1
|
Alicia LB, María Ángeles OG, Desirée MG, Maximino R, Marilina GA. Utility of Protein Markers in COVID-19 Patients. Int J Mol Sci 2025; 26:653. [PMID: 39859366 PMCID: PMC11766239 DOI: 10.3390/ijms26020653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
COVID-19 has been a challenge at the healthcare level not only in the early stages of the pandemic, but also in the subsequent appearance of long-term COVID-19. Several investigations have attempted to identify proteomic biomarkers in an attempt to improve clinical care, guide treatment and predict possible patient outcomes. Proteins such as C-reactive protein (CRP) or interleukin 6 (IL-6) are clear markers of severe disease, but many others have been proposed that could help in risk stratification and in the prediction of specific complications. This review aims to bring together the most relevant studies in this regard, providing information to identify the most notable biomarkers in relation to COVID-19 found to date.
Collapse
Affiliation(s)
- López-Biedma Alicia
- Research and Innovation Unit, Hospital Costa del Sol, Autovía A-7 km 187, 29603 Marbella, Spain; (L.-B.A.); (M.-G.D.); (G.-A.M.)
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Malaga, Spain
| | - Onieva-García María Ángeles
- Preventive Medicine and Public Health Unit, Hospital Universitario Reina Sofia, 14004 Cordoba, Spain;
- Preventive Medicine and Public Health Research Group, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004 Cordoba, Spain
- Department of Medical and Surgical Sciences, University of Cordoba, 14004 Cordoba, Spain
| | - Martín-García Desirée
- Research and Innovation Unit, Hospital Costa del Sol, Autovía A-7 km 187, 29603 Marbella, Spain; (L.-B.A.); (M.-G.D.); (G.-A.M.)
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Malaga, Spain
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Malaga, Spain
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain
| | - Redondo Maximino
- Research and Innovation Unit, Hospital Costa del Sol, Autovía A-7 km 187, 29603 Marbella, Spain; (L.-B.A.); (M.-G.D.); (G.-A.M.)
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Malaga, Spain
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Malaga, Spain
- Surgical Specialties, Biochemistry and Immunology Department, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain
| | - García-Aranda Marilina
- Research and Innovation Unit, Hospital Costa del Sol, Autovía A-7 km 187, 29603 Marbella, Spain; (L.-B.A.); (M.-G.D.); (G.-A.M.)
- Instituto de Investigación Biomédica de Málaga-Plataforma BIONAND (IBIMA-BIONAND), Severo Ochoa, 35, 29590 Malaga, Spain
- Red de Investigación en Servicios de Salud en Enfermedades Crónicas (REDISSEC) and Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Instituto de Investigación Biomédica de Málaga (IBIMA), 29590 Malaga, Spain
| |
Collapse
|
2
|
Gonzalez-Ochoa AJ, Szolnoky G, Hernandez-Ibarra AG, Fareed J. Treatment with Sulodexide Downregulates Biomarkers for Endothelial Dysfunction in Convalescent COVID-19 Patients. Clin Appl Thromb Hemost 2025; 31:10760296241297647. [PMID: 39763448 PMCID: PMC11705351 DOI: 10.1177/10760296241297647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION Persistent elevation of biomarkers associated with endothelial dysfunction in convalescent COVID-19 patients has been linked to an increased risk of long-term cardiovascular complications, including long COVID syndrome. Sulodexide, known for its vascular endothelial affinity, has demonstrated pleiotropic protective properties. This study aims to evaluate the impact of sulodexide on serum levels of endothelial dysfunction biomarkers in patients during the convalescent phase of COVID-19. METHODS We conducted a double-blind, single-center, randomized, placebo-controlled trial in Mexico, comparing sulodexide (250 LRU orally, twice daily) with placebo over 8 weeks in adult patients during early COVID-19 convalescence. Differences in serum biomarkers between the groups were analyzed using repeated measures and post hoc tests, with Thrombomodulin (TM) as the primary endpoint. RESULTS Among 206 analyzed patients (103 in each group), at week 8, the sulodexide group exhibited significantly lower mean levels of Thrombomodulin (TM) (25.2 ± 7.9 ng/mL vs 29.9 ± 14.7 ng/mL, P = .03), von Willebrand Factor (vWF) (232 ± 131 U/dL vs 266 ± 122 U/dL, P = .02) and Interleukin-6 (IL-6) (12.5 ± 13.2 pg/mL vs 16.2 ± 16.5 pg/mL, P = .03) compared to the placebo group. D-dimer and C reactive protein (CRP) in the sulodexide group were also lowered. No significant differences were observed for P-selectin, fibrinogen, VCAM-1, or ICAM-1 levels. CONCLUSIONS Patients in the convalescent phase of COVID-19 who received sulodexide for eight weeks showed a reduction in TM, vWF, D-dimer, CRP, and IL-6 serum levels compared to placebo. These findings suggest a potential protective effect of sulodexide against thromboinflammation and endothelial damage.
Collapse
Affiliation(s)
- Alejandro J Gonzalez-Ochoa
- Vascular Surgery Department, Centro Médico del Noroeste, San Luis Rio Colorado, Sonora, México
- Vascular and Endovascular Surgery department, CLINEDEM, San Luis Rio Colorado, Sonora, México
| | - Gyozo Szolnoky
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | | | - Jawed Fareed
- Hemostasis and Thrombosis Research Laboratories, Loyola University Medical Center, Maywood, Illinois, USA
| |
Collapse
|
3
|
Peter RS, Nieters A, Göpel S, Merle U, Steinacker JM, Deibert P, Friedmann-Bette B, Nieß A, Müller B, Schilling C, Erz G, Giesen R, Götz V, Keller K, Maier P, Matits L, Parthé S, Rehm M, Schellenberg J, Schempf U, Zhu M, Kräusslich HG, Rothenbacher D, Kern WV. Persistent symptoms and clinical findings in adults with post-acute sequelae of COVID-19/post-COVID-19 syndrome in the second year after acute infection: A population-based, nested case-control study. PLoS Med 2025; 22:e1004511. [PMID: 39847575 DOI: 10.1371/journal.pmed.1004511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Self-reported health problems following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are common and often include relatively non-specific complaints such as fatigue, exertional dyspnoea, concentration or memory disturbance and sleep problems. The long-term prognosis of such post-acute sequelae of COVID-19/post-COVID-19 syndrome (PCS) is unknown, and data finding and correlating organ dysfunction and pathology with self-reported symptoms in patients with non-recovery from PCS is scarce. We wanted to describe clinical characteristics and diagnostic findings among patients with PCS persisting for >1 year and assessed risk factors for PCS persistence versus improvement. METHODS AND FINDINGS This nested population-based case-control study included subjects with PCS aged 18-65 years with (n = 982) and age- and sex-matched control subjects without PCS (n = 576) according to an earlier population-based questionnaire study (6-12 months after acute infection, phase 1) consenting to provide follow-up information and to undergo comprehensive outpatient assessment, including neurocognitive, cardiopulmonary exercise, and laboratory testing in four university health centres in southwestern Germany (phase 2, another 8.5 months [median, range 3-14 months] after phase 1). The mean age of the participants was 48 years, and 65% were female. At phase 2, 67.6% of the patients with PCS at phase 1 developed persistent PCS, whereas 78.5% of the recovered participants remained free of health problems related to PCS. Improvement among patients with earlier PCS was associated with mild acute index infection, previous full-time employment, educational status, and no specialist consultation and not attending a rehabilitation programme. The development of new symptoms related to PCS among participants initially recovered was associated with an intercurrent secondary SARS-CoV-2 infection and educational status. Patients with persistent PCS were less frequently never smokers (61.2% versus 75.7%), more often obese (30.2% versus 12.4%) with higher mean values for body mass index (BMI) and body fat, and had lower educational status (university entrance qualification 38.7% versus 61.5%) than participants with continued recovery. Fatigue/exhaustion, neurocognitive disturbance, chest symptoms/breathlessness and anxiety/depression/sleep problems remained the predominant symptom clusters. Exercise intolerance with post-exertional malaise (PEM) for >14 h and symptoms compatible with myalgic encephalomyelitis/chronic fatigue syndrome were reported by 35.6% and 11.6% of participants with persistent PCS patients, respectively. In analyses adjusted for sex-age class combinations, study centre and university entrance qualification, significant differences between participants with persistent PCS versus those with continued recovery were observed for performance in three different neurocognitive tests, scores for perceived stress, subjective cognitive disturbances, dysautonomia, depression and anxiety, sleep quality, fatigue and quality of life. In persistent PCS, handgrip strength (40.2 [95% confidence interval (CI) [39.4, 41.1]] versus 42.5 [95% CI [41.5, 43.6]] kg), maximal oxygen consumption (27.9 [95% CI [27.3, 28.4]] versus 31.0 [95% CI [30.3, 31.6]] ml/min/kg body weight) and ventilatory efficiency (minute ventilation/carbon dioxide production slope, 28.8 [95% CI [28.3, 29.2]] versus 27.1 [95% CI [26.6, 27.7]]) were significantly reduced relative to the control group of participants with continued recovery after adjustment for sex-age class combinations, study centre, education, BMI, smoking status and use of beta blocking agents. There were no differences in measures of systolic and diastolic cardiac function at rest, in the level of N-terminal brain natriuretic peptide blood levels or other laboratory measurements (including complement activity, markers of Epstein-Barr virus [EBV] reactivation, inflammatory and coagulation markers, serum levels of cortisol, adrenocorticotropic hormone and dehydroepiandrosterone sulfate). Screening for viral persistence (PCR in stool samples and SARS-CoV-2 spike antigen levels in plasma) in a subgroup of the patients with persistent PCS was negative. Sensitivity analyses (pre-existing illness/comorbidity, obesity, medical care of the index acute infection) revealed similar findings. Patients with persistent PCS and PEM reported more pain symptoms and had worse results in almost all tests. A limitation was that we had no objective information on exercise capacity and cognition before acute infection. In addition, we did not include patients unable to attend the outpatient clinic for whatever reason including severe illness, immobility or social deprivation or exclusion. CONCLUSIONS In this study, we observed that the majority of working age patients with PCS did not recover in the second year of their illness. Patterns of reported symptoms remained essentially similar, non-specific and dominated by fatigue, exercise intolerance and cognitive complaints. Despite objective signs of cognitive deficits and reduced exercise capacity, there was no major pathology in laboratory investigations, and our findings do not support viral persistence, EBV reactivation, adrenal insufficiency or increased complement turnover as pathophysiologically relevant for persistent PCS. A history of PEM was associated with more severe symptoms and more objective signs of disease and might help stratify cases for disease severity.
Collapse
Affiliation(s)
- Raphael S Peter
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Alexandra Nieters
- Institute for Immunodeficiency, Medical Centre and Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Siri Göpel
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Uta Merle
- Department of Internal Medicine IV, Heidelberg University Faculty of Medicine and Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen M Steinacker
- Division of Sports and Rehabilitation Medicine, Department of Medicine, Ulm University Hospital, Ulm, Germany
| | - Peter Deibert
- Institute for Exercise and Occupational Medicine, Medical Centre and Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Birgit Friedmann-Bette
- Department of Sports Medicine, Heidelberg University Faculty of Medicine and Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Nieß
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Barbara Müller
- Department of Infectious Diseases-Virology, Heidelberg University Faculty of Medicine, and Heidelberg University Hospital, Heidelberg, Germany
| | - Claudia Schilling
- Department of Psychiatry and Psychotherapy, Sleep Laboratory, Medical Faculty Mannheim, Central Institute of Mental Health (ZI), University of Heidelberg, Heidelberg, Germany
| | - Gunnar Erz
- Department of Sports Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Roland Giesen
- Division of Infectious Diseases, Department of Medicine II, Medical Centre and Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Veronika Götz
- Division of Infectious Diseases, Department of Medicine II, Medical Centre and Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Karsten Keller
- Department of Sports Medicine, Heidelberg University Faculty of Medicine and Heidelberg University Hospital, Heidelberg, Germany
| | - Philipp Maier
- Institute for Exercise and Occupational Medicine, Medical Centre and Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Lynn Matits
- Division of Sports and Rehabilitation Medicine, Department of Medicine, Ulm University Hospital, Ulm, Germany
| | - Sylvia Parthé
- Department of Infectious Diseases-Virology, Heidelberg University Faculty of Medicine, and Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Rehm
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Jana Schellenberg
- Division of Sports and Rehabilitation Medicine, Department of Medicine, Ulm University Hospital, Ulm, Germany
| | - Ulrike Schempf
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Mengyu Zhu
- Department of Internal Medicine IV, Heidelberg University Faculty of Medicine and Heidelberg University Hospital, Heidelberg, Germany
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, Munich, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases-Virology, Heidelberg University Faculty of Medicine, and Heidelberg University Hospital, Heidelberg, Germany
- German Centre for Infection Research (DZIF) Partner Site Heidelberg, Heidelberg, Germany
| | | | - Winfried V Kern
- Division of Infectious Diseases, Department of Medicine II, Medical Centre and Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| |
Collapse
|
4
|
Dieter RS, Kempaiah P, Dieter EG, Alcazar A, Tafur A, Gerotziafas G, Gonzalez Ochoa A, Abdesselem S, Biller J, Kipshidze N, Vandreden P, Guerrini M, Dieter RA, Durvasula R, Singh M, Fareed J. Cardiovascular Symposium on Perspectives in Long COVID. Clin Appl Thromb Hemost 2025; 31:10760296251319963. [PMID: 39943820 PMCID: PMC11822813 DOI: 10.1177/10760296251319963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/09/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Significant progress has been made in treating Coronavirus disease (COVID) - an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). An ominous turn in the pandemic is the evolving public health crisis emanating from persistent SARS-CoV-2 infection and its associated long-term impact. Long COVID or post-COVID syndrome describes protean symptoms that persist at least 3 months after the onset of acute illness and last for at least 2 months in individuals with a history of confirmed SARS-CoV-2 infection. Long COVID has become a public health concern. Millions of infected individuals are now facing chronic multi-organ failures, including neuropsychiatric, cardiovascular, pulmonary, and kidney complications. In general, the cause of long COVID syndrome is unclear but factors such as prolonged activation of immune responses, and viral persistence triggering transcription dysregulation of genes associated with normal thrombotic disease may play a role in cardiovascular complications. Although inflammatory biomarkers are reported in other disorders, it remains unclear whether similar biomarkers are associated with cardiovascular manifestations following COVID. Medications such as sulodexide directed at glycocalyx and coagulation have demonstrated benefits for long COVID in smaller studies. Here, we describe the outcomes of the symposium on the underlying cardiovascular mechanisms of the long COVID.
