
| | | | | | - Ivar Hordvik
- Department of Biology, University of Bergen, Norway
| |
Collapse
|
35
|
Mashoof S, Criscitiello MF. Fish Immunoglobulins. BIOLOGY 2016; 5:E45. [PMID: 27879632 PMCID: PMC5192425 DOI: 10.3390/biology5040045] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/03/2016] [Accepted: 11/09/2016] [Indexed: 01/19/2023]
Abstract
The B cell receptor and secreted antibody are at the nexus of humoral adaptive immunity. In this review, we summarize what is known of the immunoglobulin genes of jawed cartilaginous and bony fishes. We focus on what has been learned from genomic or cDNA sequence data, but where appropriate draw upon protein, immunization, affinity and structural studies. Work from major aquatic model organisms and less studied comparative species are both included to define what is the rule for an immunoglobulin isotype or taxonomic group and what exemplifies an exception.
Collapse
Affiliation(s)
- Sara Mashoof
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
| | - Michael F Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, College Station, TX 77807, USA.
| |
Collapse
|
36
|
Parra D, Korytář T, Takizawa F, Sunyer JO. B cells and their role in the teleost gut. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:150-66. [PMID: 26995768 PMCID: PMC5125549 DOI: 10.1016/j.dci.2016.03.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 05/03/2023]
Abstract
Mucosal surfaces are the main route of entry for pathogens in all living organisms. In the case of teleost fish, mucosal surfaces cover the vast majority of the animal. As these surfaces are in constant contact with the environment, fish are perpetually exposed to a vast number of pathogens. Despite the potential prevalence and variety of pathogens, mucosal surfaces are primarily populated by commensal non-pathogenic bacteria. Indeed, a fine balance between these two populations of microorganisms is crucial for animal survival. This equilibrium, controlled by the mucosal immune system, maintains homeostasis at mucosal tissues. Teleost fish possess a diffuse mucosa-associated immune system in the intestine, with B cells being one of the main responders. Immunoglobulins produced by these lymphocytes are a critical line of defense against pathogens and also prevent the entrance of commensal bacteria into the epithelium. In this review we will summarize recent literature regarding the role of B-lymphocytes and immunoglobulins in gut immunity in teleost fish, with specific focus on immunoglobulin isotypes and the microorganisms, pathogenic and non-pathogenic that interact with the immune system.
Collapse
Affiliation(s)
- David Parra
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Tomáš Korytář
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
37
|
Du Y, Tang X, Zhan W, Xing J, Sheng X. Immunoglobulin Tau Heavy Chain (IgT) in Flounder, Paralichthys olivaceus: Molecular Cloning, Characterization, and Expression Analyses. Int J Mol Sci 2016; 17:ijms17091571. [PMID: 27649168 PMCID: PMC5037838 DOI: 10.3390/ijms17091571] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 01/13/2023] Open
Abstract
Immunoglobulin tau (IgT) is a new teleost immunoglobulin isotype, and its potential function in adaptive immunity is not very clear. In the present study, the membrane-bound and secreted IgT (mIgT and sIgT) heavy chain genes were cloned for the first time and characterized in flounder (Paralichthys olivaceus), and found the nucleic acid sequence were exactly same in the Cτ1–Cτ4 constant domains of mIgT and sIgT, but different in variable regions and the C-terminus. The amino acid sequence of mIgT shared higher similarity with Bovichtus diacanthus (51.2%) and Dicentrarchus labrax (45.0%). Amino acid of flounder IgT, IgM, and IgD heavy chain was compared and the highest similarity was found between IgT Cτ1 and IgM Cμ1 (38%). In healthy flounder, the transcript levels of IgT mRNA were the highest in gill, spleen, and liver, and higher in peripheral blood leucocytes, skin, and hindgut. After infection and vaccination with Edwardsiella tarda via intraperitoneal injection and immersion, the qRT-PCR analysis demonstrated that the IgT mRNA level was significantly upregulated in all tested tissues, with similar dynamic tendency that increased firstly and then decreased, and higher in gill, skin, hindgut, liver, and stomach in immersion than in the injection group, but no significant difference existed in spleen and head kidney between immersion and injection groups. These results revealed that IgT responses could be simultaneously induced in both mucosal and systemic tissues after infection/vaccination via injection and immersion route, but IgT might play a more important role in mucosal immunity than in systemic immunity.
