1
|
Otoguro T, Wagatsuma K, Hino T, Ichikawa Y, Purnama TB, Sun Y, Li J, Chon I, Watanabe H, Saito R. Antibody Responses to mRNA COVID-19 Vaccine Among Healthcare Workers in Outpatient Clinics in Japan. Vaccines (Basel) 2025; 13:90. [PMID: 39852868 PMCID: PMC11769486 DOI: 10.3390/vaccines13010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND This study aimed to assess the antibody response to SARS-CoV-2 vaccines among healthcare workers (HCWs) from multiple outpatient clinics in Japan, examining the effects of baseline characteristics (e.g., sex, age, underlying condition, smoking history, occupation) and prior infections. METHODS A total of 101 HCWs provided serum at four time points between October 2020 and July 2023. HCWs received two to six doses of mRNA vaccine (BNT162b2 or mRNA-1273). Anti-nucleocapsid (N) and anti-spike (S) IgG antibodies against the ancestral Wuhan strain were measured using the Abbott Architect™ SARS-CoV-2 IgG assay. Univariate and regression analysis evaluated factors such as past infections, age, sex, smoking, underlying condition, and occupation. RESULTS After four to six doses, the median anti-S IgG titer in uninfected HCWs was 1807.30 BAU/mL, compared to 1899.89 BAU/mL in HCWs with prior infections. The median anti-N IgG titer was 0.10 index S/C in uninfected HCWs and 0.39 index S/C in infected HCWs. HCWs with prior infection had anti-S IgG titers 1.1 to 5.8 times higher than those without. Univariate and multivariate analyses indicated infection and vaccination significantly increased anti-S and anti-N IgG titers. Age, sex, smoking history and occupation did not influence antibody titers while underlying conditions were associated with lower anti-N IgG titers. CONCLUSIONS Infection and vaccination were strongly associated with an increase in anti-S and anti-N IgG titers; however, the impact of hybrid immunity appeared to be limited and varied depending on the timing of the sampling. These findings provide valuable insights for developing personalized vaccination strategies and future vaccine development.
Collapse
Affiliation(s)
- Teruhime Otoguro
- Infectious Diseases Research Center of Niigata University in Myanmar, Niigata University, Niigata 950-8510, Japan; (H.W.); (R.S.)
| | - Keita Wagatsuma
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 950-8510, Japan; (K.W.); (Y.I.); (T.B.P.); (Y.S.); (J.L.); (I.C.)
- Institute for Research Administration, Niigata University, Niigata 950-8510, Japan
| | - Toshiharu Hino
- Hino Pediatric Internal Medicine Clinic, Nishinomiya 662-0927, Japan;
| | | | - Yusuke Ichikawa
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 950-8510, Japan; (K.W.); (Y.I.); (T.B.P.); (Y.S.); (J.L.); (I.C.)
| | - Tri Bayu Purnama
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 950-8510, Japan; (K.W.); (Y.I.); (T.B.P.); (Y.S.); (J.L.); (I.C.)
- Faculty of Public Health, Universitas Islam Negeri Sumatera Utara, Medan 20371, Indonesia
| | - Yuyang Sun
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 950-8510, Japan; (K.W.); (Y.I.); (T.B.P.); (Y.S.); (J.L.); (I.C.)
| | - Jiaming Li
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 950-8510, Japan; (K.W.); (Y.I.); (T.B.P.); (Y.S.); (J.L.); (I.C.)
| | - Irina Chon
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 950-8510, Japan; (K.W.); (Y.I.); (T.B.P.); (Y.S.); (J.L.); (I.C.)
| | - Hisami Watanabe
- Infectious Diseases Research Center of Niigata University in Myanmar, Niigata University, Niigata 950-8510, Japan; (H.W.); (R.S.)
| | - Reiko Saito
- Infectious Diseases Research Center of Niigata University in Myanmar, Niigata University, Niigata 950-8510, Japan; (H.W.); (R.S.)
- Division of International Health (Public Health), Graduate School of Medical and Dental Sciences, Niigata University, Niigata 950-8510, Japan; (K.W.); (Y.I.); (T.B.P.); (Y.S.); (J.L.); (I.C.)
| |
Collapse
|
2
|
Athavale A, Gaur A, Ahmed N, Subramaniam A, Dandotiya J, Raj S, Upadhyay SK, Samal S, Pandey AK, Rai RC, Awasthi A. Receptor Binding Domain-Specific B Cell Memory Responses Among Individuals Vaccinated Against SARS-CoV-2. Vaccines (Basel) 2024; 12:1396. [PMID: 39772064 PMCID: PMC11680197 DOI: 10.3390/vaccines12121396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 01/11/2025] Open
Abstract
Background: The COVID-19 pandemic prompted unprecedented vaccine development efforts against SARS-CoV-2. India, which was one of the countries most impacted by COVID-19, developed its indigenous vaccine in addition to utilizing the ones developed by other countries. While antibody levels and neutralizing antibody titres are considered initial correlates of immune protection, long-term protection from the pathogen relies on memory B and T cells and their recall responses. In this regard, global research has primarily focused on mRNA-based vaccines. The studies on immune memory response, particularly B cell memory response induced by the vaccines given to Indians, remain relatively obscure. Methods: We assessed Receptor Binding Domain-specific memory B cells in the peripheral circulation and their ability to secrete antigen-specific antibodies among Indians vaccinated with Covaxin (BBV152), Covishield (AZD1222), Corbevax (BECOV2D), and Sputnik Light, as well as unvaccinated individuals. Results: Corbevax and Sputnik Light conferred better antibody-secreting cell (ASC) responses over time compared to other groups. Conclusions: These findings contribute to our understanding of vaccine-induced immune memory in the Indian population; providing insights that could inform future vaccine strategies.
Collapse
Affiliation(s)
- Atharv Athavale
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| | - Anmol Gaur
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| | - Nafees Ahmed
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| | - Adarsh Subramaniam
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| | - Jyotsna Dandotiya
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| | - Sneha Raj
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| | | | - Sweety Samal
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| | | | - Ramesh Chandra Rai
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| | - Amit Awasthi
- BRIC-Translational Health Science and Technology Institute, Faridabad 21001, India; (A.A.); (A.G.); (N.A.); (A.S.); (J.D.); (S.R.); (S.S.)
| |
Collapse
|
3
|
Izadi A, Godzwon M, Söderlund Strand A, Schmidt T, Kumlien Georén S, Drosten C, Ohlin M, Nordenfelt P. Protective Non-neutralizing anti-N-terminal Domain mAb Maintains Fc-mediated Function against SARS-COV-2 Variants up to BA.2.86-JN.1 with Superfluous In Vivo Protection against JN.1 Due to Attenuated Virulence. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:678-689. [PMID: 39018495 PMCID: PMC11335326 DOI: 10.4049/jimmunol.2300675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
Substantial evidence supports that Fc-mediated effector functions of anti-spike Abs contribute to anti-SARS-Cov-2 protection. We have previously shown that two non-neutralizing but opsonic mAbs targeting the receptor-binding domain and N-terminal domain (NTD), Ab81 and Ab94, respectively, are protective against lethal Wuhan SARS-CoV-2 infection in K18-hACE2 mice. In this article, we investigated whether these protective non-neutralizing Abs maintain Fc-mediated function and Ag binding against mutated SARS-CoV-2 variants. Ab81 and Ab94 retained their nanomolar affinity and Fc-mediated function toward Omicron and its subvariants, such as BA.2, BA.4, BA.5, XBB, XBB1.5, and BQ1.1. However, when encountering the more heavily mutated BA.2.86, Ab81 lost its function, whereas the 10 new mutations in the NTD did not affect Ab94. In vivo experiments with Ab94 in K18-hACE2 mice inoculated with a stringent dose of 100,000 PFU of the JN.1 variant revealed unexpected results. Surprisingly, this variant exhibited low disease manifestation in this animal model with no weight loss or death in the control group. Still, assessment of mice using a clinical scoring system showed better protection for Ab94-treated mice, indicating that Fc-mediated functions are still beneficial. Our work shows that a protective anti-receptor-binding domain non-neutralizing mAb lost reactivity when BA.2.86 emerged, whereas the anti-NTD mAb was still functional. Finally, this work adds new insight into the evolution of the SARS-CoV-2 virus by reporting that JN.1 is substantially less virulent in vivo than previous strains.
Collapse
Affiliation(s)
- Arman Izadi
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Anna Söderlund Strand
- Department of Laboratory Medicine, Clinical Microbiology, Skåne University Hospital Lund, Lund University, Lund, Sweden
| | - Tobias Schmidt
- Department of Clinical Sciences Lund, Division of Pediatrics, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Christian Drosten
- German Center for Infection Research, Berlin, Germany
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mats Ohlin
- Department of Immunotechnology, Lund University, Lund, Sweden
- SciLifeLab Drug Discovery and Development, Lund University, Lund, Sweden
| | - Pontus Nordenfelt
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Laboratory Medicine, Clinical Microbiology, Skåne University Hospital Lund, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Sumi T, Harada K. Vaccine and antiviral drug promise for preventing post-acute sequelae of COVID-19, and their combination for its treatment. Front Immunol 2024; 15:1329162. [PMID: 39185419 PMCID: PMC11341427 DOI: 10.3389/fimmu.2024.1329162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction Most healthy individuals recover from acute SARS-CoV-2 infection, whereas a remarkable number continues to suffer from unexplained symptoms, known as Long COVID or post-acute COVID-19 syndrome (PACS). It is therefore imperative that methods for preventing and treating the onset of PASC be investigated with the utmost urgency. Methods A mathematical model of the immune response to vaccination and viral infection with SARS-CoV-2, incorporating immune memory cells, was developed. Results and discussion Similar to our previous model, persistent infection was observed by the residual virus in the host, implying the possibility of chronic inflammation and delayed recovery from tissue injury. Pre-infectious vaccination and antiviral medication administered during onset can reduce the acute viral load; however, they show no beneficial effects in preventing persistent infection. Therefore, the impact of these treatments on the PASC, which has been clinically observed, is mainly attributed to their role in preventing severe tissue damage caused by acute viral infections. For PASC patients with persistent infection, vaccination was observed to cause an immediate rapid increase in viral load, followed by a temporary decrease over approximately one year. The former was effectively suppressed by the coadministration of antiviral medications, indicating that this combination is a promising treatment for PASC.
Collapse
Affiliation(s)
- Tomonari Sumi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
- Department of Chemistry, Faculty of Science, Okayama University, Okayama, Japan
| | - Kouji Harada
- Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- Center for IT-Based Education, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| |
Collapse
|
5
|
Rak A, Matyushenko V, Prokopenko P, Kostromitina A, Polyakov D, Sokolov A, Rudenko L, Isakova-Sivak I. A novel immunofluorescent test system for SARS-CoV-2 detection in infected cells. PLoS One 2024; 19:e0304534. [PMID: 38820303 PMCID: PMC11142482 DOI: 10.1371/journal.pone.0304534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/14/2024] [Indexed: 06/02/2024] Open
Abstract
Highly variable pandemic coronavirus SARS-CoV-2, which causes the hazardous COVID-19 infection, has been persistent in the human population since late 2019. A prompt assessment of individual and herd immunity against the infection can be accomplished by using rapid tests to determine antiviral antibody levels. The microneutralization assay (MN) is one of the most widely used diagnostic methods that has been proposed to assess the qualitative and quantitative characteristics of virus-specific humoral immunity in COVID-19 convalescents or vaccine recipients. However, some aspects of the assay, such as sensitivity and time cost, need improvement. Here, we developed an express test, which may be potentially used in clinical practice for the assessment of serum-caused SARS-CoV-2 inhibition in infected cell cultures. It implies the detection and counting of coronaviral fluorescent-forming units (FFU) and includes two sequentially used developing components: biotinylated mouse monoclonal antibodies against the recombinant N protein of SARS-CoV-2 (B.1) and the recombinant EGFP-streptavidin fusion protein. Due to the universal specificity of the antibodies, our analytical tool is suitable for the detection of various strains of SARS-CoV-2 when determining both the infectious titer of viruses and the titer of serum virus-neutralizing antibodies. The developed two-component test system is characterized by high sensitivity, a reduced number of analytic stages and low assay cost, as well as by flexibility, since it may be modified for detection of other pathogens using the appropriate antibodies.
Collapse
Affiliation(s)
- Alexandra Rak
- Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russian Federation
| | - Victoria Matyushenko
- Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russian Federation
| | - Polina Prokopenko
- Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russian Federation
| | - Arina Kostromitina
- Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russian Federation
| | - Dmitry Polyakov
- Department of Molecular Genetics, Institute of Experimental Medicine, St. Petersburg, Russian Federation
| | - Alexey Sokolov
- Department of Molecular Genetics, Institute of Experimental Medicine, St. Petersburg, Russian Federation
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russian Federation
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, St. Petersburg, Russian Federation
| |
Collapse
|
6
|
Mahalingam G, Rachamalla HK, Arjunan P, Karuppusamy KV, Periyasami Y, Mohan A, Subramaniyam K, M S, Rajendran V, Moorthy M, Varghese GM, Mohankumar KM, Thangavel S, Srivastava A, Marepally S. SMART-lipid nanoparticles enabled mRNA vaccine elicits cross-reactive humoral responses against the omicron sub-variants. Mol Ther 2024; 32:1284-1297. [PMID: 38414245 PMCID: PMC11081802 DOI: 10.1016/j.ymthe.2024.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/19/2023] [Accepted: 02/23/2024] [Indexed: 02/29/2024] Open
Abstract
The continual emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has necessitated the development of broad cross-reactive vaccines. Recent findings suggest that enhanced antigen presentation could lead to cross-reactive humoral responses against the emerging variants. Toward enhancing the antigen presentation to dendritic cells (DCs), we developed a novel shikimoylated mannose receptor targeting lipid nanoparticle (SMART-LNP) system that could effectively deliver mRNAs into DCs. To improve the translation of mRNA, we developed spike domain-based trimeric S1 (TS1) mRNA with optimized codon sequence, base modification, and engineered 5' and 3' UTRs. In a mouse model, SMART-LNP-TS1 vaccine could elicit robust broad cross-reactive IgGs against Omicron sub-variants, and induced interferon-γ-producing T cells against SARS-CoV-2 virus compared with non-targeted LNP-TS1 vaccine. Further, T cells analysis revealed that SMART-LNP-TS1 vaccine induced long-lived memory T cell subsets, T helper 1 (Th1)-dominant and cytotoxic T cells immune responses against the SARS-CoV-2 virus. Importantly, SMART-LNP-TS1 vaccine produced strong Th1-predominant humoral and cellular immune responses. Overall, SMART-LNPs can be explored for precise antigenic mRNA delivery and robust immune responses. This platform technology can be explored further as a next-generation delivery system for mRNA-based immune therapies.
Collapse
Affiliation(s)
- Gokulnath Mahalingam
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Hari Krishnareddy Rachamalla
- Department of Biochemistry and Molecular Biology, Mayo Clinic Florida, 4500 San Pablo Road S, Jacksonville, FL 32224, USA
| | - Porkizhi Arjunan
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Karthik V Karuppusamy
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Yogapriya Periyasami
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Aruna Mohan
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Kanimozhi Subramaniyam
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Salma M
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Vigneshwar Rajendran
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Mahesh Moorthy
- Department of Clinical Virology, Christian Medical College and Hospital, Vellore, TN 632002, India
| | - George M Varghese
- Department of Infectious Diseases, Christian Medical College and Hospital, Vellore, TN 632002, India
| | - Kumarasamypet M Mohankumar
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Saravanabhavan Thangavel
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Alok Srivastava
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India
| | - Srujan Marepally
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru), CMC Campus, Vellore, TN 632002, India.
| |
Collapse
|
7
|
Freedman AS, Sheen JK, Tsai S, Yao J, Lifshitz E, Adinaro D, Levin SA, Grenfell BT, Metcalf CJE. Inferring COVID-19 testing and vaccination behavior from New Jersey testing data. Proc Natl Acad Sci U S A 2024; 121:e2314357121. [PMID: 38630720 PMCID: PMC11047110 DOI: 10.1073/pnas.2314357121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/08/2024] [Indexed: 04/19/2024] Open
Abstract
Characterizing the relationship between disease testing behaviors and infectious disease dynamics is of great importance for public health. Tests for both current and past infection can influence disease-related behaviors at the individual level, while population-level knowledge of an epidemic's course may feed back to affect one's likelihood of taking a test. The COVID-19 pandemic has generated testing data on an unprecedented scale for tests detecting both current infection (PCR, antigen) and past infection (serology); this opens the way to characterizing the complex relationship between testing behavior and infection dynamics. Leveraging a rich database of individualized COVID-19 testing histories in New Jersey, we analyze the behavioral relationships between PCR and serology tests, infection, and vaccination. We quantify interactions between individuals' test-taking tendencies and their past testing and infection histories, finding that PCR tests were disproportionately taken by people currently infected, and serology tests were disproportionately taken by people with past infection or vaccination. The effects of previous positive test results on testing behavior are less consistent, as individuals with past PCR positives were more likely to take subsequent PCR and serology tests at some periods of the epidemic time course and less likely at others. Lastly, we fit a model to the titer values collected from serology tests to infer vaccination trends, finding a marked decrease in vaccination rates among individuals who had previously received a positive PCR test. These results exemplify the utility of individualized testing histories in uncovering hidden behavioral variables affecting testing and vaccination.
