1
|
Kim DY, Lisinski J, Caton M, Casas B, LaConte S, Chiu PH. Regulation of craving for real-time fMRI neurofeedback based on individual classification. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230094. [PMID: 39428878 PMCID: PMC11491846 DOI: 10.1098/rstb.2023.0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 10/22/2024] Open
Abstract
In previous real-time functional magnetic resonance imaging neurofeedback (rtfMRI-NF) studies on smoking craving, the focus has been on within-region activity or between-region connectivity, neglecting the potential predictive utility of broader network activity. Moreover, there is debate over the use and relative predictive power of individual-specific and group-level classifiers. This study aims to further advance rtfMRI-NF for substance use disorders by using whole-brain rtfMRI-NF to assess smoking craving-related brain patterns, evaluate the performance of group-level or individual-level classification (n = 31) and evaluate the performance of an optimized classifier across repeated NF runs. Using real-time individual-level classifiers derived from whole-brain support vector machines, we found that classification accuracy between crave and no-crave conditions and between repeated NF runs increased across repeated runs at both individual and group levels. In addition, individual-level accuracy was significantly greater than group-level accuracy, highlighting the potential increased utility of an individually trained whole-brain classifier for volitional control over brain patterns to regulate smoking craving. This study provides evidence supporting the feasibility of using whole-brain rtfMRI-NF to modulate smoking craving-related brain responses and the potential for learning individual strategies through optimization across repeated feedback runs. This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- Dong-Youl Kim
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - Jonathan Lisinski
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - Matthew Caton
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
| | - Brooks Casas
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
- Department of Psychology, Virginia Tech, Blacksburg, VA, USA
| | - Stephen LaConte
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Pearl H. Chiu
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, USA
- Department of Psychology, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
2
|
Badr MY, Ahmed GK, Amer RA, Aref HM, Salem RM, Elmokadem HA, Haridy NA, Khedr EM. Effects of transcranial magnetic stimulation on sleep quality in fibromyalgia: A double-blind randomized clinical trial. Sleep Med 2024; 124:354-361. [PMID: 39378544 DOI: 10.1016/j.sleep.2024.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
OBJECTIVES The aim of the current study was to assess the therapeutic impact of repeated low frequency repetitive transcranial magnetic stimulation (rTMS) over the right dorsolateral prefrontal cortex (rDLPFC) on sleep problems in patients with fibromyalgia. METHODS Forty two patients with fibromyalgia who had sleep difficulties were randomly assigned to receive either real or sham rTMS treatment. Patients received 20 treatment sessions (5 sessions per week) in which 1200 rTMS pulses were applied over the rDLPFC using a frequency of 1 Hz and an intensity of 120 % of the resting motor threshold. All participants were evaluated at baseline, and then 1 month and 3 months after treatment using the Fibromyalgia Impact Questionnaire (FIQ), Pittsburgh Sleep Quality Index (PSQI), Medical Outcomes Study Sleep Scale (MOS-SS) and polysomnography (PSG). RESULTS There were significant time (pre, 1month, and 3 months)X group (real versus sham group) interactions in all 3 clinical rating scales; FIQ (Df = 1.425, F = 237.645, P = 0.001), PSQI (Df = 2, F = 64.005, P = 0.001), MOS-SS (Df = 2, F = 28.938, P = 0.001) due to the fact that the real group improved significantly more over time than the sham group. Similarly, the real group improved more on the PSG parameters than the sham group. The effect sizes were large both in the rating scales and PSG, indicating a substantial clinical improvement. Correlation as an exploratory analysis between the changes (pre - post 3 months) in MOS-SS and PLMs index (/h) showed significant negative correlation (r = -0.643, P = 0.002). CONCLUSIONS 20 sessions of LF-rTMS over rDLPFC can improve sleep quality in both subjective (PSQI and MOSS) as well as objective (PSG) rating scales.
Collapse
Affiliation(s)
- Marwa Y Badr
- Department of Neuropsychiatry Department, Faculty of Medicine, Tanta University, Egypt
| | - Gellan K Ahmed
- Department of Neurology and Psychiatry Department, Faculty of Medicine, Assiut University, Egypt
| | - Reham A Amer
- Department of Neuropsychiatry Department, Faculty of Medicine, Tanta University, Egypt
| | - Hend M Aref
- Department of Neuropsychiatry Department, Faculty of Medicine, Tanta University, Egypt
| | - Rehab M Salem
- Department of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Tanta University, Egypt
| | - Heba A Elmokadem
- Department of Physical Medicine, Rheumatology and Rehabilitation, Faculty of Medicine, Tanta University, Egypt
| | - Nourelhoda A Haridy
- Department of Neurology and Psychiatry Department, Faculty of Medicine, Assiut University, Egypt; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Eman M Khedr
- Department of Neurology and Psychiatry Department, Faculty of Medicine, Assiut University, Egypt.
| |
Collapse
|
3
|
Wang T, Li R, Chen D, Xie M, Li Z, Mao H, Ling Y, Liang X, Xu G, Zhang J. Modulation of High-Frequency rTMS on Reward Circuitry in Individuals with Nicotine Dependence: A Preliminary fMRI Study. Neural Plast 2024; 2024:5673579. [PMID: 39234068 PMCID: PMC11374416 DOI: 10.1155/2024/5673579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
Although previous studies have shown that repetitive transcranial magnetic stimulation (rTMS) can ameliorate addictive behaviors and cravings, the underlying neural mechanisms remain unclear. This study aimed to investigate the effect of high-frequency rTMS with the left dorsolateral prefrontal cortex (L-DLPFC) as a target region on smoking addiction in nicotine-dependent individuals by detecting the change of spontaneous brain activity in the reward circuitry. We recruited 17 nicotine-dependence participants, who completed 10 sessions of 10 Hz rTMS over a 2-week period and underwent evaluation of several dependence-related scales, and resting-state fMRI scan before and after the treatment. Functional connectivity (FC) analysis was conducted with reward-related brain regions as seeds, including ventral tegmental area, bilateral nucleus accumbens (NAc), bilateral DLPFC, and bilateral amygdala. We found that, after the treatment, individuals showed reduced nicotine dependence, alleviated tobacco withdrawal symptoms, and diminished smoking cravings. The right NAc showed increased FC with right fusiform gyrus, inferior temporal gyrus (ITG), calcarine fissure and surrounding cortex, superior occipital gyrus (SOG), lingual gyrus, and bilateral cuneus. No significant FC changes were observed in other seed regions. Moreover, the changes in FC between the right NAc and the right ITG as well as SOG before and after rTMS were negatively correlated with changes in smoking scale scores. Our findings suggest that high-frequency L-DLPFC-rTMS reduces nicotine dependence and improves tobacco withdrawal symptoms, and the dysfunctional connectivity in reward circuitry may be the underlying neural mechanism for nicotine addiction and its therapeutic target.
Collapse
Affiliation(s)
- Tao Wang
- Department of Radiology Zhejiang Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Ruiyang Li
- Department of Radiology Zhejiang Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Dongyan Chen
- Department of Radiology Zhejiang Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Mei Xie
- Department of Radiology Zhejiang Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Zhiqiang Li
- Department of Radiology Zhejiang Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Huan Mao
- Yiruide Medical Equipment New Technology Co. Ltd., Wuhan, China
| | - Yuting Ling
- Institute of Research and Clinical Innovations Neusoft Medical Systems Co. Ltd., Shanghai, China
| | - Xiaoyun Liang
- Institute of Research and Clinical Innovations Neusoft Medical Systems Co. Ltd., Shanghai, China
| | - Guojun Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education Department of Biomedical Engineering College of Biomedical Engineering and Instrument Science Zhejiang University, Hangzhou, China
| | - Jianjun Zhang
- Department of Radiology Zhejiang Hospital School of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Rakesh G, Adams TG, Morey RA, Alcorn JL, Khanal R, Su AE, Himelhoch SS, Rush CR. Intermittent theta burst stimulation and functional connectivity in people living with HIV/AIDS who smoke tobacco cigarettes: a preliminary pilot study. Front Psychiatry 2024; 15:1315854. [PMID: 38501083 PMCID: PMC10945607 DOI: 10.3389/fpsyt.2024.1315854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/30/2024] [Indexed: 03/20/2024] Open
Abstract
Background People living with HIV (PLWHA) smoke at three times the rate of the general population and respond poorly to cessation strategies. Previous studies examined repetitive transcranial magnetic stimulation (rTMS) over left dorsolateral prefrontal cortex (L. dlPFC) to reduce craving, but no studies have explored rTMS among PLWHA who smoke. The current pilot study compared the effects of active and sham intermittent theta-burst stimulation (iTBS) on resting state functional connectivity (rsFC), cigarette cue attentional bias, and cigarette craving in PLWHA who smoke. Methods Eight PLWHA were recruited (single-blind, within-subject design) to receive one session of iTBS (n=8) over the L. dlPFC using neuronavigation and, four weeks later, sham iTBS (n=5). Cigarette craving and attentional bias assessments were completed before and after both iTBS and sham iTBS. rsFC was assessed before iTBS (baseline) and after iTBS and sham iTBS. Results Compared to sham iTBS, iTBS enhanced rsFC between the L. dlPFC and bilateral medial prefrontal cortex and pons. iTBS also enhanced rsFC between the right insula and right occipital cortex compared to sham iTBS. iTBS also decreased cigarette craving and cigarette cue attentional bias. Conclusion iTBS could potentially offer a therapeutic option for smoking cessation in PLWHA.
Collapse
Affiliation(s)
- Gopalkumar Rakesh
- Department of Psychiatry, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Thomas G. Adams
- Department of Psychology, College of Arts & Sciences, University of Kentucky, Lexington, KY, United States
| | - Rajendra A. Morey
- Brain Imaging and Analyses Center (BIAC), Duke University Medical Center, Durham, NC, United States
| | - Joseph L. Alcorn
- Department of Behavioral Sciences, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Rebika Khanal
- Department of Psychiatry, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Amanda E. Su
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX, United States
| | - Seth S. Himelhoch
- Department of Psychiatry, College of Medicine, University of Kentucky, Lexington, KY, United States
| | - Craig R. Rush
- Department of Behavioral Sciences, College of Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
5
|
Mehta DD, Praecht A, Ward HB, Sanches M, Sorkhou M, Tang VM, Steele VR, Hanlon CA, George TP. A systematic review and meta-analysis of neuromodulation therapies for substance use disorders. Neuropsychopharmacology 2024; 49:649-680. [PMID: 38086901 PMCID: PMC10876556 DOI: 10.1038/s41386-023-01776-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 02/21/2024]
Abstract
While pharmacological, behavioral and psychosocial treatments are available for substance use disorders (SUDs), they are not always effective or well-tolerated. Neuromodulation (NM) methods, including repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS) and deep brain stimulation (DBS) may address SUDs by targeting addiction neurocircuitry. We evaluated the efficacy of NM to improve behavioral outcomes in SUDs. A systematic literature search was performed on MEDLINE, PsychINFO, and PubMed databases and a list of search terms for four key concepts (SUD, rTMS, tDCS, DBS) was applied. Ninety-four studies were identified that examined the effects of rTMS, tDCS, and DBS on substance use outcomes (e.g., craving, consumption, and relapse) amongst individuals with SUDs including alcohol, tobacco, cannabis, stimulants, and opioids. Meta-analyses were performed for alcohol and tobacco studies using rTMS and tDCS. We found that rTMS reduced substance use and craving, as indicated by medium to large effect sizes (Hedge's g > 0.5). Results were most encouraging when multiple stimulation sessions were applied, and the left dorsolateral prefrontal cortex (DLPFC) was targeted. tDCS also produced medium effect sizes for drug use and craving, though they were highly variable and less robust than rTMS; right anodal DLPFC stimulation appeared to be most efficacious. DBS studies were typically small, uncontrolled studies, but showed promise in reducing misuse of multiple substances. NM may be promising for the treatment of SUDs. Future studies should determine underlying neural mechanisms of NM, and further evaluate extended treatment durations, accelerated administration protocols and long-term outcomes with biochemical verification of substance use.
Collapse
Affiliation(s)
- Dhvani D Mehta
- Addictions Division, CAMH, Toronto, ON, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Angela Praecht
- Addictions Division, CAMH, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Heather B Ward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Maryam Sorkhou
- Addictions Division, CAMH, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Victor M Tang
- Addictions Division, CAMH, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Vaughn R Steele
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | | | - Tony P George
- Addictions Division, CAMH, Toronto, ON, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Li X, Caulfield KA, Hartwell KJ, Henderson S, Brady KT, George MS. Reduced executive and reward connectivity is associated with smoking cessation response to repetitive transcranial magnetic stimulation: A double-blind, randomized, sham-controlled trial. Brain Imaging Behav 2024; 18:207-219. [PMID: 37996557 PMCID: PMC11005027 DOI: 10.1007/s11682-023-00820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) can reduce cue-elicited craving, decrease cigarette consumption, and increase the abstinence rate in tobacco use disorders (TUDs). We used functional magnetic resonance imaging (fMRI) to investigate the effect of 10 sessions of rTMS on cortical activity and neural networks in treatment-seeking smokers. Smoking cue exposure fMRI scans were acquired before and after the 10 sessions of active or sham rTMS (10 Hz, 3000 pulses per session) to the left dorsal lateral prefrontal cortex (DLPFC) in 42 treatment-seeking smokers (≥ 10 cigarettes per day). Brain activity and functional connectivity were compared before and after 10 sessions of rTMS. Ten sessions of rTMS significantly reduced the number of cigarettes consumed per day (62.93%) compared to sham treatment (39.43%) at the end of treatment (p = 0.027). fMRI results showed that the rTMS treatment increased brain activity in the dorsal anterior cingulate cortex (dACC) and DLPFC, but decreased brain activity in the bilateral medial orbitofrontal cortex (mOFC). The lower strength of dACC and mOFC connectivity was associated with quitting smoking (Wald score = 5.00, p = 0.025). The reduction of cigarette consumption significantly correlated with the increased brain activation in the dACC (r = 0.76, p = 0.0001). By increasing the brain activity in the dACC and prefrontal cortex and decreasing brain activity in the mOFC, 10 sessions of rTMS significantly reduced cigarette consumption and increased quit rate. Reduced drive-reward and executive control functional connectivity was associated with the smoking cessation effect from rTMS. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02401672.