Collapse
Affiliation(s)
- Yang Du
- Laboratory of Pathology and Immunology of Aquatic Animals, KLM, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLM, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLM, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
- Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Jimo, Qingdao 266071, China.
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLM, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLM, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| |
Collapse
|
38
|
Han B, Yuan H, Wang T, Li B, Ma L, Yu S, Huang T, Li Y, Fang D, Chen X, Wang Y, Qiu S, Guo Y, Fei J, Ren L, Pan-Hammarström Q, Hammarström L, Wang J, Wang J, Hou Y, Pan Q, Xu X, Zhao Y. Multiple IgH Isotypes Including IgD, Subclasses of IgM, and IgY Are Expressed in the Common Ancestors of Modern Birds. THE JOURNAL OF IMMUNOLOGY 2016; 196:5138-47. [PMID: 27183632 DOI: 10.4049/jimmunol.1600307] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/14/2016] [Indexed: 12/23/2022]
Abstract
Although evolutionarily just as ancient as IgM, it has been thought for many years that IgD is not present in birds. Based on the recently sequenced genomes of 48 bird species as well as high-throughput transcriptome sequencing of immune-related tissues, we demonstrate in this work that the ostrich (Struthio camelus) possesses a functional δ gene that encodes a membrane-bound IgD H chain with seven CH domains. Furthermore, δ sequences were clearly identified in many other bird species, demonstrating that the δ gene is widely distributed among birds and is only absent in certain bird species. We also show that the ostrich possesses two μ genes (μ1, μ2) and two υ genes (υ1, υ2), in addition to the δ and α genes. Phylogenetic analyses suggest that subclass diversification of both the μ and υ genes occurred during the early stages of bird evolution, after their divergence from nonavian reptiles. Although the positions of the two υ genes are unknown, physical mapping showed that the remaining genes are organized in the order μ1-δ-α-μ2, with the α gene being inverted relative to the others. Together with previous studies, our data suggest that birds and nonavian reptile species most likely shared a common ancestral IgH gene locus containing a δ gene and an inverted α gene. The δ gene was then evolutionarily lost in selected birds, whereas the α gene lost in selected nonavian reptiles. The data obtained in this study provide significant insights into the understanding of IgH gene evolution in tetrapods.
Collapse
Affiliation(s)
- Binyue Han
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Hui Yuan
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Tao Wang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Bo Li
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Li Ma
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Shuyang Yu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Tian Huang
- School of Life Science, Henan University, Kaifeng 475004, People's Republic of China
| | - Yan Li
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; and
| | - Dongming Fang
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Xiaoli Chen
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Yongsi Wang
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Si Qiu
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Ying Guo
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jing Fei
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Liming Ren
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China
| | - Qiang Pan-Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, SE-141 86, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, SE-141 86, Stockholm, Sweden
| | - Jun Wang
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Yong Hou
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China
| | - Qingjie Pan
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, People's Republic of China; and
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, People's Republic of China;
| | - Yaofeng Zhao
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, People's Republic of China;
| |
Collapse
|
39
|
Rønneseth A, Ghebretnsae DB, Wergeland HI, Haugland GT. Functional characterization of IgM+ B cells and adaptive immunity in lumpfish (Cyclopterus lumpus L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 52:132-43. [PMID: 26021455 DOI: 10.1016/j.dci.2015.05.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 05/13/2023]
Abstract
The innate immune responses in lumpfish (Cyclopterus lumpus L.) have been shown to be functional, but little is currently known about the B cells, immunoglobulins or adaptive immune responses in this species. We have used anti-IgM antiserum to isolate B cells and compared them morphologically and functionally with other cell types. The fraction of IgM(+) cells among isolated peripheral blood leukocytes (PBL), head kidney leukocytes (HKL) and spleen leukocytes (SL) was in the range of 40%, 12% and 34%, respectively. The IgM(+) B cells had high phagocytic ability and were the predominant phagocytes in blood with higher capacity than IgM(+) B cells in HKL. Interestingly, among PBL, the most potent phagocytes were, in addition to monocytes, some small agranular uncharacterized IgM(-) cells. The IgM(+) B cells were positive for acid phosphatases (AcP), but negative for myeloperoxidase (MPO). Neutrophils were positive for MPO, while monocytes/macrophages and dendritic-like cells stained negatively. Monocytes/macrophages and the small, agranular IgM(-) cells stained most strongly positive for AcP corresponding to their high phagocytic capacity. Further, the ability to produce specific antibodies upon immunization verified adaptive immunity in the species. The high proportion of phagocytic IgM(+) B cells and their phagocytic ability indicate a significant role of phagocytic B cells in lumpfish innate immunity. The present analyses also give strong indications that vaccination and immunostimulation of farmed lumpfish can be used to prevent disease and mortality caused by pathogenic organisms.
