1
|
Wu E, Guan J, Yu Y, Lin S, Ding T, Chu Y, Pan F, Liu M, Yang Y, Zhang Z, Zhang J, Zhan C, Qian J. Exemplifying interspecies variation of liposome in vivo fate by the effects of anti-PEG antibodies. Acta Pharm Sin B 2024; 14:4994-5007. [PMID: 39664439 PMCID: PMC11628802 DOI: 10.1016/j.apsb.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 12/13/2024] Open
Abstract
The different fate of liposomes among species has been discovered and mentioned in many studies, but the underlying mechanisms have not been explored. In the present work, we concentrated on the in vivo fate of PEGylated liposomes (sLip) in three commonly used species (mice, rats, and dogs). It was exhibited that the accelerated blood clearance (ABC) phenomenon and hypersensitivity in large animals (beagle dogs) were much more significant than that in rodents. We demonstrated that anti-PEG IgM (partially) and complement (mostly) determined the elimination of sLip and linked the distinct interspecies performances with the diverse complement capacity among species. Based on the data from animals and clinical patients, it was revealed that the fate of sLip in large animals was closer to that in humans, for the sufficient complement capacity could expose the potential adverse reactions caused by anti-PEG antibodies. Our results suggested that the distinctive interspecies performances of sLip were highly related to the physiological variabilities among species, which should not be overlooked in the innovation and translation of nanomedicines.
Collapse
Affiliation(s)
- Ercan Wu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education & Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 201203, China
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Juan Guan
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education & Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 201203, China
| | - Yifei Yu
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Shiqi Lin
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Tianhao Ding
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Yuxiu Chu
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Feng Pan
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education & Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 201203, China
| | - Mengyuan Liu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education & Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 201203, China
| | - Yang Yang
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Zui Zhang
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Jian Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Changyou Zhan
- Department of Pharmacy, Shanghai Pudong Hospital, Pudong Medical Center & Department of Pharmacology, School of Basic Medical Sciences & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Jun Qian
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education & Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 201203, China
| |
Collapse
|
2
|
Nicolussi P, Pilo G, Cancedda MG, Peng G, Chau NDQ, De la Cadena A, Vanna R, Samad YA, Ahmed T, Marcellino J, Tedde G, Giro L, Ylmazer A, Loi F, Carta G, Secchi L, Dei Giudici S, Macciocu S, Polli D, Nishina Y, Ligios C, Cerullo G, Ferrari A, Bianco A, Fadeel B, Franzoni G, Delogu LG. Biocompatibility of Water-Dispersible Pristine Graphene and Graphene Oxide Using a Close-to-Human Animal Model: A Pilot Study on Swine. Adv Healthc Mater 2024:e2401783. [PMID: 39385652 DOI: 10.1002/adhm.202401783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/30/2024] [Indexed: 10/12/2024]
Abstract
Graphene-based materials (GBMs) are of considerable interest for biomedical applications, and the pilot study on the toxicological and immunological impact of pristine graphene (GR) and graphene oxide (GO) using swine as a close-to-human provides valuable insights. First, ex vivo experiments are conducted on swine blood cells, then GBMs are injected intraperitoneally (i.p.) into swine. Hematological and biochemical analyses at various intervals indicate that neither GO nor GR cause systemic inflammation, pro-coagulant responses, or renal or hepatic dysfunction. Importantly, no systemic toxicity is observed. Analysis of a panel of 84 immune-related genes shows minimal impact of GO and GR. The animals are sacrificed 21 days post-injection, and transient absorption imaging and Raman mapping show the presence of GO and GR in the mesentery only. Histological evaluation reveals no signs of alterations in other organs. Thus, clusters of both materials are detected in the mesentery, and GO aggregates are surrounded only by macrophages with the formation of granulomas. In contrast, modest local reactions are observed around the GR clusters. Overall, these results reveal that i.p. injection of GBMs resulted in a modest local tissue reaction without systemic toxicity. This study, performed in swine, provides essential guidance for future biomedical applications of graphene.
Collapse
Affiliation(s)
- Paola Nicolussi
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | | | | | - Guotao Peng
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Ngoc Do Quyen Chau
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg ISIS, Strasbourg, 67000, France
| | | | - Renzo Vanna
- Istituto di Fotonica e Nanotecnologie - CNR, Milan, 20133, Italy
| | - Yarjan Abdul Samad
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
- Department of Aerospace Engineering, Khalifa University of Science & Technology, Abu Dhabi, 127788, UAE
| | - Tanweer Ahmed
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Jeremia Marcellino
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Giuseppe Tedde
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Linda Giro
- ImmuneNano Laboratory, Department of Biomedical Sciences, University of Padua, Padua, 35131, Italy
| | - Acelya Ylmazer
- Department of Biomedical Engineering, Ankara University, Ankara, 06830, Turkey
| | - Federica Loi
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Gavina Carta
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Loredana Secchi
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Silvia Dei Giudici
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Simona Macciocu
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Dario Polli
- Dipartimento di Fisica, Politecnico di Milano, Milan, 20133, Italy
- Istituto di Fotonica e Nanotecnologie - CNR, Milan, 20133, Italy
| | - Yuta Nishina
- Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
- Research Core for Interdisciplinary Sciences, Okayama University, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Ciriaco Ligios
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Giulio Cerullo
- Dipartimento di Fisica, Politecnico di Milano, Milan, 20133, Italy
- Istituto di Fotonica e Nanotecnologie - CNR, Milan, 20133, Italy
| | - Andrea Ferrari
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg ISIS, Strasbourg, 67000, France
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, 17177, Sweden
| | - Giulia Franzoni
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, 07100, Italy
| | - Lucia Gemma Delogu
- ImmuneNano Laboratory, Department of Biomedical Sciences, University of Padua, Padua, 35131, Italy
- Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi, 127788, UAE
| |
Collapse
|
3
|
Naaz A, Turnquist HR, Gorantla VS, Little SR. Drug delivery strategies for local immunomodulation in transplantation: Bridging the translational gap. Adv Drug Deliv Rev 2024; 213:115429. [PMID: 39142608 DOI: 10.1016/j.addr.2024.115429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Drug delivery strategies for local immunomodulation hold tremendous promise compared to current clinical gold-standard systemic immunosuppression as they could improve the benefit to risk ratio of life-saving or life-enhancing transplants. Such strategies have facilitated prolonged graft survival in animal models at lower drug doses while minimizing off-target effects. Despite the promising outcomes in preclinical animal studies, progression of these strategies to clinical trials has faced challenges. A comprehensive understanding of the translational barriers is a critical first step towards clinical validation of effective immunomodulatory drug delivery protocols proven for safety and tolerability in pre-clinical animal models. This review overviews the current state-of-the-art in local immunomodulatory strategies for transplantation and outlines the key challenges hindering their clinical translation.
Collapse
Affiliation(s)
- Afsana Naaz
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, 15213, United States.
| | - Heth R Turnquist
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, United States.
| | - Vijay S Gorantla
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, United States; Departments of Surgery, Ophthalmology and Bioengineering, Wake Forest School of Medicine, Wake Forest Institute of Regenerative Medicine, Winston Salem, NC, 27101, United States.
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, United States; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|
4
|
Barta BA, Radovits T, Dobos AB, Tibor Kozma G, Mészáros T, Berényi P, Facskó R, Fülöp T, Merkely B, Szebeni J. Comirnaty-induced cardiopulmonary distress and other symptoms of complement-mediated pseudo-anaphylaxis in a hyperimmune pig model: Causal role of anti-PEG antibodies. Vaccine X 2024; 19:100497. [PMID: 38933697 PMCID: PMC11201123 DOI: 10.1016/j.jvacx.2024.100497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/27/2024] [Accepted: 05/11/2024] [Indexed: 06/28/2024] Open
Abstract
Background Comirnaty, Pfizer-BioNTech's polyethylene-glycol (PEG)-containing Covid-19 vaccine, can cause hypersensitivity reactions (HSRs), or rarely, life-threatening anaphylaxis in a small fraction of immunized people. A causal role of anti-PEG antibodies (Abs) has been proposed, but causality has not yet proven in an animal model. The aim of this study was to provide such evidence using pigs immunized against PEG, which displayed very high levels of anti-PEG antibodies (Abs). We also aimed to find evidence for a role of complement activation and thromboxane A2 release in blood to explore the mechanism of anaphylaxis. Methods Pigs (n = 6) were immunized with 0.1 mg/kg PEGylated liposome (Doxebo) i.v., and the rise of anti-PEG IgG and IgM were measured in serial blood samples with ELISA. After ∼2-3 weeks the animals were injected i.v. with 1/3 human dose of the PEGylated mRNA vaccine, Comirnaty, and the hemodynamic (PAP, SAP) cardiopulmonary (HR, EtCO2,), hematological (WBC, granulocyte, lymphocyte and platelet counts) parameters and blood immune mediators (anti-PEG IgM and IgG antibodies, thromboxane B2, C3a) were measured as endpoints of HSRs (anaphylaxis). Results The level of anti-PEG IgM and IgG rose 5-10-thousand-fold in all of 6 pigs immunized with Doxebo by day 6, after which time all animals developed anaphylactic shock to i.v. injection of 1/3 human dose of Comirnaty. The reaction, starting within 1 min involved maximal pulmonary hypertension and decreased systemic pulse pressure amplitude, tachycardia, granulo- and thrombocytopenia, and skin reactions (flushing or rash). These physiological changes or their absence were paralleled by C3a and TXB2 rises in blood. Conclusions Consistent with previous studies, these data show a causal role of anti-PEG Abs in the anaphylaxis to Comirnaty, which involves complement activation, and, hence, it represents C activation-related pseudo-anaphylaxis. The setup provides the first large-animal model for mRNA-vaccine-induced anaphylaxis in humans.
