1
|
Triana Velásquez TM, Bernal Bautista MH. Acute toxicity of the insecticide Imidacloprid and the herbicide 2,4-D in two species of tropical anurans. ECOTOXICOLOGY (LONDON, ENGLAND) 2025:10.1007/s10646-024-02843-y. [PMID: 39893353 DOI: 10.1007/s10646-024-02843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/28/2024] [Indexed: 02/04/2025]
Abstract
The use of pesticides has notably increased in recent years globally. However, sensitive organisms exposed to these environmental pollutants, such as amphibians, may experience adverse effects. The insecticide imidacloprid (IM) and the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) are two pesticides commonly used in Colombia, but their toxic impacts on tropical anurans remain poorly understood. In this study, we tested the acute toxic effects of IM and 2,4-D on the survival, total length, and burst swimming speed of tadpoles from two anuran species. Under laboratory conditions, the tadpoles of Boana platanera and Engystomops pustulosus were independently exposed to each pesticide for 96 h. We found that the tadpoles of E. pustulosus were more sensitive to both IM and 2,4-D than those of B. platanera. However, the LC50 values were higher than the reported field concentrations for these pesticides. IM led to a reduction in the total length of B. platanera tadpoles and induced total immobility in surviving individuals of both species. In contrast, the herbicide 2,4-D did not affect the total length or the swimming speed of tadpoles from the two species. In conclusion, based on the results and the reported field concentrations, IM and 2,4-D are not lethal to the studied anurans. Nevertheless, it is important to consider that IM caused strong negative sublethal effects on tadpoles, which could compromise their survival in the future. Finally, we also found that the insecticide IM showed notably greater toxicity to the tested species than did the herbicide 2,4-D.
Collapse
|
2
|
Chen SF, Chen WJ, Song H, Liu M, Mishra S, Ghorab MA, Chen S, Chang C. Microorganism-Driven 2,4-D Biodegradation: Current Status and Emerging Opportunities. Molecules 2024; 29:3869. [PMID: 39202952 PMCID: PMC11357097 DOI: 10.3390/molecules29163869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has been widely used around the world in both agricultural and non-agricultural fields due to its high activity. However, the heavy use of 2,4-D has resulted in serious environmental contamination, posing a significant risk to non-target organisms, including human beings. This has raised substantial concerns regarding its impact. In addition to agricultural use, accidental spills of 2,4-D can pose serious threats to human health and the ecosystem, emphasizing the importance of prompt pollution remediation. A variety of technologies have been developed to remove 2,4-D residues from the environment, such as incineration, adsorption, ozonation, photodegradation, the photo-Fenton process, and microbial degradation. Compared with traditional physical and chemical remediation methods, microorganisms are the most effective way to remediate 2,4-D pollution because of their rich species, wide distribution, and diverse metabolic pathways. Numerous studies demonstrate that the degradation of 2,4-D in the environment is primarily driven by enzymatic processes carried out by soil microorganisms. To date, a number of bacterial and fungal strains associated with 2,4-D biodegradation have been isolated, such as Sphingomonas, Pseudomonas, Cupriavidus, Achromobacter, Ochrobactrum, Mortierella, and Umbelopsis. Moreover, several key enzymes and genes responsible for 2,4-D biodegradation are also being identified. However, further in-depth research based on multi-omics is needed to elaborate their role in the evolution of novel catabolic pathways and the microbial degradation of 2,4-D. Here, this review provides a comprehensive analysis of recent progress on elucidating the degradation mechanisms of the herbicide 2,4-D, including the microbial strains responsible for its degradation, the enzymes participating in its degradation, and the associated genetic components. Furthermore, it explores the complex biochemical pathways and molecular mechanisms involved in the biodegradation of 2,4-D. In addition, molecular docking techniques are employed to identify crucial amino acids within an alpha-ketoglutarate-dependent 2,4-D dioxygenase that interacts with 2,4-D, thereby offering valuable insights that can inform the development of effective strategies for the biological remediation of this herbicide.