Collapse
Affiliation(s)
- Robert S. Dieter
- Loyola University Stritch School of Medicine, Maywood, USA
- VA Hines, IL, USA
| | - Prakasha Kempaiah
- Loyola University Stritch School of Medicine, Maywood, USA
- Loyola University Chicago, Maywood, IL, USA
| | | | | | - Alfonso Tafur
- Endeavor Health, University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Grigoris Gerotziafas
- Sorbonne University, INSERM UMR_S_938, Saint-Antoine Research Center (CRSA), Team “Cancer, Vessels, Biology and Therapeutics” (CaVITE), Group “Cancer – Angiogenesis – Thrombosis”, University Institute of Cancerology (UIC), Saint Antoine University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
- Thrombosis and Haemostasis Center, Department of Obstetrics, Gynecology and Perinatal Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | | | | | - Jose Biller
- Loyola University Stritch School of Medicine, Maywood, USA
| | | | - Patrick Vandreden
- Sorbonne University, INSERM UMR_S_938, Saint-Antoine Research Center (CRSA), Team “Cancer, Vessels, Biology and Therapeutics” (CaVITE), Group “Cancer – Angiogenesis – Thrombosis”, University Institute of Cancerology (UIC), Saint Antoine University Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
- Department of Clinical Research, Diagnostica Stago, Gennevilliers, France
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche G-Ronzoni – NMR Center, Milano, Italy
| | | | | | - Meharvan Singh
- Loyola University Stritch School of Medicine, Maywood, USA
- Loyola University Chicago, Maywood, IL, USA
| | - Jawed Fareed
- Loyola University Stritch School of Medicine, Maywood, USA
- Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
5
|
Skevaki C, Moschopoulos CD, Fragkou PC, Grote K, Schieffer E, Schieffer B. Long COVID: Pathophysiology, current concepts, and future directions. J Allergy Clin Immunol 2024:S0091-6749(24)02406-0. [PMID: 39724975 DOI: 10.1016/j.jaci.2024.12.1074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
Long COVID, an umbrella term referring to a variety of symptoms and clinical presentations that emerges in a subset of patients after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has a significant effect on quality of life and places a substantial burden on health care systems worldwide, straining financial and human resources. The pathophysiology of long COVID remains incompletely understood, though several hypotheses have been proposed to explain different aspects of this complex condition. SARS-CoV-2 persistence, direct organ damage, innate and adaptive immune system perturbation, autoimmunity, latent virus reactivation, endothelial dysfunction, and microbiome disturbances are among the most relevant avenues for elucidating the evolution, complexity, and mechanisms of long COVID. Active investigation regarding potential biomarkers for long COVID and its associated disease endotypes highlights the role of inflammatory mediators, immunophenotyping, and multiomics approaches. Further advances in understanding long COVID are needed to inform current and future therapeutics.
Collapse
Affiliation(s)
- Chrysanthi Skevaki
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, University of Marburg, Marburg, Germany; German Center for Lung Research (DZL), University of Giessen, Marburg Lung Center (UGMLC), Giessen, Germany; European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland.
| | - Charalampos D Moschopoulos
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland; Fourth Department of Internal Medicine, Medical School of Athens, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Paraskevi C Fragkou
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Respiratory Viruses (ESGREV), Basel, Switzerland; First Department of Critical Care Medicine and Pulmonary Services, Evangelismos General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Karsten Grote
- Department of Cardiology, Angiology and Intensive Care Medicine, University Hospital, Philipps University of Marburg, Marburg, Germany
| | - Elisabeth Schieffer
- Department of Cardiology, Angiology and Intensive Care Medicine, University Hospital, Philipps University of Marburg, Marburg, Germany
| | - Bernhard Schieffer
- Department of Cardiology, Angiology and Intensive Care Medicine, University Hospital, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
6
|
Lukkunaprasit T, Satapornpong P, Kulchanawichien P, Prawang A, Limprasert C, Saingam W, Permsombut C, Panidthananon W, Vutthipong A, Lawanprasert Y, Pourpongpan P, Wongwiwatthananukit S, Songsak T, Pradubyat N. Impact of combined plant extracts on long COVID: An exploratory randomized controlled trial. Complement Ther Med 2024; 87:103107. [PMID: 39488240 DOI: 10.1016/j.ctim.2024.103107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Long COVID have posed a global health burden since the COVID-19 pandemic. This study aimed to evaluate the efficacy and safety of a combined plant extract (CPE) formulation, containing Citrus aurantifolia, Tiliacora triandra, Cannabis sativa, Alpinia galanga, and Piper nigrum, in participants with long COVID. A newly developed long COVID symptom questionnaire was used to evaluate outcomes. METHODS This randomized, double-blinded, placebo-controlled trial was conducted at the College of Pharmacy, Rangsit University, Thailand. Participants were randomly assigned to receive either a CPE supplement (4500 mg/day) or a placebo for 7 days. Primary outcomes were changes in C-reactive protein (CRP) levels and the total symptom score (ranging from 0 to 57 points). Secondary outcomes included full recovery/improvement of long COVID symptoms, health-related quality of life (HRQOL), and adverse events. RESULTS A total of 66 participants were enrolled, with 33 in each group. The CPE supplement did not significantly reduce CRP levels, with a median difference (MD) (95 % CI) of -0.05 (-0.49, 0.39) mg/L compared to placebo. However, the CPE group showed a reduction in the total symptom score [MD (95 % CI) of -4.00 (-7.58, -0.42)], and a reduction in overall moderate to severe symptoms [RR (95 % CI) of 0.57 (0.35, 0.91)], moderate to severe fatigue [RR (95 % CI) of 0.25 (0.08, 0.81)], and moderate to severe post-exertional malaise (PEM) [RR (95 % CI) of 0.35 (0.16, 0.78)]. Changes in HRQOL scores did not differ significantly between groups. Adverse events were mostly mild and resolved by the end of the follow-up period. CONCLUSIONS Our study suggests potential benefits of the CPE in alleviating moderate to severe long COVID symptoms, particularly fatigue and PEM, with an acceptable safety profile. However, larger-scale trials are necessary to validate these findings, and assessing the reliability of the long COVID symptom questionnaire is essential before its application in future studies. TRIAL REGISTRATION NUMBER TCTR20230131004 (Registration date: 2023-01-31, Thai Clinical Trials Registry).
Collapse
Affiliation(s)
- Thitiya Lukkunaprasit
- Department of Pharmacy Administration, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Patompong Satapornpong
- Division of General Pharmacy Practice, Department of Pharmaceutical Care, College of Pharmacy, Rangsit University, Pathum Thani, Thailand; Excellence Pharmacogenomics and Precision Medicine Centre, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Pongsiri Kulchanawichien
- Division of Pharmacy Practice, Department of Pharmaceutical Care, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Abhisit Prawang
- Division of Pharmacy Practice, Department of Pharmaceutical Care, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Chaiwat Limprasert
- Division of Pharmacy Practice, Department of Pharmaceutical Care, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Worawan Saingam
- Drug and Herbal Product Research and Development Center, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | | | - Wongvarit Panidthananon
- Department of Pharmacognosy, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Arthimond Vutthipong
- Department of Pharmacognosy, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Yupin Lawanprasert
- Department of Pharmacy Administration, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | | | - Supakit Wongwiwatthananukit
- Department of Pharmacy Practice, The Daniel K. Inouye College of Pharmacy, University of Hawaii'i at Hilo, Hilo, HI, United States
| | - Thanapat Songsak
- Department of Pharmacognosy, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Nalinee Pradubyat
- Department of Pharmacology, College of Pharmacy, Rangsit University, Pathum Thani, Thailand.
| |
Collapse
|
7
|
Sinclair JE, Vedelago C, Ryan FJ, Carney M, Redd MA, Lynn MA, Grubor-Bauk B, Cao Y, Henders AK, Chew KY, Gilroy D, Greaves K, Labzin L, Ziser L, Ronacher K, Wallace LM, Zhang Y, Macauslane K, Ellis DJ, Rao S, Burr L, Bain A, Karawita A, Schulz BL, Li J, Lynn DJ, Palpant N, Wuethrich A, Trau M, Short KR. Post-acute sequelae of SARS-CoV-2 cardiovascular symptoms are associated with trace-level cytokines that affect cardiomyocyte function. Nat Microbiol 2024; 9:3135-3147. [PMID: 39478108 PMCID: PMC11602718 DOI: 10.1038/s41564-024-01838-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/25/2024] [Indexed: 11/06/2024]
Abstract
An estimated 65 million people globally suffer from post-acute sequelae of COVID-19 (PASC), with many experiencing cardiovascular symptoms (PASC-CVS) like chest pain and heart palpitations. This study examines the role of chronic inflammation in PASC-CVS, particularly in individuals with symptoms persisting over a year after infection. Blood samples from three groups-recovered individuals, those with prolonged PASC-CVS and SARS-CoV-2-negative individuals-revealed that those with PASC-CVS had a blood signature linked to inflammation. Trace-level pro-inflammatory cytokines were detected in the plasma from donors with PASC-CVS 18 months post infection using nanotechnology. Importantly, these trace-level cytokines affected the function of primary human cardiomyocytes. Plasma proteomics also demonstrated higher levels of complement and coagulation proteins in the plasma from patients with PASC-CVS. This study highlights chronic inflammation's role in the symptoms of PASC-CVS.
Collapse
Affiliation(s)
- Jane E Sinclair
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Courtney Vedelago
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Feargal J Ryan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Meagan Carney
- School of Mathematics and Physics, University of Queensland, Brisbane, Queensland, Australia
| | - Meredith A Redd
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Miriam A Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Yuanzhao Cao
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Anjali K Henders
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Deborah Gilroy
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Kim Greaves
- Sunshine Coast University Hospital, Queensland Health, Birtinya, Queensland, Australia
- National Centre for Epidemiology and Population Health, ANU College of Health and Medicine, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Larisa Labzin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Laura Ziser
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Katharina Ronacher
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
- Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Leanne M Wallace
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Yiwen Zhang
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Kyle Macauslane
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Daniel J Ellis
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Sudha Rao
- Gene Regulation and Translational Medicine Laboratory, Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lucy Burr
- Mater Research Institute, The University of Queensland, South Brisbane, Queensland, Australia
- Department of Respiratory Medicine, Mater Adult Hospital, South Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Amanda Bain
- Gene Regulation and Translational Medicine Laboratory, Department of Infection and Inflammation, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Anjana Karawita
- Australian Centre for Disease Preparedness, Commonwealth Scientific and Industrial Research Organisation, Geelong, Victoria, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia
| | - Junrong Li
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health and Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Nathan Palpant
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Matt Trau
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, Queensland, Australia.
- Queensland Immunology Research Centre, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
8
|
Kovács F, Posvai T, Zsáry E, Kolonics F, Garai R, Herczeg V, Czárán D, Takács J, Szabó AJ, Krivácsy P, Csépányi-Kömi R. Long COVID syndrome in children: neutrophilic granulocyte dysfunction and its correlation with disease severity. Pediatr Res 2024:10.1038/s41390-024-03731-1. [PMID: 39592773 DOI: 10.1038/s41390-024-03731-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Many children suffer from lingering symptoms after COVID-19, known as long COVID syndrome (LCS), otherwise called Post COVID-19 Condition (PCC). Despite extensive research, the prevalence of symptoms, its impact on quality of life, and underlying mechanisms still need to be fully understood. As neutrophilic granulocytes play an essential role in COVID-19, and their prolonged disruption was found to cause immunological diseases, we hypothesized their ongoing disturbed functionality in LCS. METHODS We studied 129 children with LCS, 32 convalescent children (CG+), and 8 uninfected children (CG-). Online questionnaires and in-person examinations assessed symptoms, quality of life, and functioning (QoL-F). Effector functions of neutrophilic granulocytes obtained from the venous blood of 29 LCS and 17 CG+ children were also investigated. RESULTS Persistent fatigue was the most common symptom in children with LCS, while both control groups complained about anxiety most frequently. LCS children experienced significantly more symptoms, impairing their QoL-F compared to CG+. Neutrophilic granulocyte dysfunction was found in LCS children, with decreased superoxide-producing activity and phagocytosis compared to CG+. The number of complaints of children with LCS correlated significantly with altered neutrophil effector functions. CONCLUSION Neutrophil dysfunction in children with LCS may be part of the disease pathogenesis or a predisposing factor. IMPACT Using online questionnaires validated during in-person medical examinations and including two different control groups, our study compellingly supports and adds to previous clinical observations in the field. Our study provides valuable insights into the prevalence and characteristics of pediatric LCS, highlighting the significant quality of life and functioning impairment compared to control groups. By detecting neutrophilic granulocyte dysfunction in children with LCS, we shed light on a previously overlooked pathophysiological component of the condition. We demonstrate a significant correlation between clinical symptoms and superoxide production, further enhancing our understanding of the underlying mechanisms of pediatric LCS.
Collapse
Affiliation(s)
- Fanni Kovács
- Pediatric Center, MTA Center of Excellence, Semmelweis University, Bókay Unit, Bókay János Street 53-54, 1083, Budapest, Hungary
| | - Tamás Posvai
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Eszter Zsáry
- Pediatric Center, MTA Center of Excellence, Semmelweis University, Bókay Unit, Bókay János Street 53-54, 1083, Budapest, Hungary
| | - Ferenc Kolonics
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Réka Garai
- Pediatric Center, MTA Center of Excellence, Semmelweis University, Bókay Unit, Bókay János Street 53-54, 1083, Budapest, Hungary
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Vivien Herczeg
- Pediatric Center, MTA Center of Excellence, Semmelweis University, Bókay Unit, Bókay János Street 53-54, 1083, Budapest, Hungary
| | - Domonkos Czárán
- Department of Physiology, Semmelweis University, Budapest, Hungary
| | - Johanna Takács
- Department of Social Sciences, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Attila József Szabó
- Pediatric Center, MTA Center of Excellence, Semmelweis University, Bókay Unit, Bókay János Street 53-54, 1083, Budapest, Hungary
| | - Péter Krivácsy
- Pediatric Center, MTA Center of Excellence, Semmelweis University, Bókay Unit, Bókay János Street 53-54, 1083, Budapest, Hungary
| | | |
Collapse
|
9
|
Chaves ECR, Quaresma JAS, Rodrigues MHC, de Menezes DC, de Lima IC, de Sousa JR, Galúcio VCA, Queiroz MAF, Brasil-Costa I, Barros MC, Ribeiro-Dos-Santos Â, Vallinoto ACR, Falcão LFM, de Lima PDL. Altered leukocyte pattern and inflammatory markers in unvaccinated long covid patients: a cross-sectional study. Sci Rep 2024; 14:28617. [PMID: 39562810 PMCID: PMC11577114 DOI: 10.1038/s41598-024-75920-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/09/2024] [Indexed: 11/21/2024] Open
Abstract
Long Covid results from the damage caused by SARS-CoV-2, involving the release of cytokines and the continuous activation of immune cells. This cross-sectional study investigates leukocyte and cytokine profiles in Long Covid patients in the Amazon, a region where such studies are limited. Blood samples were analysed for differential leukocyte counts and cytokine levels. We suggest elevated lymphocyte counts in hospitalised patients and those with severe COVID-19. Higher eosinophil counts were observed in patients with up to three months of Long Covid, and increased monocyte counts in those with up to six months. IL-2 levels were higher in patients with fewer symptoms and Long Covid duration of more than three months, whereas IL-10 may remain elevated for up to 12 months. We suggest positive correlations between neutrophils, monocytes, eosinophils, and lymphocytes with different cytokines (IFN-γ, IL-6, IL-4, IL-17a, IL-2). Women were associated with lower hospitalisation rates and longer durations of Long Covid; increased lymphocyte counts were linked to hospitalisation due to COVID-19, while higher monocyte counts were associated with Long Covid durations of up to six months. We suggest that Long Covid patients may exhibit alterations in inflammatory markers, indicating a persistently pro-inflammatory microenvironment that tends to diminish after 12 months of Long Covid.
