1
|
Kunicki M, Rzewuska N, Sopońska P, Pawłosek A, Sowińska I, Kloska A. Novel serum biomarkers for early diagnosis of gestational diabetes mellitus-a review. Gynecol Endocrinol 2025; 41:2455472. [PMID: 39834324 DOI: 10.1080/09513590.2025.2455472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Gestational diabetes mellitus (GDM) affects 9-25% of pregnancies. Undiagnosed or poorly managed GDM is associated with both short- and long-term complications in the fetus and mother. The pathogenesis of GDM is complex and has not yet been fully elucidated. Several biomarkers found in maternal serum have the potential for the early diagnosis of GDM. The aim of this narrative review was to explore novel biomarkers that have not been comprehensively described in previous reviews. We believe these biomarkers may allow for the detection of GDM in the early stages of pregnancy, enabling timely proper treatment and potentially preventing complications for both the mother and the fetus.
Collapse
Affiliation(s)
- Michał Kunicki
- Department of Gynecological Endocrinology, Medical University of Warsaw, Warsaw, Poland
- INVICTA Fertility and Reproductive Center, Warsaw, Poland
| | - Natalia Rzewuska
- Department of Gynecological Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | | | - Agata Pawłosek
- INVICTA Fertility and Reproductive Center, Wrocław, Poland
| | - Iwona Sowińska
- INVICTA Fertility and Reproductive Center, Gdańsk, Poland
| | - Anna Kloska
- INVICTA Research and Development Center, Sopot, Poland
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
2
|
Ehab M, Omran N, Handoussa H. The modulatory effect of oat on brain-derived neurotrophic factor, orexigenic neuropeptides, and dopaminergic signaling in obesity-induced rat model: a comparative study to orlistat. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:1251-1262. [PMID: 39314063 DOI: 10.1002/jsfa.13915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/24/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Obesity is a non-communicable complex disease that is the fifth leading cause of death worldwide. According to a novel viewpoint, the brain plays a significant role in the central regulation of satiety and energy homeostasis. Because of its rich nutritional profile and versatile uses, oat (Avena sativa) is one of the most popular functional foods recommended by many nutritionists. The anti-obesity effect of oat was hypothesized, focusing on the brain as the target organ. In the current study, the interplay between brain biomarkers, obesity, and its related complications was evaluated in diet-induced obese rats for 25 weeks, in which 60 adult male white albino Wistar rats were divided into three control and seven treatment groups given oat extracts in a dose-dependent manner. RESULTS Oat significantly improved obesity-related metabolic complications. In terms of brain function, oat significantly increased dopaminergic signaling, brain-derived neurotrophic factor levels, vaspin, irisin, and uncoupling protein-1 brain levels, while decreasing the expression of agouti-related peptide and neuropeptide Y (P-value < 0.05). CONCLUSION The current study proposes oat supplementation as a new conceptual framework with numerous implications for hedonic and homeostatic mechanisms that control satiety. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Madonna Ehab
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Nayra Omran
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
- School of Life and Medicinal Sciences, University of Hertfordshire, Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Heba Handoussa
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
3
|
Miracle CE, McCallister CL, Egleton RD, Salisbury TB. Mechanisms by which obesity regulates inflammation and anti-tumor immunity in cancer. Biochem Biophys Res Commun 2024; 733:150437. [PMID: 39074412 PMCID: PMC11455618 DOI: 10.1016/j.bbrc.2024.150437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024]
Abstract
Obesity is associated with an increased risk for 13 different cancers. The increased risk for cancer in obesity is mediated by obesity-associated changes in the immune system. Obesity has distinct effects on different types of inflammation that are tied to tumorigenesis. For example, obesity promotes chronic inflammation in adipose tissue that is tumor-promoting in peripheral tissues. Conversely, obesity inhibits acute inflammation that rejects tumors. Obesity therefore promotes cancer by differentially regulating chronic versus acute inflammation. Given that obesity is chronic, the initial inflammation in adipose tissue will lead to systemic inflammation that could induce compensatory anti-inflammatory reactions in peripheral tissues to suppress chronic inflammation. The overall effect of obesity in peripheral tissues is therefore dependent on the duration and severity of obesity. Adipose tissue is a complex tissue that is composed of many cell types in addition to adipocytes. Further, adipose tissue cellularity is different at different anatomical sites throughout the body. Consequently, the sensitivity of adipose tissue to obesity is dependent on the anatomical location of the adipose depot. For example, obesity induces more inflammation in visceral than subcutaneous adipose tissue. Based on these studies, the mechanisms by which obesity promotes tumorigenesis are multifactorial and immune cell type-specific. The objective of our paper is to discuss the cellular mechanisms by which obesity promotes tumorigenesis by regulating distinct types of inflammation in adipose tissue and the tumor microenvironment.
Collapse
Affiliation(s)
- Cora E Miracle
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Chelsea L McCallister
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Richard D Egleton
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| | - Travis B Salisbury
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, 1 John Marshall Drive, Huntington, WV, 25755, USA.
| |
Collapse
|
4
|
Wang T, Zhou D, Hong Z. Adipose tissue in older individuals: a contributing factor to sarcopenia. Metabolism 2024; 160:155998. [PMID: 39128607 DOI: 10.1016/j.metabol.2024.155998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Sarcopenia is a geriatric syndrome characterized by a functional decline in muscle. The prevalence of sarcopenia increases with natural aging, becoming a serious health problem among elderly individuals. Therefore, understanding the pathology of sarcopenia is critical for inhibiting age-related alterations and promoting health and longevity in elderly individuals. The development of sarcopenia may be influenced by interactions between visceral and subcutaneous adipose tissue and skeletal muscle, particularly under conditions of chronic low-grade inflammation and metabolic dysfunction. This hypothesis is supported by the following observations: (i) accumulation of senescent cells in both adipose tissue and skeletal muscle with age; (ii) gut dysbiosis, characterized by an imbalance in gut microbial communities as the main trigger for inflammation, sarcopenia, and aged adipose tissue; and (iii) microbial dysbiosis, which could impact the onset or progression of a senescent state. Moreover, adipose tissue acts as an endocrine organ, releasing molecules that participate in intricate communication networks between organs. Our discussion focuses on novel adipokines and their role in regulating adipose tissue and muscle, particularly those influenced by aging and obesity, emphasizing their contributions to disease development. On the basis of these findings, we propose that age-related adipose tissue and sarcopenia are disorders characterized by chronic inflammation and metabolic dysregulation. Finally, we explore new potential therapeutic strategies involving specialized proresolving mediator (SPM) G protein-coupled receptor (GPCR) agonists, non-SPM GPCR agonists, transient receptor potential (TRP) channels, antidiabetic drugs in conjunction with probiotics and prebiotics, and compounds designed to target senescent cells and mitigate their pro-inflammatory activity.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| | - Dong Zhou
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China
| | - Zhen Hong
- Department of Neurology, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Institute of Brain Science and Brain-inspired Technology of West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurology, Chengdu Shangjin Nanfu Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Patel MA, Daley M, Van Nynatten LR, Slessarev M, Cepinskas G, Fraser DD. A reduced proteomic signature in critically ill Covid-19 patients determined with plasma antibody micro-array and machine learning. Clin Proteomics 2024; 21:33. [PMID: 38760690 PMCID: PMC11100131 DOI: 10.1186/s12014-024-09488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND COVID-19 is a complex, multi-system disease with varying severity and symptoms. Identifying changes in critically ill COVID-19 patients' proteomes enables a better understanding of markers associated with susceptibility, symptoms, and treatment. We performed plasma antibody microarray and machine learning analyses to identify novel proteins of COVID-19. METHODS A case-control study comparing the concentration of 2000 plasma proteins in age- and sex-matched COVID-19 inpatients, non-COVID-19 sepsis controls, and healthy control subjects. Machine learning was used to identify a unique proteome signature in COVID-19 patients. Protein expression was correlated with clinically relevant variables and analyzed for temporal changes over hospitalization days 1, 3, 7, and 10. Expert-curated protein expression information was analyzed with Natural language processing (NLP) to determine organ- and cell-specific expression. RESULTS Machine learning identified a 28-protein model that accurately differentiated COVID-19 patients from ICU non-COVID-19 patients (accuracy = 0.89, AUC = 1.00, F1 = 0.89) and healthy controls (accuracy = 0.89, AUC = 1.00, F1 = 0.88). An optimal nine-protein model (PF4V1, NUCB1, CrkL, SerpinD1, Fen1, GATA-4, ProSAAS, PARK7, and NET1) maintained high classification ability. Specific proteins correlated with hemoglobin, coagulation factors, hypertension, and high-flow nasal cannula intervention (P < 0.01). Time-course analysis of the 28 leading proteins demonstrated no significant temporal changes within the COVID-19 cohort. NLP analysis identified multi-system expression of the key proteins, with the digestive and nervous systems being the leading systems. CONCLUSIONS The plasma proteome of critically ill COVID-19 patients was distinguishable from that of non-COVID-19 sepsis controls and healthy control subjects. The leading 28 proteins and their subset of 9 proteins yielded accurate classification models and are expressed in multiple organ systems. The identified COVID-19 proteomic signature helps elucidate COVID-19 pathophysiology and may guide future COVID-19 treatment development.
Collapse
Affiliation(s)
- Maitray A Patel
- Epidemiology and Biostatistics, Western University, London, ON, N6A 3K7, Canada
| | - Mark Daley
- Epidemiology and Biostatistics, Western University, London, ON, N6A 3K7, Canada
- Computer Science, Western University, London, ON, N6A 3K7, Canada
| | | | - Marat Slessarev
- Medicine, Western University, London, ON, N6A 3K7, Canada
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada
| | - Gediminas Cepinskas
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada
- Medical Biophysics, Western University, London, ON, N6A 3K7, Canada
| | - Douglas D Fraser
- Lawson Health Research Institute, London, ON, N6C 2R5, Canada.
- Children's Health Research Institute, London, ON, N6C 4V3, Canada.
- Pediatrics, Western University, London, ON, N6A 3K7, Canada.
- Clinical Neurological Sciences, Western University, London, ON, N6A 3K7, Canada.
- Physiology & Pharmacology, Western University, London, ON, N6A 3K7, Canada.
- London Health Sciences Centre, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| |
Collapse
|
6
|
Dawid M, Pich K, Mlyczyńska E, Respekta-Długosz N, Wachowska D, Greggio A, Szkraba O, Kurowska P, Rak A. Adipokines in pregnancy. Adv Clin Chem 2024; 121:172-269. [PMID: 38797542 DOI: 10.1016/bs.acc.2024.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Reproductive success consists of a sequential events chronology, starting with the ovum fertilization, implantation of the embryo, placentation, and cellular processes like proliferation, apoptosis, angiogenesis, endocrinology, or metabolic changes, which taken together finally conduct the birth of healthy offspring. Currently, many factors are known that affect the regulation and proper maintenance of pregnancy in humans, domestic animals, or rodents. Among the determinants of reproductive success should be distinguished: the maternal microenvironment, genes, and proteins as well as numerous pregnancy hormones that regulate the most important processes and ensure organism homeostasis. It is well known that white adipose tissue, as the largest endocrine gland in our body, participates in the synthesis and secretion of numerous hormones belonging to the adipokine family, which also may regulate the course of pregnancy. Unfortunately, overweight and obesity lead to the expansion of adipose tissue in the body, and its excess in both women and animals contributes to changes in the synthesis and release of adipokines, which in turn translates into dramatic changes during pregnancy, including those taking place in the organ that is crucial for the proper progress of pregnancy, i.e. the placenta. In this chapter, we are summarizing the current knowledge about levels of adipokines and their role in the placenta, taking into account the physiological and pathological conditions of pregnancy, e.g. gestational diabetes mellitus, preeclampsia, or intrauterine growth restriction in humans, domestic animals, and rodents.
Collapse
Affiliation(s)
- Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Natalia Respekta-Długosz
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Dominka Wachowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University in Krakow, Krakow, Poland
| | - Aleksandra Greggio
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Oliwia Szkraba
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
7
|
Park S, Shimokawa I. Influence of Adipokines on Metabolic Dysfunction and Aging. Biomedicines 2024; 12:873. [PMID: 38672227 PMCID: PMC11048512 DOI: 10.3390/biomedicines12040873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Currently, 30% of the global population is overweight or obese, with projections from the World Obesity Federation suggesting that this figure will surpass 50% by 2035. Adipose tissue dysfunction, a primary characteristic of obesity, is closely associated with an increased risk of metabolic abnormalities, such as hypertension, hyperglycemia, and dyslipidemia, collectively termed metabolic syndrome. In particular, visceral fat accretion is considered as a hallmark of aging and is strongly linked to higher mortality rates in humans. Adipokines, bioactive peptides secreted by adipose tissue, play crucial roles in regulating appetite, satiety, adiposity, and metabolic balance, thereby rendering them key players in alleviating metabolic diseases and potentially extending health span. In this review, we elucidated the role of adipokines in the development of obesity and related metabolic disorders while also exploring the potential of certain adipokines as candidates for longevity interventions.