Collapse
Affiliation(s)
- Shao-Fang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Haoran Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mingqiu Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Sandhya Mishra
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Mohamed A. Ghorab
- The Office of Chemical Safety and Pollution Prevention, U.S. Environmental Protection Agency (EPA), Washington, DC 20460, USA
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Changqing Chang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Engineering Research Center of Biological Control, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Santos GD, Rutkoski CF, Folador A, Skovronski VJ, Müller C, Pompermaier A, Hartmann PA, Hartmann M. 2,4-D-based herbicide underdoses cause mortality, malformations, and nuclear abnormalities in Physalaemus cuvieri tadpoles. Comp Biochem Physiol C Toxicol Pharmacol 2024; 277:109840. [PMID: 38218566 DOI: 10.1016/j.cbpc.2024.109840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Amphibians are considered bioindicators of the environment due to their high sensitivity and involvement in terrestrial and aquatic ecosystems. In the last two decades, 2,4-D has been one of the most widely used herbicides in Brazil and around the world, as its use has been authorized for genetically modified crops and therefore has been detected in surface and groundwater. Against this background, the aim of this work was to investigate the effects of environmentally relevant concentrations of 2,4-D-based herbicides on survival, malformations, swimming activity, presence of micronuclei and erythrocyte nuclear abnormalities in Physalaemus cuvieri tadpoles. The amphibians were exposed to six concentrations of 2,4-D-based herbicides: 0.0, 4.0, 30.0, 52.5, 75.0, and 100 μg L-1, for 168 h. At concentrations higher than 52.5 μg L-1, significantly increased mortality was observed from 24 h after exposure. At the highest concentration (100 μg L-1), the occurrence of mouth and intestinal malformations was also observed. The occurrence of erythrocyte nuclear abnormalities at concentrations of 30.0, 52.5, 75.0 and 100 μg L-1 and the presence of micronuclei at concentrations of 52.5, 75.0, and 100 μg L-1 were also recorded. These effects of 2,4-D in P. cuvieri indicate that the ecological risk observed at concentrations above 10.35 μg L-1 2,4-D may represent a threat to the health and survival of this species, i.e., exposure to 2,4-D at concentrations already detected in surface waters in the species' range is toxic to P. cuvieri.
Collapse
Affiliation(s)
- Gilcinéia Dos Santos
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Camila Fátima Rutkoski
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Alexandre Folador
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Vrandrieli Jucieli Skovronski
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Caroline Müller
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Aline Pompermaier
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Paulo Afonso Hartmann
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil
| | - Marilia Hartmann
- Ecology and Conservation Laboratory, Federal University of Fronteira Sul, Erechim Campus, RS 135-Km 72, no 200, 99.700-000 Erechim, RS, Brazil.
| |
Collapse
|
4
|
Ma J, Ren W, Dai S, Wang H, Chen S, Song J, Jia J, Chen H, Tan C, Sui Y, Teng Y, Luo Y. Spatial distribution and ecological-health risks associated with herbicides in soils and crop kernels of the black soil region in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168439. [PMID: 37949128 DOI: 10.1016/j.scitotenv.2023.168439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
Herbicides are vital inputs for food production; however, their associated risks and hazards are pressing concerns. In black soil, the cumulative toxic effects of compound herbicides and potential risks to humans are not yet fully understood. Thus, this study conducted a comprehensive investigation to assess herbicide residue characteristics and the associated ecological health risks in representative black soil regions where major food crops (maize, soybean, and rice) are cultivated. Findings revealed that the soil harbored a collective presence of 29 herbicides, exhibiting total concentrations ranging from 111.92 to 996.14 μg/kg dry weight (dw). This can be attributed to the extensive use of herbicides over the years and their long half-lives, which results in the accumulation of multiple herbicide residues in the soil. Similarly, the total herbicide levels in maize, soybean, and rice kernels were 1173-61,564, 1721-9342, and 3775-8094 ng/kg dw, respectively. Multiple herbicide residues at all monitored sites were attributed to continuous crop barriers in soybean fields and the adoption of soybean and maize crop rotations. Notably, herbicides pose ecological risks in the black soil region, exhibiting high-risk levels of 79 %, 24 %, and 14 % at the sites monitored for oxyfluorfen, clomazone, and butachlor, respectively. Carcinogenic atrazine exhibited low- and medium-risk levels in 34 % and 63 % of soil samples, respectively. These results can serve as a scientific basis for establishing herbicide residue thresholds in agricultural soils within black soil areas and for implementing effective control measures to prevent herbicide contamination in agricultural ecosystems.
