1
|
Serreze DV, Dwyer JR, Racine JJ. Advancing Animal Models of Human Type 1 Diabetes. Cold Spring Harb Perspect Med 2024; 14:a041587. [PMID: 38886067 PMCID: PMC11444302 DOI: 10.1101/cshperspect.a041587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Multiple rodent models have been developed to study the basis of type 1 diabetes (T1D). However, nonobese diabetic (NOD) mice and derivative strains still provide the gold standard for dissecting the basis of the autoimmune responses underlying T1D. Here, we review the developmental origins of NOD mice, and how they and derivative strains have been used over the past several decades to dissect the genetic and immunopathogenic basis of T1D. Also discussed are ways in which the immunopathogenic basis of T1D in NOD mice and humans are similar or differ. Additionally reviewed are efforts to "humanize" NOD mice and derivative strains to provide improved models to study autoimmune responses contributing to T1D in human patients.
Collapse
|
2
|
Alhadidi QM, Nash KM, Bahader GA, Zender E, McInerney MF, Shah ZA. Hyperglycemia in a NOD Mice Model of Type-I Diabetes Aggravates Collagenase-Induced Intracerebral Hemorrhagic Injury. Biomedicines 2024; 12:1867. [PMID: 39200331 PMCID: PMC11352023 DOI: 10.3390/biomedicines12081867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a severe type of stroke with high mortality. Persistent hyperglycemia following ICH is linked to deteriorated neurological functions and death. However, the exacerbating effect of hyperglycemia on ICH injury at the molecular level is still unclear. Therefore, this study explores the impact of diabetes on ICH injury using a non-obese diabetic (NOD) mouse model of type I diabetes mellitus. METHODS NOD and non-diabetic (non-obese resistant) mice subjected to ICH by intrastriatal injection of collagenase were sacrificed three days following the ICH. Brains were collected for hematoma volume measurement and immunohistochemistry. Neurobehavioral assays were conducted 24 h before ICH and then repeated at 24, 48 and 72 h following ICH. RESULTS NOD mice showed increased hematoma volume and impairment in neurological function, as revealed by rotarod and grip strength analyses. Immunohistochemical staining showed reduced glial cell activation, as indicated by decreased GFAP and Iba1 staining. Furthermore, the expression of oxidative/nitrosative stress markers represented by 3-nitrotyrosine and inducible nitric oxide synthase was reduced in the diabetic group. CONCLUSIONS Overall, our findings support the notion that hyperglycemia exacerbates ICH injury and worsens neurological function and that the mechanism of injury varies depending on the type of diabetes model used.
Collapse
Affiliation(s)
- Qasim M. Alhadidi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
- Department of Pharmacy, Al-Yarmok University College, Diyala 21163, Iraq
| | - Kevin M. Nash
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Ghaith A. Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Emily Zender
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Marcia F. McInerney
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Zahoor A. Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
- Department of Pharmacology, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
3
|
Robertson CC, Elgamal RM, Henry-Kanarek BA, Arvan P, Chen S, Dhawan S, Eizirik DL, Kaddis JS, Vahedi G, Parker SCJ, Gaulton KJ, Soleimanpour SA. Untangling the genetics of beta cell dysfunction and death in type 1 diabetes. Mol Metab 2024; 86:101973. [PMID: 38914291 PMCID: PMC11283044 DOI: 10.1016/j.molmet.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a complex multi-system disease which arises from both environmental and genetic factors, resulting in the destruction of insulin-producing pancreatic beta cells. Over the past two decades, human genetic studies have provided new insight into the etiology of T1D, including an appreciation for the role of beta cells in their own demise. SCOPE OF REVIEW Here, we outline models supported by human genetic data for the role of beta cell dysfunction and death in T1D. We highlight the importance of strong evidence linking T1D genetic associations to bona fide candidate genes for mechanistic and therapeutic consideration. To guide rigorous interpretation of genetic associations, we describe molecular profiling approaches, genomic resources, and disease models that may be used to construct variant-to-gene links and to investigate candidate genes and their role in T1D. MAJOR CONCLUSIONS We profile advances in understanding the genetic causes of beta cell dysfunction and death at individual T1D risk loci. We discuss how genetic risk prediction models can be used to address disease heterogeneity. Further, we present areas where investment will be critical for the future use of genetics to address open questions in the development of new treatment and prevention strategies for T1D.
Collapse
Affiliation(s)
- Catherine C Robertson
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Center for Precision Health Research, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Ruth M Elgamal
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Belle A Henry-Kanarek
- Department of Internal Medicine and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Peter Arvan
- Department of Internal Medicine and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA; Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Sangeeta Dhawan
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, Belgium
| | - John S Kaddis
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Golnaz Vahedi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stephen C J Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA.
| | - Kyle J Gaulton
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| | - Scott A Soleimanpour
- Department of Internal Medicine and Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Daamouch S, Blüher M, Vázquez DC, Hackl M, Hofbauer LC, Rauner M. MiR-144-5p and miR-21-5p do not drive bone disease in a mouse model of type 1 diabetes mellitus. JBMR Plus 2024; 8:ziae036. [PMID: 38606150 PMCID: PMC11008730 DOI: 10.1093/jbmrpl/ziae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024] Open
Abstract
The increased risk of fractures in patients with type 1 diabetes mellitus (T1DM) is nowadays well recognized. However, the exact mechanism of action of diabetic bone disease has not been fully elucidated. MicroRNAs (miRNAs) are gene regulators that operate post-transcriptionally and have been implicated in the development of various metabolic disorders including T1DM. Previous studies have implicated a role for miR-144-5p and miR-21-5p, which are involved in controlling oxidative stress by targeting Nrf2, in T1DM. To date, it is unclear whether miR-144-5p and miR-21-5p affect bone health in T1DM. Thus, this study aimed to investigate the influence of miR-144-5p and miR-21-5p knockdown in the development of bone disease in T1DM male mice. Therefore, T1DM was induced in 10-wk-old male mice using streptozotocin (STZ). One week later, after development of hyperglycemia, antagomir-144-5p and antagomir-21-5p or their non-targeting control were administered at 10 mg/kg BW once a week until the end of the experiment. At 14 wk of age, glucose levels, bone, and fat mass were analyzed. The results revealed that treating T1DM male mice with antagomir-144-5p and antagomir-21-5p did not protect against diabetes development or bone loss, despite the successful downregulation of the miRNAs and the normalization of Nrf2 mRNA levels in bone tissue. Histological and serological parameters of bone formation or resorption were not altered by the antagomir treatment. Finally, we measured the expression of miRNA-144-5p or miRNA-21-5p in the serum of 30 individuals with T1DM and compared them to non-diabetic controls, but did not find an altered expression of either miRNA. In conclusion, the knockdown of miR-144-5p and miR-21-5p does not affect STZ-induced diabetes development or loss of bone mass in male mice. However, it does normalize expression of the anti-oxidant factor Nrf2 in diabetic bone tissue.
Collapse
Affiliation(s)
- Souad Daamouch
- Department of Medicine III, Center for Healthy Aging, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Saxony, 04109, Germany
| | | | | | - Lorenz C Hofbauer
- Department of Medicine III, Center for Healthy Aging, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Martina Rauner
- Department of Medicine III, Center for Healthy Aging, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| |
Collapse
|
5
|
Negm A, Stobbe K, Ben Fradj S, Sanchez C, Landra-Willm A, Richter M, Fleuriot L, Debayle D, Deval E, Lingueglia E, Rovere C, Noel J. Acid-sensing ion channel 3 mediates pain hypersensitivity associated with high-fat diet consumption in mice. Pain 2024; 165:470-486. [PMID: 37733484 DOI: 10.1097/j.pain.0000000000003030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 07/07/2023] [Indexed: 09/23/2023]
Abstract
ABSTRACT Lipid-rich diet is the major cause of obesity, affecting 13% of the worldwide adult population. Obesity is a major risk factor for metabolic syndrome that includes hyperlipidemia and diabetes mellitus. The early phases of metabolic syndrome are often associated with hyperexcitability of peripheral small diameter sensory fibers and painful diabetic neuropathy. Here, we investigated the effect of high-fat diet-induced obesity on the activity of dorsal root ganglion (DRG) sensory neurons and pain perception. We deciphered the underlying cellular mechanisms involving the acid-sensing ion channel 3 (ASIC3). We show that mice made obese through consuming high-fat diet developed the metabolic syndrome and prediabetes that was associated with heat pain hypersensitivity, whereas mechanical sensitivity was not affected. Concurrently, the slow conducting C fibers in the skin of obese mice showed increased activity on heating, whereas their mechanosensitivity was not altered. Although ASIC3 knockout mice fed with high-fat diet became obese, and showed signs of metabolic syndrome and prediabetes, genetic deletion, and in vivo pharmacological inhibition of ASIC3, protected mice from obesity-induced thermal hypersensitivity. We then deciphered the mechanisms involved in the heat hypersensitivity of mice and found that serum from high-fat diet-fed mice was enriched in lysophosphatidylcholine (LPC16:0, LPC18:0, and LPC18:1). These enriched lipid species directly increased the activity of DRG neurons through activating the lipid sensitive ASIC3 channel. Our results identify ASIC3 channel in DRG neurons and circulating lipid species as a mechanism contributing to the hyperexcitability of nociceptive neurons that can cause pain associated with lipid-rich diet consumption and obesity.
Collapse
Affiliation(s)
- Ahmed Negm
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, Valbonne, France. Negm is now with the Université Clermont-Auvergne, Laboratoire Neurodol, UMR 1107 Inserm, Clermont-Ferrand, France
| | - Katharina Stobbe
- Université Côte d'Azur, CNRS, IPMC, LabEx SIGNALIFE, Valbonne, France
| | - Selma Ben Fradj
- Université Côte d'Azur, CNRS, IPMC, LabEx SIGNALIFE, Valbonne, France
| | - Clara Sanchez
- Université Côte d'Azur, CNRS, IPMC, LabEx SIGNALIFE, Valbonne, France
| | - Arnaud Landra-Willm
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, Valbonne, France. Negm is now with the Université Clermont-Auvergne, Laboratoire Neurodol, UMR 1107 Inserm, Clermont-Ferrand, France
| | - Margaux Richter
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, Valbonne, France. Negm is now with the Université Clermont-Auvergne, Laboratoire Neurodol, UMR 1107 Inserm, Clermont-Ferrand, France
| | | | | | - Emmanuel Deval
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, Valbonne, France. Negm is now with the Université Clermont-Auvergne, Laboratoire Neurodol, UMR 1107 Inserm, Clermont-Ferrand, France
| | - Eric Lingueglia
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, Valbonne, France. Negm is now with the Université Clermont-Auvergne, Laboratoire Neurodol, UMR 1107 Inserm, Clermont-Ferrand, France
| | - Carole Rovere
- Université Côte d'Azur, CNRS, IPMC, LabEx SIGNALIFE, Valbonne, France
| | - Jacques Noel
- Université Côte d'Azur, CNRS, IPMC, LabEx ICST, FHU InovPain, Valbonne, France. Negm is now with the Université Clermont-Auvergne, Laboratoire Neurodol, UMR 1107 Inserm, Clermont-Ferrand, France
| |
Collapse
|
6
|
James EA, Joglekar AV, Linnemann AK, Russ HA, Kent SC. The beta cell-immune cell interface in type 1 diabetes (T1D). Mol Metab 2023; 78:101809. [PMID: 37734713 PMCID: PMC10622886 DOI: 10.1016/j.molmet.2023.101809] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND T1D is an autoimmune disease in which pancreatic islets of Langerhans are infiltrated by immune cells resulting in the specific destruction of insulin-producing islet beta cells. Our understanding of the factors leading to islet infiltration and the interplay of the immune cells with target beta cells is incomplete, especially in human disease. While murine models of T1D have provided crucial information for both beta cell and autoimmune cell function, the translation of successful therapies in the murine model to human disease has been a challenge. SCOPE OF REVIEW Here, we discuss current state of the art and consider knowledge gaps concerning the interface of the islet beta cell with immune infiltrates, with a focus on T cells. We discuss pancreatic and immune cell phenotypes and their impact on cell function in health and disease, which we deem important to investigate further to attain a more comprehensive understanding of human T1D disease etiology. MAJOR CONCLUSIONS The last years have seen accelerated development of approaches that allow comprehensive study of human T1D. Critically, recent studies have contributed to our revised understanding that the pancreatic beta cell assumes an active role, rather than a passive position, during autoimmune disease progression. The T cell-beta cell interface is a critical axis that dictates beta cell fate and shapes autoimmune responses. This includes the state of the beta cell after processing internal and external cues (e.g., stress, inflammation, genetic risk) that that contributes to the breaking of tolerance by hyperexpression of human leukocyte antigen (HLA) class I with presentation of native and neoepitopes and secretion of chemotactic factors to attract immune cells. We anticipate that emerging insights about the molecular and cellular aspects of disease initiation and progression processes will catalyze the development of novel and innovative intervention points to provide additional therapies to individuals affected by T1D.
