1
|
Bothe MS, Kohl T, Felmy F, Gallant J, Chagnaud BP. Timing and precision of rattlesnake spinal motoneurons are determined by the KV7 2/3 potassium channel. Curr Biol 2024; 34:286-297.e5. [PMID: 38157862 DOI: 10.1016/j.cub.2023.11.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
The evolution of novel motor behaviors requires modifications in the central pattern generators (CPGs) controlling muscle activity. How such changes gradually lead to novel behaviors remains enigmatic due to the long time course of evolution. Rattlesnakes provide a unique opportunity to investigate how a locomotor CPG was evolutionarily modified to generate a novel behavior-in this case, acoustic signaling. We show that motoneurons (MNs) in the body and tail spinal cord of rattlesnakes possess fundamentally different physiological characteristics, which allow MNs in the tail to integrate and transmit CPG output for controlling superfast muscles with high temporal precision. Using patch-clamp electrophysiology, we demonstrate that these differences in locomotor and rattle MNs are mainly determined by KV72/3 potassium channels. However, although KV72/3 exerted a significantly different influence on locomotor and rattle MN physiology, single-cell RNA-seq unexpectedly did not reveal any differences in KV72/3 channels' expression. VIDEO ABSTRACT.
Collapse
Affiliation(s)
| | - Tobias Kohl
- TUM School of Life Science, Technical University of Munich, 85354 Munich, Germany
| | - Felix Felmy
- Institute of Zoology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Jason Gallant
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Boris P Chagnaud
- Institute of Biology, University of Graz, 8010 Graz, Austria; Department of Biology II, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
2
|
Miller A, Dasen JS. Establishing and maintaining Hox profiles during spinal cord development. Semin Cell Dev Biol 2024; 152-153:44-57. [PMID: 37029058 PMCID: PMC10524138 DOI: 10.1016/j.semcdb.2023.03.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/18/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
The chromosomally-arrayed Hox gene family plays central roles in embryonic patterning and the specification of cell identities throughout the animal kingdom. In vertebrates, the relatively large number of Hox genes and pervasive expression throughout the body has hindered understanding of their biological roles during differentiation. Studies on the subtype diversification of spinal motor neurons (MNs) have provided a tractable system to explore the function of Hox genes during differentiation, and have provided an entry point to explore how neuronal fate determinants contribute to motor circuit assembly. Recent work, using both in vitro and in vivo models of MN subtype differentiation, have revealed how patterning morphogens and regulation of chromatin structure determine cell-type specific programs of gene expression. These studies have not only shed light on basic mechanisms of rostrocaudal patterning in vertebrates, but also have illuminated mechanistic principles of gene regulation that likely operate in the development and maintenance of terminal fates in other systems.
Collapse
Affiliation(s)
- Alexander Miller
- NYU Neuroscience Institute and Developmental Genetics Programs, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| | - Jeremy S Dasen
- NYU Neuroscience Institute and Developmental Genetics Programs, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
3
|
D'Elia KP, Hameedy H, Goldblatt D, Frazel P, Kriese M, Zhu Y, Hamling KR, Kawakami K, Liddelow SA, Schoppik D, Dasen JS. Determinants of motor neuron functional subtypes important for locomotor speed. Cell Rep 2023; 42:113049. [PMID: 37676768 PMCID: PMC10600875 DOI: 10.1016/j.celrep.2023.113049] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/12/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
Locomotion requires precise control of the strength and speed of muscle contraction and is achieved by recruiting functionally distinct subtypes of motor neurons (MNs). MNs are essential to movement and differentially susceptible in disease, but little is known about how MNs acquire functional subtype-specific features during development. Using single-cell RNA profiling in embryonic and larval zebrafish, we identify novel and conserved molecular signatures for MN functional subtypes and identify genes expressed in both early post-mitotic and mature MNs. Assessing MN development in genetic mutants, we define a molecular program essential for MN functional subtype specification. Two evolutionarily conserved transcription factors, Prdm16 and Mecom, are both functional subtype-specific determinants integral for fast MN development. Loss of prdm16 or mecom causes fast MNs to develop transcriptional profiles and innervation similar to slow MNs. These results reveal the molecular diversity of vertebrate axial MNs and demonstrate that functional subtypes are specified through intrinsic transcriptional codes.
Collapse
Affiliation(s)
- Kristen P D'Elia
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Hanna Hameedy
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Dena Goldblatt
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - Paul Frazel
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Mercer Kriese
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yunlu Zhu
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kyla R Hamling
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan
| | - Shane A Liddelow
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - David Schoppik
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Jeremy S Dasen
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
4
|
The pioneering function of the hox transcription factors. Semin Cell Dev Biol 2022:S1084-9521(22)00354-8. [PMID: 36517345 DOI: 10.1016/j.semcdb.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/13/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Ever since the discovery that the Hox family of transcription factors establish morphological diversity in the developing embryo, major efforts have been directed towards understanding Hox-dependent patterning. This has led to important discoveries, notably on the mechanisms underlying the collinear expression of Hox genes and Hox binding specificity. More recently, several studies have provided evidence that Hox factors have the capacity to bind their targets in an inaccessible chromatin context and trigger the switch to an accessible, transcriptional permissive, chromatin state. In this review, we provide an overview of the evidences supporting that Hox factors behave as pioneer factors and discuss the potential mechanisms implicated in Hox pioneer activity as well as the significance of this functional property in Hox-dependent patterning.
Collapse
|
5
|
Yoo D, Park J, Lee C, Song I, Lee YH, Yun T, Lee H, Heguy A, Han JY, Dasen JS, Kim H, Baek M. Little skate genome provides insights into genetic programs essential for limb-based locomotion. eLife 2022; 11:e78345. [PMID: 36288084 PMCID: PMC9605692 DOI: 10.7554/elife.78345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
The little skate Leucoraja erinacea, a cartilaginous fish, displays pelvic fin driven walking-like behavior using genetic programs and neuronal subtypes similar to those of land vertebrates. However, mechanistic studies on little skate motor circuit development have been limited, due to a lack of high-quality reference genome. Here, we generated an assembly of the little skate genome, with precise gene annotation and structures, which allowed post-genome analysis of spinal motor neurons (MNs) essential for locomotion. Through interspecies comparison of mouse, skate and chicken MN transcriptomes, shared and divergent gene expression profiles were identified. Comparison of accessible chromatin regions between mouse and skate MNs predicted shared transcription factor (TF) motifs with divergent ones, which could be used for achieving differential regulation of MN-expressed genes. A greater number of TF motif predictions were observed in MN-expressed genes in mouse than in little skate. These findings suggest conserved and divergent molecular mechanisms controlling MN development of vertebrates during evolution, which might contribute to intricate gene regulatory networks in the emergence of a more sophisticated motor system in tetrapods.
Collapse
Affiliation(s)
- DongAhn Yoo
- Interdisciplinary Program in Bioinformatics, Seoul National UniversitySeoulRepublic of Korea
| | - Junhee Park
- Department of Brain Sciences, DGISTDaeguRepublic of Korea
| | - Chul Lee
- Interdisciplinary Program in Bioinformatics, Seoul National UniversitySeoulRepublic of Korea
| | - Injun Song
- Department of Brain Sciences, DGISTDaeguRepublic of Korea
| | - Young Ho Lee
- Interdisciplinary Program in Bioinformatics, Seoul National UniversitySeoulRepublic of Korea
| | - Tery Yun
- Department of Brain Sciences, DGISTDaeguRepublic of Korea
| | - Hyemin Lee
- Department of Biology, Graduate School of Arts and Science, NYUNew YorkUnited States
| | - Adriana Heguy
- Genome Technology Center, Division for Advanced Research Technologies, and Department of Pathology, NYU School of MedicineNew YorkUnited States
| | - Jae Yong Han
- Department of Agricultural Biotechnology, Seoul National UniversitySeoulRepublic of Korea
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of MedicineNew YorkUnited States
| | - Heebal Kim
- Interdisciplinary Program in Bioinformatics, Seoul National UniversitySeoulRepublic of Korea
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National UniversitySeoulRepublic of Korea
- eGnome, IncSeoulRepublic of Korea
| | - Myungin Baek
- Department of Brain Sciences, DGISTDaeguRepublic of Korea
| |
Collapse
|
6
|
Elder N, Fattahi F, McDevitt TC, Zholudeva LV. Diseased, differentiated and difficult: Strategies for improved engineering of in vitro neurological systems. Front Cell Neurosci 2022; 16:962103. [PMID: 36238834 PMCID: PMC9550918 DOI: 10.3389/fncel.2022.962103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/22/2022] [Indexed: 12/01/2022] Open
Abstract
The rapidly growing field of cellular engineering is enabling scientists to more effectively create in vitro models of disease and develop specific cell types that can be used to repair damaged tissue. In particular, the engineering of neurons and other components of the nervous system is at the forefront of this field. The methods used to engineer neural cells can be largely divided into systems that undergo directed differentiation through exogenous stimulation (i.e., via small molecules, arguably following developmental pathways) and those that undergo induced differentiation via protein overexpression (i.e., genetically induced and activated; arguably bypassing developmental pathways). Here, we highlight the differences between directed differentiation and induced differentiation strategies, how they can complement one another to generate specific cell phenotypes, and impacts of each strategy on downstream applications. Continued research in this nascent field will lead to the development of improved models of neurological circuits and novel treatments for those living with neurological injury and disease.