Collapse
Affiliation(s)
- Jun Ma
- School of Geographic Sciences, Hunan Normal University, Changsha 410081, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Materials and Chemistry, Tongren University, Tongren 554300, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shixiang Dai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hongzhe Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Sensen Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiayin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Junfeng Jia
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hong Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Changyin Tan
- School of Geographic Sciences, Hunan Normal University, Changsha 410081, China
| | - Yueyu Sui
- Hailun Agro-ecosystem Experimental Station, Chinese Academy of Sciences, Hailun 152300, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Technology Innovation Center for Ecological Monitoring & Restoration Project on Land(Arable), Ministry of Natural Resources, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
5
|
Martins RX, Carvalho M, Maia ME, Flor B, Souza T, Rocha TL, Félix LM, Farias D. 2,4-D Herbicide-Induced Hepatotoxicity: Unveiling Disrupted Liver Functions and Associated Biomarkers. TOXICS 2024; 12:35. [PMID: 38250991 PMCID: PMC10818579 DOI: 10.3390/toxics12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
2,4-dichlorophenoxyacetic acid (2,4-D) is a widely used herbicide worldwide and is frequently found in water samples. This knowledge has prompted studies on its effects on non-target organisms, revealing significant alterations to liver structure and function. In this review, we evaluated the literature on the hepatotoxicity of 2,4-D, focusing on morphological damages, toxicity biomarkers and affected liver functions. Searches were conducted on PubMed, Web of Science and Scopus and 83 articles were selected after curation. Among these studies, 72% used in vivo models and 30% used in vitro models. Additionally, 48% used the active ingredient, and 35% used commercial formulations in exposure experiments. The most affected biomarkers were related to a decrease in antioxidant capacity through alterations in the activities of catalase, superoxide dismutase and the levels of malondialdehyde. Changes in energy metabolism, lipids, liver function, and xenobiotic metabolism were also identified. Furthermore, studies about the effects of 2,4-D in mixtures with other pesticides were found, as well as hepatoprotection trials. The reviewed data indicate the essential role of reduction in antioxidant capacity and oxidative stress in 2,4-D-induced hepatotoxicity. However, the mechanism of action of the herbicide is still not fully understood and further research in this area is necessary.
Collapse
Affiliation(s)
- Rafael Xavier Martins
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, Fortaleza 60455-970, Brazil; (R.X.M.); (M.E.M.)
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Matheus Carvalho
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Maria Eduarda Maia
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, Fortaleza 60455-970, Brazil; (R.X.M.); (M.E.M.)
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Bruno Flor
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Terezinha Souza
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74055-110, Brazil;
| | - Luís M. Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Davi Farias
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, Fortaleza 60455-970, Brazil; (R.X.M.); (M.E.M.)
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| |
Collapse
|
6
|
Amorim NPL, de Assis RA, Dos Santos CGA, Benvindo-Souza M, Borges RE, de Souza Santos LR. Erythrocyte Recovery in Oreochromis niloticus Fish Exposed to Urban Effluents. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 112:15. [PMID: 38114722 DOI: 10.1007/s00128-023-03833-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023]
Abstract
Urban activities pollute aquatic ecosystems, and the integrity of organisms such as fish. The use of cytological techniques, such as the analysis of blood cellular integrity using the Micronucleus test, can help detect mutagenic damage as a result to urban effluents exposure. In this context, this study aimed to evaluate the frequency of micronucleus and other nuclear abnormalities in Oreochromis niloticus fish environmentally exposed to urban effluents in relation to their erythrocyte recovery capacity when exposed to clean water (30 and 45 days). The results indicated high copper, dissolved iron, nickel, and thermotolerant coliform levels in the urban stream. There was no difference in the frequency of micronuclei. In contrast, cells with nuclear nuclei, binucleates, kidney-shaped nuclei, notched nuclei, lobed nuclei, and segmented nuclei decreased according to the time the fish were exposed to clean water. When exposed to clean water, we conclude that urban fish recover from genotoxic and cytotoxic damage.