Collapse
Affiliation(s)
- Xingbao Li
- Brain Stimulation Division, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Kevin A Caulfield
- Brain Stimulation Division, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Karen J Hartwell
- Brain Stimulation Division, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, 29425, USA
| | - Scott Henderson
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Kathleen T Brady
- Brain Stimulation Division, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, 29425, USA
| | - Mark S George
- Brain Stimulation Division, Department of Psychiatry, Medical University of South Carolina, Charleston, SC, 29425, USA
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, 29425, USA
| |
Collapse
|
7
|
Soleimani G, Joutsa J, Moussawi K, Siddiqi SH, Kuplicki R, Bikson M, Paulus MP, Fox MD, Hanlon CA, Ekhtiari H. Converging Evidence for Frontopolar Cortex as a Target for Neuromodulation in Addiction Treatment. Am J Psychiatry 2024; 181:100-114. [PMID: 38018143 PMCID: PMC11318367 DOI: 10.1176/appi.ajp.20221022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Noninvasive brain stimulation technologies such as transcranial electrical and magnetic stimulation (tES and TMS) are emerging neuromodulation therapies that are being used to target the neural substrates of substance use disorders. By the end of 2022, 205 trials of tES or TMS in the treatment of substance use disorders had been published, with heterogeneous results, and there is still no consensus on the optimal target brain region. Recent work may help clarify where and how to apply stimulation, owing to expanding databases of neuroimaging studies, new systematic reviews, and improved methods for causal brain mapping. Whereas most previous clinical trials targeted the dorsolateral prefrontal cortex, accumulating data highlight the frontopolar cortex as a promising therapeutic target for transcranial brain stimulation in substance use disorders. This approach is supported by converging multimodal evidence, including lesion-based maps, functional MRI-based maps, tES studies, TMS studies, and dose-response relationships. This review highlights the importance of targeting the frontopolar area and tailoring the treatment according to interindividual variations in brain state and trait and electric field distribution patterns. This converging evidence supports the potential for treatment optimization through context, target, dose, and timing dimensions to improve clinical outcomes of transcranial brain stimulation in people with substance use disorders in future clinical trials.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Juho Joutsa
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Khaled Moussawi
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Shan H Siddiqi
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Rayus Kuplicki
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Marom Bikson
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Martin P Paulus
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Michael D Fox
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Colleen A Hanlon
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| | - Hamed Ekhtiari
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Soleimani, Ekhtiari); Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, and Neurocenter and Turku PET Center, Turku University Hospital, Turku, Finland (Joutsa); Department of Psychiatry, University of Pittsburgh, Pittsburgh (Moussawi); Center for Brain Circuit Therapeutics and Departments of Neurology, Psychiatry, Neurosurgery, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston (Siddiqi, Fox); Laureate Institute for Brain Research, Tulsa, Okla. (Kuplicki, Paulus, Ekhtiari); Department of Biomedical Engineering, City College of New York, New York (Bikson); Department Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, N.C. (Hanlon)
| |
Collapse
|
8
|
Xiu H, Liu F, Hou Y, Chen X, Tu S. High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) on global cognitive function of elderly in mild to moderate Alzheimer's disease: a systematic review and meta-analysis. Neurol Sci 2024; 45:13-25. [PMID: 37749398 DOI: 10.1007/s10072-023-07072-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/10/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVE High-frequency repetitive transcranial magnetic stimulation (HF-rTMS) is a non-invasive brain stimulation technique used to improve cognitive deficits in patients with Alzheimer's disease (AD). This systematic review and meta-analysis aimed to evaluate the efficacy of HF-rTMS in improving global cognitive function rehabilitation in elderly patients with mild to moderate AD. METHODS A detailed literature search of publications using ten databases (Chinese: Wanfang, VIP Periodical, SinoMed, the Chinese National Knowledge Infrastructure; English: PubMed, Embase, OVID, Web of Science, Cochrane Library, and EBSCOhost) was performed to identify English and Chinese language articles published up to December 2022. We only included randomized controlled trials (RCTs) that evaluate the effect of HF-rTMS on elderly patients with mild to moderate AD. The retrieved studies were carefully reviewed, extracted data, and assessed quality. RESULTS Seventeen studies, including 1161 elderly patients with mild to moderate AD, were included in this meta-analysis. Compared to the control group, HF-rTMS could increase MMSE (mean difference [MD] = 3.64; 95%CI 1.86-5.42; P < 0.0001), MoCA (MD = 3.69; 95%CI 1.84-5.54; P < 0.0001), P300 amplitude (MD = 1.09; 95%CI 0.45-1.72; P = 0.0008), and total effective rate scores (MD = 3.64; 95% CI 2.14-6.18; P < 0.00001) while decreasing ADAS-Cog (MD = - 3.53; 95%CI - 4.91- - 2.15; P < 0.00001) and P300 latency scores (MD = - 38.32; 95%CI - 72.40- - 4.24; P = 0.03). Our study showed that HF-rTMS could improve the global cognitive function of elderly patients with mild to moderate AD. CONCLUSION HF-rTMS can improve global cognitive function in elderly patients with mild to moderate AD, which is an effective and safe rehabilitation treatment tool for AD patients.
Collapse
Affiliation(s)
- Huoqin Xiu
- Nursing College, Fujian University of Traditional Chinese Medicine, No.1 Qiu Yang Road, Shangjie, Minhou, Fuzhou, 350122, Fujian, China
| | - Fang Liu
- Nursing College, Fujian University of Traditional Chinese Medicine, No.1 Qiu Yang Road, Shangjie, Minhou, Fuzhou, 350122, Fujian, China.
| | - Yufei Hou
- Nursing College, Fujian University of Traditional Chinese Medicine, No.1 Qiu Yang Road, Shangjie, Minhou, Fuzhou, 350122, Fujian, China
| | - Xin Chen
- Nursing College, Fujian University of Traditional Chinese Medicine, No.1 Qiu Yang Road, Shangjie, Minhou, Fuzhou, 350122, Fujian, China
| | - Shuzhen Tu
- Nursing College, Fujian University of Traditional Chinese Medicine, No.1 Qiu Yang Road, Shangjie, Minhou, Fuzhou, 350122, Fujian, China
| |
Collapse
|
9
|
Ross JM, Cline CC, Sarkar M, Truong J, Keller CJ. Neural effects of TMS trains on the human prefrontal cortex. Sci Rep 2023; 13:22700. [PMID: 38123591 PMCID: PMC10733322 DOI: 10.1038/s41598-023-49250-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
How does a train of TMS pulses modify neural activity in humans? Despite adoption of repetitive TMS (rTMS) for the treatment of neuropsychiatric disorders, we still do not understand how rTMS changes the human brain. This limited understanding stems in part from a lack of methods for noninvasively measuring the neural effects of a single TMS train-a fundamental building block of treatment-as well as the cumulative effects of consecutive TMS trains. Gaining this understanding would provide foundational knowledge to guide the next generation of treatments. Here, to overcome this limitation, we developed methods to noninvasively measure causal and acute changes in cortical excitability and evaluated this neural response to single and sequential TMS trains. In 16 healthy adults, standard 10 Hz trains were applied to the dorsolateral prefrontal cortex in a randomized, sham-controlled, event-related design and changes were assessed based on the TMS-evoked potential (TEP), a measure of cortical excitability. We hypothesized that single TMS trains would induce changes in the local TEP amplitude and that those changes would accumulate across sequential trains, but primary analyses did not indicate evidence in support of either of these hypotheses. Exploratory analyses demonstrated non-local neural changes in sensor and source space and local neural changes in phase and source space. Together these results suggest that single and sequential TMS trains may not be sufficient to modulate local cortical excitability indexed by typical TEP amplitude metrics but may cause neural changes that can be detected outside the stimulation area or using phase or source space metrics. This work should be contextualized as methods development for the monitoring of transient noninvasive neural changes during rTMS and contributes to a growing understanding of the neural effects of rTMS.
Collapse
Affiliation(s)
- Jessica M Ross
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305-5797, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Christopher C Cline
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305-5797, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Manjima Sarkar
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305-5797, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Jade Truong
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305-5797, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305-5797, USA.
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), 3801 Miranda Avenue, Palo Alto, CA, 94304, USA.
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Tang VM, Ibrahim C, Rodak T, Goud R, Blumberger DM, Voineskos D, Le Foll B. Managing substance use in patients receiving therapeutic repetitive transcranial magnetic stimulation: A scoping review. Neurosci Biobehav Rev 2023; 155:105477. [PMID: 38007879 DOI: 10.1016/j.neubiorev.2023.105477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Repetitive Transcranial Magnetic Stimulation (rTMS) is an invaluable treatment option for neuropsychiatric disorders. Co-occurring recreational and nonmedical substance use can be common in those presenting for rTMS treatment, and it is unknown how it may affect the safety and efficacy of rTMS for the treatment of currently approved neuropsychiatric indications. This scoping review aimed to map the literature on humans receiving rTMS and had a history of any type of substance use. The search identified 274 articles providing information on inclusion/exclusion criteria, withdrawal criteria, safety protocols, type of rTMS and treatment parameters, adverse events and effect on primary outcomes that related to substance use. There are neurophysiological effects of substance use on cortical excitability, although the relevance to clinical rTMS practice is unknown. The current literature supports the safety and feasibility of delivering rTMS to those who have co-occurring neuropsychiatric disorder and substance use. However, specific details on how varying degrees of substance use alters the safety, efficacy, and mechanisms of rTMS remains poorly described.
Collapse
Affiliation(s)
- Victor M Tang
- Addictions Division, Centre for Addiction and Mental Health, Canada; Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Institute of Mental Health Policy Research, Centre for Addiction and Mental Health, Canada.
| | - Christine Ibrahim
- Addictions Division, Centre for Addiction and Mental Health, Canada; Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Terri Rodak
- CAMH Mental Health Sciences Library, Department of Education, Centre for Addiction and Mental Health, Canada
| | - Rachel Goud
- Addictions Division, Centre for Addiction and Mental Health, Canada
| | - Daniel M Blumberger
- Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Canada
| | - Daphne Voineskos
- Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Canada; Poul Hansen Family Centre for Depression, Krembil Research Institute, Toronto Western Hospital, University Health Network, Canada
| | - Bernard Le Foll
- Addictions Division, Centre for Addiction and Mental Health, Canada; Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Canada; Institute of Mental Health Policy Research, Centre for Addiction and Mental Health, Canada; CAMH Mental Health Sciences Library, Department of Education, Centre for Addiction and Mental Health, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Canada; Poul Hansen Family Centre for Depression, Krembil Research Institute, Toronto Western Hospital, University Health Network, Canada; Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Family and Community Medicine, Temerty Faculty of Medicine, University of Toronto, Canada; Waypoint Research Institute, Waypoint Centre for Mental Health Care, Penetanguishene, Canada
| |
Collapse
|
11
|
Jordan T, Apostol MR, Nomi J, Petersen N. Unraveling Neural Complexity: Exploring Brain Entropy to Yield Mechanistic Insight in Neuromodulation Therapies for Tobacco Use Disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557465. [PMID: 37745351 PMCID: PMC10515846 DOI: 10.1101/2023.09.12.557465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Neuromodulation therapies, such as repetitive transcranial magnetic stimulation (rTMS), have shown promise as treatments for tobacco use disorder (TUD). However, the underlying mechanisms of these therapies remain unclear, which may hamper optimization and personalization efforts. In this study, we investigated alteration of brain entropy as a potential mechanism underlying the neural effects of noninvasive brain stimulation by rTMS in people with TUD. We employed sample entropy (SampEn) to quantify the complexity and predictability of brain activity measured using resting-state fMRI data. Our study design included a randomized single-blind study with 42 participants who underwent 2 data collection sessions. During each session, participants received high-frequency (10Hz) stimulation to the dorsolateral prefrontal cortex (dlPFC) or a control region (visual cortex), and resting-state fMRI scans were acquired before and after rTMS. Our findings revealed that individuals who smoke exhibited higher baseline SampEn throughout the brain as compared to previously-published SampEn measurements in control participants. Furthermore, high-frequency rTMS to the dlPFC but not the control region reduced SampEn in the insula and dlPFC, regions implicated in TUD, and also reduced self-reported cigarette craving. These results suggest that brain entropy may serve as a potential biomarker for effects of rTMS, and provide insight into the neural mechanisms underlying rTMS effects on smoking cessation. Our study contributes to the growing understanding of brain-based interventions for TUD by highlighting the relevance of brain entropy in characterizing neural activity patterns associated with smoking. The observed reductions in entropy following dlPFC-targeted rTMS suggest a potential mechanism for the therapeutic effects of this intervention. These findings support the use of neuroimaging techniques to investigate the use of neuromodulation therapies for TUD.
Collapse
Affiliation(s)
- Timothy Jordan
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles CA
| | - Michael R. Apostol
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles CA
| | - Jason Nomi
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles CA
| | - Nicole Petersen
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, UCLA, Los Angeles CA
| |
Collapse
|
12
|
Luo M, Gan Q, Fu Y, Chen Z. Cue-reactivity targeted smoking cessation intervention in individuals with tobacco use disorder: a scoping review. Front Psychiatry 2023; 14:1167283. [PMID: 37743997 PMCID: PMC10512743 DOI: 10.3389/fpsyt.2023.1167283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Objectives Cue-reactivity is a critical step leading to the emergence of addictive psychology and the triggering of addictive behaviors within the framework of addiction theory and is considered a significant risk factor for addiction-related behaviors. However, the effect of cue-reactivity targeted smoking cessation intervention and the cue-reactivity paradigms used in the randomized controlled trials varies, which introduces more heterogeneity and makes a side-by-side comparison of cessation responses difficult. Therefore, the scoping review aims to integrate existing research and identify evidence gaps. Methods We searched databases in English (PubMed and Embase) and Chinese (CNKI and Wanfang) using terms synonymous with 'cue' and 'tobacco use disorder (TUD)' to April 2023, and via hand-searching and reference screening of included studies. Studies were included if they were randomized controlled trials taking cue-reactivity as an indicator for tobacco use disorder (TUD) defined by different kinds of criteria. Results Data were extracted on each study's country, population, methods, timeframes, outcomes, cue-reactivity paradigms, and so on. Of the 2,944 literature were retrieved, 201 studies met the criteria and were selected for full-text screening. Finally, 67 pieces of literature were selected for inclusion and data extraction. The results mainly revealed that non-invasive brain stimulation and exercise therapy showed a trend of greater possibility in reducing subjective craving compared to the remaining therapies, despite variations in the number of research studies conducted in each category. And cue-reactivity paradigms vary in materials and mainly fall into two main categories: behaviorally induced craving paradigm or visually induced craving paradigm. Conclusion The current studies are still inadequate in terms of comparability due to their heterogeneity, cue-reactivity can be conducted in the future by constructing a standard library of smoking cue materials. Causal analysis is suggested in order to adequately screen for causes of addiction persistence, and further explore the specific objective cue-reactivity-related indicators of TUD.