Collapse
Affiliation(s)
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | - Gergely Tibor Kozma
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- SeroScience LCC, Budapest, Hungary
| | - Tamás Mészáros
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- SeroScience LCC, Budapest, Hungary
| | - Petra Berényi
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- SeroScience LCC, Budapest, Hungary
| | - Réka Facskó
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- SeroScience LCC, Budapest, Hungary
| | | | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - János Szebeni
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- SeroScience LCC, Budapest, Hungary
- Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health Sciences, Miskolc University, Miskolc 2880, Hungary
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
5
|
Szebeni J. Evaluation of the Acute Anaphylactoid Reactogenicity of Nanoparticle-Containing Medicines and Vaccines Using the Porcine CARPA Model. Methods Mol Biol 2024; 2789:229-243. [PMID: 38507008 DOI: 10.1007/978-1-0716-3786-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
A small fraction, up to 10%, of people treated intravenously with state-of-the-art nanoparticulate drugs or diagnostic agents develop an acute infusion reaction which can be severe or even lethal. Activation of the complement (C) system can play a causal, or contributing role in these atypical, "pseudoallergic" reactions, hence their name, C activation-related pseudoallergy (CARPA). Intravenous (i.v.) administration of the human reaction-triggering (very small) dose of a test sample in pigs triggers a symptom tetrad (characteristic hemodynamic, hematological, skin, and laboratory changes) that correspond to the major human symptoms. Quantitating these changes provides a highly sensitive and reproducible method for assessing the risk of CARPA, enabling the implementation of appropriate preventive measures. Accordingly, the porcine CARPA model has been increasingly used for the safety evaluation of therapeutic and diagnostic nanomedicines and, recently, mRNA-lipid nanoparticle vaccines. This chapter provides details of the experimental procedure followed upon using the model.
Collapse
Affiliation(s)
- Janos Szebeni
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, Budapest, Hungary
- SeroScience LCC, Budapest, Hungary
- Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
6
|
Ilinskaya A, Shah A, Van Dusen A, Dobrovolskaia MA. Detection of Intracellular Complement Activation by Nanoparticles in Human T Lymphocytes. Methods Mol Biol 2024; 2789:109-120. [PMID: 38506996 DOI: 10.1007/978-1-0716-3786-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The complement system is complex and includes two main components: the systemic or plasma complement and the so-called intracellular complement or complosome. The complement proteins expressed by the liver and secreted into blood plasma compose the plasma complement system, whereas complement proteins expressed by and functioning inside the cell represent the intracellular complement. The complement system plays an essential role in host defense; however, complement activation may lead to pathologies when uncontrolled. When such undesirable activation of the plasma complement occurs in response to a drug product, it leads to immediate-type hypersensitivity reactions independent of immunoglobulin E. These reactions are often called complement activation-related pseudoallergy (CARPA). In addition to the blood plasma, the complement protein C3 is found in many cells, including lymphocytes, monocytes, endothelial, and even cancer cells. The activation of the intracellular complement generates split products, which are exported from the cell onto the membrane. Since the activation of the intracellular complement in T lymphocytes was found to correlate with autoimmune disorders, and growing evidence is available for the involvement of T lymphocytes in the development of drug-induced hypersensitivity reactions, understanding the ability of nanomaterials to activate intracellular complement may aid in establishing a long-term safety profile for these materials. This chapter describes a flow cytometry-based protocol for detecting intracellular complement activation by engineered nanomaterials.
Collapse
Affiliation(s)
- Anna Ilinskaya
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ankit Shah
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
7
|
Gould S, Templin MV. Off target toxicities and links with physicochemical properties of medicinal products, including antibiotics, oligonucleotides, lipid nanoparticles (with cationic and/or anionic charges). Data review suggests an emerging pattern. Toxicol Lett 2023; 384:14-29. [PMID: 37454775 DOI: 10.1016/j.toxlet.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Toxicology is an essential part of any drug development plan. Circumnavigating the risk of failure because of a toxicity issue can be a challenge, and failure in late development is extremely costly. To identify potential risks, it requires more than just understanding the biological target. The toxicologist needs to consider a compound's structure, it's physicochemical properties (including the impact of the overall formulation), as well as the biological target (e.g., receptor interactions). Understanding the impact of the physicochemical properties can be used to predict potential toxicities in advance by incorporating key endpoints in early screening strategies and/or used to compare toxicity profiles across lead candidates. This review discussed the risks of off-target and/or non-specific toxicities that may be associated with the physicochemical properties of compounds, especially those carrying dominant positive or negative charges, including amphiphilic small molecules, peptides, oligonucleotides and lipids/liposomes/lipid nanoparticles. The latter of which are being seen more and more in drug development, including the recent Covid pandemic, where mRNA and lipid nanoparticle technology is playing more of a role in vaccine development. The translation between non-clinical and clinical data is also considered, questioning how a physicochemical driven toxicity may be more universal across species, which means that such toxicity may be reassuringly translatable between species and as such, this information may also be considered as a support to the 3 R's, particularly in the early screening stages of a drug development plan.
Collapse
|
8
|
Chen WA, Chang DY, Chen BM, Lin YC, Barenholz Y, Roffler SR. Antibodies against Poly(ethylene glycol) Activate Innate Immune Cells and Induce Hypersensitivity Reactions to PEGylated Nanomedicines. ACS NANO 2023; 17:5757-5772. [PMID: 36926834 PMCID: PMC10062034 DOI: 10.1021/acsnano.2c12193] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/03/2023] [Indexed: 06/09/2023]
Abstract
Nanomedicines and macromolecular drugs can induce hypersensitivity reactions (HSRs) with symptoms ranging from flushing and breathing difficulties to hypothermia, hypotension, and death in the most severe cases. Because many normal individuals have pre-existing antibodies that bind to poly(ethylene glycol) (PEG), which is often present on the surface of nanomedicines and macromolecular drugs, we examined if and how anti-PEG antibodies induce HSRs to PEGylated liposomal doxorubicin (PLD). Anti-PEG IgG but not anti-PEG IgM induced symptoms of HSRs including hypothermia, altered lung function, and hypotension after PLD administration in C57BL/6 and nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Hypothermia was significantly reduced by blocking FcγRII/III, by depleting basophils, monocytes, neutrophils, or mast cells, and by inhibiting secretion of histamine and platelet-activating factor. Anti-PEG IgG also induced hypothermia in mice after administration of other PEGylated liposomes, nanoparticles, or proteins. Humanized anti-PEG IgG promoted binding of PEGylated nanoparticles to human immune cells and induced secretion of histamine from human basophils in the presence of PLD. Anti-PEG IgE could also induce hypersensitivity reactions in mice after administration of PLD. Our results demonstrate an important role for IgG antibodies in induction of HSRs to PEGylated nanomedicines through interaction with Fcγ receptors on innate immune cells and provide a deeper understanding of HSRs to PEGylated nanoparticles and macromolecular drugs that may facilitate development of safer nanomedicines.
Collapse
Affiliation(s)
- Wei-An Chen
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Deng-Yuan Chang
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Bing-Mae Chen
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Chen Lin
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Graduate
Institute of Life Sciences, National Defense
Medical Center, Taipei 11529, Taiwan
| | - Yechezekel Barenholz
- Department
of Biochemistry, Faculty of Medicine, The
Hebrew University, Jerusalem 91120, Israel
| | - Steve R. Roffler
- Institute
of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Graduate
Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
9
|
Yang C, Merlin D. Challenges to Safe Nanomedicine Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1171. [PMID: 37049268 PMCID: PMC10096857 DOI: 10.3390/nano13071171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Nanotechnology has the potential to revolutionize the field of drug treatment by enabling the targeted delivery and controlled release of drugs at a cellular level [...].
Collapse
Affiliation(s)
- Chunhua Yang
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA;
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| | - Didier Merlin
- Digestive Disease Research Group, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA;
- Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| |
Collapse
|
10
|
Pondman K, Le Gac S, Kishore U. Nanoparticle-induced immune response: Health risk versus treatment opportunity? Immunobiology 2023; 228:152317. [PMID: 36592542 DOI: 10.1016/j.imbio.2022.152317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Nanoparticles (NPs) are not only employed in many biomedical applications in an engineered form, but also occur in our environment, in a more hazardous form. NPs interact with the immune system through various pathways and can lead to a myriad of different scenarios, ranging from their quiet removal from circulation by macrophages without any impact for the body, to systemic inflammatory effects and immuno-toxicity. In the latter case, the function of the immune system is affected by the presence of NPs. This review describes, how both the innate and adaptive immune system are involved in interactions with NPs, together with the models used to analyse these interactions. These models vary between simple 2D in vitro models, to in vivo animal models, and also include complex all human organ on chip models which are able to recapitulate more accurately the interaction in the in vivo situation. Thereafter, commonly encountered NPs in both the environment and in biomedical applications and their possible effects on the immune system are discussed in more detail. Not all effects of NPs on the immune system are detrimental; in the final section, we review several promising strategies in which the immune response towards NPs can be exploited to suit specific applications such as vaccination and cancer immunotherapy.
Collapse
Affiliation(s)
- Kirsten Pondman
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology & TechMed Centre, University of Twente, Enschede, the Netherlands.
| | - Séverine Le Gac
- Applied Microfluidics for BioEngineering Research, MESA+ Institute for Nanotechnology & TechMed Centre, University of Twente, Enschede, the Netherlands
| | - Uday Kishore
- Biosciences, Brunel University London, Uxbridge, UK; Department of Veterinary Medicine, U.A.E. University, Al Ain, United Arab Emirates
| |
Collapse
|
11
|
Zhang D, Tang Q, Chen J, Wei Y, Chen J. Novel Development of Nanoparticles-A Promising Direction for Precise Tumor Management. Pharmaceutics 2022; 15:pharmaceutics15010024. [PMID: 36678653 PMCID: PMC9862928 DOI: 10.3390/pharmaceutics15010024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Although the clinical application of nanoparticles is still limited by biological barriers and distribution, with the deepening of our understanding of nanoparticles over the past decades, people are gradually breaking through the previous limitations in the diagnosis and treatment of tumors, providing novel strategies for clinical decision makers. The transition of nanoparticles from passive targeting to active tumor-targeting by abundant surface-modified nanoparticles is also a development process of precision cancer treatment. Different particles can be used as targeted delivery tools of antitumor drugs. The mechanism of gold nanoparticles inducing apoptosis and cycle arrest of tumor cells has been discovered. Moreover, the unique photothermal effect of gold nanoparticles may be widely used in tumor therapy in the future, with less side effects on surrounding tissues. Lipid-based nanoparticles are expected to overcome the blood-brain barrier due to their special characteristics, while polymer-based nanoparticles show better biocompatibility and lower toxicity. In this paper, we discuss the development of nanoparticles in tumor therapy and the challenges that need to be addressed.