Collapse
Affiliation(s)
- Anita Rønneseth
- Department of Biology, Bergen High-Technology Centre, University of Bergen, PO box 7803, NO-5020 Bergen, Norway
| | - Dawit B Ghebretnsae
- Department of Biology, Bergen High-Technology Centre, University of Bergen, PO box 7803, NO-5020 Bergen, Norway
| | - Heidrun I Wergeland
- Department of Biology, Bergen High-Technology Centre, University of Bergen, PO box 7803, NO-5020 Bergen, Norway
| | - Gyri T Haugland
- Department of Biology, Bergen High-Technology Centre, University of Bergen, PO box 7803, NO-5020 Bergen, Norway.
| |
Collapse
|
40
|
Leung SO, Gao K, Wang GY, Cheung BKW, Lee KY, Zhao Q, Cheung WT, Wang JZ. Surrogate target cells expressing surface anti-idiotype antibody for the clinical evaluation of an internalizing CD22-specific antibody. MAbs 2015; 7:66-76. [PMID: 25427174 DOI: 10.4161/19420862.2014.985519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
SM03, a chimeric antibody that targets the B-cell restricted antigen CD22, is currently being clinically evaluated for the treatment of lymphomas and other autoimmune diseases in China. SM03 binding to surface CD22 leads to rapid internalization, making the development of an appropriate cell-based bioassay for monitoring changes in SM03 bioactivities during production, purification, storage, and clinical trials difficult. We report herein the development of an anti-idiotype antibody against SM03. Apart from its being used as a surrogate antigen for monitoring SM03 binding affinities, the anti-idiotype antibody was engineered to express as fusion proteins on cell surfaces in a non-internalizing manner, and the engineered cells were used as novel "surrogate target cells" for SM03. SM03-induced complement-mediated cytotoxicity (CMC) against these "surrogate target cells" proved to be an effective bioassay for monitoring changes in Fc functions, including those resulting from minor structural modifications borne within the Fc-appended carbohydrates. The approach can be generally applied for antibodies that target rapidly internalizing or non-surface bound antigens. The combined use of the anti-idiotype antibody and the surrogate target cells could help evaluate clinical parameters associated with safety and efficacies, and possibly the mechanisms of action of SM03.