Collapse
Affiliation(s)
- Nicholas Elder
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Gladstone Institutes, San Francisco, CA, United States
| | - Faranak Fattahi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| | - Todd C. McDevitt
- Gladstone Institutes, San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States
- Sana Biotechnology, Inc., South San Francisco, CA, United States
| | - Lyandysha V. Zholudeva
- Gladstone Institutes, San Francisco, CA, United States
- *Correspondence: Lyandysha V. Zholudeva,
| |
Collapse
|
7
|
Singh NP, Krumlauf R. Diversification and Functional Evolution of HOX Proteins. Front Cell Dev Biol 2022; 10:798812. [PMID: 35646905 PMCID: PMC9136108 DOI: 10.3389/fcell.2022.798812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/08/2022] [Indexed: 01/07/2023] Open
Abstract
Gene duplication and divergence is a major contributor to the generation of morphological diversity and the emergence of novel features in vertebrates during evolution. The availability of sequenced genomes has facilitated our understanding of the evolution of genes and regulatory elements. However, progress in understanding conservation and divergence in the function of proteins has been slow and mainly assessed by comparing protein sequences in combination with in vitro analyses. These approaches help to classify proteins into different families and sub-families, such as distinct types of transcription factors, but how protein function varies within a gene family is less well understood. Some studies have explored the functional evolution of closely related proteins and important insights have begun to emerge. In this review, we will provide a general overview of gene duplication and functional divergence and then focus on the functional evolution of HOX proteins to illustrate evolutionary changes underlying diversification and their role in animal evolution.
Collapse
Affiliation(s)
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, United States
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, United States
- *Correspondence: Robb Krumlauf,
| |
Collapse
|
8
|
Cundall D, Deufel A. Dorsal root ganglia, neural crest migration, and spinal cord form in snakes. J Morphol 2022; 283:867-874. [PMID: 35510680 DOI: 10.1002/jmor.21481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 11/11/2022]
Abstract
The classic view of the vertebrate dorsal root ganglion is that it arises from trunk neural crest cells that migrate to positions lateral to the spinal cord, sending axons dorsally into the spinal cord and dendrites ventrally to meet with motor axons in the ventral root to form spinal nerves. As a result, the ganglion ends up lying in the dorsal root of the spinal nerve. Serial histological sections of parts of the trunk of juveniles of different snake species revealed that the ganglia lie distal to the junction of dorsal and ventral roots of spinal nerves and outside the neural canal. The anatomical position of spinal ganglia in snakes suggests that regulation of trunk neural crest migration in snakes differs from that in the model endotherms in which it has been most thoroughly explored. Dorsal roots have no distinct rootlets and the span of root entry to the spinal cord is short compared to that of ventral rootlets in the same segment. Comparing early developmental stages to juvenile spinal cords shows an increased separation of spinal nerve root sites and ventral migration of the ganglion in later development. Dorsal rami of the spinal nerves leave directly from the dorsal edge of the ganglion, and the ventral ramus leaves from the ventral tip of the ganglion. How these features relate to the developmental regulation of ganglion form and position and the extraordinary locomotor capabilities of the snake trunk are unclear.
Collapse
Affiliation(s)
- David Cundall
- Biological Sciences Department, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Alexandra Deufel
- Department of Biology, Minot State University, Minot, North Dakota, USA
| |
Collapse
|
9
|
Chen YC, Konstantinides N. Integration of Spatial and Temporal Patterning in the Invertebrate and Vertebrate Nervous System. Front Neurosci 2022; 16:854422. [PMID: 35392413 PMCID: PMC8981590 DOI: 10.3389/fnins.2022.854422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
The nervous system is one of the most sophisticated animal tissues, consisting of thousands of interconnected cell types. How the nervous system develops its diversity from a few neural stem cells remains a challenging question. Spatial and temporal patterning mechanisms provide an efficient model through which diversity can be generated. The molecular mechanism of spatiotemporal patterning has been studied extensively in Drosophila melanogaster, where distinct sets of transcription factors define the spatial domains and temporal windows that give rise to different cell types. Similarly, in vertebrates, spatial domains defined by transcription factors produce different types of neurons in the brain and neural tube. At the same time, different cortical neuronal types are generated within the same cell lineage with a specific birth order. However, we still do not understand how the orthogonal information of spatial and temporal patterning is integrated into the progenitor and post-mitotic cells to combinatorially give rise to different neurons. In this review, after introducing spatial and temporal patterning in Drosophila and mice, we discuss possible mechanisms that neural progenitors may use to integrate spatial and temporal information. We finally review the functional implications of spatial and temporal patterning and conclude envisaging how small alterations of these mechanisms can lead to the evolution of new neuronal cell types.
Collapse
Affiliation(s)
- Yen-Chung Chen
- Department of Biology, New York University, New York, NY, United States
| | - Nikolaos Konstantinides
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| |
Collapse
|
10
|
Sawai A, Pfennig S, Bulajić M, Miller A, Khodadadi-Jamayran A, Mazzoni EO, Dasen JS. PRC1 sustains the integrity of neural fate in the absence of PRC2 function. eLife 2022; 11:e72769. [PMID: 34994686 PMCID: PMC8765755 DOI: 10.7554/elife.72769] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022] Open
Abstract
Polycomb repressive complexes (PRCs) 1 and 2 maintain stable cellular memories of early fate decisions by establishing heritable patterns of gene repression. PRCs repress transcription through histone modifications and chromatin compaction, but their roles in neuronal subtype diversification are poorly defined. We found that PRC1 is essential for the specification of segmentally restricted spinal motor neuron (MN) subtypes, while PRC2 activity is dispensable to maintain MN positional identities during terminal differentiation. Mutation of the core PRC1 component Ring1 in mice leads to increased chromatin accessibility and ectopic expression of a broad variety of fates determinants, including Hox transcription factors, while neuronal class-specific features are maintained. Loss of MN subtype identities in Ring1 mutants is due to the suppression of Hox-dependent specification programs by derepressed Hox13 paralogs (Hoxa13, Hoxb13, Hoxc13, Hoxd13). These results indicate that PRC1 can function in the absence of de novo PRC2-dependent histone methylation to maintain chromatin topology and postmitotic neuronal fate.
Collapse
Affiliation(s)
- Ayana Sawai
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| | - Sarah Pfennig
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| | - Milica Bulajić
- Department of Biology, New York UniversityNew YorkUnited States
| | - Alexander Miller
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| | - Alireza Khodadadi-Jamayran
- Applied Bioinformatics Laboratories, Office of Science and Research, NYU School of MedcineNew YorkUnited States
| | | | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of MedicineNew YorkUnited States
| |
Collapse
|
11
|
Dasen JS. Establishing the Molecular and Functional Diversity of Spinal Motoneurons. ADVANCES IN NEUROBIOLOGY 2022; 28:3-44. [PMID: 36066819 DOI: 10.1007/978-3-031-07167-6_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spinal motoneurons are a remarkably diverse class of neurons responsible for facilitating a broad range of motor behaviors and autonomic functions. Studies of motoneuron differentiation have provided fundamental insights into the developmental mechanisms of neuronal diversification, and have illuminated principles of neural fate specification that operate throughout the central nervous system. Because of their relative anatomical simplicity and accessibility, motoneurons have provided a tractable model system to address multiple facets of neural development, including early patterning, neuronal migration, axon guidance, and synaptic specificity. Beyond their roles in providing direct communication between central circuits and muscle, recent studies have revealed that motoneuron subtype-specific programs also play important roles in determining the central connectivity and function of motor circuits. Cross-species comparative analyses have provided novel insights into how evolutionary changes in subtype specification programs may have contributed to adaptive changes in locomotor behaviors. This chapter focusses on the gene regulatory networks governing spinal motoneuron specification, and how studies of spinal motoneurons have informed our understanding of the basic mechanisms of neuronal specification and spinal circuit assembly.
Collapse
Affiliation(s)
- Jeremy S Dasen
- NYU Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Amin ND, Senturk G, Costaguta G, Driscoll S, O'Leary B, Bonanomi D, Pfaff SL. A hidden threshold in motor neuron gene networks revealed by modulation of miR-218 dose. Neuron 2021; 109:3252-3267.e6. [PMID: 34450025 DOI: 10.1016/j.neuron.2021.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/01/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Disruption of homeostatic microRNA (miRNA) expression levels is known to cause human neuropathology. However, the gene regulatory and phenotypic effects of altering a miRNA's in vivo abundance (rather than its binary gain or loss) are not well understood. By genetic combination, we generated an allelic series of mice expressing varying levels of miR-218, a motor neuron-selective gene regulator associated with motor neuron disease. Titration of miR-218 cellular dose unexpectedly revealed complex, non-ratiometric target mRNA dose responses and distinct gene network outputs. A non-linearly responsive regulon exhibited a steep miR-218 dose-dependent threshold in repression that, when crossed, resulted in severe motor neuron synaptic failure and death. This work demonstrates that a miRNA can govern distinct gene network outputs at different expression levels and that miRNA-dependent phenotypes emerge at particular dose ranges because of hidden regulatory inflection points of their underlying gene networks.