Collapse
Affiliation(s)
- Dengke Zhang
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Qingqing Tang
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Juan Chen
- Department of Medicine & Rehabilitation, Tung Wah Eastern Hospital, Hong Kong, China
| | - Yanghui Wei
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China
- Correspondence: (Y.W.); (J.C.)
| | - Jiawei Chen
- Department of Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510275, China
- Correspondence: (Y.W.); (J.C.)
| |
Collapse
|
12
|
siRNA Functionalized Lipid Nanoparticles (LNPs) in Management of Diseases. Pharmaceutics 2022; 14:pharmaceutics14112520. [PMID: 36432711 PMCID: PMC9694336 DOI: 10.3390/pharmaceutics14112520] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
RNAi (RNA interference)-based technology is emerging as a versatile tool which has been widely utilized in the treatment of various diseases. siRNA can alter gene expression by binding to the target mRNA and thereby inhibiting its translation. This remarkable potential of siRNA makes it a useful candidate, and it has been successively used in the treatment of diseases, including cancer. However, certain properties of siRNA such as its large size and susceptibility to degradation by RNases are major drawbacks of using this technology at the broader scale. To overcome these challenges, there is a requirement for versatile tools for safe and efficient delivery of siRNA to its target site. Lipid nanoparticles (LNPs) have been extensively explored to this end, and this paper reviews different types of LNPs, namely liposomes, solid lipid NPs, nanostructured lipid carriers, and nanoemulsions, to highlight this delivery mode. The materials and methods of preparation of the LNPs have been described here, and pertinent physicochemical properties such as particle size, surface charge, surface modifications, and PEGylation in enhancing the delivery performance (stability and specificity) have been summarized. We have discussed in detail various challenges facing LNPs and various strategies to overcome biological barriers to undertake the safe delivery of siRNA to a target site. We additionally highlighted representative therapeutic applications of LNP formulations with siRNA that may offer unique therapeutic benefits in such wide areas as acute myeloid leukaemia, breast cancer, liver disease, hepatitis B and COVID-19 as recent examples.
Collapse
|
13
|
Maisha N, Kulkarni C, Pandala N, Zilberberg R, Schaub L, Neidert L, Glaser J, Cannon J, Janeja V, Lavik EB. PEGylated Polyester Nanoparticles Trigger Adverse Events in a Large Animal Model of Trauma and in Naı̈ve Animals: Understanding Cytokine and Cellular Correlations with These Events. ACS NANO 2022; 16:10566-10580. [PMID: 35822898 DOI: 10.1021/acsnano.2c01993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Intravenously infusible nanoparticles to control bleeding have shown promise in rodents, but translation into preclinical models has been challenging as many of these nanoparticle approaches have resulted in infusion responses and adverse outcomes in large animal trauma models. We developed a hemostatic nanoparticle technology that was screened to avoid one component of the infusion response: complement activation. We administered these hemostatic nanoparticles, control nanoparticles, or saline volume controls in a porcine polytrauma model. While the hemostatic nanoparticles promoted clotting as marked by a decrease in prothrombin time and both the hemostatic nanoparticles and controls did not active complement, in a subset of the animals, hard thrombi were found in uninjured tissues in both the hemostatic and control nanoparticle groups. Using data science methods that allow one to work across heterogeneous data sets, we found that the presence of these thrombi correlated with changes in IL-6, INF-alpha, lymphocytes, and neutrophils. While these findings might suggest that this formulation would not be a safe one for translation for trauma, they provide guidance for developing screening tools to make nanoparticle formulations in the complex milieux of trauma as well as for therapeutic interventions more broadly. This is important as we look to translate intravenously administered nanoparticle formulations for therapies, particularly considering the vascular changes seen in a subset of patients following COVID-19. We need to understand adverse events like thrombi more completely and screen for these events early to make nanomaterials as safe and effective as possible.
Collapse
Affiliation(s)
| | | | | | | | - Leasha Schaub
- Naval Medical Research Unit-San Antonio, San Antonio, Texas 78234, United States
| | - Leslie Neidert
- Naval Medical Research Unit-San Antonio, San Antonio, Texas 78234, United States
| | - Jacob Glaser
- Naval Medical Research Unit-San Antonio, San Antonio, Texas 78234, United States
| | - Jeremy Cannon
- Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | | |
Collapse
|
14
|
Pavlin M, Lojk J, Strojan K, Hafner-Bratkovič I, Jerala R, Leonardi A, Križaj I, Drnovšek N, Novak S, Veranič P, Bregar VB. The Relevance of Physico-Chemical Properties and Protein Corona for Evaluation of Nanoparticles Immunotoxicity-In Vitro Correlation Analysis on THP-1 Macrophages. Int J Mol Sci 2022; 23:6197. [PMID: 35682872 PMCID: PMC9181693 DOI: 10.3390/ijms23116197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Alongside physiochemical properties (PCP), it has been suggested that the protein corona of nanoparticles (NPs) plays a crucial role in the response of immune cells to NPs. However, due to the great variety of NPs, target cells, and exposure protocols, there is still no clear relationship between PCP, protein corona composition, and the immunotoxicity of NPs. In this study, we correlated PCP and the protein corona composition of NPs to the THP-1 macrophage response, focusing on selected toxicological endpoints: cell viability, reactive oxygen species (ROS), and cytokine secretion. We analyzed seven commonly used engineered NPs (SiO2, silver, and TiO2) and magnetic NPs. We show that with the exception of silver NPs, all of the tested TiO2 types and SiO2 exhibited moderate toxicities and a transient inflammatory response that was observed as an increase in ROS, IL-8, and/or IL-1β cytokine secretion. We observed a strong correlation between the size of the NPs in media and IL-1β secretion. The induction of IL-1β secretion was completely blunted in NLR family pyrin domain containing 3 (NLRP3) knockout THP-1 cells, indicating activation of the inflammasome. The correlations analysis also implicated the association of specific NP corona proteins with the induction of cytokine secretion. This study provides new insights toward a better understanding of the relationships between PCP, protein corona, and the inflammatory response of macrophages for different engineered NPs, to which we are exposed on a daily basis.
Collapse
Grants
- J7-7424, J2-6758, J3-1746, J3-6794, J3-7494, Z4-8229, P1-0055, P3-0108, P1-0207, P4-0220, P2-0087, P4-0176, young researchers program and MRIC UL IP-0510 Infrastructure program Slovenian Research Agency
- ISO-FOOD (FP7-REGPOT) European Commission
Collapse
Affiliation(s)
- Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
- Group for Nano and Biotechnological Application, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia; (J.L.); (K.S.); (V.B.B.)
| | - Jasna Lojk
- Group for Nano and Biotechnological Application, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia; (J.L.); (K.S.); (V.B.B.)
| | - Klemen Strojan
- Group for Nano and Biotechnological Application, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia; (J.L.); (K.S.); (V.B.B.)
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (I.H.-B.); (R.J.)
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, SI-1000 Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia; (I.H.-B.); (R.J.)
- EN-FIST Centre of Excellence, Trg Osvobodilne fronte 13, SI-1000 Ljubljana, Slovenia
| | - Adrijana Leonardi
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (A.L.); (I.K.)
| | - Igor Križaj
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (A.L.); (I.K.)
| | - Nataša Drnovšek
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (N.D.); (S.N.)
| | - Saša Novak
- Department for Nanostructured Materials, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; (N.D.); (S.N.)
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia;
| | - Vladimir Boštjan Bregar
- Group for Nano and Biotechnological Application, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia; (J.L.); (K.S.); (V.B.B.)
| |
Collapse
|
15
|
A naturally hypersensitive porcine model may help understand the mechanism of COVID-19 mRNA vaccine-induced rare (pseudo) allergic reactions: complement activation as a possible contributing factor. GeroScience 2022; 44:597-618. [PMID: 35146583 PMCID: PMC8831099 DOI: 10.1007/s11357-021-00495-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/20/2021] [Indexed: 12/16/2022] Open
Abstract
A tiny fraction of people immunized with lipid nanoparticle (LNP)-enclosed mRNA (LNP-mRNA) vaccines develop allergic symptoms following their first or subsequent vaccinations, including anaphylaxis. These reactions resemble complement (C) activation-related pseudoallergy (CARPA) to i.v. administered liposomes, for which pigs provide a naturally oversensitive model. Using this model, we injected i.v. the human vaccination dose (HVD) of BNT162b2 (Comirnaty, CMT) or its 2-fold (2x) or 5-fold (5x) amounts and measured the hemodynamic changes and other parameters of CARPA. We observed in 6 of 14 pigs transient pulmonary hypertension along with thromboxane A2 release into the blood and other hemodynamic and blood cell changes, including hypertension, granulocytosis, lymphopenia, and thrombocytopenia. One pig injected with 5x CMT developed an anaphylactic shock requiring resuscitation, while a repeat dose failed to induce the reaction, implying tachyphylaxis. These typical CARPA symptoms could not be linked to animal age, sex, prior immune stimulation with zymosan, immunization of animals with Comirnaty i.v., or i.m. 2 weeks before the vaccine challenge, and anti-PEG IgM levels in Comirnaty-immunized pigs. Nevertheless, IgM binding to the whole vaccine, used as antigen in an ELISA, was significantly higher in reactive animals compared to non-reactive ones. Incubation of Comirnaty with pig serum in vitro showed significant elevations of C3a anaphylatoxin and sC5b-9, the C-terminal complex. These data raise the possibility that C activation plays a causal or contributing role in the rare HSRs to Comirnaty and other vaccines with similar side effects. Further studies are needed to uncover the factors controlling these vaccine reactions in pigs and to understand their translational value to humans.
Collapse
|
16
|
Sudheesh MS, Pavithran K, M S. Revisiting the outstanding questions in cancer nanomedicine with a future outlook. NANOSCALE ADVANCES 2022; 4:634-653. [PMID: 36131837 PMCID: PMC9418065 DOI: 10.1039/d1na00810b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 06/01/2023]
Abstract
The field of cancer nanomedicine has been fueled by the expectation of mitigating the inefficiencies and life-threatening side effects of conventional chemotherapy. Nanomedicine proposes to utilize the unique nanoscale properties of nanoparticles to address the most pressing questions in cancer treatment and diagnosis. The approval of nano-based products in the 1990s inspired scientific explorations in this direction. However, despite significant progress in the understanding of nanoscale properties, there are only very few success stories in terms of substantial increase in clinical efficacy and overall patient survival. All existing paradigms such as the concept of enhanced permeability and retention (EPR), the stealth effect and immunocompatibility of nanomedicine have been questioned in recent times. In this review we critically examine impediments posed by biological factors to the clinical success of nanomedicine. We put forth current observations on critical outstanding questions in nanomedicine. We also provide the promising side of cancer nanomedicine as we move forward in nanomedicine research. This would provide a future direction for research in nanomedicine and inspire ongoing investigations.