Collapse
Affiliation(s)
- Ari S. Freedman
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ08544
| | - Justin K. Sheen
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ08544
| | - Stella Tsai
- New Jersey Department of Health, Trenton, NJ08625
| | - Jihong Yao
- New Jersey Department of Health, Trenton, NJ08625
| | | | | | - Simon A. Levin
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ08544
| | - Bryan T. Grenfell
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ08544
| | - C. Jessica E. Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ08544
| |
Collapse
|
8
|
Naffeti B, BenAribi W, Kebir A, Diarra M, Schoenhals M, Vigan-Womas I, Dellagi K, BenMiled S. Comparative reconstruction of SARS-CoV-2 transmission in three African countries using a mathematical model integrating immunity data. IJID REGIONS 2024; 10:100-107. [PMID: 38204927 PMCID: PMC10776948 DOI: 10.1016/j.ijregi.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 01/12/2024]
Abstract
Objectives Africa has experienced fewer COVID-19 cases and deaths than other regions, with a contrasting epidemiological situation between countries, raising questions regarding the determinants of disease spread in Africa. Methods We built a susceptible-exposed-infected-recovered model including COVID-19 mortality data where recovery class is structured by specific immunization and modeled by a partial differential equation considering the opposed effects of immunity decline and immunization. This model was applied to Tunisia, Senegal, and Madagascar. Results Senegal and Tunisia experienced two epidemic phases. Initially, infections emerged in naive individuals and were limited by social distancing. Variants of concern (VOCs) were also introduced. The second phase was characterized by successive epidemic waves driven by new VOCs that escaped host immunity. Meanwhile, Madagascar demonstrated a different profile, characterized by longer intervals between epidemic waves, increasing the pool of susceptible individuals who had lost their protective immunity. The impact of vaccination on model parameters in Tunisia and Senegal was evaluated. Conclusions Loss of immunity and vaccination-induced immunity have played crucial role in controlling the African pandemic. SARS-CoV-2 has become endemic now and will continue to circulate in African populations. However, previous infections provide significant protection against severe diseases, thus providing a basis for future vaccination strategies.
Collapse
Affiliation(s)
- Bechir Naffeti
- University of Tunis el Manar, Institut Pasteur de Tunis, Bio-(Informatic, Mathematics and Statistic) BIMS-Lab LR09-IPT16, Tunis, Tunisia
| | - Walid BenAribi
- University of Tunis el Manar, Institut Pasteur de Tunis, Bio-(Informatic, Mathematics and Statistic) BIMS-Lab LR09-IPT16, Tunis, Tunisia
| | - Amira Kebir
- University of Tunis el Manar, Institut Pasteur de Tunis, Bio-(Informatic, Mathematics and Statistic) BIMS-Lab LR09-IPT16, Tunis, Tunisia
- University of Tunis, Institut préparatoire aux études d'ingénieurs de Tunis, Tunis, Tunisia
| | - Maryam Diarra
- Institut Pasteur de Dakar, Epidemiology, Clinical Research and Data Sciences Department, Dakar, Senegal
| | - Matthieu Schoenhals
- Institut Pasteur de Madagascar, Immunology of Infectious Diseases Unit, Antananarivo, Madagascar
| | - Inès Vigan-Womas
- Institut Pasteur de Dakar, Immuno-physiopathology and Infectious Diseases Department, Dakar, Senegal
| | | | - Slimane BenMiled
- University of Tunis el Manar, Institut Pasteur de Tunis, Bio-(Informatic, Mathematics and Statistic) BIMS-Lab LR09-IPT16, Tunis, Tunisia
| |
Collapse
|
9
|
Miyazawa S, Wong TS, Ito G, Iwamoto R, Watanabe K, van Boven M, Wallinga J, Miura F. Wastewater-based reproduction numbers and projections of COVID-19 cases in three areas in Japan, November 2021 to December 2022. Euro Surveill 2024; 29:2300277. [PMID: 38390648 PMCID: PMC10899819 DOI: 10.2807/1560-7917.es.2024.29.8.2300277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/20/2023] [Indexed: 02/24/2024] Open
Abstract
BackgroundWastewater surveillance has expanded globally as a means to monitor spread of infectious diseases. An inherent challenge is substantial noise and bias in wastewater data because of the sampling and quantification process, limiting the applicability of wastewater surveillance as a monitoring tool.AimTo present an analytical framework for capturing the growth trend of circulating infections from wastewater data and conducting scenario analyses to guide policy decisions.MethodsWe developed a mathematical model for translating the observed SARS-CoV-2 viral load in wastewater into effective reproduction numbers. We used an extended Kalman filter to infer underlying transmissions by smoothing out observational noise. We also illustrated the impact of different countermeasures such as expanded vaccinations and non-pharmaceutical interventions on the projected number of cases using three study areas in Japan during 2021-22 as an example.ResultsObserved notified cases were matched with the range of cases estimated by our approach with wastewater data only, across different study areas and virus quantification methods, especially when the disease prevalence was high. Estimated reproduction numbers derived from wastewater data were consistent with notification-based reproduction numbers. Our projections showed that a 10-20% increase in vaccination coverage or a 10% reduction in contact rate may suffice to initiate a declining trend in study areas.ConclusionOur study demonstrates how wastewater data can be used to track reproduction numbers and perform scenario modelling to inform policy decisions. The proposed framework complements conventional clinical surveillance, especially when reliable and timely epidemiological data are not available.
Collapse
Affiliation(s)
- Shogo Miyazawa
- Data Science Department, Shionogi and Co, Ltd, Osaka, Japan
| | - Ting Sam Wong
- SHIMADZU Corporation, Kyoto, Japan
- AdvanSentinel Inc., Osaka, Japan
| | - Genta Ito
- Data Science Department, Shionogi and Co, Ltd, Osaka, Japan
| | - Ryo Iwamoto
- Integrated Disease Care Division, Shionogi and Co, Ltd, Osaka, Japan
- Data Science Department, Shionogi and Co, Ltd, Osaka, Japan
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Ehime, Japan
| | - Michiel van Boven
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Jacco Wallinga
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Fuminari Miura
- Center for Marine Environmental Studies (CMES), Ehime University, Ehime, Japan
| |
Collapse
|
10
|
Tanaka H, Sawatari H, Ando SI. Difference in the Dynamics of Antibody Titers between COVID-19 Vaccination and SARS-CoV-2 Infection in Healthcare Workers - A Case Study Based on Long-Term and Densely Repeated Measurements of Antibody Titers. Jpn J Infect Dis 2024; 77:51-54. [PMID: 37779029 DOI: 10.7883/yoken.jjid.2023.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is prevalent worldwide, and effective and safe vaccines against this virus have been developed. Although trends in antibody titers after vaccination and/or SARS-CoV-2 infection have been reported, long-term studies with high frequency of measurements are limited. This report describes the long-term and detailed trends in the antibodies against SARS-CoV-2 S protein receptor-binding domain (S-RBD) measured repeatedly after vaccination and/or infection in 3 healthcare workers. All healthcare workers were administered 30 µg of the messenger RNA vaccine, BNT162b2, during all vaccinations. The peak value of the SARS-CoV-2 S-RBD titer was reached at 1-2 weeks after vaccination and then decreased by half within 8 weeks after vaccination; the peak values of the antibody titer increased with repeated vaccinations. In contrast, after SARS-CoV-2 infection, the peak value of the antibody titer was reached at 4-8 weeks after infection, and the antibody titer remained elevated up to 16-40 weeks after the peak. This report describes the long-term and detailed trends in the anti-SARS-CoV-2 S-RBD titers, showing different patterns after vaccination and/or SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | - Hiroyuki Sawatari
- Department of Perioperative and Critical Care Management, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Shin-Ichi Ando
- Cardiovascular Division and Sleep Medicine Center, Saiseikai Futsukaichi Hospital, Japan
| |
Collapse
|
11
|
El-Baky NA, Amara AA, Uversky VN, Redwan EM. Intrinsic factors behind long COVID: III. Persistence of SARS-CoV-2 and its components. J Cell Biochem 2024; 125:22-44. [PMID: 38098317 DOI: 10.1002/jcb.30514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024]
Abstract
Considerable research has been done in investigating SARS-CoV-2 infection, its characteristics, and host immune response. However, debate is still ongoing over the emergence of post-acute sequelae of SARS-CoV-2 infection (PASC). A multitude of long-lasting symptoms have been reported several weeks after the primary acute SARS-CoV-2 infection that resemble several other viral infections. Thousands of research articles have described various post-COVID-19 conditions. Yet, the evidence around these ongoing health problems, the reasons behind them, and their molecular underpinnings are scarce. These persistent symptoms are also known as long COVID-19. The persistence of SARS-CoV-2 and/or its components in host tissues can lead to long COVID. For example, the presence of viral nucleocapsid protein and RNA was detected in the skin, appendix, and breast tissues of some long COVID patients. The persistence of viral RNA was reported in multiple anatomic sites, including non-respiratory tissues such as the adrenal gland, ocular tissue, small intestine, lymph nodes, myocardium, and sciatic nerve. Distinctive viral spike sequence variants were also found in non-respiratory tissues. Interestingly, prolonged detection of viral subgenomic RNA was observed across all tissues, sometimes in multiple tissues of the same patient, which likely reflects recent but defective viral replication. Moreover, the persistence of SARS-CoV-2 RNA was noticed throughout the brain at autopsy, as late as 230 days following symptom onset among unvaccinated patients who died of severe infection. Here, we review the persistence of SARS-CoV-2 and its components as an intrinsic factor behind long COVID. We also highlight the immunological consequences of this viral persistence.
Collapse
Affiliation(s)
- Nawal Abd El-Baky
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Egypt
| | - Amro A Amara
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Egypt
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Elrashdy M Redwan
- Biological Sciences Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Siles N, Schuler M, Maguire C, Amengor D, Nguyen A, Wilen R, Rogers J, Bazzi S, Caslin B, DiPasquale C, Abigania M, Olson E, Creaturo J, Hurley K, Triplett TA, Rousseau JF, Strakowski SM, Wylie D, Maynard J, Ehrlich LIR, Melamed E. SARS-CoV-2 Humoral Immune Responses in Convalescent Individuals Over 12 Months Reveal Severity-Dependent Antibody Dynamics. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.05.23299462. [PMID: 38106077 PMCID: PMC10723498 DOI: 10.1101/2023.12.05.23299462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Background Understanding the kinetics and longevity of antibody responses to SARS-CoV-2 is critical to informing strategies toward reducing Coronavirus disease 2019 (COVID-19) reinfections, and improving vaccination and therapy approaches. Methods We evaluated antibody titers against SARS-CoV-2 nucleocapsid (N), spike (S), and receptor binding domain (RBD) of spike in 98 convalescent participants who experienced asymptomatic, mild, moderate or severe COVID-19 disease and in 17 non-vaccinated, non-infected controls, using four different antibody assays. Participants were sampled longitudinally at 1, 3, 6, and 12 months post-SARS-CoV-2 positive PCR test. Findings Increasing acute COVID-19 disease severity correlated with higher anti-N and anti-RBD antibody titers throughout 12 months post-infection. Anti-N and anti-RBD titers declined over time in all participants, with the exception of increased anti-RBD titers post-vaccination, and the decay rates were faster in hospitalized compared to non-hospitalized participants. <50% of participants retained anti-N titers above control levels at 12 months, with non-hospitalized participants falling below control levels sooner. Nearly all hospitalized and non-hospitalized participants maintained anti-RBD titers above controls for up to 12 months, suggesting longevity of protection against severe reinfections. Nonetheless, by 6 months, few participants retained >50% of their 1-month anti-N or anti-RBD titers. Vaccine-induced increases in anti-RBD titers were greater in non-hospitalized relative to hospitalized participants. Early convalescent antibody titers correlated with age, but no association was observed between Post-Acute Sequelae of SARS-CoV-2 infection (PASC) status or acute steroid treatment and convalescent antibody titers. Interpretation Hospitalized participants developed higher anti-SARS-CoV-2 antibody titers relative to non-hospitalized participants, a difference that persisted throughout 12 months, despite the faster decline in titers in hospitalized participants. In both groups, while anti-N titers fell below control levels for at least half of the participants, anti-RBD titers remained above control levels for almost all participants over 12 months, demonstrating generation of long-lived antibody responses known to correlate with protection from severe disease across COVID-19 severities. Overall, our findings contribute to the evolving understanding of COVID-19 antibody dynamics. Funding Austin Public Health, NIAAA, Babson Diagnostics, Dell Medical School Startup.
Collapse
Affiliation(s)
- Nadia Siles
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas
| | - Maisey Schuler
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas
| | - Cole Maguire
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas
| | - Dzifa Amengor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas
| | - Annalee Nguyen
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas
| | - Rebecca Wilen
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas
| | - Jacob Rogers
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas
| | - Sam Bazzi
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas
| | - Blaine Caslin
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas
| | | | | | | | - Janelle Creaturo
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas
| | - Kerin Hurley
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas; Dell Seton Medical Center at the University of Texas, Austin, Texas
| | - Todd A Triplett
- Department of Oncology Dell Medical School, University of Texas at Austin, Austin, Texas; Department of Immunotherapeutics & Biotechnology, School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, USA
| | - Justin F Rousseau
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas; Department of Population Health, Dell Medical School, University of Texas at Austin, Austin, Texas
| | - Stephen M Strakowski
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis; Department of Psychiatry, Dell Medical School, University of Texas at Austin, Austin, Texas
| | - Dennis Wylie
- Center for Biomedical Research Support, University of Texas at Austin, Austin Texas
| | - Jennifer Maynard
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas
| | - Lauren I R Ehrlich
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas
| | - Esther Melamed
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas
| |
Collapse
|
13
|
Matsuyama A, Mori T, Ogami A, Mafune K, Tateishi S, Kuwamura M, Muramatsu K, Fujino Y, Mori K. Sociodemographic factors affecting not receiving COVID-19 vaccine in Japan among people who originally intended to vaccinate: a prospective cohort study. Front Public Health 2023; 11:1290187. [PMID: 38125849 PMCID: PMC10731251 DOI: 10.3389/fpubh.2023.1290187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Objective Vaccine hesitancy is a major issue for acquiring herd immunity. However, some individuals may go unvaccinated owing to inhibitory factors other than vaccine hesitancy. If there is even a small number of such people, support is needed for equitable vaccine distribution and acquiring herd immunity. We investigated sociodemographic factors that affected not undergoing COVID-19 vaccination in Japan among individuals who had strong intention to vaccinate before beginning the vaccination. Methods We conducted this prospective cohort study on workers aged 20-65 years from December 2020 (baseline), to December 2021 using a self-administered questionnaire survey. There were 27,036 participants at baseline and 18,560 at follow-up. We included 6,955 participants who answered yes to this question at baseline: "Would you like to receive a COVID-19 vaccine as soon as it becomes available?" We applied multilevel logistic regression analyses to examine the association between sociodemographic factors and being unvaccinated at follow-up. Results In all, 289 participants (4.2%) went unvaccinated. The odds ratios (ORs) for being unvaccinated were significantly higher for participants aged 30-39 and 40-49 than those aged 60-65 years. Being divorced, widowed, or single, having low income, and having COVID-19 infection experience also had higher ORs. Discussion We found that some participants who initially had strong intention to vaccinate may have gone unvaccinated owing to vaccine side effects and the financial impact of absenteeism due to side effects. It is necessary to provide information repeatedly about the need for vaccination as well as social support to ensure that those who intend to vaccinate are able to do so when aiming for acquiring herd immunity through vaccination against COVID-19 as well as other potential infection pandemics in the future.