Collapse
Affiliation(s)
- Neal D Amin
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Gokhan Senturk
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Giancarlo Costaguta
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shawn Driscoll
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Brendan O'Leary
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dario Bonanomi
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Samuel L Pfaff
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
Kushwaha B, Pandey M, Das P, Joshi CG, Nagpure NS, Kumar R, Kumar D, Agarwal S, Srivastava S, Singh M, Sahoo L, Jayasankar P, Meher PK, Shah TM, Hinsu AT, Patel N, Koringa PG, Das SP, Patnaik S, Bit A, Iquebal MA, Jaiswal S, Jena J. The genome of walking catfish Clarias magur (Hamilton, 1822) unveils the genetic basis that may have facilitated the development of environmental and terrestrial adaptation systems in air-breathing catfishes. DNA Res 2021; 28:6070145. [PMID: 33416875 PMCID: PMC7934567 DOI: 10.1093/dnares/dsaa031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/21/2020] [Indexed: 11/14/2022] Open
Abstract
The walking catfish Clarias magur (Hamilton, 1822) (magur) is an important catfish species inhabiting the Indian subcontinent. It is considered as a highly nutritious food fish and has the capability to walk to some distance, and survive a considerable period without water. Assembly, scaffolding and several rounds of iterations resulted in 3,484 scaffolds covering ∼94% of estimated genome with 9.88 Mb largest scaffold, and N50 1.31 Mb. The genome possessed 23,748 predicted protein encoding genes with annotation of 19,279 orthologous genes. A total of 166 orthologous groups represented by 222 genes were found to be unique for this species. The Computational Analysis of gene Family Evolution (CAFE) analysis revealed expansion of 207 gene families and 100 gene families have rapidly evolved. Genes specific to important environmental and terrestrial adaptation, viz. urea cycle, vision, locomotion, olfactory and vomeronasal receptors, immune system, anti-microbial properties, mucus, thermoregulation, osmoregulation, air-breathing, detoxification, etc. were identified and critically analysed. The analysis clearly indicated that C. magur genome possessed several unique and duplicate genes similar to that of terrestrial or amphibians’ counterparts in comparison to other teleostean species. The genome information will be useful in conservation genetics, not only for this species but will also be very helpful in such studies in other catfishes.
Collapse
Affiliation(s)
- Basdeo Kushwaha
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226002, India
| | - Manmohan Pandey
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226002, India
| | - Paramananda Das
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha 751002, India
| | - Chaitanya G Joshi
- Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat 388110, India
| | - Naresh S Nagpure
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226002, India
| | - Ravindra Kumar
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226002, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Suyash Agarwal
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226002, India
| | - Shreya Srivastava
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226002, India
| | - Mahender Singh
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226002, India
| | - Lakshman Sahoo
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha 751002, India
| | - Pallipuram Jayasankar
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha 751002, India
| | - Prem K Meher
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha 751002, India
| | - Tejas M Shah
- Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat 388110, India
| | - Ankit T Hinsu
- Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat 388110, India
| | - Namrata Patel
- Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat 388110, India
| | - Prakash G Koringa
- Department of Animal Biotechnology, Anand Agricultural University, Anand, Gujarat 388110, India
| | - Sofia P Das
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha 751002, India
| | - Siddhi Patnaik
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha 751002, India
| | - Amrita Bit
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha 751002, India
| | - Mir A Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | - Joykrushna Jena
- Molecular Biology and Biotechnology Division, ICAR-National Bureau of Fish Genetic Resources, Lucknow, Uttar Pradesh 226002, India
| |
Collapse
|
14
|
Bulajić M, Srivastava D, Dasen JS, Wichterle H, Mahony S, Mazzoni EO. Differential abilities to engage inaccessible chromatin diversify vertebrate Hox binding patterns. Development 2020; 147:dev194761. [PMID: 33028607 PMCID: PMC7710020 DOI: 10.1242/dev.194761] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
Although Hox genes encode for conserved transcription factors (TFs), they are further divided into anterior, central and posterior groups based on their DNA-binding domain similarity. The posterior Hox group expanded in the deuterostome clade and patterns caudal and distal structures. We aimed to address how similar Hox TFs diverge to induce different positional identities. We studied Hox TF DNA-binding and regulatory activity during an in vitro motor neuron differentiation system that recapitulates embryonic development. We found diversity in the genomic binding profiles of different Hox TFs, even among the posterior group paralogs that share similar DNA-binding domains. These differences in genomic binding were explained by differing abilities to bind to previously inaccessible sites. For example, the posterior group HOXC9 had a greater ability to bind occluded sites than the posterior HOXC10, producing different binding patterns and driving differential gene expression programs. From these results, we propose that the differential abilities of posterior Hox TFs to bind to previously inaccessible chromatin drive patterning diversification.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Milica Bulajić
- Department of Biology, New York University, New York, NY 10003, USA
| | - Divyanshi Srivastava
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neuroscience, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
15
|
Abstract
Cortical interneurons display striking differences in shape, physiology, and other attributes, challenging us to appropriately classify them. We previously suggested that interneuron types should be defined by their role in cortical processing. Here, we revisit the question of how to codify their diversity based upon their division of labor and function as controllers of cortical information flow. We suggest that developmental trajectories provide a guide for appreciating interneuron diversity and argue that subtype identity is generated using a configurational (rather than combinatorial) code of transcription factors that produce attractor states in the underlying gene regulatory network. We present our updated three-stage model for interneuron specification: an initial cardinal step, allocating interneurons into a few major classes, followed by definitive refinement, creating subclasses upon settling within the cortex, and lastly, state determination, reflecting the incorporation of interneurons into functional circuit ensembles. We close by discussing findings indicating that major interneuron classes are both evolutionarily ancient and conserved. We propose that the complexity of cortical circuits is generated by phylogenetically old interneuron types, complemented by an evolutionary increase in principal neuron diversity. This suggests that a natural neurobiological definition of interneuron types might be derived from a match between their developmental origin and computational function.
Collapse
Affiliation(s)
- Gord Fishell
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA;
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Massachusetts 02142, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Adam Kepecs
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, Missouri 63130, USA;
| |
Collapse
|
16
|
Turner N, Mikalauskaite D, Barone K, Flaherty K, Senevirathne G, Adachi N, Shubin NH, Nakamura T. The evolutionary origins and diversity of the neuromuscular system of paired appendages in batoids. Proc Biol Sci 2019; 286:20191571. [PMID: 31662089 DOI: 10.1098/rspb.2019.1571] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Appendage patterning and evolution have been active areas of inquiry for the past two centuries. While most work has centred on the skeleton, particularly that of amniotes, the evolutionary origins and molecular underpinnings of the neuromuscular diversity of fish appendages have remained enigmatic. The fundamental pattern of segmentation in amniotes, for example, is that all muscle precursors and spinal nerves enter either the paired appendages or body wall at the same spinal level. The condition in finned vertebrates is not understood. To address this gap in knowledge, we investigated the development of muscles and nerves in unpaired and paired fins of skates and compared them to those of chain catsharks. During skate and shark embryogenesis, cell populations of muscle precursors and associated spinal nerves at the same axial level contribute to both appendages and body wall, perhaps representing an ancestral condition of gnathostome appendicular neuromuscular systems. Remarkably in skates, this neuromuscular bifurcation as well as colinear Hox expression extend posteriorly to pattern a broad paired fin domain. In addition, we identified migratory muscle precursors (MMPs), which are known to develop into paired appendage muscles with Pax3 and Lbx1 gene expression, in the dorsal fins of skates. Our results suggest that muscles of paired fins have evolved via redeployment of the genetic programme of MMPs that were already involved in dorsal fin development. Appendicular neuromuscular systems most likely have emerged as side branches of body wall neuromusculature and have been modified to adapt to distinct aquatic and terrestrial habitats.