Collapse
Affiliation(s)
- Nathan Pereira Lima Amorim
- Laboratory of Ecotoxicology and Animal Systematics, Goiano Federal Institute, Rio Verde, Goiás, CEP 75901-970, Brazil.
| | - Rhayane Alves de Assis
- Laboratory of Ecotoxicology and Animal Systematics, Goiano Federal Institute, Rio Verde, Goiás, CEP 75901-970, Brazil
- Department of Biology, Paulista State University "Júlio de Mesquita Filho", São José do Rio Preto, São Paulo, CEP 15054-000, Brazil
| | - Cirley Gomes Araújo Dos Santos
- Laboratory of Ecotoxicology and Animal Systematics, Goiano Federal Institute, Rio Verde, Goiás, CEP 75901-970, Brazil
- Department of Biology, Paulista State University "Júlio de Mesquita Filho", São José do Rio Preto, São Paulo, CEP 15054-000, Brazil
| | - Marcelino Benvindo-Souza
- Laboratory of Ecotoxicology and Animal Systematics, Goiano Federal Institute, Rio Verde, Goiás, CEP 75901-970, Brazil
- Laboratory of Biogeography and Aquatic Ecology, State University of Goiás, Anápolis, Goiás, CEP 75132-903, Brazil
| | - Rinneu Elias Borges
- Zoology Laboratory, University of Rio Verde "Fazenda Fontes Do Saber", Rio Verde, Goiás, CEP 75901-970, Brazil
| | - Lia Raquel de Souza Santos
- Laboratory of Ecotoxicology and Animal Systematics, Goiano Federal Institute, Rio Verde, Goiás, CEP 75901-970, Brazil
| |
Collapse
|
7
|
Campos LB, González Núñez AA, Palacio MJ, Ferro JP, Castañé PM, Ferrari L, Ossana NA. Acute and subchronic effects of ibuprofen on the ten spotted live-bearer fish Cnesterodon decemmaculatus (Jenyns, 1842). CHEMOSPHERE 2023; 340:139895. [PMID: 37604345 DOI: 10.1016/j.chemosphere.2023.139895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Ibuprofen (IBP) is an anti-inflammatory drug found in aquatic environments, potentially toxic for the biota. We exposed the test fish C. decemmaculatus to two environmentally relevant concentrations (50 and 100 μg IBP/L) for 4 and 12 d and evaluated the effect on some biomarkers. Micronucleus test, nuclear abnormality test and comet assay indicated cyto-genotoxicity at both concentrations and exposure periods. Oxidative stress and biochemical biomarkers were not affected, excepting muscle AChE activity for 4 d. Muscle metabolic biomarkers showed significant decrease in ETS, lipid and protein content, while carbohydrate content was not affected. The CEA index increased at the lower IBP concentration for 4 and 12 d, possibly due to changes in body energy reserves. A full-factorial GLM performed to assess the effects of IBP and exposure times showed that the metabolic and genotoxicity biomarkers were the most sensitive to IBP toxicity, mainly at 50 μg IBP/L for 4 d.
Collapse
Affiliation(s)
- L B Campos
- Programa de Ecofisiología Aplicada (PRODEA) Instituto de Ecología y Desarrollo Sustentable (INEDES, CONICET-UNLu), Departamento de Cs. Básicas, Universidad Nacional de Luján, B6700ZBA, Luján, Argentina
| | - A A González Núñez
- Programa de Ecofisiología Aplicada (PRODEA) Instituto de Ecología y Desarrollo Sustentable (INEDES, CONICET-UNLu), Departamento de Cs. Básicas, Universidad Nacional de Luján, B6700ZBA, Luján, Argentina
| | - M J Palacio
- Programa de Ecofisiología Aplicada (PRODEA) Instituto de Ecología y Desarrollo Sustentable (INEDES, CONICET-UNLu), Departamento de Cs. Básicas, Universidad Nacional de Luján, B6700ZBA, Luján, Argentina
| | - J P Ferro
- Programa de Ecofisiología Aplicada (PRODEA) Instituto de Ecología y Desarrollo Sustentable (INEDES, CONICET-UNLu), Departamento de Cs. Básicas, Universidad Nacional de Luján, B6700ZBA, Luján, Argentina
| | - P M Castañé
- Programa de Ecofisiología Aplicada (PRODEA) Instituto de Ecología y Desarrollo Sustentable (INEDES, CONICET-UNLu), Departamento de Cs. Básicas, Universidad Nacional de Luján, B6700ZBA, Luján, Argentina
| | - L Ferrari
- Programa de Ecofisiología Aplicada (PRODEA) Instituto de Ecología y Desarrollo Sustentable (INEDES, CONICET-UNLu), Departamento de Cs. Básicas, Universidad Nacional de Luján, B6700ZBA, Luján, Argentina
| | - N A Ossana
- Programa de Ecofisiología Aplicada (PRODEA) Instituto de Ecología y Desarrollo Sustentable (INEDES, CONICET-UNLu), Departamento de Cs. Básicas, Universidad Nacional de Luján, B6700ZBA, Luján, Argentina.