Collapse
Affiliation(s)
- Eddie A James
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Alok V Joglekar
- Center for Systems Immunology and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amelia K Linnemann
- Center for Diabetes and Metabolic Diseases, and Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Holger A Russ
- Diabetes Institute, University of Florida, Gainesville, FL, USA; Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Sally C Kent
- Diabetes Center of Excellence, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
7
|
Kim A, Xie F, Abed OA, Moon JJ. Vaccines for immune tolerance against autoimmune disease. Adv Drug Deliv Rev 2023; 203:115140. [PMID: 37980949 PMCID: PMC10757742 DOI: 10.1016/j.addr.2023.115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
The high prevalence and rising incidence of autoimmune diseases have become a prominent public health issue. Autoimmune disorders result from the immune system erroneously attacking the body's own healthy cells and tissues, causing persistent inflammation, tissue injury, and impaired organ function. Existing treatments primarily rely on broad immunosuppression, leaving patients vulnerable to infections and necessitating lifelong treatments. To address these unmet needs, an emerging frontier of vaccine development aims to restore immune equilibrium by inducing immune tolerance to autoantigens, offering a potential avenue for a cure rather than mere symptom management. We discuss this burgeoning field of vaccine development against inflammation and autoimmune diseases, with a focus on common autoimmune disorders, including multiple sclerosis, type 1 diabetes, rheumatoid arthritis, inflammatory bowel disease, and systemic lupus erythematosus. Vaccine-based strategies provide a new pathway for the future of autoimmune disease therapeutics, heralding a new era in the battle against inflammation and autoimmunity.
Collapse
Affiliation(s)
- April Kim
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Fang Xie
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Omar A Abed
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor 48109, USA.
| |
Collapse
|
8
|
Passeri L, Andolfi G, Bassi V, Russo F, Giacomini G, Laudisa C, Marrocco I, Cesana L, Di Stefano M, Fanti L, Sgaramella P, Vitale S, Ziparo C, Auricchio R, Barera G, Di Nardo G, Troncone R, Gianfrani C, Annoni A, Passerini L, Gregori S. Tolerogenic IL-10-engineered dendritic cell-based therapy to restore antigen-specific tolerance in T cell mediated diseases. J Autoimmun 2023; 138:103051. [PMID: 37224733 DOI: 10.1016/j.jaut.2023.103051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/06/2023] [Accepted: 04/21/2023] [Indexed: 05/26/2023]
Abstract
Tolerogenic dendritic cells play a critical role in promoting antigen-specific tolerance via dampening of T cell responses, induction of pathogenic T cell exhaustion and antigen-specific regulatory T cells. Here we efficiently generate tolerogenic dendritic cells by genetic engineering of monocytes with lentiviral vectors co-encoding for immunodominant antigen-derived peptides and IL-10. These transduced dendritic cells (designated DCIL-10/Ag) secrete IL-10 and efficiently downregulate antigen-specific CD4+ and CD8+ T cell responses from healthy subjects and celiac disease patients in vitro. In addition, DCIL-10/Ag induce antigen-specific CD49b+LAG-3+ T cells, which display the T regulatory type 1 (Tr1) cell gene signature. Administration of DCIL-10/Ag resulted in the induction of antigen-specific Tr1 cells in chimeric transplanted mice and the prevention of type 1 diabetes in pre-clinical disease models. Subsequent transfer of these antigen-specific T cells completely prevented type 1 diabetes development. Collectively these data indicate that DCIL-10/Ag represent a platform to induce stable antigen-specific tolerance to control T-cell mediated diseases.
Collapse
Affiliation(s)
- Laura Passeri
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Grazia Andolfi
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Virginia Bassi
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy; University of Rome Tor Vergata, Via Cracovia 50, 00133, Rome, Italy
| | - Fabio Russo
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Giorgia Giacomini
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Cecilia Laudisa
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Ilaria Marrocco
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Luca Cesana
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Marina Di Stefano
- Department of Paediatrics, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Lorella Fanti
- Gastroenterology and Gastrointestinal Endoscopy Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Paola Sgaramella
- Department of Paediatrics, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Serena Vitale
- Institute of Biochemistry and Cell Biology, CNR, via P.Castellino 11, 80131, Naples, Italy
| | - Chiara Ziparo
- NESMOS Department, School of Medicine and Psychology, Sapienza University of Rome, Sant'Andrea University Hospital, Via di Grottarossa 1035, 00189, Rome, Italy
| | - Renata Auricchio
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), Department of Translational Medical Science, Section of Pediatrics, Via Pansini 5, 80131, University Federico II, Naples, Italy
| | - Graziano Barera
- Department of Paediatrics, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Giovanni Di Nardo
- NESMOS Department, School of Medicine and Psychology, Sapienza University of Rome, Sant'Andrea University Hospital, Via di Grottarossa 1035, 00189, Rome, Italy
| | - Riccardo Troncone
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), Department of Translational Medical Science, Section of Pediatrics, Via Pansini 5, 80131, University Federico II, Naples, Italy
| | - Carmen Gianfrani
- Institute of Biochemistry and Cell Biology, CNR, via P.Castellino 11, 80131, Naples, Italy
| | - Andrea Annoni
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Laura Passerini
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Silvia Gregori
- Mechanisms of Peripheral Tolerance Unit, San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
9
|
Thiruvengadam R, Venkidasamy B, Samynathan R, Govindasamy R, Thiruvengadam M, Kim JH. Association of nanoparticles and Nrf2 with various oxidative stress-mediated diseases. Chem Biol Interact 2023; 380:110535. [PMID: 37187268 DOI: 10.1016/j.cbi.2023.110535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regultes the cellular antioxidant defense system at the posttranscriptional level. During oxidative stress, Nrf2 is released from its negative regulator Kelch-like ECH-associated protein 1 (Keap1) and binds to antioxidant response element (ARE) to transcribe antioxidative metabolizing/detoxifying genes. Various transcription factors like aryl hydrocarbon receptor (AhR) and nuclear factor kappa light chain enhancer of activated B cells (NF-kB) and epigenetic modification including DNA methylation and histone methylation might also regulate the expression of Nrf2. Despite its protective role, Keap1/Nrf2/ARE signaling is considered as a pharmacological target due to its involvement in various pathophysiological conditions such as diabetes, cardiovascular disease, cancer, neurodegenerative diseases, hepatotoxicity and kidney disorders. Recently, nanomaterials have received a lot of attention due to their unique physiochemical properties and are also used in various biological applications, for example, biosensors, drug delivery systems, cancer therapy, etc. In this review, we will be discussing the functions of nanoparticles and Nrf2 as a combined therapy or sensitizing agent and their significance in various diseases such as diabetes, cancer and oxidative stress-mediated diseases.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Ramkumar Samynathan
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Rajakumar Govindasamy
- Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
10
|
Damrath JG, Metzger CE, Allen MR, Wallace JM. A novel murine model of combined insulin-dependent diabetes and chronic kidney disease has greater skeletal detriments than either disease individually. Bone 2022; 165:116559. [PMID: 36116758 PMCID: PMC9798592 DOI: 10.1016/j.bone.2022.116559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 12/31/2022]
Abstract
Diabetes and chronic kidney disease (CKD) consistently rank among the top ten conditions in prevalence and mortality in the United States. Insulin-dependent diabetes (IDD) and CKD each increase the risk of skeletal fractures and fracture-related mortality. However, it remains unknown whether these conditions have interactive end-organ effects on the skeleton. We hypothesized that combining IDD and CKD in mice would cause structural and mechanical bone alterations that are more deleterious compared to the single disease states. Female C57BL6/J mice were divided into four groups: 1) N = 12 Control (CTRL), 2) N = 10 Streptozotocin-induced IDD (STZ), 3) N = 10 Adenine diet-induced CKD (AD), and 4) N = 9 Combination (STZ+AD). STZ administration resulted in significantly higher blood glucose, HbA1c (p < 0.0001), and glucose intolerance (p < 0.0001). AD resulted in higher blood urea nitrogen (p = 0.0002) while AD, but not STZ+AD mice, had high serum parathyroid hormone (p < 0.0001) and phosphorus (p = 0.0005). STZ lowered bone turnover (p = 0.001). Trabecular bone volume was lowered by STZ (p < 0.0001) and increased by AD (p = 0.003). Tissue mineral density was lowered by STZ (p < 0.0001) and AD (p = 0.02) in trabecular bone but only lowered by STZ in cortical bone (p = 0.002). Cortical porosity of the proximal tibia was increased by AD, moment of inertia was lower in both disease groups, and most cortical properties were lower in all groups vs CTRL. Ultimate force, stiffness, toughness, and total displacement/strain were lowered by STZ and AD. Fracture toughness was lower by AD (p = 0.003). Importantly, Cohen's D indicated that STZ+AD most strongly lowered bone turnover and mechanical properties. Taken together, structural and material-level bone properties are altered by STZ and AD while their combination resulted in greater detriments, indicating that improving bone health in the combined disease state may require novel interventions.
Collapse
Affiliation(s)
- John G Damrath
- Purdue University, Weldon School of Biomedical Engineering, West Lafayette, IN, United States
| | - Corinne E Metzger
- Indiana University School of Medicine, Department of Anatomy and Cell Biology, Indianapolis, IN, United States
| | - Matthew R Allen
- Indiana University School of Medicine, Department of Anatomy and Cell Biology, Indianapolis, IN, United States
| | - Joseph M Wallace
- Indiana University-Purdue University at Indianapolis, Department of Biomedical Engineering, Indianapolis, IN, United States.
| |
Collapse
|
11
|
Patel SN, Mathews CE, Chandler R, Stabler CL. The Foundation for Engineering a Pancreatic Islet Niche. Front Endocrinol (Lausanne) 2022; 13:881525. [PMID: 35600597 PMCID: PMC9114707 DOI: 10.3389/fendo.2022.881525] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022] Open
Abstract
Progress in diabetes research is hindered, in part, by deficiencies in current experimental systems to accurately model human pathophysiology and/or predict clinical outcomes. Engineering human-centric platforms that more closely mimic in vivo physiology, however, requires thoughtful and informed design. Summarizing our contemporary understanding of the unique and critical features of the pancreatic islet can inform engineering design criteria. Furthermore, a broad understanding of conventional experimental practices and their current advantages and limitations ensures that new models address key gaps. Improving beyond traditional cell culture, emerging platforms are combining diabetes-relevant cells within three-dimensional niches containing dynamic matrices and controlled fluidic flow. While highly promising, islet-on-a-chip prototypes must evolve their utility, adaptability, and adoptability to ensure broad and reproducible use. Here we propose a roadmap for engineers to craft biorelevant and accessible diabetes models. Concurrently, we seek to inspire biologists to leverage such tools to ask complex and nuanced questions. The progenies of such diabetes models should ultimately enable investigators to translate ambitious research expeditions from benchtop to the clinic.
Collapse
Affiliation(s)
- Smit N. Patel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Rachel Chandler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Cherie L. Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Diabetes Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
12
|
Lee A, Mason ML, Lin T, Kumar SB, Kowdley D, Leung JH, Muhanna D, Sun Y, Ortega-Anaya J, Yu L, Fitzgerald J, DeVries AC, Nelson RJ, Weil ZM, Jiménez-Flores R, Parquette JR, Ziouzenkova O. Amino Acid Nanofibers Improve Glycemia and Confer Cognitive Therapeutic Efficacy to Bound Insulin. Pharmaceutics 2021; 14:pharmaceutics14010081. [PMID: 35056977 PMCID: PMC8778970 DOI: 10.3390/pharmaceutics14010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 12/04/2022] Open
Abstract
Diabetes poses a high risk for debilitating complications in neural tissues, regulating glucose uptake through insulin-dependent and predominantly insulin-independent pathways. Supramolecular nanostructures provide a flexible strategy for combinatorial regulation of glycemia. Here, we compare the effects of free insulin to insulin bound to positively charged nanofibers comprised of self-assembling amino acid compounds (AACs) with an antioxidant-modified side chain moiety (AAC2) in both in vitro and in vivo models of type 1 diabetes. Free AAC2, free human insulin (hINS) and AAC2-bound-human insulin (AAC2-hINS) were tested in streptozotocin (STZ)-induced mouse model of type 1 diabetes. AAC2-hINS acted as a complex and exhibited different properties compared to free AAC2 or hINS. Mice treated with the AAC2-hINS complex were devoid of hypoglycemic episodes, had improved levels of insulin in circulation and in the brain, and increased expression of neurotransmitter taurine transporter, Slc6a6. Consequently, treatment with AAC2-hINS markedly advanced both physical and cognitive performance in mice with STZ-induced and genetic type 1 diabetes compared to treatments with free AAC2 or hINS. This study demonstrates that the flexible nanofiber AAC2 can serve as a therapeutic platform for the combinatorial treatment of diabetes and its complications.