Collapse
Affiliation(s)
- Elem Cristina Rodrigues Chaves
- Department of Center for Biological Health Sciences (CCBS), Graduate Program in Parasitic Biology in Amazonia (PPGBPA), State University of Pará (UEPA), Marco, Belém, Pará, 66087-670, Brazil
| | - Juarez Antônio Simões Quaresma
- Department of Center for Biological Health Sciences (CCBS), Graduate Program in Parasitic Biology in Amazonia (PPGBPA), State University of Pará (UEPA), Marco, Belém, Pará, 66087-670, Brazil
| | | | - Daniel Carvalho de Menezes
- Department of Center for Biological Health Sciences (CCBS), Graduate Program in Parasitic Biology in Amazonia (PPGBPA), State University of Pará (UEPA), Marco, Belém, Pará, 66087-670, Brazil
| | - Igor Costa de Lima
- Department of Center for Biological Health Sciences (CCBS), Graduate Program in Parasitic Biology in Amazonia (PPGBPA), State University of Pará (UEPA), Marco, Belém, Pará, 66087-670, Brazil
| | - Jorge Rodrigues de Sousa
- Department of Morphology and Physiological Sciences (DMCF), State University of Pará (UEPA), Belém, Pará, 66087- 670, Brazil
| | - Vanessa Costa Alves Galúcio
- Department of Center for Biological Health Sciences (CCBS), Graduate Program in Parasitic Biology in Amazonia (PPGBPA), State University of Pará (UEPA), Marco, Belém, Pará, 66087-670, Brazil
| | - Maria Alice Freitas Queiroz
- Laboratory of Virology (LABVIR), Institute of Biological Sciences (ICB), Federal University of Pará (UFPA), Belém, Pará, 66075-110, Brazil
| | - Igor Brasil-Costa
- Immunology Laboratory, Virology Section, Evandro Chagas Institute (IEC), Health and Environmental Surveillance Secretariat (SVSA), Brazilian Ministry of Health, Ananindeua, Brazil
| | - Maria Clara Barros
- Laboratory of Human and Medical Genetics (LGHM), Federal University of Pará (UFPA), Belém, Pará, 66075-110, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Laboratory of Human and Medical Genetics (LGHM), Federal University of Pará (UFPA), Belém, Pará, 66075-110, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Laboratory of Virology (LABVIR), Institute of Biological Sciences (ICB), Federal University of Pará (UFPA), Belém, Pará, 66075-110, Brazil
| | - Luiz Fábio Magno Falcão
- Department of Center for Biological Health Sciences (CCBS), Graduate Program in Parasitic Biology in Amazonia (PPGBPA), State University of Pará (UEPA), Marco, Belém, Pará, 66087-670, Brazil
- School of Medicine, São Paulo University (USP), São Paulo, 01246903, Brazil
| | - Patrícia Danielle Lima de Lima
- Department of Center for Biological Health Sciences (CCBS), Graduate Program in Parasitic Biology in Amazonia (PPGBPA), State University of Pará (UEPA), Marco, Belém, Pará, 66087-670, Brazil.
| |
Collapse
|
10
|
Almulla AF, Thipakorn Y, Zhou B, Vojdani A, Maes M. Immune activation and immune-associated neurotoxicity in Long-COVID: A systematic review and meta-analysis of 103 studies comprising 58 cytokines/chemokines/growth factors. Brain Behav Immun 2024; 122:75-94. [PMID: 39127088 DOI: 10.1016/j.bbi.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Multiple studies have shown that Long COVID (LC) disease is associated with heightened immune activation, as evidenced by elevated levels of inflammatory mediators. However, there is no comprehensive meta-analysis focusing on activation of the immune inflammatory response system (IRS) and the compensatory immunoregulatory system (CIRS) along with other immune phenotypes in LC patients. OBJECTIVES This meta-analysis is designed to explore the IRS and CIRS profiles in LC patients, the individual cytokines, chemokines, growth factors, along with C-reactive protein (CRP) and immune-associated neurotoxicity. METHODS To gather relevant studies for our research, we conducted a thorough search using databases such as PubMed, Google Scholar, and SciFinder, covering all available literature up to July 5th, 2024. RESULTS The current meta-analysis encompassed 103 studies that examined multiple immune profiles, C-reactive protein, and 58 cytokines/chemokines/growth factors in 5502 LC patients versus 5962 normal controls (NC). LC patients showed significant increases in IRS/CIRS ratio (standardized mean difference (SMD: 0.156, confidence interval (CI): 0.062;0.250), IRS (SMD: 0.338, CI: 0.236;0.440), M1 macrophage (SMD: 0.371, CI: 0.263;0.480), T helper (Th)1 (SMD: 0.316, CI: 0.185;0.446), Th17 (SMD: 0.439, CI: 0.302;0.577) and immune-associated neurotoxicity (SMD: 0.384, CI: 0.271;0.497). In addition, CRP and 21 different cytokines displayed significantly elevated levels in LC patients compared to NC. CONCLUSION LC disease is characterized by IRS activation and increased immune-associated neurotoxicity.
Collapse
Affiliation(s)
- Abbas F Almulla
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yanin Thipakorn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Bo Zhou
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China
| | - Aristo Vojdani
- Immunosciences Lab, Inc., Los Angeles, CA 90035, USA; Cyrex Laboratories, LLC, Phoenix, AZ 85034, USA
| | - Michael Maes
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China; Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Cognitive Fitness and Biopsychological Technology Research Unit, Faculty of Medicine. Chulalongkorn University, Bangkok 10330, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria; Strategic Research and Innovation Program for the Development of MU - PLOVDIV-(SRIPD-MUP), European Union - NextGenerationEU; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea.
| |
Collapse
|
11
|
Alghamdi F, Mokbel K, Meertens R, Obotiba AD, Alharbi M, Knapp KM, Strain WD. Bone Mineral Density, Bone Biomarkers, and Joints in Acute, Post, and Long COVID-19: A Systematic Review. Viruses 2024; 16:1694. [PMID: 39599809 PMCID: PMC11599111 DOI: 10.3390/v16111694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
SARS-CoV-2 is highly transmissible and affects the respiratory system. People with COVID-19 are at higher risk of physical and mental health conditions, which could impact bone health. The aim of this review was to explore the effects of COVID-19 on BMD, BTMs, and joints. An electronic search of the PubMed, Web of Science, Scopus, and Ovid Medline databases considered studies published between 1 January 2020 and 1 November 2023. The search was limited to English, original studies in adult humans. The title and abstract of the identified papers were screened, followed by a full-text review using inclusion and exclusion criteria. The data extracted included the study and participant characteristics, BTMs, BMD, and joint abnormalities. The Newcastle-Ottawa scale quality assessment tool was used to assess the risk of bias. Five studies involving 305 out of 495 infected individuals observed a reduced BMD after COVID-19, with the most significant reduction occurring a year later. Both bone resorption and bone formation markers decreased, while regulatory markers showed higher levels in infected patients. COVID-19 may harm bone health by increasing bone regulatory markers and reducing bone formation and absorption, leading to a lower BMD. Elderly, frail, and osteopenic or osteoporotic individuals are at higher risk and should be regularly monitored for bone loss if they have long COVID.
Collapse
Affiliation(s)
- Fahad Alghamdi
- College of Medicine and Health, University of Exeter, Exeter EX2 4TH, UK; (K.M.); (R.M.); (A.D.O.); (K.M.K.); (W.D.S.)
- Department of Radiologic Technology, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia
| | - Kinan Mokbel
- College of Medicine and Health, University of Exeter, Exeter EX2 4TH, UK; (K.M.); (R.M.); (A.D.O.); (K.M.K.); (W.D.S.)
| | - Robert Meertens
- College of Medicine and Health, University of Exeter, Exeter EX2 4TH, UK; (K.M.); (R.M.); (A.D.O.); (K.M.K.); (W.D.S.)
| | - Abasiama Dick Obotiba
- College of Medicine and Health, University of Exeter, Exeter EX2 4TH, UK; (K.M.); (R.M.); (A.D.O.); (K.M.K.); (W.D.S.)
| | - Mansour Alharbi
- PACS Admin, Radiology Department, King Khalid Hospital in Kharij, Riyadh 11942, Saudi Arabia;
| | - Karen M. Knapp
- College of Medicine and Health, University of Exeter, Exeter EX2 4TH, UK; (K.M.); (R.M.); (A.D.O.); (K.M.K.); (W.D.S.)
| | - William David Strain
- College of Medicine and Health, University of Exeter, Exeter EX2 4TH, UK; (K.M.); (R.M.); (A.D.O.); (K.M.K.); (W.D.S.)
| |
Collapse
|
12
|
Wang Z, Li L, Yang S, Li Z, Zhang P, Shi R, Zhou X, Tang X, Li Q. Possible mechanisms of SARS-CoV-2-associated myocardial fibrosis: reflections in the post-pandemic era. Front Microbiol 2024; 15:1470953. [PMID: 39444690 PMCID: PMC11497467 DOI: 10.3389/fmicb.2024.1470953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Since December 2019, coronavirus disease 2019 (COVID-19) has been spreading worldwide with devastating immediate or long-term effects on people's health. Although the lungs are the primary organ affected by COVID-19, individuals infected with SARS-CoV-2 also develop systemic lesions involving multiple organs throughout the body, such as the cardiovascular system. Emerging evidence reveals that COVID-19 could generate myocardial fibrosis, termed "COVID-19-associated myocardial fibrosis." It can result from the activation of fibroblasts via the renin-angiotensin-aldosterone system (RAAS), transforming growth factor-β1 (TGF-β1), microRNAs, and other pathways, and can also occur in other cellular interactions with SARS-CoV-2, such as immunocytes, endothelial cells. Nonetheless, to gain a more profound insight into the natural progression of COVID-19-related myocardial fibrosis, additional investigations are necessary. This review delves into the underlying mechanisms contributing to COVID-19-associated myocardial fibrosis while also examining the antifibrotic potential of current COVID-19 treatments, thereby offering guidance for future clinical trials of these medications. Ultimately, we propose future research directions for COVID-19-associated myocardial fibrosis in the post-COVID-19 era, such as artificial intelligence (AI) telemedicine. We also recommend that relevant tests be added to the follow-up of COVID-19 patients to detect myocardial fibrosis promptly.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luwei Li
- Department of Pediatric Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Third Clinical Medical College of Zhengzhou University, Zhengzhou, China
| | - Shuai Yang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Run Shi
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xing Zhou
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojuan Tang
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Li
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
13
|
Guo M, Shang S, Li M, Cai G, Li P, Chen X, Li Q. Understanding autoimmune response after SARS-CoV-2 infection and the pathogenesis/mechanisms of long COVID. MEDICAL REVIEW (2021) 2024; 4:367-383. [PMID: 39444797 PMCID: PMC11495526 DOI: 10.1515/mr-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/04/2024] [Indexed: 10/25/2024]
Abstract
COVID-19 posed a major challenge to the healthcare system and resources worldwide. The popularization of vaccines and the adoption of numerous prevention and control measures enabled the gradual end of the COVID-19 pandemic. However, successive occurrence of autoimmune diseases in patients with COVID-19 cannot be overlooked. Long COVID has been the major focus of research due to the long duration of different symptoms and the variety of systems involved. Autoimmunity may play a crucial role in the pathogenesis of long COVID. Here, we reviewed several autoimmune disorders occurring after COVID-19 infection and the pathogenesis of long COVID.
Collapse
Affiliation(s)
- Ming Guo
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Shunlai Shang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China
| | - Mengfei Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
- Haihe Laboratory of CellEcosystem, China
| | - Qinggang Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing 100853, China
| |
Collapse
|
14
|
Kanwal A, Zhang Z. Exploring common pathogenic association between Epstein Barr virus infection and long-COVID by integrating RNA-Seq and molecular dynamics simulations. Front Immunol 2024; 15:1435170. [PMID: 39391317 PMCID: PMC11464307 DOI: 10.3389/fimmu.2024.1435170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
The term "Long-COVID" (LC) is characterized by the aftereffects of COVID-19 infection. Various studies have suggested that Epstein-Barr virus (EBV) reactivation is among the significant reported causes of LC. However, there is a lack of in-depth research that could largely explore the pathogenic mechanism and pinpoint the key genes in the EBV and LC context. This study mainly aimed to predict the potential disease-associated common genes between EBV reactivation and LC condition using next-generation sequencing (NGS) data and reported naturally occurring biomolecules as inhibitors. We applied the bulk RNA-Seq from LC and EBV-infected peripheral blood mononuclear cells (PBMCs), identified the differentially expressed genes (DEGs) and the Protein-Protein interaction (PPI) network using the STRING database, identified hub genes using the cytoscape plugins CytoHubba and MCODE, and performed enrichment analysis using ClueGO. The interaction analysis of a hub gene was performed against naturally occurring bioflavonoid molecules using molecular docking and the molecular dynamics (MD) simulation method. Out of 357 common genes, 22 genes (CCL2, CCL20, CDCA2, CEP55, CHI3L1, CKAP2L, DEPDC1, DIAPH3, DLGAP5, E2F8, FGF1, NEK2, PBK, TOP2A, CCL3, CXCL8, DEPDC1, IL6, RETN, MMP2, LCN2, and OLR1) were classified as hub genes, and the remaining ones were classified as neighboring genes. Enrichment analysis showed the role of hub genes in various pathways such as immune-signaling pathways, including JAK-STAT signaling, interleukin signaling, protein kinase signaling, and toll-like receptor pathways associated with the symptoms reported in the LC condition. ZNF and MYBL TF-family were predicted as abundant TFs controlling hub genes' transcriptional machinery. Furthermore, OLR1 (PDB: 7XMP) showed stable interactions with the five shortlisted refined naturally occurring bioflavonoids, i.e., apigenin, amentoflavone, ilexgenin A, myricetin, and orientin compounds. The total binding energy pattern was observed, with amentoflavone being the top docked molecule (with a binding affinity of -8.3 kcal/mol) with the lowest total binding energy of -18.48 kcal/mol. In conclusion, our research has predicted the hub genes, their molecular pathways, and the potential inhibitors between EBV and LC potential pathogenic association. The in vivo or in vitro experimental methods could be utilized to functionally validate our findings, which would be helpful to cure LC or to prevent EBV reactivation.