Collapse
Key Words
- ADCC, antibody dependent cell cytotoxicity
- CD22
- CMC, complement mediated cytotoxicity
- HACA, human anti-chimeric antibody
- MOA, mechanism of action
- NHL, non-Hodgkins lymphoma
- PBMC, peripheral blood mononuclear cell
- PK, pharmacokinetic
- RA, rheumatoid arthritis
- SLE, systemic lupus erythematosus
- anti-idiotype
- bioassay
- internalizing
- mAb, monoclonal antibody
- surrogate target cells
Collapse
Affiliation(s)
- Shui-On Leung
- a Institute of Biomedical Sciences ; Fudan University ; Shanghai , China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Alternative adaptive immunity strategies: coelacanth, cod and shark immunity. Mol Immunol 2015; 69:157-69. [PMID: 26423359 DOI: 10.1016/j.molimm.2015.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 01/30/2023]
Abstract
The advent of high throughput sequencing has permitted to investigate the genome and the transcriptome of novel non-model species with unprecedented depth. This technological advance provided a better understanding of the evolution of adaptive immune genes in gnathostomes, revealing several unexpected features in different fish species which are of particular interest. In the present paper, we review the current understanding of the adaptive immune system of the coelacanth, the elephant shark and the Atlantic cod. The study of coelacanth, the only living extant of the long thought to be extinct Sarcopterygian lineage, is fundamental to bring new insights on the evolution of the immune system in higher vertebrates. Surprisingly, coelacanths are the only known jawed vertebrates to lack IgM, whereas two IgD/W loci are present. Cartilaginous fish are of great interest due to their basal position in the vertebrate tree of life; the genome of the elephant shark revealed the lack of several important immune genes related to T cell functions, which suggest the existence of a primordial set of TH1-like cells. Finally, the Atlantic cod lacks a functional major histocompatibility II complex, but balances this evolutionary loss with the expansion of specific gene families, including MHC I, Toll-like receptors and antimicrobial peptides. Overall, these data point out that several fish species present an unconventional adaptive immune system, but the loss of important immune genes is balanced by adaptive evolutionary strategies which still guarantee the establishment of an efficient immune response against the pathogens they have to fight during their life.
Collapse
|
42
|
Peatman E, Lange M, Zhao H, Beck BH. Physiology and immunology of mucosal barriers in catfish (Ictalurus spp.). Tissue Barriers 2015; 3:e1068907. [PMID: 26716071 DOI: 10.1080/21688370.2015.1068907] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/23/2015] [Accepted: 06/27/2015] [Indexed: 10/23/2022] Open
Abstract
The mucosal barriers of catfish (Ictalurus spp) constitute the first line of defense against pathogen invasion while simultaneously carrying out a diverse array of other critical physiological processes, including nutrient adsorption, osmoregulation, waste excretion, and environmental sensing. Catfish depend more heavily on mucosal barriers than their terrestrial counterparts as they are continuously interacting with the aquatic microbiota. Our understanding of these barriers, while growing, is still limited relative to that of mammalian model systems. Nevertheless, a combination of molecular and cellular studies in catfish over the last few decades, and particularly within the last few years, has helped to elucidate many of the primary actors and pathways critical to their mucosal health. Here we describe aspects of innate and adaptive immune responses in the primary mucosal tissues (skin, gill, and intestine) of catfish, focusing on mucus-driven responses, pathogen recognition, soluble mediators, and immunoglobulin and T-cell derived immunity. Modulation of mucosal barriers will be critical moving forward for crafting better diets, improving vaccine delivery, enhancing water quality, and ensuring sustainable production practices in catfish.
Collapse
Affiliation(s)
- Eric Peatman
- School of Fisheries, Aquaculture, and Aquatic Sciences; Auburn University ; Auburn, AL USA
| | - Miles Lange
- United States Department of Agriculture; Agricultural Research Service; Stuttgart National Aquaculture Research Center ; Stuttgart, AR USA
| | - Honggang Zhao
- School of Fisheries, Aquaculture, and Aquatic Sciences; Auburn University ; Auburn, AL USA
| | - Benjamin H Beck
- United States Department of Agriculture; Agricultural Research Service; Stuttgart National Aquaculture Research Center ; Stuttgart, AR USA
| |
Collapse
|
43
|
Abstract
Two types of adaptive immune strategies are known to have evolved in vertebrates: the VLR-based system, which is present in jawless organisms and is mediated by VLRA and VLRB lymphocytes, and the BCR/TCR-based system, which is present in jawed species and is provided by B and T cell receptors expressed on B and T cells, respectively. Here we summarize features of B cells and their predecessors in the different animal phyla, focusing the review on B cells from jawed vertebrates. We point out the critical role of nonclassical species and comparative immunology studies in the understanding of B cell immunity. Because nonclassical models include species relevant to veterinary medicine, basic science research performed in these animals contributes to the knowledge required for the development of more efficacious vaccines against emerging pathogens.