Collapse
Affiliation(s)
- Aejin Lee
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
| | - McKensie L. Mason
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (M.L.M.); (T.L.); (Y.S.); (J.R.P.)
| | - Tao Lin
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (M.L.M.); (T.L.); (Y.S.); (J.R.P.)
| | - Shashi Bhushan Kumar
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
| | - Devan Kowdley
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
| | - Jacob H. Leung
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
| | - Danah Muhanna
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
| | - Yuan Sun
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (M.L.M.); (T.L.); (Y.S.); (J.R.P.)
| | - Joana Ortega-Anaya
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (J.O.-A.); (R.J.-F.)
| | - Lianbo Yu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA;
| | - Julie Fitzgerald
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; (J.F.); (A.C.D.); (Z.M.W.)
| | - A. Courtney DeVries
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; (J.F.); (A.C.D.); (Z.M.W.)
- Department of Neuroscience, West Virginia University, Morgantown, WV 26506, USA
| | - Randy J. Nelson
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA;
| | - Zachary M. Weil
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; (J.F.); (A.C.D.); (Z.M.W.)
| | - Rafael Jiménez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (J.O.-A.); (R.J.-F.)
| | - Jon R. Parquette
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (M.L.M.); (T.L.); (Y.S.); (J.R.P.)
| | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; (A.L.); (S.B.K.); (D.K.); (J.H.L.); (D.M.)
- Correspondence: ; Tel.: +1-614-292-5034
| |
Collapse
|
13
|
Toren E, Burnette KS, Banerjee RR, Hunter CS, Tse HM. Partners in Crime: Beta-Cells and Autoimmune Responses Complicit in Type 1 Diabetes Pathogenesis. Front Immunol 2021; 12:756548. [PMID: 34691077 PMCID: PMC8529969 DOI: 10.3389/fimmu.2021.756548] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by autoreactive T cell-mediated destruction of insulin-producing pancreatic beta-cells. Loss of beta-cells leads to insulin insufficiency and hyperglycemia, with patients eventually requiring lifelong insulin therapy to maintain normal glycemic control. Since T1D has been historically defined as a disease of immune system dysregulation, there has been little focus on the state and response of beta-cells and how they may also contribute to their own demise. Major hurdles to identifying a cure for T1D include a limited understanding of disease etiology and how functional and transcriptional beta-cell heterogeneity may be involved in disease progression. Recent studies indicate that the beta-cell response is not simply a passive aspect of T1D pathogenesis, but rather an interplay between the beta-cell and the immune system actively contributing to disease. Here, we comprehensively review the current literature describing beta-cell vulnerability, heterogeneity, and contributions to pathophysiology of T1D, how these responses are influenced by autoimmunity, and describe pathways that can potentially be exploited to delay T1D.
Collapse
Affiliation(s)
- Eliana Toren
- Department of Medicine, Division of Endocrinology Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - KaLia S. Burnette
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ronadip R. Banerjee
- Division of Endocrinology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chad S. Hunter
- Department of Medicine, Division of Endocrinology Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, AL, United States
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hubert M. Tse
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
14
|
Wang X, Brown NK, Wang B, Shariati K, Wang K, Fuchs S, Melero‐Martin JM, Ma M. Local Immunomodulatory Strategies to Prevent Allo-Rejection in Transplantation of Insulin-Producing Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2003708. [PMID: 34258870 PMCID: PMC8425879 DOI: 10.1002/advs.202003708] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/12/2021] [Indexed: 05/02/2023]
Abstract
Islet transplantation has shown promise as a curative therapy for type 1 diabetes (T1D). However, the side effects of systemic immunosuppression and limited long-term viability of engrafted islets, together with the scarcity of donor organs, highlight an urgent need for the development of new, improved, and safer cell-replacement strategies. Induction of local immunotolerance to prevent allo-rejection against islets and stem cell derived β cells has the potential to improve graft function and broaden the applicability of cellular therapy while minimizing adverse effects of systemic immunosuppression. In this mini review, recent developments in non-encapsulation, local immunomodulatory approaches for T1D cell replacement therapies, including islet/β cell modification, immunomodulatory biomaterial platforms, and co-transplantation of immunomodulatory cells are discussed. Key advantages and remaining challenges in translating such technologies to clinical settings are identified. Although many of the studies discussed are preliminary, the growing interest in the field has led to the exploration of new combinatorial strategies involving cellular engineering, immunotherapy, and novel biomaterials. Such interdisciplinary research will undoubtedly accelerate the development of therapies that can benefit the whole T1D population.
Collapse
Affiliation(s)
- Xi Wang
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Natalie K. Brown
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Bo Wang
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Kaavian Shariati
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Kai Wang
- Department of Cardiac SurgeryBoston Children's HospitalBostonMA02115USA
- Department of SurgeryHarvard Medical SchoolBostonMA02115USA
| | - Stephanie Fuchs
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| | - Juan M. Melero‐Martin
- Department of Cardiac SurgeryBoston Children's HospitalBostonMA02115USA
- Department of SurgeryHarvard Medical SchoolBostonMA02115USA
- Harvard Stem Cell InstituteCambridgeMA02138USA
| | - Minglin Ma
- Department of Biological and Environmental EngineeringCornell UniversityIthacaNY14853USA
| |
Collapse
|
15
|
Preda MB, Neculachi CA, Fenyo IM, Vacaru AM, Publik MA, Simionescu M, Burlacu A. Short lifespan of syngeneic transplanted MSC is a consequence of in vivo apoptosis and immune cell recruitment in mice. Cell Death Dis 2021; 12:566. [PMID: 34075029 PMCID: PMC8169682 DOI: 10.1038/s41419-021-03839-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023]
Abstract
Mesenchymal stromal cells (MSC) are attractive tools for cell-based therapy, yet the mechanisms underlying their migration and survival post-transplantation are unclear. Accumulating evidence indicates that MSC apoptosis modulates both innate and adaptive immune responses which impact on MSC therapeutic effects. Using a dual tracking system, namely the Luciferase expression and VivoTrack680 labelling, and in vivo optical imaging, we investigated the survival and migration of MSC transplanted by various routes (intravenous, subcutaneous, intrapancreatic and intrasplenic) in order to identify the best delivery approach that provides an accumulation of therapeutic cells to the injured pancreas in the non-obese diabetic (NOD) mouse. The results showed that transplanted MSC had limited migration capacity, irrespective of the administration route, and were short-lived with almost total disappearance at 7 days after transplantation. Within one day after transplantation, cells activated hypoxia signalling pathways, followed by Caspase 3-mediated apoptosis. These were subsequently followed by local recruitment of immune cells at the transplantation site, and the engulfment of apoptotic MSC by macrophages. Our results argue for a "hit and die" mechanism of transplanted MSC. Further investigations will elucidate the molecular crosstalk between the inoculated and the host-immune cells.
Collapse
Affiliation(s)
- Mihai Bogdan Preda
- grid.418333.e0000 0004 1937 1389Laboratory of Stem Cell Biology, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest, Romania
| | - Carmen Alexandra Neculachi
- grid.418333.e0000 0004 1937 1389Laboratory of Stem Cell Biology, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest, Romania
| | - Ioana Madalina Fenyo
- grid.418333.e0000 0004 1937 1389Laboratory of Gene Regulation and Molecular Therapies, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest, Romania
| | - Ana-Maria Vacaru
- grid.418333.e0000 0004 1937 1389Laboratory of Gene Regulation and Molecular Therapies, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest, Romania
| | - Mihai Alin Publik
- grid.418333.e0000 0004 1937 1389Laboratory of Stem Cell Biology, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest, Romania
| | - Maya Simionescu
- grid.418333.e0000 0004 1937 1389Laboratory of Stem Cell Biology, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest, Romania ,grid.418333.e0000 0004 1937 1389Laboratory of Gene Regulation and Molecular Therapies, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest, Romania
| | - Alexandrina Burlacu
- grid.418333.e0000 0004 1937 1389Laboratory of Stem Cell Biology, Institute of Cellular Biology and Pathology “Nicolae Simionescu”, Bucharest, Romania
| |
Collapse
|
16
|
Kim H, Perovanovic J, Shakya A, Shen Z, German CN, Ibarra A, Jafek JL, Lin NP, Evavold BD, Chou DHC, Jensen PE, He X, Tantin D. Targeting transcriptional coregulator OCA-B/Pou2af1 blocks activated autoreactive T cells in the pancreas and type 1 diabetes. J Exp Med 2021; 218:e20200533. [PMID: 33295943 PMCID: PMC7731945 DOI: 10.1084/jem.20200533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/27/2020] [Accepted: 10/09/2020] [Indexed: 11/04/2022] Open
Abstract
The transcriptional coregulator OCA-B promotes expression of T cell target genes in cases of repeated antigen exposure, a necessary feature of autoimmunity. We hypothesized that T cell-specific OCA-B deletion and pharmacologic OCA-B inhibition would protect mice from autoimmune diabetes. We developed an Ocab conditional allele and backcrossed it onto a diabetes-prone NOD/ShiLtJ strain background. T cell-specific OCA-B loss protected mice from spontaneous disease. Protection was associated with large reductions in islet CD8+ T cell receptor specificities associated with diabetes pathogenesis. CD4+ clones associated with diabetes were present but associated with anergic phenotypes. The protective effect of OCA-B loss was recapitulated using autoantigen-specific NY8.3 mice but diminished in monoclonal models specific to artificial or neoantigens. Rationally designed membrane-penetrating OCA-B peptide inhibitors normalized glucose levels and reduced T cell infiltration and proinflammatory cytokine expression in newly diabetic NOD mice. Together, the results indicate that OCA-B is a potent autoimmune regulator and a promising target for pharmacologic inhibition.
Collapse
MESH Headings
- Alleles
- Amino Acid Sequence
- Animals
- Autoantigens/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Crosses, Genetic
- Cytokines/metabolism
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/prevention & control
- Disease Models, Animal
- Female
- Gene Deletion
- Germ Cells/metabolism
- Humans
- Inflammation Mediators/metabolism
- Lymph Nodes/metabolism
- Lymphocyte Activation
- Male
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Ovalbumin
- Pancreas/metabolism
- Pancreas/pathology
- Peptides/pharmacology
- Receptors, Antigen, T-Cell/metabolism
- Spleen/pathology
- T-Lymphocytes/immunology
- Trans-Activators/deficiency
- Trans-Activators/metabolism
- Transcription, Genetic
- Mice
Collapse
Affiliation(s)
- Heejoo Kim
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Jelena Perovanovic
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Arvind Shakya
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Zuolian Shen
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Cody N German
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Andrea Ibarra
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Jillian L Jafek
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| | - Nai-Pin Lin
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
| | - Brian D Evavold
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Danny H-C Chou
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT
| | - Peter E Jensen
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Xiao He
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
17
|
Bao Y, Zhao Z, Gao H. Effect of hTIMP-1 overexpression in human umbilical cord mesenchymal stem cells on the repair of pancreatic islets in type-1 diabetic mice. Cell Biol Int 2021; 45:1038-1049. [PMID: 33404139 DOI: 10.1002/cbin.11548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/23/2020] [Accepted: 01/03/2021] [Indexed: 12/28/2022]
Abstract
Mesenchymal stem cells (MSCs) have been suggested for pancreatic islet repair in Type 1 diabetes mellitus (T1DM). This study aimed to investigate the effect of human umbilical cord MSCs (hUC-MSCs) transfected with tissue inhibitors of matrix metalloproteinase (TIMP)-1 on the regeneration of β-cell islets in vitro and in vivo. hUC-MSCs were isolated, cultured, and transfected with lentiviruses for the overexpression of hTIMP-1. An in vitro coculture system of hUC-MSCs and streptozotocin-induced islets was established to examine the morphology, apoptosis, and insulin secretion of the cocultured islets. Diabetic mouse models were injected with lenti-TIMP-1-enhanced green fluorescent protein (EGFP)-hUC-MSCs to test the effect of hTIMP-1 on insulin levels and glucose tolerance in vivo. The expression of insulin and glucagon was evaluated by immunofluorescence staining. The results showed that coculture with hUC-MSCs or Lenti-TIMP-1-EGFP-hUC-MSCs improved islet viability rates. Lenti-TIMP-1-EGFP-hUC-MSC coculture increased the insulin and C-peptide secretion function of the cultured islets and increased the secretion of tumor necrosis factor-β1, interleukin-6, IL-10, and hTIMP-1. hUC-MSCs, especially those transfected with Lenti-hTIMP-1-EGFP, showed a strong protective effect in diabetic mice by alleviating weight loss and improving glucose and insulin metabolism. In addition, transplantation rescued islet histology and function in vivo. The overexpression of TIMP-1 by hUC-MSCs seems to exert beneficial effects on pancreatic islet cells. In conclusion, this study may provide a new perspective on the development of hUC-MSC-based cell transplantation therapy for T1DM.