Collapse
Affiliation(s)
- Ayesha Kanwal
- MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhiyong Zhang
- MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Physics, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
15
|
Thomas C, Faghy MA, Chidley C, Phillips BE, Bewick T, Ashton RE. Blood Biomarkers of Long COVID: A Systematic Review. Mol Diagn Ther 2024; 28:537-574. [PMID: 39103645 DOI: 10.1007/s40291-024-00731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Long coronavirus disease (COVID; LC) affects millions of people worldwide. The exact mechanisms which result in a broad, undulating and detrimental symptom profile remain unknown. Blood biomarkers associated with LC have been described; however, consensus on these remains elusive, in part due to a lack of continuity between studies on a universally accepted definition of LC. This systematic review aimed to consolidate current knowledge of blood biomarkers associated with the prevalence of LC on the basis of the World Health Organisation (WHO) clinical definition of this condition. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Observational, cross-sectional, and randomised control studies published in the English language that studied blood biomarkers associated with the WHO definition of LC. All studies included participants who were ≥ 18 years old and group sizes ≥ 10 participants, and were compared against a control group without any known co-morbidities. METHODS A systematic literature search was conducted according to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines and prospectively registered on Prospero (ID: CRD42022373121). The Cochrane, Embase, PubMed and Web of Science databases were searched from inception to January 2024. Search results were gathered using Rayyan software and data extracted using Microsoft Excel. The reporting recommendations for tumour markers prognostic studies (REMARK) questionnaire was used to assess the quality of the included studies. RESULTS A total of 45 observational and one interventional study comprising 4415 participants were included in this review which identified 525 blood biomarkers thought to be associated with LC. Three blood biomarker subtypes were associated with the development of LC: (1) immunological and inflammatory dysfunction, (2) endothelial/vascular dysfunction and (3) metabolic and clotting abnormalities. DISCUSSION AND CONCLUSIONS Our data are consistent with previous findings; however, no single biomarker was sufficiently associated with LC prevalence and instead a profile of biomarkers across various physiological systems may be more clinically useful. In all, 196 studies were excluded due to a lack of an adequately healthy comparator group and/or failure to meet the WHO LC definition. This demonstrates a need for further research incorporating a universal LC definition across all disease severity groups and symptom profiles, and longitudinal data reflecting the relapsing and remitting nature of this condition. Further investigation into blood biomarkers of LC, including clear reporting of healthy comparator groups and the investigation of acute and chronic biomarker changes, within the context of medical practice, may support the development of curative/restorative approaches.
Collapse
Affiliation(s)
- Callum Thomas
- Biomedical and Clinical Science Research Theme, School of Human Sciences, University of Derby, Derby, UK.
- Healthy Living for Pandemic Event Protection (HL-PIVOT) Network, Chicago, IL, USA.
| | - Mark A Faghy
- Biomedical and Clinical Science Research Theme, School of Human Sciences, University of Derby, Derby, UK
- Healthy Living for Pandemic Event Protection (HL-PIVOT) Network, Chicago, IL, USA
- Department of Physical Therapy, College of Applied Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Corinna Chidley
- Biomedical and Clinical Science Research Theme, School of Human Sciences, University of Derby, Derby, UK
| | - Bethan E Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and NIHR Nottingham Biomedical Research Centre, School of Medicine, University of Nottingham, Derby, UK
| | - Thomas Bewick
- Department of Respiratory Medicine, University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
| | - Ruth E Ashton
- Biomedical and Clinical Science Research Theme, School of Human Sciences, University of Derby, Derby, UK
- Healthy Living for Pandemic Event Protection (HL-PIVOT) Network, Chicago, IL, USA
- Research Centre for Physical Activity, Sport and Exercise Sciences, Coventry University, Coventry, UK
| |
Collapse
|
16
|
Sánchez-Menéndez C, de la Calle-Jiménez O, Mateos E, Vigón L, Fuertes D, Murciano Antón MA, San José E, García-Gutiérrez V, Cervero M, Torres M, Coiras M. Different polarization and functionality of CD4+ T helper subsets in people with post-COVID condition. Front Immunol 2024; 15:1431411. [PMID: 39257580 PMCID: PMC11385313 DOI: 10.3389/fimmu.2024.1431411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction After mild COVID-19 that does not require hospitalization, some individuals develop persistent symptoms that may worsen over time, producing a multisystemic condition termed Post-COVID condition (PCC). Among other disorders, PCC is characterized by persistent changes in the immune system that may not be solved several months after COVID-19 diagnosis. Methods People with PCC were recruited to determine the distribution and functionality of CD4+ T helper (Th) subsets in comparison with individuals with mild, severe, and critical presentations of acute COVID-19 to evaluate their contribution as risk or protective factors for PCC. Results People with PCC showed low levels of Th1 cells, similar to individuals with severe and critical COVID-19, although these cells presented a higher capacity to express IFNγ in response to stimulation. Th2/Th1 correlation was negative in individuals with acute forms of COVID-19, but there was no significant Th2/Th1 correlation in people with PCC. Th2 cells from people with PCC presented high capacity to express IL-4 and IL-13, which are related to low ventilation and death associated with COVID-19. Levels of proinflammatory Th9 and Th17 subsets were significantly higher in people with PCC in comparison with acute COVID-19, being Th1/Th9 correlation negative in these individuals, which probably contributed to a more pro-inflammatory than antiviral scenario. Th17 cells from approximately 50% of individuals with PCC had no capacity to express IL-17A and IL-22, similar to individuals with critical COVID-19, which would prevent clearing extracellular pathogens. Th2/Th17 correlation was positive in people with PCC, which in the absence of negative Th1/Th2 correlation could also contribute to the proinflammatory state. Finally, Th22 cells from most individuals with PCC had no capacity to express IL-13 or IL-22, which could increase tendency to reinfections due to impaired epithelial regeneration. Discussion People with PCC showed skewed polarization of CD4+ Th subsets with altered functionality that was more similar to individuals with severe and critical presentations of acute COVID-19 than to people who fully recovered from mild disease. New strategies aimed at reprogramming the immune response and redirecting CD4+ Th cell polarization may be necessary to reduce the proinflammatory environment characteristic of PCC.
Collapse
Affiliation(s)
- Clara Sánchez-Menéndez
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- PhD Program in Biomedical Sciences and Public Health, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Olivia de la Calle-Jiménez
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Internal Medicine Service, Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - Elena Mateos
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Lorena Vigón
- AIDS Immunopathology, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Fuertes
- School of Telecommunications Engineering, Universidad Politécnica de Madrid, Madrid, Spain
| | - María Aranzazu Murciano Antón
- Family Medicine, Centro de Salud Doctor Pedro Laín Entralgo, Alcorcón, Madrid, Spain
- International PhD School, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Esther San José
- Immunomodulation Unit, Department of Health Sciences, Faculty of Biomedical and Health Sciences, European University of Madrid, Madrid, Spain
| | - Valentín García-Gutiérrez
- Hematology and Hemotherapy Service, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Miguel Cervero
- School of Medicine, Universidad Alfonso X El Sabio, Madrid, Spain
| | - Montserrat Torres
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Mayte Coiras
- Immunopathology and Viral Reservoir Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Jang S, Hong W, Moon Y. Obesity-compromised immunity in post-COVID-19 condition: a critical control point of chronicity. Front Immunol 2024; 15:1433531. [PMID: 39188722 PMCID: PMC11345197 DOI: 10.3389/fimmu.2024.1433531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Post-COVID-19 condition is recognized as a multifactorial disorder, with persistent presence of viral antigens, discordant immunity, delayed viral clearance, and chronic inflammation. Obesity has emerged as an independent risk factor for both SARS-CoV-2 infection and its subsequent sequelae. In this study, we aimed to predict the molecular mechanisms linking obesity and post-COVID-19 distress. Viral antigen-exposed adipose tissues display remarkable levels of viral receptors, facilitating viral entry, deposition, and chronic release of inflammatory mediators and cells in patients. Subsequently, obesity-associated inflammatory insults are predicted to disturb cellular and humoral immunity by triggering abnormal cell differentiation and lymphocyte exhaustion. In particular, the decline in SARS-CoV-2 antibody titers and T-cell exhaustion due to chronic inflammation may account for delayed virus clearance and persistent activation of inflammatory responses. Taken together, obesity-associated defective immunity is a critical control point of intervention against post-COVID-19 progression, particularly in subjects with chronic metabolic distress.
Collapse
Affiliation(s)
- Soonwoo Jang
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea
- Department of Medicine, Pusan National University, Yangsan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Yangsan, Republic of Korea
| | - Wooyoung Hong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea
- Department of Medicine, Pusan National University, Yangsan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Yangsan, Republic of Korea
- Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
18
|
Al-Aly Z, Davis H, McCorkell L, Soares L, Wulf-Hanson S, Iwasaki A, Topol EJ. Long COVID science, research and policy. Nat Med 2024; 30:2148-2164. [PMID: 39122965 DOI: 10.1038/s41591-024-03173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/02/2024] [Indexed: 08/12/2024]
Abstract
Long COVID represents the constellation of post-acute and long-term health effects caused by SARS-CoV-2 infection; it is a complex, multisystem disorder that can affect nearly every organ system and can be severely disabling. The cumulative global incidence of long COVID is around 400 million individuals, which is estimated to have an annual economic impact of approximately $1 trillion-equivalent to about 1% of the global economy. Several mechanistic pathways are implicated in long COVID, including viral persistence, immune dysregulation, mitochondrial dysfunction, complement dysregulation, endothelial inflammation and microbiome dysbiosis. Long COVID can have devastating impacts on individual lives and, due to its complexity and prevalence, it also has major ramifications for health systems and economies, even threatening progress toward achieving the Sustainable Development Goals. Addressing the challenge of long COVID requires an ambitious and coordinated-but so far absent-global research and policy response strategy. In this interdisciplinary review, we provide a synthesis of the state of scientific evidence on long COVID, assess the impacts of long COVID on human health, health systems, the economy and global health metrics, and provide a forward-looking research and policy roadmap.
Collapse
Affiliation(s)
- Ziyad Al-Aly
- VA St. Louis Health Care System, Saint Louis, MO, USA.
- Washington University in St. Louis, Saint Louis, MO, USA.
| | - Hannah Davis
- Patient-led Research Collaborative, Calabasas, CA, USA
| | | | | | | | - Akiko Iwasaki
- Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Eric J Topol
- Scripps Institute, San Diego, California, CA, USA
| |
Collapse
|
19
|
Balnis J, Madrid A, Drake LA, Vancavage R, Tiwari A, Patel VJ, Ramos RB, Schwarz JJ, Yucel R, Singer HA, Alisch RS, Jaitovich A. Blood DNA methylation in post-acute sequelae of COVID-19 (PASC): a prospective cohort study. EBioMedicine 2024; 106:105251. [PMID: 39024897 PMCID: PMC11286994 DOI: 10.1016/j.ebiom.2024.105251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND DNA methylation integrates environmental signals with transcriptional programs. COVID-19 infection induces changes in the host methylome. While post-acute sequelae of COVID-19 (PASC) is a long-term complication of acute illness, its association with DNA methylation is unknown. No universal blood marker of PASC, superseding single organ dysfunctions, has yet been identified. METHODS In this single centre prospective cohort study, PASC, post-COVID without PASC, and healthy participants were enrolled to investigate their symptoms association with peripheral blood DNA methylation data generated with state-of-the-art whole genome sequencing. PASC-induced quality-of-life deterioration was scored with a validated instrument, SF-36. Analyses were conducted to identify potential functional roles of differentially methylated loci, and machine learning algorithms were used to resolve PASC severity. FINDINGS 103 patients with PASC (22.3% male, 77.7% female), 15 patients with previous COVID-19 infection but no PASC (40.0% male, 60.0% female), and 27 healthy volunteers (48.1% male, 51.9% female) were enrolled. Whole genome methylation sequencing revealed 39 differentially methylated regions (DMRs) specific to PASC, each harbouring an average of 15 consecutive positions, that differentiate patients with PASC from the two control groups. Motif analyses of PASC-regulated DMRs identify binding domains for transcription factors regulating circadian rhythm and others. Some DMRs annotated to protein coding genes were associated with changes of RNA expression. Machine learning support vector algorithm and random forest hierarchical clustering reveal 28 unique differentially methylated positions (DMPs) in the genome discriminating patients with better and worse quality of life. INTERPRETATION Blood DNA methylation levels identify PASC, stratify PASC severity, and suggest that DNA motifs are targeted by circadian rhythm-regulating pathways in PASC. FUNDING This project has been funded by the following agencies: NIH-AI173035 (A. Jaitovich and R. Alisch); and NIH-AG066179 (R. Alisch).
Collapse
Affiliation(s)
- Joseph Balnis
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA; Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Andy Madrid
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Lisa A Drake
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA; Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Rachel Vancavage
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
| | - Anupama Tiwari
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
| | - Vraj J Patel
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA
| | - Ramon Bossardi Ramos
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - John J Schwarz
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Recai Yucel
- Department of Epidemiology and Biostatistics, Temple University, PA, USA
| | - Harold A Singer
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Reid S Alisch
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Ariel Jaitovich
- Division of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA; Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
20
|
Quagliariello V, Canale ML, Bisceglia I, Maurea C, Gabrielli D, Tarantini L, Paccone A, Inno A, Oliva S, Cadeddu Dessalvi C, Zito C, Caraglia M, Berretta M, D’Aiuto G, Maurea N. Addressing Post-Acute COVID-19 Syndrome in Cancer Patients, from Visceral Obesity and Myosteatosis to Systemic Inflammation: Implications in Cardio-Onco-Metabolism. Biomedicines 2024; 12:1650. [PMID: 39200115 PMCID: PMC11351439 DOI: 10.3390/biomedicines12081650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Cardiovascular disease and cancer are the two leading causes of morbidity and mortality in the world. The emerging field of cardio-oncology described several shared risk factors that predispose patients to both cardiovascular disease and cancer. Post-acute COVID-19 syndrome is a chronic condition that occurs in many patients who have experienced a SARS-CoV-2 infection, mainly based on chronic fatigue, sedentary lifestyle, cramps, breathing difficulties, and reduced lung performance. Post-acute COVID-19 exposes patients to increased visceral adiposity, insulin resistance, myosteatosis, and white adipose tissue content (surrounded by M1 macrophages and characterized by a Th1/Th17 phenotype), which increases the risk of cardiovascular mortality and cancer recurrence. In this review, the main metabolic affections of post-acute COVID-19 syndrome in cancer patients at low and high risk of cardiomyopathies will be summarized. Furthermore, several non-pharmacological strategies aimed at reducing atherosclerotic and cardiac risk will be provided, especially through anti-inflammatory nutrition with a low insulin and glycemic index, appropriate physical activity, and immune-modulating bioactivities able to reduce visceral obesity and myosteatosis, improving insulin-related signaling and myocardial metabolism.