Collapse
Affiliation(s)
- Miaoling Luo
- Medical School, Kunming University of Science and Technology, Kunming, China
- Brain Science and Visual Cognition Research Center, Medical School of Kunming University of Science and Technology, Kunming, China
| | - Quan Gan
- Medical School, Kunming University of Science and Technology, Kunming, China
- Brain Science and Visual Cognition Research Center, Medical School of Kunming University of Science and Technology, Kunming, China
- Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Yu Fu
- Medical School, Kunming University of Science and Technology, Kunming, China
- Brain Science and Visual Cognition Research Center, Medical School of Kunming University of Science and Technology, Kunming, China
| | - Zhuangfei Chen
- Medical School, Kunming University of Science and Technology, Kunming, China
- Brain Science and Visual Cognition Research Center, Medical School of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
13
|
Ibrahim C, Tang VM, Blumberger DM, Malik S, Tyndale RF, Trevizol AP, Barr MS, Daskalakis ZJ, Zangen A, Le Foll B. Efficacy of insula deep repetitive transcranial magnetic stimulation combined with varenicline for smoking cessation: A randomized, double-blind, sham controlled trial. Brain Stimul 2023; 16:1501-1509. [PMID: 37806524 DOI: 10.1016/j.brs.2023.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Current smoking cessation treatments are limited in terms of efficacy, particularly with regards to long term abstinence. There is a large amount of evidence implicating the insula in nicotine addiction. OBJECTIVE To examine the efficacy of bilateral repetitive transcranial magnetic stimulation (rTMS) directed to the insular cortex with the H11 coil, relative to sham stimulation, on smoking abstinence and smoking outcomes in smokers who are receiving standard varenicline treatment. METHODS This randomized, double-blind, sham controlled trial recruited 42 participants who were randomized to receive either active (n = 24) or sham (n = 18) high frequency rTMS directed to the insula (4 weeks), while receiving varenicline treatment (12 weeks). The primary outcome was 7-day point prevalence abstinence at the end of 12 weeks. RESULTS Smokers in the active group had significantly higher abstinence rates than those in the sham group (82.4% vs. 30.7%, p = 0.013) at the end of treatment (Week 12). Secondary outcome measures of abstinence rate at the end of rTMS treatment (Week 4), abstinence rate at 6 months, and smoking outcomes (e.g., craving, withdrawal) showed no significant differences between groups. No differences were found in adverse events reported between the groups. CONCLUSION This study provides evidence of the potential benefit of having a combined treatment for smoking cessation using insula rTMS with the H11 coil and varenicline. Maintenance rTMS sessions and continuation of varenicline for those in abstinence may induce longer-term effects and should be considered in future studies.
Collapse
Affiliation(s)
- Christine Ibrahim
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Victor M Tang
- Addictions Division, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Daniel M Blumberger
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre of Addiction and Mental Health, Toronto, ON, Canada
| | - Saima Malik
- Canadian Institutes of Health Research, Ottawa, ON, Canada
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Alisson P Trevizol
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Temerty Centre for Therapeutic Brain Intervention, Centre of Addiction and Mental Health, Toronto, ON, Canada
| | - Mera S Barr
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Department of Psychiatry, School of Medicine, University of California, San Diego Health, San Diego, CA, United States
| | - Abraham Zangen
- Department of Life Sciences and Zelman Centre for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva Israel
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Addictions Division, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada; Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada; Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Acute Care Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Waypoint Research Institute, Waypoint Centre for Mental Health Care, Penetanguishene, Ontario, Canada.
| |
Collapse
|
14
|
Tang VM, Goud R, Zawertailo L, Selby P, Coroiu A, Sloan ME, Chenoweth MJA, Buchman D, Ibrahim C, Blumberger DM, Foll BL. Repetitive transcranial magnetic stimulation for smoking cessation: Next steps for translation and implementation into clinical practice. Psychiatry Res 2023; 326:115340. [PMID: 37454610 DOI: 10.1016/j.psychres.2023.115340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
Tobacco smoking is a significant determinant of preventable morbidity and mortality worldwide. It is now possible to modulate the activity of the neurocircuitry associated with nicotine dependence using repetitive Transcranial Magnetic Stimulation (rTMS), a non-invasive neurostimulation approach, which has recently demonstrated efficacy in clinical trials and received regulatory approval in the US and Canada. However there remains a paucity of replication studies and real-world patient effectiveness data as access to this intervention is extremely limited. There are a number of unique challenges related to the delivery of rTMS that need to be addressed prior to widespread adoption and implementation of this treatment modality for smoking cessation. In this paper, we review the accessibility, scientific, technological, economical, and social challenges that remain before this treatment can be translated into clinical practice. By addressing these remaining barriers and scientific challenges with rTMS for smoking cessation and delineating implementation strategies, we can greatly reduce the burden of tobacco-related disease worldwide.
Collapse
Affiliation(s)
- Victor M Tang
- Addictions Division, Centre for Addiction and Mental Health, 100 Stokes St, Toronto, ON, Canada; Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, University of Toronto, Temerty Faculty of Medicine, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Canada; Centre for Addiction and Mental Health, Institute of Mental Health Policy Research, Canada; Centre for Addiction and Mental Health, Temerty Centre for Therapeutic Brain Intervention, Canada.
| | - Rachel Goud
- Addictions Division, Centre for Addiction and Mental Health, 100 Stokes St, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Temerty Faculty of Medicine, Canada
| | - Laurie Zawertailo
- Addictions Division, Centre for Addiction and Mental Health, 100 Stokes St, Toronto, ON, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Canada; Centre for Addiction and Mental Health, Institute of Mental Health Policy Research, Canada; Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Peter Selby
- Addictions Division, Centre for Addiction and Mental Health, 100 Stokes St, Toronto, ON, Canada; Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, University of Toronto, Temerty Faculty of Medicine, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Canada; Centre for Addiction and Mental Health, Institute of Mental Health Policy Research, Canada; Department of Family and Community Medicine, Temerty Faculty of Medicine, University of Toronto, Canada; Dalla Lana School of Public Health, University of Toronto, Canada
| | - Adina Coroiu
- Addictions Division, Centre for Addiction and Mental Health, 100 Stokes St, Toronto, ON, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Canada
| | - Matthew E Sloan
- Addictions Division, Centre for Addiction and Mental Health, 100 Stokes St, Toronto, ON, Canada; Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, University of Toronto, Temerty Faculty of Medicine, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Canada; Centre for Addiction and Mental Health, Institute of Mental Health Policy Research, Canada; Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Meghan Jo-Ann Chenoweth
- Department of Psychiatry, University of Toronto, Temerty Faculty of Medicine, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Canada; Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Canada
| | - Daniel Buchman
- Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Canada; Dalla Lana School of Public Health, University of Toronto, Canada
| | - Christine Ibrahim
- Addictions Division, Centre for Addiction and Mental Health, 100 Stokes St, Toronto, ON, Canada; Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Daniel M Blumberger
- Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, University of Toronto, Temerty Faculty of Medicine, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Canada; Centre for Addiction and Mental Health, Temerty Centre for Therapeutic Brain Intervention, Canada
| | - Bernard Le Foll
- Addictions Division, Centre for Addiction and Mental Health, 100 Stokes St, Toronto, ON, Canada; Institute for Medical Science, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Psychiatry, University of Toronto, Temerty Faculty of Medicine, Canada; Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Canada; Centre for Addiction and Mental Health, Institute of Mental Health Policy Research, Canada; Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Canada; Department of Family and Community Medicine, Temerty Faculty of Medicine, University of Toronto, Canada; Dalla Lana School of Public Health, University of Toronto, Canada; Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, ON, Canada; Waypoint Research Institute, Waypoint Centre for Mental Health Care, Penetanguishene, ON, Canada
| |
Collapse
|
15
|
Di Bello M, Giudetti F, Palani S, Petrocchi N, McIntosh R, Ottaviani C. Modulatory effects of transcranial direct current stimulation of right insula on compassion motivation. Int J Clin Health Psychol 2023; 23:100362. [PMID: 36605771 PMCID: PMC9800245 DOI: 10.1016/j.ijchp.2022.100362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Background Compassion motivation is associated with increased heart rate variability (HRV), reflecting a calm and self-soothing physiological state. Recent work, however, suggests that this association is dynamic for the specific components of compassion. Objectives The present study adopted anodal transcranial direct current stimulation (tDCS) targeting the right insula to see whether this would modulate the sensitivity to suffering and the commitment to engage in helpful actions (i.e., the components of compassion motivation). Method Ninety-seven healthy individuals underwent 15-min anodal or sham tDCS over the frontotemporal lobe, while watching a video inducing empathic sensitivity and performing a Redistribution Game. Tonic and phasic HRV, dispositional traits, and momentary affects were assessed. Results Compared to sham condition, anodal stimulation favored significant i) HRV reductions during the video and HRV increases during the Redistribution Game; ii) decreases in self-reported levels of negative affect and increases in positive affect during task when the latter was preceded by the video, without influencing altruistic behavior. Conclusions Anodal tDCS over the right insula may modulate the engagement phase of compassion by intensifying the psychophysiological sensitivity to signals of distress and protecting from being subjectively overwhelmed by it.
Collapse
Affiliation(s)
- Maria Di Bello
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Federica Giudetti
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Sowmya Palani
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Nicola Petrocchi
- Department of Psychological and Social Sciences, John Cabot University, Rome, Italy
| | - Roger McIntosh
- Department of Psychology, Divisions of Health, Cognitive and Behavioral Neuroscience, University of Miami, FL, USA
| | - Cristina Ottaviani
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
- Functional Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
16
|
Han X, Zhu Z, Luan J, Lv P, Xin X, Zhang X, Shmuel A, Yao Z, Ma G, Zhang B. Effects of repetitive transcranial magnetic stimulation and their underlying neural mechanisms evaluated with magnetic resonance imaging-based brain connectivity network analyses. Eur J Radiol Open 2023; 10:100495. [PMID: 37396489 PMCID: PMC10311181 DOI: 10.1016/j.ejro.2023.100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 07/04/2023] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain modulation and rehabilitation technique used in patients with neuropsychiatric diseases. rTMS can structurally remodel or functionally induce activities of specific cortical regions and has developed to an important therapeutic method in such patients. Magnetic resonance imaging (MRI) provides brain data that can be used as an explanation tool for the neural mechanisms underlying rTMS effects; brain alterations related to different functions or structures may be reflected in changes in the interaction and influence of brain connections within intrinsic specific networks. In this review, we discuss the technical details of rTMS and the biological interpretation of brain networks identified with MRI analyses, comprehensively summarize the neurobiological effects in rTMS-modulated individuals, and elaborate on changes in the brain network in patients with various neuropsychiatric diseases receiving rehabilitation treatment with rTMS. We conclude that brain connectivity network analysis based on MRI can reflect alterations in functional and structural connectivity networks comprising adjacent and separated brain regions related to stimulation sites, thus reflecting the occurrence of intrinsic functional integration and neuroplasticity. Therefore, MRI is a valuable tool for understanding the neural mechanisms of rTMS and practically tailoring treatment plans for patients with neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xiaowei Han
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Jixin Luan
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Pin Lv
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Xiaoyan Xin
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| | - Amir Shmuel
- Montreal Neurological Institute, McGill University, Canada
| | - Zeshan Yao
- Biomedical Engineering Institute, Jingjinji National Center of Technology Innovation, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
- Nanjing University Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
| |
Collapse
|
17
|
Abstract
This chapter covers how repetitive transcranial magnetic stimulation (rTMS) or transcranial direct current stimulation (tDCS) presently affects smoking cessation. 14 human studies have examined the efficacy of rTMS on cue craving, cigarette consumption, or smoking cessation using a variety of different coils, locations, and treatment parameters. These studies included 7 randomized-controlled trials (RCT) and 7 experimental studies. Most studies (12/14) reported that rTMS reduced cue-induced craving, 5 showed that it decreased cigarette consumption, and 3/4 reported that multiple sessions of rTMS increased the quit rate. In contrast to rTMS, tDCS has 6 RCT studies, of which only 2 studies reported that tDCS reduced craving, and only 1 reported that it reduced cigarette consumption. Three studies failed to find an effect of tDCS on cravings. No tDCS studies reported changing quitting rates in people who smoke. Despite the early positive results of tDCS on nicotine dependence symptoms, 2 larger RCTs recently failed to find a therapeutic effect of tDCS for smoking cessation. In conclusion, rTMS studies demonstrate that multiple sessions help quit smoking, and it has gained FDA approval for that purpose. However, more studies are needed to examine the effect of tDCS with different treatment parameters.
Collapse
Affiliation(s)
- Xingbao Li
- Brain Stimulation Division, Psychiatry Department, Medical University of South Carolina, Charleston, SC, USA
| | - Mark S George
- Brain Stimulation Division, Psychiatry Department, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | | |
Collapse
|
18
|
Moraga-Amaro R, Muñoz P, Villalobos T, Linsambarth S, Maldonado F, Meirone V, Femopase B, Stehberg J. Real-world data of non-invasive stimulation of the human insula-prefrontal cortices using deep TMS to treat anxiety for occupational stress and generalized anxiety disorder. Psychiatry Res 2023; 320:115036. [PMID: 36586377 DOI: 10.1016/j.psychres.2022.115036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/13/2022] [Accepted: 12/25/2022] [Indexed: 12/26/2022]
Abstract
Activation of the insula is found in all anxiety-related disorders and increased insular-prefrontal cortex (PFC) functional connectivity is associated with reduced anxiety. In this study, the combined stimulation of the insula and PFC using the dTMS H4 (insula+LPFC) and H2 (PFC) coils were used to reduce anxiety in 13 subjects experiencing occupational stress, and 55 participants suffering from generalized anxiety disorder (GAD). The combined HF stimulation of the insula and PFC significantly decreased anxiety scores according to the HARS, CAS, and STAI anxiety scales, leading to a reduction in anxiety according to HARS of 88.7% and 70.7% in participants with occupational stress and the clinical sample of participants diagnosed with GAD, respectively. The findings suggest that the prefrontal-insular axis is critical for the regulation of anxiety and its stimulation can be used for the treatment of anxiety in people suffering from occupational stress and GAD.
Collapse
Affiliation(s)
- Rodrigo Moraga-Amaro
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina. Universidad Andres Bello, Santiago, Chile
| | - Paula Muñoz
- Clínica Nova Vita. Del Inca 4446 of. 708. Las Condes, Santiago, Chile
| | - Tomás Villalobos
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina. Universidad Andres Bello, Santiago, Chile
| | | | - Francisco Maldonado
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina. Universidad Andres Bello, Santiago, Chile
| | - Valeria Meirone
- Clínica Nova Vita. Del Inca 4446 of. 708. Las Condes, Santiago, Chile
| | - Bruno Femopase
- Clínica Nova Vita. Del Inca 4446 of. 708. Las Condes, Santiago, Chile
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Instituto de Ciencias Biomédicas, Facultad de Medicina. Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
19
|
Jin L, Yuan M, Zhang W, Wang L, Chen J, Wang F, Zhu J, Liu T, Wei Y, Li Y, Wang W, Li Q, Wei L. Default mode network mechanisms of repeated transcranial magnetic stimulation in heroin addiction. Brain Imaging Behav 2023; 17:54-65. [PMID: 36418675 DOI: 10.1007/s11682-022-00741-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/27/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) over the left dorsolateral prefrontal cortex (DLPFC) has been shown to reduce cravings in heroin-dependent (HD) individuals, but the mechanisms underlying the anti-craving effects of rTMS are unknown. Abnormalities in the default mode network (DMN) are known to be consistent findings in HD individuals and are involved in cravings. We assessed the effect of rTMS on DMN activity and its relationship to the treatment response. Thirty HD individuals were included in this self-controlled study, and all HD participants received 10-Hz rTMS 7-session during a week. Data for cravings and withdrawal symptoms and resting-state functional magnetic resonance imaging data were collected before and after rTMS treatment. Thirty demographically matched healthy individuals who did not receive rTMS were included as controls. We focused on changes in coupling seeded from the medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), and bilateral inferior parietal lobe (IPL), which are the core regions of the DMN. The craving and withdrawal symptom score of HD individuals decreased significantly after rTMS treatment. The left IPL-left middle frontal gyrus coupling and the left IPL-right inferior occipital gyrus coupling decreased significantly, and the changes in the left IPL-left middle frontal gyrus coupling were positively correlated with changes in drug-cue induced cravings. rTMS could modulate the coupling between the DMN and executive control network (ECN). Alterations of the left IPL-left middle frontal gyrus coupling may play an important mechanistic role in reducing drug cue-induced cravings.