Collapse
Affiliation(s)
- M S Sudheesh
- Dept. of Pharmaceutics, Amrita School of Pharmacy Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara Kochi - 682041 India +91-9669372019
| | - K Pavithran
- Department of Medical Oncology, Amrita Institute of Medial Sciences and Research Centre Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara Kochi - 682041 India
| | - Sabitha M
- Dept. of Pharmaceutics, Amrita School of Pharmacy Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara Kochi - 682041 India +91-9669372019
| |
Collapse
|
17
|
Pethő Á, Piecha D, Mészáros T, Urbanics R, Moore C, Canaud B, Rosivall L, Mollnes TE, Steppan S, Szénási G, Szebeni J, Dézsi L. A porcine model of hemodialyzer reactions: roles of complement activation and rinsing back of extracorporeal blood. Ren Fail 2021; 43:1609-1620. [PMID: 34882053 PMCID: PMC8667923 DOI: 10.1080/0886022x.2021.2007127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hemodialysis reactions (HDRs) resemble complement-activation-related pseudoallergy (CARPA) to certain i.v. drugs, for which pigs provide a sensitive model. On this basis, to better understand the mechanism of human HDRs, we subjected pigs to hemodialysis using polysulfone (FX CorDiax 40, Fresenius) or cellulose triacetate (SureFlux-15UX, Nipro) dialyzers, or Dialysis exchange-set without membranes, as control. Experimental endpoints included typical biomarkers of porcine CARPA; pulmonary arterial pressure (PAP), blood cell counts, plasma sC5b-9 and thromboxane-B2 levels. Hemodialysis (60 min) was followed by reinfusion of extracorporeal blood into the circulation, and finally, an intravenous bolus injection of the complement activator zymosan. The data indicated low-extent steady rise of sC5b-9 along with transient leukopenia, secondary leukocytosis and thrombocytopenia in the two dialyzer groups, consistent with moderate complement activation. Surprisingly, small changes in baseline PAP and plasma thromboxane-B2 levels during hemodialysis switched into 30%-70% sharp rises in all three groups resulting in synchronous spikes within minutes after blood reinfusion. These observations suggest limited complement activation by dialyzer membranes, on which a membrane-independent second immune stimulus was superimposed, and caused pathophysiological changes also characteristic of HDRs. Thus, the porcine CARPA model raises the hypothesis that a second "hit" on anaphylatoxin-sensitized immune cells may be a key contributor to HDRs.
Collapse
Affiliation(s)
- Ákos Pethő
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Dorothea Piecha
- Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany
| | | | | | - Christoph Moore
- Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany
| | - Bernard Canaud
- Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany.,School of Medicine, Montpellier University, Montpellier, France
| | - László Rosivall
- International Nephrology Research and Training Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.,Research Laboratory, Nordland Hospital Bodø and Faculty of Health Sciences and TREC, University of Tromsø, Tromsø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sonja Steppan
- Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany
| | - Gábor Szénási
- International Nephrology Research and Training Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - János Szebeni
- SeroScience Ltd, Budapest, Hungary.,Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - László Dézsi
- SeroScience Ltd, Budapest, Hungary.,Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
18
|
Maisha N, Rubenstein M, Bieberich CJ, Lavik E. Getting to the Core of It All: Nanocapsules to Mitigate Infusion Reactions Can Promote Hemostasis and Be a Platform for Intravenous Therapies. NANO LETTERS 2021; 21:9069-9076. [PMID: 34714087 DOI: 10.1021/acs.nanolett.1c02746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One of the significant challenges to translation of intravenously administered nanomaterials has been complement-mediated infusion reactions which can be lethal. Slow infusions can reduce infusion reactions, but slow infusions are not always possible in applications like controlling bleeding following trauma. Thus, avoiding complement activation and infusion responses is essential to manage bleeding. We identified nanocapsules based on polyurethane as candidates that did not activate C5a and explored their PEGylation and functionalization with the GRGDS peptide to create a new class of hemostatic nanomaterials. Using the clinically relevant rotational thromboelastography (ROTEM), we determined that nanocapsules promote faster clotting than controls and maintain the maximum clot firmness, which is critical for reducing bleeding. Excitingly, these polyurethane-based nanocapsules did not activate complement or the major pro-inflammatory cytokines. This work provides critical evidence for the role of modulating the core material in developing safer nanomedicines for intravenous applications.
Collapse
Affiliation(s)
- Nuzhat Maisha
- University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Michael Rubenstein
- University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Charles J Bieberich
- University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Erin Lavik
- University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| |
Collapse
|
19
|
Romero EL, Morilla MJ. Preclinical autophagy modulatory nanomedicines: big challenges, slow advances. Expert Opin Drug Deliv 2021; 18:1415-1434. [PMID: 34030559 DOI: 10.1080/17425247.2021.1933428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Autophagy is a critical housekeeping pathway to remove toxic protein aggregates, damaged organelles, providing cells with bioenergetic substrates needed to survive under adverse conditions. Since altered autophagy is associated with diverse diseases, its pharmacological modulation is considered of therapeutic interest. Nanomedicines may reduce the toxicity and improve the activity of toxic autophagy modulatory drugs (amd). AREAS COVERED The status of the most relevant anti-tumor, anti-inflammatory, and anti-infectious treatments mediated by autophagy modulatory nanomedicines (amN) published in the last 5 years is discussed. EXPERT OPINION Antitumor and anti-inflammatory treatments may be improved by administering amN for selective, massive, and targeted delivery of amd to diseased tissues. The use of amN as antimicrobial agent remains almost underexploited. Assessing the effect of amN on the complex autophagy machinery operating under different basal diseases, however, is not a trivial task. Besides structural reproducibility, nanomedicines must grant higher efficiency, and lower adverse effects than conventional medication. Simplicity of design, carefully chosen (scalable) preparation techniques, and rigorous monitoring of preclinical efficacy and nanotoxicity will improve the chances of clinical success. Currently, available data are not sufficient to envisage a fast-succeeding translation. Application of quality by design criteria would help to reach such milestones.
Collapse
Affiliation(s)
- Eder Lilia Romero
- Department of Science and Technology, Nanomedicines Research and Development Center, Quilmes National University, Bernal, Buenos Aires, Argentina
| | - Maria Jose Morilla
- Department of Science and Technology, Nanomedicines Research and Development Center, Quilmes National University, Bernal, Buenos Aires, Argentina
| |
Collapse
|
20
|
Kozma GT, Mészáros T, Bakos T, Hennies M, Bencze D, Uzonyi B, Győrffy B, Cedrone E, Dobrovolskaia MA, Józsi M, Szebeni J. Mini-Factor H Modulates Complement-Dependent IL-6 and IL-10 Release in an Immune Cell Culture (PBMC) Model: Potential Benefits Against Cytokine Storm. Front Immunol 2021; 12:642860. [PMID: 33995361 PMCID: PMC8113956 DOI: 10.3389/fimmu.2021.642860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
Cytokine storm (CS), an excessive release of proinflammatory cytokines upon overactivation of the innate immune system, came recently to the focus of interest because of its role in the life-threatening consequences of certain immune therapies and viral diseases, including CAR-T cell therapy and Covid-19. Because complement activation with subsequent anaphylatoxin release is in the core of innate immune stimulation, studying the relationship between complement activation and cytokine release in an in vitro CS model holds promise to better understand CS and identify new therapies against it. We used peripheral blood mononuclear cells (PBMCs) cultured in the presence of autologous serum to test the impact of complement activation and inhibition on cytokine release, testing the effects of liposomal amphotericin B (AmBisome), zymosan and bacterial lipopolysaccharide (LPS) as immune activators and heat inactivation of serum, EDTA and mini-factor H (mfH) as complement inhibitors. These activators induced significant rises of complement activation markers C3a, C4a, C5a, Ba, Bb, and sC5b-9 at 45 min of incubation, with or without ~5- to ~2,000-fold rises of IL-1α, IL-1β, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13 and TNFα at 6 and 18 h later. Inhibition of complement activation by the mentioned three methods had differential inhibition, or even stimulation of certain cytokines, among which effects a limited suppressive effect of mfH on IL-6 secretion and significant stimulation of IL-10 implies anti-CS and anti-inflammatory impacts. These findings suggest the utility of the model for in vitro studies on CS, and the potential clinical use of mfH against CS.
Collapse
Affiliation(s)
- Gergely Tibor Kozma
- Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- SeroScience LCC, Budapest, Hungary
| | - Tamás Mészáros
- Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- SeroScience LCC, Budapest, Hungary
| | - Tamás Bakos
- Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | | | - Dániel Bencze
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Barbara Uzonyi
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Balázs Győrffy
- Second Department of Bioinformatics and Pediatrics, Semmelweis University, Budapest, Hungary
- Lendület Cancer Biomarker Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Edward Cedrone
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Marina A. Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Mihály Józsi
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - János Szebeni
- Nanomedicine Research and Education Center, Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
- SeroScience LCC, Budapest, Hungary
- Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary
| |
Collapse
|
21
|
Hammond SM, Aartsma‐Rus A, Alves S, Borgos SE, Buijsen RAM, Collin RWJ, Covello G, Denti MA, Desviat LR, Echevarría L, Foged C, Gaina G, Garanto A, Goyenvalle AT, Guzowska M, Holodnuka I, Jones DR, Krause S, Lehto T, Montolio M, Van Roon‐Mom W, Arechavala‐Gomeza V. Delivery of oligonucleotide-based therapeutics: challenges and opportunities. EMBO Mol Med 2021; 13:e13243. [PMID: 33821570 PMCID: PMC8033518 DOI: 10.15252/emmm.202013243] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Nucleic acid-based therapeutics that regulate gene expression have been developed towards clinical use at a steady pace for several decades, but in recent years the field has been accelerating. To date, there are 11 marketed products based on antisense oligonucleotides, aptamers and small interfering RNAs, and many others are in the pipeline for both academia and industry. A major technology trigger for this development has been progress in oligonucleotide chemistry to improve the drug properties and reduce cost of goods, but the main hurdle for the application to a wider range of disorders is delivery to target tissues. The adoption of delivery technologies, such as conjugates or nanoparticles, has been a game changer for many therapeutic indications, but many others are still awaiting their eureka moment. Here, we cover the variety of methods developed to deliver nucleic acid-based therapeutics across biological barriers and the model systems used to test them. We discuss important safety considerations and regulatory requirements for synthetic oligonucleotide chemistries and the hurdles for translating laboratory breakthroughs to the clinic. Recent advances in the delivery of nucleic acid-based therapeutics and in the development of model systems, as well as safety considerations and regulatory requirements for synthetic oligonucleotide chemistries are discussed in this review on oligonucleotide-based therapeutics.