Collapse
Affiliation(s)
- Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy (N.M.)
| | | | - Irma Bisceglia
- Servizi Cardiologici Integrati, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, 00152 Roma, Italy;
| | - Carlo Maurea
- Neurology Department, University of Salerno, 84084 Fisciano, Italy;
| | - Domenico Gabrielli
- U.O.C. Cardiologia, Dipartimento Cardio-Toraco-Vascolare, Azienda Ospedaliera San Camillo Forlanini, 00152 Roma, Italy;
| | - Luigi Tarantini
- Divisione di Cardiologia, Arcispedale S. Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS di Reggio-Emilia, 42122 Reggio Emilia, Italy;
| | - Andrea Paccone
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy (N.M.)
| | - Alessandro Inno
- Medical Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, 37024 Negrar di Valpolicella, Italy;
| | - Stefano Oliva
- UOSD Cardiologia di Interesse Oncologico IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | | | - Concetta Zito
- Cardiology Division, University Hospital Polyclinic G. Martino, University of Messina, 98122 Messina, Italy;
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio, 7, 80138 Naples, Italy;
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | | | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Napoli, Italy (N.M.)
| |
Collapse
|
21
|
Hurler L, Mescia F, Bergamaschi L, Kajdácsi E, Sinkovits G, Cervenak L, Prohászka Z, Lyons PA, Toonen EJ. sMR and PTX3 levels associate with COVID-19 outcome and survival but not with Long COVID. iScience 2024; 27:110162. [PMID: 39027374 PMCID: PMC11255846 DOI: 10.1016/j.isci.2024.110162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/28/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024] Open
Abstract
Biomarkers for monitoring COVID-19 disease course are lacking. Study aim was to identify biomarkers associated with disease severity, survival, long-term outcome, and Long COVID. As excessive macrophages activation is a hallmark of COVID-19 and complement activation is key in this, we selected the following proteins involved in these processes: PTX3, C1q, C1-INH, C1s/C1-INH, and sMR. EDTA-plasma concentrations were measured in 215 patients and 47 controls using ELISA. PTX3, sMR, C1-INH, and C1s/C1-INH levels were associated with disease severity. PTX3 and sMR were also associated with survival and long-term immune recovery. Lastly, sMR levels associate with ICU admittance. sMR (AUC 0.85) and PTX3 (AUC 0.78) are good markers for disease severity, especially when used in combination (AUC 0.88). No association between biomarker levels and Long COVID was observed. sMR has not previously been associated with COVID-19 disease severity, ICU admittance or survival and may serve as marker for disease course.
Collapse
Affiliation(s)
- Lisa Hurler
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Federica Mescia
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Laura Bergamaschi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Cambridge Institute of Therapeutic Immunology and Infectious Disease-National Institute of Health Research (CITIID-NIHR) COVID BioResource Collaboration
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
- Research Group for Immunology and Haematology, Semmelweis University - Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
- Research and Development Department, Hycult Biotech, Uden, the Netherlands
| | - Erika Kajdácsi
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - György Sinkovits
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - László Cervenak
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
- Research Group for Immunology and Haematology, Semmelweis University - Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Paul A. Lyons
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Erik J.M. Toonen
- Research and Development Department, Hycult Biotech, Uden, the Netherlands
| |
Collapse
|
22
|
Wynberg E, Han AX, van Willigen HDG, Verveen A, van Pul L, Maurer I, van Leeuwen EM, van den Aardweg JG, de Jong MD, Nieuwkerk P, Prins M, Kootstra NA, de Bree GJ. Inflammatory profiles are associated with long COVID up to 6 months after COVID-19 onset: A prospective cohort study of individuals with mild to critical COVID-19. PLoS One 2024; 19:e0304990. [PMID: 39008486 PMCID: PMC11249251 DOI: 10.1371/journal.pone.0304990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/17/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND After initial COVID-19, immune dysregulation may persist and drive post-acute sequelae of COVID-19 (PASC). We described longitudinal trajectories of cytokines in adults up to 6 months following SARS-CoV-2 infection and explored early predictors of PASC. METHODS RECoVERED is a prospective cohort of individuals with laboratory-confirmed SARS-CoV-2 infection between May 2020 and June 2021 in Amsterdam, the Netherlands. Serum was collected at weeks 4, 12 and 24 of follow-up. Monthly symptom questionnaires were completed from month 2 after COVID-19 onset onwards; lung diffusion capacity (DLCO) was tested at 6 months. Cytokine concentrations were analysed by human magnetic Luminex screening assay. We used a linear mixed-effects model to study log-concentrations of cytokines over time, assessing their association with socio-demographic and clinical characteristics that were included in the model as fixed effects. RESULTS 186/349 (53%) participants had ≥2 serum samples and were included in current analyses. Of these, 101/186 (54%: 45/101[45%] female, median age 55 years [IQR = 45-64]) reported PASC at 12 and 24 weeks after COVID-19 onset. We included 37 reference samples (17/37[46%] female, median age 49 years [IQR = 40-56]). In a multivariate model, PASC was associated with raised CRP and abnormal diffusion capacity with raised IL10, IL17, IL6, IP10 and TNFα at 24 weeks. Early (0-4 week) IL-1β and BMI at COVID-19 onset were predictive of PASC at 24 weeks. CONCLUSIONS Our findings indicate that immune dysregulation plays an important role in PASC pathogenesis, especially among individuals with reduced pulmonary function. Early IL-1β shows promise as a predictor of PASC.
Collapse
Affiliation(s)
- Elke Wynberg
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
| | - Alvin X Han
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Hugo D G van Willigen
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Anouk Verveen
- Department of Medical Psychology, Amsterdam UMC, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Lisa van Pul
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Irma Maurer
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Ester M van Leeuwen
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Joost G van den Aardweg
- Department of Pulmonology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Menno D de Jong
- Department of Medical Microbiology & Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Pythia Nieuwkerk
- Department of Medical Psychology, Amsterdam UMC, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Maria Prins
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
- Department of Infectious Diseases, Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Neeltje A Kootstra
- Department of Medical Psychology, Amsterdam UMC, Amsterdam Public Health Research Institute, University of Amsterdam, Amsterdam, the Netherlands
| | - Godelieve J de Bree
- Department of Infectious Diseases, Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| |
Collapse
|
23
|
Newlands F, Lewis C, d’Oelsnitz A, Pinto Pereira SM, Stephenson T, Chalder T, Coughtrey A, Dalrymple E, Heyman I, Harnden A, Ford T, Ladhani SN, Powell C, McOwat K, Bhopal R, Dudley J, Kolasinska P, Muhid MZ, Nugawela M, Rojas NK, Shittu A, Simmons R, Shafran R. " People don't have the answers": A qualitative exploration of the experiences of young people with Long COVID. Clin Child Psychol Psychiatry 2024; 29:783-798. [PMID: 38718276 PMCID: PMC11188547 DOI: 10.1177/13591045241252463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Young people living with Long COVID are learning to navigate life with a constellation of poorly understood symptoms. Most qualitative studies on experiences living with Long COVID focus on adult populations. This study aimed to understand the experiences of young people living with Long COVID. Qualitative, semi-structured interviews were conducted (n = 16); 11 young people (aged 13-19) and five parents were recruited from the Children and Young People with Long COVID (CLoCk) study (n = 11) or its patient and public involvement and engagement (PPIE) group (n = 5). Thematic analysis generated four themes: (i) Unravelling Long COVID: Exploring Symptom Journeys and Diagnostic Dilemmas; (ii) Identity Disruption and Adjustment; (iii) Long COVID's Ripple Effect: the impact on Mental Health, Connections, and Education; and (iv) Navigating Long COVID: barriers to support and accessing services. Treatment options were perceived as not widely available or ineffective, emphasising the need for viable and accessible interventions for young people living with Long COVID.
Collapse
Affiliation(s)
- Fiona Newlands
- Population, Policy and Practice Department, UCL Great Ormond Street Institute of Child Health, UK
| | - Celine Lewis
- Population, Policy and Practice Department, UCL Great Ormond Street Institute of Child Health, UK
- NHS North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, UK
| | - Anais d’Oelsnitz
- Population, Policy and Practice Department, UCL Great Ormond Street Institute of Child Health, UK
| | - Snehal M Pinto Pereira
- Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, UK
| | - Terence Stephenson
- Population, Policy and Practice Department, UCL Great Ormond Street Institute of Child Health, UK
| | - Trudie Chalder
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | - Anna Coughtrey
- Population, Policy and Practice Department, UCL Great Ormond Street Institute of Child Health, UK
| | - Emma Dalrymple
- Population, Policy and Practice Department, UCL Great Ormond Street Institute of Child Health, UK
| | - Isobel Heyman
- Population, Policy and Practice Department, UCL Great Ormond Street Institute of Child Health, UK
| | - Anthony Harnden
- Nuffield Department of Primary Care Health Sciences, University of Oxford, UK
| | - Tamsin Ford
- Department of Psychiatry, University of Cambridge, UK
| | - Shamez N Ladhani
- Immunisation Department, UK Health Security Agency, UK
- Paediatric Infectious Diseases Research Group, St George’s University of London, UK
| | - Claire Powell
- Population, Policy and Practice Department, UCL Great Ormond Street Institute of Child Health, UK
| | - Kelsey McOwat
- Immunisation Department, UK Health Security Agency, UK
| | - Rowan Bhopal
- Population, Policy and Practice Department, UCL Great Ormond Street Institute of Child Health, UK
| | - Jake Dudley
- Population, Policy and Practice Department, UCL Great Ormond Street Institute of Child Health, UK
| | - Paige Kolasinska
- Population, Policy and Practice Department, UCL Great Ormond Street Institute of Child Health, UK
| | - Mohammed Z Muhid
- Population, Policy and Practice Department, UCL Great Ormond Street Institute of Child Health, UK
| | - Manjula Nugawela
- Population, Policy and Practice Department, UCL Great Ormond Street Institute of Child Health, UK
| | - Natalia K Rojas
- Division of Surgery & Interventional Science, Faculty of Medical Sciences, University College London, UK
| | - Angel Shittu
- Population, Policy and Practice Department, UCL Great Ormond Street Institute of Child Health, UK
| | - Ruth Simmons
- Immunisation Department, UK Health Security Agency, UK
| | - Roz Shafran
- Population, Policy and Practice Department, UCL Great Ormond Street Institute of Child Health, UK
| |
Collapse
|
24
|
Letelier P, Delgado H, Garrido F, Quiñones F, San MA, Hernández L, Garcés P, Guzmán-Oyarzo D, Boguen R, Hernandez A, Medina G, Schwerter P, Guzmán N. Dynamic changes of hematological and hemostatic parameters in COVID-19 hospitalized patients: Potential role as severity biomarkers for the Chilean population. J Med Biochem 2024; 43:556-564. [PMID: 39139154 PMCID: PMC11318854 DOI: 10.5937/jomb0-47588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/29/2023] [Indexed: 08/15/2024] Open
Abstract
Background COVID-19 is still a global health issue, there is limited evidence in South America regarding laboratory biomarkers associated with severe disease. The objective of our study was to identify hematological and hemostatic changes associated with severe COVID-19. Methods A total of 170 hospitalized patients with COVID19 were included in the study, defining their severity according to established criteria. Demographic, clinical, and laboratory (days 1, 3, 7, 15) data were obtained. We performed a statistical analysis, assuming significance with a value of p < 0.05. We analyzed the correlation between severity and biomarkers and established cut-off values for severe patients through ROC curves, estimating Odds Ratio associated with severe disease. Results Day 1 was observed significant differences between moderate vs severe patients for leukocytes (WBC), Neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR) and D-dimer, establishing cut-off points for each of them. The markers we found associated to risk of severe disease were WBC (OR=3.2396; p = 0.0003), NLR (OR=5.7084; p < 0.0001), PLR (OR=4.4094; p < 0.0001), Neutrophil (OR=4.1193; p < 0.0001), D-dimer (OR=2.7827; p = 0.0124). Conclusions The results allow to establish basic laboratory biomarkers associated to severe disease, which could be used as prognostic markers.
Collapse
Affiliation(s)
- Pablo Letelier
- Universidad Católica de Temuco, Facultad de Ciencias de la Salud, Departamento de Procesos Diagnósticos y Evaluación, Precision Health Research Laboratory, Temuco, Chile
| | - Hugo Delgado
- Dr. Hernán Henríquez Aravena Hospital, Clinical Laboratory, Temuco, Chile
| | - Felipe Garrido
- Dr. Hernán Henríquez Aravena Hospital, Clinical Laboratory, Temuco, Chile
| | - Francisco Quiñones
- Dr. Hernán Henríquez Aravena Hospital, Clinical Laboratory, Temuco, Chile
| | - Martín Andrés San
- Dr. Hernán Henríquez Aravena Hospital, Clinical Laboratory, Temuco, Chile
| | - Loreto Hernández
- Complejo Asistencial Padre Las Casas, Padre Las Casas, Araucanía, Chile
| | | | - Dina Guzmán-Oyarzo
- Universidad San Sebastián, Facultad de Medicina y Ciencias, School of Medical Technology, Campus Concepción, Concepción, Chile
| | - Rodrigo Boguen
- Universidad Católica de Temuco, Facultad de Ciencias de la Salud, Departamento de Procesos Diagnósticos y Evaluación, Precision Health Research Laboratory, Temuco, Chile
| | - Alfonso Hernandez
- Universidad Católica de Temuco, Facultad de Ciencias de la Salud, Departamento de Procesos Diagnósticos y Evaluación, Precision Health Research Laboratory, Temuco, Chile
| | - Gustavo Medina
- Universidad Católica de Temuco, Facultad de Ciencias de la Salud, Departamento de Procesos Diagnósticos y Evaluación, Precision Health Research Laboratory, Temuco, Chile
| | - Patricia Schwerter
- Universidad Católica de Temuco, Facultad de Ingeniería, Department of Mathematical and Physics Sciences, Temuco, Chile
| | - Neftalí Guzmán
- Universidad Católica de Temuco, Facultad de Ciencias de la Salud, Departamento de Procesos Diagnósticos y Evaluación, Precision Health Research Laboratory, Temuco, Chile
| |
Collapse
|
25
|
Gusev E, Sarapultsev A. Exploring the Pathophysiology of Long COVID: The Central Role of Low-Grade Inflammation and Multisystem Involvement. Int J Mol Sci 2024; 25:6389. [PMID: 38928096 PMCID: PMC11204317 DOI: 10.3390/ijms25126389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Long COVID (LC), also referred to as Post COVID-19 Condition, Post-Acute Sequelae of SARS-CoV-2 Infection (PASC), and other terms, represents a complex multisystem disease persisting after the acute phase of COVID-19. Characterized by a myriad of symptoms across different organ systems, LC presents significant diagnostic and management challenges. Central to the disorder is the role of low-grade inflammation, a non-classical inflammatory response that contributes to the chronicity and diversity of symptoms observed. This review explores the pathophysiological underpinnings of LC, emphasizing the importance of low-grade inflammation as a core component. By delineating the pathogenetic relationships and clinical manifestations of LC, this article highlights the necessity for an integrated approach that employs both personalized medicine and standardized protocols aimed at mitigating long-term consequences. The insights gained not only enhance our understanding of LC but also inform the development of therapeutic strategies that could be applicable to other chronic conditions with similar pathophysiological features.