Collapse
Affiliation(s)
- Natalie Turner
- Department of Genetics, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | - Krista Barone
- Department of Genetics, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kathleen Flaherty
- Comparative Medicine Resources, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Gayani Senevirathne
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Noritaka Adachi
- Aix-Marseille Université, IBDM, CNRS UMR 7288, Marseille, France
| | - Neil H Shubin
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Tetsuya Nakamura
- Department of Genetics, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
17
|
Catela C, Kratsios P. Transcriptional mechanisms of motor neuron development in vertebrates and invertebrates. Dev Biol 2019; 475:193-204. [PMID: 31479648 DOI: 10.1016/j.ydbio.2019.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 07/08/2019] [Accepted: 08/29/2019] [Indexed: 02/04/2023]
Abstract
Across phylogeny, motor neurons (MNs) represent a single but often remarkably diverse neuronal class composed of a multitude of subtypes required for vital behaviors, such as eating and locomotion. Over the past decades, seminal studies in multiple model organisms have advanced our molecular understanding of the early steps of MN development, such as progenitor specification and acquisition of MN subtype identity, by revealing key roles for several evolutionarily conserved transcription factors. However, very little is known about the molecular strategies that allow distinct MN subtypes to maintain their identity- and function-defining features during the late steps of development and postnatal life. Here, we provide an overview of invertebrate and vertebrate studies on transcription factor-based strategies that control early and late steps of MN development, aiming to highlight evolutionarily conserved gene regulatory principles necessary for establishment and maintenance of neuronal identity.
Collapse
Affiliation(s)
- Catarina Catela
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA; The Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA; The Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
18
|
Issa AR, Picao-Osorio J, Rito N, Chiappe ME, Alonso CR. A Single MicroRNA-Hox Gene Module Controls Equivalent Movements in Biomechanically Distinct Forms of Drosophila. Curr Biol 2019; 29:2665-2675.e4. [PMID: 31327720 PMCID: PMC6710004 DOI: 10.1016/j.cub.2019.06.082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022]
Abstract
Movement is the main output of the nervous system. It emerges during development to become a highly coordinated physiological process essential to survival and adaptation of the organism to the environment. Similar movements can be observed in morphologically distinct developmental stages of an organism, but it is currently unclear whether or not these movements have a common molecular cellular basis. Here we explore this problem in Drosophila, focusing on the roles played by the microRNA (miRNA) locus miR-iab4/8, which we previously showed to be essential for the normal corrective response displayed by the fruit fly larva when turned upside down (self-righting). Our study shows that miR-iab4 is required for normal self-righting across all three Drosophila larval stages. Unexpectedly, we also discover that this miRNA is essential for normal self-righting behavior in the adult fly, an organism with different morphology, neural constitution, and biomechanics. Through the combination of gene expression, optical imaging, and quantitative behavioral approaches, we provide evidence that miR-iab4 exerts its effects on adult self-righting behavior in part through repression of the Hox gene Ultrabithorax (Ubx) in a specific set of adult motor neurons, the NB2-3/lin15 neurons. Our results show that miRNA controls the function, rather than the morphology, of these neurons and demonstrate that post-developmental changes in Hox gene expression can modulate behavior in the adult. Our work reveals that a common miRNA-Hox genetic module can be re-deployed in different neurons to control functionally equivalent movements in biomechanically distinct organisms and describes a novel post-developmental role of the Hox genes in adult neural function. The fruit fly miRNA gene miR-iab4 controls the same behavior in the larva and adult miR-iab4 exerts its behavioral roles via repression of the Hox gene Ultrabithorax miRNA/Hox inputs affect the physiology and not the anatomy of specific motor neurons Conditional expression shows a novel role of the Hox genes in adult neural function
Collapse
Affiliation(s)
- A Raouf Issa
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK
| | - João Picao-Osorio
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK
| | - Nuno Rito
- Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Brasília Avenue, Doca de Pedrouços, 1400-038 Lisbon, Portugal
| | - M Eugenia Chiappe
- Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Brasília Avenue, Doca de Pedrouços, 1400-038 Lisbon, Portugal
| | - Claudio R Alonso
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Biology Road, Brighton BN1 9QG, UK.
| |
Collapse
|
19
|
Tung YT, Peng KC, Chen YC, Yen YP, Chang M, Thams S, Chen JA. Mir-17∼92 Confers Motor Neuron Subtype Differential Resistance to ALS-Associated Degeneration. Cell Stem Cell 2019; 25:193-209.e7. [PMID: 31155482 DOI: 10.1016/j.stem.2019.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/14/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022]
Abstract
Progressive degeneration of motor neurons (MNs) is the hallmark of amyotrophic lateral sclerosis (ALS). Limb-innervating lateral motor column MNs (LMC-MNs) seem to be particularly vulnerable and are among the first MNs affected in ALS. Here, we report association of this differential susceptibility with reduced expression of the mir-17∼92 cluster in LMC-MNs prior to disease onset. Reduced mir-17∼92 is accompanied by elevated nuclear PTEN in spinal MNs of presymptomatic SOD1G93A mice. Selective dysregulation of the mir-17∼92/nuclear PTEN axis in degenerating SOD1G93A LMC-MNs was confirmed in a double-transgenic embryonic stem cell system and recapitulated in human SOD1+/L144F-induced pluripotent stem cell (iPSC)-derived MNs. We further show that overexpression of mir-17∼92 significantly rescues human SOD1+/L144F MNs, and intrathecal delivery of adeno-associated virus (AAV)9-mir-17∼92 improves motor deficits and survival in SOD1G93A mice. Thus, mir-17∼92 may have value as a prognostic marker of MN degeneration and is a candidate therapeutic target in SOD1-linked ALS. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Ying-Tsen Tung
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.
| | - Kuan-Chih Peng
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yen-Chung Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ya-Ping Yen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Mien Chang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Sebastian Thams
- Department of Pathology and Cell Biology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
20
|
Saurin AJ, Delfini MC, Maurel-Zaffran C, Graba Y. The Generic Facet of Hox Protein Function. Trends Genet 2018; 34:941-953. [PMID: 30241969 DOI: 10.1016/j.tig.2018.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/07/2018] [Accepted: 08/21/2018] [Indexed: 11/16/2022]
Abstract
Hox transcription factors are essential to promote morphological diversification of the animal body. A substantial number of studies have focused on how Hox proteins reach functional specificity, an issue that arises from the fact that these transcription factors control distinct developmental functions despite sharing similar molecular properties. In this review, we highlight that, besides specific functions, for which these transcription factors are renowned, Hox proteins also often have nonspecific functions. We next discuss some emerging principles of these generic functions and how they relate to specific functions and explore our current grasp of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Andrew J Saurin
- Aix Marseille Univ, CNRS, IBDM, Marseille, France; http://www.ibdm.univ-mrs.fr/equipe/mechanisms-of-gene-regulation-by-transcription-factors/.
| | - Marie Claire Delfini
- Aix Marseille Univ, CNRS, IBDM, Marseille, France; http://www.ibdm.univ-mrs.fr/equipe/mechanisms-of-gene-regulation-by-transcription-factors/
| | - Corinne Maurel-Zaffran
- Aix Marseille Univ, CNRS, IBDM, Marseille, France; http://www.ibdm.univ-mrs.fr/equipe/mechanisms-of-gene-regulation-by-transcription-factors/
| | - Yacine Graba
- Aix Marseille Univ, CNRS, IBDM, Marseille, France; http://www.ibdm.univ-mrs.fr/equipe/mechanisms-of-gene-regulation-by-transcription-factors/.
| |
Collapse
|
21
|
Boije H, Kullander K. Origin and circuitry of spinal locomotor interneurons generating different speeds. Curr Opin Neurobiol 2018; 53:16-21. [PMID: 29733915 DOI: 10.1016/j.conb.2018.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 10/17/2022]
Abstract
The spinal circuitry governing the undulatory movements of swimming vertebrates consist of excitatory and commissural inhibitory interneurons and motor neurons. This locomotor network generates the rhythmic output, coordinate left/right alternation, and permit communication across segments. Through evolution, more complex movement patterns have emerged, made possible by sub-specialization of neural populations within the spinal cord. Walking tetrapods use a similar basic circuitry, but have added layers of complexity for the coordination of intralimbic flexor and extensor muscles as well as interlimbic coordination between the body halves and fore/hindlimbs. Although the basics of these circuits are known there is a gap in our knowledge regarding how different speeds and gaits are coordinated. Analysing subpopulations among described neuronal populations may bring insight into how changes in locomotor output are orchestrated by a hard-wired network.