Collapse
Affiliation(s)
- Seongjoon Park
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
| | - Isao Shimokawa
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan;
- SAGL, Limited Liability Company, 1-4-34, Kusagae, Chuo-ku, Fukuoka 810-0045, Japan
| |
Collapse
|
8
|
Napiórkowska-Baran K, Treichel P, Czarnowska M, Drozd M, Koperska K, Węglarz A, Schmidt O, Darwish S, Szymczak B, Bartuzi Z. Immunomodulation through Nutrition Should Be a Key Trend in Type 2 Diabetes Treatment. Int J Mol Sci 2024; 25:3769. [PMID: 38612580 PMCID: PMC11011461 DOI: 10.3390/ijms25073769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
An organism's ability to function properly depends not solely on its diet but also on the intake of nutrients and non-nutritive bioactive compounds that exert immunomodulatory effects. This principle applies both to healthy individuals and, in particular, to those with concomitant chronic conditions, such as type 2 diabetes. However, the current food industry and the widespread use of highly processed foods often lead to nutritional deficiencies. Numerous studies have confirmed the occurrence of immune system dysfunction in patients with type 2 diabetes. This article elucidates the impact of specific nutrients on the immune system function, which maintains homeostasis of the organism, with a particular emphasis on type 2 diabetes. The role of macronutrients, micronutrients, vitamins, and selected substances, such as omega-3 fatty acids, coenzyme Q10, and alpha-lipoic acid, was taken into consideration, which outlined the minimum range of tests that ought to be performed on patients in order to either directly or indirectly determine the severity of malnutrition in this group of patients.
Collapse
Affiliation(s)
- Katarzyna Napiórkowska-Baran
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| | - Paweł Treichel
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Marta Czarnowska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Magdalena Drozd
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Kinga Koperska
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Agata Węglarz
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Oskar Schmidt
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Samira Darwish
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Bartłomiej Szymczak
- Student Research Club of Clinical Immunology, Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland; (P.T.); (M.C.); (M.D.); (K.K.); (A.W.); (O.S.); (S.D.); (B.S.)
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Diseases, Collegium Medicum Bydgoszcz, Nicolaus Copernicus University Toruń, 85-067 Bydgoszcz, Poland;
| |
Collapse
|
9
|
Wang HH, Chong M, Perrot N, Feiner J, Hess S, Yusuf S, Gerstein H, Paré G, Pigeyre M. Vaspin: A Novel Biomarker Linking Gluteofemoral Body Fat and Type 2 Diabetes Risk. Diabetes Care 2024; 47:259-266. [PMID: 38055934 DOI: 10.2337/dc23-1488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE To determine whether adiposity depots modulate vaspin levels and whether vaspin predicts type 2 diabetes (T2D) risk, through epidemiological and genetic analyses. RESEARCH DESIGN AND METHODS We assessed the relationship of plasma vaspin concentration with incident and prevalent T2D and adiposity-related variables in 1) the Prospective Urban and Rural Epidemiology (PURE) biomarker substudy (N = 10,052) and 2) the Outcome Reduction with Initial Glargine Intervention (ORIGIN) trial (N = 7,840), using regression models. We then assessed whether vaspin is causally associated with T2D and whether genetic variants associated with MRI-measured adiposity depots modulate vaspin levels, using two-sample Mendelian randomization (MR). RESULTS A 1-SD increase in circulating vaspin levels was associated with a 16% increase in incident T2D in the PURE cohort (hazard ratio 1.16; 95% CI 1.09-1.23; P = 4.26 × 10-7) and prevalent T2D in the ORIGIN cohort (odds ratio [OR] 1.16; 95% CI 1.07-1.25; P = 2.17 × 10-4). A 1-unit increase in BMI and triglyceride levels was associated with a 0.08-SD (95% CI 0.06-0.10; P = 2.04 × 10-15) and 0.06-SD (95% CI 0.04-0.08; P = 4.08 × 10-13) increase, respectively, in vaspin in the PURE group. Consistent associations were observed in the ORIGIN cohort. MR results reinforced the association between vaspin and BMI-adjusted T2D risk (OR 1.01 per 1-SD increase in vaspin level; 95% CI 1.00-1.02; P = 2.86 × 10-2) and showed that vaspin was increased by 0.10 SD per 1-SD decrease in genetically determined gluteofemoral adiposity (95% CI 0.02-0.18; P = 2.01 × 10-2). No relationships were found between subcutaneous or visceral adiposity and vaspin. CONCLUSIONS These findings support that higher vaspin levels are related to increased T2D risk and reduced gluteofemoral adiposity, positioning vaspin as a promising clinical predictor for T2D.
Collapse
Affiliation(s)
- Harry Hezhou Wang
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Michael Chong
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Nicolas Perrot
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - James Feiner
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sibylle Hess
- Global Medical Diabetes, Sanofi, Frankfurt, Germany
| | - Salim Yusuf
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences, Hamilton, Ontario, Canada
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Hertzel Gerstein
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences, Hamilton, Ontario, Canada
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Guillaume Paré
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Marie Pigeyre
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton Health Sciences, Hamilton, Ontario, Canada
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Zhu X, Liu L, Feng Z, Zhang Y. Correlation of plasma adipokines with endometrial atypical hyperplasia and type I/II endometrial cancer. J OBSTET GYNAECOL 2023; 43:2179914. [PMID: 36815556 DOI: 10.1080/01443615.2023.2179914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The aim of the study was to systematically explore the relationships between various adipokines and risks of endometrial atypical hyperplasia (EAH), type I endometrial cancer (EC), and type II EC. We enrolled 219 patients in this study, including 39 EAH, 87 type I EC, 38 type II EC and 55 control individuals. We subsequently explored the association of adipokine levels and the leptin-to-adiponectin (L/A) ratio with EAH, type I EC, and type II EC. The plasma leptin level and L/A ratio were significantly higher in the EAH group than in the control group (p = 0.012). Leptin, resistin, vaspin, and visfatin levels were significantly higher in the type I EC group; however, the adiponectin level was lower in the type I EC, which resulted in a higher L/A ratio. Notably, the L/A ratio and visfatin level in the type II EC group were significantly higher. Multiple logistic regression analysis revealed that a higher leptin level was significantly associated with a higher EAH risk (p = 0.012). Higher leptin level (p = 0.042) and L/A ratio (p = 0.027) were significantly associated with an increased type I EC risk. By contrast, higher leptin (p = 0.059) and visfatin (p = 0.003) levels, higher L/A ratio (p = 0.033), and lower adiponectin level (p = 0.042) were associated with an increased type II EC risk. We suggested that adipokines are potentially correlated with EAH and EC risks.
Collapse
Affiliation(s)
- Xinxin Zhu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Linzhi Liu
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Zonghao Feng
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| |
Collapse
|
11
|
Respekta N, Pich K, Mlyczyńska E, Dobrzyń K, Ramé C, Kamiński T, Smolińska N, Dupont J, Rak A. Plasma level of omentin-1, its expression, and its regulation by gonadotropin-releasing hormone and gonadotropins in porcine anterior pituitary cells. Sci Rep 2023; 13:19325. [PMID: 37935840 PMCID: PMC10630491 DOI: 10.1038/s41598-023-46742-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/04/2023] [Indexed: 11/09/2023] Open
Abstract
Omentin-1 (OMNT1) is an adipokine involved in the regulation of energy metabolism, insulin sensitivity, and reproduction. The present study was the first to investigate the plasma levels and expression of OMNT1 in the anterior pituitary (AP) gland on days 2-3, 10-12, 14-16, and 17-19 of the estrous cycle of normal-weight Large White (LW) and fat Meishan (MS) pigs. Next, we determined the effect of GnRH, LH, and FSH on the OMNT1 levels in cultured AP cells. The gene and protein expression of OMNT1 in AP fluctuated during the estrous cycle, with a higher expression in MS than in LW (except on days 10-12). However, plasma levels of OMNT1 were higher in LW than in MS. OMNT1 was localized in somatotrophs, lactotrophs, thyrotrophs, and gonadotrophs. In LW pituitary cells, GnRH and gonadotropins stimulated OMNT1 protein expression (except FSH on days 14-16) and had no effect on OMNT1 levels in the culture medium. In MS pituitary cells, we observed that GnRH and LH increased while FSH decreased OMNT1 protein expression. These findings showed OMNT1 expression and regulation in the porcine AP and suggested that OMNT1 could be a new player modifying the pituitary functions.
Collapse
Affiliation(s)
- Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Kortowo, Olsztyn, Poland
| | - Christelle Ramé
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Kortowo, Olsztyn, Poland
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Kortowo, Olsztyn, Poland
| | - Joëlle Dupont
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9 Street, 30-387, Kraków, Poland.
| |
Collapse
|
12
|
Pestel J, Blangero F, Watson J, Pirola L, Eljaafari A. Adipokines in obesity and metabolic-related-diseases. Biochimie 2023; 212:48-59. [PMID: 37068579 DOI: 10.1016/j.biochi.2023.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/19/2023]
Abstract
The discovery of leptin in the 1990s led to a reconsideration of adipose tissue (AT) as not only a fatty acid storage organ, but also a proper endocrine tissue. AT is indeed capable of secreting bioactive molecules called adipokines for white AT or batokines for brown/beige AT, which allow communication with numerous organs, especially brain, heart, liver, pancreas, and/or the vascular system. Adipokines exert pro or anti-inflammatory activities. An equilibrated balance between these two sets ensures homeostasis of numerous tissues and organs. During the development of obesity, AT remodelling leads to an alteration of its endocrine activity, with increased secretion of pro-inflammatory adipokines relative to the anti-inflammatory ones, as shown in the graphical abstract. Pro-inflammatory adipokines take part in the initiation of local and systemic inflammation during obesity and contribute to comorbidities associated to obesity, as detailed in the present review.
Collapse
Affiliation(s)
- Julien Pestel
- INSERM U1060-CarMeN /Université Claude Bernard Lyon 1/INRAE/ Université Claude Bernard Lyon 1: Laboratoire CarMeN, 165 chemin du Grand Revoyet, CHLS, 69310 Pierre Bénite, France
| | - Ferdinand Blangero
- INSERM U1060-CarMeN /Université Claude Bernard Lyon 1/INRAE/ Université Claude Bernard Lyon 1: Laboratoire CarMeN, 165 chemin du Grand Revoyet, CHLS, 69310 Pierre Bénite, France
| | - Julia Watson
- INSERM U1060-CarMeN /Université Claude Bernard Lyon 1/INRAE/ Université Claude Bernard Lyon 1: Laboratoire CarMeN, 165 chemin du Grand Revoyet, CHLS, 69310 Pierre Bénite, France
| | - Luciano Pirola
- INSERM U1060-CarMeN /Université Claude Bernard Lyon 1/INRAE/ Université Claude Bernard Lyon 1: Laboratoire CarMeN, 165 chemin du Grand Revoyet, CHLS, 69310 Pierre Bénite, France
| | - Assia Eljaafari
- INSERM U1060-CarMeN /Université Claude Bernard Lyon 1/INRAE/ Université Claude Bernard Lyon 1: Laboratoire CarMeN, 165 chemin du Grand Revoyet, CHLS, 69310 Pierre Bénite, France; Hospices Civils de Lyon: 2 quai des Célestins, 69001 Lyon, France.
| |
Collapse
|
13
|
Stępień S, Olczyk P, Gola J, Komosińska-Vassev K, Mielczarek-Palacz A. The Role of Selected Adipocytokines in Ovarian Cancer and Endometrial Cancer. Cells 2023; 12:cells12081118. [PMID: 37190027 DOI: 10.3390/cells12081118] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/06/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Due to their multidirectional influence, adipocytokines are currently the subject of numerous intensive studies. Significant impact applies to many processes, both physiological and pathological. Moreover, the role of adipocytokines in carcinogenesis seems particularly interesting and not fully understood. For this reason, ongoing research focuses on the role of these compounds in the network of interactions in the tumor microenvironment. Particular attention should be drawn to cancers that remain challenging for modern gynecological oncology-ovarian and endometrial cancer. This paper presents the role of selected adipocytokines, including leptin, adiponectin, visfatin, resistin, apelin, chemerin, omentin and vaspin in cancer, with a particular focus on ovarian and endometrial cancer, and their potential clinical relevance.