Collapse
Affiliation(s)
- Yu Bao
- Department of Nephrology, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengyan Zhao
- Clinic of Division of Child Health Care, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huihui Gao
- Department of Pediatric and Adolescent Gynaecology, National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Nepal MR, Kang MJ, Kim GH, Cha DH, Kim JH, Jeong TC. Role of Intestinal Microbiota in Metabolism of Voglibose In Vitro and In Vivo. Diabetes Metab J 2020; 44:908-918. [PMID: 32431100 PMCID: PMC7801763 DOI: 10.4093/dmj.2019.0147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/20/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Voglibose, an α-glucosidase inhibitor, inhibits breakdown of complex carbohydrates into simple sugar units in intestine. Studies showed that voglibose metabolism in the liver might be negligible due to its poor intestinal absorption. Numerous microorganisms live in intestine and have several roles in metabolism and detoxification of various xenobiotics. Due to the limited information, the possible metabolism of voglibose by intestinal microbiota was investigated in vitro and in vivo. METHODS For the in vitro study, different concentrations of voglibose were incubated with intestinal contents, prepared from both vehicle- and antibiotics-treated mice, to determine the decreased amount of voglibose over time by using liquid chromatography-mass spectrometry. Similarly, in vivo pharmacodynamic effect of voglibose was determined following the administration of voglibose and starch in vehicle- and antibiotic-pretreated non-diabetic and diabetic mice, by measuring the modulatory effects of voglibose on blood glucose levels. RESULTS The in vitro results indicated that the remaining voglibose could be significantly decreased when incubated with the intestinal contents from normal mice compared to those from antibiotic-treated mice, which had less enzyme activities. The in vivo results showed that the antibiotic pretreatment resulted in reduced metabolism of voglibose. This significantly lowered blood glucose levels in antibiotic-pretreated mice compared to the control animals. CONCLUSION The present results indicate that voglibose would be metabolized by the intestinal microbiota, and that this metabolism might be pharmacodynamically critical in lowering blood glucose levels in mice.
Collapse
Affiliation(s)
| | - Mi Jeong Kang
- Yeungnam University College of Pharmacy, Gyeongsan, Korea
| | - Geon Ho Kim
- Yeungnam University College of Pharmacy, Gyeongsan, Korea
| | - Dong Ho Cha
- Yeungnam University College of Pharmacy, Gyeongsan, Korea
| | - Ju-Hyun Kim
- Yeungnam University College of Pharmacy, Gyeongsan, Korea
| | | |
Collapse
|
19
|
Apaya MK, Kuo TF, Yang MT, Yang G, Hsiao CL, Chang SB, Lin Y, Yang WC. Phytochemicals as modulators of β-cells and immunity for the therapy of type 1 diabetes: Recent discoveries in pharmacological mechanisms and clinical potential. Pharmacol Res 2020; 156:104754. [DOI: 10.1016/j.phrs.2020.104754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
|
20
|
Stabler CL, Li Y, Stewart JM, Keselowsky BG. Engineering immunomodulatory biomaterials for type 1 diabetes. NATURE REVIEWS. MATERIALS 2019; 4:429-450. [PMID: 32617176 PMCID: PMC7332200 DOI: 10.1038/s41578-019-0112-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A cure for type 1 diabetes (T1D) would help millions of people worldwide, but remains elusive thus far. Tolerogenic vaccines and beta cell replacement therapy are complementary therapies that seek to address aberrant T1D autoimmune attack and subsequent beta cell loss. However, both approaches require some form of systematic immunosuppression, imparting risks to the patient. Biomaterials-based tools enable localized and targeted immunomodulation, and biomaterial properties can be designed and combined with immunomodulatory agents to locally instruct specific immune responses. In this Review, we discuss immunomodulatory biomaterial platforms for the development of T1D tolerogenic vaccines and beta cell replacement devices. We investigate nano- and microparticles for the delivery of tolerogenic agents and autoantigens, and as artificial antigen presenting cells, and highlight how bulk biomaterials can be used to provide immune tolerance. We examine biomaterials for drug delivery and as immunoisolation devices for cell therapy and islet transplantation, and explore synergies with other fields for the development of new T1D treatment strategies.
Collapse
Affiliation(s)
- CL Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Y Li
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
| | - JM Stewart
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - BG Keselowsky
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
- Interdisciplinary Graduate Program in Biomedical Sciences, University of Florida, Gainesville, FL, USA
- University of Florida Diabetes Institute, Gainesville, FL, USA
| |
Collapse
|
21
|
Thompson PJ, Shah A, Ntranos V, Van Gool F, Atkinson M, Bhushan A. Targeted Elimination of Senescent Beta Cells Prevents Type 1 Diabetes. Cell Metab 2019; 29:1045-1060.e10. [PMID: 30799288 DOI: 10.1016/j.cmet.2019.01.021] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 07/08/2018] [Accepted: 01/23/2019] [Indexed: 12/25/2022]
Abstract
Type 1 diabetes (T1D) is an organ-specific autoimmune disease characterized by hyperglycemia due to progressive loss of pancreatic beta cells. Immune-mediated beta cell destruction drives the disease, but whether beta cells actively participate in the pathogenesis remains unclear. Here, we show that during the natural history of T1D in humans and the non-obese diabetic (NOD) mouse model, a subset of beta cells acquires a senescence-associated secretory phenotype (SASP). Senescent beta cells upregulated pro-survival mediator Bcl-2, and treatment of NOD mice with Bcl-2 inhibitors selectively eliminated these cells without altering the abundance of the immune cell types involved in the disease. Significantly, elimination of senescent beta cells halted immune-mediated beta cell destruction and was sufficient to prevent diabetes. Our findings demonstrate that beta cell senescence is a significant component of the pathogenesis of T1D and indicate that clearance of senescent beta cells could be a new therapeutic approach for T1D.
Collapse
Affiliation(s)
- Peter J Thompson
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ajit Shah
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Vasilis Ntranos
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Frederic Van Gool
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark Atkinson
- Diabetes Institute, University of Florida, Gainesville, FL 32610-0296, USA
| | - Anil Bhushan
- Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
22
|
Anchi P, Khurana A, Swain D, Samanthula G, Godugu C. Dramatic improvement in pharmacokinetic and pharmacodynamic effects of sustain release curcumin microparticles demonstrated in experimental type 1 diabetes model. Eur J Pharm Sci 2019; 130:200-214. [DOI: 10.1016/j.ejps.2019.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/17/2018] [Accepted: 02/03/2019] [Indexed: 12/19/2022]
|
23
|
Peravali R, Gunnels L, Alleboina S, Gerling IC, Dokun AO. Type 1 diabetes alters ischemia-induced gene expression. J Clin Transl Endocrinol 2019; 15:19-24. [PMID: 30555789 PMCID: PMC6279996 DOI: 10.1016/j.jcte.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 12/16/2022] Open
Abstract
Peripheral Artery Disease (PAD) is a chronic, activity-limiting disease that is caused by atherosclerotic occlusion of blood vessels outside the heart. Type 1 Diabetes (T1D) not only increases an individual's likelihood of developing PAD, but also contributes to poor clinical outcomes after PAD manifestation. Although there is some evidence suggesting that hyperglycemia might alter expression of genes involved in regulating PAD severity or outcomes, our knowledge about the specific genes and pathways involved remains incomplete. We induced experimental PAD or hind limb ischemia in T1D and non-diabetic mice and subjected the ischemic gastrocnemius muscle tissues to genome-wide mRNA transcriptome and pathway analysis. We identified 513 probe sets that represented 443 different genes with highly significant expression differences (p < 0.005) between the ischemic diabetic and ischemic non-diabetic muscle tissues. Moreover, pathway analysis of the differentially expressed genes identified pathways involved in essential biological processes such as "cell cycle," "DNA replication," "metabolic pathways," "focal adhesion," "regulation of actin cytoskeleton," and "nucleotide excision repair". Taken together, our data offer the opportunity to test hypotheses on the roles played by the altered genes/molecular pathways in poor PAD outcomes in diabetes. Such studies may lead to the development of specific therapies to improve PAD outcomes in patients with comorbid diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Ayotunde O. Dokun
- Corresponding author: Division of Endocrinology, Diabetes and Metabolism, University of Tennessee, Health Sciences Center, 920 Madision Avenue, Suite 300A, Memphis, TN 38163, United States.
| |
Collapse
|
24
|
Rosenthal KS, Carambula R, Zimmerman DH. Why Don't We Have a Vaccine Against Autoimmune Diseases? - A Review. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2019; 10:574. [PMID: 31328022 PMCID: PMC6640150 DOI: 10.4172/2155-9899.1000574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
This review examines some of the reasons why we don't have a vaccine against autoimmune diseases and highlights the progress that has been made. Many autoimmune diseases, such as rheumatoid arthritis (RA), multiple sclerosis (MS) and type 1 diabetes (T1D), are driven by autoimmune T cell responses. Unlike vaccines for most infectious diseases, which elicit antibody responses, are intended for immuno-naive individuals and considered preventative, a vaccine for an autoimmune disease must be therapeutic and resolve or control the on-going autoimmune response and condition in the diseased host. Despite these differences, many of the same considerations for infectious disease vaccines must also be addressed to develop a therapeutic vaccine for autoimmune diseases. The disease initiator/triggers, antigens and autoantigens, nature of the immunopathogenic and protective/therapeutic immune response will be compared for infectious and autoimmune diseases as will approaches for developing vaccines including formulations, animal models and indicators of success. The rationale for a therapeutic vaccine for RA will be discussed in greater detail with a relatively limited discussion of T1D, MS and other autoimmune diseases.
Collapse
Affiliation(s)
- Ken S Rosenthal
- Roseman University College of Medicine, 10530 Discovery Dr, Las Vegas, USA
- Northeast Ohio Medical University, Rootstown, OH, USA
| | | | | |
Collapse
|
25
|
Sandor AM, Lindsay RS, Dyjack N, Whitesell JC, Rios C, Bradley BJ, Haskins K, Serreze DV, Geurts AM, Chen YG, Seibold MA, Jacobelli J, Friedman RS. CD11c + Cells Are Gatekeepers for Lymphocyte Trafficking to Infiltrated Islets During Type 1 Diabetes. Front Immunol 2019; 10:99. [PMID: 30766536 PMCID: PMC6365440 DOI: 10.3389/fimmu.2019.00099] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/14/2019] [Indexed: 01/06/2023] Open
Abstract
Type 1 diabetes (T1D) is a T cell mediated autoimmune disease that affects more than 19 million people with incidence increasing rapidly worldwide. For T cells to effectively drive T1D, they must first traffic to the islets and extravasate through the islet vasculature. Understanding the cues that lead to T cell entry into inflamed islets is important because diagnosed T1D patients already have established immune infiltration of their islets. Here we show that CD11c+ cells are a key mediator of T cell trafficking to infiltrated islets in non-obese diabetic (NOD) mice. Using intravital 2-photon islet imaging we show that T cell extravasation into the islets is an extended process, with T cells arresting in the islet vasculature in close proximity to perivascular CD11c+ cells. Antigen is not required for T cell trafficking to infiltrated islets, but T cell chemokine receptor signaling is necessary. Using RNAseq, we show that islet CD11c+ cells express over 20 different chemokines that bind chemokine receptors expressed on islet T cells. One highly expressed chemokine-receptor pair is CXCL16-CXCR6. However, NOD. CXCR6-/- mice progressed normally to T1D and CXCR6 deficient T cells trafficked normally to the islets. Even with CXCR3 and CXCR6 dual deficiency, T cells trafficked to infiltrated islets. These data reinforce that chemokine receptor signaling is highly redundant for T cell trafficking to inflamed islets. Importantly, depletion of CD11c+ cells strongly inhibited T cell trafficking to infiltrated islets of NOD mice. We suggest that targeted depletion of CD11c+ cells associated with the islet vasculature may yield a therapeutic target to inhibit T cell trafficking to inflamed islets to prevent progression of T1D.