Collapse
Affiliation(s)
| | | | - Sandra Alves
- Department of Human Genetics, Research and Development UnitNational Health Institute Doutor Ricardo JorgePortoPortugal
| | - Sven E Borgos
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | - Ronald A M Buijsen
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Rob W J Collin
- Department of Human Genetics and Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Giuseppina Covello
- Department of BiologyUniversity of PadovaPadovaItaly
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Michela A Denti
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa UAM‐CSICCIBERER, IdiPazUniversidad Autónoma de MadridMadridSpain
| | | | - Camilla Foged
- Department of PharmacyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagen ØDenmark
| | - Gisela Gaina
- Victor Babes National Institute of PathologyBucharestRomania
- Department of Biochemistry and Molecular BiologyUniversity of BucharestBucharestRomania
| | - Alejandro Garanto
- Department of Human Genetics and Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of PediatricsRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Magdalena Guzowska
- Department of Physiological SciencesFaculty of Veterinary MedicineWarsaw University of Life Sciences – SGGWWarsawPoland
| | - Irina Holodnuka
- Institute of Microbiology and VirologyRiga Stradins UniversityRigaLatvia
| | | | - Sabine Krause
- Department of NeurologyFriedrich‐Baur‐InstituteLudwig‐Maximilians‐University of MunichMunichGermany
| | - Taavi Lehto
- Institute of TechnologyUniversity of TartuTartuEstonia
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetHuddingeSweden
| | - Marisol Montolio
- Duchenne Parent Project EspañaMadridSpain
- Department of Cell Biology, Fisiology and ImmunologyFaculty of BiologyUniversity of BarcelonaBarcelonaSpain
| | - Willeke Van Roon‐Mom
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Virginia Arechavala‐Gomeza
- Neuromuscular Disorders GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| |
Collapse
|
22
|
Yuan J, Zhang Y, Zhang Y, Mo Y, Zhang Q. Effects of metal nanoparticles on tight junction-associated proteins via HIF-1α/miR-29b/MMPs pathway in human epidermal keratinocytes. Part Fibre Toxicol 2021; 18:13. [PMID: 33740985 PMCID: PMC7980342 DOI: 10.1186/s12989-021-00405-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
Background The increasing use of metal nanoparticles in industry and biomedicine raises the risk for unintentional exposure. The ability of metal nanoparticles to penetrate the skin ranges from stopping at the stratum corneum to passing below the dermis and entering the systemic circulation. Despite the potential health risks associated with skin exposure to metal nanoparticles, the mechanisms underlying the toxicity of metal nanoparticles on skin keratinocytes remain unclear. In this study, we proposed that exposure of human epidermal keratinocytes (HaCaT) to metal nanoparticles, such as nickel nanoparticles, dysregulates tight-junction associated proteins by interacting with the HIF-1α/miR-29b/MMPs axis. Methods We performed dose-response and time-response studies in HaCaT cells to observe the effects of Nano-Ni or Nano-TiO2 on the expression and activity of MMP-2 and MMP-9, and on the expression of tight junction-associated proteins, TIMP-1, TIMP-2, miR-29b, and HIF-1α. In the dose-response studies, cells were exposed to 0, 10, or 20 μg/mL of Nano-Ni or Nano-TiO2 for 24 h. In the time-response studies, cells were exposed to 20 μg/mL of Nano-Ni for 12, 24, 48, or 72 h. After treatment, cells were collected to either assess the expression of mRNAs and miR-29b by real-time PCR or to determine the expression of tight junction-associated proteins and HIF-1α nuclear accumulation by Western blot and/or immunofluorescent staining; the conditioned media were collected to evaluate the MMP-2 and MMP-9 activities by gelatin zymography assay. To further investigate the mechanisms underlying Nano-Ni-induced dysregulation of tight junction-associated proteins, we employed a HIF-1α inhibitor, CAY10585, to perturb HIF-1α accumulation in one experiment, and transfected a miR-29b-3p mimic into the HaCaT cells before Nano-Ni exposure in another experiment. Cells and conditioned media were collected, and the expression and activities of MMPs and the expression of tight junction-associated proteins were determined as described above. Results Exposure of HaCaT cells to Nano-Ni resulted in a dose-dependent increase in the expression of MMP-2, MMP-9, TIMP-1, and TIMP-2 and the activities of MMP-2 and MMP-9. However, exposure of cells to Nano-TiO2 did not cause these effects. Nano-Ni caused a dose-dependent decrease in the expression of miR-29b and tight junction-associated proteins, such as ZO-1, occludin, and claudin-1, while Nano-TiO2 did not. Nano-Ni also caused a dose-dependent increase in HIF-1α nuclear accumulation. The time-response studies showed that Nano-Ni caused significantly increased expressions of MMP-2 at 24 h, MMP-9 at 12, 24, and 48 h, TIMP-1 from 24 to 72 h, and TIMP-2 from 12 to 72 h post-exposure. The expression of miR-29b and tight junction-associated proteins such as ZO-1, occludin, and claudin-1 decreased as early as 12 h post-exposure, and their levels declined gradually over time. Pretreatment of cells with a HIF-1α inhibitor, CAY10585, abolished Nano-Ni-induced miR-29b down-regulation and MMP-2/9 up-regulation. Introduction of a miR-29b-3p mimic into HaCaT cells by transfection before Nano-Ni exposure ameliorated Nano-Ni-induced increased expression and activity of MMP-2 and MMP-9 and restored Nano-Ni-induced down-regulation of tight junction-associated proteins. Conclusion Our study herein demonstrated that exposure of human epidermal keratinocytes to Nano-Ni caused increased HIF-1α nuclear accumulation and increased transcription and activity of MMP-2 and MMP-9 and down-regulation of miR-29b and tight junction-associated proteins. Nano-Ni-induced miR-29b down-regulation was through Nano-Ni-induced HIF-1α nuclear accumulation. Restoration of miR-29b level by miR-29b-3p mimic transfection abolished Nano-Ni-induced MMP-2 and MMP-9 activation and down-regulation of tight junction-associated proteins. In summary, our results demonstrated that Nano-Ni-induced dysregulation of tight junction-associated proteins in skin keratinocytes was via HIF-1α/miR-29b/MMPs pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-021-00405-2.
Collapse
Affiliation(s)
- Jiali Yuan
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
| | - Yue Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
| | - Yuanbao Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
| | - Yiqun Mo
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA
| | - Qunwei Zhang
- Department of Environmental and Occupational Health Sciences, School of Public Health and Information Sciences, University of Louisville, 485 E. Gray Street, Louisville, KY, 40202, USA.
| |
Collapse
|
23
|
Milosevits G, Mészáros T, Őrfi E, Bakos T, Garami M, Kovács G, Dézsi L, Hamar P, Győrffy B, Szabó A, Szénási G, Szebeni J. Complement-mediated hypersensitivity reactions to an amphotericin B-containing lipid complex (Abelcet) in pediatric patients and anesthetized rats: Benefits of slow infusion. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 34:102366. [PMID: 33549818 DOI: 10.1016/j.nano.2021.102366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/06/2021] [Accepted: 01/16/2021] [Indexed: 11/26/2022]
Abstract
Intravenous administration of lipid-based nanodrugs can cause hypersensitivity, also known as infusion reactions (IRs), that can be attenuated by slow infusion in adult patients. We studied the role of infusion rate and complement (C) activation in IRs in pediatric patients treated with Abelcet, and also in anesthetized rats. IRs were observed in 6 out of 10 (60%) patients who received Abelcet infusion in 4 h or less, while no patients who received the infusion in 6 h showed C activation or IRs. The rat model indicated an inverse relationship between infusion speed and Abelcet-induced hypotension, taken as an experimental endpoint of IRs, while the rise of C3a in blood, an index of C activation, directly correlated with hypotension. The results suggest that pediatric patients are more prone to produce IRs, and that the optimal infusion time of Abelcet may be much longer than the presently recommended 2 h.
Collapse
Affiliation(s)
- Gergely Milosevits
- Second Department of Paediatrics, Semmelweis University, Budapest, Hungary; Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.
| | - Tamás Mészáros
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary; SeroScience LCC, Budapest, Hungary.
| | - Erik Őrfi
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.
| | - Tamás Bakos
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.
| | - Miklós Garami
- Second Department of Paediatrics, Semmelweis University, Budapest, Hungary.
| | - Gábor Kovács
- Second Department of Paediatrics, Semmelweis University, Budapest, Hungary.
| | - László Dézsi
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.
| | - Balázs Győrffy
- Second Department of Paediatrics, Semmelweis University, Budapest, Hungary; Cancer Biomarker Research Group, Institute of Enzymology, Research Center for Natural Sciences, Budapest, Hungary.
| | - András Szabó
- Second Department of Paediatrics, Semmelweis University, Budapest, Hungary.
| | - Gábor Szénási
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary.
| | - János Szebeni
- Institute of Translational Medicine, Semmelweis University, Budapest, Hungary; SeroScience LCC, Budapest, Hungary; Cancer Biomarker Research Group, Institute of Enzymology, Research Center for Natural Sciences, Budapest, Hungary; Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary.
| |
Collapse
|
24
|
Bedőcs P, Szebeni J. The Critical Choice of Animal Models in Nanomedicine Safety Assessment: A Lesson Learned From Hemoglobin-Based Oxygen Carriers. Front Immunol 2020; 11:584966. [PMID: 33193403 PMCID: PMC7649120 DOI: 10.3389/fimmu.2020.584966] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/10/2020] [Indexed: 12/26/2022] Open
Abstract
Intravenous injection of nanopharmaceuticals can induce severe hypersensitivity reactions (HSRs) resulting in anaphylactoid shock in a small percentage of patients, a phenomenon explicitly reproducible in pigs. However, there is a debate in the literature on whether the pig model of HSRs can be used as a safety test for the prediction of severe adverse reactions in humans. Given the importance of using appropriate animal models for toxicity/safety testing, the choice of the right species and model is a critical decision. In order to facilitate the decision process and to expand the relevant information regarding the pig or no pig dilemma, this review examines an ill-fated clinical development program conducted by Baxter Corporation in the United States 24 years ago, when HemeAssist, an αα (diaspirin) crosslinked hemoglobin-based O2 carrier (HBOC) was tested in trauma patients. The study showed increased mortality in the treatment group relative to controls and had to be stopped. This disappointing result had far-reaching consequences and contributed to the setback in blood substitute research ever since. Importantly, the increased mortality of trauma patients was predicted in pig experiments conducted by US Army scientists, yet they were considered irrelevant to humans. Here we draw attention to that the underlying cause of hemoglobin-induced aggravation of hemorrhagic shock and severe HSRs have a common pathomechanism: cardiovascular distress due to vasoconstrictive effects of hemoglobin (Hb) and reactogenic nanomedicines, manifested, among others, in pulmonary hypertension. The main difference is that in the case of Hb this effect is due to NO-binding, while nanomedicines can trigger the release of proinflammatory mediators. Because of the higher sensitivity of cloven-hoof animals to this kind of cardiopulmonary distress compared to rodents, these reactions can be better reproduced in pigs than in murine or rat models. When deciding on the battery of tests and the appropriate models to identify the potential hazard for nanomedicine-induced severe HSR, the pros and cons of the various species must be considered carefully.