Collapse
Affiliation(s)
- Akiko Matsuyama
- Department of Occupational Health Practice and Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takahiro Mori
- Department of Occupational Health Practice and Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Akira Ogami
- Department of Work Systems and Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kosuke Mafune
- Department of Mental Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Seiichiro Tateishi
- Disaster Occupational Health Center, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mami Kuwamura
- Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Keiji Muramatsu
- Department of Public Health, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yoshihisa Fujino
- Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Koji Mori
- Department of Occupational Health Practice and Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | |
Collapse
|
14
|
Yamayoshi S, Ito M, Iwatsuki-Horimoto K, Yasuhara A, Okuda M, Hamabata T, Murakami J, Duong C, Yamamoto T, Kuroda Y, Maeda K, Kawaoka Y. Seroprevalence of SARS-CoV-2 antibodies in dogs and cats during the early and mid-pandemic periods in Japan. One Health 2023; 17:100588. [PMID: 37359748 PMCID: PMC10279464 DOI: 10.1016/j.onehlt.2023.100588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to circulate in humans since its emergence in 2019. While infection in humans continues, numerous spillover events to at least 32 animal species, including companion and zoo animals, have been reported. Since dogs and cats are highly susceptible to SARS-CoV-2 and have direct contact with their owners and other household members, it is important to know the prevalence of SARS-CoV-2 in dogs and cats. Here, we established an ELISA to detect serum antibodies against the receptor-binding domain and the ectodomain of the SARS-CoV-2 spike and nucleocapsid proteins. Using this ELISA, we assessed seroprevalence in 488 dog serum samples and 355 cat serum samples that were collected during the early pandemic period (between May and June of 2020) and 312 dog serum samples and 251 cat serum samples that were collected during the mid-pandemic period (between October 2021 and January 2022). We found that two dog serum samples (0.41%) collected in 2020, one cat serum sample (0.28%) collected in 2020, and four cat serum samples (1.6%) collected in 2021 were positive for antibodies against SARS-CoV-2. No dog serum samples collected in 2021 were positive for these antibodies. We conclude that the seroprevalence of SARS-CoV-2 antibodies in dogs and cats in Japan is low, suggesting that these animals are not a major SARS-CoV-2 reservoir.
Collapse
Affiliation(s)
- Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, University of Tokyo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Japan
- Research Center for Global Viral Infections, National Center for Global Health and Medicine Research Institute, Japan
| | - Mutsumi Ito
- Division of Virology, Institute of Medical Science, University of Tokyo, Japan
| | | | - Atsuhiro Yasuhara
- Division of Virology, Institute of Medical Science, University of Tokyo, Japan
| | - Moe Okuda
- Division of Virology, Institute of Medical Science, University of Tokyo, Japan
| | - Taiki Hamabata
- Division of Virology, Institute of Medical Science, University of Tokyo, Japan
| | - Jurika Murakami
- Division of Virology, Institute of Medical Science, University of Tokyo, Japan
| | - Calvin Duong
- Division of Virology, Institute of Medical Science, University of Tokyo, Japan
| | - Tsukasa Yamamoto
- Department of Veterinary Science, National Institute of Infectious Diseases, Japan
| | - Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, University of Tokyo, Japan
- Research Center for Global Viral Infections, National Center for Global Health and Medicine Research Institute, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, USA
| |
Collapse
|
15
|
Yamamoto S, Mizoue T, Konishi M, Oshiro Y, Inamura N, Nemoto T, Tan T, Sugiura W, Ohmagari N. Kinetics and durability of nucleocapsid-specific antibodies after SARS-CoV-2 reinfection. J Infect 2023; 87:581-583. [PMID: 37769951 DOI: 10.1016/j.jinf.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Affiliation(s)
- Shohei Yamamoto
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan.
| | - Tetsuya Mizoue
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Maki Konishi
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yusuke Oshiro
- Department of Laboratory Testing, Center Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Natsumi Inamura
- Department of Laboratory Testing, Center Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Takashi Nemoto
- Department of Laboratory Testing, Center Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Tomofumi Tan
- Department of Laboratory Testing, Center Hospital of the National Center for the Global Health and Medicine, Tokyo, Japan
| | - Wataru Sugiura
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Guan X, Huang Q, Dong M, Li M, Xie H, Wei X, Kang L, Wang X, Li A, Wang Q, Huang F, Wang Q. SARS-CoV-2-specific antibody and T-cell immunity in convalescents after infection wave in Beijing in late 2022. J Infect 2023; 87:413-419. [PMID: 37652314 DOI: 10.1016/j.jinf.2023.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
OBJECTIVES To evaluate SARS-CoV-2-specific antibody and T-cell responses in convalescents 5 months after infection wave in Beijing from December 2022 to January 2023 to prevent reinfection and severe disease. METHODS Convalescents and uninfected individuals vaccinated with different doses were enrolled to assess the IFNγ T-cell responses against SARS-CoV-2 prototype strain, BF.7, BQ.1, and XBB. Neutralizing antibodies against prototype strain, BF.7, BA.5, and XBB and immunoglobulin G antibody were further analyzed. RESULTS In convalescents, the IFNγ T-cell response was significantly higher than that of uninfected individuals (all P < 0.001), and the T-cell response against XBB had no significant difference from that of SARS-CoV-2 prototype strain and BF.7 and BQ.1 (all P > 0.05). The seropositive rates of IgG antibodies were 100% (303/303) with a median concentration of 90.52 (95% CI, 82.52-99.37). The neutralizing antibodies titers of convalescents against BF.7 and BA.5 were higher than that against the prototype strain (both P < 0.001), while XBB.1.5 was lower (P < 0.001). T-cell response, IgG and neutralizing antibodies had no significant difference in convalescents vaccinated with different doses (all P > 0.05). CONCLUSIONS The immunities may have some protective effect against possible future outbreaks and severe diseases of COVID-19.
Collapse
Affiliation(s)
- Xuejiao Guan
- Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing 100013, People's Republic of China
| | - Qi Huang
- Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing 100013, People's Republic of China; School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China
| | - Mei Dong
- Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing 100013, People's Republic of China
| | - Maozhong Li
- Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing 100013, People's Republic of China
| | - Hui Xie
- Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing 100013, People's Republic of China
| | - Xiaofeng Wei
- Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing 100013, People's Republic of China; School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China
| | - Lu Kang
- Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing 100013, People's Republic of China
| | - Xue Wang
- Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing 100013, People's Republic of China
| | - Aihua Li
- Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing 100013, People's Republic of China
| | - Qing Wang
- Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing 100013, People's Republic of China; School of Public Health, Capital Medical University, Beijing 100069, People's Republic of China
| | - Fang Huang
- Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing 100013, People's Republic of China; Beijing Research Center for Respiratory Infectious Diseases, People's Republic of China.
| | - Quanyi Wang
- Beijing Center for Disease Prevention and Control, Beijing Academy for Preventive Medicine, Beijing Institute of Tuberculosis Control Research and Prevention, Beijing 100013, People's Republic of China; Beijing Research Center for Respiratory Infectious Diseases, People's Republic of China.
| |
Collapse
|
17
|
Pérez-Juárez H, Serrano-Vázquez A, Godínez-Alvarez H, González E, Rojas-Velázquez L, Moran P, Portillo-Bobadilla T, Ramiro M, Hernández E, Lau C, Martínez M, Padilla MDLÁ, Zaragoza ME, Taboada B, Palomares LA, López S, Alagón A, Arias CF, Ximénez C. Longitudinal anti-SARS-CoV-2 antibody immune response in acute and convalescent patients. Front Cell Infect Microbiol 2023; 13:1239700. [PMID: 37743860 PMCID: PMC10515199 DOI: 10.3389/fcimb.2023.1239700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
Despite global efforts to assess the early response and persistence of SARS-CoV-2 antibodies in patients infected with or recovered from COVID-19, our understanding of the factors affecting its dynamics remains limited. This work aimed to evaluate the early and convalescent immunity of outpatients infected with SARS-CoV-2 and to determine the factors that affect the dynamics and persistence of the IgM and IgG antibody response. Seropositivity of volunteers from Mexico City and the State of Mexico, Mexico, was evaluated by ELISA using the recombinant receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein for 90 days, at different time points (1, 15, 45, 60, and 90 days) after molecular diagnosis (RT-qPCR). Gender, age range, body mass index (BMI), comorbidities, and clinical spectrum of disease were analyzed to determine associations with the dynamics of anti-SARS-CoV-2 antibodies. On 90 days post-infection, individuals with moderate and asymptomatic disease presented the lowest levels of IgM, while for IgG, at the same time, the highest levels occurred with mild and moderate disease. The IgM and IgG levels were related to the clinical spectrum of disease, BMI, and the presence/absence of comorbidities through regression trees. The results suggest that the dynamics of anti-SARS-CoV-2 IgM and IgG antibodies in outpatients could be influenced by the clinical spectrum of the disease. In addition, the persistence of antibodies against SARS-CoV-2 could be related to the clinical spectrum of the disease, BMI, and the presence/absence of comorbidities.
Collapse
Affiliation(s)
- Horacio Pérez-Juárez
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Estancias Posdoctorales por México-Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), Mexico City, Mexico
| | - Angélica Serrano-Vázquez
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Héctor Godínez-Alvarez
- Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico State, Mexico
| | - Enrique González
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Liliana Rojas-Velázquez
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Patricia Moran
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Manuel Ramiro
- División de Estudios de Posgrado, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Eric Hernández
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Clara Lau
- Laboratorios de Análisis Clínicos e Imagenología, Biomédica de Referencia, S.A.P.I. DE C.V., Mexico City, Mexico
| | - Marcela Martínez
- Laboratorios de Análisis Clínicos e Imagenología, Biomédica de Referencia, S.A.P.I. DE C.V., Mexico City, Mexico
| | - Ma. de los Ángeles Padilla
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Martha E. Zaragoza
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Blanca Taboada
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, Mexico
| | - Laura A. Palomares
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, Mexico
| | - Susana López
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, Mexico
| | - Alejandro Alagón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, Mexico
| | - Carlos F. Arias
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, Mexico
| | - Cecilia Ximénez
- Laboratorio de Inmunología, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
18
|
Chaurasia R, Patidar GK, Pandey HC, Palanisamy S, Gupta V, Chopra S, Coshic P. Epidemiology of severe acute respiratory syndrome-related coronavirus 2 antibodies in healthy blood donors and their follow-up. Asian J Transfus Sci 2023; 17:182-188. [PMID: 38274978 PMCID: PMC10807534 DOI: 10.4103/ajts.ajts_9_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/08/2022] [Accepted: 02/20/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Asymptomatic/presymptomatic COVID-19 affected individuals who may appear healthy during blood donor screening can donate blood despite being infective. Most blood donors in India are relatives/friends/acquaintances of patients, who under peer pressure overlook the donor selection process, which can significantly impact the transfusion safety. AIMS The prevalence of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) antibodies among blood donors was assessed, along with the possible transmissibility of SARS-CoV-2 virus in transfusion recipients of blood components prepared from sero-reactive blood donors. SETTINGS AND DESIGN A prospective cross-sectional study was conducted among eligible blood donors from November-2020 to April 2021. METHODS 1500 blood donors were tested for SARS-CoV-2 IgG antibodies. Sero-reactive donors were followed-up telephonically to inquire about risk factors prior to donation or appearance of COVID-19 related symptoms postdonation. Patients transfused with blood components from seroreactive donors were also followed up for posttransfusion symptoms suggestive for COVID-19. Descriptive analysis was done for the donor and patient follow-up data. RESULTS A total of 452 (30.1%) donor were reactive, with median S/CO ratio of 2.8 (interquartile range 1.5-5.5). Risk factors such as travel, contact, or quarantine were significantly higher among reactive donors. History of diabetes and/or hypertension was associated with seroreactivity. Total 516 patients were transfused with blood components from these seroreactive donors. Three patients developed fever after transfusion, one of which was found to be PCR positive after 4 days of transfusion. CONCLUSION Sero-reactivity rate among blood donors was lower than the general population. Optimum blood donor screening strategies can help decrease the possibility of blood collection from infected blood donors.
Collapse
Affiliation(s)
- Rahul Chaurasia
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Gopal Kumar Patidar
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Hem Chandra Pandey
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Suganya Palanisamy
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Vidushi Gupta
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sapna Chopra
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Poonam Coshic
- Department of Transfusion Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
19
|
Murase K, Takada K, Arihara Y, Miyanishi K, Kato J. Sotrovimab Treatment for COVID-19 Effective in a B-Cell-Depleted Patient After Anti-CD20 Treatment. Cureus 2023; 15:e41486. [PMID: 37551219 PMCID: PMC10404336 DOI: 10.7759/cureus.41486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/09/2023] Open
Abstract
Patients with hematologic malignancies are well known to have prolonged COVID-19 pneumonia. The cause has been reported to be B cell depletion after administration of anti-CD20 antibodies. Here, we report a case of COVID-19 pneumonia due to prolonged B-cell depletion after anti-CD20 antibody therapy for malignant lymphoma two years before. Sotrovimab, a neutralizing antibody that was designed to prevent the progression of COVID-19, was successful in preventing the progression to severe disease in this B-cell-depleted patient.
Collapse
Affiliation(s)
- Kazuyuki Murase
- Department of Medical Oncology, Sapporo Medical University, Sapporo, JPN
| | - Kohichi Takada
- Department of Medical Oncology, Sapporo Medical University, Sapporo, JPN
| | - Yohei Arihara
- Department of Medical Oncology, Sapporo Medical University, Sapporo, JPN
| | - Koji Miyanishi
- Department of Medical Oncology, Sapporo Medical University, Sapporo, JPN
| | - Junji Kato
- Department of Medical Oncology, Sapporo Kiyota Hospital, Sapporo, JPN
| |
Collapse
|
20
|
Chen B, Julg B, Mohandas S, Bradfute SB. Viral persistence, reactivation, and mechanisms of long COVID. eLife 2023; 12:e86015. [PMID: 37140960 PMCID: PMC10159620 DOI: 10.7554/elife.86015;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/24/2023] [Indexed: 08/28/2024] Open
Abstract
The COVID-19 global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has infected hundreds of millions of individuals. Following COVID-19 infection, a subset can develop a wide range of chronic symptoms affecting diverse organ systems referred to as post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID. A National Institutes of Health-sponsored initiative, RECOVER: Researching COVID to Enhance Recovery, has sought to understand the basis of long COVID in a large cohort. Given the range of symptoms that occur in long COVID, the mechanisms that may underlie these diverse symptoms may also be diverse. In this review, we focus on the emerging literature supporting the role(s) that viral persistence or reactivation of viruses may play in PASC. Persistence of SARS-CoV-2 RNA or antigens is reported in some organs, yet the mechanism by which they do so and how they may be associated with pathogenic immune responses is unclear. Understanding the mechanisms of persistence of RNA, antigen or other reactivated viruses and how they may relate to specific inflammatory responses that drive symptoms of PASC may provide a rationale for treatment.
Collapse
Affiliation(s)
- Benjamin Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Boris Julg
- Infectious Diseases Division, Massachusetts General Hospital, Ragon Institute of Mass General, MIT and HarvardBostonUnited States
| | - Sindhu Mohandas
- Division of Infectious Diseases, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences CenterAlbuquerqueUnited States
| |
Collapse
|
21
|
Chen B, Julg B, Mohandas S, Bradfute SB. Viral persistence, reactivation, and mechanisms of long COVID. eLife 2023; 12:e86015. [PMID: 37140960 PMCID: PMC10159620 DOI: 10.7554/elife.86015] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/24/2023] [Indexed: 05/05/2023] Open
Abstract
The COVID-19 global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has infected hundreds of millions of individuals. Following COVID-19 infection, a subset can develop a wide range of chronic symptoms affecting diverse organ systems referred to as post-acute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID. A National Institutes of Health-sponsored initiative, RECOVER: Researching COVID to Enhance Recovery, has sought to understand the basis of long COVID in a large cohort. Given the range of symptoms that occur in long COVID, the mechanisms that may underlie these diverse symptoms may also be diverse. In this review, we focus on the emerging literature supporting the role(s) that viral persistence or reactivation of viruses may play in PASC. Persistence of SARS-CoV-2 RNA or antigens is reported in some organs, yet the mechanism by which they do so and how they may be associated with pathogenic immune responses is unclear. Understanding the mechanisms of persistence of RNA, antigen or other reactivated viruses and how they may relate to specific inflammatory responses that drive symptoms of PASC may provide a rationale for treatment.