Collapse
Affiliation(s)
- Sebastian Stępień
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Paweł Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Joanna Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Aleksandra Mielczarek-Palacz
- Department of Immunology and Serology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| |
Collapse
|
14
|
Pilarski Ł, Pelczyńska M, Koperska A, Seraszek-Jaros A, Szulińska M, Bogdański P. Association of Serum Vaspin Concentration with Metabolic Disorders in Obese Individuals. Biomolecules 2023; 13:biom13030508. [PMID: 36979443 PMCID: PMC10046748 DOI: 10.3390/biom13030508] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Vaspin, a molecule produced in visceral adipose tissue, seems to participate in the pathogenesis of metabolic disorders. The study aimed to determine the association of vaspin concentration with metabolic disorders in obese individuals. Forty obese patients and twenty normal-weight subjects underwent biochemical (fasting glucose, insulin, lipid profile, interleukin-6, hs-CRP, vaspin concentration), blood pressure, and anthropometric measurements. The HOMA-IR index was calculated. Serum vaspin concentrations in the obese group were significantly higher than in the control group (0.82 ± 0.62 vs. 0.43 ± 0.59; p < 0.001). Among the entire population, vaspin concentration was positively correlated with body weight, BMI, WHR, and the percentage and mass of adipose tissue. Positive correlations between vaspin concentration and triglyceride level, insulin concentration, and HOMA-IR value were found. Vaspin concentration was positively correlated with hs-CRP and IL-6 levels. In obese patients, positive correlations between vaspin concentration and the percentage of adipose tissue and hs-CRP level were demonstrated. Logistic regression analysis showed that increased BMI was the biggest factor stimulating vaspin concentrations (OR = 8.5; 95% CI: 1.18–61.35; p = 0.0338). An elevated vaspin level may imply its compensatory role against metabolic disorders in obese patients. Thus, vaspin appears to be a useful diagnostic parameter for new therapeutic approaches in obesity-related complications. Nevertheless, due to the small sample size, further studies are needed to confirm our results.
Collapse
Affiliation(s)
- Łukasz Pilarski
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznań, Poland
| | - Marta Pelczyńska
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznań, Poland
- Correspondence: ; Tel.: +48-693-049-981
| | - Anna Koperska
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznań, Poland
| | - Agnieszka Seraszek-Jaros
- Department of Bioinformatics and Computational Biology, Poznan University of Medical Sciences, Bukowska 70 Street, 60-812 Poznań, Poland
| | - Monika Szulińska
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznań, Poland
| | - Paweł Bogdański
- Chair and Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznań, Poland
| |
Collapse
|
15
|
Lőrincz H, Somodi S, Ratku B, Harangi M, Paragh G. Crucial Regulatory Role of Organokines in Relation to Metabolic Changes in Non-Diabetic Obesity. Metabolites 2023; 13:270. [PMID: 36837889 PMCID: PMC9967669 DOI: 10.3390/metabo13020270] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023] Open
Abstract
Obesity is characterized by an excessive accumulation of fat leading to a plethora of medical complications, including coronary artery disease, hypertension, type 2 diabetes mellitus or impaired glucose tolerance and dyslipidemia. Formerly, several physiological roles of organokines, including adipokines, hepatokines, myokines and gut hormones have been described in obesity, especially in the regulation of glucose and lipid metabolism, insulin sensitivity, oxidative stress, and low-grade inflammation. The canonical effect of these biologically active peptides and proteins may serve as an intermediate regulatory level that connects the central nervous system and the endocrine, autocrine, and paracrine actions of organs responsible for metabolic and inflammatory processes. Better understanding of the function of this delicately tuned network may provide an explanation for the wide range of obesity phenotypes with remarkable inter-individual differences regarding comorbidities and therapeutic responses. The aim of this review is to demonstrate the role of organokines in the lipid and glucose metabolism focusing on the obese non-diabetic subgroup. We also discuss the latest findings about sarcopenic obesity, which has recently become one of the most relevant metabolic disturbances in the aging population.
Collapse
Affiliation(s)
- Hajnalka Lőrincz
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Sándor Somodi
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Balázs Ratku
- Department of Emergency Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Mariann Harangi
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - György Paragh
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
16
|
Dhankhar S, Chauhan S, Mehta DK, Nitika, Saini K, Saini M, Das R, Gupta S, Gautam V. Novel targets for potential therapeutic use in Diabetes mellitus. Diabetol Metab Syndr 2023; 15:17. [PMID: 36782201 PMCID: PMC9926720 DOI: 10.1186/s13098-023-00983-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 01/11/2023] [Indexed: 02/15/2023] Open
Abstract
Future targets are a promising prospect to overcome the limitation of conventional and current approaches by providing secure and effective treatment without compromising patient compliance. Diabetes mellitus is a fast-growing problem that has been raised worldwide, from 4% to 6.4% (around 285 million people) in past 30 years. This number may increase to 430 million people in the coming years if there is no better treatment or cure is available. Ageing, obesity and sedentary lifestyle are the key reasons for the worsening of this disease. It always had been a vital challenge, to explore new treatment which could safely and effectively manage diabetes mellitus without compromising patient compliance. Researchers are regularly trying to find out the permanent treatment of this chronic and life threatening disease. In this journey, there are various treatments available in market to manage diabetes mellitus such as insulin, GLP-1 agonist, biguanides, sulphonyl ureas, glinides, thiazolidinediones targeting the receptors which are discovered decade before. PPAR, GIP, FFA1, melatonin are the recent targets that already in the focus for developing new therapies in the treatment of diabetes. Inspite of numerous preclinical studies very few clinical data available due to which this process is in its initial phase. The review also focuses on the receptors like GPCR 119, GPER, Vaspin, Metrnl, Fetuin-A that have role in insulin regulation and have potential to become future targets in treatment for diabetes that may be effective and safer as compared to the conventional and current treatment approaches.
Collapse
Affiliation(s)
- Sanchit Dhankhar
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Samrat Chauhan
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Dinesh Kumar Mehta
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
| | - Nitika
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
- Ganpati Institute of Pharmacy, Bilaspur, Yamunanagar, 135102, Haryana, India
| | - Kamal Saini
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
| | - Monika Saini
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
| | - Rina Das
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India
| | - Sumeet Gupta
- Department of Pharmaceutical Sciences, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed To Be University), Mullana, Ambala, 133207, Haryana, India.
| | - Vinod Gautam
- Department of Pharmaceutical Sciences, IES Institute of Pharmacy, IES University, Bhopal, India
| |
Collapse
|
17
|
Cao XH, Chen X, Yang K, Wang YL, Liang MX, Fei YJ, Tang JH. Vaspin accelerates the proliferation, invasion and metastasis of Triple-Negative breast cancer through MiR-33a-5p/ABHD2. Cancer Med 2023; 12:4530-4542. [PMID: 36125462 PMCID: PMC9972114 DOI: 10.1002/cam4.5241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 07/17/2022] [Accepted: 09/02/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE To explore the influence and the underlying mechanism of vaspin (visceral adipose tissue-derived serpin) on the development of triple-negative breast malignancy. METHODS First, we analyzed medical records and screened out 22 breast cancer patients with different BMI according to inclusion and exclusion criterion, and measured serum vaspin of those patients. Then we studied the effects of vaspin on TNBC cell lines by using EdU assay, colony formation, transwell and wound-healing assay. Later, we used bioinformatics analysis to identify downstream effectors and verify with qRT-PCR, luciferase assay, western blot, etc. RESULTS: We found the vaspin level was positively correlated with BMI in breast malignant patients and vaspin could significantly enhance the proliferation, infiltration and transferring of triple-negative breast cancer cells by restraining the expression of miR-33a-5p. By using bioinformatic analysis and luciferase assay, we identified miR-33a-5p directly regulating ABHD2. CONCLUSION Vaspin, as a cancer-promoting cytokine, may inhibit miR-33a-5p thus increasing the level of ABHD2 to promote the development of the triple-negative breast cancer.
Collapse
Affiliation(s)
- Xin-Hui Cao
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Xiu Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Kai Yang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Ya-Lin Wang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Ming-Xing Liang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Yin-Jiao Fei
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jin-Hai Tang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
18
|
Rapöhn I, Elias I, Weiner J, Pujol A, Kehr S, Chadt A, Al-Hasani H, Burkhardt R, Klöting N, Stumvoll M, Bosch F, Kovacs P, Heiker JT, Breitfeld J. Overexpressing high levels of human vaspin limits high fat diet-induced obesity and enhances energy expenditure in a transgenic mouse. Front Endocrinol (Lausanne) 2023; 14:1146454. [PMID: 37152954 PMCID: PMC10154460 DOI: 10.3389/fendo.2023.1146454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
Adipose tissue inflammation and insulin resistance are hallmarks in the development of metabolic diseases resulting from overweight and obesity, such as type 2 diabetes and non-alcoholic fatty liver disease. In obesity, adipocytes predominantly secrete proinflammatory adipokines that further promote adipose tissue dysfunction with negative effects on local and systemic insulin sensitivity. Expression of the serpin vaspin (SERPINA12) is also increased in obesity and type 2 diabetes, but exhibits compensatory roles in inflammation and insulin resistance. This has in part been demonstrated using vaspin-transgenic mice. We here report a new mouse line (h-vaspinTG) with transgenic expression of human vaspin in adipose tissue that reaches vaspin concentrations three orders of magnitude higher than wild type controls (>200 ng/ml). Phenotyping under chow and high-fat diet conditions included glucose-tolerance tests, measurements of energy expenditure and circulating parameters, adipose tissue and liver histology. Also, ex vivo glucose uptake in isolated adipocytes and skeletal muscle was analyzed in h-vaspinTG and littermate controls. The results confirmed previous findings, revealing a strong reduction in diet-induced weight gain, fat mass, hyperinsulinemia, -glycemia and -cholesterolemia as well as fatty liver. Insulin sensitivity in adipose tissue and muscle was not altered. The h-vaspinTG mice showed increased energy expenditure under high fat diet conditions, that may explain reduced weight gain and overall metabolic improvements. In conclusion, this novel human vaspin-transgenic mouse line will be a valuable research tool to delineate whole-body, tissue- and cell-specific effects of vaspin in health and disease.
Collapse
Affiliation(s)
- Inka Rapöhn
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Ivet Elias
- Center of Animal Biotechnology and Gene Therapy (CBATEG) and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Juliane Weiner
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Anna Pujol
- Center of Animal Biotechnology and Gene Therapy (CBATEG) and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Stephanie Kehr
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, Transfusion Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Michael Stumvoll
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Fatima Bosch
- Center of Animal Biotechnology and Gene Therapy (CBATEG) and Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - John T. Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- *Correspondence: John T. Heiker, ; Jana Breitfeld,
| | - Jana Breitfeld
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
- *Correspondence: John T. Heiker, ; Jana Breitfeld,
| |
Collapse
|
19
|
Sahu B, Bal NC. Adipokines from white adipose tissue in regulation of whole body energy homeostasis. Biochimie 2023; 204:92-107. [PMID: 36084909 DOI: 10.1016/j.biochi.2022.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
Diseases originating from altered energy homeostasis including obesity, and type 2 diabetes are rapidly increasing worldwide. Research in the last few decades on animal models and humans demonstrates that the white adipose tissue (WAT) is critical for energy balance and more than just an energy storage site. WAT orchestrates the whole-body metabolism through inter-organ crosstalk primarily mediated by cytokines named "Adipokines". The adipokines influence metabolism and fuel selection of the skeletal muscle and liver thereby fine-tuning the load on WAT itself in physiological conditions like starvation, exercise and cold. In addition, adipokine secretion is influenced by various pathological conditions like obesity, inflammation and diabetes. In this review, we have surveyed the current state of knowledge on important adipokines and their significance in regulating energy balance and metabolic diseases. Furthermore, we have summarized the interplay of pro-inflammatory and anti-inflammatory adipokines in the modulation of pathological conditions.
Collapse
Affiliation(s)
- Bijayashree Sahu
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| | - Naresh C Bal
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
20
|
The Complex Roles of Adipokines in Polycystic Ovary Syndrome and Endometriosis. Biomedicines 2022; 10:biomedicines10102503. [PMID: 36289764 PMCID: PMC9598769 DOI: 10.3390/biomedicines10102503] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) and endometriosis are frequent diseases of the female reproductive tract causing high morbidity as they can significantly affect fertility and quality of life. Adipokines are pleiotropic signaling molecules secreted by white or brown adipose tissues with a central role in energy metabolism. More recently, their involvement in PCOS and endometriosis has been demonstrated. In this review article, we provide an update on the role of adipokines in both diseases and summarize previous findings. We also address the results of multi-omics approaches in adipokine research to examine the role of single nucleotide polymorphisms (SNPs) in genes coding for adipokines and their receptors, the secretome of adipocytes and to identify epigenetic alterations of adipokine genes that might be conferred from mother to child. Finally, we address novel data on the role of brown adipose tissue (BAT), which seems to have notable effects on PCOS. For this review, original research articles on adipokine actions in PCOS and endometriosis are considered, which are listed in the PubMed database.