Collapse
Affiliation(s)
- Long Jin
- Department of Nuclear Medicine, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, BaQiao District, 710038, Xi'an, Shaanxi, China
| | - Menghui Yuan
- Department of Nuclear Medicine, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, BaQiao District, 710038, Xi'an, Shaanxi, China
| | - Wei Zhang
- Department of Nuclear Medicine, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, BaQiao District, 710038, Xi'an, Shaanxi, China
| | - Lei Wang
- Department of Nuclear Medicine, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, BaQiao District, 710038, Xi'an, Shaanxi, China
| | - Jiajie Chen
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, BaQiao District, 710038, Xi'an, Shaanxi, China
| | - Fan Wang
- Department of Radiology, Qinhuang Hospital, Xi'an, Shaanxi, China
| | - Jia Zhu
- Department of Radiology, Qinhuang Hospital, Xi'an, Shaanxi, China
| | - Tao Liu
- Department of Radiology, Qinhuang Hospital, Xi'an, Shaanxi, China
| | - Yixin Wei
- Department of Nuclear Medicine, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, BaQiao District, 710038, Xi'an, Shaanxi, China
| | - Yunbo Li
- Department of Nuclear Medicine, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, BaQiao District, 710038, Xi'an, Shaanxi, China
| | - Wei Wang
- Department of Nuclear Medicine, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, BaQiao District, 710038, Xi'an, Shaanxi, China.
| | - Qiang Li
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, BaQiao District, 710038, Xi'an, Shaanxi, China.
| | - Longxiao Wei
- Department of Nuclear Medicine, Tangdu Hospital, Fourth Military Medical University, 569 Xinsi Road, BaQiao District, 710038, Xi'an, Shaanxi, China.
| |
Collapse
|
20
|
Qin Y, Ba L, Zhang F, Jian S, Zhang M, Zhu W. Cerebral blood flow changes induced by high-frequency repetitive transcranial magnetic stimulation combined with cognitive training in Alzheimer's disease. Front Neurol 2023; 14:1037864. [PMID: 36761347 PMCID: PMC9902770 DOI: 10.3389/fneur.2023.1037864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Background and purpose Hypoperfusion of the posterior cingulate cortex (PCC) and precuneus has consistently been reported in patients with Alzheimer's disease (AD). Repetitive transcranial magnetic stimulation (rTMS) combined with cognitive training (COG) is effective in alleviating the symptoms of patients with mild AD. This study investigated the effects of rTMS-COG therapy on cerebral blood flow (CBF), with a special interest in the PCC/precuneus, and whether observed CBF changes are associated with changes in neuropsychological assessments in AD. Materials and methods Twenty-one patients with mild or moderate AD were randomly divided into real rTMS (n = 11) and sham treatment (n = 10) groups, both combined with COG. Neuro-navigated 10 Hz rTMS was used to stimulate the left dorsolateral prefrontal cortex (DLPFC) and then the left lateral temporal lobe (LTL) for 20 min each day for 4 weeks in the real rTMS group. All patients with AD underwent neuropsychological assessment, pseudo-continuous arterial spin labeling, and structural 3D T1-weighted MRI before treatment (T0), immediately after treatment (T1), and 4 weeks after treatment (T2). CBF in the precuneus, PCC, and stimulation targets at the region-of-interest (ROI) level, as well as whole-brain CBF changes at the voxel level, were compared between the two groups at three timepoints. Results rTMS-COG therapy revealed significant group × time interactions for the Mini-Mental State Examination (F = 5.339, p = 0.023, η2 = 0.433) and activities of daily living (F = 5.409, p = 0.039, η2 = 0.436) scores. The regional CBF in the precuneus showed a significant group × time interaction (F = 5.833, p = 0.027, η2 = 0.593). For voxel-level analysis, a significant group main effect was found in the left limbic lobe cluster, with the maximal peak in the left parahippocampus (p < 0.001, uncorrected, peak at [-16 -8 -24]). Simple effects analysis indicated that rTMS-COG therapy induced a decrease in CBF in the precuneus at T1 (p = 0.007) and an increase in the left parahippocampus at T2 (p=0.008). CBF decrease in the precuneus was correlated with better cognitive function immediately after treatment (T1) (r =-0.732, p=0.025). Conclusion Neuropsychological assessments showed immediate and long-term effects on cognitive function and activities of daily living after rTMS-COG therapy. CBF changes induced by high-frequency rTMS-COG therapy are region-dependent, showing immediate effects in the precuneus and long-term effects in the left parahippocampus. These results provide imaging evidence to understand the underlying neurobiological mechanism for the application of rTMS-COG in AD.
Collapse
Affiliation(s)
- Yuanyuan Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Li Ba
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fengxia Zhang
- Department of Rehabilitation, RenMin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Si Jian
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Min Zhang ✉
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Wenzhen Zhu ✉
| |
Collapse
|
21
|
Zhu L, Dang G, Wu W, Zhou J, Shi X, Su X, Ren H, Pei Z, Lan X, Lian C, Xie P, Guo Y. Functional connectivity changes are correlated with sleep improvement in chronic insomnia patients after rTMS treatment. Front Neurosci 2023; 17:1135995. [PMID: 37139515 PMCID: PMC10149758 DOI: 10.3389/fnins.2023.1135995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Background Repetitive transcranial magnetic stimulation (rTMS) has been increasingly used as a treatment modality for chronic insomnia disorder (CID). However, our understanding of the mechanisms underlying the efficacy of rTMS is limited. Objective This study aimed to investigate rTMS-induced alterations in resting-state functional connectivity and to find potential connectivity biomarkers for predicting and tracking clinical outcomes after rTMS. Methods Thirty-seven patients with CID received a 10-session low frequency rTMS treatment applied to the right dorsolateral prefrontal cortex. Before and after treatment, the patients underwent resting-state electroencephalography recordings and a sleep quality assessment using the Pittsburgh Sleep Quality Index (PSQI). Results After treatment, rTMS significantly increased the connectivity of 34 connectomes in the lower alpha frequency band (8-10 Hz). Additionally, alterations in functional connectivity between the left insula and the left inferior eye junction, as well as between the left insula and medial prefrontal cortex, were associated with a decrease in PSQI score. Further, the correlation between the functional connectivity and PSQI persisted 1 month after the completion of rTMS as evidenced by subsequent electroencephalography (EEG) recordings and the PSQI assessment. Conclusion Based on these results, we established a link between alterations in functional connectivity and clinical outcomes of rTMS, which suggested that EEG-derived functional connectivity changes were associated with clinical improvement of rTMS in treating CID. These findings provide preliminary evidence that rTMS may improve insomnia symptoms by modifying functional connectivity, which can be used to inform prospective clinical trials and potentially for treatment optimization.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ge Dang
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wei Wu
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Junhong Zhou
- Hebrew Seniorlife, Hinda and Arthur Marcus Institute for Aging Research, Harvard Medical School, Boston, MA, United States
| | - Xue Shi
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiaolin Su
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Huixia Ren
- Department of Geriatrics, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zian Pei
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xiaoyong Lan
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | | | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Guo
- Department of Neurology, Shenzhen People’s Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- *Correspondence: Yi Guo,
| |
Collapse
|
22
|
Wu MK, Satogami K, Liang CS, Stubbs B, Carvalho AF, Brunoni AR, Su KP, Tu YK, Wu YC, Chen TY, Li DJ, Lin PY, Hsu CW, Chen YW, Suen MW, Zeng BY, Takahashi S, Tseng PT, Li CT. Multiple comparison of different noninvasive brain stimulation and pharmacologic interventions in patients with methamphetamine use disorders: A network meta-analysis of randomized controlled trials. Psychiatry Clin Neurosci 2022; 76:633-643. [PMID: 35876620 DOI: 10.1111/pcn.13452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
AIM In recent decades, the prevalence of amphetamine and methamphetamine use disorders has at least doubled in some regions/countries, with accompanying high risks of drug overdose-associated mortality. Noninvasive brain stimulation (NIBS) methods may be effective treatments. However, the comparative efficacy of the NIBS protocol for amphetamine/methamphetamine use disorder (AUD/MUD) remains unknown to date. The aim of this network meta-analysis (NMA) was to compare the efficacy and acceptability of various NIBS methods/protocols for AUD/MUD management. METHODS A frequentist model-based NMA was conducted. We included randomized controlled trials (RCTs) that investigated the efficacy of NIBS and guideline-recommended pharmacologic treatments to reduce craving severity in patients with either AUD or MUD. RESULTS Twenty-two RCTs including 1888 participants met the eligibility criteria. Compared with the sham/placebo group (study = 19, subjects = 891), a combination of intermittent theta burst stimulation over the left dorsolateral prefrontal cortex (DLPFC) and continuous TBS over the left ventromedial prefrontal cortex (study = 1, subjects = 19) was associated with the largest decreases in craving severity [standardized mean difference (SMD) = -1.50; 95% confidence intervals (95%CIs) = -2.70 to -0.31]. High-frequency repetitive transcranial magnetic stimulation over the left DLPFC was associated with the largest improvements in depression and quality of sleep (study = 3, subjects = 86) (SMD = -2.48; 95%CIs = -3.25 to -1.71 and SMD = -2.43; 95%CIs = -3.38 to -1.48, respectively). The drop-out rate of most investigated treatments did not significantly differ between groups. CONCLUSION The combined TBS protocol over the prefrontal cortex was associated with the greatest improvement in craving severity. Since few studies were available for inclusion, additional large-scale randomized controlled trials are warranted.
Collapse
Affiliation(s)
- Ming-Kung Wu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Kazumi Satogami
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK
| | - Andre F Carvalho
- Innovation in Mental and Physical Health and Clinical Treatment (IMPACT) Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Victoria, Australia
| | - Andre R Brunoni
- Service of Interdisciplinary Neuromodulation, National Institute of Biomarkers in Psychiatry, Laboratory of Neurosciences (LIM-27), Departamento e Instituto de Psiquiatria, Faculdade de Medicina da University of Sao Paulo, Sao Paulo, Brazil.,Departamento de Ciências Médicas, Faculdade de Medicina da University of Sao Paulo, Sao Paulo, Brazil
| | - Kuan-Pin Su
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan.,An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Yu-Kang Tu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Cheng Wu
- Department of Sports Medicine, Landseed International Hospital, Taoyuan, Taiwan
| | - Tien-Yu Chen
- Department of Psychiatry, Tri-Service General Hospital; School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Dian-Jeng Li
- Department of Addiction Science, Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung City, Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Wen Chen
- Prospect Clinic for Otorhinolaryngology and Neurology, Kaohsiung, Taiwan
| | - Mein-Woei Suen
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan.,Gender Equality Education and Research Center, Asia University, Taichung, Taiwan.,Department of Medical Research, Asia University Hospital, Asia University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Bing-Yan Zeng
- Department of Internal Medicine, E-Da Dachang Hospital, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shun Takahashi
- Department of Neuropsychiatry, Wakayama Medical University, Wakayama, Japan.,Department of Psychiatry, Osaka University Graduate School of Medicine, Suita, Japan.,Graduate School of Rehabilitation Science, Osaka Metropolitan University, Habikino, Japan.,Clinical Research and Education Center, Asakayama General Hospital, Sakai, Japan
| | - Ping-Tao Tseng
- Prospect Clinic for Otorhinolaryngology and Neurology, Kaohsiung, Taiwan.,Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science and Brain Research Center, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
23
|
Qin Y, Zhang F, Zhang M, Zhu W. Effects of repetitive transcranial magnetic stimulation combined with cognitive training on resting-state brain activity in Alzheimer's disease. Neuroradiol J 2022; 35:566-572. [PMID: 35019804 PMCID: PMC9513913 DOI: 10.1177/19714009211067409] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES Repetitive transcranial magnetic stimulation (rTMS) is a promising tool to modulate brain plasticity, but the neural basis has been little addressed. The purpose was to investigate the effects of rTMS on resting-state brain activity in patients with Alzheimer's disease (AD). METHODS Seventeen patients with mild or moderate AD were enrolled and randomly divided into one of the two intervention groups: (1) real rTMS combined with cognitive training (real group, n = 9); (2) sham rTMS with cognitive training (sham group, n = 8). 10 Hz rTMS was used to stimulate the left dorsolateral prefrontal cortex and then the left lateral temporal lobe for 20 min each day for 4 weeks. Each patient underwent neuropsychological assessment and resting-state functional magnetic resonance imaging (rsfMRI) before and after treatment. The fractional amplitude of low frequency fluctuation (fALFF) of rsfMRI data in real group were: (1) compared to sham; (2) correlated with rTMS-induced cognitive alterations. RESULTS Significantly increased fALFF in right cerebellum/declive, left lingual/cuneus and left cingulate gyrus, as well as decreased fALFF in left middle frontal gyrus were found after 10 Hz rTMS, but not after sham stimulation. Using these suprathreshold regions, we found that rTMS increased functional connectivity between the right cerebellum/declive and left precentral/postcentral gyrus. The fALFF increase in left lingual/cuneus and right cerebellum/declive was associated with significant improvement in cognitive function. CONCLUSIONS rTMS combined with cognitive training induced increased low frequency fluctuation neural oscillations and functional connectivity in brain regions subserving cognition, suggesting a possible neuronal mechanism of the beneficial effects of rTMS.
Collapse
Affiliation(s)
- Yuanyuan Qin
- Department of Radiology, Tongji
Hospital, Tongji Medical College, Huazhong University of Science and
Technology, Hubei, Wuhan, China
| | - Fengxia Zhang
- Department of Rehabilitation, RenMin Hospital of Wuhan
University, Hubei, Wuhan, China
| | - Min Zhang
- Department of Neurology, Tongji
Hospital, Tongji Medical College, Huazhong University of Science and
Technology, Hubei, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji
Hospital, Tongji Medical College, Huazhong University of Science and
Technology, Hubei, Wuhan, China
| |
Collapse
|
24
|
Ahn HC, Kim KT. Case report: Improved behavioral and psychiatric symptoms with repetitive transcranial magnetic stimulation at the bilateral DLPFC combined with cognitive and behavioral therapy in a patient with unilateral thalamic hemorrhage. Front Neurol 2022; 13:880161. [PMID: 35959382 PMCID: PMC9358288 DOI: 10.3389/fneur.2022.880161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Behavioral and psychological symptoms are not uncommon after thalamic stroke, and are often intractable despite medication and behavioral interventions. Repetitive transcranial magnetic stimulation (rTMS) is as an adjunctive therapeutic tool for neuropsychiatric diseases, and bilateral rTMS has been recently introduced to maximize the therapeutic effect. Herein, we report the case details of a patient with unilateral left thalamic hemorrhage without cortical lesions who had treatment-resistant neuropsychiatric symptoms. We hypothesized that bilateral rTMS targeting the bilateral dorsolateral prefrontal cortices (DLPFCs) would positively affect thalamocortical neural connections and result in neuropsychiatric symptom improvement. The patient received a total of 10 sessions of bilateral rTMS over 2 weeks, applied at the DLPFCs, with high frequency in the left hemisphere and low frequency in the right hemisphere. After each rTMS treatment, computer-based cognitive-behavioral therapy was administered for 30 min. Behavioral and psychological symptoms, including hallucinations, aggressiveness, aberrant motor activity, disinhibition, and abrupt emotional changes, were significantly improved as assessed by the Neuropsychiatric Inventory Questionnaire. These effects persisted for up to 1 month. This case demonstrates the clinical potential of bilateral rTMS treatment in patients with intractable neurocognitive impairment after thalamic stroke.