Collapse
Affiliation(s)
- Benjamin Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Boris Julg
- Infectious Diseases Division, Massachusetts General Hospital, Ragon Institute of Mass General, MIT and HarvardBostonUnited States
| | - Sindhu Mohandas
- Division of Infectious Diseases, Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern CaliforniaLos AngelesUnited States
| | - Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences CenterAlbuquerqueUnited States
| |
Collapse
|
22
|
Taniguchi Y, Suemori K, Tanaka K, Okamoto A, Murakami A, Miyamoto H, Takasuka Y, Yamashita M, Takenaka K. Long-term transition of antibody titers in healthcare workers following the first to fourth doses of mRNA COVID-19 vaccine: Comparison of two automated SARS-CoV-2 immunoassays. J Infect Chemother 2023; 29:534-538. [PMID: 36696921 PMCID: PMC9867842 DOI: 10.1016/j.jiac.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/17/2022] [Accepted: 01/15/2023] [Indexed: 01/23/2023]
Abstract
Anti-spike receptor binding domain (S-RBD) antibody against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which best correlates with virus-neutralizing antibody is useful for estimating the period of protection and identifying the timing of additional booster doses. Long-term transition of the S-RBD antibody titer and the antibody responses among healthy individuals remain unclear. In the present study, therefore, we monitored the S-RBD antibody titers of 16 healthcare workers every 4 weeks for 76 weeks after vaccination with a fourth dose of mRNA-1273 (Moderna) following three doses of BNT162b2 (Pfizer/BioNTech) using two commercial automated immunoassays (Roche and Abbott). Two antibody responses to the vaccine were similar with an up-down change before and after the second (weeks 3), third (weeks 40) and fourth (week 72) vaccinations, but the titer did not fall below the assay's positivity threshold in any individual. The peak level of the geometric mean titer (GMT) in the Roche assay was highest after the third vaccination, and that in Abbott assay was highest after the fourth vaccination but almost equal to that after the third vaccination. Both the geometric mean fold rise (GMFR) demonstrated by the Roche and Abbott assays were highest after the third vaccination. Antibody titers determined by the Roche and Abbott assays showed a positive strong correlation (correlation coefficient: 0.70 to 0.99), but the ratio (Roche/Abbott) of antibodies demonstrated by both assays increased 0.46- to 8.26-fold between weeks 3 and 76. These findings will be helpful for clinicians when interpreting results for SARS-CoV-2 antibody levels and considering future vaccination strategies.
Collapse
Affiliation(s)
- Yumi Taniguchi
- Clinical Laboratory Department, Ehime University Hospital, Ehime, 7910295, Japan
| | - Koichiro Suemori
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Ehime, 7910295, Japan.
| | - Keiko Tanaka
- Department of Epidemiology and Preventive Medicine, Ehime University Graduate School of Medicine, Ehime, 7910295, Japan
| | - Ai Okamoto
- Clinical Laboratory Department, Ehime University Hospital, Ehime, 7910295, Japan
| | - Akiko Murakami
- Clinical Laboratory Department, Ehime University Hospital, Ehime, 7910295, Japan
| | - Hitoshi Miyamoto
- Clinical Laboratory Department, Ehime University Hospital, Ehime, 7910295, Japan
| | - Yasunori Takasuka
- Clinical Laboratory Department, Ehime University Hospital, Ehime, 7910295, Japan
| | - Masakatsu Yamashita
- Department of Immunology, Ehime University Graduate School of Medicine, Ehime, 7910295, Japan
| | - Katsuto Takenaka
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Ehime, 7910295, Japan
| |
Collapse
|
23
|
Miyazato Y, Tsuzuki S, Matsunaga A, Morioka S, Terada M, Saito S, Iwamoto N, Kutsuna S, Ishizaka Y, Ohmagari N. Association between SARS-CoV-2 anti-spike antibody titers and the development of post-COVID conditions: A retrospective observational study. Glob Health Med 2023; 5:106-111. [PMID: 37128226 PMCID: PMC10130543 DOI: 10.35772/ghm.2022.01070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
The symptoms that persist after an acute coronavirus disease 2019 (COVID-19) are referred to as post- COVID conditions. Although the cause of post-COVID conditions remains unclear, the host immune response to SARS-CoV-2 may be involved. Hence, we aimed to investigate the effect of serum antibody titers against SARS-CoV-2 on the development of post-COVID conditions. We conducted a retrospective observational study of COVID-19-recovered individuals who attended the clinic at the National Center for Global Health and Medicine between January 2020 and April 2021. Serum SARS-CoV-2 anti-spike antibody titers were measured and a questionnaire survey was used to collect information on the presence of post-COVID conditions and demographic characteristics of the participants. Participants were then divided into two groups: high peak antibody titer group [≥ 0.759 OD450 value], and low peak antibody titer group [< 0.759 OD450 value] and compared their frequency of post-COVID conditions. Of 526 individuals attending the clinic, 457 (86.9%) responded to the questionnaire. We analyzed the data of 227 (49.7%) participants with measurements of serum antibody titers during the peak period. The incidence of depressed mood was significantly higher in the group with higher antibody titers (odds ratio: 2.34, 95% CI: 1.17-4.67, p = 0.016). There was no significant difference in the frequency of the remaining symptoms between the two groups. Among post-COVID conditions, the depressed mood was more frequent in the group with high serum antibody titers which suggests a difference in pathogenesis between depressive mood and other post-COVID conditions that requires further investigation.
Collapse
Affiliation(s)
- Yusuke Miyazato
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinya Tsuzuki
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
- AMR Clinical Reference Center, National Center for Global Health and Medicine Hospital, Tokyo, Japan
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Akihiro Matsunaga
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shinichiro Morioka
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
- AMR Clinical Reference Center, National Center for Global Health and Medicine Hospital, Tokyo, Japan
- Emerging and Reemerging Infectious Diseases, Graduate School of Medicine, Tohoku University, Miyagi, Japan
- Address correspondence to:Shinichiro Morioka, Disease Control and Prevention Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan. E-mail:
| | - Mari Terada
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Sho Saito
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Noriko Iwamoto
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Satoshi Kutsuna
- Department of Infection Control, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Tokyo, Japan
- AMR Clinical Reference Center, National Center for Global Health and Medicine Hospital, Tokyo, Japan
| |
Collapse
|
24
|
Underwood AP, Sølund C, Fernandez-Antunez C, Villadsen SL, Mikkelsen LS, Fahnøe U, Bollerup S, Winckelmann AA, Schneider UV, Binderup A, Vizgirda G, Sørensen AL, Vinten CN, Dalegaard MI, Ramirez S, Weis N, Bukh J. Durability and breadth of neutralisation following multiple antigen exposures to SARS-CoV-2 infection and/or COVID-19 vaccination. EBioMedicine 2023; 89:104475. [PMID: 36870117 PMCID: PMC9978324 DOI: 10.1016/j.ebiom.2023.104475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Given the importance of vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the prevention of severe coronavirus disease 2019 (COVID-19), detailed long-term analyses of neutralising antibody responses are required to inform immunisation strategies. METHODS In this study, longitudinal neutralising antibody titres to an ancestral SARS-CoV-2 isolate and cross-neutralisation to delta and omicron isolates were analysed in individuals previously infected with SARS-CoV-2, vaccinated against COVID-19, or a complex mix thereof with up to two years of follow-up. FINDINGS Both infection-induced and vaccine-induced neutralising responses against SARS-CoV-2 appeared to follow similar decay patterns. Following vaccination in previously infected individuals, neutralising antibody responses were more durable than prior to vaccination. Further, this study shows that vaccination after infection, as well as booster vaccination, increases the cross-neutralising potential to both delta and omicron SARS-CoV-2 variants. INTERPRETATION Taken together, these results suggest that neither type of antigen exposure is superior for neutralising antibody durability. However, these results support vaccination to increase the durability and cross-neutralisation potential of neutralising responses, thereby enhancing protection against severe COVID-19. FUNDING This work was supported by grants from The Capital Region of Denmark's Research Foundation, the Novo Nordisk Foundation, the Independent Research Fund Denmark, the Candys Foundation, and the Danish Agency for Science and Higher Education.
Collapse
Affiliation(s)
- Alexander P Underwood
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Christina Sølund
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Carlota Fernandez-Antunez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Signe Lysemose Villadsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Lotte S Mikkelsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Signe Bollerup
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Anni Assing Winckelmann
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Uffe Vest Schneider
- Department of Clinical Microbiology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Alekxander Binderup
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Greta Vizgirda
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Anna-Louise Sørensen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | | | | | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark.
| |
Collapse
|
25
|
Shimbashi R, Shiino T, Ainai A, Moriyama S, Arai S, Morino S, Takanashi S, Arashiro T, Suzuki M, Matsuzawa Y, Kato K, Hasegawa M, Koshida R, Kitaoka M, Ueno T, Shimizu H, Yuki H, Takeda T, Nakamura-Uchiyama F, Takasugi K, Iida S, Shimada T, Kato H, Fujimoto T, Iwata-Yoshikawa N, Sano K, Yamada S, Kuroda Y, Okuma K, Nojima K, Nagata N, Fukushi S, Maeda K, Takahashi Y, Suzuki T, Ohnishi M, Tanaka-Taya K. Specific COVID-19 risk behaviors and the preventive effect of personal protective equipment among healthcare workers in Japan. Glob Health Med 2023; 5:5-14. [PMID: 36865900 PMCID: PMC9974228 DOI: 10.35772/ghm.2022.01060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
As coronavirus disease 2019 (COVID-19) outbreaks in healthcare facilities are a serious public health concern, we performed a case-control study to investigate the risk of COVID-19 infection in healthcare workers. We collected data on participants' sociodemographic characteristics, contact behaviors, installation status of personal protective equipment, and polymerase chain reaction testing results. We also collected whole blood and assessed seropositivity using the electrochemiluminescence immunoassay and microneutralization assay. In total, 161 (8.5%) of 1,899 participants were seropositive between August 3 and November 13, 2020. Physical contact (adjusted odds ratio 2.4, 95% confidence interval 1.1-5.6) and aerosol-generating procedures (1.9, 1.1-3.2) were associated with seropositivity. Using goggles (0.2, 0.1-0.5) and N95 masks (0.3, 0.1-0.8) had a preventive effect. Seroprevalence was higher in the outbreak ward (18.6%) than in the COVID-19 dedicated ward (1.4%). Results showed certain specific risk behaviors of COVID-19; proper infection prevention practices reduced these risks.
Collapse
Affiliation(s)
- Reiko Shimbashi
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Teiichiro Shiino
- Center for Clinical Sciences, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
- AIDS Research Center, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Saya Moriyama
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Satoru Arai
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Saeko Morino
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Sayaka Takanashi
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Takeshi Arashiro
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Motoi Suzuki
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Yukimasa Matsuzawa
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | | | | | - Rie Koshida
- Kanazawa City Health Center, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | | | | | | - Shun Iida
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Tomoe Shimada
- Center for Field Epidemic Intelligence, Research and Professional Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Hirofumi Kato
- Department of Virology 1, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Tsuguto Fujimoto
- Center for Emergency Preparedness and Response, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Naoko Iwata-Yoshikawa
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Kaori Sano
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Souichi Yamada
- Department of Virology 1, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Yudai Kuroda
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Kazu Okuma
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
- Department of Microbiology, Kansai Medical University, Hirakata, Osaka, Japan
| | - Kiyoko Nojima
- Department of Safety Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Shuetsu Fukushi
- Department of Virology 1, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Makoto Ohnishi
- Deputy Director-General, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Keiko Tanaka-Taya
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
- Kanagawa Prefectural Institute of Public Health, Chigasaki, Kanagawa, Japan
| |
Collapse
|
26
|
Xu Z, Wei D, Zhang H, Demongeot J. A Novel Mathematical Model That Predicts the Protection Time of SARS-CoV-2 Antibodies. Viruses 2023; 15:v15020586. [PMID: 36851801 PMCID: PMC9962246 DOI: 10.3390/v15020586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Infectious diseases such as SARS-CoV-2 pose a considerable threat to public health. Constructing a reliable mathematical model helps us quantitatively explain the kinetic characteristics of antibody-virus interactions. A novel and robust model is developed to integrate antibody dynamics with virus dynamics based on a comprehensive understanding of immunology principles. This model explicitly formulizes the pernicious effect of the antibody, together with a positive feedback stimulation of the virus-antibody complex on the antibody regeneration. Besides providing quantitative insights into antibody and virus dynamics, it demonstrates good adaptivity in recapturing the virus-antibody interaction. It is proposed that the environmental antigenic substances help maintain the memory cell level and the corresponding neutralizing antibodies secreted by those memory cells. A broader application is also visualized in predicting the antibody protection time caused by a natural infection. Suitable binding antibodies and the presence of massive environmental antigenic substances would prolong the protection time against breakthrough infection. The model also displays excellent fitness and provides good explanations for antibody selection, antibody interference, and self-reinfection. It helps elucidate how our immune system efficiently develops neutralizing antibodies with good binding kinetics. It provides a reasonable explanation for the lower SARS-CoV-2 mortality in the population that was vaccinated with other vaccines. It is inferred that the best strategy for prolonging the vaccine protection time is not repeated inoculation but a directed induction of fast-binding antibodies. Eventually, this model will inform the future construction of an optimal mathematical model and help us fight against those infectious diseases.
Collapse
Affiliation(s)
- Zhaobin Xu
- Department of Life Science, Dezhou University, Dezhou 253023, China
- Correspondence: (Z.X.); (J.D.)
| | - Dongqing Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hongmei Zhang
- Department of Life Science, Dezhou University, Dezhou 253023, China
| | - Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, Faculty of Medicine, University Grenoble Alpes (UGA), 38700 La Tronche, France
- Correspondence: (Z.X.); (J.D.)
| |
Collapse
|
27
|
High-Throughput Neutralization and Serology Assays Reveal Correlated but Highly Variable Humoral Immune Responses in a Large Population of Individuals Infected with SARS-CoV-2 in the US between March and August 2020. mBio 2023; 14:e0352322. [PMID: 36786604 PMCID: PMC10128039 DOI: 10.1128/mbio.03523-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
The ability to measure neutralizing antibodies on large scale can be important for understanding features of the natural history and epidemiology of infection, as well as an aid in determining the efficacy of interventions, particularly in outbreaks such as the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Because of the assay's rapid scalability and high efficiency, serology measurements that quantify the presence rather than function of serum antibodies often serve as proxies of immune protection. Here, we report the development of a high-throughput, automated fluorescence-based neutralization assay using SARS-CoV-2 virus to quantify neutralizing antibody activity in patient specimens. We performed large-scale testing of over 19,000 COVID-19 convalescent plasma (CCP) samples from patients who had been infected with SARS-CoV-2 between March and August 2020 across the United States. The neutralization capacity of the samples was moderately correlated with serological measurements of anti-receptor-binding domain (RBD) IgG levels. The neutralizing antibody levels within these convalescent-phase serum samples were highly variable against the original USA-WA1/2020 strain with almost 10% of individuals who had had PCR-confirmed SARS-CoV-2 infection having no detectable antibodies either by serology or neutralization, and ~1/3 having no or low neutralizing activity. Discordance between neutralization and serology measurements was mainly due to the presence of non-IgG RBD isotypes. Meanwhile, natural infection with the earliest SARS-CoV-2 strain USA-WA1/2020 resulted in weaker neutralization of subsequent B.1.1.7 (alpha) and the B.1.351 (beta) variants, with 88% of samples having no activity against the BA.1 (omicron) variant. IMPORTANCE The ability to directly measure neutralizing antibodies on live SARS-CoV-2 virus in individuals can play an important role in understanding the efficacy of therapeutic interventions or vaccines. In contrast to functional neutralization assays, serological assays only quantify the presence of antibodies as a proxy of immune protection. Here, we have developed a high-throughput, automated neutralization assay for SARS-CoV-2 and measured the neutralizing activity of ~19,000 COVID-19 convalescent plasma (CCP) samples collected across the United States between March and August of 2020. These data were used to support the FDA's interpretation of CCP efficacy in patients with SARS-CoV-2 infection and their issuance of emergency use authorization of CCP in 2020.
Collapse
|
28
|
Sandie AB, Tejiokem MC, Faye CM, Hamadou A, Abah AA, Mbah SS, Tagnouokam-Ngoupo PA, Njouom R, Eyangoh S, Abanda NK, Diarra M, Ben Miled S, Tchuente M, Tchatchueng-Mbougua JB, Tchatchueng-Mbougua JB. Observed versus estimated actual trend of COVID-19 case numbers in Cameroon: A data-driven modelling. Infect Dis Model 2023; 8:228-239. [PMID: 36776734 PMCID: PMC9905042 DOI: 10.1016/j.idm.2023.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Controlling the COVID-19 outbreak remains a challenge for Cameroon, as it is for many other countries worldwide. The number of confirmed cases reported by health authorities in Cameroon is based on observational data, which is not nationally representative. The actual extent of the outbreak from the time when the first case was reported in the country to now remains unclear. This study aimed to estimate and model the actual trend in the number of COVID -19 new infections in Cameroon from March 05, 2020 to May 31, 2021 based on an observed disaggregated dataset. We used a large disaggregated dataset, and multilevel regression and poststratification model was applied prospectively for COVID-19 cases trend estimation in Cameroon from March 05, 2020 to May 31, 2021. Subsequently, seasonal autoregressive integrated moving average (SARIMA) modeling was used for forecasting purposes. Based on the prospective MRP modeling findings, a total of about 7450935 (30%) of COVID-19 cases was estimated from March 05, 2020 to May 31, 2021 in Cameroon. Generally, the reported number of COVID-19 infection cases in Cameroon during this period underestimated the estimated actual number by about 94 times. The forecasting indicated a succession of two waves of the outbreak in the next two years following May 31, 2021. If no action is taken, there could be many waves of the outbreak in the future. To avoid such situations which could be a threat to global health, public health authorities should effectively monitor compliance with preventive measures in the population and implement strategies to increase vaccination coverage in the population.