Collapse
Affiliation(s)
- Adam M Sandor
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Robin S Lindsay
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Nathan Dyjack
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States
| | - Jennifer C Whitesell
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Cydney Rios
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States
| | - Brenda J Bradley
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kathryn Haskins
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States.,Department of Pediatrics, National Jewish Health, Denver, CO, United States.,Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Rachel S Friedman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| |
Collapse
|
26
|
Yagishita Y, Uruno A, Chartoumpekis DV, Kensler TW, Yamamoto M. Nrf2 represses the onset of type 1 diabetes in non-obese diabetic mice. J Endocrinol 2019; 240:JOE-18-0355.R2. [PMID: 30625116 PMCID: PMC6602871 DOI: 10.1530/joe-18-0355] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/24/2018] [Indexed: 12/29/2022]
Abstract
The transcription factor Nrf2 (NF-E2-related factor 2) plays a critical role in oxidative stress responses. While activation of Nrf2 signaling is known to exert anti-inflammatory effects, Nrf2 function in inflammation-mediated autoimmune disorders, such as type 1 diabetes, is not well established. To address the roles of Nrf2 in protection against autoreactive T-cell-induced type 1 diabetes, we used non-obese diabetic (NOD) mice, a polygenic model of human type 1 diabetes, to generate a genetic model that allowed us to assess the contribution of Nrf2 activation to preventing and/or treating type 1 diabetes. As Keap1 negatively regulates Nrf2, we used Keap1 gene knockdown driven by either hypomorphic or knockout alleles of Keap1,which enhances Nrf2 signaling to moderate and excess levels, respectively. We found that Nrf2 activation in NOD::Keap1FA/- mice inhibited T-cell infiltration within or near the islets, ameliorated impairment of insulin secretion, and prevented development of diabetes mellitus in the NOD mice. Notably, Nrf2 activation decreased both plasma interferon-γ (IFN-γ) levels and IFN-γ-positive cell numbers in the pancreatic islets. These findings were also observed in mice with two hypomorphic Keap1 alleles (Keap1FA/FA). Both NOD::Keap1FA/- and NOD::Keap1FA/FA mice had decreased incidence of diabetes mellitus, demonstrating that the activation of Nrf2 signaling prevents the onset of type 1 diabetes mellitus in NOD mice. Thus, Nrf2 appears to be a potential target for preventing and treating type 1 diabetes.
Collapse
Affiliation(s)
- Yoko Yagishita
- Department of Medical Biochemistry, Tohoku University
Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
- Department of Pharmacology and Chemical Biology, School of
Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Akira Uruno
- Department of Medical Biochemistry, Tohoku University
Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
- Tohoku Medical-Megabank Organization, Tohoku University,
Sendai, Miyagi 980-8573, Japan
| | - Dionysios V. Chartoumpekis
- Department of Pharmacology and Chemical Biology, School of
Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Thomas W. Kensler
- Department of Pharmacology and Chemical Biology, School of
Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University
Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
- Tohoku Medical-Megabank Organization, Tohoku University,
Sendai, Miyagi 980-8573, Japan
| |
Collapse
|
27
|
Mishra AP, Yedella K, Lakshmi JB, Siva AB. Wdr13 and streptozotocin-induced diabetes. Nutr Diabetes 2018; 8:57. [PMID: 30369599 PMCID: PMC6204428 DOI: 10.1038/s41387-018-0065-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 12/16/2022] Open
Abstract
Type I diabetes, though contributes to only 5–10% of total diabetes cases, is a rising concern in today’s world. Our previous studies have shown that the absence of WDR13 in mouse results in pancreatic β-cell hyper-proliferation. Also, amelioration of the diabetic phenotype on introgression of Wdr13-null (Wdr13-/0) mutation in genetically diabetic mice (Leprdb/db) [type II diabetes] was observed. It was thus, interesting to see the role of WDR13 in streptozotocin-mediated diabetes in mice, a model for type I diabetes. Wdr13-/0 mice along with its wild type (Wdr13+/0 mice) littermates were administered streptozotocin intraperitoneally for 5 consecutive days. Blood glucose levels and body weights of these mice were monitored for subsequent 5 weeks and then they were sacrificed for physiological and histological analyses. Results showed that Wdr13-/0 mice exhibited higher serum insulin levels, better glucose clearance and significantly higher number of proliferating β-cells; reiterating the finding that absence of WDR13 helps in β-cell hyper-proliferation and recovery from diabetes; further underscoring WDR13 as a key target molecule for diabetes treatment/amelioration.
Collapse
Affiliation(s)
- Arun Prakash Mishra
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India. .,National Cancer Institute, NIH, Frederick, MD, 21702, USA.
| | - Komala Yedella
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Jyothi B Lakshmi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Archana B Siva
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| |
Collapse
|
28
|
Zazara DE, Arck PC. Developmental origin and sex-specific risk for infections and immune diseases later in life. Semin Immunopathol 2018; 41:137-151. [DOI: 10.1007/s00281-018-0713-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022]
|
29
|
Aslamy A, Oh E, Ahn M, Moin ASM, Chang M, Duncan M, Hacker-Stratton J, El-Shahawy M, Kandeel F, DiMeglio LA, Thurmond DC. Exocytosis Protein DOC2B as a Biomarker of Type 1 Diabetes. J Clin Endocrinol Metab 2018; 103:1966-1976. [PMID: 29506054 PMCID: PMC6276681 DOI: 10.1210/jc.2017-02492] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/26/2018] [Indexed: 12/20/2022]
Abstract
CONTEXT Efforts to preserve β-cell mass in the preclinical stages of type 1 diabetes (T1D) are limited by few blood-derived biomarkers of β-cell destruction. OBJECTIVE Platelets are proposed sources of blood-derived biomarkers for a variety of diseases, and they show distinct proteomic changes in T1D. Thus, we investigated changes in the exocytosis protein, double C2 domain protein-β (DOC2B) in platelets and islets from T1D humans, and prediabetic nonobese diabetic (NOD) mice. DESIGN, PATIENTS, AND MAIN OUTCOME MEASURE Protein levels of DOC2B were assessed in platelets and islets from prediabetic NOD mice and humans, with and without T1D. Seventeen new-onset T1D human subjects (10.3 ± 3.8 years) were recruited immediately following diagnosis, and platelet DOC2B levels were compared with 14 matched nondiabetic subjects (11.4 ± 2.9 years). Furthermore, DOC2B levels were assessed in T1D human pancreatic tissue samples, cytokine-stimulated human islets ex vivo, and platelets from T1D subjects before and after islet transplantation. RESULTS DOC2B protein abundance was substantially reduced in prediabetic NOD mouse platelets, and these changes were mirrored in the pancreatic islets from the same mice. Likewise, human DOC2B levels were reduced over twofold in platelets from new-onset T1D human subjects, and this reduction was mirrored in T1D human islets. Cytokine stimulation of normal islets reduced DOC2B expression ex vivo. Remarkably, platelet DOC2B levels increased after islet transplantation in patients with T1D. CONCLUSIONS Reduction of DOC2B is an early feature of T1D, and DOC2B abundance may serve as a valuable in vivo indicator of β-cell mass and an early biomarker of T1D.
Collapse
Affiliation(s)
- Arianne Aslamy
- Department of Molecular and Cellular Endocrinology, Diabetes & Metabolism
Research Institute, and Beckman Research Institute of City of Hope, Duarte, California
- Department of Cellular and Integrative Physiology, Indiana University School of
Medicine, Indianapolis, Indiana
| | - Eunjin Oh
- Department of Molecular and Cellular Endocrinology, Diabetes & Metabolism
Research Institute, and Beckman Research Institute of City of Hope, Duarte, California
| | - Miwon Ahn
- Department of Molecular and Cellular Endocrinology, Diabetes & Metabolism
Research Institute, and Beckman Research Institute of City of Hope, Duarte, California
| | - Abu Saleh Md Moin
- Department of Molecular and Cellular Endocrinology, Diabetes & Metabolism
Research Institute, and Beckman Research Institute of City of Hope, Duarte, California
| | - Mariann Chang
- Department of Molecular and Cellular Endocrinology, Diabetes & Metabolism
Research Institute, and Beckman Research Institute of City of Hope, Duarte, California
| | - Molly Duncan
- Department of Pediatrics, Section of Pediatric Endocrinology/Diabetology, and
Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis,
Indiana
| | - Jeannette Hacker-Stratton
- Department of Clinical and Translational Research and Cellular Therapeutics,
Diabetes & Metabolism Research Institute, and Beckman Research Institute of City of
Hope, Duarte, California
| | - Mohamed El-Shahawy
- Department of Clinical and Translational Research and Cellular Therapeutics,
Diabetes & Metabolism Research Institute, and Beckman Research Institute of City of
Hope, Duarte, California
| | - Fouad Kandeel
- Department of Clinical and Translational Research and Cellular Therapeutics,
Diabetes & Metabolism Research Institute, and Beckman Research Institute of City of
Hope, Duarte, California
| | - Linda A DiMeglio
- Department of Pediatrics, Section of Pediatric Endocrinology/Diabetology, and
Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis,
Indiana
| | - Debbie C Thurmond
- Department of Molecular and Cellular Endocrinology, Diabetes & Metabolism
Research Institute, and Beckman Research Institute of City of Hope, Duarte, California
- Department of Cellular and Integrative Physiology, Indiana University School of
Medicine, Indianapolis, Indiana
- Correspondence and Reprint Requests: Debbie C. Thurmond, PhD, Department of Molecular and Cellular Endocrinology,
Diabetes and Metabolism Research Institute, and Beckman Research Institute of City of
Hope, 1500 East Duarte Road, Duarte, California 91010. E-mail:
| |
Collapse
|
30
|
Hyperglycemia promotes insulin-independent ovarian tumor growth. Gynecol Oncol 2018; 149:361-370. [PMID: 29458977 DOI: 10.1016/j.ygyno.2018.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Epithelial ovarian cancer (EOC) is notoriously difficult to diagnose in its earlier and more treatable stages, making it one of the deadliest cancers in women. Comorbid diabetes is associated with poor prognosis in EOC and pro-growth insulin signalling is often considered to be the driving factor. However, EOC cells are also highly glycolytic and insulin-independent glucose uptake is essential to their metabolism. Evidence of gluconeogenesis in cancer in vivo suggests that the normal concentration of circulating glucose does not meet the energy demands of the tumor and may therefore be a limiting factor in cancer cell metabolism. Diabetics have elevated blood glucose that has the potential to meet these energy demands and facilitate cancer progression. METHODS To determine whether hyperglycemia is a potentially modifiable factor independent of insulin, orthotopic ovarian tumors were induced in mice with acute Type 1 (hypo-insulinemic) or Type 2 (hyper-insulinemic) diabetes. RESULTS Hyperglycemia accelerated the growth of ovarian tumors in a glucose concentration-dependent manner and significantly shortened overall survival. Reciprocally, the presence of a tumor improved impaired glucose tolerance in both Type 1 and Type 2 diabetes. In mice with chronic Type 1 diabetes, hyperglycemia limited tumor growth without changing overall survival, indicating that systemic metabolic stress can accelerate time to death independent of primary tumor size. When modeled in vitro, long-term culture in 25mM vs 6mM glucose resulted in significantly different growth and metabolism. CONCLUSIONS Taken together, this study shows that systemic metabolic disturbances can have a profound impact on both the growth of ovarian tumors and on overall survival.