Collapse
Affiliation(s)
- David Parra
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
44
|
Incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis. Sci Rep 2015; 5:10594. [PMID: 26028216 PMCID: PMC4450580 DOI: 10.1038/srep10594] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 04/20/2015] [Indexed: 12/24/2022] Open
Abstract
Identifying how developmental temperature affects the immune system is critical for understanding how ectothermic animals defend against pathogens and their fitness in the changing world. However, reptiles have received little attention regarding this issue. We incubated eggs at three ecologically relevant temperatures to determine how incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis. When exposed to bacterial infections, hatchlings from 24 °C had lower cumulative mortalities (55%, therefore, higher immunocompetence) than those from 28 °C (85%) or 32 °C (100%). Consistent with higher immunocompetence, hatchlings from low incubation temperature had higher IgM, IgD, and CD3γ expressions than their counterparts from the other two higher incubation temperatures. Conversely, the activity of immunity-related enzymes did not match the among-temperature difference in immune function. Specifically, enzyme activity was higher at intermediate temperatures (alkaline phosphatase) or was not affected by incubation temperature (acid phosphatase, lysozyme). Our study is the first to provide unequivocal evidence (at the molecular and organismal level) about the significant effect of incubation temperature on offspring immunity in reptiles. Our results also indicate that the reduced immunity induced by high developmental temperatures might increase the vulnerability of reptiles to the outbreak of diseases under global warming scenarios.
Collapse
|
45
|
Makesh M, Sudheesh PS, Cain KD. Systemic and mucosal immune response of rainbow trout to immunization with an attenuated Flavobacterium psychrophilum vaccine strain by different routes. FISH & SHELLFISH IMMUNOLOGY 2015; 44:156-163. [PMID: 25687393 DOI: 10.1016/j.fsi.2015.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
Teleosts possess three immunoglobulin (Ig) heavy chain isotypes viz., IgM, IgT and IgD and all three isotypes are reported in rainbow trout. The expression of these Ig isotypes in response to different immunization routes was investigated and results provide a better understanding of the role these Igs in different tissues. Rainbow trout (Oncorhynchus mykiss) were immunized with an attenuated Flavobacterium psychrophilum strain, 259-93-B.17 grown under iron limiting conditions, by intraperitoneal, anal intubation and immersion routes. Serum, gill mucus, skin mucus and intestinal mucus samples were collected at 0, 3, 7, 14, 28, 42 and 56 days post immunization by sacrificing four fish from each treatment group and the unimmunized control group, and the IgM levels were estimated by an enzyme linked immunosorbent assay (ELISA). In addition, blood, gill, skin and intestinal tissue samples were collected for Ig gene expression studies. The secretory IgM, IgD and IgT gene expression levels in these tissues were estimated by reverse transcription quantitative real time PCR (RT-qPCR). Levels of IgM in serum, gill and skin mucus increased significantly by 28 days after immunization in the intraperitoneally immunized group, while no significant increase in IgM level was observed in fish groups immunized by other routes. Secretory IgD and IgT expression levels were significantly upregulated in gills of fish immunized by the immersion route. Similarly, secretory IgT and IgD were upregulated in intestines of fish immunized by anal intubation route. The results confirm mucosal association of IgT and suggest that IgD may also be specialized in mucosal immunity and contribute to immediate protection to the fish at mucosal surfaces.