Collapse
|
21
|
Arias-de la Rosa I, Escudero-Contreras A, Ruiz-Ponce M, Cuesta-López L, Román-Rodríguez C, Pérez-Sánchez C, Ruiz-Limón P, Ruiz RG, Leiva-Cepas F, Alcaide J, Segui P, Plasencia C, Martinez-Feito A, Font P, Ábalos MC, Ortega R, Malagón MM, Tinahones FJ, Collantes-Estévez E, López-Pedrera C, Barbarroja N. Pathogenic mechanisms involving the interplay between adipose tissue and autoantibodies in Rheumatoid arthritis. iScience 2022; 25:104893. [PMID: 36046189 PMCID: PMC9421387 DOI: 10.1016/j.isci.2022.104893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/04/2022] [Accepted: 08/03/2022] [Indexed: 11/30/2022] Open
Abstract
We aimed to evaluate the association between adipose tissue (AT) dysfunction, autoimmunity, and disease activity in rheumatoid arthritis (RA). A cross-sectional study including 150 RA patients and 50 healthy donors and longitudinal study with 122 RA patients treated with anti-tumor necrosis factor (TNF)-α, anti-interleukin 6 receptor (IL6R) or anti-CD20 therapies for 6 months were carried out. In vitro experiments with human AT and adipocyte and macrophage cell lines were performed. A collagen-induced arthritis mouse model was developed. The insulin resistance and the altered adipocytokine profile were associated with disease activity, the presence of anti-citrullinated proteins anti-bodies (ACPAs), and worse response to therapy in RA. AT in the context of arthritis is characterized by an inflammatory state alongside the infiltration of macrophages and B/plasmatic cells, where ACPAs can have a direct impact, inducing inflammation and insulin resistance in macrophages and promoting a defective adipocyte differentiation, partially restored by biologicals. IR is related to disease activity, inflammation, and autoimmunity in RA patients IR state and adipocytokines might be associated with a worse response to biologics Visfatin could be used as a potential biomarker of subclinical atherosclerosis ACPAs might directly impact adipose tissue
Collapse
|
22
|
Zhu Y, Ke Y, Hu Y, Wu K, Liu S, Hu J. Association of circulating vaspin levels and patients with metabolic-associated fatty liver disease: a systematic review and meta-analysis. Lipids Health Dis 2022; 21:57. [PMID: 35780150 PMCID: PMC9250748 DOI: 10.1186/s12944-022-01658-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/24/2022] [Indexed: 11/14/2022] Open
Abstract
Background The incidence rate of metabolic-associated fatty liver disease (MAFLD) is increasing annually; however, there are still no effective methods for establishing an early diagnosis and conducting real-time tracing. Vaspin can affect the metabolic processes in the body, and it is closely associated with many metabolic diseases. Many previous studies have speculated on the association between vaspin and MAFLD, but the results of these studies have not been conclusive. This meta-analysis examined the differences in circulating vaspin levels between patients with MAFLD and healthy individuals. Methods Six databases and other sources were searched with free terms and Medical Subject Headings terms, and a total of 13 articles were included (900 cases and 669 controls). RevMan 5.3 and Stata 16 were used for analysis. The standardised mean difference (SMD) and 95% confidence interval (CI) were used to assess the overall outcomes. Cohen’s kappa coefficient was applied to examine the differences between the two authors in the selection of studies and in the evaluation of the quality of evidence for the studies. Results The results demonstrated that there was no significant difference in the circulating vaspin levels between the MAFLD group and healthy group (SMD = 0.46, 95% CI: [− 0.12, 1.04]). The subgroup analysis suggested that area and body mass index (BMI) may be the sources of heterogeneity, and the results of univariate meta-regression analysis were consistent with those of the subgroup analysis (P = 0.005 and P < 0.001, respectively). Furthermore, BMI may better explain the source of heterogeneity (P = 0.032) in the multivariate meta-regression analysis. Conclusion In summary, no significant correlation was observed between the circulating vaspin levels and MAFLD. BMI may be an important factor affecting this correlation, which may provide a reference for further studies on mechanism and diagnosis of MAFLD. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01658-2.
Collapse
Affiliation(s)
- Yuqing Zhu
- The First Clinical Medical College of Zhejiang Chinese Medical University, No 548, Binwen Road, Hangzhou, 310051, Zhejiang Province, China
| | - Yani Ke
- The Second Clinical Medical College of Zhejiang Chinese Medical University, No 548, Binwen Road, Hangzhou, 310051, Zhejiang Province, China
| | - Yijie Hu
- The Third Clinical Medical College of Zhejiang Chinese Medical University, No 548, Binwen Road, Hangzhou, 310051, Zhejiang Province, China
| | - Kaihan Wu
- The First Clinical Medical College of Zhejiang Chinese Medical University, No 548, Binwen Road, Hangzhou, 310051, Zhejiang Province, China
| | - Shan Liu
- Department of Clinical Evaluation Center, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54, Youdian Road, Hangzhou, 310006, Zhejiang Province, China.
| | - Jie Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54, Youdian Road, Hangzhou, 310006, Zhejiang Province, China.
| |
Collapse
|
23
|
Vinitha R, Yogalakshmi R, Rajeswari A, Snehalatha C, Nair DR, Susairaj P, Satheesh K, Nanditha A, Raghavan A, Arun KV, Ramachandran A. Serum and salivary adipokines in type 2 diabetes - Results of a pilot study in India. Diabetes Metab Syndr 2022; 16:102536. [PMID: 35717896 DOI: 10.1016/j.dsx.2022.102536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND AIMS Association of serum and salivary adiponectin, apelin, visfatin and vaspin were studied in type 2 diabetes (T2DM) among Asian Indians. Their concentrations in periodontitis were also studied. METHODS In this cross-sectional analysis, men and women aged ≥35 years, with no history of diabetes, were screened for ≥3 risk factors for T2DM (n = 615). Eligible persons underwent a 75 gm oral glucose tolerance test and were categorized as Group A (Normal and Impaired Glucose Tolerant, n = 65) and Group B (Incident T2DM, n = 25). Screening for periodontitis was done. Saliva samples were collected in the morning. Participants refrained from food intake for about 2 hours prior to collection . Serum and saliva were stored for analysis. RESULTS Serum adiponectin was low (p = 0.006) in T2DM and correlated with its salivary levels (r = 0.46, p < 0.001). Serum apelin levels were similar, but salivary concentrations were higher (p = 0.014) in T2DM. Higher serum (p = 0.016) and salivary (p = 0.03) visfatin levels were seen in T2DM. Vaspin levels showed no significant difference in the two groups, either in blood or saliva. Serum adipokines did not differ in the presence of periodontitis. In saliva, higher vaspin (p = 0.034) and lower visfatin (p = 0.018) concentrations were observed. CONCLUSIONS The selected adipokines were measurable in saliva, in lower concentrations. Salivary adiponectin and visfatin measurements may be useful in studies on T2DM.
Collapse
Affiliation(s)
- Ramachandran Vinitha
- India Diabetes Research Foundation and Dr.A. Ramachandran's Diabetes Hospitals, Chennai, India.
| | - Raghuraman Yogalakshmi
- India Diabetes Research Foundation and Dr.A. Ramachandran's Diabetes Hospitals, Chennai, India
| | - Anandhan Rajeswari
- India Diabetes Research Foundation and Dr.A. Ramachandran's Diabetes Hospitals, Chennai, India
| | - Chamukuttan Snehalatha
- India Diabetes Research Foundation and Dr.A. Ramachandran's Diabetes Hospitals, Chennai, India
| | - Dhruv Rajesh Nair
- India Diabetes Research Foundation and Dr.A. Ramachandran's Diabetes Hospitals, Chennai, India
| | - Priscilla Susairaj
- India Diabetes Research Foundation and Dr.A. Ramachandran's Diabetes Hospitals, Chennai, India
| | - Krishnamoorthy Satheesh
- India Diabetes Research Foundation and Dr.A. Ramachandran's Diabetes Hospitals, Chennai, India
| | - Arun Nanditha
- India Diabetes Research Foundation and Dr.A. Ramachandran's Diabetes Hospitals, Chennai, India
| | - Arun Raghavan
- India Diabetes Research Foundation and Dr.A. Ramachandran's Diabetes Hospitals, Chennai, India
| | - K V Arun
- Department of Periodontics, Ragas Dental College, Chennai, Tamil Nadu, India
| | - Ambady Ramachandran
- India Diabetes Research Foundation and Dr.A. Ramachandran's Diabetes Hospitals, Chennai, India.
| |
Collapse
|
24
|
Garvick S, Altenburg L, Dunlap B, Fisher A, Watson A, Gregory T. Diagnosis and management of type 2 diabetes in children. JAAPA 2022; 35:16-22. [PMID: 35762950 DOI: 10.1097/01.jaa.0000832648.15129.b8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
ABSTRACT The incidence of type 2 diabetes in children has risen 4.8% over the past decade, correlating with steadily rising obesity rates in children. Updated guidelines from the American Academy of Pediatrics and the American Diabetes Association encourage early identification and pharmacologic intervention for children with type 2 diabetes. Because of the aggressive disease course in children, comprehensive treatment must include prevention of complications such as diabetic nephropathy and neuropathy as well as management of comorbidities such as cardiovascular disease and dyslipidemia. Because the highest incidence of type 2 diabetes is reported in patients from racial or ethnic minority groups and those of low socioeconomic status, clinicians must work with patients and families to identify socioeconomic disparities that could affect adherence to diabetes management plans and to connect patients with community resources.
Collapse
Affiliation(s)
- Sarah Garvick
- Sarah Garvick is associate program director of the PA program at Wake Forest School of Medicine and practices with the Appalachian District Health Department, both in Boone, N.C. At the time this article was written, Lilli Altenburg, Bailey Dunlap, Abby Fisher , and Amanda Watson were students in the PA program at Wake Forest School of Medicine. Tanya Gregory is an assistant professor and director of student services in the Department of PA Studies at Wake Forest School of Medicine in Winston-Salem, N.C. The authors have disclosed no potential conflicts of interest, financial or otherwise
| | | | | | | | | | | |
Collapse
|
25
|
Mlyczyńska E, Kieżun M, Kurowska P, Dawid M, Pich K, Respekta N, Daudon M, Rytelewska E, Dobrzyń K, Kamińska B, Kamiński T, Smolińska N, Dupont J, Rak A. New Aspects of Corpus Luteum Regulation in Physiological and Pathological Conditions: Involvement of Adipokines and Neuropeptides. Cells 2022; 11:957. [PMID: 35326408 PMCID: PMC8946127 DOI: 10.3390/cells11060957] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
The corpus luteum is a small gland of great importance because its proper functioning determines not only the appropriate course of the estrous/menstrual cycle and embryo implantation, but also the subsequent maintenance of pregnancy. Among the well-known regulators of luteal tissue functions, increasing attention is focused on the role of neuropeptides and adipose tissue hormones-adipokines. Growing evidence points to the expression of these factors in the corpus luteum of women and different animal species, and their involvement in corpus luteum formation, endocrine function, angiogenesis, cells proliferation, apoptosis, and finally, regression. In the present review, we summarize the current knowledge about the expression and role of adipokines, such as adiponectin, leptin, apelin, vaspin, visfatin, chemerin, and neuropeptides like ghrelin, orexins, kisspeptin, and phoenixin in the physiological regulation of the corpus luteum function, as well as their potential involvement in pathologies affecting the luteal cells that disrupt the estrous cycle.