Collapse
|
25
|
Neacsiu AD, Szymkiewicz V, Galla JT, Li B, Kulkarni Y, Spector CW. The neurobiology of misophonia and implications for novel, neuroscience-driven interventions. Front Neurosci 2022; 16:893903. [PMID: 35958984 PMCID: PMC9359080 DOI: 10.3389/fnins.2022.893903] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Decreased tolerance in response to specific every-day sounds (misophonia) is a serious, debilitating disorder that is gaining rapid recognition within the mental health community. Emerging research findings suggest that misophonia may have a unique neural signature. Specifically, when examining responses to misophonic trigger sounds, differences emerge at a physiological and neural level from potentially overlapping psychopathologies. While these findings are preliminary and in need of replication, they support the hypothesis that misophonia is a unique disorder. In this theoretical paper, we begin by reviewing the candidate networks that may be at play in this complex disorder (e.g., regulatory, sensory, and auditory). We then summarize current neuroimaging findings in misophonia and present areas of overlap and divergence from other mental health disorders that are hypothesized to co-occur with misophonia (e.g., obsessive compulsive disorder). Future studies needed to further our understanding of the neuroscience of misophonia will also be discussed. Next, we introduce the potential of neurostimulation as a tool to treat neural dysfunction in misophonia. We describe how neurostimulation research has led to novel interventions in psychiatric disorders, targeting regions that may also be relevant to misophonia. The paper is concluded by presenting several options for how neurostimulation interventions for misophonia could be crafted.
Collapse
Affiliation(s)
- Andrada D. Neacsiu
- Duke Center for Misophonia and Emotion Regulation, Duke Brain Stimulation Research Center, Department of Psychiatry and Behavioral Neuroscience, School of Medicine, Duke University, Durham, NC, United States
| | - Victoria Szymkiewicz
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Jeffrey T. Galla
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Brenden Li
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Yashaswini Kulkarni
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Cade W. Spector
- Department of Philosophy, Duke University, Durham, NC, United States
| |
Collapse
|
26
|
Tseng PT, Jeng JS, Zeng BS, Stubbs B, Carvalho AF, Brunoni AR, Su KP, Tu YK, Wu YC, Chen TY, Lin PY, Liang CS, Hsu CW, Chen YW, Li CT. Efficacy of non-invasive brain stimulation interventions in reducing smoking frequency in patients with nicotine dependence: a systematic review and network meta-analysis of randomized controlled trials. Addiction 2022; 117:1830-1842. [PMID: 34347916 DOI: 10.1111/add.15624] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 06/09/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND AIMS Nicotine is a highly addictive substance in tobacco products that dysregulates several neurotransmitters in the brain and impairs executive function. Non-invasive brain stimulation (NIBS) methods such as repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are promising treatments for nicotine dependence. We investigated the efficacy and acceptability of NIBS in managing smoking cessation through a systematic review and network meta-analysis (NMA). METHODS We conducted a systematic review to identify randomized controlled trials (RCTs) that investigated the efficacy of NIBS for smoking cessation. All pairwise meta-analyses and NMA procedures were conducted using random-effects and frequentist models. The co-primary outcomes were (1) the change in number of cigarettes smoked per day (change in frequency of smoking) in patients with nicotine dependence after NIBS and (2) acceptability (the dropout rate). The effect sizes for co-primary outcomes of change in frequency of smoking and acceptability were assessed according to standardized mean difference (SMD) and odds ratio, respectively. RESULTS Twelve RCTs with 710 participants (mean age: 44.2 years, 31.2% female) were included. Compared with the sham control, 10-Hz rTMS over the left dorsolateral prefrontal cortex (DLPFC) was associated with the largest changes in smoking frequency [SMD = -1.22, 95% confidence interval (95% CI) = -1.77 to -0.66]. The 2-mA bifrontal tDCS (SMD = -0.97, 95% CI = -1.32 to -0.62) and 10-Hz deep rTMS over the bilateral DLPFC with cue provocation (SMD = -0.77, 95% CI = -1.20 to -0.34) were associated with a significantly larger decrease in smoking frequency versus the sham. None of the investigated NIBSs was associated with dropout rates significantly different from those of the sham control groups. CONCLUSION Prefrontal non-invasive brain stimulation interventions appear to reduce the number of cigarettes smoked with good acceptability.
Collapse
Affiliation(s)
- Ping-Tao Tseng
- Prospect Clinic for Otorhinolaryngology and Neurology, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Jia-Shyun Jeng
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Bing-Syuan Zeng
- Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK.,Positive Ageing Research Institute (PARI), Faculty of Health, Social Care Medicine and Education, Anglia Ruskin University, Chelmsford, UK
| | - Andre F Carvalho
- IMPACT (Innovation in Mental and Physical Health and Clinical Treatment) Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Andre R Brunoni
- Service of Interdisciplinary, Neuromodulation, Department and Institute of Psychiatry, Laboratory of Neurosciences (LIM-27), University of Sao Paulo, Sao Paulo, Brazil.,Interdisciplinary Center for Applied Neuromodulation University Hospital, University of Sao Paulo, Sao Paulo, Brazil
| | - Kuan-Pin Su
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan.,An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Yu-Kang Tu
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Department of Dentistry, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Cheng Wu
- Department of Sports Medicine, Landseed International Hospital, Taoyuan, Taiwan
| | - Tien-Yu Chen
- Department of Psychiatry, Tri-Service General Hospital, Taipei, Taiwan.,School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Sung Liang
- School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, Taipei, Taiwan.,Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Wei Hsu
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Wen Chen
- Prospect Clinic for Otorhinolaryngology and Neurology, Kaohsiung, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.,Institute of Cognitive Neuroscience, National Central University, Jhongli, Taiwan.,Division of Psychiatry, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Brain Research Center, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
27
|
Caparelli EC, Schleyer B, Zhai T, Gu H, Abulseoud OA, Yang Y. High-Frequency Transcranial Magnetic Stimulation Combined With Functional Magnetic Resonance Imaging Reveals Distinct Activation Patterns Associated With Different Dorsolateral Prefrontal Cortex Stimulation Sites. Neuromodulation 2022; 25:633-643. [PMID: 35418339 DOI: 10.1016/j.neurom.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Transcranial magnetic stimulation (TMS) has been extensively used for the treatment of depression, obsessive-compulsive disorder, and certain neurologic disorders. Despite having promising treatment efficacy, the fundamental neural mechanisms of TMS remain understudied. MATERIALS AND METHODS In this study, 15 healthy adult participants received simultaneous TMS and functional magnetic resonance imaging to map the modulatory effect of TMS when it was applied over three different sites in the dorsolateral prefrontal cortex. Independent component analysis (ICA) was used to identify the networks affected by TMS when applied over the different sites. The standard general linear model (GLM) analysis was used for comparison. RESULTS ICA showed that TMS affected the stimulation sites as well as remote brain areas, some areas/networks common across all TMS sites, and other areas/networks specific to each TMS site. In particular, TMS site and laterality differences were observed at the left executive control network. In addition, laterality differences also were observed at the dorsal anterior cingulate cortex and dorsolateral/dorsomedial prefrontal cortex. In contrast with the ICA findings, the GLM-based results mainly showed activation of auditory cortices regardless of the TMS sites. CONCLUSIONS Our findings support the notion that TMS could act through a top-down mechanism, indirectly modulating deep subcortical nodes by directly stimulating cortical regions. CLINICAL TRIAL REGISTRATION The Clinicaltrials.gov registration number for the study is NCT03394066.
Collapse
Affiliation(s)
- Elisabeth C Caparelli
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA.
| | - Brooke Schleyer
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA; Department of Psychology, College of Liberal Arts, Temple University, Philadelphia, PA, USA
| | - Tianye Zhai
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Hong Gu
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Osama A Abulseoud
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA; Department of Psychiatry and Psychology, Mayo Clinic, Phoenix, AZ, USA
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
28
|
Gay A, Cabe J, De Chazeron I, Lambert C, Defour M, Bhoowabul V, Charpeaud T, Tremey A, Llorca PM, Pereira B, Brousse G. Repetitive Transcranial Magnetic Stimulation (rTMS) as a Promising Treatment for Craving in Stimulant Drugs and Behavioral Addiction: A Meta-Analysis. J Clin Med 2022; 11:624. [PMID: 35160085 PMCID: PMC8836499 DOI: 10.3390/jcm11030624] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
Addiction is a mental disorder with limited available treatment options. The therapeutic potential of repetitive transcranial magnetic stimulation (rTMS) on it, by targeting craving in particular, has been explored with heterogenous results. This meta-analysis uses updated evidence to assess overall rTMS efficacy on craving, differential effects between addiction types clustered into three groups (depressant (alcohol, cannabis, opiate), stimulant (nicotine, cocaine, methamphetamine), and behavioral addiction (gambling, eating disorder)), and stimulation settings. Studies on substance use, gambling, and eating disorders are included, with unrestricted stimulation settings, by searching the PubMed, Embase, PsycINFO, and Cochrane databases up to 30 April 2020. A total of 34 eligible studies (42 units of analysis) were identified. Because of highly significant heterogeneity in primary results, a sensitivity analysis was performed on a remaining sample of 26 studies (30 units of analysis). Analyses performed using random effects model revealed a small effect size favoring active rTMS over shamTMS stimulation in the reduction in craving. We found a significant difference between addiction types, with a persistent small effect only for stimulant and behavioral groups. In these groups we found no difference between the different combinations of target and frequency of stimulation, but a significant correlation between number of sessions and craving reduction. In conclusion, efficacy of rTMS on craving in stimulant and behavioral addiction was highlighted, but recommendations on optimal stimulation settings and its clinical application await further research.
Collapse
Affiliation(s)
- Aurélia Gay
- University Department of Psychiatry and Addiction, CHU St-Etienne, CEDEX 2, 42055 Saint-Étienne, France; (M.D.); (V.B.)
- TAPE Laboratory, EA7423, Jean Monnet University, 42100 Saint-Étienne, France
| | - Julien Cabe
- Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (J.C.); (I.D.C.); (P.-M.L.); (G.B.)
| | - Ingrid De Chazeron
- Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (J.C.); (I.D.C.); (P.-M.L.); (G.B.)
| | - Céline Lambert
- Biostatistics Unit (DRCI), CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France; (C.L.); (B.P.)
| | - Maxime Defour
- University Department of Psychiatry and Addiction, CHU St-Etienne, CEDEX 2, 42055 Saint-Étienne, France; (M.D.); (V.B.)
| | - Vikesh Bhoowabul
- University Department of Psychiatry and Addiction, CHU St-Etienne, CEDEX 2, 42055 Saint-Étienne, France; (M.D.); (V.B.)
| | - Thomas Charpeaud
- Service d’Addictologie et Pathologies Duelles, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France; (T.C.); (A.T.)
| | - Aurore Tremey
- Service d’Addictologie et Pathologies Duelles, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France; (T.C.); (A.T.)
| | - Pierre-Michel Llorca
- Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (J.C.); (I.D.C.); (P.-M.L.); (G.B.)
| | - Bruno Pereira
- Biostatistics Unit (DRCI), CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France; (C.L.); (B.P.)
| | - Georges Brousse
- Clermont Auvergne INP, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (J.C.); (I.D.C.); (P.-M.L.); (G.B.)
| |
Collapse
|
29
|
Ward HB, Brady RO, Halko MA, Lizano P. Noninvasive Brain Stimulation for Nicotine Dependence in Schizophrenia: A Mini Review. Front Psychiatry 2022; 13:824878. [PMID: 35222123 PMCID: PMC8863675 DOI: 10.3389/fpsyt.2022.824878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Individuals with schizophrenia are 10 times more likely to have a tobacco use disorder than the general population. Up to 80% of those with schizophrenia smoke tobacco regularly, a prevalence three-times that of the general population. Despite the striking prevalence of tobacco use in schizophrenia, current treatments are not tailored to the pathophysiology of this population. There is growing support for use of noninvasive brain stimulation (NIBS) to treat substance use disorders (SUDs), particularly for tobacco use in neurotypical smokers. NIBS interventions targeting the dorsolateral prefrontal cortex have been effective for nicotine dependence in control populations-so much so that transcranial magnetic stimulation is now FDA-approved for smoking cessation. However, this has not borne out in the studies using this approach in schizophrenia. We performed a literature search to identify articles using NIBS for the treatment of nicotine dependence in people with schizophrenia, which identified six studies. These studies yielded mixed results. Is it possible that nicotine has a unique effect in schizophrenia that is different than its effect in neurotypical smokers? Individuals with schizophrenia may receive additional benefit from nicotine's pro-cognitive effects than control populations and may use nicotine to improve brain network abnormalities from their illness. Therefore, clinical trials of NIBS interventions should test a schizophrenia-specific target for smoking cessation. We propose a generalized approach whereby schizophrenia-specific brain circuitry related to SUDs is be identified and then targeted with NIBS interventions.
Collapse
Affiliation(s)
- Heather Burrell Ward
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Roscoe O Brady
- Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States.,Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States.,McLean Hospital, Belmont, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Mark A Halko
- McLean Hospital, Belmont, MA, United States.,Harvard Medical School, Boston, MA, United States
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
30
|
Mikellides G, Michael P, Psalta L, Stefani A, Schuhmann T, Sack AT. Accelerated Intermittent Theta Burst Stimulation in Smoking Cessation: Placebo Effects Equal to Active Stimulation When Using Advanced Placebo Coil Technology. Front Psychiatry 2022; 13:892075. [PMID: 35686190 PMCID: PMC9170940 DOI: 10.3389/fpsyt.2022.892075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/04/2022] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Smoking is currently one of the main public health problems. Smoking cessation is known to be difficult for most smokers because of nicotine dependence. Repetitive transcranial magnetic stimulation (rTMS) over the left dorsolateral prefrontal cortex (DLPFC) has been shown to be effective in the reduction of nicotine craving and cigarette consumption. Here, we evaluated the efficacy of accelerated intermittent theta burst stimulation (aiTBS; four sessions per day for 5 consecutive days) over the left DLPFC in smoking cessation, and we investigated whether the exposure to smoking-related cues compared to neutral cues during transcranial magnetic stimulation (TMS) impacts treatment outcome. A double-blind, randomized, controlled study was conducted in which 89 participants (60 males and 29 females; age 45.62 ± 13.42 years) were randomly divided into three groups: the first group received active aiTBS stimulation while watching neutral videos, the second group received active aiTBS stimulation while watching smoking-related videos and the last group received sham stimulation while watching smoking-related videos. Our results suggest that aiTBS is a tolerable treatment. All treatment groups equally reduced cigarette consumption, nicotine dependence, craving and perceived stress. The effect on nicotine dependence, general craving and perceived stress lasted for at least 1 week after the end of treatment. Active aiTBS over the left DLPFC, combined with smoking related cues, is as effective as active aiTBS combined with neutral cues as well as placebo aiTBS in smoking cessation. These findings extend the results of previous studies indicating that TMS therapy is associated with considerably large placebo effects and that these placebo effects may be further increased when using advanced placebo coil technology. CLINICAL TRIAL REGISTRATION www.clinicaltrials.gov, identifier NCT05271175.