Collapse
Affiliation(s)
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia;
| |
Collapse
|
26
|
Schmitz T, Freuer D, Goßlau Y, Warm TD, Hyhlik-Dürr A, Linseisen J, Meisinger C, Kirchberger I. Can inflammatory plasma proteins predict Long COVID or Fatigue severity after SARS-CoV-2 infection? Virus Res 2024; 344:199363. [PMID: 38508399 PMCID: PMC10979265 DOI: 10.1016/j.virusres.2024.199363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVE To investigate whether specific immune response plasma proteins can predict an elevated risk of developing Long COVID symptoms or fatigue severity after SARS-CoV-2 infection. METHODS This study was based on 257 outpatients with test-confirmed SARS-CoV-2 infection between February 2020 and January 2021. At least 12 weeks after the acute infection, 92 plasma proteins were measured using the Olink Target 96 immune response panel (median time between acute infection and venous blood sampling was 38.8 [IQR: 24.0-48.0] weeks). The presence of Long COVID symptoms and fatigue severity was assessed 115.8 [92.5-118.6] weeks after the acute infection by a follow-up postal survey. Long COVID (yes/no) was defined as having one or more of the following symptoms: fatigue, shortness of breath, concentration or memory problems. The severity of fatigue was assessed using the Fatigue Assessment Scale (FAS). In multivariable-adjusted logistic and linear regression models the associations between each plasma protein (exposure) and Long COVID (yes/no) or severity of fatigue were investigated. RESULTS Nine plasma proteins were significantly associated with Long COVID before, but not after adjusting for multiple testing (FDR-adjustment): DFFA, TRIM5, TRIM21, HEXIM1, SRPK2, PRDX5, PIK3AP1, IFNLR1 and HCLS1. Moreover, a total of 10 proteins were significantly associated with severity of fatigue before FDR-adjustment: SRPK2, ITGA6, CLEC4G, HEXIM1, PPP1R9B, PLXNA4, PRDX5, DAPP1, STC1 and HCLS1. Only SRPK2 and ITGA6 remained significantly associated after FDR-adjustment. CONCLUSIONS This study demonstrates that certain immune response plasma proteins might play an important role in the pathophysiology of Long COVID and severity of fatigue after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Timo Schmitz
- Epidemiology, Medical Faculty, University of Augsburg, Augsburg, Germany.
| | - Dennis Freuer
- Epidemiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Yvonne Goßlau
- Vascular Surgery, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Tobias Dominik Warm
- Vascular Surgery, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Alexander Hyhlik-Dürr
- Vascular Surgery, Faculty of Medicine, University of Augsburg, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Jakob Linseisen
- Epidemiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Christa Meisinger
- Epidemiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Inge Kirchberger
- Epidemiology, Medical Faculty, University of Augsburg, Augsburg, Germany
| |
Collapse
|
27
|
Liu S, Zhong M, Wu H, Su W, Wang Y, Li P. Potential Beneficial Effects of Naringin and Naringenin on Long COVID-A Review of the Literature. Microorganisms 2024; 12:332. [PMID: 38399736 PMCID: PMC10892048 DOI: 10.3390/microorganisms12020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused a severe epidemic due to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Recent studies have found that patients do not completely recover from acute infections, but instead, suffer from a variety of post-acute sequelae of SARS-CoV-2 infection, known as long COVID. The effects of long COVID can be far-reaching, with a duration of up to six months and a range of symptoms such as cognitive dysfunction, immune dysregulation, microbiota dysbiosis, myalgic encephalomyelitis/chronic fatigue syndrome, myocarditis, pulmonary fibrosis, cough, diabetes, pain, reproductive dysfunction, and thrombus formation. However, recent studies have shown that naringenin and naringin have palliative effects on various COVID-19 sequelae. Flavonoids such as naringin and naringenin, commonly found in fruits and vegetables, have various positive effects, including reducing inflammation, preventing viral infections, and providing antioxidants. This article discusses the molecular mechanisms and clinical effects of naringin and naringenin on treating the above diseases. It proposes them as potential drugs for the treatment of long COVID, and it can be inferred that naringin and naringenin exhibit potential as extended long COVID medications, in the future likely serving as nutraceuticals or clinical supplements for the comprehensive alleviation of the various manifestations of COVID-19 complications.
Collapse
Affiliation(s)
- Siqi Liu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Mengli Zhong
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Yonggang Wang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| | - Peibo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-Evaluation of Post-Market Traditional Chinese Medicine, State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (S.L.); (M.Z.); (H.W.); (W.S.); (Y.W.)
| |
Collapse
|
28
|
Leung JM, Wu MJ, Kheradpour P, Chen C, Drake KA, Tong G, Ridaura VK, Zisser HC, Conrad WA, Hudson N, Allen J, Welberry C, Parsy-Kowalska C, Macdonald I, Tapson VF, Moy JN, deFilippi CR, Rosas IO, Basit M, Krishnan JA, Parthasarathy S, Prabhakar BS, Salvatore M, Kim CC. Early immune factors associated with the development of post-acute sequelae of SARS-CoV-2 infection in hospitalized and non-hospitalized individuals. Front Immunol 2024; 15:1348041. [PMID: 38318183 PMCID: PMC10838987 DOI: 10.3389/fimmu.2024.1348041] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Background Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to post-acute sequelae of SARS-CoV-2 (PASC) that can persist for weeks to years following initial viral infection. Clinical manifestations of PASC are heterogeneous and often involve multiple organs. While many hypotheses have been made on the mechanisms of PASC and its associated symptoms, the acute biological drivers of PASC are still unknown. Methods We enrolled 494 patients with COVID-19 at their initial presentation to a hospital or clinic and followed them longitudinally to determine their development of PASC. From 341 patients, we conducted multi-omic profiling on peripheral blood samples collected shortly after study enrollment to investigate early immune signatures associated with the development of PASC. Results During the first week of COVID-19, we observed a large number of differences in the immune profile of individuals who were hospitalized for COVID-19 compared to those individuals with COVID-19 who were not hospitalized. Differences between individuals who did or did not later develop PASC were, in comparison, more limited, but included significant differences in autoantibodies and in epigenetic and transcriptional signatures in double-negative 1 B cells, in particular. Conclusions We found that early immune indicators of incident PASC were nuanced, with significant molecular signals manifesting predominantly in double-negative B cells, compared with the robust differences associated with hospitalization during acute COVID-19. The emerging acute differences in B cell phenotypes, especially in double-negative 1 B cells, in PASC patients highlight a potentially important role of these cells in the development of PASC.
Collapse
Affiliation(s)
| | - Michelle J. Wu
- Verily Life Sciences, South San Francisco, CA, United States
| | | | - Chen Chen
- Verily Life Sciences, South San Francisco, CA, United States
| | | | - Gary Tong
- Verily Life Sciences, South San Francisco, CA, United States
| | | | | | - William A. Conrad
- Providence Little Company of Mary Medical Center Torrance, Torrance, CA, United States
| | | | - Jared Allen
- Oncimmune Limited, Nottingham, United Kingdom
| | | | | | | | - Victor F. Tapson
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - James N. Moy
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | | | - Ivan O. Rosas
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Mujeeb Basit
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jerry A. Krishnan
- Breathe Chicago Center, University of Illinois Chicago, Chicago, IL, United States
| | - Sairam Parthasarathy
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, University of Arizona, Tucson, AZ, United States
| | - Bellur S. Prabhakar
- Department of Microbiology and Immunology, University of Illinois - College of Medicine, Chicago, IL, United States
| | - Mirella Salvatore
- Department of Medicine and Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Charles C. Kim
- Verily Life Sciences, South San Francisco, CA, United States
| |
Collapse
|
29
|
Yoon H, Dean LS, Jiyarom B, Khadka VS, Deng Y, Nerurkar VR, Chow DC, Shikuma CM, Devendra G, Koh Y, Park J. Single-cell RNA sequencing reveals characteristics of myeloid cells in post-acute sequelae of SARS-CoV-2 patients with persistent respiratory symptoms. Front Immunol 2024; 14:1268510. [PMID: 38259488 PMCID: PMC10800799 DOI: 10.3389/fimmu.2023.1268510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Background Although our understanding of the immunopathology and subsequent risk and severity of COVID-19 disease is evolving, a detailed account of immune responses that contribute to the long-term consequences of pulmonary complications in COVID-19 infection remains unclear. Few studies have detailed the immune and cytokine profiles associated with post-acute sequelae of SARS-CoV-2 infection (PASC) with persistent pulmonary symptoms. The dysregulation of the immune system that drives pulmonary sequelae in COVID-19 survivors and PASC sufferers remains largely unknown. Results To characterize the immunological features of pulmonary PASC (PPASC), we performed droplet-based single-cell RNA sequencing (scRNA-seq) to study the transcriptomic profiles of peripheral blood mononuclear cells (PBMCs) from a participant naïve to SARS-CoV-2 (Control) (n=1) and infected with SARS-CoV-2 with chronic pulmonary symptoms (PPASC) (n=2). After integrating scRNA-seq data with a naïve participant from a published dataset, 11 distinct cell populations were identified based on the expression of canonical markers. The proportion of myeloid-lineage cells ([MLCs]; CD14+/CD16+monocytes, and dendritic cells) was increased in PPASC (n=2) compared to controls (n=2). MLCs from PPASC displayed up-regulation of genes associated with pulmonary symptoms/fibrosis, while glycolysis metabolism-related genes were downregulated. Similarly, pathway analysis showed that fibrosis-related (VEGF, WNT, and SMAD) and cell death pathways were up-regulated, but immune pathways were down-regulated in PPASC. Further comparison of PPASC with scRNA-seq data with Severe COVID-19 (n=4) data demonstrated enrichment of fibrotic transcriptional signatures. In PPASC, we observed interactive VEGF ligand-receptor pairs among MLCs, and network modules in CD14+ (cluster 4) and CD16+ (Cluster 5) monocytes displayed a significant enrichment for biological pathways linked to adverse COVID-19 outcomes, fibrosis, and angiogenesis. Further analysis revealed a distinct metabolic alteration in MLCs with a down-regulation of glycolysis/gluconeogenesis in PPASC compared to SARS-CoV-2 naïve samples. Conclusion Analysis of a small scRNA-seq dataset demonstrated alterations in the immune response and cellular landscape in PPASC. The presence of elevated MLC levels and their corresponding gene signatures associated with fibrosis, immune response suppression, and altered metabolic states suggests a potential role in PPASC development.
Collapse
Affiliation(s)
- Hyundong Yoon
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Logan S. Dean
- Hawaii Center for AIDS, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Boonyanudh Jiyarom
- Hawaii Center for AIDS, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Vedbar S. Khadka
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Mānoa, Honolulu, HI, United States
| | - Youping Deng
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Mānoa, Honolulu, HI, United States
| | - Vivek R. Nerurkar
- Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| | - Dominic C. Chow
- Hawaii Center for AIDS, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Department of Medicine, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Cecilia M. Shikuma
- Hawaii Center for AIDS, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
- Department of Medicine, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Gehan Devendra
- Department of Medicine, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Department of Pulmonary and Critical Care, Queen’s Medical Center, Honolulu, HI, United States
| | - Youngil Koh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Juwon Park
- Hawaii Center for AIDS, University of Hawai’i at Mānoa, Honolulu, HI, United States
- Tropical Medicine, Medical Microbiology, and Pharmacology, John A. Burns School Medicine, University of Hawai’i at Manoa, Honolulu, HI, United States
| |
Collapse
|
30
|
Alba GA, Zhou IY, Mascia M, Magaletta M, Alladina JW, Giacona FL, Ginns LC, Caravan P, Maron BA, Montesi SB. Plasma NEDD9 is increased following SARS-CoV-2 infection and associates with indices of pulmonary vascular dysfunction. Pulm Circ 2024; 14:e12356. [PMID: 38500738 PMCID: PMC10946282 DOI: 10.1002/pul2.12356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/31/2023] [Accepted: 03/10/2024] [Indexed: 03/20/2024] Open
Abstract
Compared to healthy volunteers, participants with post-acute sequelae of SARS-CoV-2 infection (PASC) demonstrated increased plasma levels of the prothrombotic protein NEDD9, which associated inversely with indices of pulmonary vascular function. This suggests persistent pulmonary vascular dysfunction may play a role in the pathobiology of PASC.