Collapse
|
31
|
Funda DP, Goliáš J, Hudcovic T, Kozáková H, Špíšek R, Palová-Jelínková L. Antigen Loading (e.g., Glutamic Acid Decarboxylase 65) of Tolerogenic DCs (tolDCs) Reduces Their Capacity to Prevent Diabetes in the Non-Obese Diabetes (NOD)-Severe Combined Immunodeficiency Model of Adoptive Cotransfer of Diabetes As Well As in NOD Mice. Front Immunol 2018; 9:290. [PMID: 29503651 PMCID: PMC5820308 DOI: 10.3389/fimmu.2018.00290] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
Tolerogenic DCs (tolDCs) are being researched as a promising intervention strategy also in autoimmune diseases including type 1 diabetes (T1D). T1D is a T-cell-mediated, organ-specific disease with several well-defined and rather specific autoantigens, i.e., proinsulin, insulin, glutamic acid decarboxylase 65 (GAD65), that have been used in animal as well as human intervention trials in attempts to achieve a more efficient, specific immunotherapy. In this study, we have tested tolerogenic DCs for their effectiveness to prevent adoptive transfer of diabetes by diabetogenic splenocytes into non-obese diabetes (NOD)-severe combined immunodeficiency (NOD-SCID) recipients. While i.p. application of tolDCs prepared from bone marrow of prediabetic NOD mice by vitamin D2 and dexamethasone significantly reduced diabetes transfer into the NOD-SCID females, this effect was completely abolished when tolDCs were loaded with the mouse recombinant GAD65, but also with a control protein—ovalbumin (OVA). The effect was not dependent on the presence of serum in the tolDC culture. Similar results were observed in NOD mice. Removal of possible bystander antigen-presenting cells within the diabetogenic splenocytes by negative magnetic sorting of T cells did not alter this surprising effect. Tolerogenic DCs loaded with an immunodominant mouse GAD65 peptide also displayed diminished diabetes-preventive effect. Tolerogenic DCs were characterized by surface maturation markers (CD40, CD80, CD86, MHC II) and the lipopolysaccharide stability test. Data from alloreactive T cell proliferation and cytokine induction assays (IFN-γ) did not reveal the differences observed in the diabetes incidence. Migration of tolDCs, tolDCs-GAD65 and tolDCs-OVA to spleen, mesenteric- and pancreatic lymph nodes displayed similar, mucosal pattern with highest accumulation in pancreatic lymph nodes present up to 9 days after the i.p. application. These data document that mechanisms by which tolDCs operate in vivo require much better understanding for improving efficacy of this promising cell therapy, especially in the presence of an antigen, e.g., GAD65.
Collapse
Affiliation(s)
- David P Funda
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Jaroslav Goliáš
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czechia
| | - Tomáš Hudcovic
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Nový Hrádek, Czechia
| | - Hana Kozáková
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Nový Hrádek, Czechia
| | - Radek Špíšek
- SOTIO a s., Prague, Czechia.,Department of Immunology, 2nd Medical School, Charles University, Prague, Czechia
| | - Lenka Palová-Jelínková
- SOTIO a s., Prague, Czechia.,Department of Immunology, 2nd Medical School, Charles University, Prague, Czechia
| |
Collapse
|
32
|
Pham VM, Tu NH, Katano T, Matsumura S, Saito A, Yamada A, Furue H, Ito S. Impaired peripheral nerve regeneration in type-2 diabetic mouse model. Eur J Neurosci 2018; 47:126-139. [DOI: 10.1111/ejn.13771] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Vuong M. Pham
- Department of Medical Chemistry; Kansai Medical University; 2-5-1 Shin-machi Hirakata 573-1010 Japan
| | - Nguyen Huu Tu
- Department of Medical Chemistry; Kansai Medical University; 2-5-1 Shin-machi Hirakata 573-1010 Japan
| | - Tayo Katano
- Department of Medical Chemistry; Kansai Medical University; 2-5-1 Shin-machi Hirakata 573-1010 Japan
| | - Shinji Matsumura
- Department of Medical Chemistry; Kansai Medical University; 2-5-1 Shin-machi Hirakata 573-1010 Japan
| | - Akira Saito
- Central Research Laboratory; Kansai Medical University; Hirakata Japan
| | - Akihiro Yamada
- Department of Neurophysiology; Hyogo College of Medicine; Nishinomiya Japan
| | - Hidemasa Furue
- Department of Neurophysiology; Hyogo College of Medicine; Nishinomiya Japan
| | - Seiji Ito
- Department of Medical Chemistry; Kansai Medical University; 2-5-1 Shin-machi Hirakata 573-1010 Japan
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW The genetic susceptibility and dominant protection for type 1 diabetes (T1D) associated with human leukocyte antigen (HLA) haplotypes, along with minor risk variants, have long been thought to shape the T cell receptor (TCR) repertoire and eventual phenotype of autoreactive T cells that mediate β-cell destruction. While autoantibodies provide robust markers of disease progression, early studies tracking autoreactive T cells largely failed to achieve clinical utility. RECENT FINDINGS Advances in acquisition of pancreata and islets from T1D organ donors have facilitated studies of T cells isolated from the target tissues. Immunosequencing of TCR α/β-chain complementarity determining regions, along with transcriptional profiling, offers the potential to transform biomarker discovery. Herein, we review recent studies characterizing the autoreactive TCR signature in T1D, emerging technologies, and the challenges and opportunities associated with tracking TCR molecular profiles during the natural history of T1D.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Amanda Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA.
| |
Collapse
|
34
|
Brini AT, Amodeo G, Ferreira LM, Milani A, Niada S, Moschetti G, Franchi S, Borsani E, Rodella LF, Panerai AE, Sacerdote P. Therapeutic effect of human adipose-derived stem cells and their secretome in experimental diabetic pain. Sci Rep 2017; 7:9904. [PMID: 28851944 PMCID: PMC5575274 DOI: 10.1038/s41598-017-09487-5] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/25/2017] [Indexed: 02/08/2023] Open
Abstract
Painful neuropathy is one of the complications of diabetes mellitus that adversely affects patients'quality of life. Pharmacological treatments are not fully satisfactory, and novel approaches needed. In a preclinical mouse model of diabetes the effect of both human mesenchymal stromal cells from adipose tissue (hASC) and their conditioned medium (hASC-CM) was evaluated. Diabetes was induced by streptozotocin. After neuropathic hypersensitivity was established, mice were intravenously injected with either 1 × 106 hASC or with CM derived from 2 × 106 hASC. Both hASC and CM (secretome) reversed mechanical, thermal allodynia and thermal hyperalgesia, with a rapid and long lasting effect, maintained up to 12 weeks after treatments. In nerves, dorsal root ganglia and spinal cord of neuropathic mice we determined high IL-1β, IL-6 and TNF-α and low IL-10 levels. Both treatments restored a correct pro/antinflammatory cytokine balance and prevented skin innervation loss. In spleens of streptozotocin-mice, both hASC and hASC-CM re-established Th1/Th2 balance that was shifted to Th1 during diabetes. Blood glucose levels were unaffected although diabetic animals regained weight, and kidney morphology was recovered by treatments. Our data show that hASC and hASC-CM treatments may be promising approaches for diabetic neuropathic pain, and suggest that cell effect is likely mediated by their secretome.
Collapse
Affiliation(s)
- Anna T Brini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, via Vanvitelli 32, 20129, Milan, Italy.,IRCCS Galeazzi Orthopaedic Institute, via Galeazzi 4, 20161, Milan, Italy
| | - Giada Amodeo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Universita' degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy
| | - Lorena M Ferreira
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, via Vanvitelli 32, 20129, Milan, Italy.,IRCCS Galeazzi Orthopaedic Institute, via Galeazzi 4, 20161, Milan, Italy
| | - Anna Milani
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, via Vanvitelli 32, 20129, Milan, Italy.,IRCCS Galeazzi Orthopaedic Institute, via Galeazzi 4, 20161, Milan, Italy
| | - Stefania Niada
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, via Vanvitelli 32, 20129, Milan, Italy.,IRCCS Galeazzi Orthopaedic Institute, via Galeazzi 4, 20161, Milan, Italy
| | - Giorgia Moschetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Universita' degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy
| | - Silvia Franchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Universita' degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy
| | - Elisa Borsani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Luigi F Rodella
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Alberto E Panerai
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Universita' degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy
| | - Paola Sacerdote
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Universita' degli Studi di Milano, via Vanvitelli 32, 20129, Milan, Italy.
| |
Collapse
|
35
|
Alkharusi A, Mirecki-Garrido M, Ma Z, Zadjali F, Flores-Morales A, Nyström T, Castrillo A, Bjorklund A, Norstedt G, Fernandez-Pérez L. Suppressor of cytokine signaling 2 (SOCS2) deletion protects against multiple low dose streptozotocin-induced type 1 diabetes in adult male mice. Horm Mol Biol Clin Investig 2017; 26:67-76. [PMID: 26562042 DOI: 10.1515/hmbci-2015-0036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/08/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Diabetes type 1 is characterized by the failure of beta cells to produce insulin. Suppressor of cytokine signaling (SOCS) proteins are important regulators of the Janus kinase/signal transducer and activator of transcription (JAK-STAT) pathway. Previous studies have shown that GH can prevent the development of type I diabetes in mice and that SOCS2 deficiency mimics a state of increased GH sensitivity. METHODOLOGY The elevated sensitivity of SOCS2-/- mice to GH and possibly to PRL was the rationale to analyze the effects of multiple low dose streptozotocin (MLDSTZ)-induced diabetes in SOCS2-/- mice. RESULTS We show that 6-month-old SOCS2-/- mice, but not 2-month-old mice, were less sensitive to MLDSTZ-induced diabetes, compared to controls. MLDSTZ treatment induced glucose intolerance in both SOCS2+/+ and SOCS2-/- mice, as shown by glucose tolerance tests, with SOCS2+/+ mice showing a more marked intolerance, compared to SOCS2-/- mice. Furthermore, insulin tolerance tests showed that the SOCS2-/- mice have an improved hypoglycemic response to exogenous insulin, compared to SOCS2+/+ mice. Moreover, in isolated islets, lipotoxic effects on insulin release could partly be overcome by ligands, which bind to GH or PRL receptors. CONCLUSION Knockdown of SOCS2 makes mice less sensitive to MLDSTZ. These results are consistent with the proposal that elimination of SOCS2 in pancreatic islets creates a state of β-cell hypersensitivity to GH/PRL that mimics events in pregnancy, and which is protective against MLDSTZ-induced type I diabetes in mice. SOCS2-dependent control of β-cell survival may be of relevance to islet regeneration and survival in transplantation.
Collapse
|
36
|
Burrack AL, Martinov T, Fife BT. T Cell-Mediated Beta Cell Destruction: Autoimmunity and Alloimmunity in the Context of Type 1 Diabetes. Front Endocrinol (Lausanne) 2017; 8:343. [PMID: 29259578 PMCID: PMC5723426 DOI: 10.3389/fendo.2017.00343] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022] Open
Abstract
Type 1 diabetes (T1D) results from destruction of pancreatic beta cells by T cells of the immune system. Despite improvements in insulin analogs and continuous blood glucose level monitoring, there is no cure for T1D, and some individuals develop life-threatening complications. Pancreas and islet transplantation have been attractive therapeutic approaches; however, transplants containing insulin-producing cells are vulnerable to both recurrent autoimmunity and conventional allograft rejection. Current immune suppression treatments subdue the immune system, but not without complications. Ideally a successful approach would target only the destructive immune cells and leave the remaining immune system intact to fight foreign pathogens. This review discusses the autoimmune diabetes disease process, diabetic complications that warrant a transplant, and alloimmunity. First, we describe the current understanding of autoimmune destruction of beta cells including the roles of CD4 and CD8 T cells and several possibilities for antigen-specific tolerance induction. Second, we outline diabetic complications necessitating beta cell replacement. Third, we discuss transplant recognition, potential sources for beta cell replacement, and tolerance-promoting therapies under development. We hypothesize that a better understanding of autoreactive T cell targets during disease pathogenesis and alloimmunity following transplant destruction could enhance attempts to re-establish tolerance to beta cells.
Collapse
Affiliation(s)
- Adam L. Burrack
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Tijana Martinov
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Brian T. Fife
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- *Correspondence: Brian T. Fife,
| |
Collapse
|
37
|
Christoffersson G, von Herrath MG. A Deeper Look into Type 1 Diabetes - Imaging Immune Responses during Onset of Disease. Front Immunol 2016; 7:313. [PMID: 27574523 PMCID: PMC4983548 DOI: 10.3389/fimmu.2016.00313] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/02/2016] [Indexed: 12/28/2022] Open
Abstract
Cytotoxic T lymphocytes execute the killing of insulin-producing beta cells during onset of type 1 diabetes mellitus (T1D). The research community has come far in dissecting the major events in the development of this disease, but still the trigger and high-resolved information of the immunological events leading up to beta cell loss are missing. During the past decades, intravital imaging of immune responses has led to significant scientific breakthroughs in diverse models of disease, including T1D. Dynamic imaging of immune cells at the pancreatic islets during T1D onset has been made possible through the development of both advanced microscopes, and animal models that allow long-term immobilization of the pancreas. The use of these modalities has revealed a milling microenvironment at the pancreatic islets during disease onset with a plethora of active players. Clues to answering the remaining questions in this disease may lie in intravital imaging, including how key immune cells traffic to and from the pancreas, and how cells interact at this target tissue. This review highlights and discusses recent studies, models, and techniques focused to understand the immune responses during T1D onset through intravital imaging.