Collapse
Key Words
- ACF, Autocorrelation Function
- AIC, Akaike information criterion
- COVID-19
- COVID-19, Coronavirus Disease 2019
- Cameroon
- Forecasting
- MAE, Mean Absolute Error
- MAPE, Mean Absolute Percentage Error
- MASE, Mean Absolute Scaled Error
- ME, Mean Error
- MPE, Mean Percentage Error
- MRP, Multilevel Regression and Post-stratification
- Observed
- PACF, Partial Autocorrelation Function
- PLACARD, Platform for Collecting, Analyzing and Reporting Data
- Post-stratification
- SARIMA, Seasonal Autoregressive integrated moving average
- SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2
- Underestimated
Collapse
Affiliation(s)
- Arsène Brunelle Sandie
- African Population and Health Research Center, West Africa Regional Office, Dakar, Senegal,Centre Pasteur du Cameroon, membre du Réseau International des Instituts Pasteur, Cameroon,Corresponding author. African Population and Health Research Center, West Africa Regional Office, Dakar, Senegal.
| | | | - Cheikh Mbacké Faye
- African Population and Health Research Center, West Africa Regional Office, Dakar, Senegal
| | - Achta Hamadou
- Centre Pasteur du Cameroon, membre du Réseau International des Instituts Pasteur, Cameroon
| | - Aristide Abah Abah
- Direction de la lutte contre les Maladies épidémiques et les pandémies, Ministère de la santé publique, Cameroon
| | - Serge Sadeuh Mbah
- Centre Pasteur du Cameroon, membre du Réseau International des Instituts Pasteur, Cameroon
| | | | - Richard Njouom
- Centre Pasteur du Cameroon, membre du Réseau International des Instituts Pasteur, Cameroon
| | - Sara Eyangoh
- Centre Pasteur du Cameroon, membre du Réseau International des Instituts Pasteur, Cameroon
| | - Ngu Karl Abanda
- Centre Pasteur du Cameroon, membre du Réseau International des Instituts Pasteur, Cameroon
| | | | | | - Maurice Tchuente
- Fondation pour la recherche l'ingénierie et l'innovation, Cameroon,IRD UMI 209 UMMISCO, University of Yaounde I, P.O. Box 337, Yaounde, Cameroon
| | - Jules Brice Tchatchueng-Mbougua
- Centre Pasteur du Cameroon, membre du Réseau International des Instituts Pasteur, Cameroon,IRD UMI 209 UMMISCO, University of Yaounde I, P.O. Box 337, Yaounde, Cameroon
| | - Jules Brice Tchatchueng-Mbougua
- Centre Pasteur du Cameroon, membre du Réseau International des Instituts Pasteur, Cameroon,IRD UMI 209 UMMISCO, University of Yaounde I, P.O. Box 337, Yaounde, Cameroon
| |
Collapse
|
29
|
Ngalamika O, Lidenge SJ, Mukasine MC, Kawimbe M, Kamanzi P, Ngowi JR, Mwaiselage J, Tso FY. SARS-CoV-2-specific T cell and humoral immunity in individuals with and without HIV in an African population: a prospective cohort study. Int J Infect Dis 2023; 127:106-115. [PMID: 36516914 PMCID: PMC9741763 DOI: 10.1016/j.ijid.2022.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/07/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To longitudinally compare SARS-CoV-2-specific T cell and humoral immune responses between convalescent individuals who are HIV-positive (HIV+) and HIV-negative (HIV-). METHODS We conducted enzyme-linked immunospots to determine the SARS-CoV-2-specific T cell responses to spike and nucleocapsid, membrane protein, and other open reading frame proteins (NMO), whereas an immunofluorescence assay was used to determine the humoral responses. Participants were sampled at baseline and after 8 weeks of follow-up. RESULTS Individuals who are HIV- had significantly more T cell responses to NMO and spike than individuals who are HIV+ at baseline, P-value = 0.026 and P-value = 0.029, respectively. At follow-up, T cell responses to NMO and spike in individuals who are HIV+ increased to levels comparable with individuals who are HIV-. T cell responses in the HIV- group significantly decreased from baseline levels at the time of follow-up (spike [P-value = 0.011] and NMO [P-value = 0.014]). A significantly higher number of individuals in the HIV+ group had an increase in T cell responses to spike (P-value = 0.01) and NMO (P-value = 0.026) during the follow-up period than the HIV- group. Antispike and antinucleocapsid antibody titers were high (1: 1280) and not significantly different between individuals who were HIV- and HIV+ at baseline. A significant decrease in antinucleocapsid titer was observed in the HIV- (P-value = 0.0001) and the HIV+ (P-value = 0.001) groups at follow-up. SARS-CoV-2 vaccination was more effective in boosting the T cell than antibody responses shortly after infection. CONCLUSION There is an impairment of SARS-CoV-2-specific T cell immunity in individuals who are HIV+ with advanced immunosuppression. SARS-CoV-2-specific T cell immune responses may be delayed in individuals who are HIV+, even in those on antiretroviral therapy. There is no difference in SARS-CoV-2-specific humoral immunity between individuals who are HIV- and HIV+.
Collapse
Affiliation(s)
- Owen Ngalamika
- Dermatology and Venereology Division, Department of Medicine, University Teaching Hospital, University of Zambia School of Medicine, Lusaka, Zambia,HHV-8 Molecular Virology Laboratory, University Teaching Hospital, Lusaka, Zambia,Corresponding author: Tel: +260961406928
| | - Salum J. Lidenge
- Ocean Road Cancer Institute, Dar-es-Salam, Tanzania,Muhimbili University of Health and Allied Sciences, Dar-es-Salam, Tanzania
| | | | - Musonda Kawimbe
- HHV-8 Molecular Virology Laboratory, University Teaching Hospital, Lusaka, Zambia
| | - Patrick Kamanzi
- Dermatology and Venereology Division, Department of Medicine, University Teaching Hospital, University of Zambia School of Medicine, Lusaka, Zambia
| | | | - Julius Mwaiselage
- Ocean Road Cancer Institute, Dar-es-Salam, Tanzania,Muhimbili University of Health and Allied Sciences, Dar-es-Salam, Tanzania
| | - For Yue Tso
- Department of Interdisciplinary Oncology, and The Stanley S Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, USA
| |
Collapse
|
30
|
Mahalingam G, Periyasami Y, Arjunan P, Subaschandrabose RK, Mathivanan TV, Mathew RS, Devi RKT, Premkumar PS, Muliyil J, Srivastava A, Moorthy M, Marepally S. Omicron infection increases IgG binding to spike protein of predecessor variants. J Med Virol 2023; 95:e28419. [PMID: 36546401 PMCID: PMC9880675 DOI: 10.1002/jmv.28419] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission in India in 2020-2022 was driven predominantly by Wild (Wuhan-Hu-1 and D614G), Delta, and Omicron variants. The aim of this study was to examine the effect of infections on the humoral immune response and cross-reactivity to spike proteins of Wuhan-Hu-1, Delta, C.1.2., and Omicron. Residual archival sera (N = 81) received between January 2020 and March 2022 were included. Infection status was inferred by a positive SARS-CoV-2 RT-PCR and/or serology (anti-N and anti-S antibodies) and sequencing of contemporaneous samples (N = 18) to infer lineage. We estimated the levels and cross-reactivity of infection-induced sera including Wild, Delta, Omicron as well as vaccine breakthrough infections (Delta and Omicron). We found an approximately two-fold increase in spike-specific IgG antibody binding in post-Omicron infection compared with the pre-Omicron period, whilst the change in pre- and post-Delta infections were similar. Further investigation of Omicron-specific humoral responses revealed primary Omicron infection as an inducer of cross-reactive antibodies against predecessor variants, in spite of the weaker degree of humoral response compared to Wuhan-Hu-1 and Delta infection. Intriguingly, Omicron vaccine-breakthrough infections when compared with primary infections, exhibited increased humoral responses against RBD (7.7-fold) and Trimeric S (Trimeric form of spike protein) (34.6-fold) in addition to increased binding of IgGs towards previously circulating variants (4.2 - 6.5-fold). Despite Delta breakthrough infections showing a higher level of humoral response against RBD (2.9-fold) and Trimeric S (5.7-fold) compared to primary Delta sera, a demonstrably reduced binding (36%-49%) was observed to Omicron spike protein. Omicron vaccine breakthrough infection results in increased intensity of humoral response and wider breadth of IgG binding to spike proteins of antigenically-distinct, predecessor variants.
Collapse
Affiliation(s)
- Gokulnath Mahalingam
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru)Christian Medical CollegeVelloreTamil NaduIndia
| | - Yogapriya Periyasami
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru)Christian Medical CollegeVelloreTamil NaduIndia
| | - Porkizhi Arjunan
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru)Christian Medical CollegeVelloreTamil NaduIndia
| | | | - Tamil V. Mathivanan
- Department of Clinical VirologyChristian Medical CollegeVelloreTamil NaduIndia
| | - Roshlin S. Mathew
- Department of Clinical VirologyChristian Medical CollegeVelloreTamil NaduIndia
| | - Ramya K. T. Devi
- Department of BiotechnologySRM Institute of Science and TechnologyTamil NaduIndia
| | | | | | - Alok Srivastava
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru)Christian Medical CollegeVelloreTamil NaduIndia
| | - Mahesh Moorthy
- Department of Clinical VirologyChristian Medical CollegeVelloreTamil NaduIndia
| | - Srujan Marepally
- Centre for Stem Cell Research (CSCR) (a unit of inStem, Bengaluru)Christian Medical CollegeVelloreTamil NaduIndia
| |
Collapse
|
31
|
State of the art in epitope mapping and opportunities in COVID-19. Future Sci OA 2023; 16:FSO832. [PMID: 36897962 PMCID: PMC9987558 DOI: 10.2144/fsoa-2022-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
The understanding of any disease calls for studying specific biological structures called epitopes. One important tool recently drawing attention and proving efficiency in both diagnosis and vaccine development is epitope mapping. Several techniques have been developed with the urge to provide precise epitope mapping for use in designing sensitive diagnostic tools and developing rpitope-based vaccines (EBVs) as well as therapeutics. In this review, we will discuss the state of the art in epitope mapping with a special emphasis on accomplishments and opportunities in combating COVID-19. These comprise SARS-CoV-2 variant analysis versus the currently available immune-based diagnostic tools and vaccines, immunological profile-based patient stratification, and finally, exploring novel epitope targets for potential prophylactic, therapeutic or diagnostic agents for COVID-19.
Collapse
|
32
|
Abebe EC, Dejenie TA. Protective roles and protective mechanisms of neutralizing antibodies against SARS-CoV-2 infection and their potential clinical implications. Front Immunol 2023; 14:1055457. [PMID: 36742320 PMCID: PMC9892939 DOI: 10.3389/fimmu.2023.1055457] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
Neutralizing antibodies (NAbs) are central players in the humoral immunity that defends the body from SARS-CoV-2 infection by blocking viral entry into host cells and neutralizing their biological effects. Even though NAbs primarily work by neutralizing viral antigens, on some occasions, they may also combat the SARS-CoV-2 virus escaping neutralization by employing several effector mechanisms in collaboration with immune cells like natural killer (NK) cells and phagocytes. Besides their prophylactic and therapeutic roles, antibodies can be used for COVID-19 diagnosis, severity evaluation, and prognosis assessment in clinical practice. Furthermore, the measurement of NAbs could have key implications in determining individual or herd immunity against SARS-CoV-2, vaccine effectiveness, and duration of the humoral protective response, as well as aiding in the selection of suitable individuals who can donate convalescent plasma to treat infected people. Despite all these clinical applications of NAbs, using them in clinical settings can present some challenges. This review discusses the protective functions, possible protective mechanisms against SARS-CoV-2, and potential clinical applications of NAbs in COVID-19. This article also highlights the possible challenges and solutions associated with COVID-19 antibody-based prophylaxis, therapy, and vaccination.
Collapse
Affiliation(s)
- Endeshaw Chekol Abebe
- Department of Medical Biochemistry, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Tadesse Asmamaw Dejenie
- Department of Medical Biochemistry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
33
|
Neutralizing Antibody Responses Among Residents and Staff of Long-Term Care Facilities in the State of New Jersey During the First Wave of the COVID-19 Pandemic. J Community Health 2023; 48:50-58. [PMID: 36197535 PMCID: PMC9532818 DOI: 10.1007/s10900-022-01142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2022] [Indexed: 10/24/2022]
Abstract
Expanding a previous study of the immune response to SARS-CoV-2 in 10 New Jersey long-term care facilities (LTCFs) during the first wave of the pandemic, this study characterized the neutralizing antibody (NAb) response to infection and vaccination among residents and staff. Sera from the original study were tested using the semi-quantitative enzyme-linked immunosorbent cPass neutralization-antibody detection assay. Almost all residents (97.8%) and staff (98.1%) who were positive for IgG S antibody to the spike protein were positive for NAb. In non-vaccinated subjects with a history of infection (positive polymerase chain reaction (PCR) or antigen test), the distribution of mean intervals from infection to serology date was not significantly different for S antibody positives versus negatives. More than 80% of both were positive at 10 months. Similarly, the mean NAb titer for residents and staff was not associated with interval from PCR/antigen positive to serology date, F = 0.1.01, Pr > F = 0.4269 and F = 0.77, Pr > F = 0.6548 respectively. Titers remained high as the interval reached 10 months. In vaccinees who had no history of infection, the NAb titer was near the test maximum when the serum was drawn seven or more days after the second vaccine dose. In staff the mean NAb titer increased significantly as the vaccine number increased from one to two doses, F = 11.69, Pr > F < 0.0001. NAb titers to SARS-CoV-2 in residents and staff of LTCFs were consistently high 10 months after infection and after two doses of vaccine. Ongoing study is needed to determine whether this antibody provides protection as the virus continues to mutate.
Collapse
|
34
|
Geldof J, Truyens M, Sabino J, Ferrante M, Lambert J, Lapeere H, Hillary T, Van Laethem A, de Vlam K, Verschueren P, Padalko E, Lobaton T, Vermeire S. SARS-CoV-2 infection and COVID19 vaccination across eight immune-mediated inflammatory disorders: A prospective, real-life Belgian cohort study - the BELCOMID study. Front Immunol 2023; 14:1126351. [PMID: 36936974 PMCID: PMC10014825 DOI: 10.3389/fimmu.2023.1126351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Background The risks and impact of COVID19 disease and vaccination in patients with Immune Mediated Inflammatory Diseases (IMID) remain incompletely understood. IMID patients and particularly patients receiving immunosuppressive treatment were excluded from the original, registrational phase-3 COVID19 vaccination efficacy and safety trials. Real-world observational data can help to fill this gap in knowledge. The BELCOMID study aims to explore the interaction between IMIDs, immune-modulating treatment modalities and SARS-CoV-2 infection and vaccination in a real-life patient cohort. Methods A multidisciplinary, prospective, observational cohort study was set up. Consecutive patients with IMIDs of the gut, joints and skin followed at two high-volume referral centers were invited. Both patients under conventional treatment or targeted immune modulating therapies were included. Patient data and serological samples were collected at 3 predefined periods (before COVID19 vaccination, before booster vaccination, after booster vaccination). Primary endpoints were positive PCR-test and SARS-CoV-2 serology reflecting previous SARS-CoV-2 infection or vaccination. Associations with IMID treatment modality and IMID disease activity were assessed. Results of the first two inclusion periods (before booster vaccination) are reported. Results At the first inclusion period data was assessed of 2165 IMID-patients before COVID19 vaccination. At the second inclusion period, data of 2065 patients was collected of whom 1547 had received complete baseline COVID19 vaccination and 222 were partially vaccinated. SARS-CoV-2 infection rate remained low in both groups. No significant increase in IMID flare-up rate was noted in patients with prior SARS-CoV-2 infection. Multiple logistic regression analyses did not show a significant influence of IMID-treatment modality or IMID activity on SARS-CoV-2 infection risk (based on PCR positivity or N-serology). Patients treated with conventional immunomodulators, systemic steroids, and patients on advanced therapies such as biologics or small molecules, had reduced S-antibody seroconversion. S-antibody response was also lower in patients without prior SARS-CoV-2 infection and in active smokers. A subset of patients (4.1%) had no S- nor N-antibody seroconversion following complete baseline vaccination. Conclusion The BELCOMID study results confirm the benign course of COVID19 infection and vaccination in a large real-life IMID-population. However, our results underscore the need for repeated vaccination and smoking cessation in patients with IMIDs treated with immune-modulating therapies or systemic steroids during the pandemic.