Collapse
Affiliation(s)
- Georgios Mikellides
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Cyprus rTMS Centre, Larnaca, Cyprus
| | | | - Lilia Psalta
- Department of Psychology, University of Cyprus, Nicosia, Cyprus.,School of Science, University of Central Lancashire, Larnaca, Cyprus
| | - Artemis Stefani
- Department of Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Teresa Schuhmann
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.,Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain+Nerve Centre, Maastricht University Medical Centre+ (MUMC+), Maastricht, Netherlands
| |
Collapse
|
31
|
Chen J, Fan Y, Wei W, Wang L, Wang X, Fan F, Jia Z, Li M, Wang J, Zou Q, Chen B, Lv Y. Repetitive transcranial magnetic stimulation modulates cortical-subcortical connectivity in sensorimotor network. Eur J Neurosci 2021; 55:227-243. [PMID: 34905661 DOI: 10.1111/ejn.15571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) holds the ability to modulate the connectivity within the stimulated network. However, whether and how the rTMS targeted over the primary motor cortex (M1) could affect the connectivity within the sensorimotor network (SMN) is not fully elucidated. Hence, in this study, we investigated the after-effects of rTMS over left M1 at different frequencies on connectivity within SMN. Forty-five healthy participants were recruited and randomly divided into three groups according to rTMS frequencies (high-frequency [HF], 3 Hz; low-frequency [LF], 1 Hz; and SHAM). Participants received 1-Hz, 3-Hz or sham stimulation and underwent two functional magnetic resonance imaging (fMRI) scanning sessions before and after rTMS intervention. Using resting-state functional connectivity (FC) approach, we found that high- and low-frequency rTMS had opposing effects on FC within the SMN, especially for connectivity with subcortical regions (i.e., putamen, thalamus and cerebellum). Specifically, the reductions in connectivity between cortical and subcortical regions within cortico-basal ganglia thalamo-cortical circuits and the cognitive loop of cerebellum, and increased connectivity between cortical and subdivisions within the sensorimotor loop of cerebellum were observed after high-frequency rTMS intervention, whereas the thalamus and cognitive cerebellum subdivisions exhibited increased connectivity, and sensorimotor cerebellum subdivisions showed decreased connectivity with stimulated target after low-frequency stimulation. Collectively, these findings demonstrated the alterations of connectivity within SMN after rTMS intervention at different frequencies and may help to understand the mechanisms of rTMS treatment for movement disorders associated with deficits in subcortical regions such as Parkinson's disease, Huntington's disease and Tourette's syndrome.
Collapse
Affiliation(s)
- Jing Chen
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Yanzi Fan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Wei Wei
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Luoyu Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Xiaoyu Wang
- Department of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Fengmei Fan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China
| | - Zejuan Jia
- Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Mengting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bing Chen
- School of Education, Hangzhou Normal University, Hangzhou, China
| | - Yating Lv
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Psychological Science, Hangzhou Normal University, Hangzhou, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| |
Collapse
|
32
|
Chen Y, Cha YH, Gleghorn D, Doudican BC, Shou G, Ding L, Yuan H. Brain network effects by continuous theta burst stimulation in mal de débarquement syndrome: simultaneous EEG and fMRI study. J Neural Eng 2021; 18. [PMID: 34670201 DOI: 10.1088/1741-2552/ac314b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/20/2021] [Indexed: 01/01/2023]
Abstract
Objective. Heterogeneous clinical responses to treatment with non-invasive brain stimulation are commonly observed, making it necessary to determine personally optimized stimulation parameters. We investigated neuroimaging markers of effective brain targets of treatment with continuous theta burst stimulation (cTBS) in mal de débarquement syndrome (MdDS), a balance disorder of persistent oscillating vertigo previously shown to exhibit abnormal intrinsic functional connectivity.Approach.Twenty-four right-handed, cTBS-naive individuals with MdDS received single administrations of cTBS over one of three stimulation targets in randomized order. The optimal target was determined based on the assessment of acute changes after the administration of cTBS over each target. Repetitive cTBS sessions were delivered on three consecutive days with the optimal target chosen by the participant. Electroencephalography (EEG) was recorded at single-administration test sessions of cTBS. Simultaneous EEG and functional MRI data were acquired at baseline and after completion of 10-12 sessions. Network connectivity changes after single and repetitive stimulations of cTBS were analyzed.Main results.Using electrophysiological source imaging and a data-driven method, we identified network-level connectivity changes in EEG that correlated with symptom responses after completion of multiple sessions of cTBS. We further determined that connectivity changes demonstrated by EEG during test sessions of single administrations of cTBS were signatures that could predict optimal targets.Significance.Our findings demonstrate the effect of cTBS on resting state brain networks and suggest an imaging-based, closed-loop stimulation paradigm that can identify optimal targets during short-term test sessions of stimulation.ClinicalTrials.gov Identifier:NCT02470377.
Collapse
Affiliation(s)
- Yafen Chen
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States of America
| | - Yoon-Hee Cha
- University of Minnesota, Minneapolis, MN, United States of America
| | - Diamond Gleghorn
- Missouri State University, Springfield, MO, United States of America
| | | | - Guofa Shou
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States of America
| | - Lei Ding
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States of America.,Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, 3100 Monitor Ave Suite 125Norman, OK, 73019, United States of America
| | - Han Yuan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States of America.,Institute for Biomedical Engineering, Science, and Technology, University of Oklahoma, 3100 Monitor Ave Suite 125Norman, OK, 73019, United States of America
| |
Collapse
|
33
|
Ghahremani DG, Pochon JB, Perez Diaz M, Tyndale RF, Dean AC, London ED. Functional connectivity of the anterior insula during withdrawal from cigarette smoking. Neuropsychopharmacology 2021; 46:2083-2089. [PMID: 34035468 PMCID: PMC8505622 DOI: 10.1038/s41386-021-01036-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022]
Abstract
Currently available therapies for smoking cessation have limited efficacy, and potential treatments that target specific brain regions are under evaluation, with a focus on the insula. The ventral and dorsal anterior subregions of the insula serve distinct functional networks, yet our understanding of how these subregions contribute to smoking behavior is unclear. Resting-state functional connectivity (RSFC) provides a window into network-level function associated with smoking-related internal states. The goal of this study was to determine potentially distinct relationships of ventral and dorsal anterior insula RSFC with cigarette withdrawal after brief abstinence from smoking. Forty-seven participants (24 women; 18-45 years old), who smoked cigarettes daily and were abstinent from smoking overnight (~12 h), provided self-reports of withdrawal and underwent resting-state fMRI before and after smoking the first cigarette of the day. Correlations between withdrawal and RSFC were computed separately for ventral and dorsal anterior insula seed regions in whole-brain voxel-wise analyses. Withdrawal was positively correlated with RSFC of the right ventral anterior insula and dorsal anterior cingulate cortex (dACC) before but not after smoking. The correlation was mainly due to a composite effect of craving and physical symptoms of withdrawal. These results suggest a role of right ventral anterior insula-dACC connectivity in the internal states that maintain smoking behavior (e.g., withdrawal) and present a specific neural target for brain-based therapies seeking to attenuate withdrawal symptoms in the critical early stages of smoking cessation.
Collapse
Affiliation(s)
- Dara G. Ghahremani
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA USA
| | - Jean-Baptiste Pochon
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA USA
| | - Maylen Perez Diaz
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA USA
| | - Rachel F. Tyndale
- grid.17063.330000 0001 2157 2938Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON Canada ,grid.17063.330000 0001 2157 2938Department of Psychiatry, University of Toronto, Toronto, ON Canada ,grid.155956.b0000 0000 8793 5925Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, Toronto, ON Canada
| | - Andy C. Dean
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Brain Research Institute, University of California, Los Angeles, CA USA
| | - Edythe D. London
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Brain Research Institute, University of California, Los Angeles, CA USA ,grid.19006.3e0000 0000 9632 6718Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA USA
| |
Collapse
|
34
|
Perez Diaz M, Pochon JB, Ghahremani DG, Dean AC, Faulkner P, Petersen N, Tyndale RF, Donis A, Paez D, Cahuantzi C, Hellemann GS, London ED. Sex Differences in the Association of Cigarette Craving With Insula Structure. Int J Neuropsychopharmacol 2021; 24:624-633. [PMID: 33830218 PMCID: PMC8378076 DOI: 10.1093/ijnp/pyab015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 03/01/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cigarette craving, which can negatively impact smoking cessation, is reportedly stronger in women than in men when they initiate abstinence from smoking. Identifying approaches to counteract craving in people of different sexes may facilitate the development of personalized treatments for Tobacco Use Disorder, which disproportionately affects women. Because cigarette craving is associated with nicotine dependence and structure of the insula, this study addressed whether a person's sex influences these associations. METHODS The research participants (n = 99, 48 women) reported daily cigarette smoking and provided self-reports of nicotine dependence. After overnight abstinence from smoking, they underwent structural magnetic resonance imaging scanning to determine cortical thickness of the left and right anterior circular insular sulcus, and self-rated their cigarette craving before and after their first cigarette of the day. RESULTS Women reported stronger craving than men irrespective of smoking condition (i.e., pre- and post-smoking) (P = .048), and smoking reduced craving irrespective of sex (P < .001). A 3-way interaction of sex, smoking condition, and right anterior circular insular sulcus thickness on craving (P = .033) reflected a negative association of cortical thickness with pre-smoking craving in women only (P = .012). No effects of cortical thickness in the left anterior circular insular sulcus were detected. Nicotine dependence was positively associated with craving (P < .001) across groups and sessions, with no sex differences in this association. CONCLUSIONS A negative association of right anterior insula thickness with craving in women only suggests that this region may be a relevant therapeutic target for brain-based smoking cessation interventions in women.
Collapse
Affiliation(s)
- Maylen Perez Diaz
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California, USA
| | - Jean-Baptiste Pochon
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California, USA
| | - Dara G Ghahremani
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California, USA
| | - Andy C Dean
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California, USA
| | - Paul Faulkner
- Department of Psychology, University of Roehampton, London, UK
| | - Nicole Petersen
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California, USA
| | - Rachel F Tyndale
- Department of Pharmacology and Toxicology and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, Toronto, ON, Canada
| | - Andrea Donis
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California, USA
| | - Diana Paez
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California, USA
| | - Citlaly Cahuantzi
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California, USA
| | - Gerhard S Hellemann
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California, USA
| | - Edythe D London
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology
- Brain Research Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
35
|
A Clinical Trial to Assess the Role of Repetitive Transcranial Magnetic Stimulation in Smoking Cessation in an Egyptian Sample. ADDICTIVE DISORDERS & THEIR TREATMENT 2021. [DOI: 10.1097/adt.0000000000000292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Monroe DC, McDowell CP, Kenny RA, Herring MP. Dynamic associations between anxiety, depression, and tobacco use in older adults: Results from The Irish Longitudinal Study on Ageing. J Psychiatr Res 2021; 139:99-105. [PMID: 34058656 PMCID: PMC8527842 DOI: 10.1016/j.jpsychires.2021.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/29/2021] [Accepted: 05/01/2021] [Indexed: 12/14/2022]
Abstract
Evidence supports moderate-to-large reductions in anxiety, depression, and perceived stress after smoking cessation; however, much of the available evidence has focused on young adults. Therefore, this study quantified associations between smoking and smoking cessation on prevalent and incident generalised anxiety disorder (GAD) and major depression (MDD) in a nationally representative sample of Irish older adults. Participants (n = 6201) were community dwelling adults aged ≥50 years resident in Ireland. Smoking status and self-reported doctor diagnosis of anxiety or depression prior to baseline were assessed at baseline (i.e., Wave 2). At baseline and 2-, 4-, and 6-year follow-up (i.e., Waves 3-5), GAD and MDD were assessed by the Composite International Diagnostic Interview Short-Form. Logistic regression quantified cross-sectional and prospective associations (odds ratios (ORs) and 95% confidence intervals (95%CIs)) between smoking status and mental health. Prevalence and incidence of GAD was 9.1% (n = 566) and 2.8% (n = 148), respectively. Prevalence and incidence of depression was 11.1% (n = 686) and 6.4% (n = 342), respectively. Following full adjustment, current smokers had higher odds of prevalent GAD (OR = 1.729, 1.332-2.449; p < 0.001) and MDD (OR = 1.967, 1.548-2.499; p < 0.001) than non-smokers. Former smokers had higher odds of prevalent GAD than non-smokers (OR = 1.276, 1.008-1.616; p < 0.001). Current smokers did not have higher odds of incident MDD (OR = 1.399, 0.984-1.990; p = 0.065) or GAD than non-smokers (1.039, 0.624-1.730; p = 0.881). Findings may have important implications for interventions designed to curb tobacco abuse, which tend to be less successful among those with anxiety and depression.
Collapse
Affiliation(s)
- Derek C. Monroe
- Department of Kinesiology, University of North Carolina at Greensboro, NC, USA,Department of Neurology, University of California-Irvine, Irvine, CA, USA
| | - Cillian P. McDowell
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Ireland,School of Medicine, Trinity College Dublin, Ireland,Physical Activity for Health Research Cluster, Health Research Institute, University of Limerick, Limerick, Ireland
| | - Rose Anne Kenny
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Ireland,School of Medicine, Trinity College Dublin, Ireland,Mercer’s Institute for Successful Ageing, St James’s Hospital, Dublin, Ireland
| | - Matthew P. Herring
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Ireland,Physical Activity for Health Research Cluster, Health Research Institute, University of Limerick, Limerick, Ireland,Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland
| |
Collapse
|
37
|
Meng Y, Pople CB, Kalia SK, Kalia LV, Davidson B, Bigioni L, Li DZ, Suppiah S, Mithani K, Scantlebury N, Schwartz ML, Hamani C, Lipsman N. Cost-effectiveness analysis of MR-guided focused ultrasound thalamotomy for tremor-dominant Parkinson's disease. J Neurosurg 2021; 135:273-278. [PMID: 32764177 DOI: 10.3171/2020.5.jns20692] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/06/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The development of transcranial MR-guided focused ultrasound (MRgFUS) has revitalized the practice of lesioning procedures in functional neurosurgery. Previous health economic analysis found MRgFUS thalamotomy to be a cost-effective treatment for patients with essential tremor, supporting its reimbursement. With the publication of level I evidence in support of MRgFUS thalamotomy for patients with tremor-dominant Parkinson's disease (TDPD), the authors performed a health economic comparison between MRgFUS, deep brain stimulation (DBS), and medical therapy. METHODS The authors used a decision tree model with rollback analysis and one-factor sensitivity analysis. Literature searches of MRgFUS thalamotomy and unilateral DBS of the ventrointermediate nucleus of the thalamus for TDPD were performed to determine the utility and probabilities for the model. Costs in Canadian dollars (CAD) were derived from the Schedule of Benefits and Fees in Ontario, Canada, and expert opinion on usage. RESULTS MRgFUS was associated with an expected cost of $14,831 CAD. Adding MRgFUS to continued medical therapy resulted in an incremental cost-effectiveness ratio of $30,078 per quality-adjusted life year (QALY), which remained cost-effective under various scenarios in the sensitivity analysis. Comparing DBS to MRgFUS, while DBS did not achieve the willingness-to-pay threshold ($56,503 per QALY) in the base case scenario, it did so under several scenarios in the sensitivity analysis. CONCLUSIONS MRgFUS thalamotomy is a cost-effective treatment for patients with TDPD, particularly over continued medical therapy. While MRgFUS remains competitive with DBS, the cost-effectiveness advantage is less substantial. These results will help inform the integration of this technology in the healthcare system.