Collapse
Affiliation(s)
- Ewa Mlyczyńska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Marta Kieżun
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Patrycja Kurowska
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Monika Dawid
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Karolina Pich
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Natalia Respekta
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| | - Mathilde Daudon
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Edyta Rytelewska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Kamil Dobrzyń
- Department of Zoology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Barbara Kamińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Tadeusz Kamiński
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Nina Smolińska
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland; (M.K.); (E.R.); (B.K.); (T.K.); (N.S.)
| | - Joelle Dupont
- Unité Physiologie de la Reproduction et des Comportements, French National Institute for Agriculture, Food, and Environment, 37380 Nouzilly, France; (M.D.); (J.D.)
| | - Agnieszka Rak
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (E.M.); (P.K.); (M.D.); (K.P.); (N.R.)
| |
Collapse
|
26
|
Vaspin attenuates steatosis-induced fibrosis via GRP78 receptor by targeting AMPK signaling pathway. J Physiol Biochem 2022; 78:185-197. [PMID: 35001345 DOI: 10.1007/s13105-021-00852-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that is rapidly becoming a public health problem. An imbalance in lipid distribution to the hepatocytes and metabolism causes hepatocyte steatosis. Vaspin is a newly discovered adipokine that has been linked to a variety of metabolic disorders. The effects of vaspin on steatosis and fibrosis pathogenesis and related mechanisms are unclear. Thus, this study investigated the molecular mechanism of vaspin on hepatocyte steatosis and fibrosis. HepG2 cells were treated with 1.2 mM free fatty acid and the intracellular lipid values were measured by flow cytometry and Nile red assay. RT-qPCR was used to assess the effect of vaspin and blocking of the GRP78 receptor on the expression of lipogenesis, oxidation, uptake, and secretion of fatty acid (FA), as well as AMPK activity. In co-cultured HepG2 and LX-2 cell lines, the expression of main proteins of hepatocyte fibrosis was analyzed using Western blot analysis. In the HepG2 cell line, we discovered that vaspin increased oxidation, FA secretion and gene expression, and AMPK activity and decreased lipogenesis and FA uptake and gene expression. Western blot analysis in co-cultured HepG2 and LX-2 cell lines showed that α-SMA and TGF-β1 protein expression decreased. The data demonstrated that vaspin acts as a novel regulator of hepatocyte steatosis through the GRP78 receptor, effectively reducing hepatocyte fibrosis through AMPK activation and decreasing NF-κB gene expression.
Collapse
|
27
|
Tarabeih N, Kalinkovich A, Shalata A, Cherny SS, Livshits G. Deciphering the Causal Relationships Between Low Back Pain Complications, Metabolic Factors, and Comorbidities. J Pain Res 2022; 15:215-227. [PMID: 35125889 PMCID: PMC8809521 DOI: 10.2147/jpr.s349251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/23/2021] [Indexed: 01/09/2023] Open
Affiliation(s)
- Nader Tarabeih
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Maale HaCarmel Mental Health Center, Affiliated to Rappaport Faculty of Medicine Technion, Israel Institute of Technology, Haifa, Israel
| | - Alexander Kalinkovich
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Adel Shalata
- The Simon Winter Institute for Human Genetics, Bnai Zion Medical Center, The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Stacey S Cherny
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gregory Livshits
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Adelson School of Medicine, Ariel University, Ariel, Israel
- Correspondence: Gregory Livshits, Department of Morphological Studies, Adelson School of Medicine, Ariel University, Ariel, 40700, Israel, Tel +972-3-6409494, Fax +972-3-6408287, Email
| |
Collapse
|
28
|
Ren Y, Zhao H, Yin C, Lan X, Wu L, Du X, Griffiths HR, Gao D. Adipokines, Hepatokines and Myokines: Focus on Their Role and Molecular Mechanisms in Adipose Tissue Inflammation. Front Endocrinol (Lausanne) 2022; 13:873699. [PMID: 35909571 PMCID: PMC9329830 DOI: 10.3389/fendo.2022.873699] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic low-grade inflammation in adipose tissue (AT) is a hallmark of obesity and contributes to various metabolic disorders, such as type 2 diabetes and cardiovascular diseases. Inflammation in ATs is characterized by macrophage infiltration and the activation of inflammatory pathways mediated by NF-κB, JNK, and NLRP3 inflammasomes. Adipokines, hepatokines and myokines - proteins secreted from AT, the liver and skeletal muscle play regulatory roles in AT inflammation via endocrine, paracrine, and autocrine pathways. For example, obesity is associated with elevated levels of pro-inflammatory adipokines (e.g., leptin, resistin, chemerin, progranulin, RBP4, WISP1, FABP4, PAI-1, Follistatin-like1, MCP-1, SPARC, SPARCL1, and SAA) and reduced levels of anti-inflammatory adipokines such as adiponectin, omentin, ZAG, SFRP5, CTRP3, vaspin, and IL-10. Moreover, some hepatokines (Fetuin A, DPP4, FGF21, GDF15, and MANF) and myokines (irisin, IL-6, and DEL-1) also play pro- or anti-inflammatory roles in AT inflammation. This review aims to provide an updated understanding of these organokines and their role in AT inflammation and related metabolic abnormalities. It serves to highlight the molecular mechanisms underlying the effects of these organokines and their clinical significance. Insights into the roles and mechanisms of these organokines could provide novel and potential therapeutic targets for obesity-induced inflammation.
Collapse
Affiliation(s)
- Yakun Ren
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
| | - Hao Zhao
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Chunyan Yin
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xi Lan
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Litao Wu
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xiaojuan Du
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Helen R. Griffiths
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Dan Gao
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Center, Xi’an, China
- *Correspondence: Dan Gao,
| |
Collapse
|
29
|
Baig M, Gazzaz ZJ, Bakarman MA, Alzahrani SH. Correlation of Serum Vaspin, Omentin-1, and adiponectin with metabolic phenotypes in Type-2 diabetes mellitus patients. Pak J Med Sci 2021; 37:1762-1767. [PMID: 34912392 PMCID: PMC8613014 DOI: 10.12669/pjms.37.7.4330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/29/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022] Open
Abstract
Objectives: To investigate adipocytokines’ (vaspin, omentin-1, and adiponectin) correlation with metabolic phenotypes in type 2 diabetes mellitus (T2DM) patients. Methods: This case-control research was done at the Diabetic Clinic in Jeddah, Kingdom of Saudi Arabia (KSA), from November 2018 to March 2019. Seventy-five T2DM patients and 75 gender, age, and BMI-matched healthy subjects were recruited for this research. Results: In DM patients, the concentrations of serum vaspin and omentin-1 were substantially lower (p<0.001) than in the control group. A significant positive relationship between vaspin concentration and DBP (p<0.001), BMI (p<0.001), and waist circumference (p<0.001) was found in patients and control subjects, while FPG (p<0.016), serum insulin (p<0.001), HOMA-IR (p<0.001), TC (p<0.001), TG (p<0.001), and LDLc (p<0.001) were significantly interrelated among patients. Serum concentrations of omentin-1 and ADN were significantly negatively correlated with serum insulin, HOMA-IR, and TG among the DM group. Serum vaspin and ADN levels were significantly higher in the cases and control groups with BMI>25, and no gender-wise variance was observed in adipocytokines levels. Binary logistic regression analysis showed a significantly negative predictive relationship of vaspin and omentin-1 with DM. Conclusion: The DM group displayed substantially lower serum vaspin and omentin-1 levels. However, there was no consistent relationship observed between these adipocytokines and metabolic phenotypes.
Collapse
Affiliation(s)
- Mukhtiar Baig
- Dr. Mukhtiar Baig, Ph.D. Department of Clinical Biochemistry, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zohair J Gazzaz
- Dr. Zohair J Gazzaz, Ph.D. Department of Internal Medicine, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marwan A Bakarman
- Dr. Marwan A Bakarman, FFCM. Department of Family and Community Medicine, Faculty of Medicine, Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami H Alzahrani
- Dr. Sami H Alzahrani, SBFM Department of Family Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
30
|
Jung HN, Jung CH. The Role of Anti-Inflammatory Adipokines in Cardiometabolic Disorders: Moving beyond Adiponectin. Int J Mol Sci 2021; 22:ijms222413529. [PMID: 34948320 PMCID: PMC8707770 DOI: 10.3390/ijms222413529] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
The global burden of obesity has multiplied owing to its rapidly growing prevalence and obesity-related morbidity and mortality. In addition to the classic role of depositing extra energy, adipose tissue actively interferes with the metabolic balance by means of secreting bioactive compounds called adipokines. While most adipokines give rise to inflammatory conditions, the others with anti-inflammatory properties have been the novel focus of attention for the amelioration of cardiometabolic complications. This review compiles the current evidence on the roles of anti-inflammatory adipokines, namely, adiponectin, vaspin, the C1q/TNF-related protein (CTRP) family, secreted frizzled-related protein 5 (SFRP5), and omentin-1 on cardiometabolic health. Further investigations on the mechanism of action and prospective human trials may pave the way to their clinical application as innovative biomarkers and therapeutic targets for cardiovascular and metabolic disorders.
Collapse
Affiliation(s)
- Han Na Jung
- Asan Medical Center, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Asan Diabetes Center, Asan Medical Center, Seoul 05505, Korea
| | - Chang Hee Jung
- Asan Medical Center, Department of Internal Medicine, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Asan Diabetes Center, Asan Medical Center, Seoul 05505, Korea
- Correspondence:
| |
Collapse
|
31
|
A. Tindall C, Erkner E, Stichel J, G. Beck-Sickinger A, Hoffmann A, Weiner J, T. Heiker J. Cleavage of the vaspin N-terminus releases cell-penetrating peptides that affect early stages of adipogenesis and inhibit lipolysis in mature adipocytes. Adipocyte 2021; 10:216-231. [PMID: 33866927 PMCID: PMC8078822 DOI: 10.1080/21623945.2021.1910154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Vaspin expression and function is related to metabolic disorders and comorbidities of obesity. In various cellular and animal models of obesity, diabetes and atherosclerosis vaspin has shown beneficial, protective and/or compensatory action. While testing proteases for inhibition by vaspin, we noticed specific cleavage within the vaspin N-terminus and sequence analysis predicted cell-penetrating activity for the released peptides. These findings raised the question whether these proteolytic peptides exhibit biological activity. We synthesized various N-terminal vaspin peptides to investigate cell-penetrating activity and analyse uptake mechanisms. Focusing on adipocytes, we performed microarray analysis and functional assays to elucidate biological activities of the vaspin–derived peptide, which is released by KLK7 cleavage (vaspin residues 21-30; VaspinN). Our study provides first evidence that proteolytic processing of the vaspin N-terminus releases cell-penetrating and bioactive peptides with effects on adipocyte biology. The VaspinN peptide increased preadipocyte proliferation, interfered with clonal expansion during the early stage of adipogenesis and blunted adrenergic cAMP-signalling, downstream lipolysis as well as insulin signalling in mature adipocytes. Protease-mediated release of functional N-terminal peptides presents an additional facet of vaspin action. Future studies will address the mechanisms underlying the biological activities and clarify, if vaspin-derived peptides may have potential as therapeutic agents for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Catherine A. Tindall
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Estelle Erkner
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Jan Stichel
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | | | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Juliane Weiner
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - John T. Heiker
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
32
|
Zouhal H, Zare-Kookandeh N, Haghighi MM, Daraei A, de Sousa M, Soltani M, Abderrahman AB, M Tijani J, Hackney AC, Laher I, Saeidi A. Physical activity and adipokine levels in individuals with type 2 diabetes: A literature review and practical applications. Rev Endocr Metab Disord 2021; 22:987-1011. [PMID: 33931803 DOI: 10.1007/s11154-021-09657-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 12/13/2022]
Abstract
We review the effects of acute and long-term physical activity on adipokine levels in individuals with type 2 diabetes (T2D). Three electronic databases were searched. Studies made in animal models were excluded, while studies based on participants with and without T2D, and also studies with type 1 diabetes were included. Of the 2,450 citations, 63 trials, including randomised control trials, cross-sectional and longitudinal studies, met our inclusion criteria. Seventy and five percent of studies reported the effects of physical activity on tumor necrosis factor-alpha (TNFα), interleukin 6 (IL-6), adiponectin, visfatin, omentin-1, and leptin levels. There are no robust results due to variations in exercise modality, intensity, duration, and also differences in cohort characteristics in the literature. Only four studies described the effects of an acute session of physical activity on adipokine levels. Overall, physical activity improves diabetes status by regulating adipokine levels. However, long-term aerobic + resistance training combined with dietary modifications is likely to be a more effective strategy for improving adipokines profiles in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Hassane Zouhal
- M2S (Laboratoire Mouvement, University of Rennes, 1274, F-35000, Sport, Santé), France.
| | | | | | - Ali Daraei
- Department of Biological Sciences in Sport, Faculty of Sports Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | | | - Mohammad Soltani
- Department of Biological Sciences in Sport, Faculty of Sports Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | | | | | - Anthony C Hackney
- Department of Exercise & Sport Science, Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Ismail Laher
- Faculty of Medicine, Department of Anesthesiology, The University of British Columbia, Pharmacology & Therapeutics, Vancouver, Canada
| | - Ayoub Saeidi
- Department of Physical Education and Sport Sciences, University of Kurdistan, Sanandaj, Iran.
| |
Collapse
|
33
|
Liu C, Zhu T, Zhang J, Wang J, Gao F, Ou Q, Jin C, Xu JY, Zhang J, Tian H, Xu GT, Lu L. Identification of novel key molecular signatures in the pathogenesis of experimental diabetic retinopathy. IUBMB Life 2021; 73:1307-1324. [PMID: 34405947 DOI: 10.1002/iub.2544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022]
Abstract
Deep mining of the molecular mechanisms underlying diabetic retinopathy (DR) is critical for the development of novel therapeutic targets. This study aimed to identify key molecular signatures involved in experimental DR on the basis of integrated bioinformatics analysis. Four datasets consisting of 37 retinal samples were downloaded from the National Center of Biotechnology Information Gene Expression Omnibus. After batch-effect adjustment, bioinformatics tools such as Networkanalyst, Enrichr, STRING, and Metascape were used to evaluate the differentially expressed genes (DEGs), perform enrichment analysis, and construct protein-protein interaction networks. The hub genes were identified using Cytoscape software. The DEGs of interest from the meta-analysis were confirmed by quantitative reverse transcription-polymerase chain reaction in diabetic rats and a high-glucose-treated retinal cell model, respectively. A total of 743 DEGs related to lens differentiation, insulin resistance, and high-density lipoprotein (HDL) cholesterol metabolism were obtained using the meta-analysis. Alterations of dynamic gene expression in the chloride ion channel, retinol metabolism, and fatty acid metabolism were involved in the course of DR in rats. Importantly, H3K27m3 modifications regulated the expression of most DEGs at the early stage of DR. Using an integrated bioinformatics approach, novel molecular signatures were obtained for different stages of DR progression, and the findings may represent distinct therapeutic strategies for DR patients.