Collapse
Affiliation(s)
- George A. Alba
- Harvard Medical SchoolBostonMassachusettsUSA
- Division of Pulmonary and Critical Care MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Iris Y. Zhou
- Harvard Medical SchoolBostonMassachusettsUSA
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMassachusettsUSA
- Institute for Innovation in ImagingMassachusetts General HospitalBostonMassachusettsUSA
| | - Molly Mascia
- Harvard Medical SchoolBostonMassachusettsUSA
- Division of Pulmonary and Critical Care MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Michael Magaletta
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMassachusettsUSA
| | - Jehan W. Alladina
- Harvard Medical SchoolBostonMassachusettsUSA
- Division of Pulmonary and Critical Care MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Francesca L. Giacona
- Division of Pulmonary and Critical Care MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Leo C. Ginns
- Harvard Medical SchoolBostonMassachusettsUSA
- Division of Pulmonary and Critical Care MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Peter Caravan
- Harvard Medical SchoolBostonMassachusettsUSA
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonMassachusettsUSA
- Institute for Innovation in ImagingMassachusetts General HospitalBostonMassachusettsUSA
| | - Bradley A. Maron
- Division of Cardiovascular MedicineBrigham and Women's HospitalBostonMassachusettsUSA
- Department of MedicineUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Sydney B. Montesi
- Harvard Medical SchoolBostonMassachusettsUSA
- Division of Pulmonary and Critical Care MedicineMassachusetts General HospitalBostonMassachusettsUSA
- Institute for Innovation in ImagingMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
31
|
Constantinescu-Bercu A, Lobiuc A, Căliman-Sturdza OA, Oiţă RC, Iavorschi M, Pavăl NE, Șoldănescu I, Dimian M, Covasa M. Long COVID: Molecular Mechanisms and Detection Techniques. Int J Mol Sci 2023; 25:408. [PMID: 38203577 PMCID: PMC10778767 DOI: 10.3390/ijms25010408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Long COVID, also known as post-acute sequelae of SARS-CoV-2 infection (PASC), has emerged as a significant health concern following the COVID-19 pandemic. Molecular mechanisms underlying the occurrence and progression of long COVID include viral persistence, immune dysregulation, endothelial dysfunction, and neurological involvement, and highlight the need for further research to develop targeted therapies for this condition. While a clearer picture of the clinical symptomatology is shaping, many molecular mechanisms are yet to be unraveled, given their complexity and high level of interaction with other metabolic pathways. This review summarizes some of the most important symptoms and associated molecular mechanisms that occur in long COVID, as well as the most relevant molecular techniques that can be used in understanding the viral pathogen, its affinity towards the host, and the possible outcomes of host-pathogen interaction.
Collapse
Affiliation(s)
- Adela Constantinescu-Bercu
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
| | - Andrei Lobiuc
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
| | - Olga Adriana Căliman-Sturdza
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
- Suceava Emergency Clinical County Hospital, 720224 Suceava, Romania
| | - Radu Cristian Oiţă
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), Ştefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.C.O.); (I.Ș.); (M.D.)
| | - Monica Iavorschi
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
| | - Naomi-Eunicia Pavăl
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
| | - Iuliana Șoldănescu
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), Ştefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.C.O.); (I.Ș.); (M.D.)
| | - Mihai Dimian
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), Ştefan cel Mare University of Suceava, 720229 Suceava, Romania; (R.C.O.); (I.Ș.); (M.D.)
- Department of Computers, Electronics and Automation, Ştefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mihai Covasa
- Department of Biomedical Sciences, Faculty of Medicine and Biological Sciences, “Ştefan cel Mare” University of Suceava, 720229 Suceava, Romania; (A.C.-B.); (O.A.C.-S.); (M.I.); (N.-E.P.); (M.C.)
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA 91711, USA
| |
Collapse
|
32
|
Jin W, Hao W, Shi X, Fritsche LG, Salvatore M, Admon AJ, Friese CR, Mukherjee B. Using Multi-Modal Electronic Health Record Data for the Development and Validation of Risk Prediction Models for Long COVID Using the Super Learner Algorithm. J Clin Med 2023; 12:7313. [PMID: 38068365 PMCID: PMC10707399 DOI: 10.3390/jcm12237313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Post-Acute Sequelae of COVID-19 (PASC) have emerged as a global public health and healthcare challenge. This study aimed to uncover predictive factors for PASC from multi-modal data to develop a predictive model for PASC diagnoses. METHODS We analyzed electronic health records from 92,301 COVID-19 patients, covering medical phenotypes, medications, and lab results. We used a Super Learner-based prediction approach to identify predictive factors. We integrated the model outputs into individual and composite risk scores and evaluated their predictive performance. RESULTS Our analysis identified several factors predictive of diagnoses of PASC, including being overweight/obese and the use of HMG CoA reductase inhibitors prior to COVID-19 infection, and respiratory system symptoms during COVID-19 infection. We developed a composite risk score with a moderate discriminatory ability for PASC (covariate-adjusted AUC (95% confidence interval): 0.66 (0.63, 0.69)) by combining the risk scores based on phenotype and medication records. The combined risk score could identify 10% of individuals with a 2.2-fold increased risk for PASC. CONCLUSIONS We identified several factors predictive of diagnoses of PASC and integrated the information into a composite risk score for PASC prediction, which could contribute to the identification of individuals at higher risk for PASC and inform preventive efforts.
Collapse
Affiliation(s)
- Weijia Jin
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (W.J.)
- Center for Precision Health Data Science, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wei Hao
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (W.J.)
- Center for Precision Health Data Science, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xu Shi
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (W.J.)
| | - Lars G. Fritsche
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (W.J.)
| | - Maxwell Salvatore
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (W.J.)
- Center for Precision Health Data Science, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrew J. Admon
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- VA Center for Clinical Management Research, Ann Arbor, MI 48109, USA
- LTC Charles S. Kettles VA Medical Center, Ann Arbor, MI 48109, USA
| | - Christopher R. Friese
- School of Nursing, University of Michigan, Ann Arbor, MI 48109, USA
- Institute for Healthcare Policy and Innovation, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (W.J.)
- Center for Precision Health Data Science, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, USA
- Institute for Healthcare Policy and Innovation, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
33
|
Fernández-de-las-Peñas C, Guijarro C, Torres-Macho J, Pellicer-Valero OJ, Franco-Moreno A, Nijs J, Velasco-Arribas M. Serological Biomarkers at Hospital Admission and Hospitalization Treatments Are Not Related to Sensitization-Associated Symptoms in Patients with Post-COVID Pain. Pathogens 2023; 12:1235. [PMID: 37887751 PMCID: PMC10610051 DOI: 10.3390/pathogens12101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Current evidence suggests that a group of patients who had survived coronavirus disease, 2019 (COVID-19) and developed post-COVID pain can exhibit altered nociceptive processing. The role of serological biomarkers and hospitalization treatments in post-COVID pain is unclear. This study aimed to investigate the association of serological biomarkers and treatments received during hospitalization with sensitization-associated symptoms in COVID-19 survivors with post-COVID pain. One hundred and eighty-three (n = 183) patients who had been hospitalized due to COVID-19 in one urban hospital of Madrid (Spain) during the first wave of the pandemic were assessed in a face-to-face interview 9.4 (SD 3.4) months after hospitalization. Levels of 19 serological biomarkers, hospitalization data, and treatments during hospitalization were obtained from hospital records. Sensitization-associated symptoms (Central Sensitization Inventory, CSI), sleep quality (Pittsburgh Sleep Quality Index, PSQI), pain catastrophism (Pain Catastrophizing Scale), and anxiety/depressive level (Hospital Anxiety and Depression Scale, HADS) were assessed. The prevalence of post-COVID pain was 40.9% (n = 75). Twenty-nine (38.6%) patients had sensitization-associated symptoms. Overall, no differences in hospitalization data and serological biomarkers were identified according to the presence of sensitization-associated symptoms. The analysis revealed that patients with sensitization-associated symptoms exhibited higher lymphocyte count and lower urea levels than those without sensitization-associated symptoms, but differences were small. Pain catastrophism and depressive levels, but not fatigue, dyspnea, brain fog, anxiety levels, or poor sleep, were higher in individuals with sensitization-associated symptoms. In conclusion, this study revealed that sensitization-associated post-COVID pain symptoms are not associated with serological biomarkers at hospital admission and hospitalization treatments received.
Collapse
Affiliation(s)
- César Fernández-de-las-Peñas
- Department of Physical Therapy, Occupational Therapy, Physical Medicine and Rehabilitation, Universidad Rey Juan Carlos (URJC), 28922 Madrid, Spain
| | - Carlos Guijarro
- Department of Internal Medicine-Infectious Department, Research Department, Hospital Universitario Fundación Alcorcón, 28922 Madrid, Spain; (C.G.); (M.V.-A.)
- Department of Medicine, Universidad Rey Juan Carlos (URJC), 28922 Madrid, Spain
| | - Juan Torres-Macho
- Department of Internal Medicine, Hospital Universitario Infanta Leonor-Virgen de la Torre, 28031 Madrid, Spain; (J.T.-M.); (A.F.-M.)
- Department of Medicine, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Oscar J. Pellicer-Valero
- Image Processing Laboratory (IPL), Universitat de València, Parc Científic, 46980 València, Spain;
| | - Ana Franco-Moreno
- Department of Internal Medicine, Hospital Universitario Infanta Leonor-Virgen de la Torre, 28031 Madrid, Spain; (J.T.-M.); (A.F.-M.)
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1050 Ixelles, Belgium;
- Chronic Pain Rehabilitation Center, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1050 Ixelles, Belgium
- Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 41390 Göterbog, Sweden
| | - María Velasco-Arribas
- Department of Internal Medicine-Infectious Department, Research Department, Hospital Universitario Fundación Alcorcón, 28922 Madrid, Spain; (C.G.); (M.V.-A.)
- Department of Medicine, Universidad Rey Juan Carlos (URJC), 28922 Madrid, Spain
| |
Collapse
|
34
|
Lam GY, Damant RW, Ferrara G, Lim RK, Stickland MK, Ogando NS, Power C, Smith MP. Characterizing long-COVID brain fog: a retrospective cohort study. J Neurol 2023; 270:4640-4646. [PMID: 37555926 DOI: 10.1007/s00415-023-11913-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Long COVID or post-COVID condition (PCC) is a common complication following acute COVID-19 infection. PCC is a multi-systems disease with neurocognitive impairment frequently reported regardless of age. Little is known about the risk factors, associated biomarkers and clinical trajectory of patients with this symptom. OBJECTIVE To determine differences in clinical risk factors, associated biochemical markers and longitudinal clinical trajectories between patients with PCC with subjective neurocognitive symptoms (NC+) or without (NC-). METHODS A retrospective longitudinal cohort study was performed using a well-characterized provincial database of patients with clinically confirmed PCC separated into NC+ and NC- cohorts. Demographical, clinical and biochemical differences at initial consultation between the two patient cohorts were analyzed in cross-section. Multivariate regression analyses were conducted to identify independent risk factors for neurocognitive impairment. Determination of the recovery trajectory was performed using serial assessments of the patient-reported health-related quality of life (HR-QoL) metric Eq-5D-5L-vas score. FINDINGS Women, milder acute infection and pre-existing mental health diagnoses were independently associated with subjective neurocognitive impairment at 8 months post-infection. NC + patients demonstrated lower levels of IgG, IgG1 and IgG3 compared to NC- patients. The NC + cohort had poorer HR-QoL at initial consultation 8 months post-infection with gradual improvement over 20 months post-infection. CONCLUSIONS Neurocognitive impairment represents a severe phenotype of PCC, associated with unique risk factors, aberrancy in immune response and a delayed recovery trajectory. Those with risk factors for neurocognitive impairment can be identified early in the disease trajectory for more intense medical follow-up.
Collapse
Affiliation(s)
- Grace Y Lam
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta and Alberta Health Services, 3-111C Clinical Sciences Building, 11302 83 Ave NW, Edmonton, AB, T6G 2G3, Canada.
- Alberta Respiratory Centre, University of Alberta, Edmonton, AB, Canada.
| | - Ronald W Damant
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta and Alberta Health Services, 3-111C Clinical Sciences Building, 11302 83 Ave NW, Edmonton, AB, T6G 2G3, Canada
- Alberta Respiratory Centre, University of Alberta, Edmonton, AB, Canada
| | - Giovanni Ferrara
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta and Alberta Health Services, 3-111C Clinical Sciences Building, 11302 83 Ave NW, Edmonton, AB, T6G 2G3, Canada
- Alberta Respiratory Centre, University of Alberta, Edmonton, AB, Canada
| | - Rachel K Lim
- Division of Respiratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Michael K Stickland
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta and Alberta Health Services, 3-111C Clinical Sciences Building, 11302 83 Ave NW, Edmonton, AB, T6G 2G3, Canada
- Alberta Respiratory Centre, University of Alberta, Edmonton, AB, Canada
| | - Natacha S Ogando
- Division of Neurology, Department of Medicine, University of Alberta and Alberta Health Services, Edmonton, AB, Canada
| | - Christopher Power
- Division of Neurology, Department of Medicine, University of Alberta and Alberta Health Services, Edmonton, AB, Canada
| | - Maeve P Smith
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta and Alberta Health Services, 3-111C Clinical Sciences Building, 11302 83 Ave NW, Edmonton, AB, T6G 2G3, Canada
- Alberta Respiratory Centre, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
35
|
Faust JS. The therapeutic validation of long COVID. THE LANCET. INFECTIOUS DISEASES 2023; 23:1096-1097. [PMID: 37302405 PMCID: PMC10250006 DOI: 10.1016/s1473-3099(23)00355-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023]
Affiliation(s)
- Jeremy Samuel Faust
- Department of Emergency Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
36
|
Ruiz-Pablos M, Paiva B, Zabaleta A. Epstein-Barr virus-acquired immunodeficiency in myalgic encephalomyelitis-Is it present in long COVID? J Transl Med 2023; 21:633. [PMID: 37718435 PMCID: PMC10506247 DOI: 10.1186/s12967-023-04515-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023] Open
Abstract
Both myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS) and long COVID (LC) are characterized by similar immunological alterations, persistence of chronic viral infection, autoimmunity, chronic inflammatory state, viral reactivation, hypocortisolism, and microclot formation. They also present with similar symptoms such as asthenia, exercise intolerance, sleep disorders, cognitive dysfunction, and neurological and gastrointestinal complaints. In addition, both pathologies present Epstein-Barr virus (EBV) reactivation, indicating the possibility of this virus being the link between both pathologies. Therefore, we propose that latency and recurrent EBV reactivation could generate an acquired immunodeficiency syndrome in three steps: first, an acquired EBV immunodeficiency develops in individuals with "weak" EBV HLA-II haplotypes, which prevents the control of latency I cells. Second, ectopic lymphoid structures with EBV latency form in different tissues (including the CNS), promoting inflammatory responses and further impairment of cell-mediated immunity. Finally, immune exhaustion occurs due to chronic exposure to viral antigens, with consolidation of the disease. In the case of LC, prior to the first step, there is the possibility of previous SARS-CoV-2 infection in individuals with "weak" HLA-II haplotypes against this virus and/or EBV.