Collapse
Affiliation(s)
- Henrik Boije
- Department of Neuroscience, Uppsala University, Box 593, 751 24 Uppsala, Sweden.
| | - Klas Kullander
- Department of Neuroscience, Uppsala University, Box 593, 751 24 Uppsala, Sweden.
| |
Collapse
|
22
|
Jung H, Baek M, D'Elia KP, Boisvert C, Currie PD, Tay BH, Venkatesh B, Brown SM, Heguy A, Schoppik D, Dasen JS. The Ancient Origins of Neural Substrates for Land Walking. Cell 2018; 172:667-682.e15. [PMID: 29425489 PMCID: PMC5808577 DOI: 10.1016/j.cell.2018.01.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/18/2017] [Accepted: 01/05/2018] [Indexed: 01/30/2023]
Abstract
Walking is the predominant locomotor behavior expressed by land-dwelling vertebrates, but it is unknown when the neural circuits that are essential for limb control first appeared. Certain fish species display walking-like behaviors, raising the possibility that the underlying circuitry originated in primitive marine vertebrates. We show that the neural substrates of bipedalism are present in the little skate Leucoraja erinacea, whose common ancestor with tetrapods existed ∼420 million years ago. Leucoraja exhibits core features of tetrapod locomotor gaits, including left-right alternation and reciprocal extension-flexion of the pelvic fins. Leucoraja also deploys a remarkably conserved Hox transcription factor-dependent program that is essential for selective innervation of fin/limb muscle. This network encodes peripheral connectivity modules that are distinct from those used in axial muscle-based swimming and has apparently been diminished in most modern fish. These findings indicate that the circuits that are essential for walking evolved through adaptation of a genetic regulatory network shared by all vertebrates with paired appendages. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Heekyung Jung
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Myungin Baek
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Kristen P D'Elia
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Catherine Boisvert
- Department of Environment and Agriculture, Curtin University, Bentley, WA 6102, Australia; Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC 3800, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute (ARMI), Monash University, Clayton, VIC 3800, Australia; EMBL Australia, Melbourne Node, Monash University, Clayton, VIC 3800, Australia
| | - Boon-Hui Tay
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Biopolis, Singapore 138673, Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Biopolis, Singapore 138673, Singapore; Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Stuart M Brown
- Applied Bioinformatics Laboratory, NYU School of Medicine, New York, NY 10016, USA
| | - Adriana Heguy
- Genome Technology Center, Division for Advanced Research Technologies, and Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - David Schoppik
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA; Department of Otolaryngology, NYU School of Medicine, New York, NY 10016, USA
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
23
|
Sweeney LB, Bikoff JB, Gabitto MI, Brenner-Morton S, Baek M, Yang JH, Tabak EG, Dasen JS, Kintner CR, Jessell TM. Origin and Segmental Diversity of Spinal Inhibitory Interneurons. Neuron 2018; 97:341-355.e3. [PMID: 29307712 PMCID: PMC5880537 DOI: 10.1016/j.neuron.2017.12.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/14/2017] [Accepted: 12/17/2017] [Indexed: 10/18/2022]
Abstract
Motor output varies along the rostro-caudal axis of the tetrapod spinal cord. At limb levels, ∼60 motor pools control the alternation of flexor and extensor muscles about each joint, whereas at thoracic levels as few as 10 motor pools supply muscle groups that support posture, inspiration, and expiration. Whether such differences in motor neuron identity and muscle number are associated with segmental distinctions in interneuron diversity has not been resolved. We show that select combinations of nineteen transcription factors that specify lumbar V1 inhibitory interneurons generate subpopulations enriched at limb and thoracic levels. Specification of limb and thoracic V1 interneurons involves the Hox gene Hoxc9 independently of motor neurons. Thus, early Hox patterning of the spinal cord determines the identity of V1 interneurons and motor neurons. These studies reveal a developmental program of V1 interneuron diversity, providing insight into the organization of inhibitory interneurons associated with differential motor output.
Collapse
Affiliation(s)
- Lora B Sweeney
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Jay B Bikoff
- Howard Hughes Medical Institute, Zuckerman Institute, Departments of Neuroscience, and Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Mariano I Gabitto
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA.
| | - Susan Brenner-Morton
- Howard Hughes Medical Institute, Zuckerman Institute, Departments of Neuroscience, and Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Myungin Baek
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Jerry H Yang
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Esteban G Tabak
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Christopher R Kintner
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Thomas M Jessell
- Howard Hughes Medical Institute, Zuckerman Institute, Departments of Neuroscience, and Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
24
|
Abstract
Motor neurons of the spinal cord are responsible for the assembly of neuromuscular connections indispensable for basic locomotion and skilled movements. A precise spatial relationship exists between the position of motor neuron cell bodies in the spinal cord and the course of their axonal projections to peripheral muscle targets. Motor neuron innervation of the vertebrate limb is a prime example of this topographic organization and by virtue of its accessibility and predictability has provided access to fundamental principles of motor system development and neuronal guidance. The seemingly basic binary map established by genetically defined motor neuron subtypes that target muscles in the limb is directed by a surprisingly large number of directional cues. Rather than being simply redundant, these converging signaling pathways are hierarchically linked and cooperate to increase the fidelity of axon pathfinding decisions. A current priority is to determine how multiple guidance signals are integrated by individual growth cones and how they synergize to delineate class-specific axonal trajectories.
Collapse
Affiliation(s)
- Dario Bonanomi
- Molecular Neurobiology Laboratory, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
25
|
Mukaigasa K, Sakuma C, Okada T, Homma S, Shimada T, Nishiyama K, Sato N, Yaginuma H. Motor neurons with limb-innervating character in the cervical spinal cord are sculpted by apoptosis based on the Hox code in chick embryo. Development 2017; 144:4645-4657. [PMID: 29061638 DOI: 10.1242/dev.158873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022]
Abstract
In the developing chick embryo, a certain population of motor neurons (MNs) in the non-limb-innervating cervical spinal cord undergoes apoptosis between embryonic days 4 and 5. However, the characteristics of these apoptotic MNs remain undefined. Here, by examining the spatiotemporal profiles of apoptosis and MN subtype marker expression in normal or apoptosis-inhibited chick embryos, we found that this apoptotic population is distinguishable by Foxp1 expression. When apoptosis was inhibited, the Foxp1+ MNs survived and showed characteristics of lateral motor column (LMC) neurons, which are of a limb-innervating subtype, suggesting that cervical Foxp1+ MNs are the rostral continuation of the LMC. Knockdown and misexpression of Foxp1 did not affect apoptosis progression, but revealed the role of Foxp1 in conferring LMC identity on the cervical MNs. Furthermore, ectopic expression of Hox genes that are normally expressed in the brachial region prevented apoptosis, and directed Foxp1+ MNs to LMC neurons at the cervical level. These results indicate that apoptosis in the cervical spinal cord plays a role in sculpting Foxp1+ MNs committed to LMC neurons, depending on the Hox expression pattern.
Collapse
Affiliation(s)
- Katsuki Mukaigasa
- Department of Neuroanatomy and Embryology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Chie Sakuma
- Department of Neuroanatomy and Embryology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Tomoaki Okada
- Department of Neuroanatomy and Embryology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Shunsaku Homma
- Department of Neuroanatomy and Embryology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Takako Shimada
- Department of Neuroanatomy and Embryology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Keiji Nishiyama
- Department of Neuroanatomy and Embryology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Noboru Sato
- Division of Gross Anatomy and Morphogenesis, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Hiroyuki Yaginuma
- Department of Neuroanatomy and Embryology, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
26
|
Sun D, Guo Z, Liu Y, Zhang Y. Progress and Prospects of CRISPR/Cas Systems in Insects and Other Arthropods. Front Physiol 2017; 8:608. [PMID: 28932198 PMCID: PMC5592444 DOI: 10.3389/fphys.2017.00608] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/07/2017] [Indexed: 01/03/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated gene Cas9 represent an invaluable system for the precise editing of genes in diverse species. The CRISPR/Cas9 system is an adaptive mechanism that enables bacteria and archaeal species to resist invading viruses and phages or plasmids. Compared with zinc finger nucleases and transcription activator-like effector nucleases, the CRISPR/Cas9 system has the advantage of requiring less time and effort. This efficient technology has been used in many species, including diverse arthropods that are relevant to agriculture, forestry, fisheries, and public health; however, there is no review that systematically summarizes its successful application in the editing of both insect and non-insect arthropod genomes. Thus, this paper seeks to provide a comprehensive and impartial overview of the progress of the CRISPR/Cas9 system in different arthropods, reviewing not only fundamental studies related to gene function exploration and experimental optimization but also applied studies in areas such as insect modification and pest control. In addition, we also describe the latest research advances regarding two novel CRISPR/Cas systems (CRISPR/Cpf1 and CRISPR/C2c2) and discuss their future prospects for becoming crucial technologies in arthropods.
Collapse
Affiliation(s)
- Dan Sun
- Longping Branch, Graduate School of Hunan UniversityChangsha, China.,Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| | - Yong Liu
- Longping Branch, Graduate School of Hunan UniversityChangsha, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
27
|
Schaller S, Buttigieg D, Alory A, Jacquier A, Barad M, Merchant M, Gentien D, de la Grange P, Haase G. Novel combinatorial screening identifies neurotrophic factors for selective classes of motor neurons. Proc Natl Acad Sci U S A 2017; 114:E2486-E2493. [PMID: 28270618 PMCID: PMC5373341 DOI: 10.1073/pnas.1615372114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Numerous neurotrophic factors promote the survival of developing motor neurons but their combinatorial actions remain poorly understood; to address this, we here screened 66 combinations of 12 neurotrophic factors on pure, highly viable, and standardized embryonic mouse motor neurons isolated by a unique FACS technique. We demonstrate potent, strictly additive, survival effects of hepatocyte growth factor (HGF), ciliary neurotrophic factor (CNTF), and Artemin through specific activation of their receptor complexes in distinct subsets of lumbar motor neurons: HGF supports hindlimb motor neurons through c-Met; CNTF supports subsets of axial motor neurons through CNTFRα; and Artemin acts as the first survival factor for parasympathetic preganglionic motor neurons through GFRα3/Syndecan-3 activation. These data show that neurotrophic factors can selectively promote the survival of distinct classes of embryonic motor neurons. Similar studies on postnatal motor neurons may provide a conceptual framework for the combined therapeutic use of neurotrophic factors in degenerative motor neuron diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy, and spinobulbar muscular atrophy.