Collapse
Affiliation(s)
- Ying Meng
- 1Division of Neurosurgery, Sunnybrook Health Sciences Centre
- 2Harquail Centre for Neuromodulation, Sunnybrook Research Institute
| | - Christopher B Pople
- 1Division of Neurosurgery, Sunnybrook Health Sciences Centre
- 2Harquail Centre for Neuromodulation, Sunnybrook Research Institute
| | - Suneil K Kalia
- 3Division of Neurosurgery, Toronto Western Hospital, University Health Network
- 4Krembil Research Institute, Toronto Western Hospital, University Health Network
| | - Lorraine V Kalia
- 4Krembil Research Institute, Toronto Western Hospital, University Health Network
- 5Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, University Health Network; and
- 6Tanz Centre for Research in Neurodegenerative Diseases, and
- 7Department of Medicine, Division of Neurology, University of Toronto, Ontario, Canada
| | - Benjamin Davidson
- 1Division of Neurosurgery, Sunnybrook Health Sciences Centre
- 2Harquail Centre for Neuromodulation, Sunnybrook Research Institute
| | - Luca Bigioni
- 1Division of Neurosurgery, Sunnybrook Health Sciences Centre
- 2Harquail Centre for Neuromodulation, Sunnybrook Research Institute
| | - Daniel Zhengze Li
- 1Division of Neurosurgery, Sunnybrook Health Sciences Centre
- 2Harquail Centre for Neuromodulation, Sunnybrook Research Institute
| | - Suganth Suppiah
- 1Division of Neurosurgery, Sunnybrook Health Sciences Centre
| | - Karim Mithani
- 1Division of Neurosurgery, Sunnybrook Health Sciences Centre
- 2Harquail Centre for Neuromodulation, Sunnybrook Research Institute
| | | | | | - Clement Hamani
- 1Division of Neurosurgery, Sunnybrook Health Sciences Centre
- 2Harquail Centre for Neuromodulation, Sunnybrook Research Institute
| | - Nir Lipsman
- 1Division of Neurosurgery, Sunnybrook Health Sciences Centre
- 2Harquail Centre for Neuromodulation, Sunnybrook Research Institute
| |
Collapse
|
38
|
Dong H, Wang M, Zheng H, Zhang J, Dong GH. The functional connectivity between the prefrontal cortex and supplementary motor area moderates the relationship between internet gaming disorder and loneliness. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110154. [PMID: 33137406 DOI: 10.1016/j.pnpbp.2020.110154] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/06/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Individuals with internet gaming disorder (IGD) usually report a higher sense of loneliness. Although studies have suggested a key role of the prefrontal cortex-based resting-state functional connectivity (rsFC) in both IGD and loneliness, the potential mechanism between IGD and loneliness remains unclear. METHODS Fifty-seven IGD and 81 matched recreational internet gamer users (RGU) underwent resting-state fMRI scans. The UCLA loneliness scale was used to measure loneliness. We first explored the brain areas that are both associated with loneliness and IGD severity. Then, the neuroimaging findings were extracted to test whether the rsFC of these brain regions moderates the relationship between IGD and loneliness. RESULTS We observed reduced rsFC between the left dorsolateral prefrontal cortex (DLPFC) and the left precentral and the postcentral gyri and the supplementary motor area (SMA), which also correlated with increased IAT (Young''s internet addiction test) scores. More importantly, the rsFC of the DLPFC-precentral gyrus and the DLPFC-postcentral gyrus moderated the relationship between IGD severity and loneliness scores. Additionally, we also found that the rsFC of the left DLPFC-precentral gyrus, the DLPFC-postcentral gyrus and the right DLPFC-SMA moderated the relationship between self-reported gaming craving and the UCLA scores. CONCLUSIONS The current study confirmed the role of the DLPFC in reward control (game craving) and emotion regulation (loneliness). Additionally, the rsFC of the prefrontal cortex-supplementary motor area moderates IGD and loneliness. These findings provide valuable understanding of the two-way relationship between IGD and loneliness.
Collapse
Affiliation(s)
- Haohao Dong
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China
| | - Ming Wang
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China
| | - Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Jialin Zhang
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China
| | - Guang-Heng Dong
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
39
|
The Effects of Functionally Guided, Connectivity-Based rTMS on Amygdala Activation. Brain Sci 2021; 11:brainsci11040494. [PMID: 33924639 PMCID: PMC8070235 DOI: 10.3390/brainsci11040494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 12/23/2022] Open
Abstract
While repetitive transcranial magnetic stimulation (rTMS) is widely used to treat psychiatric disorders, innovations are needed to improve its efficacy. An important limitation is that while psychiatric disorders are associated with fronto-limbic dysregulation, rTMS does not have sufficient depth penetration to modulate affected subcortical structures. Recent advances in task-related functional connectivity provide a means to better link superficial and deeper cortical sources with the possibility of increasing fronto-limbic modulation to induce stronger therapeutic effects. The objective of this pilot study was to test whether task-related, connectivity-based rTMS could modulate amygdala activation through its connectivity with the medial prefrontal cortex (mPFC). fMRI was collected to identify a node in the mPFC showing the strongest connectivity with the amygdala, as defined by psychophysiological interaction analysis. To promote Hebbian-like plasticity, and potentially stronger modulation, 5 Hz rTMS was applied while participants viewed frightening video-clips that engaged the fronto-limbic network. Significant increases in both the mPFC and amygdala were found for active rTMS compared to sham, offering promising preliminary evidence that functional connectivity-based targeting may provide a useful approach to treat network dysregulation. Further research is needed to better understand connectivity influences on rTMS effects to leverage this information to improve therapeutic applications.
Collapse
|
40
|
Li X, Qi G, Yu C, Lian G, Zheng H, Wu S, Yuan TF, Zhou D. Cortical plasticity is correlated with cognitive improvement in Alzheimer's disease patients after rTMS treatment. Brain Stimul 2021; 14:503-510. [PMID: 33581283 DOI: 10.1016/j.brs.2021.01.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 12/12/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Repetitive transcranial magnetic stimulation (rTMS) has been widely used in non-invasive treatments for different neurological disorders. Few biomarkers are available for treatment response prediction. This study aims to analyze the correlation between changes in long-term potentiation (LTP)-like cortical plasticity and cognitive function in patients with Alzheimer's disease (AD) that underwent rTMS treatment. METHODS A total of 75 AD patients were randomized into either 20 Hz rTMS treatment at the dorsolateral prefrontal cortex (DLPFC) group (n = 37) or a sham treatment group (n = 38) for 30 sessions over six weeks (five days per week) with a three-month follow-up. Neuropsychological assessments were conducted using the Mini-Mental State Examination (MMSE) and Alzheimer's Disease Assessment-Cognitive Component (ADAS-Cog). The cortical plasticity reflected by the motor-evoked potential (MEP) before and after high-frequency repetitive TMS to the primary motor cortex (M1) was also examined prior to and after the treatment period. RESULTS The results showed that the cognitive ability of patients who underwent the MMSE and ADAS-Cog assessments showed small but significant improvement after six weeks of rTMS treatment compared with the sham group. The cortical plasticity improvement correlated to the observed cognition change. CONCLUSIONS Cortical LTP-like plasticity could predict the treatment responses of cognitive improvements in AD patients receiving rTMS intervention. This warrants future clinical trials using cortical LTP as a predictive marker.
Collapse
Affiliation(s)
- Xingxing Li
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Gangqiao Qi
- Taizhou Second People's Hospital, Taizhou, Zhejiang, China
| | - Chang Yu
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Guomin Lian
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Hong Zheng
- Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Shaochang Wu
- The Second People's Hospital of Lishui, Lishui, Zhejiang, China.
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.
| | | |
Collapse
|
41
|
A double-blind randomized clinical trial of high frequency rTMS over the DLPFC on nicotine dependence, anxiety and depression. Sci Rep 2021; 11:1640. [PMID: 33452340 PMCID: PMC7810712 DOI: 10.1038/s41598-020-80927-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
High frequency repetitive transcranial magnetic stimulation (HF-rTMS) over the left dorsolateral prefrontal cortex (L-DLPFC) is a widely applied treatment protocol for chronic smoking and major depressive disorder. However, no previous study has measured the effects of rTMS on both nicotine consumption and anxiety/depression in the same volunteers despite the relationship between them. The aim of this work was to evaluate the efficacy of 10 daily sessions of HF-rTMS over the L-DLPFC in chronic cigarette smokers' addiction and investigate the possible beneficial effects of this treatment procedure on symptoms of depression and anxiety in the same subjects. The study included 40 treatment-seeking nicotine-dependent cigarette smokers. Onset/duration of smoking, number of cigarettes/day, Fagerstrom Test of Nicotine Dependence (FTND), Tobacco Craving Questionnaire-Short Form (TCQ-SF), Hamilton depression and anxiety scales (HAM-D and HAM-A) were recorded. Participants were randomly assigned to the active or the sham treatment group. Those in the active group received 10 trains of 20 Hz stimulation, at 80% of the resting motor threshold (rMT) for 10 consecutive working days over L-DLPFC. Participants were reassessed immediately after treatment, and then 3 months later using all rating scales. There were no differences between active and sham groups at baseline. The cigarette consumption/day, and scores on FTND, and TCQ decreased significantly in both groups (p = 0.0001 for each) immediately after treatment. However, improvement persisted to 3 months in the active group but not in the sham group. Moreover, there was a significant reduction in HAM-D and HAM-A scores immediately after treatment in the active but not the sham group. Subjects with a longer history of smoking had a lower percent improvement in FTND (p = 0.005). Our findings revealed that HF-rTMS over L-DLPCF for 10 days reduced cigarette consumption, craving, dependence, and improved associated symptoms of anxiety and depression.ClinicalTrials.gov Identifier: NCT03264755 registered at 29/08/2017.
Collapse
|
42
|
The exploration of optimized protocol for repetitive transcranial magnetic stimulation in the treatment of methamphetamine use disorder: A randomized sham-controlled study. EBioMedicine 2020; 60:103027. [PMID: 32980696 PMCID: PMC7522737 DOI: 10.1016/j.ebiom.2020.103027] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/21/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
Background The prefrontal-striatal circuit is a core circuit related to substance dependence. Previous studies have found that repetitive transcranial magnetic stimulation (rTMS) targeting the dorsolateral prefrontal cortex (DLPFC) (key region of executive network) had limited responses, while inhibiting hyperactivation of ventromedial prefrontal cortex (vmPFC) (key region of limbic network) may be another strategy. However, there is currently no comparison between these two treatment locations. Methods Seventy-four methamphetamine-dependent patients were randomly assigned to one of treatment groups with two-week treatment: (1) Group A: intermittent theta-burst stimulation (iTBS) targeting the left DLPFC; (2) Group B: continuous theta-burst stimulation (cTBS) targeting the left vmPFC; (3) Group C: a combination of treatment protocol of Group A and Group B; (4) Group D: sham theta-burst stimulation. The primary endpoint was the change of cue-induced craving. The trial was registered at ClinicalTrials.gov (NCT03736317). Findings The three real TBS groups had more craving decrease effect than the sham group (p<0.01). The changes of craving were positively correlated with the improvement of anxiety and withdrawal symptom. With the highest respondence rate, group C also had shorter respondence time than Group A (p = 0.03). Group C was effective in improve depression symptoms (p = 0.04) and withdrawal symptom (p = 0.02) compared with Group D. Besides, Group C was significant in improve sleep quality (p = 0.04) compared with Group A. Baseline depression scores and spatial working memory were positively predicting the intervention response. Interpretation The rTMS paradigms involving vmPFC with cTBS are optimized protocols and well-tolerated for methamphetamine-dependent individuals, and they may have better efficacies compared with DLPFC iTBS. Emotion and cognitive function are rTMS treatment response predictors for methamphetamine-dependent patients. Funding This work was supported by the National Key R&D Program of China (2017YFC1310400), National Natural Science Foundation of China (81,771,436, 81,801,319, 81,601,164), Shanghai Municipal Health and Family Planning Commission (2017ZZ02021), Municipal Human Resources Development Program for Outstanding Young Talents in Medical and Health Sciences in Shanghai (2017YQ013), Qihang Project of Shanghai Mental Health Center (2019-QH-05), Shanghai Sailing Program (19YF1442100), Shanghai Key Laboratory of Psychotic Disorders (13DZ2260500), Program of Shanghai Academic Research Leader (17XD1403300), Shanghai Municipal Science and Technology Major Project (2018SHZDZX05), and Shanghai Clinical Research Center for Mental Health (19MC1911100).
Collapse
|
43
|
Li X, Hartwell KJ, Henderson S, Badran BW, Brady KT, George MS. Two weeks of image-guided left dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation improves smoking cessation: A double-blind, sham-controlled, randomized clinical trial. Brain Stimul 2020; 13:1271-1279. [PMID: 32534252 PMCID: PMC7494651 DOI: 10.1016/j.brs.2020.06.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 05/01/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Previous studies have found that repetitive transcranial magnetic stimulation (rTMS) to the left dorsal lateral prefrontal cortex (LDLPFC) transiently reduces smoking craving, decreases cigarette consumption, and increases abstinence rates. OBJECTIVE We investigated whether 10 daily MRI-guided rTMS sessions over two weeks to the LDLPFC paired with craving cues could reduce cigarette consumption and induce smoking cessation. METHODS We enrolled 42 treatment-seeking nicotine-dependent smokers (≥10 cigarettes per day) in a randomized, double-blind, sham-controlled trial. Participants received 10 daily sessions over 2 weeks of either active or sham MRI-guided rTMS (10Hz, 3000 pulses each session) to the LDLPFC concurrently with video smoking cues. The primary outcome was a reduction in biochemically confirmed cigarette consumption with a secondary outcome of abstinence on the target quit date. We also recorded cue-induced craving and withdrawal symptoms. RESULTS Compared to sham (n = 17), participants receiving active rTMS (n = 21) smoked significantly fewer cigarettes per day during the 2-week treatment (mean [SD], 13.73[9.18] vs. 11.06[9.29], P < .005) and at 1-month follow-up (12.78[9.53] vs. 7.93[7.24], P < .001). Active rTMS participants were also more likely to quit by their target quit rate (23.81%vs. 0%, OR 11.67, 90% CL, 0.96-141.32, x2 = 4.66, P = .031). Furthermore, rTMS significantly reduced mean craving throughout the treatments and at follow-up (29.93[13.12] vs. 25.01[14.45], P < .001). Interestingly across the active treatment sample, more lateral coil location was associated with more success in quitting (-43.43[0.40] vs. -41.79[2.24], P < .013). CONCLUSIONS Daily MRI-guided rTMS to the LDLPFC for 10 days reduces cigarette consumption and cued craving for up to one month and also increases the likelihood of smoking cessation. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02401672.