Collapse
Affiliation(s)
- Jeroen Geldof
- Ghent University Hospital, Department of Gastroenterology and Hepatology, Ghent, Belgium
- Ghent University, Department of Internal Medicine and Pediatrics, Ghent, Belgium
- *Correspondence: Jeroen Geldof,
| | - Marie Truyens
- Ghent University Hospital, Department of Gastroenterology and Hepatology, Ghent, Belgium
- Ghent University, Department of Internal Medicine and Pediatrics, Ghent, Belgium
| | - João Sabino
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
- KU Leuven, Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), Leuven, Belgium
| | - Marc Ferrante
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
- KU Leuven, Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), Leuven, Belgium
| | - Jo Lambert
- Ghent University Hospital, Department of Dermatology, Ghent, Belgium
| | - Hilde Lapeere
- Ghent University Hospital, Department of Dermatology, Ghent, Belgium
| | - Tom Hillary
- University Hospitals Leuven, Department of Dermatology, Leuven, Belgium
| | - An Van Laethem
- University Hospitals Leuven, Department of Dermatology, Leuven, Belgium
| | - Kurt de Vlam
- University Hospitals Leuven, Department of Rheumatology, Leuven, Belgium
| | | | - Elizaveta Padalko
- Ghent University Hospital, Department of Laboratory Medicine, Ghent, Belgium
- Ghent University, Department of Diagnostic Sciences, Ghent, Belgium
| | - Triana Lobaton
- Ghent University Hospital, Department of Gastroenterology and Hepatology, Ghent, Belgium
- Ghent University, Department of Internal Medicine and Pediatrics, Ghent, Belgium
| | - Séverine Vermeire
- University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
- KU Leuven, Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), Leuven, Belgium
| |
Collapse
|
35
|
Jenkins MM, Phan Tran D, Flores EA, Kupferwasser D, Pickering H, Zheng Y, Gjertson DW, Ross TM, Schaenman JM, Miller LG, Yeaman MR, Reed EF. Longitudinal analysis of SARS-CoV-2 infection and vaccination in the LA-SPARTA cohort reveals increased risk of infection in vaccinated Hispanic participants. Front Immunol 2023; 14:1139915. [PMID: 37153624 PMCID: PMC10154521 DOI: 10.3389/fimmu.2023.1139915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/03/2023] [Indexed: 05/10/2023] Open
Abstract
Introduction SARS-CoV-2 is the etiologic agent of coronavirus disease 2019 (COVID-19). Questions remain regarding correlates of risk and immune protection against COVID-19. Methods We prospectively enrolled 200 participants with a high risk of SARS-CoV-2 occupational exposure at a U.S. medical center between December 2020 and April 2022. Participant exposure risks, vaccination/infection status, and symptoms were followed longitudinally at 3, 6, and 12 months, with blood and saliva collection. Serological response to the SARS-CoV-2 spike holoprotein (S), receptor binding domain (RBD) and nucleocapsid proteins (NP) were quantified by ELISA assay. Results Based on serology, 40 of 200 (20%) participants were infected. Healthcare and non-healthcare occupations had equivalent infection incidence. Only 79.5% of infected participants seroconverted for NP following infection, and 11.5% were unaware they had been infected. The antibody response to S was greater than to RBD. Hispanic ethnicity was associated with 2-fold greater incidence of infection despite vaccination in this cohort. Discussion Overall, our findings demonstrate: 1) variability in the antibody response to SARS-CoV-2 infection despite similar exposure risk; 2) the concentration of binding antibody to the SARS-CoV-2 S or RBD proteins is not directly correlated with protection against infection in vaccinated individuals; and 3) determinants of infection risk include Hispanic ethnicity despite vaccination and similar occupational exposure.
Collapse
Affiliation(s)
- Meagan M. Jenkins
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Donna Phan Tran
- Lundquist Institute for Biomedical Innovation at Harbor–University of California, Los Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Evelyn A. Flores
- Lundquist Institute for Biomedical Innovation at Harbor–University of California, Los Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Deborah Kupferwasser
- Lundquist Institute for Biomedical Innovation at Harbor–University of California, Los Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Ying Zheng
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - David W. Gjertson
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
- Department of Biostatistics, University of California Los Angeles, Los Angeles, CA, United States
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
- Department of Infectious Diseases, University of Georgia, Athens, GA, United States
| | - Joanna M. Schaenman
- Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
- Division of Infectious Diseases, Department of Medicine, Harbor-University of California, Los Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Loren G. Miller
- Lundquist Institute for Biomedical Innovation at Harbor–University of California, Los Angeles (UCLA) Medical Center, Torrance, CA, United States
- Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
- Division of Infectious Diseases, Department of Medicine, Harbor-University of California, Los Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Michael R. Yeaman
- Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
- Division of Infectious Diseases, Department of Medicine, Harbor-University of California, Los Angeles (UCLA) Medical Center, Torrance, CA, United States
- Division of Molecular Medicine, Harbor–University of California, Los Angeles (UCLA) Medical Center, Torrance, CA, United States
- Institute for Infection & Immunity, Lundquist Institute for Biomedical Innovation at Harbor–University of California, Los Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Elaine F. Reed
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
- *Correspondence: Elaine F. Reed,
| |
Collapse
|
36
|
Taus E, Hofmann C, Ibarrondo FJ, Gong LS, Hausner MA, Fulcher JA, Krogstad P, Kitchen SG, Ferbas KG, Tobin NH, Rimoin AW, Aldrovandi GM, Yang OO. Persistent memory despite rapid contraction of circulating T Cell responses to SARS-CoV-2 mRNA vaccination. Front Immunol 2023; 14:1100594. [PMID: 36860850 PMCID: PMC9968837 DOI: 10.3389/fimmu.2023.1100594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/24/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction While antibodies raised by SARS-CoV-2 mRNA vaccines have had compromised efficacy to prevent breakthrough infections due to both limited durability and spike sequence variation, the vaccines have remained highly protective against severe illness. This protection is mediated through cellular immunity, particularly CD8+ T cells, and lasts at least a few months. Although several studies have documented rapidly waning levels of vaccine-elicited antibodies, the kinetics of T cell responses have not been well defined. Methods Interferon (IFN)-γ enzyme-linked immunosorbent spot (ELISpot) assay and intracellular cytokine staining (ICS) were utilized to assess cellular immune responses (in isolated CD8+ T cells or whole peripheral blood mononuclear cells, PBMCs) to pooled peptides spanning spike. ELISA was performed to quantitate serum antibodies against the spike receptor binding domain (RBD). Results In two persons receiving primary vaccination, tightly serially evaluated frequencies of anti-spike CD8+ T cells using ELISpot assays revealed strikingly short-lived responses, peaking after about 10 days and becoming undetectable by about 20 days after each dose. This pattern was also observed in cross-sectional analyses of persons after the first and second doses during primary vaccination with mRNA vaccines. In contrast, cross-sectional analysis of COVID-19-recovered persons using the same assay showed persisting responses in most persons through 45 days after symptom onset. Cross-sectional analysis using IFN-γ ICS of PBMCs from persons 13 to 235 days after mRNA vaccination also demonstrated undetectable CD8+ T cells against spike soon after vaccination, and extended the observation to include CD4+ T cells. However, ICS analyses of the same PBMCs after culturing with the mRNA-1273 vaccine in vitro showed CD4+ and CD8+ T cell responses that were readily detectable in most persons out to 235 days after vaccination. Discussion Overall, we find that detection of spike-targeted responses from mRNA vaccines using typical IFN-γ assays is remarkably transient, which may be a function of the mRNA vaccine platform and an intrinsic property of the spike protein as an immune target. However, robust memory, as demonstrated by capacity for rapid expansion of T cells responding to spike, is maintained at least several months after vaccination. This is consistent with the clinical observation of vaccine protection from severe illness lasting months. The level of such memory responsiveness required for clinical protection remains to be defined.
Collapse
Affiliation(s)
- Ellie Taus
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christian Hofmann
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - F Javier Ibarrondo
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Laura S Gong
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Mary Ann Hausner
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Jennifer A Fulcher
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Paul Krogstad
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Scott G Kitchen
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Kathie G Ferbas
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Nicole H Tobin
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Anne W Rimoin
- Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, United States
| | - Grace M Aldrovandi
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Otto O Yang
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States.,Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
37
|
Mori T, Nagata T, Ikegami K, Hino A, Tateishi S, Tsuji M, Matsuda S, Fujino Y, Mori K, Ando H, Eguchi H, Muramatsu K, Mafune K, Okawara M, Kuwamura M, Matsugaki R, Ishimaru T, Igarashi Y. Effect of COVID-19 infection related experiences on social behaviors when a state of emergency is declared: a cohort study. BMC Public Health 2022; 22:2445. [PMID: 36577963 PMCID: PMC9795144 DOI: 10.1186/s12889-022-14864-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Restricting the movement of the public to gathering places and limiting close physical contact are effective measures against COVID-19 infection. In Japan, states of emergency have been declared in specific prefectures to reduce public movement and control COVID-19 transmission. We investigated how COVID-19 infection related experiences including people with a history of infection, people with a history of close contact, and people whose acquaintances have been infected, affected self-restraint from social behaviors during the second state of emergency in Japan. METHODS A prospective cohort study was conducted among workers aged 20-65 years using data from an internet survey. The baseline survey was conducted on December 22-25, 2020, and a follow-up survey was on February 18-19, 2021. There were 19,051 participants who completed both surveys and were included in the final analysis. We identified eight social behaviors: (1) eating out (4 people or fewer); (2) eating out (5 people or more); (3) gathering with friends and colleagues; (4) day trip; (5) overnight trip (excluding visiting home); (6) visiting home; (7) shopping for daily necessities; and (8) shopping for other than daily necessities. We set self-restraint regarding each social behavior after the second state of emergency was declared in January 2021 as the dependent variable, and COVID-19 infection related experiences as independent variables. Odds ratios were estimated using multilevel logistic regression analyses nested in the prefecture of residence. RESULTS Significant differences by COVID-19 infection related experiences were identified: compared to people without COVID-19 related experiences, people with a history of COVID-19 were less likely self-restraint from most social behaviors. People whose acquaintance had been diagnosed with COVID-19 were significantly more likely to refrain from most social behaviors. There was no significant difference in any social behaviors for people with a history of close contact only. CONCLUSION To maximize the effect of a state of emergency, health authorities should disseminate information for each person in the target population, taking into account potential differences related to the infection related experiences.
Collapse
Affiliation(s)
- Takahiro Mori
- grid.271052.30000 0004 0374 5913Department of Occupational Health Practice and Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka Yahatanishi-Ku, Kitakyushu, Fukuoka 807-8555 Japan
| | - Tomohisa Nagata
- grid.271052.30000 0004 0374 5913Department of Occupational Health Practice and Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka Yahatanishi-Ku, Kitakyushu, Fukuoka 807-8555 Japan
| | - Kazunori Ikegami
- grid.271052.30000 0004 0374 5913Department of Work Systems and Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka Yahatanishi-Ku, Kitakyushu, Fukuoka 807-8555 Japan
| | - Ayako Hino
- grid.271052.30000 0004 0374 5913Department of Mental Health, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka Yahatanishi-Ku, Kitakyushu , Fukuoka 807-8555 Japan
| | - Seiichiro Tateishi
- grid.271052.30000 0004 0374 5913Disaster Occupational Health Center, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka Yahatanishi-Ku, Kitakyushu , Fukuoka 807-8555 Japan
| | - Mayumi Tsuji
- grid.271052.30000 0004 0374 5913Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka Yahatanishi-Ku, Kitakyushu, Fukuoka 807-8555 Japan
| | - Shinya Matsuda
- grid.271052.30000 0004 0374 5913Department of Preventive Medicine and Community Health, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka Yahatanishi-Ku, Kitakyushu, Fukuoka 807-8555 Japan
| | - Yoshihisa Fujino
- grid.271052.30000 0004 0374 5913Department of Environmental Epidemiology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka Yahatanishi-Ku, Kitakyushu, Fukuoka 807-8555 Japan
| | - Koji Mori
- grid.271052.30000 0004 0374 5913Department of Occupational Health Practice and Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka Yahatanishi-Ku, Kitakyushu, Fukuoka 807-8555 Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Liang H, Nian X, Wu J, Liu D, Feng L, Lu J, Peng Y, Zhou Z, Deng T, Liu J, Ji D, Qiu R, Lin L, Zeng Y, Xia F, Hu Y, Li T, Duan K, Li X, Wang Z, Zhang Y, Zhang H, Zhu C, Wang S, Wu X, Wang X, Li Y, Huang S, Mao M, Guo H, Yang Y, Jia R, Xufang J, Wang X, Liang S, Qiu Z, Zhang J, Ding Y, Li C, Zhang J, Fu D, He Y, Zhou D, Li C, Zhang J, Yu D, Yang XM. COVID-19 vaccination boosts the potency and breadth of the immune response against SARS-CoV-2 among recovered patients in Wuhan. Cell Discov 2022; 8:131. [PMID: 36494338 PMCID: PMC9734167 DOI: 10.1038/s41421-022-00496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
The immunity of patients who recover from coronavirus disease 2019 (COVID-19) could be long lasting but persist at a lower level. Thus, recovered patients still need to be vaccinated to prevent reinfection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or its mutated variants. Here, we report that the inactivated COVID-19 vaccine can stimulate immunity in recovered patients to maintain high levels of anti-receptor-binding domain (RBD) and anti-nucleocapsid protein (NP) antibody titers within 9 months, and high neutralizing activity against the prototype, Delta, and Omicron strains was observed. Nevertheless, the antibody response decreased over time, and the Omicron variant exhibited more pronounced resistance to neutralization than the prototype and Delta strains. Moreover, the intensity of the SARS-CoV-2-specific CD4+ T cell response was also increased in recovered patients who received COVID-19 vaccines. Overall, the repeated antigen exposure provided by inactivated COVID-19 vaccination greatly boosted both the potency and breadth of the humoral and cellular immune responses against SARS-CoV-2, effectively protecting recovered individuals from reinfection by circulating SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Hong Liang
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Xuanxuan Nian
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Junzheng Wu
- Chengdu Rongsheng Pharmaceuticals Co., Ltd., Chengdu, Sichuan, China
| | - Dong Liu
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Lu Feng
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Jia Lu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Yan Peng
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Zhijun Zhou
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Tao Deng
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Jing Liu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Deming Ji
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Ran Qiu
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Lianzhen Lin
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Yan Zeng
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Fei Xia
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Yong Hu
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Taojing Li
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Kai Duan
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Xinguo Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Zejun Wang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Yong Zhang
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Hang Zhang
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Chen Zhu
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Shang Wang
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Xiao Wu
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Xiang Wang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Yuwei Li
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Shihe Huang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China
| | - Min Mao
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Huanhuan Guo
- Wuxue Wusheng Plasma Collection Center, Wuxue, Hubei, China
| | - Yunkai Yang
- China National Biotec Group Company Limited, Beijing, China
| | - Rui Jia
- China National Biotec Group Company Limited, Beijing, China
| | - Jingwei Xufang
- China National Biotec Group Company Limited, Beijing, China
| | - Xuewei Wang
- China National Biotec Group Company Limited, Beijing, China
| | | | - Zhixin Qiu
- Wuhan Biobank Co., Ltd., Wuhan, Hubei, China
| | - Juan Zhang
- Wuhan Biobank Co., Ltd., Wuhan, Hubei, China
| | - Yaling Ding
- Chengdu Rongsheng Pharmaceuticals Co., Ltd., Chengdu, Sichuan, China
| | - Chunyan Li
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Jin Zhang
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Daoxing Fu
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Yanlin He
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China
| | - Dongbo Zhou
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China
| | - Cesheng Li
- Sinopharm Wuhan Plasma-derived Biotherapies Co., Ltd., Wuhan, Hubei, China.
| | - Jiayou Zhang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China.
- Wuhan Institute of Biological Products Co., Ltd., Wuhan, Hubei, China.
| | - Ding Yu
- Beijing Tiantan Biological Products Co., Ltd., Beijing, China.
- Chengdu Rongsheng Pharmaceuticals Co., Ltd., Chengdu, Sichuan, China.
| | - Xiao-Ming Yang
- National Engineering Technology Research Center for Combined Vaccines, Wuhan, Hubei, China.
- China National Biotec Group Company Limited, Beijing, China.
| |
Collapse
|
39
|
Wolf C, Köppert S, Becza N, Kuerten S, Kirchenbaum GA, Lehmann PV. Antibody Levels Poorly Reflect on the Frequency of Memory B Cells Generated following SARS-CoV-2, Seasonal Influenza, or EBV Infection. Cells 2022; 11:cells11223662. [PMID: 36429090 PMCID: PMC9688940 DOI: 10.3390/cells11223662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The scope of immune monitoring is to define the existence, magnitude, and quality of immune mechanisms operational in a host. In clinical trials and praxis, the assessment of humoral immunity is commonly confined to measurements of serum antibody reactivity without accounting for the memory B cell potential. Relying on fundamentally different mechanisms, however, passive immunity conveyed by pre-existing antibodies needs to be distinguished from active B cell memory. Here, we tested whether, in healthy human individuals, the antibody titers to SARS-CoV-2, seasonal influenza, or Epstein-Barr virus antigens correlated with the frequency of recirculating memory B cells reactive with the respective antigens. Weak correlations were found. The data suggest that the assessment of humoral immunity by measurement of antibody levels does not reflect on memory B cell frequencies and thus an individual's potential to engage in an anamnestic antibody response against the same or an antigenically related virus. Direct monitoring of the antigen-reactive memory B cell compartment is both required and feasible towards that goal.