Collapse
Affiliation(s)
- Sébastien Schaller
- Institut de Neurosciences de la Timone, UMR 7289 CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Dorothée Buttigieg
- Institut de Neurosciences de la Timone, UMR 7289 CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Alysson Alory
- Institut de Neurosciences de la Timone, UMR 7289 CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Arnaud Jacquier
- Institut de Neurosciences de la Timone, UMR 7289 CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Marc Barad
- Centre d'Immunologie de Marseille-Luminy (CIML), CNRS, INSERM, Aix-Marseille University, 13288 Marseille, France
| | | | - David Gentien
- Institut Curie, Translational Research Department, Genomic Platform, PSL Research University, 75248 Paris, France
| | - Pierre de la Grange
- GenoSplice Technology, Institut du Cerveau et de la Moëlle (ICM), Hôpital Pitié Salpêtrière, 75013 Paris, France
| | - Georg Haase
- Institut de Neurosciences de la Timone, UMR 7289 CNRS, Aix-Marseille University, 13005 Marseille, France;
| |
Collapse
|
28
|
Divergent Hox Coding and Evasion of Retinoid Signaling Specifies Motor Neurons Innervating Digit Muscles. Neuron 2017; 93:792-805.e4. [PMID: 28190640 DOI: 10.1016/j.neuron.2017.01.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/13/2016] [Accepted: 01/20/2017] [Indexed: 11/21/2022]
Abstract
The establishment of spinal motor neuron subclass diversity is achieved through developmental programs that are aligned with the organization of muscle targets in the limb. The evolutionary emergence of digits represents a specialized adaptation of limb morphology, yet it remains unclear how the specification of digit-innervating motor neuron subtypes parallels the elaboration of digits. We show that digit-innervating motor neurons can be defined by selective gene markers and distinguished from other LMC neurons by the expression of a variant Hox gene repertoire and by the failure to express a key enzyme involved in retinoic acid synthesis. This divergent developmental program is sufficient to induce the specification of digit-innervating motor neurons, emphasizing the specialized status of digit control in the evolution of skilled motor behaviors. Our findings suggest that the emergence of digits in the limb is matched by distinct mechanisms for specifying motor neurons that innervate digit muscles.
Collapse
|
29
|
Dasen JS. Master or servant? emerging roles for motor neuron subtypes in the construction and evolution of locomotor circuits. Curr Opin Neurobiol 2017; 42:25-32. [PMID: 27907815 PMCID: PMC5316365 DOI: 10.1016/j.conb.2016.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/05/2016] [Accepted: 11/13/2016] [Indexed: 01/23/2023]
Abstract
Execution of motor behaviors relies on the ability of circuits within the nervous system to engage functionally relevant subtypes of spinal motor neurons. While much attention has been given to the role of networks of spinal interneurons on setting the rhythm and pattern of output from locomotor circuits, recent studies suggest that motor neurons themselves can exert an instructive role in shaping the wiring and functional properties of locomotor networks. Alteration in the distribution of motor neuron subtypes also appears to have contributed to evolutionary transitions in the locomotor strategies used by land vertebrates. This review describes emerging evidence that motor neuron-derived cues can have a profound influence on the organization, wiring, and evolutionary diversification of locomotor circuits.
Collapse
Affiliation(s)
- Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
30
|
Katz PS. Evolution of central pattern generators and rhythmic behaviours. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150057. [PMID: 26598733 DOI: 10.1098/rstb.2015.0057] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Comparisons of rhythmic movements and the central pattern generators (CPGs) that control them uncover principles about the evolution of behaviour and neural circuits. Over the course of evolutionary history, gradual evolution of behaviours and their neural circuitry within any lineage of animals has been a predominant occurrence. Small changes in gene regulation can lead to divergence of circuit organization and corresponding changes in behaviour. However, some behavioural divergence has resulted from large-scale rewiring of the neural network. Divergence of CPG circuits has also occurred without a corresponding change in behaviour. When analogous rhythmic behaviours have evolved independently, it has generally been with different neural mechanisms. Repeated evolution of particular rhythmic behaviours has occurred within some lineages due to parallel evolution or latent CPGs. Particular motor pattern generating mechanisms have also evolved independently in separate lineages. The evolution of CPGs and rhythmic behaviours shows that although most behaviours and neural circuits are highly conserved, the nature of the behaviour does not dictate the neural mechanism and that the presence of homologous neural components does not determine the behaviour. This suggests that although behaviour is generated by neural circuits, natural selection can act separately on these two levels of biological organization.
Collapse
Affiliation(s)
- Paul S Katz
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA
| |
Collapse
|
31
|
Arlotta P, Hobert O. Homeotic Transformations of Neuronal Cell Identities. Trends Neurosci 2016; 38:751-762. [PMID: 26596501 DOI: 10.1016/j.tins.2015.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/13/2015] [Accepted: 10/18/2015] [Indexed: 11/20/2022]
Abstract
Homeosis is classically defined as the transformation of one body part into something that resembles another body part. We propose here to broaden the concept of homeosis to the many neuronal cell identity transformations that have been uncovered over the past few years upon removal of specific regulatory factors in organisms from Caenorhabditis elegans to Drosophila, zebrafish, and mice. The concept of homeosis provides a framework for the evolution of cell type diversity in the brain.
Collapse
Affiliation(s)
- Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Oliver Hobert
- Department of Biology and Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
32
|
Hanley O, Zewdu R, Cohen LJ, Jung H, Lacombe J, Philippidou P, Lee DH, Selleri L, Dasen JS. Parallel Pbx-Dependent Pathways Govern the Coalescence and Fate of Motor Columns. Neuron 2016; 91:1005-1020. [PMID: 27568519 DOI: 10.1016/j.neuron.2016.07.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/20/2016] [Accepted: 07/14/2016] [Indexed: 01/08/2023]
Abstract
The clustering of neurons sharing similar functional properties and connectivity is a common organizational feature of vertebrate nervous systems. Within motor networks, spinal motor neurons (MNs) segregate into longitudinally arrayed subtypes, establishing a central somatotopic map of peripheral target innervation. MN organization and connectivity relies on Hox transcription factors expressed along the rostrocaudal axis; however, the developmental mechanisms governing the orderly arrangement of MNs are largely unknown. We show that Pbx genes, which encode Hox cofactors, are essential for the segregation and clustering of neurons within motor columns. In the absence of Pbx1 and Pbx3 function, Hox-dependent programs are lost and the remaining MN subtypes are unclustered and disordered. Identification of Pbx gene targets revealed an unexpected and apparently Hox-independent role in defining molecular features of dorsally projecting medial motor column (MMC) neurons. These results indicate Pbx genes act in parallel genetic pathways to orchestrate neuronal subtype differentiation, connectivity, and organization.