Collapse
Affiliation(s)
- Gustaf Christoffersson
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| | - Matthias G von Herrath
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA; Novo Nordisk Diabetes Research and Development Center, Seattle, WA, USA
| |
Collapse
|
38
|
Stifter K, Schuster C, Schlosser M, Boehm BO, Schirmbeck R. Exploring the induction of preproinsulin-specific Foxp3(+) CD4(+) Treg cells that inhibit CD8(+) T cell-mediated autoimmune diabetes by DNA vaccination. Sci Rep 2016; 6:29419. [PMID: 27406624 PMCID: PMC4942695 DOI: 10.1038/srep29419] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/14/2016] [Indexed: 12/26/2022] Open
Abstract
DNA vaccination is a promising strategy to induce effector T cells but also regulatory Foxp3+ CD25+ CD4+ Treg cells and inhibit autoimmune disorders such as type 1 diabetes. Little is known about the antigen requirements that facilitate priming of Treg cells but not autoreactive effector CD8+ T cells. We have shown that the injection of preproinsulin (ppins)-expressing pCI/ppins vector into PD-1- or PD-L1-deficient mice induced Kb/A12-21-monospecific CD8+ T cells and autoimmune diabetes. A pCI/ppinsΔA12-21 vector (lacking the critical Kb/A12-21 epitope) did not induce autoimmune diabetes but elicited a systemic Foxp3+ CD25+ Treg cell immunity that suppressed diabetes induction by a subsequent injection of the diabetogenic pCI/ppins. TGF-β expression was significantly enhanced in the Foxp3+ CD25+ Treg cell population of vaccinated/ppins-primed mice. Ablation of Treg cells in vaccinated/ppins-primed mice by anti-CD25 antibody treatment abolished the protective effect of the vaccine and enabled diabetes induction by pCI/ppins. Adoptive transfer of Treg cells from vaccinated/ppins-primed mice into PD-L1−/− hosts efficiently suppressed diabetes induction by pCI/ppins. We narrowed down the Treg-stimulating domain to a 15-residue ppins76–90 peptide. Vaccine-induced Treg cells thus play a crucial role in the control of de novo primed autoreactive effector CD8+ T cells in this diabetes model.
Collapse
Affiliation(s)
- Katja Stifter
- Department of Internal Medicine I, Ulm University Medical Center, Ulm, Germany
| | - Cornelia Schuster
- Department of Internal Medicine I, Ulm University Medical Center, Ulm, Germany
| | - Michael Schlosser
- Department of Medical Biochemistry and Molecular Biology, Research Group of Predictive Diagnostics, University Medical Centre Greifswald, Karlsburg, Germany
| | - Bernhard Otto Boehm
- Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore, Singapore.,Imperial College London, London, UK
| | - Reinhold Schirmbeck
- Department of Internal Medicine I, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
39
|
Javid A, Zlotnikov N, Pětrošová H, Tang TT, Zhang Y, Bansal AK, Ebady R, Parikh M, Ahmed M, Sun C, Newbigging S, Kim YR, Santana Sosa M, Glogauer M, Moriarty TJ. Hyperglycemia Impairs Neutrophil-Mediated Bacterial Clearance in Mice Infected with the Lyme Disease Pathogen. PLoS One 2016; 11:e0158019. [PMID: 27340827 PMCID: PMC4920391 DOI: 10.1371/journal.pone.0158019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/08/2016] [Indexed: 12/15/2022] Open
Abstract
Insulin-insufficient type 1 diabetes is associated with attenuated bactericidal function of neutrophils, which are key mediators of innate immune responses to microbes as well as pathological inflammatory processes. Neutrophils are central to immune responses to the Lyme pathogen Borrelia burgdorferi. The effect of hyperglycemia on host susceptibility to and outcomes of B. burgdorferi infection has not been examined. The present study investigated the impact of sustained obesity-independent hyperglycemia in mice on bacterial clearance, inflammatory pathology and neutrophil responses to B. burgdorferi. Hyperglycemia was associated with reduced arthritis incidence but more widespread tissue colonization and reduced clearance of bacterial DNA in multiple tissues including brain, heart, liver, lung and knee joint. B. burgdorferi uptake and killing were impaired in neutrophils isolated from hyperglycemic mice. Thus, attenuated neutrophil function in insulin-insufficient hyperglycemia was associated with reduced B. burgdorferi clearance in target organs. These data suggest that investigating the effects of comorbid conditions such as diabetes on outcomes of B. burgdorferi infections in humans may be warranted.
Collapse
Affiliation(s)
- Ashkan Javid
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Nataliya Zlotnikov
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Helena Pětrošová
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Tian Tian Tang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Yang Zhang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Anil K. Bansal
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Rhodaba Ebady
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Maitry Parikh
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Mijhgan Ahmed
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Chunxiang Sun
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Susan Newbigging
- Mount Sinai Hospital/Research Institute, The Toronto Centre for Phenogenomics, 25 Orde Street, Toronto, Ontario, M5T 3H7, Canada
| | - Yae Ram Kim
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Marianna Santana Sosa
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Michael Glogauer
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | - Tara J. Moriarty
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Fitzgerald Building, Room 241, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| |
Collapse
|
40
|
Hudson LK, Dancho ME, Li J, Bruchfeld JB, Ragab AA, He MM, Bragg M, Lenaghan D, Quinn MD, Fritz JR, Tanzi MV, Silverman HA, Hanes WM, Levine YA, Pavlov VA, Olofsson PS, Roth J, Al-Abed Y, Andersson U, Tracey KJ, Chavan SS. Emetine Di-HCl Attenuates Type 1 Diabetes Mellitus in Mice. Mol Med 2016; 22:585-596. [PMID: 27341452 DOI: 10.2119/molmed.2016.00082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/26/2016] [Indexed: 01/06/2023] Open
Abstract
Type 1 diabetes mellitus (T1D) is a chronic autoimmune disease characterized by beta cell destruction, insulin deficiency and hyperglycemia. Activated macrophages and autoimmune T cells play a crucial role in the pathogenesis of hyperglycemia in NOD murine diabetes models, but the molecular mechanisms of macrophage activation are unknown. We recently identified pigment epithelium-derived factor (PEDF) as an adipocyte-derived factor that activates macrophages and mediates insulin resistance. Reasoning that PEDF might participate as a proinflammatory mediator in murine diabetes, we measured PEDF levels in NOD mice. PEDF levels are significantly elevated in pancreas, in correlation with pancreatic TNF levels in NOD mice. To identify experimental therapeutics, we screened 2,327 compounds in two chemical libraries (the NIH Clinical Collection and Pharmakon-1600a) for leads that inhibit PEDF mediated TNF release in macrophage cultures. The lead molecule selected, "emetine" is a widely used emetic. It inhibited PEDF-mediated macrophage activation with an EC50 or 146 nM. Administration of emetine to NOD mice and to C57Bl6 mice subjected to streptozotocin significantly attenuated hyperglycemia, reduced TNF levels in pancreas, and attenuated insulitis. Together, these results suggest that targeting PEDF with emetine may attenuate TNF release and hyperglycemia in murine diabetes models. This suggests that further investigation of PEDF and emetine in the pathogenesis of human diabetes is warranted.
Collapse
Affiliation(s)
- LaQueta K Hudson
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America.,Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, United States of America
| | - Meghan E Dancho
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Jianhua Li
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Johanna B Bruchfeld
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Ahmed A Ragab
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Mingzhu M He
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Meaghan Bragg
- Center for Comparative Physiology, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Delaney Lenaghan
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Michael D Quinn
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Jason R Fritz
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Matthew V Tanzi
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Harold A Silverman
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - William M Hanes
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Yaakov A Levine
- Department of Advanced Research, SetPoint Medical Corporation, Valencia, California, United States of America
| | - Valentin A Pavlov
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Peder S Olofsson
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Jesse Roth
- Laboratory for Diabetes and Diabetes-Related Research, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Yousef Al-Abed
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| | - Ulf Andersson
- Deptartment of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kevin J Tracey
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America.,Hofstra North Shore-LIJ School of Medicine, Hempstead, New York, United States of America
| | - Sangeeta S Chavan
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York, United States of America
| |
Collapse
|
41
|
Manosroi A, Tangjai T, Sutthiwanjampa C, Manosroi W, Werner RG, Götz F, Sainakham M, Manosroi J. Hypoglycemic activity and stability enhancement of human insulin–tat mixture loaded in elastic anionic niosomes. Drug Deliv 2016; 23:3157-3167. [DOI: 10.3109/10717544.2016.1157840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Aranya Manosroi
- Faculty of Pharmacy, Department of Pharmaceutical Science, Chiang Mai University, Chiang Mai, Thailand,
- Manose Health and Beauty Research Center, Muang, Chiang Mai, Thailand,
- Faculty of Science and Technology, North-Chiang Mai University, Chiang Mai, Thailand,
| | - Theeraphong Tangjai
- Faculty of Pharmacy, Department of Pharmaceutical Science, Chiang Mai University, Chiang Mai, Thailand,
- Manose Health and Beauty Research Center, Muang, Chiang Mai, Thailand,
- Faculty of Science and Technology, North-Chiang Mai University, Chiang Mai, Thailand,
| | | | - Worapaka Manosroi
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand, and
| | - Rolf G. Werner
- Faculty of Biology, Department of Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Friedrich Götz
- Faculty of Biology, Department of Microbial Genetics, University of Tübingen, Tübingen, Germany
| | - Mathukorn Sainakham
- Faculty of Pharmacy, Department of Pharmaceutical Science, Chiang Mai University, Chiang Mai, Thailand,
- Manose Health and Beauty Research Center, Muang, Chiang Mai, Thailand,
| | - Jiradej Manosroi
- Faculty of Pharmacy, Department of Pharmaceutical Science, Chiang Mai University, Chiang Mai, Thailand,
- Manose Health and Beauty Research Center, Muang, Chiang Mai, Thailand,
- Faculty of Science and Technology, North-Chiang Mai University, Chiang Mai, Thailand,
| |
Collapse
|
42
|
Cucak H, Hansen G, Vrang N, Skarsfeldt T, Steiness E, Jelsing J. The IL-1β Receptor Antagonist SER140 Postpones the Onset of Diabetes in Female Nonobese Diabetic Mice. J Diabetes Res 2016; 2016:7484601. [PMID: 26953152 PMCID: PMC4756207 DOI: 10.1155/2016/7484601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 12/21/2022] Open
Abstract
The cytokine interleukin-1β (IL-1β) is known to stimulate proinflammatory immune responses and impair β-cell function and viability, all critical events in the pathogenesis of type 1 diabetes (T1D). Here we evaluate the effect of SER140, a small peptide IL-1β receptor antagonist, on diabetes progression and cellular pancreatic changes in female nonobese diabetic (NOD) mice. Eight weeks of treatment with SER140 reduced the incidence of diabetes by more than 50% compared with vehicle, decreased blood glucose, and increased plasma insulin. Additionally, SER140 changed the endocrine and immune cells dynamics in the NOD mouse pancreas. Together, the data suggest that SER140 treatment postpones the onset of diabetes in female NOD mice by interfering with IL-1β activated pathways.
Collapse
Affiliation(s)
| | | | - Niels Vrang
- Gubra ApS, Agern Alle 1, 2970 Hørsholm, Denmark
| | | | - Eva Steiness
- Serodus ASA, Gaustadalléen 21, 0349 Oslo, Norway
| | - Jacob Jelsing
- Gubra ApS, Agern Alle 1, 2970 Hørsholm, Denmark
- *Jacob Jelsing:
| |
Collapse
|
43
|
Presa M, Chen YG, Grier AE, Leiter EH, Brehm MA, Greiner DL, Shultz LD, Serreze DV. The Presence and Preferential Activation of Regulatory T Cells Diminish Adoptive Transfer of Autoimmune Diabetes by Polyclonal Nonobese Diabetic (NOD) T Cell Effectors into NSG versus NOD-scid Mice. THE JOURNAL OF IMMUNOLOGY 2015; 195:3011-9. [PMID: 26283479 DOI: 10.4049/jimmunol.1402446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 07/23/2015] [Indexed: 01/18/2023]
Abstract
NOD-scid.Il2rg(null) (NSG) mice are currently being used as recipients to screen for pathogenic autoreactive T cells in type 1 diabetes (T1D) patients. We questioned whether the restriction of IL-2R γ-chain (Il-2rγ)-dependent cytokine signaling only to donor cells in NSG recipients differently influenced the activities of transferred diabetogenic T cells when they were introduced as a monoclonal/oligoclonal population versus being part of a polyclonal repertoire. Unexpectedly, a significantly decreased T1D transfer by splenocytes from prediabetic NOD donors was observed in Il-2rγ(null)-NSG versus Il-2rγ-intact standard NOD-scid recipients. In contrast, NOD-derived monoclonal/oligoclonal TCR transgenic β cell-autoreactive T cells in either the CD8 (AI4, NY8.3) or CD4 (BDC2.5) compartments transferred disease significantly more rapidly to NSG than to NOD-scid recipients. The reduced diabetes transfer efficiency by polyclonal T cells in NSG recipients was associated with enhanced activation of regulatory T cells (Tregs) mediated by NSG myeloid APC. This enhanced suppressor activity was associated with higher levels of Treg GITR expression in the presence of NSG than NOD-scid APC. These collective results indicate NSG recipients might be efficiently employed to test the activity of T1D patient-derived β cell-autoreactive T cell clones and lines, but, when screening for pathogenic effectors within polyclonal populations, Tregs should be removed from the transfer inoculum to avoid false-negative results.