Collapse
Affiliation(s)
- M Makesh
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID 83844-1136, USA; Aquatic Environment and Health Management Division, Central Institute of Fisheries Education, Versova, Mumbai 400061, India.
| | - Ponnerassery S Sudheesh
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID 83844-1136, USA
| | - Kenneth D Cain
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID 83844-1136, USA
| |
Collapse
|
46
|
Abstract
As in mammals, cartilaginous and teleost fishes possess adaptive immune systems based on antigen recognition by immunoglobulins (Ig), T cell receptors (TCR), and major histocompatibility complex molecules (MHC) I and MHC II molecules. Also it is well established that fish B cells and mammalian B cells share many similarities, including Ig gene rearrangements, and production of membrane Ig and secreted Ig forms. This chapter provides an overview of the IgH and IgL chains in cartilaginous and bony fish, including their gene organizations, expression, diversity of their isotypes, and development of the primary repertoire. Furthermore, when possible, we have included summaries of key studies on immune mechanisms such as allelic exclusion, somatic hypermutation, affinity maturation, class switching, and mucosal immune responses.
Collapse
Affiliation(s)
- Eva Bengtén
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA.
| | - Melanie Wilson
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS, 39216-4505, USA.
| |
Collapse
|
47
|
Pettinello R, Dooley H. The immunoglobulins of cold-blooded vertebrates. Biomolecules 2014; 4:1045-69. [PMID: 25427250 PMCID: PMC4279169 DOI: 10.3390/biom4041045] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 12/27/2022] Open
Abstract
Although lymphocyte-like cells secreting somatically-recombining receptors have been identified in the jawless fishes (hagfish and lamprey), the cartilaginous fishes (sharks, skates, rays and chimaera) are the most phylogenetically distant group relative to mammals in which bona fide immunoglobulins (Igs) have been found. Studies of the antibodies and humoral immune responses of cartilaginous fishes and other cold-blooded vertebrates (bony fishes, amphibians and reptiles) are not only revealing information about the emergence and roles of the different Ig heavy and light chain isotypes, but also the evolution of specialised adaptive features such as isotype switching, somatic hypermutation and affinity maturation. It is becoming increasingly apparent that while the adaptive immune response in these vertebrate lineages arose a long time ago, it is most definitely not primitive and has evolved to become complex and sophisticated. This review will summarise what is currently known about the immunoglobulins of cold-blooded vertebrates and highlight the differences, and commonalities, between these and more “conventional” mammalian species.
Collapse
Affiliation(s)
- Rita Pettinello
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| | - Helen Dooley
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK.
| |
Collapse
|
48
|
Zhu R, Chen ZY, Wang J, Yuan JD, Liao XY, Gui JF, Zhang QY. Thymus cDNA library survey uncovers novel features of immune molecules in Chinese giant salamander Andrias davidianus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:413-422. [PMID: 24909429 DOI: 10.1016/j.dci.2014.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 06/03/2023]
Abstract
A ranavirus-induced thymus cDNA library was constructed from Chinese giant salamander, the largest extant amphibian species. Among the 137 putative immune-related genes derived from this library, these molecules received particular focus: immunoglobulin heavy chains (IgM, IgD, and IgY), IFN-inducible protein 6 (IFI6), and T cell receptor beta chain (TCRβ). Several unusual features were uncovered: IgD displays a structure pattern distinct from those described for other amphibians by having only four constant domains plus a hinge region. A unique IgY form (IgY(ΔFc)), previously undescribed in amphibians, is present in serum. Alternative splicing is observed to generate IgH diversification. IFI6 is newly-identified in amphibians, which occurs in two forms divergent in subcelluar distribution and antiviral activity. TCRβ immunoscope profile follows the typical vertebrate pattern, implying a polyclonal T cell repertoire. Collectively, the pioneering survey of ranavirus-induced thymus cDNA library from Chinese giant salamander reveals immune components and characteristics in this primitive amphibian.