Collapse
Affiliation(s)
- Peter Bedőcs
- Department of Anesthesiology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States.,Defense and Veterans Center for Integrative Pain Management, Rockville, MD, United States
| | - János Szebeni
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, Budapest, Hungary.,SeroScience Ltd., Budapest, Hungary.,Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, University of Miskolc, Miskolc, Hungary
| |
Collapse
|
25
|
Crist RM, Dasa SSK, Liu CH, Clogston JD, Dobrovolskaia MA, Stern ST. Challenges in the development of nanoparticle-based imaging agents: Characterization and biology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1665. [PMID: 32830448 DOI: 10.1002/wnan.1665] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Despite imaging agents being some of the earliest nanomedicines in clinical use, the vast majority of current research and translational activities in the nanomedicine field involves therapeutics, while imaging agents are severely underrepresented. The reasons for this lack of representation are several fold, including difficulties in synthesis and scale-up, biocompatibility issues, lack of suitable tissue/disease selective targeting ligands and receptors, and a high bar for regulatory approval. The recent focus on immunotherapies and personalized medicine, and development of nanoparticle constructs with better tissue distribution and selectivity, provide new opportunities for nanomedicine imaging agent development. This manuscript will provide an overview of trends in imaging nanomedicine characterization and biocompatibility, and new horizons for future development. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Rachael M Crist
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Siva Sai Krishna Dasa
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Christina H Liu
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland, USA
| | - Jeffrey D Clogston
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Stephan T Stern
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
26
|
Maisha N, Coombs T, Lavik E. Development of a Sensitive Assay to Screen Nanoparticles in vitro for Complement Activation. ACS Biomater Sci Eng 2020; 6:4903-4915. [PMID: 33313396 DOI: 10.1021/acsbiomaterials.0c00722] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanomedicines are often recognized by the innate immune system as a threat, leading to unwanted clearance due to complement activation. This adverse reaction not only alters the bioavailability of the therapeutic but can also cause cardiopulmonary complications and death in a portion of the population. There is a need for tools for assessing complement response in the early stage of development of nanomedicines. Currently, quantifying complement-mediated response in vitro is limited due to differences between in vitro and in vivo responses for the same precursors, differences in the complement systems in different species, and lack of highly sensitive tools for quantifying the changes. Hence, we have worked on developing complement assay conditions and sample preparation techniques that can be highly sensitive in assessing the complement-mediated response in vitro mimicking the in vivo activity. We are screening the impact of incubation time, nanoparticle dosage, anticoagulants, and species of the donor in both blood and blood components. We have validated the optimal assay conditions by replicating the impact of zeta potential seen in vivo on complement activation in vitro. As observed in our previous in vivo studies, where nanoparticles with neutral zeta-potential were able to suppress complement response, the change in the complement biomarker was least for the neutral nanoparticles as well through our developed guidelines. These assay conditions provide a vital tool for assessing the safety of intravenously administered nanomedicines.
Collapse
Affiliation(s)
- Nuzhat Maisha
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, Piscataway Territories
| | - Tobias Coombs
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, Piscataway Territories
| | - Erin Lavik
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, Piscataway Territories
| |
Collapse
|
27
|
Witzigmann D, Kulkarni JA, Leung J, Chen S, Cullis PR, van der Meel R. Lipid nanoparticle technology for therapeutic gene regulation in the liver. Adv Drug Deliv Rev 2020; 159:344-363. [PMID: 32622021 PMCID: PMC7329694 DOI: 10.1016/j.addr.2020.06.026] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/12/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Hereditary genetic disorders, cancer, and infectious diseases of the liver affect millions of people around the globe and are a major public health burden. Most contemporary treatments offer limited relief as they generally aim to alleviate disease symptoms. Targeting the root cause of diseases originating in the liver by regulating malfunctioning genes with nucleic acid-based drugs holds great promise as a therapeutic approach. However, employing nucleic acid therapeutics in vivo is challenging due to their unfavorable characteristics. Lipid nanoparticle (LNP) delivery technology is a revolutionary development that has enabled clinical translation of gene therapies. LNPs can deliver siRNA, mRNA, DNA, or gene-editing complexes, providing opportunities to treat hepatic diseases by silencing pathogenic genes, expressing therapeutic proteins, or correcting genetic defects. Here we discuss the state-of-the-art LNP technology for hepatic gene therapy including formulation design parameters, production methods, preclinical development and clinical translation.
Collapse
Affiliation(s)
- Dominik Witzigmann
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, BC, Canada
| | - Jayesh A Kulkarni
- NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, BC, Canada; Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada; Evonik Canada, Vancouver, BC, Canada
| | - Jerry Leung
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Sam Chen
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; Integrated Nanotherapeutics, Vancouver, BC, Canada
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada; NanoMedicines Innovation Network (NMIN), University of British Columbia, Vancouver, BC, Canada.
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
28
|
Valic MS, Halim M, Schimmer P, Zheng G. Guidelines for the experimental design of pharmacokinetic studies with nanomaterials in preclinical animal models. J Control Release 2020; 323:83-101. [PMID: 32278829 DOI: 10.1016/j.jconrel.2020.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022]
Abstract
A shared feature in the value proposition of every nanomaterial-based drug delivery systems is the desirable improvement in the disposition (or ADME) and pharmacokinetic profiles of the encapsulated drug being delivered. Remarkable progress has been made towards understanding the complex and multifactorial relationships between pharmacokinetic profiles and nanomaterial physicochemical properties, biological interactions, species physiology, etc. These advances have fuelled the rational design of numerous nanomaterials with long-circulation times and improved tissue accumulation (e.g., in tumours). Unfortunately, a central weakness in many of these research efforts has been the inconsistent and insufficient characterisation of the pharmacokinetic profiles of nanomaterials in scientific reporting-a problem affecting the majoirty of of contemporary nanomaterials literature and innovative nanomaterials in early stages of preclinical development especially. Given the significant role of pharmacokinetic assessments to serve as guideposts for deciding whether to continue with the preclinical development and clinical translation of drug delivery systems, the prevalence of poor pharmacokinetic characterisations in nanomaterials research is particularly alarming. A conspicuous problem in many reports is the inappropriate selection of experimental designs and methodologies for studying nanomaterial pharmacokinetics, the consequences of which are increased uncertainty over the accurate interpretation of reported pharmacokinetic data and diminished experimental reproducibility throughout the field. Thus, there is renewed interest in the establishment of consistent and comprehensive strategies for designing preclinical experiments to assess the pharmacokinetics of nanomaterials with diverse physicochemical properties. Towards this end, herein are proposed simple guidelines for the experimental design of pharmacokinetic studies with nanomaterials drawn from the best research practices, principle strategies, and important considerations used in industry for collecting pharmacokinetic data in preclinical animal models. Specifically, key experimental design factors in these studies are identified and examined in the context of nanomaterials for optimality, including blood sampling strategy and technique, sample allocation and sampling time window, test species selection, experimental sources of pharmacokinetic variability, etc. Methods for noninvasive imaging-derived pharmacokinetic assessments of theranostic nanomaterials are also explored with particular focus on emission tomography imaging modalities. Taken together, this review will provide nanomaterial researchers with practical knowledge and pragmatic recommendations for selecting the best designs and methodologies for assessing the pharmacokinetic profiles of their nanomaterials, and hopefully maximise the chances of translational success of these innovative products into humans.
Collapse
Affiliation(s)
- Michael S Valic
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, 101 College Street, Room 5-354, Toronto, Ontario M5G 1L7, Canada
| | - Michael Halim
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, 101 College Street, Room 5-354, Toronto, Ontario M5G 1L7, Canada
| | - Pamela Schimmer
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, 101 College Street, Room 5-354, Toronto, Ontario M5G 1L7, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Princess Margaret Cancer Research Tower, 101 College Street, Room 5-354, Toronto, Ontario M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Research Tower, Room 15-701, Toronto, Ontario M5G 1L7, Canada.
| |
Collapse
|
29
|
Human Clinical Relevance of the Porcine Model of Pseudoallergic Infusion Reactions. Biomedicines 2020; 8:biomedicines8040082. [PMID: 32276476 PMCID: PMC7235862 DOI: 10.3390/biomedicines8040082] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/28/2022] Open
Abstract
Pigs provide a highly sensitive animal model for pseudoallergic infusion reactions, which are mild-to-severe hypersensitivity reactions (HSRs) that arise following intravenous administration of certain nanoparticulate drugs (nanomedicines) and other macromolecular structures. This model has been used in research for three decades and was also proposed by regulatory bodies for preclinical assessment of the risk of HSRs in the clinical stages of nano-drug development. However, there are views challenging the human relevance of the model and its utility in preclinical safety evaluation of nanomedicines. The argument challenging the model refers to the “global response” of pulmonary intravascular macrophages (PIM cells) in the lung of pigs, preventing the distinction of reactogenic from non-reactogenic particles, therefore overestimating the risk of HSRs relative to its occurrence in the normal human population. The goal of this review is to present the large body of experimental and clinical evidence negating the “global response” claim, while also showing the concordance of symptoms caused by different reactogenic nanoparticles in pigs and hypersensitive man. Contrary to the model’s demotion, we propose that the above features, together with the high reproducibility of quantifiable physiological endpoints, validate the porcine “complement activation-related pseudoallergy” (CARPA) model for safety evaluations. However, it needs to be kept in mind that the model is a disease model in the context of hypersensitivity to certain nanomedicines. Rather than toxicity screening, its main purpose is specific identification of HSR hazard, also enabling studies on the mechanism and mitigation of potentially serious HSRs.