Collapse
Affiliation(s)
- Caiying Liu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Tong Zhu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Jieping Zhang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Juan Wang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Furong Gao
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Qingjian Ou
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Caixia Jin
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Jing-Ying Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
| | - Haibin Tian
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
- The Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| | - Lixia Lu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Laboratory of Clinical Visual Science of Tongji Eye Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Pharmacology, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
34
|
Kurowska P, Mlyczyńska E, Dawid M, Dupont J, Rak A. Role of vaspin in porcine ovary: effect on signaling pathways and steroid synthesis via GRP78 receptor and protein kinase A†. Biol Reprod 2021; 102:1290-1305. [PMID: 32149334 PMCID: PMC7703729 DOI: 10.1093/biolre/ioaa027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/16/2019] [Accepted: 02/27/2020] [Indexed: 02/01/2023] Open
Abstract
Vaspin, visceral-adipose-tissue-derived serine protease inhibitor, is involved in the development of obesity, insulin resistance, inflammation, and energy metabolism. Our previous study showed vaspin expression and its regulation in the ovary; however, the role of this adipokine in ovarian cells has never been studied. Here, we studied the in vitro effect of vaspin on various kinase-signaling pathways: mitogen-activated kinase (MAP3/1), serine/threonine kinase (AKT), signal transducer and activator of transcription 3 (STAT3) protein kinase AMP (PRKAA1), protein kinase A (PKA), and on expression of nuclear factor kappa B (NFKB2) as well as on steroid synthesis by porcine ovarian cells. By using western blot, we found that vaspin (1 ng/ml), in a time-dependent manner, increased phosphorylation of MAP3/1, AKT, STAT3, PRKAA1, and PKA, while it decreased the expression of NFKB2. We observed that vaspin, in a dose-dependent manner, increased the basal steroid hormone secretion (progesterone and estradiol), mRNA and protein expression of steroid enzymes using real-time PCR and western blot, respectively, and the mRNA of gonadotropins (FSHR, LHCGR) and steroids (PGR, ESR2) receptors. The stimulatory effect of vaspin on basal steroidogenesis was reversed when ovarian cells were cultured in the presence of a PKA pharmacological inhibitor (KT5720) and when GRP78 receptor was knocked down (siRNA). However, in the presence of insulin-like growth factor type 1 and gonadotropins, vaspin reduced steroidogenesis. Thus, vaspin, by activation of various signaling pathways and stimulation of basal steroid production via GRP78 receptor and PKA, could be a new regulator of porcine ovarian function.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Ewa Mlyczyńska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Monika Dawid
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Joelle Dupont
- Department of Animal Physiology and Livestock Systems, French National Institute for Agricultural Research-INRA, Nouzilly, France
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
35
|
Mehrabani S, Arab A, Karimi E, Nouri M, Mansourian M. Blood Circulating Levels of Adipokines in Polycystic Ovary Syndrome Patients: A Systematic Review and Meta-analysis. Reprod Sci 2021; 28:3032-3050. [PMID: 34472034 DOI: 10.1007/s43032-021-00709-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 07/30/2021] [Indexed: 12/15/2022]
Abstract
A body of studies has examined the circulating concentration of adipokines including apelin, vapin, resistin, and chemerin in polycystic ovary syndrome (PCOS) patients. However, their findings have been inconclusive. Therefore, we systematically reviewed available studies to illuminate the overall circulating concentration of adipokines in PCOS subjects. Cochrane's Library, PubMed, Scopus, and ISI Web of Science databases were searched from the earliest available date up to April 2021 for relevant articles. The quality of each study was assessed by the Newcastle-Ottawa Quality Assessment Scale. The pooled effect size was estimated based on the random effects model, and the standard mean differences (SMD) with a 95% confidence interval (CI) were reported. A total of 88 studies met the inclusion criteria and were included in the current systematic review and meta-analysis. The results of the analysis showed that serum levels of vaspin (SMD 0.69; 95% CI, 0.22 to 1.17; P = 0.004; I2 = 90.6%), chemerin (SMD 1.87; 95% CI, 1.35 to 2.40; P < 0.001; I2 = 94.4%), and resistin (SMD 0.66; 95% CI, 0.41 to 0.91; P < 0.001; I2 = 92.6%) were significantly higher in the PCOS group compared to controls. However, there was no significant difference between the PCOS and control groups in relation to apelin levels (SMD - 0.17; 95% CI, - 1.06 to 0.73; P = 0.714; I2 = 97.8%). We found that serum levels of vaspin, chemerin, and resistin were significantly higher in PCOS subjects compared with controls. It seems that these adipokines can be measured as a useful marker to predict the development of PCOS.
Collapse
Affiliation(s)
- Sanaz Mehrabani
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arman Arab
- Department of Community Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Karimi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Reaserch Development Center, Arah Woman's Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehran Nouri
- Department of Community Nutrition, School of Nutrition and Food Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marjan Mansourian
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
36
|
Šimják P, Anderlová K, Cinkajzlová A, Pařízek A, Kršek M, Haluzík M. The possible role of endocrine dysfunction of adipose tissue in gestational diabetes mellitus. MINERVA ENDOCRINOL 2021; 45:228-242. [PMID: 33000620 DOI: 10.23736/s0391-1977.20.03192-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gestational diabetes mellitus (GDM) is diabetes that is first diagnosed in the second or third trimester of pregnancy in patients who did not have a history of diabetes before pregnancy. Consequences of GDM include increased risk of macrosomia and birth complications in the infant and an increased risk of maternal type 2 diabetes mellitus (T2DM) after pregnancy. There is also a longer-term risk of obesity, T2DM, and cardiovascular diseases in the child. GDM is the result of impaired glucose tolerance due to pancreatic β-cell dysfunction on a background of insulin resistance that physiologically increases during pregnancy. The strongest clinical predictors of GDM are overweight and obesity. The fact that women with GDM are more likely to be overweight or obese suggests that adipose tissue dysfunction may be involved in the pathogenesis of GDM, similarly to T2DM. Adipose tissue is not only involved in energy storage but also functions as an active endocrine organ secreting adipokines (specific hormones and cytokines) with the ability to alter insulin sensitivity. Recent evidence points to a crucial role of numerous adipokines produced by fat in the development of GDM. The following text summarizes the current knowledge about a possible role of selected adipokines in the development of GDM.
Collapse
Affiliation(s)
- Patrik Šimják
- Department of Gynecology and Obstetrics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Kateřina Anderlová
- Department of Gynecology and Obstetrics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.,Third Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Anna Cinkajzlová
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Antonín Pařízek
- Department of Gynecology and Obstetrics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Michal Kršek
- Third Department of Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Martin Haluzík
- Diabetes Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic -
| |
Collapse
|
37
|
Review: Vaspin (SERPINA12) Expression and Function in Endocrine Cells. Cells 2021; 10:cells10071710. [PMID: 34359881 PMCID: PMC8307435 DOI: 10.3390/cells10071710] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 01/31/2023] Open
Abstract
Proper functioning of the body depends on hormonal homeostasis. White adipose tissue is now known as an endocrine organ due to the secretion of multiple molecules called adipokines. These proteins exert direct effects on whole body functions, including lipid metabolism, angiogenesis, inflammation, and reproduction, whereas changes in their level are linked with pathological events, such as infertility, diabetes, and increased food intake. Vaspin-visceral adipose tissue-derived serine protease inhibitor, or SERPINA12 according to serpin nomenclature, is an adipokine discovered in 2005 that is connected to the development of insulin resistance, obesity, and inflammation. A significantly higher amount of vaspin was observed in obese patients. The objective of this review was to summarize the latest findings about vaspin expression and action in endocrine tissues, such as the hypothalamus, pituitary gland, adipose tissue, thyroid, ovary, placenta, and testis, as well as discuss the link between vaspin and pathologies connected with hormonal imbalance.
Collapse
|
38
|
Vaspin in atherosclerotic disease and cardiovascular risk in axial spondyloarthritis: a genetic and serological study. Arthritis Res Ther 2021; 23:111. [PMID: 33849644 PMCID: PMC8042971 DOI: 10.1186/s13075-021-02499-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Background Vaspin is a novel anti-inflammatory adipokine associated with cardiovascular (CV) disease and inflammation in chronic inflammatory conditions different from axial spondyloarthritis (axSpA). Given the high incidence of CV disease (mainly due to accelerated atherosclerosis) exhibited by axSpA patients, we wondered if vaspin could also be a key molecule in this process. However, data on the role of vaspin regarding atherosclerotic disease in the context of axSpA is scarce. For this reason, we aimed to evaluate the implication of vaspin, at the genetic and serological level, in subclinical atherosclerosis and CV risk in axSpA. Methods This study included 510 patients diagnosed with axSpA. Carotid ultrasound (US) was performed to evaluate the presence of subclinical atherosclerosis. Three vaspin gene variants (rs2236242, rs7159023, and rs35262691) were genotyped by TaqMan probes. Serum vaspin levels were assessed by enzyme-linked immunosorbent assay. Statistical analysis was performed using STATA® v.11.1. Results Serum vaspin levels were significantly higher in female patients than in males and also in obese patients when compared to those with normal weight (p < 0.05). At the genetic level, we disclosed that the minor allele of rs2236242 (A) was associated with lower serum vaspin levels in axSpA, while the rs7159023 minor allele (A) was linked to higher serum levels (p < 0.05). When the three polymorphisms assessed were combined conforming haplotypes, we disclosed that the TGC haplotype related to high serum levels of vaspin (p = 0.01). However, no statistically significant association was observed between vaspin and markers of subclinical atherosclerosis, both at the genetic and serological level. Conclusions Our results revealed that vaspin is linked to CV risk factors that may influence on the atherosclerotic process in axSpA. Additionally, we disclosed that serum vaspin concentration is genetically modulated in a large cohort of patients with axSpA. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-021-02499-7.
Collapse
|
39
|
PREDICTION OF PROGRESSION OF ATHEROSCLEROSIS IN PATIENTS WITH TYPE 2 DIABETES MELLITUS AND CHRONIC PANCREATITIS. EUREKA: HEALTH SCIENCES 2021. [DOI: 10.21303/2504-5679.2021.001585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of the research was to study the relationship between the level of vaspin and the thickness of the intima-media of the carotid artery (CIMT), parameters of carbohydrate and lipid metabolism, functional state of the pancreas, markers of inflammation, and to create a mathematical model for the progression of atherosclerosis in patients with type 2 diabetes mellitus (DM-2) and chronic pancreatitis (CP).
Materials and methods: Serum vaspin level in 114 people with DM-2 or CP and a combination of these diseases were obtained. The parameters of lipid and carbohydrate metabolism, inflammation and functional status of pancreas were studied. CIMT was measured by means of B-mode ultrasonography. The obtained data were processed by the methods of non-parametric statistics to study the dependence of the parameters on the group, questions of the statistical significance of differences between two unrelated groups, the tightness of the relationship between the analyzed parameters.
Results: A statistically significant (p<0.05) increase in serum vaspin levels in patients with DM-2 compared with other studied groups was obtained. A reliable correlation between vaspin, carbohydrate metabolism and CIMT was obtained, and it appeared to be dependent on the presence of comorbid pathology. The value of vaspin / tumor necrosis factor-α (TNF-α), starting from which CIMT increase is considered present, was calculated.