Collapse
Affiliation(s)
- Xingbao Li
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA; Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, 29425, USA.
| | - Karen J Hartwell
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, USA
| | - Scott Henderson
- Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Bashar W Badran
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Kathleen T Brady
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, USA
| | - Mark S George
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA; Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, USA
| |
Collapse
|
44
|
Su H, Liu Y, Yin D, Chen T, Li X, Zhong N, Jiang H, Wang J, Du J, Xiao K, Xu D, Zeljic K, Wang Z, Zhao M. Neuroplastic changes in resting-state functional connectivity after rTMS intervention for methamphetamine craving. Neuropharmacology 2020; 175:108177. [PMID: 32505485 DOI: 10.1016/j.neuropharm.2020.108177] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/13/2020] [Accepted: 05/31/2020] [Indexed: 01/29/2023]
Abstract
Amphetamine-type stimulants are the second most commonly abused illicit drug worldwide, with no effective medical treatments currently available. Previous studies have demonstrated that high frequency repetitive transcranial magnetic stimulation (rTMS) over the left dorsolateral prefrontal cortex (DLPFC) reduced cue-induced craving in patients with methamphetamine dependence. However, the neuroplastic mechanism underlying rTMS intervention in methamphetamine users remains to be elucidated. Sixty participants (40 males) with severe methamphetamine use disorder according to DSM-5 were randomized to receive either intermittent theta burst protocols (iTBS) (short bursts of 50 Hz rTMS repeated at a rate in the theta range (5 Hz), 2-sec on, 8-sec off for 5 min; 900 pulses) or sham rTMS over the DLPFC over four weeks (20 daily sessions). Resting state functional connectivity magnetic resonance imaging was acquired before and after rTMS intervention. Participants received drug related cue exposure and rated their craving before and after stimulation. Seed-based functional connectivity analysis was performed to probe rTMS-induced neuroplastic reorganization of brain functional networks. Results showed that twenty daily rTMS sessions decreased craving, increased functional connectivity between left DLPFC and inferior parietal lobule, and decreased functional connectivity between insula and inferior parietal lobule, medial temporal lobe and precuneus. Moreover, the increase of functional connectivity between DLPFC and inferior parietal lobule correlated with craving reduction. This study suggests that neuroplastic changes of frontoparietal functional connectivity contributes to craving reduction, shedding light on the therapeutic effect of rTMS on methamphetamine use disorder. This article is part of the special issue on Stress, Addiction and Plasticity.
Collapse
Affiliation(s)
- Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilin Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Dazhi Yin
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaotong Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Na Zhong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haifeng Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Xiao
- Shanghai Drug Rehabilitation Administration Bureau, Shanghai, China
| | - Ding Xu
- Shanghai Drug Rehabilitation Administration Bureau, Shanghai, China
| | - Kristina Zeljic
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Zheng Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China; Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
45
|
Su H, Chen T, Zhong N, Jiang H, Du J, Xiao K, Xu D, Wang Z, Zhao M. γ-aminobutyric acid and glutamate/glutamine alterations of the left prefrontal cortex in individuals with methamphetamine use disorder: a combined transcranial magnetic stimulation-magnetic resonance spectroscopy study. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:347. [PMID: 32355791 PMCID: PMC7186735 DOI: 10.21037/atm.2020.02.95] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background GABAergic and glutamatergic neurotransmitter systems are critical in the pathophysiology of addiction and represent potential targets for repetitive transcranial magnetic stimulation (rTMS). This study aims to investigate changes in γ-aminobutyric acid (GABA) levels, the combined resonance of glutamate and glutamine (Glx) in the left dorsolateral prefrontal cortex (DLPFC), and cognitive function of patients with methamphetamine dependence following rTMS intervention, using proton magnetic resonance spectroscopy (1H MRS). Methods Fifty methamphetamine-dependent patients were randomized to a 4-week course of active or sham rTMS, with 1H MRS measurement of DLPFC GABA and Glx levels relative to n-acetyl-aspartate (NAA) and craving and cognitive function measured at baseline and post-intervention. Results We observed significant reductions of GABA/NAA concentration in the active group and Glx/NAA concentration in the group receiving sham rTMS. There was a significant association between changes in GABA concentration and problem solving/error monitoring. Conclusions The effect of rTMS on cognitive function in individuals with methamphetamine dependence may be related to changes in GABA levels in the prefrontal cortex, and warrants further investigation.
Collapse
Affiliation(s)
- Hang Su
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Tianzhen Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Na Zhong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Haifeng Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jiang Du
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ke Xiao
- Shanghai Drug Rehabilitation Administration Bureau, Shanghai 200080, China
| | - Ding Xu
- Shanghai Drug Rehabilitation Administration Bureau, Shanghai 200080, China
| | - Zheng Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Min Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai 201108, China.,Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
46
|
Beynel L, Powers JP, Appelbaum LG. Effects of repetitive transcranial magnetic stimulation on resting-state connectivity: A systematic review. Neuroimage 2020; 211:116596. [PMID: 32014552 PMCID: PMC7571509 DOI: 10.1016/j.neuroimage.2020.116596] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/17/2019] [Accepted: 01/30/2020] [Indexed: 01/02/2023] Open
Abstract
The brain is organized into networks that reorganize dynamically in response to cognitive demands and exogenous stimuli. In recent years, repetitive transcranial magnetic stimulation (rTMS) has gained increasing use as a noninvasive means to modulate cortical physiology, with effects both proximal to the stimulation site and in distal areas that are intrinsically connected to the proximal target. In light of these network-level neuromodulatory effects, there has been a rapid growth in studies attempting to leverage information about network connectivity to improve neuromodulatory control and intervention outcomes. However, the mechanisms-of-action of rTMS on network-level effects remain poorly understood and is based primarily on heuristics from proximal stimulation findings. To help bridge this gap, the current paper presents a systematic review of 33 rTMS studies with baseline and post-rTMS measures of fMRI resting-state functional connectivity (RSFC). Literature synthesis revealed variability across studies in stimulation parameters, studied populations, and connectivity analysis methodology. Despite this variability, it is observed that active rTMS induces significant changes on RSFC, but the prevalent low-frequency-inhibition/high-frequency-facilitation heuristic endorsed for proximal rTMS effects does not fully describe distal connectivity findings. This review also points towards other important considerations, including that the majority of rTMS-induced changes were found outside the stimulated functional network, suggesting that rTMS effects tend to spread across networks. Future studies may therefore wish to adopt conventions and systematic frameworks, such as the Yeo functional connectivity parcellation atlas adopted here, to better characterize network-level effect that contribute to the efficacy of these rapidly developing noninvasive interventions.
Collapse
Affiliation(s)
- Lysianne Beynel
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, United States.
| | - John Paul Powers
- Department of Psychology and Neuroscience, Duke University, United States
| | - Lawrence Gregory Appelbaum
- Department of Psychiatry and Behavioral Science, Duke University School of Medicine, United States; Center for Cognitive Neuroscience, Duke University, United States
| |
Collapse
|
47
|
High-Frequency Repetitive Transcranial Magnetic Stimulation Could Improve Impaired Working Memory Induced by Sleep Deprivation. Neural Plast 2019; 2019:7030286. [PMID: 31915432 PMCID: PMC6930796 DOI: 10.1155/2019/7030286] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/11/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023] Open
Abstract
Objective To investigate whether and how the working memory impairment induced by sleep deprivation (SD) could be recovered by using repetitive transcranial magnetic stimulation (rTMS), as well as to clarify the corresponding brain activity changes. Methods Seventeen healthy adults received one session of 5.0 Hz rTMS over the left dorsolateral prefrontal cortex (DLPFC) following 24 hours of SD. Resting state functional magnetic resonance imaging (fMRI) and working memory test were performed during a rested waking period, after SD and rTMS. The amplitude of low-frequency fluctuations (ALFF) was used to detect the spontaneous neural activity changes after both SD and rTMS. The relationship between ALFF and the performance of working memory was also assessed by using correlation analysis. Results After SD, the participants exhibited lower response accuracies and longer reaction times on the working memory tests of letters and numbers. The decreased response accuracy of numbers was significantly improved after rTMS similarly to the state of the rested waking period after a normal night of sleep. ALFF values decreased from the rested waking period state to the state of SD in the brain regions involving the frontal gyrus, precuneus, angular gyrus, and parietal lobe which showed significantly increased ALFF after rTMS. Furthermore, significantly positive correlations were observed between changes of response accuracy and the changes of ALFF value of the inferior frontal gyrus and supramarginal gyrus. Conclusion These results indicate that high-frequency rTMS applied over left DLPFC may contribute to the recovery of the impaired working memory after SD by modulating the neural activity of related brain regions.
Collapse
|
48
|
Zhang JJQ, Fong KNK, Ouyang RG, Siu AMH, Kranz GS. Effects of repetitive transcranial magnetic stimulation (rTMS) on craving and substance consumption in patients with substance dependence: a systematic review and meta-analysis. Addiction 2019; 114:2137-2149. [PMID: 31328353 DOI: 10.1111/add.14753] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/10/2019] [Accepted: 07/16/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Repetitive transcranial magnetic stimulation (rTMS) is increasingly used as an intervention for treating substance dependence. We aimed to assess evidence of the anti-craving and consumption-reducing effects of rTMS in patients with alcohol, nicotine and illicit drug dependence. METHODS A systematic review and meta-analysis of 26 randomized controlled trials (RCTs) published from January 2000 to October 2018 that investigated the effects of rTMS on craving and substance consumption in patients with nicotine, alcohol and illicit drug dependence (n = 748). Craving, measured using self-reported questionnaires or visual analog scale, and substance consumption, measured using self-report substance intake or number of addiction relapse cases, were considered as primary and secondary outcomes, respectively. Substance type, study design and rTMS parameters were used as the independent factors in the meta-regression. RESULTS Results showed that excitatory rTMS of the left dorsolateral pre-frontal cortex (DLPFC) significantly reduced craving [Hedges' g = -0.62; 95% confidence interval (CI) = -0.89 to -0.35; P < 0.0001], compared with sham stimulation. Moreover, meta-regression revealed a significant positive association between the total number of stimulation pulses and effect size among studies using excitatory left DLPFC stimulation (P = 0.01). Effects of other rTMS protocols on craving were not significant. However, when examining substance consumption, excitatory rTMS of the left DLPFC and excitatory deep TMS (dTMS) of the bilateral DLPFC and insula revealed significant consumption-reducing effects, compared with sham stimulation. CONCLUSION Excitatory repetitive transcranial magnetic stimulation of the dorsolateral pre-frontal cortex appears to have an acute effect on reducing craving and substance consumption in patients with substance dependence. The anti-craving effect may be associated with stimulation dose.
Collapse
Affiliation(s)
- Jack J Q Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR
| | - Kenneth N K Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR
| | - Rang-Ge Ouyang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR
| | - Andrew M H Siu
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR
| | - Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR.,Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| |
Collapse
|
49
|
Hauer L, Scarano GI, Brigo F, Golaszewski S, Lochner P, Trinka E, Sellner J, Nardone R. Effects of repetitive transcranial magnetic stimulation on nicotine consumption and craving: A systematic review. Psychiatry Res 2019; 281:112562. [PMID: 31521838 DOI: 10.1016/j.psychres.2019.112562] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 12/15/2022]
Abstract
We performed a systematic review of the studies employing repetitive transcranial magnetic stimulation (rTMS) in subjects with smoking addiction. High-frequency (HF) rTMS over the prefrontal cortex (PFC), in particular the left dorsolateral PFC (DLPFC), might represent a save and innovative treatment tool for tobacco consumption and craving in nicotine-dependent otherwise healthy people. rTMS can be effective for this indication also in patients with schizophrenia, but the results are conflicting and sufficient evidence from large-scale trials is still lacking. Promising results have been obtained using particular techniques for brain stimulation, such as deep rTMS and theta burst stimulation. Multiple-target HF rTMS can also have a potential in smoking cessation. fMRI and EEG recordings have proven to be useful for objectively assessing the treatment effects. TMS is likely to be most effective when paired with an evidence-based self-help intervention, cognitive-behavioral interventions and nicotine replacement therapy. However, the most recent studies employed different protocols and yielded heterogeneous results, which should be replicated in further controlled studies with larger sample sizes and rigorous standards of randomization. To date, no recommendation other than that a possible efficacy of HF-rTMS of the left DLPFC can be made for alternative rTMS procedures in nicotine craving and consumption.
Collapse
Affiliation(s)
- Larissa Hauer
- Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Christian Doppler Medical Center, Salzburg, Austria
| | | | - Francesco Brigo
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy; Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | - Stefan Golaszewski
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria; Karl Landsteiner Institut für Neurorehabilitation und Raumfahrtneurologie, Salzburg, Austria
| | - Piergiorgio Lochner
- Department of Neurology, Saarland University Medical Center, Homburg, Germany
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria; Centre for Cognitive Neurosciences Salzburg, Salzburg, Austria; University for Medical Informatics and Health Technology, UMIT, Hall in Tirol, Austria
| | - Johann Sellner
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria; Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Germany
| | - Raffaele Nardone
- Department of Neurology, Franz Tappeiner Hospital, Merano, Italy; Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
50
|
Abstract
Drug consumption is driven by a drug's pharmacological effects, which are experienced as rewarding, and is influenced by genetic, developmental, and psychosocial factors that mediate drug accessibility, norms, and social support systems or lack thereof. The reinforcing effects of drugs mostly depend on dopamine signaling in the nucleus accumbens, and chronic drug exposure triggers glutamatergic-mediated neuroadaptations in dopamine striato-thalamo-cortical (predominantly in prefrontal cortical regions including orbitofrontal cortex and anterior cingulate cortex) and limbic pathways (amygdala and hippocampus) that, in vulnerable individuals, can result in addiction. In parallel, changes in the extended amygdala result in negative emotional states that perpetuate drug taking as an attempt to temporarily alleviate them. Counterintuitively, in the addicted person, the actual drug consumption is associated with an attenuated dopamine increase in brain reward regions, which might contribute to drug-taking behavior to compensate for the difference between the magnitude of the expected reward triggered by the conditioning to drug cues and the actual experience of it. Combined, these effects result in an enhanced motivation to "seek the drug" (energized by dopamine increases triggered by drug cues) and an impaired prefrontal top-down self-regulation that favors compulsive drug-taking against the backdrop of negative emotionality and an enhanced interoceptive awareness of "drug hunger." Treatment interventions intended to reverse these neuroadaptations show promise as therapeutic approaches for addiction.
Collapse
Affiliation(s)
- Nora D Volkow
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| | - Michael Michaelides
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| | - Ruben Baler
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|