Collapse
|
30
|
Kozma GT, Shimizu T, Ishida T, Szebeni J. Anti-PEG antibodies: Properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals. Adv Drug Deliv Rev 2020; 154-155:163-175. [PMID: 32745496 DOI: 10.1016/j.addr.2020.07.024] [Citation(s) in RCA: 329] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
Conjugation of polyethylene glycols (PEGs) to proteins or drug delivery nanosystems is a widely accepted method to increase the therapeutic index of complex nano-biopharmaceuticals. Nevertheless, these drugs and agents are often immunogenic, triggering the rise of anti-drug antibodies (ADAs). Among these ADAs, anti-PEG IgG and IgM were shown to account for efficacy loss due to accelerated blood clearance of the drug (ABC phenomenon) and hypersensitivity reactions (HSRs) entailing severe allergic symptoms with occasionally fatal anaphylaxis. In addition to recapitulating the basic information on PEG and its applications, this review expands on the physicochemical factors influencing its immunogenicity, the prevalence, features, mechanism of formation and detection of anti-PEG IgG and IgM and the mechanisms by which these antibodies (Abs) induce ABC and HSRs. In particular, we highlight the in vitro, animal and human data attesting to anti-PEG Ab-induced complement (C) activation as common underlying cause of both adverse effects. A main message is that correct measurement of anti-PEG Abs and individual proneness for C activation might predict the rise of adverse immune reactions to PEGylated drugs and thereby increase their efficacy and safety.
Collapse
Affiliation(s)
- Gergely Tibor Kozma
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University Medical School, Budapest, Hungary; SeroScience Ltd, Budapest, Hungary
| | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1, Sho-machi, Tokushima 770-8505, Japan
| | - Janos Szebeni
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University Medical School, Budapest, Hungary; SeroScience Ltd, Budapest, Hungary; Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary.
| |
Collapse
|
31
|
Complement Activation-Related Pathophysiological Changes in Anesthetized Rats: Activator-Dependent Variations of Symptoms and Mediators of Pseudoallergy. Molecules 2019; 24:molecules24183283. [PMID: 31505853 PMCID: PMC6767111 DOI: 10.3390/molecules24183283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 12/11/2022] Open
Abstract
Complement (C) activation can underlie the infusion reactions to liposomes and other nanoparticle-based medicines, a hypersensitivity syndrome that can be partially reproduced in animal models. However, the sensitivities and manifestations substantially differ in different species, and C activation may not be the only cause of pathophysiological changes. In order to map the species variation of C-dependent and -independent pseudoallergy (CARPA/CIPA), here we used known C activators and C activator liposomes to compare their acute hemodynamic, hematological, and biochemical effects in rats. These C activators were cobra venom factor (CVF), zymosan, AmBisome (at 2 doses), its amphotericin B-free vehicle (AmBisombo), and a PEGylated cholesterol-containing liposome (PEG-2000-chol), all having different powers to activate C in rat blood. The pathophysiological endpoints measured were blood pressure, leukocyte and platelet counts, and plasma thromboxane B2, while C activation was assessed by C3 consumption using the Pan-Specific C3 assay. The results showed strong linear correlation between C activation and systemic hypotension, pointing to a causal role of C activation in the hemodynamic changes. The observed thrombocytopenia and leukopenia followed by leukocytosis also correlated with C3 conversion in case of C activators, but not necessarily with C activation by liposomes. These findings are consistent with the double hit hypothesis of hypersensitivity reactions (HSRs), inasmuch as strong C activation can fully account for all symptoms of HSRs, but in case of no-, or weak C activators, the pathophysiological response, if any, is likely to involve other activation pathways.
Collapse
|
32
|
Liposome-induced hypersensitivity reactions: Risk reduction by design of safe infusion protocols in pigs. J Control Release 2019; 309:333-338. [DOI: 10.1016/j.jconrel.2019.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/29/2019] [Accepted: 07/07/2019] [Indexed: 01/24/2023]
|
33
|
Kozma GT, Mészáros T, Vashegyi I, Fülöp T, Örfi E, Dézsi L, Rosivall L, Bavli Y, Urbanics R, Mollnes TE, Barenholz Y, Szebeni J. Pseudo-anaphylaxis to Polyethylene Glycol (PEG)-Coated Liposomes: Roles of Anti-PEG IgM and Complement Activation in a Porcine Model of Human Infusion Reactions. ACS NANO 2019; 13:9315-9324. [PMID: 31348638 DOI: 10.1021/acsnano.9b03942] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Polyethylene glycol (PEG)-coated nanopharmaceuticals can cause mild to severe hypersensitivity reactions (HSRs), which can occasionally be life threatening or even lethal. The phenomenon represents an unsolved immune barrier to the use of these drugs, yet its mechanism is poorly understood. This study showed that a single i.v. injection in pigs of a low dose of PEGylated liposomes (Doxebo) induced a massive rise of anti-PEG IgM in blood, peaking at days 7-9 and declining over 6 weeks. Bolus injections of PEG-liposomes during seroconversion resulted in anaphylactoid shock (pseudo-anaphylaxis) within 2-3 min, although similar treatments of naı̈ve animals led to only mild hemodynamic disturbance. Parallel measurement of pulmonary arterial pressure (PAP) and sC5b-9 in blood, taken as measures of HSR and complement activation, respectively, showed a concordant rise of the two variables within 3 min and a decline within 15 min, suggesting a causal relationship between complement activation and pulmonary hypertension. We also observed a rapid decline of anti-PEG IgM in the blood within minutes, increased binding of PEGylated liposomes to IgM+ B cells in the spleen of immunized animals compared to control, and increased C3 conversion by PEGylated liposomes in the serum of immunized pigs. These observations taken together suggest rapid binding of anti-PEG IgM to PEGylated liposomes, leading to complement activation via the classical pathway, entailing anaphylactoid shock and accelerated blood clearance of liposome-IgM complexes. These data suggest that complement activation plays a causal role in severe HSRs to PEGylated nanomedicines and that pigs can be used as a hazard identification model to assess the risk of HSRs in preclinical safety studies.
Collapse
Affiliation(s)
- Gergely Tibor Kozma
- Nanomedicine Research and Education Center , Semmelweis University , Budapest 1089 , Hungary
- SeroScience Ltd. , Budapest 1125, Hungary, and Cambridge , Massachusetts 02138 , United States
| | - Tamás Mészáros
- Nanomedicine Research and Education Center , Semmelweis University , Budapest 1089 , Hungary
| | - Ildikó Vashegyi
- SeroScience Ltd. , Budapest 1125, Hungary, and Cambridge , Massachusetts 02138 , United States
| | - Tamás Fülöp
- Nanomedicine Research and Education Center , Semmelweis University , Budapest 1089 , Hungary
| | - Erik Örfi
- Nanomedicine Research and Education Center , Semmelweis University , Budapest 1089 , Hungary
| | - László Dézsi
- Nanomedicine Research and Education Center , Semmelweis University , Budapest 1089 , Hungary
| | - László Rosivall
- Nanomedicine Research and Education Center , Semmelweis University , Budapest 1089 , Hungary
- SeroScience Ltd. , Budapest 1125, Hungary, and Cambridge , Massachusetts 02138 , United States
- Department of Pathophysiology, International Nephrology Research and Training Center , Semmelweis University , Budapest 1089 , Hungary
| | - Yaelle Bavli
- Laboratory of Membrane and Liposome Research, IMRIC , Hebrew University-Hadassah Medical School , Jerusalem 9112102 , Israel
| | - Rudolf Urbanics
- Nanomedicine Research and Education Center , Semmelweis University , Budapest 1089 , Hungary
- SeroScience Ltd. , Budapest 1125, Hungary, and Cambridge , Massachusetts 02138 , United States
| | - Tom Eirik Mollnes
- Department of Immunology , Oslo University Hospital , Rikshospitalet , Oslo 0372 , Norway
- Research Laboratory, Nordland Hospital Bodø, and Faculty of Health Sciences and TREC , University of Tromsø , Tromsø 9019 , Norway
- Centre of Molecular Inflammation Research , Norwegian University of Science and Technology , Trondheim 7012 , Norway
| | - Yechezkel Barenholz
- Laboratory of Membrane and Liposome Research, IMRIC , Hebrew University-Hadassah Medical School , Jerusalem 9112102 , Israel
| | - János Szebeni
- Nanomedicine Research and Education Center , Semmelweis University , Budapest 1089 , Hungary
- SeroScience Ltd. , Budapest 1125, Hungary, and Cambridge , Massachusetts 02138 , United States
- Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health , Miskolc University , Miskolc 3515 , Hungary
| |
Collapse
|
34
|
Dobrovolskaia M, Neun BW, Szénási G, Szebeni J. Plasma samples from mouse strains and humans demonstrate different susceptibilities to complement activation. PRECISION NANOMEDICINE 2018. [DOI: 10.33218/prnano1(3).181029.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Complement activation can be evaluated in vitro using plasma or serum from animals and human donors, and in vivo using animal models. Despite many years of research, there is no harmonized approach for the selection of matrix and animal models. Herein, we present an in vitro study investigating intra- and inter-species variability in the complement activation. We used the liposomal formulation of amphotericin, Ambisome, as a model particle to assess the magnitude of the complement activation in plasma derived from various mouse strains and individual human donors. We demonstrated that mouse strains differ in the magnitude of the complement activation by liposomes and cobra venom factor (CVF) in vitro. Inter-individual variability in complement activation by Ambisome and CVF was also observed when plasma from individual human donors was analyzed. Such variability in both mouse and human plasma could not be explained by the levels of complement regulatory factors H and I. Moreover, even though mouse plasma was less sensitive to the complement activation by CVF than human plasma, it was equally sensitive to the activation by Ambisome. Our study demonstrates the importance of mouse strain selection for in vitro complement activation analysis. It also shows that traditional positive controls (e.g., CVF) are not predictive of the degree of complement activation by nanomedicines. The study also suggests that besides complement inhibitory factors, other elements contribute to the inter- and intra-species variability in complement activation by nanomedicines.