Collapse
Affiliation(s)
- Olivia Hanley
- Neuroscience Institute and Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Rediet Zewdu
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Lisa J Cohen
- Genome Technology Center, NYU Langone Medical Center, 550 First Avenue, New York, NY 10016, USA
| | - Heekyung Jung
- Neuroscience Institute and Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Julie Lacombe
- Neuroscience Institute and Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Polyxeni Philippidou
- Neuroscience Institute and Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - David H Lee
- Neuroscience Institute and Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Licia Selleri
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jeremy S Dasen
- Neuroscience Institute and Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
33
|
Miyake T, Kumamoto M, Iwata M, Sato R, Okabe M, Koie H, Kumai N, Fujii K, Matsuzaki K, Nakamura C, Yamauchi S, Yoshida K, Yoshimura K, Komoda A, Uyeno T, Abe Y. The pectoral fin muscles of the coelacanthLatimeria chalumnae: Functional and evolutionary implications for the fin-to-limb transition and subsequent evolution of tetrapods. Anat Rec (Hoboken) 2016; 299:1203-23. [DOI: 10.1002/ar.23392] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 05/25/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Tsutomu Miyake
- The Graduate School of Science and Technology; Keio University; Tokyo Japan
- Department of Anatomy; The Jikei University School of Medicine; Tokyo Japan
| | | | | | - Ryuichi Sato
- Institute of Biomechanical Control Systems; Kanazawa Institute of Technology; Hakusan Japan
| | - Masataka Okabe
- Department of Anatomy; The Jikei University School of Medicine; Tokyo Japan
| | - Hiroshi Koie
- Department of Veterinary Medicine; Nihon University; Fujisawa Japan
| | - Nori Kumai
- Research Center of Computational Mechanics (RCCM), Inc; Tokyo Japan
| | - Kenichi Fujii
- Aquamarine Fukushima; Marine Science Museum; Iwaki Japan
| | - Koji Matsuzaki
- Aquamarine Fukushima; Marine Science Museum; Iwaki Japan
| | - Chiho Nakamura
- Aquamarine Fukushima; Marine Science Museum; Iwaki Japan
| | | | - Kosuke Yoshida
- Aquamarine Fukushima; Marine Science Museum; Iwaki Japan
| | | | - Akira Komoda
- Aquamarine Fukushima; Marine Science Museum; Iwaki Japan
| | - Teruya Uyeno
- National Museum of Nature and Science; Tokyo Japan
| | - Yoshitaka Abe
- Aquamarine Fukushima; Marine Science Museum; Iwaki Japan
| |
Collapse
|
34
|
Leijnse JN, D'Herde K. Revisiting the segmental organization of the human spinal cord. J Anat 2016; 229:384-93. [PMID: 27173936 DOI: 10.1111/joa.12493] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2016] [Indexed: 11/30/2022] Open
Abstract
In classic anatomic atlases, the spinal cord is standardly represented in its anatomical form with symmetrically emerging anterior and posterior roots, which at the level of the intervertebral foramen combine into the spinal nerves. The parts of the cord delimited by the boundaries of the roots are called segments or myelomeres. Associated with their regular repetitive appearance is the notion that the cord is segmentally organized. This segmental view is reinforced by clinical practice. Spinal cord roots innervate specific body parts. The level of cord trauma is diagnosed by the de-innervation symptoms of these parts. However, systemically, the case for a segmentally organized cord is not so clear. To date, developmental and genetic research points to a regionally rather than a segmentally organized cord. In the present study, to what degree the fila radicularia are segmentally implanted along the cord was investigated. The research hypothesis was that if the fila radicularia were non-segmentally implanted at the cord surface, it would be unlikely that the internal neuron stratum would be segmented. The visual segmented aspect of the myelomeres would then be the consequence of the necessary bundling of axons towards the vertebral foramen as the only exits of the vertebral canal, rather than of an underlying segment organization of the cord itself. To investigate the research hypothesis, the fila radicularia in the cervical-upper thoracic part of five spinal cords were detached from their spinal nerves and dissected in detail. The principal research question was if the fila radicularia are separated from their spinal nerves and dissected from their connective tissues up to the cord, would it be possible to reconstruct the original spinal segments from the morphology and interspaces of the fila? The dissections revealed that the anterior fila radicularia emerge from the cord at regular regionally modulated interspaces without systematic segmental delineations. The posterior fila radicularia are somewhat more segmentally implanted, but the pattern is individually inconsistent. The posterior and anterior roots have notable morphological differences, and hypotheses are presented to help explain these. The macroscopic observations are consistent with a regionally but not a segmentally organized cord. This conclusion was visually summarized in photographs of spinal cords with ipsilateral intact roots and contralateral individually dissected fila radicularia. It was suggested that this dual view of the spinal cord be added to the standard anatomic textbooks to counterbalance the current possibly biased view of a segmented cord.
Collapse
Affiliation(s)
- J N Leijnse
- Department of Anatomy and Embryology, University of Ghent, Ghent, Belgium
| | - K D'Herde
- Department of Anatomy and Embryology, University of Ghent, Ghent, Belgium
| |
Collapse
|
35
|
Merabet S, Mann RS. To Be Specific or Not: The Critical Relationship Between Hox And TALE Proteins. Trends Genet 2016; 32:334-347. [PMID: 27066866 DOI: 10.1016/j.tig.2016.03.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 10/22/2022]
Abstract
Hox proteins are key regulatory transcription factors that act in different tissues of the embryo to provide specific spatial and temporal coordinates to each cell. These patterning functions often depend on the presence of the TALE-homeodomain class cofactors, which form cooperative DNA-binding complexes with all Hox proteins. How this family of cofactors contributes to the highly diverse and specific functions of Hox proteins in vivo remains an important unsolved question. We review here the most recent advances in understanding the molecular mechanisms underlying Hox-TALE function. In particular, we discuss the role of DNA shape, DNA-binding affinity, and protein-protein interaction flexibility in dictating Hox-TALE specificity. We propose several models to explain how these mechanisms are integrated with each other in the context of the many distinct functions that Hox and TALE factors carry out in vivo.
Collapse
Affiliation(s)
- Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, Centre National de Recherche Scientifique, Ecole Normale Supérieure de Lyon, France.
| | | |
Collapse
|
36
|
Tung YT, Lu YL, Peng KC, Yen YP, Chang M, Li J, Jung H, Thams S, Huang YP, Hung JH, Chen JA. Mir-17∼92 Governs Motor Neuron Subtype Survival by Mediating Nuclear PTEN. Cell Rep 2016; 11:1305-18. [PMID: 26004179 DOI: 10.1016/j.celrep.2015.04.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/17/2015] [Accepted: 04/22/2015] [Indexed: 01/07/2023] Open
Abstract
Motor neurons (MNs) are unique because they project their axons outside of the CNS to innervate the peripheral muscles. Limb-innervating lateral motor column MNs (LMC-MNs) travel substantially to innervate distal limb mesenchyme. How LMC-MNs fine-tune the balance between survival and apoptosis while wiring the sensorimotor circuit en route remains unclear. Here, we show that the mir-17∼92 cluster is enriched in embryonic stem cell (ESC)-derived LMC-MNs and that conditional mir-17∼92 deletion in MNs results in the death of LMC-MNs in vitro and in vivo. mir-17∼92 overexpression rescues MNs from apoptosis, which occurs spontaneously during embryonic development. PTEN is a primary target of mir-17∼92 responsible for LMC-MN degeneration. Additionally, mir-17∼92 directly targets components of E3 ubiquitin ligases, affecting PTEN subcellular localization through monoubiquitination. This miRNA-mediated regulation modulates both target expression and target subcellular localization, providing LMC-MNs with an intricate defensive mechanism that controls their survival.
Collapse
|
37
|
Catela C, Shin MM, Lee DH, Liu JP, Dasen JS. Hox Proteins Coordinate Motor Neuron Differentiation and Connectivity Programs through Ret/Gfrα Genes. Cell Rep 2016; 14:1901-15. [PMID: 26904955 DOI: 10.1016/j.celrep.2016.01.067] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/07/2015] [Accepted: 01/21/2016] [Indexed: 11/25/2022] Open
Abstract
The accuracy of neural circuit assembly relies on the precise spatial and temporal control of synaptic specificity determinants during development. Hox transcription factors govern key aspects of motor neuron (MN) differentiation; however, the terminal effectors of their actions are largely unknown. We show that Hox/Hox cofactor interactions coordinate MN subtype diversification and connectivity through Ret/Gfrα receptor genes. Hox and Meis proteins determine the levels of Ret in MNs and define the intrasegmental profiles of Gfrα1 and Gfrα3 expression. Loss of Ret or Gfrα3 leads to MN specification and innervation defects similar to those observed in Hox mutants, while expression of Ret and Gfrα1 can bypass the requirement for Hox genes during MN pool differentiation. These studies indicate that Hox proteins contribute to neuronal fate and muscle connectivity through controlling the levels and pattern of cell surface receptor expression, consequently gating the ability of MNs to respond to limb-derived instructive cues.
Collapse
Affiliation(s)
- Catarina Catela
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Maggie M Shin
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - David H Lee
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Jeh-Ping Liu
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
38
|
Rezsohazy R, Saurin AJ, Maurel-Zaffran C, Graba Y. Cellular and molecular insights into Hox protein action. Development 2016; 142:1212-27. [PMID: 25804734 DOI: 10.1242/dev.109785] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hox genes encode homeodomain transcription factors that control morphogenesis and have established functions in development and evolution. Hox proteins have remained enigmatic with regard to the molecular mechanisms that endow them with specific and diverse functions, and to the cellular functions that they control. Here, we review recent examples of Hox-controlled cellular functions that highlight their versatile and highly context-dependent activity. This provides the setting to discuss how Hox proteins control morphogenesis and organogenesis. We then summarise the molecular modalities underlying Hox protein function, in particular in light of current models of transcription factor function. Finally, we discuss how functional divergence between Hox proteins might be achieved to give rise to the many facets of their action.