Collapse
Affiliation(s)
- Carla Wolf
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sebastian Köppert
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Noémi Becza
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Institute of Neuroanatomy, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Greg A. Kirchenbaum
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA
| | - Paul V. Lehmann
- Research and Development, Cellular Technology Ltd. (CTL), Shaker Heights, OH 44122, USA
- Correspondence: ; Tel.: +1-(216)-791-5084
| |
Collapse
|
40
|
Durability and cross-reactivity of immune responses induced by a plant-based virus-like particle vaccine for COVID-19. Nat Commun 2022; 13:6905. [PMID: 36371408 PMCID: PMC9653456 DOI: 10.1038/s41467-022-34728-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
As the SARS-CoV-2 pandemic evolves, vaccine evaluation needs to include consideration of both durability and cross-reactivity. This report expands on previously reported results from a Phase 1 trial of an AS03-adjuvanted, plant-based coronavirus-like particle (CoVLP) displaying the spike (S) glycoprotein of the ancestral SARS-CoV-2 virus in healthy adults (NCT04450004). Humoral and cellular responses against the ancestral strain were evaluated 6 months post-second dose (D201) as secondary outcomes. Independent of dose, all vaccinated individuals retain binding antibodies, and ~95% retain neutralizing antibodies (NAb). Interferon gamma and interleukin-4 responses remain detectable in ~94% and ~92% of vaccinees respectively. In post-hoc analyses, variant-specific (Alpha, Beta, Delta, Gamma and Omicron) NAb were assessed at D42 and D201. Using a live virus neutralization assay, broad cross-reactivity is detectable against all variants at D42. At D201, cross-reactive antibodies are detectable in almost all participants against Alpha, Gamma and Delta variants (94%) and the Beta variant (83%) and in a smaller proportion against Omicron (44%). Results are similar with the pseudovirion assay. These data suggest that two doses of 3.75 µg CoVLP+AS03 elicit a durable and cross-reactive response that persists for at least 6 months post-vaccination.
Collapse
|
41
|
Gobeil P, Pillet S, Boulay I, Charland N, Lorin A, Cheng MP, Vinh DC, Boutet P, Van Der Most R, Roman F, Ceregido MA, Landry N, D'Aoust MA, Ward BJ. Durability and cross-reactivity of immune responses induced by a plant-based virus-like particle vaccine for COVID-19. Nat Commun 2022; 13:6905. [PMID: 36371408 DOI: 10.1101/2021.08.04.21261507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/03/2022] [Indexed: 05/24/2023] Open
Abstract
As the SARS-CoV-2 pandemic evolves, vaccine evaluation needs to include consideration of both durability and cross-reactivity. This report expands on previously reported results from a Phase 1 trial of an AS03-adjuvanted, plant-based coronavirus-like particle (CoVLP) displaying the spike (S) glycoprotein of the ancestral SARS-CoV-2 virus in healthy adults (NCT04450004). Humoral and cellular responses against the ancestral strain were evaluated 6 months post-second dose (D201) as secondary outcomes. Independent of dose, all vaccinated individuals retain binding antibodies, and ~95% retain neutralizing antibodies (NAb). Interferon gamma and interleukin-4 responses remain detectable in ~94% and ~92% of vaccinees respectively. In post-hoc analyses, variant-specific (Alpha, Beta, Delta, Gamma and Omicron) NAb were assessed at D42 and D201. Using a live virus neutralization assay, broad cross-reactivity is detectable against all variants at D42. At D201, cross-reactive antibodies are detectable in almost all participants against Alpha, Gamma and Delta variants (94%) and the Beta variant (83%) and in a smaller proportion against Omicron (44%). Results are similar with the pseudovirion assay. These data suggest that two doses of 3.75 µg CoVLP+AS03 elicit a durable and cross-reactive response that persists for at least 6 months post-vaccination.
Collapse
Affiliation(s)
- Philipe Gobeil
- Medicago Inc., Suite 600, 1020 route de l'Église, Québec, QC, G1V 3V9, Canada
| | - Stéphane Pillet
- Medicago Inc., Suite 600, 1020 route de l'Église, Québec, QC, G1V 3V9, Canada
| | - Iohann Boulay
- Medicago Inc., Suite 600, 1020 route de l'Église, Québec, QC, G1V 3V9, Canada
| | - Nathalie Charland
- Medicago Inc., Suite 600, 1020 route de l'Église, Québec, QC, G1V 3V9, Canada
| | - Aurélien Lorin
- Medicago Inc., Suite 600, 1020 route de l'Église, Québec, QC, G1V 3V9, Canada
| | - Matthew P Cheng
- The Research Institute of the McGill University Health Centre, 1001 Decarie Street, Montreal, QC, H4A 3J1, Canada
| | - Donald C Vinh
- The Research Institute of the McGill University Health Centre, 1001 Decarie Street, Montreal, QC, H4A 3J1, Canada
| | - Philippe Boutet
- GlaxoSmithKline (Vaccines), Avenue Fleming 20, 1300, Wavre, Belgium
| | - Robbert Van Der Most
- GlaxoSmithKline (Vaccines), rue de l'Institut 89, 1330, Rixensart, Belgium
- BioNTech, An der Goldgrube 12, 55131, Mainz, Germany
| | - François Roman
- GlaxoSmithKline (Vaccines), Avenue Fleming 20, 1300, Wavre, Belgium
| | | | - Nathalie Landry
- Medicago Inc., Suite 600, 1020 route de l'Église, Québec, QC, G1V 3V9, Canada
| | - Marc-André D'Aoust
- Medicago Inc., Suite 600, 1020 route de l'Église, Québec, QC, G1V 3V9, Canada
| | - Brian J Ward
- Medicago Inc., Suite 600, 1020 route de l'Église, Québec, QC, G1V 3V9, Canada.
- The Research Institute of the McGill University Health Centre, 1001 Decarie Street, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
42
|
Yamayoshi S, Iwatsuki-Horimoto K, Okuda M, Ujie M, Yasuhara A, Murakami J, Duong C, Hamabata T, Ito M, Chiba S, Kobayashi R, Takahashi S, Mitamura K, Hagihara M, Shibata A, Uwamino Y, Hasegawa N, Ebina T, Izumi A, Kato H, Nakajima H, Sugaya N, Seki Y, Iqbal A, Kamimaki I, Yamazaki M, Kawaoka Y, Furuse Y. Age-Stratified Seroprevalence of SARS-CoV-2 Antibodies before and during the Vaccination Era, Japan, February 2020–March 2022. Emerg Infect Dis 2022; 28:2198-2205. [PMID: 36198306 PMCID: PMC9622230 DOI: 10.3201/eid2811.221127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Japan has reported a relatively small number of COVID-19 cases. Because not all infected persons receive diagnostic tests for COVID-19, the reported number must be lower than the actual number of infections. We assessed SARS-CoV-2 seroprevalence by analyzing >60,000 samples collected in Japan (Tokyo Metropolitan Area and Hokkaido Prefecture) during February 2020–March 2022. The results showed that ≈3.8% of the population had become seropositive by January 2021. The seroprevalence increased with the administration of vaccinations; however, among the elderly, seroprevalence was not as high as the vaccination rate. Among children, who were not eligible for vaccination, infection was spread during the epidemic waves caused by the SARS-CoV-2 Delta and Omicron variants. Nevertheless, seroprevalence for unvaccinated children <5 years of age was as low as 10% as of March 2022. Our study underscores the low incidence of SARS-CoV-2 infection in Japan and the effects of vaccination on immunity at the population level.
Collapse
|
43
|
Adhikari A, Abayasingam A, Rodrigo C, Agapiou D, Pandzic E, Brasher NA, Fernando BSM, Keoshkerian E, Li H, Kim HN, Lord M, Popovic G, Rawlinson W, Mina M, Post JJ, Hudson B, Gilroy N, Dwyer D, Sasson SC, Grubor-Bauk B, Lloyd AR, Martinello M, Bull RA, Tedla N. Longitudinal Characterization of Phagocytic and Neutralization Functions of Anti-Spike Antibodies in Plasma of Patients after Severe Acute Respiratory Syndrome Coronavirus 2 Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1499-1512. [PMID: 36165172 DOI: 10.4049/jimmunol.2200272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/01/2022] [Indexed: 12/06/2024]
Abstract
Phagocytic responses by effector cells to opsonized viruses have been recognized to play a key role in antiviral immunity. Limited data on coronavirus disease 2019 suggest that the role of Ab-dependent and -independent phagocytosis may contribute to the observed immunological and inflammatory responses; however, their development, duration, and role remain to be fully elucidated. In this study of 62 acute and convalescent patients, we found that patients with acute coronavirus disease 2019 can mount a phagocytic response to autologous plasma-opsonized Spike protein-coated microbeads as early as 10 d after symptom onset, while heat inactivation of this plasma caused 77-95% abrogation of the phagocytic response and preblocking of Fc receptors showed variable 18-60% inhibition. In convalescent patients, phagocytic response significantly correlated with anti-Spike IgG titers and older patients, while patients with severe disease had significantly higher phagocytosis and neutralization functions compared with patients with asymptomatic, mild, or moderate disease. A longitudinal subset of the convalescent patients over 12 mo showed an increase in plasma Ab affinity toward Spike Ag and preservation of phagocytic and neutralization functions, despite a decline in the anti-Spike IgG titers by >90%. Our data suggest that early phagocytosis is primarily driven by heat-liable components of the plasma, such as activated complements, while anti-Spike IgG titers account for the majority of observed phagocytosis at convalescence. Longitudinally, a significant increase in the affinity of the anti-Spike Abs was observed that correlated with the maintenance of both the phagocytic and neutralization functions, suggesting an improvement in the quality of the Abs.
Collapse
Affiliation(s)
- Anurag Adhikari
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
- Department of Infection and Immunology, Kathmandu Research Institute for Biological Sciences, Lalitpur, Nepal
| | - Arunasingam Abayasingam
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | - Chaturaka Rodrigo
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | - David Agapiou
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | - Elvis Pandzic
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicholas A Brasher
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | | | | | - Hui Li
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | - Ha Na Kim
- School of Biomedical Engineering, Faculty of Engineering, UNSW Australia, Sydney, New South Wales, Australia
| | - Megan Lord
- School of Biomedical Engineering, Faculty of Engineering, UNSW Australia, Sydney, New South Wales, Australia
| | - Gordona Popovic
- School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia
| | - William Rawlinson
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
- Serology and Virology Division, Department of Microbiology, NSW Health Pathology, Prince of Wales Hospital, Sydney, New South Wales, Australia
| | - Michael Mina
- Northern Beaches Hospital, Sydney, New South Wales, Australia
| | - Jeffrey J Post
- Prince of Wales Clinical School, UNSW Australia, Sydney, New South Wales, Australia
| | - Bernard Hudson
- Royal North Shore Hospital, Sydney, New South Wales, Australia
| | - Nicky Gilroy
- Westmead Hospital, Sydney, New South Wales, Australia
| | - Dominic Dwyer
- Blacktown Mt Druitt Hospital, Blacktown, New South Wales, Australia; and
| | - Sarah C Sasson
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, South Australia, Australia
| | - Andrew R Lloyd
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | - Marianne Martinello
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
- Blacktown Mt Druitt Hospital, Blacktown, New South Wales, Australia; and
| | - Rowena A Bull
- School of Medical Sciences, Faculty of Medicine, UNSW Australia, Sydney, New South Wales, Australia
- The Kirby Institute, UNSW Australia, Sydney, New South Wales, Australia
| | | |
Collapse
|
44
|
Quandt J, Muik A, Salisch N, Lui BG, Lutz S, Krüger K, Wallisch AK, Adams-Quack P, Bacher M, Finlayson A, Ozhelvaci O, Vogler I, Grikscheit K, Hoehl S, Goetsch U, Ciesek S, Türeci Ö, Sahin U. Omicron BA.1 breakthrough infection drives cross-variant neutralization and memory B cell formation against conserved epitopes. Sci Immunol 2022; 7:eabq2427. [PMID: 35653438 PMCID: PMC9162083 DOI: 10.1126/sciimmunol.abq2427] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/28/2022] [Indexed: 12/28/2022]
Abstract
Omicron is the evolutionarily most distinct severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VOC) to date. We report that Omicron BA.1 breakthrough infection in BNT162b2-vaccinated individuals resulted in strong neutralizing activity against Omicron BA.1, BA.2, and previous SARS-CoV-2 VOCs but not against the Omicron sublineages BA.4 and BA.5. BA.1 breakthrough infection induced a robust recall response, primarily expanding memory B (BMEM) cells against epitopes shared broadly among variants, rather than inducing BA.1-specific B cells. The vaccination-imprinted BMEM cell pool had sufficient plasticity to be remodeled by heterologous SARS-CoV-2 spike glycoprotein exposure. Whereas selective amplification of BMEM cells recognizing shared epitopes allows for effective neutralization of most variants that evade previously established immunity, susceptibility to escape by variants that acquire alterations at hitherto conserved sites may be heightened.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Maren Bacher
- BioNTech, An der Goldgrube 12, 55131 Mainz, Germany
| | | | | | | | - Katharina Grikscheit
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Sebastian Hoehl
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
| | - Udo Goetsch
- Health Protection Authority, City of Frankfurt, 60313 Frankfurt, Germany
| | - Sandra Ciesek
- Institute for Medical Virology, University Hospital, Goethe University Frankfurt, 60596 Frankfurt am Main, Germany
- DZIF – German Centre for Infection Research, External Partner Site, 60596 Frankfurt, Germany
| | - Özlem Türeci
- BioNTech, An der Goldgrube 12, 55131 Mainz, Germany
- HI-TRON – Helmholtz Institute for Translational Oncology Mainz by DKFZ, Obere Zahlbacherstr. 63, 55131 Mainz, Germany
| | - Ugur Sahin
- BioNTech, An der Goldgrube 12, 55131 Mainz, Germany
- TRON gGmbH – Translational Oncology at the University Medical Center of the Johannes Gutenberg, University Freiligrathstraße 12, 55131 Mainz, Germany
| |
Collapse
|
45
|
Rzymski P, Kasianchuk N, Sikora D, Poniedziałek B. COVID-19 vaccinations and rates of infections, hospitalizations, ICU admissions, and deaths in Europe during SARS-CoV-2 Omicron wave in the first quarter of 2022. J Med Virol 2022; 95:e28131. [PMID: 36068643 PMCID: PMC9537885 DOI: 10.1002/jmv.28131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/11/2022] [Accepted: 09/04/2022] [Indexed: 01/11/2023]
Abstract
The vaccination campaigns brought hope to minimizing the coronavirus disease 2019 (COVID-19) burden. However, the emergence of novel, highly transmissible Omicron lineage of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the waning of neutralizing antibodies a few months after vaccination has brought concerns over the vaccine efficacy. The present work analyzed the relationships between COVID-19 vaccine coverage (completion of primary course and booster dose intake) in the European Economic Area and rates of infection, hospitalizations, admissions to intensive care units (ICU), and deaths during the Omicron wave in the first quarter of 2022 (January-April). As demonstrated, infection rates were not correlated to vaccine coverage in any considered month. For January and February, the rates of hospitalizations, intensive care unit (ICU) admissions, and death due to COVID-19 were strongly negatively correlated (r =- 0.54 to -0.82) with the percentage of individuals who completed initial vaccination protocol and the percentage of those who received a booster dose. However, in March and April, the percentage of the population with primary vaccination course correlated negatively only with ICU admissions (r = -0.77 and -0.46, respectively). The uptake of boosters in March still remained in significant negative correlation with hospitalizations (r = -0.45), ICU admissions (r = -0.70) and deaths due to COVID-19 (r = -0.37), although in April these relationships were no longer observed. The percentage of individuals with confirmed SARS-CoV-2 infection did not correlate with the pandemic indices for any considered month. The study indicates that COVID-19 vaccination, including booster administration, was beneficial in decreasing the overwhelming of healthcare systems during the Omicron wave, but novel vaccine strategies may be required in the long term to enhance the effectiveness and durability of vaccine-induced protection during future waves of SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental MedicinePoznan University of Medical SciencesPoznańPoland,Integrated Science Association (ISA)Universal Scientific Education and Research Network (USERN)PoznańPoland
| | - Nadiia Kasianchuk
- Faculty of BiologyAdam Mickiewicz UniversityPoznańPoland,Faculty of PharmacyBogomolets National Medical UniversityKyivUkraine
| | - Dominika Sikora
- Department of Environmental MedicinePoznan University of Medical SciencesPoznańPoland,Doctoral SchoolPoznan University of Medical SciencesPoznańPoland
| | - Barbara Poniedziałek
- Department of Environmental MedicinePoznan University of Medical SciencesPoznańPoland
| |
Collapse
|
46
|
Szewczyk-Dąbrowska A, Budziar W, Baniecki K, Pikies A, Harhala M, Jędruchniewicz N, Kaźmierczak Z, Gembara K, Klimek T, Witkiewicz W, Nahorecki A, Barczyk K, Grata-Borkowska U, Dąbrowska K. Dynamics of anti-SARS-CoV-2 seroconversion in individual patients and at the population level. PLoS One 2022; 17:e0274095. [PMID: 36083875 PMCID: PMC9462561 DOI: 10.1371/journal.pone.0274095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
The immune response and specific antibody production in COVID-19 are among the key factors that determine both prognostics for individual patients and the global perspective for controlling the pandemics. So called “dark figure”, that is, a part of population that has been infected but not registered by the health care system, make it difficult to estimate herd immunity and to predict pandemic trajectories. Here we present a follow up study of population screening for hidden herd immunity to SARS-CoV-2 in individuals who had never been positively diagnosed against SARS-CoV-2; the first screening was in May 2021, and the follow up in December 2021. We found that specific antibodies targeting SARS-CoV-2 detected in May as the “dark figure” cannot be considered important 7 months later due to their significant drop. On the other hand, among participants who at the first screening were negative for anti-SARS-CoV-2 IgG, and who have never been diagnosed for SARS-CoV-2 infection nor vaccinated, 26% were found positive for anti-SARS-CoV-2 IgG. This can be attributed to of the “dark figure” of the recent, fourth wave of the pandemic that occurred in Poland shortly before the study in December. Participants who were vaccinated between May and December demonstrated however higher levels of antibodies, than those who undergone mild or asymptomatic (thus unregistered) infection. Only 7% of these vaccinated participants demonstrated antibodies that resulted from infection (anti-NCP). The highest levels of protection were observed in the group that had been infected with SARS-CoV-2 before May 2021 and also fully vaccinated between May and December. These observations demonstrate that the hidden fraction of herd immunity is considerable, however its potential to suppress the pandemics is limited, highlighting the key role of vaccinations.