Collapse
Affiliation(s)
| | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226; and
| | | | | | - Michael A Brehm
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Dale L Greiner
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | | | | |
Collapse
|
44
|
Bornfeldt KE. Uncomplicating the Macrovascular Complications of Diabetes: The 2014 Edwin Bierman Award Lecture. Diabetes 2015; 64:2689-97. [PMID: 26207031 PMCID: PMC4512224 DOI: 10.2337/db14-1963] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/08/2015] [Indexed: 12/18/2022]
Abstract
The risk of cardiovascular events in humans increases in the presence of type 1 or type 2 diabetes mellitus, in large part due to exacerbated atherosclerosis. Genetically engineered mouse models have begun to elucidate cellular and molecular mechanisms responsible for diabetes-exacerbated atherosclerosis. Research on these mouse models has revealed that diabetes independently accelerates initiation and progression of lesions of atherosclerosis and also impairs the regression of lesions following aggressive lipid lowering. Myeloid cell activation in combination with proatherogenic changes allowing for increased monocyte recruitment into arteries of diabetic mice has emerged as an important mediator of the effects of diabetes on the three stages of atherosclerosis. The effects of diabetes on atherosclerosis appear to be dependent on an interplay between glucose and lipids, as well as other factors, and result in increased recruitment of monocytes into both progressing and regressing lesions of atherosclerosis. Importantly, some of the mechanisms revealed by mouse models are now being studied in human subjects. This Perspective highlights new mechanistic findings based on mouse models of diabetes-exacerbated atherosclerosis and discusses the relevance to humans and areas in which more research is urgently needed in order to lessen the burden of macrovascular complications of type 1 and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Karin E Bornfeldt
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition and Department of Pathology, Diabetes and Obesity Center of Excellence, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
45
|
Graham ML, Schuurman HJ. Validity of animal models of type 1 diabetes, and strategies to enhance their utility in translational research. Eur J Pharmacol 2015; 759:221-30. [DOI: 10.1016/j.ejphar.2015.02.054] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 01/15/2015] [Accepted: 02/09/2015] [Indexed: 01/22/2023]
|
46
|
Can exposure to environmental chemicals increase the risk of diabetes type 1 development? BIOMED RESEARCH INTERNATIONAL 2015; 2015:208947. [PMID: 25883945 PMCID: PMC4391693 DOI: 10.1155/2015/208947] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/14/2014] [Indexed: 01/09/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disease, where destruction of beta-cells causes insulin deficiency. The incidence of T1DM has increased in the last decades and cannot entirely be explained by genetic predisposition. Several environmental factors are suggested to promote T1DM, like early childhood enteroviral infections and nutritional factors, but the evidence is inconclusive. Prenatal and early life exposure to environmental pollutants like phthalates, bisphenol A, perfluorinated compounds, PCBs, dioxins, toxicants, and air pollutants can have negative effects on the developing immune system, resulting in asthma-like symptoms and increased susceptibility to childhood infections. In this review the associations between environmental chemical exposure and T1DM development is summarized. Although information on environmental chemicals as possible triggers for T1DM is sparse, we conclude that it is plausible that environmental chemicals can contribute to T1DM development via impaired pancreatic beta-cell and immune-cell functions and immunomodulation. Several environmental factors and chemicals could act together to trigger T1DM development in genetically susceptible individuals, possibly via hormonal or epigenetic alterations. Further observational T1DM cohort studies and animal exposure experiments are encouraged.
Collapse
|
47
|
Poittevin M, Bonnin P, Pimpie C, Rivière L, Sebrié C, Dohan A, Pocard M, Charriaut-Marlangue C, Kubis N. Diabetic microangiopathy: impact of impaired cerebral vasoreactivity and delayed angiogenesis after permanent middle cerebral artery occlusion on stroke damage and cerebral repair in mice. Diabetes 2015; 64:999-1010. [PMID: 25288671 DOI: 10.2337/db14-0759] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetes increases the risk of stroke by three, increases related mortality, and delays recovery. We aimed to characterize functional and structural alterations in cerebral microvasculature before and after experimental cerebral ischemia in a mouse model of type 1 diabetes. We hypothesized that preexisting brain microvascular disease in patients with diabetes might partly explain increased stroke severity and impact on outcome. Diabetes was induced in 4-week-old C57Bl/6J mice by intraperitoneal injections of streptozotocin (60 mg/kg). After 8 weeks of diabetes, the vasoreactivity of the neurovascular network to CO2 was abolished and was not reversed by nitric oxide (NO) donor administration; endothelial NO synthase (eNOS) and neuronal NO synthase (nNOS) mRNA, phospho-eNOS protein, nNOS, and phospho-nNOS protein were significantly decreased; angiogenic and vessel maturation factors (vascular endothelial growth factor a [VEGFa], angiopoietin 1 (Ang1), Ang2, transforming growth factor-β [TGF-β], and platelet-derived growth factor-β [PDGF-β]) and blood-brain barrier (BBB) occludin and zona occludens 1 (ZO-1) expression were significantly decreased; and microvessel density was increased without changes in ultrastructural imaging. After permanent focal cerebral ischemia induction, infarct volume and neurological deficit were significantly increased at D1 and D7, and neuronal death (TUNEL+ / NeuN+ cells) and BBB permeability (extravasation of Evans blue) at D1. At D7, CD31+ / Ki67+ double-immunolabeled cells and VEGFa and Ang2 expression were significantly increased, indicating delayed angiogenesis. We show that cerebral microangiopathy thus partly explains stroke severity in diabetes.
Collapse
Affiliation(s)
- Marine Poittevin
- Université Paris Diderot, Sorbonne Paris Cité, Angiogenesis and Translational Research Center, INSERM U965, Paris, France
| | - Philippe Bonnin
- Université Paris Diderot, Sorbonne Paris Cité, Angiogenesis and Translational Research Center, INSERM U965, Paris, France Service de Physiologie Clinique, AP-HP, Hôpital Lariboisière, Paris, France
| | - Cynthia Pimpie
- Université Paris Diderot, Sorbonne Paris Cité, Angiogenesis and Translational Research Center, INSERM U965, Paris, France
| | - Léa Rivière
- Université Paris Diderot, Sorbonne Paris Cité, Angiogenesis and Translational Research Center, INSERM U965, Paris, France
| | | | - Anthony Dohan
- Université Paris Diderot, Sorbonne Paris Cité, Angiogenesis and Translational Research Center, INSERM U965, Paris, France
| | - Marc Pocard
- Université Paris Diderot, Sorbonne Paris Cité, Angiogenesis and Translational Research Center, INSERM U965, Paris, France
| | | | - Nathalie Kubis
- Université Paris Diderot, Sorbonne Paris Cité, Angiogenesis and Translational Research Center, INSERM U965, Paris, France Service de Physiologie Clinique, AP-HP, Hôpital Lariboisière, Paris, France
| |
Collapse
|
48
|
Abstract
Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes and is associated with significant morbidity and mortality. DPN is characterized by progressive, distal-to-proximal degeneration of peripheral nerves that leads to pain, weakness, and eventual loss of sensation. The mechanisms underlying DPN pathogenesis are uncertain, and other than tight glycemic control in type 1 patients, there is no effective treatment. Mouse models of type 1 (T1DM) and type 2 diabetes (T2DM) are critical to improving our understanding of DPN pathophysiology and developing novel treatment strategies. In this review, we discuss the most widely used T1DM and T2DM mouse models for DPN research, with emphasis on the main neurologic phenotype of each model. We also discuss important considerations for selecting appropriate models for T1DM and T2DM DPN studies and describe the promise of novel emerging diabetic mouse models for DPN research. The development, characterization, and comprehensive neurologic phenotyping of clinically relevant mouse models for T1DM and T2DM will provide valuable resources for future studies examining DPN pathogenesis and novel therapeutic strategies.
Collapse
|
49
|
Rahavi H, Hashemi SM, Soleimani M, Mohammadi J, Tajik N. Adipose tissue-derived mesenchymal stem cells exert in vitro immunomodulatory and beta cell protective functions in streptozotocin-induced diabetic mice model. J Diabetes Res 2015; 2015:878535. [PMID: 25893202 PMCID: PMC4393922 DOI: 10.1155/2015/878535] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/14/2015] [Accepted: 03/15/2015] [Indexed: 02/07/2023] Open
Abstract
Regenerative and immunomodulatory properties of mesenchymal stem cells (MSCs) might be applied for type 1 diabetes mellitus (T1DM) treatment. Thus, we proposed in vitro assessment of adipose tissue-derived MSCs (AT-MSCs) immunomodulation on autoimmune response along with beta cell protection in streptozotocin- (STZ-) induced diabetic C57BL/6 mice model. MSCs were extracted from abdominal adipose tissue of normal mice and cultured to proliferate. Diabetic mice were prepared by administration of multiple low-doses of streptozotocin. Pancreatic islets were isolated from normal mice and splenocytes prepared from normal and diabetic mice. Proliferation, cytokine production, and insulin secretion assays were performed in coculture experiments. AT-MSCs inhibited splenocytes proliferative response to specific (islet lysate) and nonspecific (PHA) triggers in a dose-dependent manner (P < 0.05). Decreased production of proinflammatory cytokines, such as IFN-γ, IL-2, and IL-17, and increased secretion of regulatory cytokines such as TGF-β, IL-4, IL-10, and IL-13 by stimulated splenocytes were also shown in response to islet lysate or PHA stimulants (P < 0.05). Finally, we demonstrated that AT-MSCs could effectively sustain viability as well as insulin secretion potential of pancreatic islets in the presence of reactive splenocytes (P < 0.05). In conclusion, it seems that MSCs may provide a new horizon for T1DM cell therapy and islet transplantation in the future.
Collapse
Affiliation(s)
- Hossein Rahavi
- Division of Transplant Immunology and Immunogenetics, Immunology Research Center (IRC), Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Stem Cell Biology, Stem Cell Technology Research Center, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Jamal Mohammadi
- Division of Transplant Immunology and Immunogenetics, Immunology Research Center (IRC), Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nader Tajik
- Division of Transplant Immunology and Immunogenetics, Immunology Research Center (IRC), Iran University of Medical Sciences, Tehran, Iran
- *Nader Tajik:
| |
Collapse
|
50
|
Regulatory T cells control diabetes without compromising acute anti-viral defense. Clin Immunol 2014; 153:298-307. [PMID: 24858581 DOI: 10.1016/j.clim.2014.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/10/2014] [Accepted: 05/14/2014] [Indexed: 01/07/2023]
Abstract
While previous reports have demonstrated the efficacy of regulatory T cell therapy in the prevention of diabetes, systemic immunocompromise and Treg instability remain key safety concerns. Here we examined the influence of induced Treg (iTreg) cell therapy on anti-viral host defense and autoimmune T cell responses during acute viral infection in a murine model of autoimmune diabetes. Protective transfers of iTregs maintained IL-10 expression, expanded in vivo and controlled diabetes, despite losing FoxP3 expression. Adoptive transfer of iTregs affected neither the primary anti-viral CD8 T cell response nor viral clearance, although a significant and sustained suppression of CD4 T cell responses was observed. Following acute viral clearance, iTregs transferred early suppressed both CD4 and CD8 T cell responses, which resulted in the reversion of diabetes. These observations indicate that iTregs suppress local autoimmune processes while preserving the immunocompetent host's ability to combat acute viral infection.
Collapse
|