Collapse
Affiliation(s)
- René Rezsohazy
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Andrew J Saurin
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille 13288, Cedex 09, France
| | | | - Yacine Graba
- Aix Marseille Université, CNRS, IBDM, UMR 7288, Marseille 13288, Cedex 09, France
| |
Collapse
|
39
|
Kim N, Park C, Jeong Y, Song MR. Functional Diversification of Motor Neuron-specific Isl1 Enhancers during Evolution. PLoS Genet 2015; 11:e1005560. [PMID: 26447474 PMCID: PMC4598079 DOI: 10.1371/journal.pgen.1005560] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 09/09/2015] [Indexed: 11/19/2022] Open
Abstract
Functional diversification of motor neurons has occurred in order to selectively control the movements of different body parts including head, trunk and limbs. Here we report that transcription of Isl1, a major gene necessary for motor neuron identity, is controlled by two enhancers, CREST1 (E1) and CREST2 (E2) that allow selective gene expression of Isl1 in motor neurons. Introduction of GFP reporters into the chick neural tube revealed that E1 is active in hindbrain motor neurons and spinal cord motor neurons, whereas E2 is active in the lateral motor column (LMC) of the spinal cord, which controls the limb muscles. Genome-wide ChIP-Seq analysis combined with reporter assays showed that Phox2 and the Isl1-Lhx3 complex bind to E1 and drive hindbrain and spinal cord-specific expression of Isl1, respectively. Interestingly, Lhx3 alone was sufficient to activate E1, and this may contribute to the initiation of Isl1 expression when progenitors have just developed into motor neurons. E2 was induced by onecut 1 (OC-1) factor that permits Isl1 expression in LMCm neurons. Interestingly, the core region of E1 has been conserved in evolution, even in the lamprey, a jawless vertebrate with primitive motor neurons. All E1 sequences from lamprey to mouse responded equally well to Phox2a and the Isl1-Lhx3 complex. Conversely, E2, the enhancer for limb-innervating motor neurons, was only found in tetrapod animals. This suggests that evolutionarily-conserved enhancers permit the diversification of motor neurons. During evolution, motor neurons became specialized to control movements of different body parts including head, trunk and limbs. Here we report that two enhancers of Isl1, E1 and E2, are active together with transcription factors in motor neurons. Surprisingly, E1 and its response to transcription factors has been conserved in evolution from the lamprey to man, whereas E2 is only found in animals with limbs. Our study provides an evolutionary example of how functional diversification of motor neurons is achieved by a dynamic interplay between enhancers and transcription factors.
Collapse
Affiliation(s)
- Namhee Kim
- School of Life Sciences, Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju, Republic of Korea
| | - Chungoo Park
- School of Biological Sciences and Technology, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju, Republic of Korea
| | - Yongsu Jeong
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Mi-Ryoung Song
- School of Life Sciences, Cell Dynamics Research Center, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju, Republic of Korea
- * E-mail:
| |
Collapse
|
40
|
Abstract
Control of movement is a fundamental and complex task of the vertebrate nervous system, which relies on communication between circuits distributed throughout the brain and spinal cord. Many of the networks essential for the execution of basic locomotor behaviors are composed of discrete neuronal populations residing within the spinal cord. The organization and connectivity of these circuits is established through programs that generate functionally diverse neuronal subtypes, each contributing to a specific facet of motor output. Significant progress has been made in deciphering how neuronal subtypes are specified and in delineating the guidance and synaptic specificity determinants at the core of motor circuit assembly. Recent studies have shed light on the basic principles linking locomotor circuit connectivity with function, and they are beginning to reveal how more sophisticated motor behaviors are encoded. In this review, we discuss the impact of developmental programs in specifying motor behaviors governed by spinal circuits.
Collapse
Affiliation(s)
- Catarina Catela
- Neuroscience Institute and Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016;
| | - Maggie M Shin
- Neuroscience Institute and Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016;
| | - Jeremy S Dasen
- Neuroscience Institute and Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016;
| |
Collapse
|
41
|
Woltering JM, Duboule D. Tetrapod axial evolution and developmental constraints; Empirical underpinning by a mouse model. Mech Dev 2015; 138 Pt 2:64-72. [PMID: 26238020 PMCID: PMC4678112 DOI: 10.1016/j.mod.2015.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 02/05/2023]
Abstract
The tetrapod vertebral column has become increasingly complex during evolution as an adaptation to a terrestrial life. At the same time, the evolution of the vertebral formula became subject to developmental constraints acting on the size of the cervical and thoraco-lumbar regions. In the course of our studies concerning the evolution of Hox gene regulation, we produced a transgenic mouse model expressing fish Hox genes, which displayed a reduced number of thoraco-lumbar vertebrae and concurrent sacral homeotic transformations. Here, we analyze this mutant stock and conclude that the ancestral, pre-tetrapodial Hox code already possessed the capacity to induce vertebrae with sacral characteristics. This suggests that alterations in the interpretation of the Hox code may have participated to the evolution of this region in tetrapods, along with potential modifications of the HOX proteins themselves. With its reduced vertebral number, this mouse stock violates a previously described developmental constraint, which applies to the thoraco-lumbar region. The resulting offset between motor neuron morphology, vertebral patterning and the relative positioning of hind limbs illustrates that the precise orchestration of the Hox-clock in parallel with other ontogenetic pathways places constraints on the evolvability of the body plan. A transgenic mouse line expressing fish Hox genes has anterior homeotic transformations. Fish Hox genes are capable of inducing tetrapod specific vertebral characters. A sacral Hox-code influences adult hindlimb position, yet not the position of limb budding.
Collapse
Affiliation(s)
- Joost M Woltering
- Department of Genetics and Evolution, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Denis Duboule
- Department of Genetics and Evolution, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
42
|
Abstract
Evolutionary modifications in nervous systems enabled organisms to adapt to their specific environments and underlie the remarkable diversity of behaviors expressed by animals. Resolving the pathways that shaped and modified neural circuits during evolution remains a significant challenge. Comparative studies have revealed a surprising conservation in the intrinsic signaling systems involved in early patterning of bilaterian nervous systems but also raise the question of how neural circuit compositions and architectures evolved within specific animal lineages. In this review, we discuss the mechanisms that contributed to the emergence and diversity of animal nervous systems, focusing on the circuits governing vertebrate locomotion.
Collapse
Affiliation(s)
- Heekyung Jung
- Howard Hughes Medical Institute (HHMI), NYU Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
| | - Jeremy S Dasen
- Howard Hughes Medical Institute (HHMI), NYU Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
43
|
Stifani N. Motor neurons and the generation of spinal motor neuron diversity. Front Cell Neurosci 2014; 8:293. [PMID: 25346659 PMCID: PMC4191298 DOI: 10.3389/fncel.2014.00293] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 09/02/2014] [Indexed: 11/13/2022] Open
Abstract
Motor neurons (MNs) are neuronal cells located in the central nervous system (CNS) controlling a variety of downstream targets. This function infers the existence of MN subtypes matching the identity of the targets they innervate. To illustrate the mechanism involved in the generation of cellular diversity and the acquisition of specific identity, this review will focus on spinal MNs (SpMNs) that have been the core of significant work and discoveries during the last decades. SpMNs are responsible for the contraction of effector muscles in the periphery. Humans possess more than 500 different skeletal muscles capable to work in a precise time and space coordination to generate complex movements such as walking or grasping. To ensure such refined coordination, SpMNs must retain the identity of the muscle they innervate. Within the last two decades, scientists around the world have produced considerable efforts to elucidate several critical steps of SpMNs differentiation. During development, SpMNs emerge from dividing progenitor cells located in the medial portion of the ventral neural tube. MN identities are established by patterning cues working in cooperation with intrinsic sets of transcription factors. As the embryo develop, MNs further differentiate in a stepwise manner to form compact anatomical groups termed pools connecting to a unique muscle target. MN pools are not homogeneous and comprise subtypes according to the muscle fibers they innervate. This article aims to provide a global view of MN classification as well as an up-to-date review of the molecular mechanisms involved in the generation of SpMN diversity. Remaining conundrums will be discussed since a complete understanding of those mechanisms constitutes the foundation required for the elaboration of prospective MN regeneration therapies.
Collapse
Affiliation(s)
- Nicolas Stifani
- Medical Neuroscience, Dalhousie University Halifax, NS, Canada
| |
Collapse
|
44
|
Hox transcription factors: modulators of cell-cell and cell-extracellular matrix adhesion. BIOMED RESEARCH INTERNATIONAL 2014; 2014:591374. [PMID: 25136598 PMCID: PMC4127299 DOI: 10.1155/2014/591374] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/23/2014] [Indexed: 01/14/2023]
Abstract
Hox genes encode homeodomain-containing transcription factors that determine cell and tissue identities in the embryo during development. Hox genes are also expressed in various adult tissues and cancer cells. In Drosophila, expression of cell adhesion molecules, cadherins and integrins, is regulated by Hox proteins operating in hierarchical molecular pathways and plays a crucial role in segment-specific organogenesis. A number of studies using mammalian cultured cells have revealed that cell adhesion molecules responsible for cell-cell and cell-extracellular matrix interactions are downstream targets of Hox proteins. However, whether Hox transcription factors regulate expression of cell adhesion molecules during vertebrate development is still not fully understood. In this review, the potential roles Hox proteins play in cell adhesion and migration during vertebrate body patterning are discussed.
Collapse
|
45
|
Abstract
Limb innervation is established by opposing Hox-dependent activities. In this issue of Developmental Cell, Jung et al. (2014) show that Hoxc9 restriction of Foxp1, high levels of which specify limb-innervating motor neurons, first appeared in vertebrates concomitantly with paired appendages. Spatial control of this activity shapes neural networks controlling locomotion patterns.
Collapse
Affiliation(s)
- Moisés Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
46
|
Wainstock D. New patterns and architectures. Dev Cell 2014; 29:129. [PMID: 24780730 DOI: 10.1016/j.devcel.2014.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|