Collapse
Affiliation(s)
- Alina Szewczyk-Dąbrowska
- Regional Specialist Hospital in Wrocław, Research and Development Center, Wrocław, Poland
- Department of Family Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Wiktoria Budziar
- Regional Specialist Hospital in Wrocław, Research and Development Center, Wrocław, Poland
| | | | | | - Marek Harhala
- Regional Specialist Hospital in Wrocław, Research and Development Center, Wrocław, Poland
- Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Natalia Jędruchniewicz
- Regional Specialist Hospital in Wrocław, Research and Development Center, Wrocław, Poland
| | - Zuzanna Kaźmierczak
- Regional Specialist Hospital in Wrocław, Research and Development Center, Wrocław, Poland
- Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Katarzyna Gembara
- Regional Specialist Hospital in Wrocław, Research and Development Center, Wrocław, Poland
- Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Tomasz Klimek
- Regional Specialist Hospital in Wrocław, Research and Development Center, Wrocław, Poland
| | - Wojciech Witkiewicz
- Regional Specialist Hospital in Wrocław, Research and Development Center, Wrocław, Poland
| | | | - Kamil Barczyk
- Healthcare Centre in Bolesławiec, Bolesławiec, Poland
| | | | - Krystyna Dąbrowska
- Regional Specialist Hospital in Wrocław, Research and Development Center, Wrocław, Poland
- Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
- * E-mail:
| |
Collapse
|
47
|
Aiello A, Coppola A, Vanini V, Petrone L, Cuzzi G, Salmi A, Altera AMG, Tortorella C, Gualano G, Gasperini C, Scolieri P, Beccacece A, Vita S, Bruzzese V, Lorenzetti R, Palmieri F, Nicastri E, Goletti D. Accuracy of QuantiFERON SARS-CoV-2 research use only assay and characterization of the CD4 + and CD8 + T cell-SARS-CoV-2 response: comparison with a homemade interferon-γ release assay. Int J Infect Dis 2022; 122:841-849. [PMID: 35878802 PMCID: PMC9307287 DOI: 10.1016/j.ijid.2022.07.049] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES In this study, we aimed to characterize the SARS-CoV-2-specific T cell response detected by the QuantiFERON SARS-CoV-2 research use only assay in terms of accuracy and T cell subsets involved compared with a homemade interferon (IFN)-γ release assay (IGRA). METHODS We evaluated T cell response by the standardized QuantiFERON SARS-CoV-2 tubes (antigen [Ag]1 and Ag2) and a homemade IGRA quantifying IFN-γ response to SARS-CoV-2 spike peptides (homemade-IGRA-SPIKE test). We evaluated the T cell subsets mediating the specific response using flow cytometry. RESULTS We prospectively enrolled 66 individuals: COVID-19 or post-COVID-19 subjects and NO-COVID-19-vaccinated subjects, including healthy donors and immunocompromised subjects. The standardized kit detected 62.1% (41/66) of T cell responders. Ag2 tube showed a higher IFN-γ quantitative and qualitative response. Ag1 tube response was mainly mediated by CD4+ T cells; Ag2 tube response was mediated by CD4+ and CD8+ T cells. The homemade-IGRA-SPIKE test detected a higher number of responders (52/66, 78.8%) than the QuantiFERON SARS-CoV-2 assay (P = 0.056). The response was found in both T cell subsets, although a higher magnitude and response rate was observed in the CD4+ T cell subset. CONCLUSION The QuantiFERON SARS-CoV-2 response is mediated by CD4+ and CD8+ T cells. A lower number of responders is found compared with the homemade-IGRA-SPIKE test, likely because of the different peptide composition.
Collapse
Affiliation(s)
- Alessandra Aiello
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Andrea Coppola
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Valentina Vanini
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy,Unità Operativa Semplice (UOS) Professioni Sanitarie Tecniche, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Linda Petrone
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Gilda Cuzzi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Andrea Salmi
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Anna Maria Gerarda Altera
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Carla Tortorella
- Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
| | - Gina Gualano
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Claudio Gasperini
- Department of Neurosciences, San Camillo Forlanini Hospital, Rome, Italy
| | - Palma Scolieri
- UOC di Medicina e Rete Reumatologica, Nuovo Regina Margherita Hospital, Rome, Italy
| | - Alessia Beccacece
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Serena Vita
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Vincenzo Bruzzese
- UOC di Medicina e Rete Reumatologica, Nuovo Regina Margherita Hospital, Rome, Italy
| | - Roberto Lorenzetti
- UOC di Gastroenterologia ASL Roma1, Nuovo Regina Margherita, Rome, Italy
| | - Fabrizio Palmieri
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Emanuele Nicastri
- Clinical Division of Infectious Diseases, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy
| | - Delia Goletti
- Translational Research Unit, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, Rome, Italy,Corresponding author: Translational Research Unit of the Research Department, National Institute for Infectious Diseases, Padiglione del Vecchio, Room 39, Via Portuense 292, Rome 00149, Italy. Tel.: +39 06 55170 906; fax: +39 06 5582 825
| |
Collapse
|
48
|
Attitudes toward Receiving COVID-19 Booster Dose in the Middle East and North Africa (MENA) Region: A Cross-Sectional Study of 3041 Fully Vaccinated Participants. Vaccines (Basel) 2022; 10:vaccines10081270. [PMID: 36016158 PMCID: PMC9414713 DOI: 10.3390/vaccines10081270] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 01/14/2023] Open
Abstract
COVID-19 vaccines are crucial to control the pandemic and avoid COVID-19 severe infections. The rapid evolution of COVID-19 variants such as B.1.1.529 is alarming, especially with the gradual decrease in serum antibody levels in vaccinated individuals. Middle Eastern countries were less likely to accept the initial doses of vaccines. This study was directed to determine COVID-19 vaccine booster acceptance and its associated factors in the general population in the MENA region to attain public herd immunity. We conducted an online survey in five countries (Egypt, Iraq, Palestine, Saudi Arabia, and Sudan) in November and December 2021. The questionnaire included self-reported information about the vaccine type, side effects, fear level, and several demographic factors. Kruskal−Wallis ANOVA was used to associate the fear level with the type of COVID-19 vaccine. Logistic regression was performed to confirm the results and reported as odds ratios (ORs) and 95% confidence intervals. The final analysis included 3041 fully vaccinated participants. Overall, 60.2% of the respondents reported willingness to receive the COVID-19 booster dose, while 20.4% were hesitant. Safety uncertainties and opinions that the booster dose is not necessary were the primary reasons for refusing the booster dose. The willingness to receive the booster dose was in a triangular relationship with the side effects of first and second doses and the fear (p < 0.0001). Females, individuals with normal body mass index, history of COVID-19 infection, and influenza-unvaccinated individuals were significantly associated with declining the booster dose. Higher fear levels were observed in females, rural citizens, and chronic and immunosuppressed patients. Our results suggest that vaccine hesitancy and fear in several highlighted groups continue to be challenges for healthcare providers, necessitating public health intervention, prioritizing the need for targeted awareness campaigns, and facilitating the spread of evidence-based scientific communication.
Collapse
|
49
|
Parisi SG, Mengoli C, Basso M, Vicenti I, Gatti F, Scaggiante R, Fiaschi L, Giammarino F, Iannetta M, Malagnino V, Zago D, Dragoni F, Zazzi M. Long-Term Longitudinal Analysis of Neutralizing Antibody Response to Three Vaccine Doses in a Real-Life Setting of Previously SARS-CoV-2 Infected Healthcare Workers: A Model for Predicting Response to Further Vaccine Doses. Vaccines (Basel) 2022; 10:vaccines10081237. [PMID: 36016125 PMCID: PMC9416151 DOI: 10.3390/vaccines10081237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/22/2022] [Accepted: 07/30/2022] [Indexed: 02/04/2023] Open
Abstract
We report the time course of neutralizing antibody (NtAb) response, as measured by authentic virus neutralization, in healthcare workers (HCWs) with a mild or asymptomatic SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection diagnosed at the onset of the pandemic, with no reinfection throughout and after a three-dose schedule of the BNT162b2 mRNA vaccine with an overall follow-up of almost two years since infection. Forty-eight HCWs (median age 47 years, all immunocompetent) were evaluated: 29 (60.4%) were asymptomatic. NtAb serum was titrated at eight subsequent time points: T1 and T2 were after natural infection, T3 on the day of the first vaccine dose, T4 on the day of the second dose, T5, T6, and T7 were between the second and third dose, and T8 followed the third dose by a median of 34 days. NtAb titers at all postvaccination time points (T4 to T8) were significantly higher than all those at prevaccination time points (T1 to T3). The highest NtAb increase was following the first vaccine dose while subsequent doses did not further boost NtAb titers. However, the third vaccine dose appeared to revive waning immunity. NtAb levels were positively correlated at most time points suggesting an important role for immunogenetics.
Collapse
Affiliation(s)
- Saverio Giuseppe Parisi
- Department of Molecular Medicine, University of Padova, Via Gabelli, 63, 35100 Padova, Italy; (C.M.); (M.B.); (F.G.); (D.Z.)
- Correspondence: ; Tel.: +39-04-9827-23441
| | - Carlo Mengoli
- Department of Molecular Medicine, University of Padova, Via Gabelli, 63, 35100 Padova, Italy; (C.M.); (M.B.); (F.G.); (D.Z.)
| | - Monica Basso
- Department of Molecular Medicine, University of Padova, Via Gabelli, 63, 35100 Padova, Italy; (C.M.); (M.B.); (F.G.); (D.Z.)
| | - Ilaria Vicenti
- Department of Medical Biotechnologies, University of Siena, Viale Bracci 16, 53100 Siena, Italy; (I.V.); (L.F.); (F.G.); (F.D.); (M.Z.)
| | - Francesca Gatti
- Department of Molecular Medicine, University of Padova, Via Gabelli, 63, 35100 Padova, Italy; (C.M.); (M.B.); (F.G.); (D.Z.)
| | | | - Lia Fiaschi
- Department of Medical Biotechnologies, University of Siena, Viale Bracci 16, 53100 Siena, Italy; (I.V.); (L.F.); (F.G.); (F.D.); (M.Z.)
| | - Federica Giammarino
- Department of Medical Biotechnologies, University of Siena, Viale Bracci 16, 53100 Siena, Italy; (I.V.); (L.F.); (F.G.); (F.D.); (M.Z.)
| | - Marco Iannetta
- Infectious Disease Unit, Department of System Medicine, Tor Vergata University and Hospital, Via Montpellier 1, 00133 Rome, Italy; (M.I.); (V.M.)
| | - Vincenzo Malagnino
- Infectious Disease Unit, Department of System Medicine, Tor Vergata University and Hospital, Via Montpellier 1, 00133 Rome, Italy; (M.I.); (V.M.)
| | - Daniela Zago
- Department of Molecular Medicine, University of Padova, Via Gabelli, 63, 35100 Padova, Italy; (C.M.); (M.B.); (F.G.); (D.Z.)
- Department of Medicine, University of Udine, Via Colugna 50, 33100 Udine, Italy
| | - Filippo Dragoni
- Department of Medical Biotechnologies, University of Siena, Viale Bracci 16, 53100 Siena, Italy; (I.V.); (L.F.); (F.G.); (F.D.); (M.Z.)
| | - Maurizio Zazzi
- Department of Medical Biotechnologies, University of Siena, Viale Bracci 16, 53100 Siena, Italy; (I.V.); (L.F.); (F.G.); (F.D.); (M.Z.)
| |
Collapse
|
50
|
Kumar A, Ladha A, Choudhury A, Ikbal AMA, Bhattacharjee B, Das T, Gupta G, Sharma C, Sarbajna A, Mandal SC, Choudhury MD, Ali N, Slama P, Rezaei N, Palit P, Tiwari ON. The chimera of S1 and N proteins of SARS-CoV-2: can it be a potential vaccine candidate for COVID-19? Expert Rev Vaccines 2022; 21:1071-1086. [PMID: 35604776 DOI: 10.1080/14760584.2022.2081156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has emerged as one of the biggest global health issues. Spike protein (S) and nucleoprotein (N), the major immunogenic components of SARS-CoV-2, have been shown to be involved in the attachment and replication of the virus inside the host cell. AREAS COVERED Several investigations have shown that the SARS-CoV-2 nucleoprotein can elicit a cell-mediated immune response capable of regulating viral replication and lowering viral burden. However, the development of an effective vaccine that can stop the transmission of SARS-CoV-2 remains a matter of concern. Literature was retrieved using the keywords COVID-19 vaccine, role of nucleoprotein as vaccine candidate, spike protein, nucleoprotein immune responses against SARS-CoV-2, and chimera vaccine in PubMed, Google Scholar, and Google. EXPERT OPINION We have focussed on the use of chimera protein, consisting of N and S-1 protein components of SARS-CoV-2, as a potential vaccine candidate. This may act as a polyvalent mixed recombinant protein vaccine to elicit a strong T and B cell immune response, which will be capable of neutralizing the wild and mutated variants of SARS-CoV-2, and also restricting its attachment, replication, and budding in the host cell.
Collapse
Affiliation(s)
- Amresh Kumar
- Department of Life Sciences and Bioinformatics, Assam University, Silchar, India
| | - Amit Ladha
- Area of Biotechnology and Bioinformatics, NIIT University, Neemrana, India
| | - Ankita Choudhury
- Department of Pharmaceutical Sciences, Allama TR College of Pharmacy, Hospital Rd, Srigouri, India
| | - Abu Md Ashif Ikbal
- Department of Pharmacy, Tripura University (A Central University), Suryamaninagar, Tripura (W), India
| | - Bedanta Bhattacharjee
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, India
| | - Tanmay Das
- Department of Business Administration, Assam University Silchar, India
| | - Gaurav Gupta
- Area of Biotechnology and Bioinformatics, NIIT University, Neemrana, India.,Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Chhavi Sharma
- Area of Biotechnology and Bioinformatics, NIIT University, Neemrana, India
| | - Adity Sarbajna
- Department of Zoology, Surendranath College, Kolkata, India
| | - Subhash C Mandal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | | | - Nahid Ali
- Division of Immunology, Department of Infectious Diseases, INDIAN INSTITUTE OF CHEMICAL BIOLOGY, Kolkata, India
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, Brno, Czech Republic
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden
| | - Partha Palit
- Department of Pharmaceutical Sciences Drug Discovery research Laboratory, Assam University, Silchar, India
| | - Onkar Nath Tiwari
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
| |
Collapse
|