Conclusions: Undertaken study confirmed the positive connection of vaspin with insulin resistance markers, but also demonstrated that serum vaspin levels is positively associated with CIMT. A mathematical model for predicting the progression of atherosclerosis in patients with the studied pathology was developed. It was demonstrated that the Vaspin/TNF-α ratio can be used as a marker of early atherosclerotic lesion of vascular wall, indicating the role of vaspin in atherogenesis
Collapse
|
40
|
Saeidi A, Haghighi MM, Kolahdouzi S, Daraei A, Abderrahmane AB, Essop MF, Laher I, Hackney AC, Zouhal H. The effects of physical activity on adipokines in individuals with overweight/obesity across the lifespan: A narrative review. Obes Rev 2021; 22:e13090. [PMID: 32662238 DOI: 10.1111/obr.13090] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022]
Abstract
This narrative review summarizes current knowledge on the effects of physical activity (PA) on adipokine levels in individuals with overweight and obesity. Approximately 90 investigations including randomized control, cross-sectional and longitudinal studies that reported on the effects of a single session of PA (acute) or long-term PA (chronic) on adipokine levels in individuals with overweight/obesity were reviewed. The findings support the notion that there is consensus on the benefits of chronic exercise training-regardless of the mode (resistance vs. aerobic), intensity and cohort (healthy vs. diabetes)-on adipokine levels (such as tumour necrosis factor-alpha, interleukin-6, adiponectin, visfatin, omentin-1 and leptin). However, several confounding factors (frequency, intensity, time and type of exercise) can alter the magnitude of the effects of an acute exercise session. Available evidence suggests that PA, as a part of routine lifestyle behaviour, improves obesity complications by modulating adipokine levels. However, additional research is needed to help identify the most effective interventions to elicit the most beneficial changes in adipokine levels in individuals with overweight/obesity.
Collapse
Affiliation(s)
- Ayoub Saeidi
- Department of Physical Education, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Marjan Mosalman Haghighi
- Faculty of Medicine and Health, Cardiology Centre, The University of Sydney, The Children's Hospital at Westmead, Sydney, Australia
| | - Sarkawt Kolahdouzi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Mazandaran, Babolsar, Iran
| | - Ali Daraei
- Department of Biological Sciences in Sport, Faculty of Sports Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | | | - M Faadiel Essop
- Centre for Cardio-metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, Vancouver, Canada
| | - Anthony C Hackney
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Hassane Zouhal
- Movement, Sport and Health Sciences Laboratory (M2S), UFR-STAPS, University of Rennes 2-ENS Rennes, Rennes, France
| |
Collapse
|
41
|
Can Figen C, Noyan T, Özdemir Ö. The investigation effect of weight loss on serum vaspin, apelin-13, and obestatin levels in obese individual. TURKISH JOURNAL OF BIOCHEMISTRY 2020. [DOI: 10.1515/tjb-2019-0143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Objectives
It was aimed to investigate if there were any significant corresponding changes on adipokine levels in obese subjects who achieved a 10% reduction in body weight.
Methods
Thirty obese and 25 healthy adults were enrolled in present study, and serum levels of vaspin, apelin-13, obestatin, and insulin were determined with the ELISA method.
Results
The serum obestatin and apelin-13 values of the obese group obtained as basal and after weight loss was significantly lower than in controls (p<0.05, p<0.01, p<0.01, p<0.05, respectively); however, weight loss did not cause significant changes on these parameters in obese groups (p>0.05). The vaspin level did not differ between the groups (p>0.05). The obese group had characterized increased serum insulin and insulin resistance assessment by the homeostatic assay (HOMA-IR) levels compared to controls (p<0.01, p<0.05, respectively); also, weight loss caused a significant decrease in these parameters compared to basal levels (p<0.01). No significant correlation was detected among the vaspin, apelin-13 and obestatin levels in the obese group (p>0.05).
Conclusions
Obese individuals exhibited decreased levels of apelin-13 and obestatin. Moreover, 10% weight loss caused a significant reduction of insulin resistance, but no significant change was detected on apelin-13, obestatin, and vaspin levels.
Collapse
Affiliation(s)
- Cansu Can Figen
- Ordu University , Faculty of Medicine , Department of Biochemistry , Ordu , Turkey
| | - Tevfik Noyan
- Ordu University , Faculty of Medicine , Department of Biochemistry , Ordu , Turkey
| | - Özlem Özdemir
- Ordu University , Faculty of Medicine, Department of Internal Medicine , Ordu , Turkey
| |
Collapse
|
42
|
Barbe A, Kurowska P, Mlyczyńska E, Ramé C, Staub C, Venturi E, Billon Y, Rak A, Dupont J. Adipokines expression profiles in both plasma and peri renal adipose tissue in Large White and Meishan sows: A possible involvement in the fattening and the onset of puberty. Gen Comp Endocrinol 2020; 299:113584. [PMID: 32827511 DOI: 10.1016/j.ygcen.2020.113584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 08/08/2020] [Indexed: 01/15/2023]
Abstract
In pig, backfat deposition is strongly related to the growth and reproductive performance. However, the molecular regulatory mechanisms of adipose tissue are not clearly understood. Adipose tissue is now recognized as an important endocrine organ that secretes a variety of factors including adipokines. However, the regulation of expression pattern of these adipokines in both plasma and visceral white adipose tissue (WAT) in lean and fat pig is unclear. In the present study, we used two representative porcine breeds (Large White, LW; Meishan, MS) with contrasting backfat thickness and sexual maturity age. Using specific ELISA assays, we determined the plasma profile of eight adipokines, leptin, adiponectin, visfatin, apelin, chemerin, resistin, omentin and vaspin in LW and MS sows. By RT-qPCR and western-blot we also investigated the mRNA and protein levels of these adipokines and their cognate receptors (LEPR, ADIPOR1, ADIPOR2, CMKLR1, CCRL2, GPR1, APLNR, TLR4, ROR1, CAP1 and HSPA5) in the peri renal WAT, respectively. At both plasma and peri renal WAT level, we found that the amounts of leptin, chemerin, resistin and vaspin were higher whereas those of adiponectin and omentin were lower in MS than LW sows. Plasma and adipose tissue visfatin and apelin levels were not different between the two breeds. Moreover, we noted that the variations of peri renal WAT adipokines observed between MS and LW were similar at the protein and mRNA level except for chemerin and apelin suggesting post-transcriptional modifications for these two adipokines. Finally, among the eight adipokines studied, we showed that only the plasma concentrations of leptin and chemerin were positively and those of adiponectin, negatively associated with the thickness of fat and opposite correlation was found for the onset of puberty in both LW and MS animals. Taken together, these results support a potential involvement of adipokines in WAT regulation and its link with the onset of the puberty in sows.
Collapse
Affiliation(s)
- Alix Barbe
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - Patrycja Kurowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30 387 Krakow, Poland
| | - Ewa Mlyczyńska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30 387 Krakow, Poland
| | - Christelle Ramé
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France
| | - Christophe Staub
- INRAE - Unité Expérimentale de Physiologie Animale de l'Orfrasière UEPAO 1297, F 37380 Nouzilly, France
| | - Eric Venturi
- INRAE - Unité Expérimentale de Physiologie Animale de l'Orfrasière UEPAO 1297, F 37380 Nouzilly, France
| | - Yvon Billon
- INRAE-Pig Innovative Breeding Experimental Facility, Le Magneraud, 17000 Surgères, France
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30 387 Krakow, Poland
| | - Joëlle Dupont
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; Université François Rabelais de Tours, F-37041 Tours, France; IFCE, F-37380 Nouzilly, France.
| |
Collapse
|
43
|
Recinella L, Orlando G, Ferrante C, Chiavaroli A, Brunetti L, Leone S. Adipokines: New Potential Therapeutic Target for Obesity and Metabolic, Rheumatic, and Cardiovascular Diseases. Front Physiol 2020; 11:578966. [PMID: 33192583 PMCID: PMC7662468 DOI: 10.3389/fphys.2020.578966] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Besides its role as an energy storage organ, adipose tissue can be viewed as a dynamic and complex endocrine organ, which produces and secretes several adipokines, including hormones, cytokines, extracellular matrix (ECM) proteins, and growth and vasoactive factors. A wide body of evidence showed that adipokines play a critical role in various biological and physiological functions, among which feeding modulation, inflammatory and immune function, glucose and lipid metabolism, and blood pressure control. The aim of this review is to summarize the effects of several adipokines, including leptin, diponectin, resistin, chemerin, lipocalin-2 (LCN2), vaspin, omentin, follistatin-like 1 (FSTL1), secreted protein acidic and rich in cysteine (SPARC), secreted frizzled-related protein 5 (SFRP5), C1q/TNF-related proteins (CTRPs), family with sequence similarity to 19 member A5 (FAM19A5), wingless-type inducible signaling pathway protein-1 (WISP1), progranulin (PGRN), nesfatin-1 (nesfatin), visfatin/PBEF/NAMPT, apelin, retinol binding protein 4 (RPB4), and plasminogen activator inhibitor-1 (PAI-1) in the regulation of insulin resistance and vascular function, as well as many aspects of inflammation and immunity and their potential role in managing obesity-associated diseases, including metabolic, osteoarticular, and cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | | | - Luigi Brunetti
- Department of Pharmacy, Gabriele d’Annunzio University, Chieti, Italy
| | | |
Collapse
|
44
|
Circulating Levels of Visceral Adipose Tissue-Derived Serine Protease Inhibitor (Vaspin) Appear as a Marker of Musculoskeletal Pain Disability. Diagnostics (Basel) 2020; 10:diagnostics10100797. [PMID: 33049941 PMCID: PMC7599595 DOI: 10.3390/diagnostics10100797] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/16/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022] Open
Abstract
Musculoskeletal pain (MSP), specifically low back pain (LBP), is often associated with several adipose tissue-derived cytokines (adipokines) and body composition, but their correlations with the LBP-related disability/severity phenotypes remain poorly understood. In this cross-sectional study, two self-reported validated questionnaires were used to collect back pain and disability data in an ethnically homogeneous family-based population sample (N = 1078). Plasma levels of relatively new adipokines, vaspin and adipsin, were detected by ELISA. Body composition parameters, including fat, skeletal muscle mass, extracellular water (ECW), and others were assessed through bioelectrical impedance analysis (BIA) technology. Statistical analysis was conducted, accounting for the familial composition of the sample. The multiple regression analyses with four LBP-related phenotypes as dependent variables consistently showed, for the first time, the significant associations with vaspin levels, regardless of other covariates. The odds ratios (OR)/SD ranged between 1.24 (95%CI = 1.03-1.50) and 1.33 (95%CI = 1.07-1.64), depending on the LBP phenotype. Among the tested body composition covariates, only ECW levels displayed consistent and highly significant associations with all tested LBP phenotypes (OR from 1.43, 95%CI = 1.14-1.79 to 1.68, 95%CI = 1.26-2.24). The results clearly suggest that circulating concentrations of vaspin and ECW levels could serve as biomarkers of MSP/LBP severity and complications.
Collapse
|
45
|
Yang HW, Huang YG, Gai CL, Chai GR, Lee S. Serum vaspin levels are positively associated with diabetic retinopathy in patients with type 2 diabetes mellitus. J Diabetes Investig 2020; 12:566-573. [PMID: 32797727 PMCID: PMC8015830 DOI: 10.1111/jdi.13385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/06/2020] [Accepted: 08/06/2020] [Indexed: 11/29/2022] Open
Abstract
Aims/Introduction Vaspin is linked to obesity and its metabolic abnormalities. However, the role of vaspin serum levels in diabetic retinopathy (DR) is unknown. In the present study, we investigated the association between serum levels of vaspin and both DR and vision‐threatening DR. Materials and Methods This was a cross‐sectional single‐center observational study from December 2018 to September 2019. We evaluated circulating serum levels of vaspin in 372 participants with type 2 diabetes. DR was screened through detailed ocular examination. DR patients were also divided two groups: vision‐threatening DR and non‐vision‐threatening DR. The relationship between vaspin and DR was investigated by univariate and multivariate logistic regression analyses, and the results are shown as odds ratios with 95% confidence intervals. Results The vaspin serum levels of 372 patients were obtained, with a median value of 1.50 ng/mL (interquartile range 0.94–2.18 ng/mL). The median age of those patients was 53 years (interquartile range 44–62 years), and 44.4% were women. Patients with DR and VDTR had significantly increased vaspin serum levels (P < 0.001 andP < 0.001). A multivariable regression model found that patients with high levels of vaspin were approximately 1.85‐fold (odds ratio for per unit increase 1.85, 95% confidence interval 1.43–2.55; P < 0.001) more likely to experience DR, and 3.76‐fold (odds ratio for per unit increase 3.76, 95% confidence interval 2.05–6.55; P < 0.001) more likely to experience VTDR. The predictive value of vaspin was stronger in women than in men. Conclusion Higher vaspin serum levels were associated with an increased risk of DR and VDTR in patients with type 2 diabetes, which showed that vaspin is an important indicator factor for DR.