Collapse
Affiliation(s)
- Rong Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhong-Yuan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jun Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jiang-Di Yuan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiang-Yong Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
49
|
Das S, Chhottaray C, Das Mahapatra K, Saha JN, Baranski M, Robinson N, Sahoo PK. Analysis of immune-related ESTs and differential expression analysis of few important genes in lines of rohu (Labeo rohita) selected for resistance and susceptibility to Aeromonas hydrophila infection. Mol Biol Rep 2014; 41:7361-71. [PMID: 25081649 DOI: 10.1007/s11033-014-3625-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 07/19/2014] [Indexed: 10/25/2022]
Abstract
A total of 137,629 contigs generated via de novo transcriptome assembly from resistant and susceptible lines of rohu (first generation) raised against aeromoniasis were further analyzed in terms of defence-related genes. Out of 1,939 contigs showing homology to genes involved in immune processes, 1,866 were further categorised into different functional subgroups. Comparative analysis revealed five genes for the first time in any carp species out of which apolipoprotein h, septin 4 isoform 3 and septin isoform cra_c were identified for the first time in fish. Differential expression analysis of ten genes viz., heat shock proteins (Hsps) (Hsp30, Hsp70 and Hsp90), serum lectin isoform 1 (SLI1), linker histone H1M (LHH1M), NAD(P)H quinone 1 (NQO1), zona pellucida 2 (ZP2) and three unknown genes that were highly up-expressed in first generation resistant line fish from mRNA-seq coverage data, was carried out using susceptible and resistant individuals of the second generation selected populations in eight different tissues viz. liver, kidney, intestine, gill, brain, spleen, skin and muscle using qPCR. Significant up-regulation in Hsp90, NQO1, C_116914 and C_22454 in specific tissues of resistant line and variable expression in Hsp30 and LHH1M genes in different tissues of both lines were noticed. The expression of Hsp70 was lower in many tissues of the resistant line than in susceptible line rohu. The expression of ZP2, SLI1 and C_94589 genes was not significantly different in terms of fold difference between the two lines. Differentially expressed genes need further characterisation to explore their role in resistance to Aeromonas hydrophila infection in rohu.
Collapse
Affiliation(s)
- Sweta Das
- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751 002, India
| | | | | | | | | | | | | |
Collapse
|
50
|
Demberg T, Mohanram V, Venzon D, Robert-Guroff M. Phenotypes and distribution of mucosal memory B-cell populations in the SIV/SHIV rhesus macaque model. Clin Immunol 2014; 153:264-76. [PMID: 24814239 DOI: 10.1016/j.clim.2014.04.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/31/2014] [Accepted: 04/29/2014] [Indexed: 12/25/2022]
Abstract
As vaccine-elicited antibodies have now been associated with HIV protective efficacy, a thorough understanding of mucosal and systemic B-cell development and maturation is needed. We phenotyped mucosal memory B-cells, investigated isotype expression and homing patterns, and defined plasmablasts and plasma cells at three mucosal sites (duodenum, jejunum and rectum) in rhesus macaques, the commonly used animal model for pre-clinical vaccine studies. Unlike humans, macaque mucosal memory B-cells lacked CD27 expression; only two sub-populations were present: naïve (CD21(+)CD27(-)) and tissue-like (CD21(-)CD27(-)) memory. Similar to humans, IgA was the dominant isotype expressed. The homing markers CXCR4, CCR6, CCR9 and α4β7 were differentially expressed between naïve and tissue-like memory B-cells. Mucosal plasmablasts were identified as CD19(+)CD20(+/-)HLA-DR(+)Ki-67(+)IRF4(+)CD138(+/-) and mucosal plasma cells as CD19(+)CD20(-)HLA-DR(-)Ki-67(-)IRF4(+)CD138(+). Both populations were CD39(+/-)CD27(-). Plasma cell phenotype was confirmed by spontaneous IgA secretion by ELISpot of positively-selected cells and J-chain expression by real-time PCR. Duodenal, jejunal and rectal samples were similar in B-cell memory phenotype, isotype expression, homing receptors and plasmablast/plasma cell distribution among the three tissues. Thus rectal biopsies adequately monitor B-cell dynamics in the gut mucosa, and provide a critical view of mucosal B-cell events associated with development of vaccine-elicited protective immune responses and SIV/SHIV pathogenesis and disease control.
Collapse
Affiliation(s)
- Thorsten Demberg
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Venkatramanan Mohanram
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Marjorie Robert-Guroff
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| |
Collapse
|