Collapse
|
35
|
Szebeni J, Simberg D, González-Fernández Á, Barenholz Y, Dobrovolskaia MA. Roadmap and strategy for overcoming infusion reactions to nanomedicines. NATURE NANOTECHNOLOGY 2018; 13:1100-1108. [PMID: 30348955 PMCID: PMC6320688 DOI: 10.1038/s41565-018-0273-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/03/2018] [Indexed: 05/20/2023]
Abstract
Infusion reactions (IRs) are complex, immune-mediated side effects that mainly occur within minutes to hours of receiving a therapeutic dose of intravenously administered pharmaceutical products. These products are diverse and include both traditional pharmaceuticals (for example biological agents and small molecules) and new ones (for example nanotechnology-based products). Although IRs are not unique to nanomedicines, they represent a hurdle for the translation of nanotechnology-based drug products. This Perspective offers a big picture of the pharmaceutical field and examines current understanding of mechanisms responsible for IRs to nanomedicines. We outline outstanding questions, review currently available experimental evidence to provide some answers and highlight the gaps. We review advantages and limitations of the in vitro tests and animal models used for studying IRs to nanomedicines. Finally, we propose a roadmap to improve current understanding, and we recommend a strategy for overcoming the problem.
Collapse
Affiliation(s)
- Janos Szebeni
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
- SeroScience Ltd, Budapest, Hungary
- Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary
| | - Dmitri Simberg
- Translational Bio-Nanosciences Laboratory, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
| | - África González-Fernández
- Immunology, Centro de Investigaciones Biomédicas (CINBIO), Centro de Investigación Singular de Galicia, Instituto de Investigación Sanitaria Galicia Sur (IIS-GS), University of Vigo, Vigo, Spain
| | - Yechezkel Barenholz
- Department of Biochemistry, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
36
|
Zamboni WC, Szebeni J, Kozlov SV, Lucas AT, Piscitelli JA, Dobrovolskaia MA. Animal models for analysis of immunological responses to nanomaterials: Challenges and considerations. Adv Drug Deliv Rev 2018; 136-137:82-96. [PMID: 30273617 DOI: 10.1016/j.addr.2018.09.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022]
Abstract
Nanotechnology provides many solutions to improve conventional drug delivery and has a unique niche in the areas related to the specific targeting of the immune system, such as immunotherapies and vaccines. Preclinical studies in this field rely heavily on the combination of in vitro and in vivo methods to assess the safety and efficacy of nanotechnology platforms, nanoparticle-formulated drugs, and vaccines. While certain types of toxicities can be evaluated in vitro and good in vitro-in vivo correlation has been demonstrated for such tests, animal studies are still needed to address complex biological questions and, therefore, provide a unique contribution to establishing nanoparticle safety and efficacy profiles. The genetic, metabolic, mechanistic, and phenotypic diversity of currently available animal models often complicates both the animal choice and the interpretation of the results. This review summarizes current knowledge about differences in the immune system function and immunological responses of animals commonly used in preclinical studies of nanomaterials. We discuss challenges, highlight current gaps, and propose recommendations for animal model selection to streamline preclinical analysis of nanotechnology formulations.
Collapse
Affiliation(s)
- William C Zamboni
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Center of Cancer Nanotechnology Excellence, the University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| | - Janos Szebeni
- Nanomedicine Research and Education Center, Institute of Pathophysiology, Semmelweis University and SeroScience Ltd, Nagyvárad tér 4, 1089 Budapest, Hungary; Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary
| | - Serguei V Kozlov
- Laboratory of Animal Sciences Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Andrew T Lucas
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Center of Cancer Nanotechnology Excellence, the University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joseph A Piscitelli
- UNC Eshelman School of Pharmacy, UNC Lineberger Comprehensive Cancer Center, Carolina Center of Cancer Nanotechnology Excellence, the University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, United States.
| |
Collapse
|
37
|
Mészáros T, Kozma GT, Shimizu T, Miyahara K, Turjeman K, Ishida T, Barenholz Y, Urbanics R, Szebeni J. Involvement of complement activation in the pulmonary vasoactivity of polystyrene nanoparticles in pigs: unique surface properties underlying alternative pathway activation and instant opsonization. Int J Nanomedicine 2018; 13:6345-6357. [PMID: 30349254 PMCID: PMC6187999 DOI: 10.2147/ijn.s161369] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background It has been proposed that many hypersensitivity reactions to nanopharmaceuticals represent complement (C)-activation-related pseudoallergy (CARPA), and that pigs provide a sensitive animal model to study the phenomenon. However, a recent study suggested that pulmonary hypertension, the pivotal symptom of porcine CARPA, is not mediated by C in cases of polystyrene nanoparticle (PS-NP)-induced reactions. Goals To characterize PS-NPs and reexamine the contribution of CARPA to their pulmonary reactivity in pigs. Study design C activation by 200, 500, and 750 nm (diameter) PS-NPs and their opsonization were measured in human and pig sera, respectively, and correlated with hemodynamic effects of the same NPs in pigs in vivo. Methods Physicochemical characterization of PS-NPs included size, ζ-potential, cryo-transmission electron microscopy, and hydrophobicity analyses. C activation in human serum was measured by ELISA and opsonization of PS-NPs in pig serum by Western blot and flow cytometry. Pulmonary vasoactivity of PS-NPs was quantified in the porcine CARPA model. Results PS-NPs are monodisperse, highly hydrophobic spheres with strong negative surface charge. In human serum, they caused size-dependent, significant rises in C3a, Bb, and sC5b-9, but not C4d. Exposure to pig serum led within minutes to deposition of C5b-9 and opsonic iC3b on the NPs, and opsonic iC3b fragments (C3dg, C3d) also appeared in serum. PS-NPs caused major hemodynamic changes in pigs, primarily pulmonary hypertension, on the same time scale (minutes) as iC3b fragmentation and opsonization proceeded. There was significant correlation between C activation by different PS-NPs in human serum and pulmonary hypertension in pigs. Conclusion PS-NPs have extreme surface properties with no relevance to clinically used nanomedicines. They can activate C via the alternative pathway, entailing instantaneous opsonization of NPs in pig serum. Therefore, rather than being solely C-independent reactivity, the mechanism of PS-NP-induced hypersensitivity in pigs may involve C activation. These data are consistent with the “double-hit” concept of nanoparticle-induced hypersensitivity reactions involving both CARPA and C-independent pseudoallergy.
Collapse
Affiliation(s)
- Tamás Mészáros
- Nanomedicine Research and Education Center, Department of Pathophysiology, Semmelweis University, Budapest, Hungary, .,SeroScience Ltd, Budapest, Hungary,
| | | | - Taro Shimizu
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Koga Miyahara
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Keren Turjeman
- Laboratory of Membrane and Liposome Research, Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yechezkel Barenholz
- Laboratory of Membrane and Liposome Research, Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rudolf Urbanics
- Nanomedicine Research and Education Center, Department of Pathophysiology, Semmelweis University, Budapest, Hungary, .,SeroScience Ltd, Budapest, Hungary,
| | - János Szebeni
- Nanomedicine Research and Education Center, Department of Pathophysiology, Semmelweis University, Budapest, Hungary, .,SeroScience Ltd, Budapest, Hungary, .,Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health, Miskolc University, Miskolc, Hungary,
| |
Collapse
|
38
|
Understanding the Role of Anti-PEG Antibodies in the Complement Activation by Doxil in Vitro. Molecules 2018; 23:molecules23071700. [PMID: 30002298 PMCID: PMC6100003 DOI: 10.3390/molecules23071700] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 11/27/2022] Open
Abstract
Infusion reactions (IRs) are common immune-mediated side effects in patients treated with a variety of drug products, including, but not limited to, nanotechnology formulations. The mechanism of IRs is not fully understood. One of the best studied mechanisms of IRs to nanomedicines is the complement activation. However, it is largely unknown why some patients develop reactions to nanomedicines while others do not, and why some nanoparticles are more reactogenic than others. One of the theories is that the pre-existing anti-polyethylene glycol (PEG) antibodies initiate the complement activation and IRs in patients. In this study, we investigated this hypothesis in the case of PEGylated liposomal doxorubicin (Doxil), which, when used in a clinical setting, is known to induce IRs; referred to as complement activation-related pseudoallergy (CARPA) in sensitive individuals. We conducted the study in vitro using plasma derived from C57BL/6 mice and twenty human donor volunteers. We used mouse plasma to test a library of well-characterized mouse monoclonal antibodies with different specificity and affinity to PEG as it relates to the complement activation by Doxil. We determined the levels of pre-existing polyclonal antibodies that bind to PEG, methoxy-PEG, and PEGylated liposomes in human plasma, and we also assessed complement activation by Doxil and concentrations of complement inhibitory factors H and I in these human plasma specimens. The affinity, specificity, and other characteristics of the human polyclonal antibodies are not known at this time. Our data demonstrate that under in vitro conditions, some anti-PEG antibodies contribute to the complement activation by Doxil. Such contribution, however, needs to be considered in the context of other factors, including, but not limited to, antibody class, type, clonality, epitope specificity, affinity, and titer. In addition, our data contribute to the knowledge base used to understand and improve nanomedicine safety.
Collapse
|
39
|
Szebeni J, Bedőcs P, Dézsi L, Urbanics R. A porcine model of complement activation-related pseudoallergy to nano-pharmaceuticals: Pros and cons of translation to a preclinical safety test. PRECISION NANOMEDICINE 2018. [DOI: 10.29016/180427.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pigs provide a sensitive and quantitative animal model of non-IgE-mediated(pseudoallergic) hypersensitivity reactions (HSRs) caused by liposomes and many other nanoparticulate drugs or drug-carrier nanosystems (nanomedicines). The rapidly arising symptoms, including cardiopulmonary, hemodynamic, hematological, blood chemistry and skin changes, resemble the clinical picture in man undergoing infusion reactions toreactogenic nanoparticles. In addition to summarizing the basic features of the pig CARPA model, thereviewconsiderssome of the advantages and disadvantages of using the modelforpreclinical evaluation of nanomedicine safety.
Collapse
Affiliation(s)
- János Szebeni
- Nanomedicine Research and Education Center, Semmelweis University, Budapest, Hungary
| | - Péter Bedőcs
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - László Dézsi
- Nanomedicine Research and Education Center, Semmelweis University, Budapest, Hungary
| | | |
Collapse
|