Collapse
Affiliation(s)
| | - Bruno Paiva
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Av. Pío XII 55, 31008, Pamplona, Spain
| | - Aintzane Zabaleta
- Clinica Universidad de Navarra, Centro de Investigación Médica Aplicada (CIMA), IdiSNA, Instituto de Investigación Sanitaria de Navarra, Av. Pío XII 55, 31008, Pamplona, Spain.
| |
Collapse
|
37
|
Silva BSDA, Pereira T, Minuzzi LG, Padilha CS, Figueiredo C, Olean-Oliveira T, dos Santos IVM, von Ah Morano AE, Marchioto Júnior O, Ribeiro JPJ, Dos Santos VR, Seelaender M, Teixeira AA, Dos Santos RVT, Lemos VDA, Freire APCF, Dorneles GP, Marmett B, Olean-Oliveira A, Teixeira MFS, Seraphim PM, Caseiro A, Pinho RA, Islam H, Little JP, Krüger K, Rosa-Neto JC, Coelho-E-Silva MJ, Lira FS. Mild to moderate post-COVID-19 alters markers of lymphocyte activation, exhaustion, and immunometabolic responses that can be partially associated by physical activity level- an observational sub-analysis fit- COVID study. Front Immunol 2023; 14:1212745. [PMID: 37753077 PMCID: PMC10518618 DOI: 10.3389/fimmu.2023.1212745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/10/2023] [Indexed: 09/28/2023] Open
Abstract
Aim This study aimed to evaluate if physical activity is associated with systemic and cellular immunometabolic responses, in young adults after mild-to-moderate COVID-19 infection. Methods Mild- to- moderate post-COVID-19 patients (70.50 ± 43.10 days of diagnosis; age: 29.4 (21.9- 34.9) years; BMI: 25.5 ± 4.3 kg m2 n = 20) and healthy age-matched controls (age: 29.3 (21.2 - 32.6) years; BMI: 25.4 ± 4.7 kg m2; n = 20) were evaluated. Physical activity levels (PAL), body composition, dietary habits, muscular and pulmonary function, mental health, sleep quality, metabolic parameters, immune phenotypic characterization, stimulated whole blood and PBMC culture (cytokine production), mRNA, and mitochondrial respiration in PBMCs were evaluated. Results The post-COVID-19 group exhibited lower levels of moderate to vigorous physical activity (MVPA) (p = 0.038); therefore, all study comparisons were performed with adjustment for MVPA. Post-COVID-19 impacted the pulmonary function (FEV1, FEV1%pred, FVC, and FVC %pred) compared with the control (p adjusted by MVPA (p adj) <0.05). Post-COVID-19 exhibited lower levels of serum IL-6 (p adj <0.01), whereas it showed higher serum IL-10, triglyceride, leptin, IgG, ACE activity, TNFRSF1A, and PGE2 (p adj <0.05) levels compared with controls. Post-COVID-19 presented a lower percentage of Treg cells (p adj = 0.03) and altered markers of lymphocyte activation and exhaustion (lower CD28 expression in CD8+ T cells (p adj = 0.014), whereas CD4+T cells showed higher PD1 expression (p adj = 0.037)) compared with the control group. Finally, post- COVID-19 presented an increased LPS-stimulated whole- blood IL-10 concentration (p adj <0.01). When exploring mitochondrial respiration and gene expression in PBMCs, we observed a higher LEAK state value (p adj <0.01), lower OXPHOS activity (complex I) (p adj = 0.04), and expression of the Rev-Erb-α clock mRNA after LPS stimulation in the post-COVID-19 patients than in the control (p adj <0.01). Mainly, PAL was associated with changes in IL-10, triglyceride, and leptin levels in the plasma of post-COVID-19 patients. PAL was also associated with modulation of the peripheral frequency of Treg cells and the expression of PD-1 in CD8+ T cells, although it abrogated the statistical effect in the analysis of TNF-α and IL-6 production by LPS- and PMA-stimulated PBMC of post-COVID-19 patients. Conclusion Young adults after mild-to-moderate SARS-CoV-2 infection appeared to have lower physical activity levels, which can be associated with clinical and immunometabolic responses in a complex manner.
Collapse
Affiliation(s)
- Bruna Spolador de Alencar Silva
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Telmo Pereira
- Polytechnic Institute of Coimbra, Coimbra Health School, Coimbra, Portugal
| | - Luciele Guerra Minuzzi
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Camila Souza Padilha
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Caique Figueiredo
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Tiago Olean-Oliveira
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Ivete Vera Medeiros dos Santos
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Ana Elisa von Ah Morano
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Osmar Marchioto Júnior
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - José Procópio Jabur Ribeiro
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Vanessa Ribeiro Dos Santos
- Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Marília Seelaender
- Cancer Metabolism Research Group, LIM26-HC, FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Ana Paula Coelho Figueira Freire
- Department of Health Sciences, Central Washington University, Ellensburg, WA, United States
- Physiotherapy Department, Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, Brazil
| | - Gilson Pires Dorneles
- Laboratory of Cellular and Molecular Immunology, Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Bruna Marmett
- Laboratory of Cellular and Molecular Immunology, Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - André Olean-Oliveira
- Department of Chemistry and Biochemistry, School of Science and Technology, Universidade Estadual Paulista (UNESP), Presidente Prudente, SP, Brazil
| | - Marcos F. S. Teixeira
- Department of Chemistry and Biochemistry, School of Science and Technology, Universidade Estadual Paulista (UNESP), Presidente Prudente, SP, Brazil
| | - Patrícia M. Seraphim
- Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Armando Caseiro
- Polytechnic Institute of Coimbra, Coimbra Health School, Coimbra, Portugal
| | - Ricardo Aurino Pinho
- Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Parana, Curitiba, Brazil
| | - Hashim Islam
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Jonathan Peter Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, BC, Canada
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, Institute of Sports Science, Justus-Liebig-University Giessen, Giessen, Germany
| | - José César Rosa-Neto
- Department of Cell and Developmental Biology, University of São Paulo, São Paulo, Brazil
| | - Manuel-João Coelho-E-Silva
- Faculty of Sport Sciences and Physical Education, Research Center for Sport and Physical Activity (uid/dtp/04213/2020), Universidade de Coimbra, Coimbra, Portugal
| | - Fábio Santos Lira
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
- Faculty of Sport Sciences and Physical Education, Research Center for Sport and Physical Activity (uid/dtp/04213/2020), Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
38
|
Yoon H, Dean LS, Jiyarom B, Khadka V, Deng Y, Nerurukar VR, Chow DC, Shikuma CM, Devendra G, Koh Y, Park J. Single-cell RNA sequencing reveals characteristics of myeloid cells in pulmonary post-acute sequelae of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551349. [PMID: 37577518 PMCID: PMC10418075 DOI: 10.1101/2023.07.31.551349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Background Although our understanding of the immunopathology and subsequent risk and severity of COVID-19 disease is evolving, a detailed account of immune responses that contribute to the long-term consequences of pulmonary complication in COVID-19 infection remain unclear. Few studies have detailed the immune and cytokine profiles associated with post-acute sequalae of SARS-CoV-2 infection with persistent pulmonary symptoms (PPASC). However, the dysregulation of the immune system that drives pulmonary sequelae in COVID-19 survivors and PASC sufferers remains largely unknown. Results To characterize the immunological features of pulmonary PASC (PPASC), we performed droplet-based single-cell RNA sequencing to study the transcriptomic profiles of peripheral blood mononuclear cells (PBMCs) from participants naïve to SARS-CoV-2 (Control) and infected with SARS-CoV-2 with chronic pulmonary symptoms (PPASC). We analyzed more than 34,139 PBMCs by integrating our dataset with previously reported control datasets (GSM4509024) cell distribution. In total, 11 distinct cell populations were identified based on the expression of canonical markers. The proportion of myeloid-lineage cells ([MLCs]; CD14 + /CD16 + monocytes and dendritic cells) was increased in PPASC compared to controls. MLCs from PPASC displayed up-regulation of genes associated with pulmonary symptoms/fibrosis, while glycolysis metabolism-related genes were downregulated. Similarly, pathway analysis showed that fibrosis- related ( VEGF , WNT , and SMAD ) and cell death pathways were up-regulated, but immune pathways were down-regulated in PPASC. In PPASC, we observed interactive VEGF ligand- receptor pairs among MLCs, and network modules in CD14 + (cluster 4) and CD16 + (Cluster 5) monocytes displayed a significant enrichment for biological pathways linked to adverse COVID- 19 outcomes, fibrosis, and angiogenesis. Further analysis revealed a distinct metabolic alteration in MLCs with a down-regulation of glycolysis/gluconeogenesis in PPASC compared to SARS- CoV-2 naïve samples. Conclusion This study offers valuable insights into the immune response and cellular landscape in PPASC. The presence of elevated MLC levels and their corresponding gene signatures associated with fibrosis, immune response suppression, and altered metabolic states suggests their potential role as a driver of PPASC.
Collapse
|
39
|
Santamarina MG, Lomakin FM, Beddings I, Riscal DB, Chang Villacís J, Contreras R, Marambio JV, Labarca E, Torres J, Volpacchio M. COVID-19 pneumonia: Perfusion abnormalities shown on subtraction CT angiography in apparently well-ventilated lungs. A prospective cohort study. Heliyon 2023; 9:e18085. [PMID: 37519667 PMCID: PMC10375558 DOI: 10.1016/j.heliyon.2023.e18085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 06/18/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023] Open
Abstract
Purpose To evaluate whether a subtraction CT angiography (sCTA) perfusion score may have prognostic value in patients with COVID-19 pneumonia. Method This prospective cohort study included adult patients with RT-PCR-confirmed SARS-CoV-2 infection admitted to the ED and a sCTA performed within 24 h of admission between June and September 2020. Perfusion abnormalities (PA) in areas of apparently spared lung parenchyma on conventional CT images were assessed with sCTA perfusion score. Airspace disease extension was assessed with CT severity scores, which were then correlated with clinical outcomes (admission to ICU, requirement of IMV, and death). Inter-rater reliability (IRR) was assessed using Cohen's Kappa. Independent predictors of adverse outcomes were evaluated by multivariable logistic regression analyses using the Hosmer and Lemeshow's test. Results 191 patients were included: 112 males (58%), median age of 60.8 years (SD ± 16.0). The IRR was very high (median Kappa statistic: 0.95). No association was found between perfusion CT scores and D-dimer levels (Kendall's Tau-B coefficient = 0.08, p = 0.16) or between PaO2/FiO2 ratios and D-dimer levels (Kendall's Tau-B coefficient = -0.10, p = 0.07). Multivariate analyses adjusting for parenchymal disease extension, vascular beaded appearance, pulmonary embolism, sex, and age showed that severe PA remained a significant predictor for ICU admission (AOR: 6.25, 95% CI 2.10-18.7, p = 0.001). The overall diagnostic capacity of this model was adequate (ROC AUC: 0.83; 95% CI 0.77-0.89). Conclusions The assessment of pulmonary perfusion abnormalities in areas of apparently spared lung parenchyma on conventional CT images via sCTA perfusion scoring has prognostic value in COVID-19 pneumonia.
Collapse
Affiliation(s)
- Mario G. Santamarina
- Radiology Department, Hospital Naval Almirante Nef, Viña del Mar, Chile
- Radiology Department, Hospital Dr. Eduardo Pereira, Valparaiso, Chile
| | - Felipe Martinez Lomakin
- Intensive Care Unit, Hospital Naval Almirante Nef, Viña del Mar, Chile
- Universidad Andrés Bello, Viña del Mar, Escuela de Medicina, Facultad de Medicina Viña del Mar, Valparaiso, Chile
| | - Ignacio Beddings
- Radiology Department, Hospital Clínico San Borja Arriaran, Santiago, Chile
| | | | | | - Roberto Contreras
- Intensive Care Unit, Hospital San Martin de Quillota, Quillota, Chile
| | | | - Eduardo Labarca
- Intensive Care Unit, Hospital Naval Almirante Nef, Viña del Mar, Chile
| | - Jorge Torres
- Radiology Department, Hospital Naval Almirante Nef, Viña del Mar, Chile
| | - Mariano Volpacchio
- Radiology Department, Centro de Diagnóstico Dr. Enrique Rossi, Buenos Aires, Argentina
| |
Collapse
|
40
|
Tsilingiris D, Vallianou NG, Karampela I, Christodoulatos GS, Papavasileiou G, Petropoulou D, Magkos F, Dalamaga M. Laboratory Findings and Biomarkers in Long COVID: What Do We Know So Far? Insights into Epidemiology, Pathogenesis, Therapeutic Perspectives and Challenges. Int J Mol Sci 2023; 24:10458. [PMID: 37445634 PMCID: PMC10341908 DOI: 10.3390/ijms241310458] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Long COVID (LC) encompasses a constellation of long-term symptoms experienced by at least 10% of people after the initial SARS-CoV-2 infection, and so far it has affected about 65 million people. The etiology of LC remains unclear; however, many pathophysiological pathways may be involved, including viral persistence; a chronic, low-grade inflammatory response; immune dysregulation and a defective immune response; the reactivation of latent viruses; autoimmunity; persistent endothelial dysfunction and coagulopathy; gut dysbiosis; hormonal and metabolic dysregulation; mitochondrial dysfunction; and autonomic nervous system dysfunction. There are no specific tests for the diagnosis of LC, and clinical features including laboratory findings and biomarkers may not specifically relate to LC. Therefore, it is of paramount importance to develop and validate biomarkers that can be employed for the prediction, diagnosis and prognosis of LC and its therapeutic response, although this effort may be hampered by challenges pertaining to the non-specific nature of the majority of clinical manifestations in the LC spectrum, small sample sizes of relevant studies and other methodological issues. Promising candidate biomarkers that are found in some patients are markers of systemic inflammation, including acute phase proteins, cytokines and chemokines; biomarkers reflecting SARS-CoV-2 persistence, the reactivation of herpesviruses and immune dysregulation; biomarkers of endotheliopathy, coagulation and fibrinolysis; microbiota alterations; diverse proteins and metabolites; hormonal and metabolic biomarkers; and cerebrospinal fluid biomarkers. At present, there are only two reviews summarizing relevant biomarkers; however, they do not cover the entire umbrella of current biomarkers, their link to etiopathogenetic mechanisms or the diagnostic work-up in a comprehensive manner. Herein, we aim to appraise and synopsize the available evidence on the typical laboratory manifestations and candidate biomarkers of LC, their classification based on pathogenetic mechanisms and the main LC symptomatology in the frame of the epidemiological and clinical aspects of the syndrome and furthermore assess limitations and challenges as well as potential implications in candidate therapeutic interventions.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100 Alexandroupolis, Greece;
| | - Natalia G. Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Street, 10676 Athens, Greece;
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Street, 12462 Athens, Greece;
| | | | - Georgios Papavasileiou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (G.P.); (D.P.)
| | - Dimitra Petropoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (G.P.); (D.P.)
| | - Faidon Magkos
- Department of Nutrition, Exercise, and Sports, University of Copenhagen, DK-2200 Frederiksberg, Denmark;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece; (G.P.); (D.P.)
| |
Collapse
|