Collapse
Affiliation(s)
- Hong-Wei Yang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yong-Gang Huang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Chun-Liu Gai
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guang-Rui Chai
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shufang Lee
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
46
|
Kurowska P, Mlyczyńska E, Dupont J, Rak A. Novel Insights on the Corpus Luteum Function: Role of Vaspin on Porcine Luteal Cell Angiogenesis, Proliferation and Apoptosis by Activation of GRP78 Receptor and MAP3/1 Kinase Pathways. Int J Mol Sci 2020; 21:E6823. [PMID: 32957618 PMCID: PMC7555131 DOI: 10.3390/ijms21186823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Formation and limited lifespan of corpus luteum (CL) are important for proper ovarian periodicity and fertility. Failed vascularization, imbalance between proliferation and apoptosis leads to luteal phase deficiency and infertility. The aim of this study was to examine the effect of vaspin on angiogenesis, apoptosis and proliferation as well as the involvement of 78-kDa glucose-regulated protein receptor (GRP78) and mitogen-activated kinase (MAP3/1) in these processes. Porcine luteal cells were incubated with vaspin (0.1-10 ng/mL) for 24 h to 72 h and then mRNA and protein expression of angiogenesis: vascular endothelial growth factor (VEGFA), fibroblast growth factor 2 (FGF2), angiopoietin 1 (ANGPT1), VEGFA receptors (VEGFR1, VEGFR2), apoptosis: caspase 3, bcl-2-like protein 4 (BAX), B-cell lymphoma (BCL2), and proliferation: proliferating cells nuclear antigen (PCNA), cyclin A factors as well as secretion of VEGFA, FGF2, ANGT1 were measured by real-time polymerase chain reaction (PCR), immunoblotting and enzyme-linked immunosorbent assay (ELISA), respectively. Moreover, apoptosis was assessed by caspase activity using the Caspase-Glo 3/7 assay, while proliferation was by alamarBlue. We found that vaspin enhanced luteal cell angiogenesis, proliferation, and significantly decreased apoptosis. Additionally, using GRP78 siRNA and the pharmacological inhibitor of MAP3/1 (PD98059), we observed that the effect of vaspin was reversed to the control level in all investigated processes. Taken together, our results suggest that vaspin is a new regulator of female fertility by direct regulation of CL formation and maintenance of luteal cell function.
Collapse
Affiliation(s)
- Patrycja Kurowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (P.K.); (E.M.)
| | - Ewa Mlyczyńska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (P.K.); (E.M.)
| | - Joelle Dupont
- INRAE, UMR85, Unité Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France;
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, 30-387 Krakow, Poland; (P.K.); (E.M.)
| |
Collapse
|
47
|
Serinkan Cinemre FB, Cinemre H, Bahtiyar N, Kahyaoğlu B, Ağaç MT, Shundo H, Sevinç L, Aydemir B. Apelin, Omentin-1, and Vaspin in patients with essential hypertension: association of adipokines with trace elements, inflammatory cytokines, and oxidative damage markers. Ir J Med Sci 2020; 190:97-106. [PMID: 32583310 DOI: 10.1007/s11845-020-02272-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/27/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND Hypertension (HT) is a disease associated with endothelial dysfunction which is related to some adipokines and pro- and anti-inflammatory cytokines. AIMS Our aim was to investigate roles of apelin, omentin-1, and vaspin in essential HT and to evaluate their relationships with other pro- and anti-inflammatory cytokines, trace elements, and oxidative stress. We also investigated these parameters to determine asymptomatic target organ damage period and grading essential hypertension. METHODS One hundred fifty-three patients diagnosed with essential hypertension and 45 healthy controls were included in the study. Hypertension was defined as a systolic blood pressure > 140 mmHg and/or a diastolic blood pressure > 90 mm Hg or current use of an antihypertensive medication. The patients who had secondary HT, other chronic metabolic, cardiovascular, cerebrovascular diseases were excluded. History and physical exam including detailed cardiovascular examination were performed in all participants. Adipokines, cytokines, trace elements, lipid peroxidation, and ischemia-modified albumin levels were measured in blood samples by biochemical methods. RESULTS Vaspin, IL-4, IL-8, IL-10, selenium, and zinc levels were significantly lower in the HT group compared to healthy controls while omentin-1, TNF-α, copper, iron, MDA, SOD, and IMA-C levels were significantly higher in HT patients compared to controls. Multiple ordinal regression revealed that TNF-α, IL-10, and body mass index of patients were statistically significant independent predictors (P = 0.024, P = 0.019, and P = 0.032, respectively) for grading of HT. IL-4 and IL-10 were significantly higher in patients with asymptomatic target organ damage, compared to patients without asymptomatic target organ damage (P = 0.032 and P = 0.015, respectively). Our findings suggest that adipokines apelin, omentin, and vaspin may be involved in hypertension by a complex interaction with the anti- and pro-inflammatory cytokines, trace elements, and oxidative stress pathways.
Collapse
Affiliation(s)
- Fatma Behice Serinkan Cinemre
- Department of Biochemistry, Faculty of Medicine, Sakarya University, Korucuk Campus Adapazari, 54290, Sakarya, Turkey.
| | - Hakan Cinemre
- Department of Internal Medicine, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Nurten Bahtiyar
- Department of Biophysics, Cerrahpaşa Medical Faculty, Istanbul University Cerrahpaşa, Istanbul, Turkey
| | - Behlül Kahyaoğlu
- Department of Cardiology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Mustafa Tarık Ağaç
- Department of Cardiology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Harika Shundo
- Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Leyla Sevinç
- Department of Biochemistry, Faculty of Medicine, Sakarya University, Korucuk Campus Adapazari, 54290, Sakarya, Turkey
| | - Birsen Aydemir
- Department of Biophysics, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| |
Collapse
|
48
|
Membrane Phospholipids and Polyphosphates as Cofactors and Binding Molecules of SERPINA12 (vaspin). Molecules 2020; 25:molecules25081992. [PMID: 32344508 PMCID: PMC7221550 DOI: 10.3390/molecules25081992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 01/21/2023] Open
Abstract
Visceral adipose tissue derived serine protease inhibitor (vaspin) is a member of the serpin family and has been shown to have beneficial effects on glucose tolerance, insulin stability as well as adipose tissue inflammation, parameters seriously affected by obesity. Some of these effects require inhibition of target proteases such as kallikrein 7(KLK7) and many studies have demonstrated vaspin-mediated activation of intracellular signaling cascades in various cells and tissues. So far, little is known about the exact mechanism how vaspin may trigger these intracellular signaling events. In this study, we investigated and characterized the interaction of vaspin with membrane lipids and polyphosphates as well as their potential regulatory effects on serpin activity using recombinant vaspin and KLK7 proteins and functional protein variants thereof. Here, we show for the first time that vaspin binds to phospholipids and polyphosphates with varying effects on KLK7 inhibition. Vaspin binds strongly to monophosphorylated phosphatidylinositol phosphates (PtdInsP) with no effect on vaspin activation. Microscale thermophoresis (MST) measurements revealed high-affinity binding to polyphosphate 45 (KD: 466 ± 75 nM) and activation of vaspin in a heparin-like manner. Furthermore, we identified additional residues in the heparin binding site in β-sheet A by mutating five basic residues resulting in complete loss of high-affinity heparin binding. Finally, using lipid overlay assays, we show that these residues are additionally involved in PtdInsP binding. Phospholipids play a major role in membrane trafficking and signaling whereas polyphosphates are procoagulant and proinflammatory agents. The identification of phospholipids and polyphosphates as binding partners of vaspin will contribute to the understanding of vaspins involvement in membrane trafficking, signaling and beneficial effects associated with obesity.
Collapse
|
49
|
Mohamad J, Sarig O, Malki L, Rabinowitz T, Assaf S, Malovitski K, Shkury E, Mayer T, Vodo D, Peled A, Daniely D, Pavlovsky M, Shomron N, Samuelov L, Sprecher E. Loss-of-Function Variants in SERPINA12 Underlie Autosomal Recessive Palmoplantar Keratoderma. J Invest Dermatol 2020; 140:2178-2187. [PMID: 32247861 DOI: 10.1016/j.jid.2020.02.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/09/2020] [Accepted: 02/16/2020] [Indexed: 12/14/2022]
Abstract
Inherited palmoplantar keratodermas refer to a large and heterogeneous group of conditions resulting from abnormal epidermal differentiation and featuring thickening of the skin of the palms and soles. Here, we aimed at delineating the genetic basis of an autosomal recessive form of palmoplantar keratodermas manifesting with erythematous hyperkeratotic plaques over the palms and soles, extending to non-palmoplantar areas. Whole-exome sequencing in affected individuals revealed homozygous nonsense variants in the SERPINA12 gene. SERPINA12 encodes the visceral adipose tissue-derived serpin A12, a serine protease inhibitor. The pathogenic variants were found to result in reduced visceral adipose tissue-derived serpin A12 expression in patients' skin biopsies in comparison to healthy controls. In addition, SERPINA12 downregulation in three-dimensional skin equivalents was associated with marked epidermal acanthosis and hyperkeratosis, replicating the human phenotype. Moreover, decreased SERPINA12 expression resulted in reduced visceral adipose tissue-derived serpin A12-mediated inhibition of kallikrein 7 activity as well as decreased levels of desmoglein-1 and corneodesmosin, two known kallikrein 7 substrates, which are required for normal epidermal differentiation. The present data, taken collectively, demarcate a unique type of autosomal recessive palmoplantar keratodermas, attribute to visceral adipose tissue-derived serpin A12 a role in skin biology, and emphasize the importance of mechanisms regulating proteolytic activity for normal epidermal differentiation.
Collapse
Affiliation(s)
- Janan Mohamad
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Sarig
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Liron Malki
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tom Rabinowitz
- Department of Cell and Developmental Biology, Tel Aviv University, Ramat Aviv, Israel
| | - Sari Assaf
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kiril Malovitski
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eden Shkury
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Talia Mayer
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Dan Vodo
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Alon Peled
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Daniely
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mor Pavlovsky
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Tel Aviv University, Ramat Aviv, Israel
| | - Liat Samuelov
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
50
|
Ali M, Sajid M, Khalid MAU, Kim SW, Lim JH, Huh D, Choi KH. A fluorescent lateral flow biosensor for the quantitative detection of Vaspin using upconverting nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117610. [PMID: 31606675 DOI: 10.1016/j.saa.2019.117610] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/19/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Vaspin is a protein present in human serum that can cause type-2 diabetes, obesity, and other cardiovascular diseases. We report fluorescent upconverting nanoparticles (UCNPs)-based lateral flow biosensor for ultrasensitive detection of Vaspin. A pair (primary and secondary) of cognate aptamers was used that has duo binding with Vaspin. UCNPs with a diameter of around 100 nm were used as a tag to label a detection probe (secondary aptamer). A primary aptamer (capture probe) was immobilized on the test zone. Sandwich type hybridization reactions among the conjugate probe, target Vaspin, and primary aptamer were performed on the lateral flow biosensor. In the presence of target Vaspin, UCNPs were captured on the test zone of the biosensor and the fluorescent intensity of the captured UCNPs was measured through a colorimetric app under NIR. Fluorescence intensity indicates the quantity of Vaspin present in the sample. A range of Vaspin concentration across 0.1-55 ng ml-1 with a Limit of detection (LOD) 39 pg ml-1 was tested through this UCNPs based LFSA with high sensitivity, reproducibility and repeatability, whereas it's actual range in human blood is from 0.1 to 7 ng ml-1. Therefore, this research provides a well-suited lateral flow strip with an ultrasensitive and low-cost approach for the early diagnosis of type-2 diabetes and this could be applied to any targets with a duo of aptamers generated.
Collapse
Affiliation(s)
- Muhsin Ali
- Department of Mechatronics Engineering, Jeju National University, Jeju, South Korea
| | - Memoon Sajid
- Department of Mechatronics Engineering, Jeju National University, Jeju, South Korea; GIK Institute of Engineering Sciences and Technology Topi, Swabi, KP, Pakistan.
| | | | - Soo Wan Kim
- Department of Mechatronics Engineering, Jeju National University, Jeju, South Korea.
| | - Jong Hwan Lim
- Department of Mechatronics Engineering, Jeju National University, Jeju, South Korea.
| | - Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kyung Hyun Choi
- Department of Mechatronics Engineering, Jeju National University, Jeju, South Korea.
| |
Collapse
|