| |
Collapse
|
8
|
Ruiz de Arcaute C, Laborde MR, Soloneski S, Larramendy ML. Do environmentally relevant concentrations of the neonicotinoid insecticide imidacloprid induce DNA damage and oxidative stress on Cnesterodon decemmaculatus (Jenyns, 1842)? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104123. [PMID: 37037309 DOI: 10.1016/j.etap.2023.104123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 06/15/2023]
Abstract
Lethal and sublethal effects of imidacloprid (IMI) were assessed on Cnesterodon decemmaculatus (Pisces: Poeciliidae) by acute exposure to environmentally relevant concentrations of the commercial formulation Punto 35® (Gleba S.A.) under laboratory conditions. Specimens were exposed for 96 h to 1, 10, 20, 25, 35, 75, 100, 125, 150 and 175 mg IMI L-1 from which an LC50 96 h value of 35.59 mg IMI L-1 was calculated. Moreover, sublethal concentrations 0.175, 0.35 and 1 mg IMI L-1 for 96 h were employed for the evaluation of the comet assay and the variation of activities of catalase (CAT) and glutathione content (GSH). Result demonstrated an increased genetic damage index and activity of CAT was observed. Conversely, no significant variation was observed in GSH activity. Total protein content decreased in treated organisms. These results represent the first report of acute effects induced by IMI on C. decemmaculatus exposed under laboratory conditions.
Collapse
Affiliation(s)
- Celeste Ruiz de Arcaute
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nº 3, B1904AMA La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Milagros R Laborde
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nº 3, B1904AMA La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Sonia Soloneski
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nº 3, B1904AMA La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marcelo L Larramendy
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nº 3, B1904AMA La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
9
|
Fungal biodegradation of chlorinated herbicides: an overview with an emphasis on 2,4-D in Argentina. Biodegradation 2023; 34:199-214. [PMID: 36840889 PMCID: PMC10148785 DOI: 10.1007/s10532-023-10022-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/06/2023] [Indexed: 02/26/2023]
Abstract
Chlorinated herbicides are one of the main types of pesticide used in agriculture. In Argentina, 2,4-dichlorophenoxyacetic acid (2,4-D) is the most applied herbicide for the control of broadleaf weeds, but the risks it poses for the environment and human health are cause for great concern. A promising technology to remove this kind of pollutants, or neutralize them in such a way that they become less or non-toxic, is the use of degrading or detoxifying microorganisms from contaminated sites. Filamentous fungi can bioremediate xenobiotics thanks to their efficient enzymatic machinery. However, most studies on the degradation of 2,4-D have been carried out with bacteria, and little is known about whether it can be efficiently biodegraded by fungi. In the environment, fungal strains and native microbiota may detoxify contaminants through mechanisms like biosorption, bioabsortion, biotransformation, and/or degradation. Whether these processes occur separately or simultaneously depends on the metabolic ability of the strains that conform the microbial community. Another important concern when attempting to introduce detoxifying microorganisms into a contaminated environment is the GRAS ("Generally Recognized As Safe") assessment or status. These are studies that help predict a biodegrading microorganism's pathogenicity, toxicity, and infectivity before in situ application. This application, moreover, is regulated by different legal frameworks. The present review aims to outline the main aspects of 2,4-D degradation by fungi, and to summarize the current state of research on the topic in Argentina.
Collapse
|
10
|
San Juan MRF, Lavarías SML, Aparicio V, Larsen KE, Lerner JEC, Cortelezzi A. Ecological risk assessment of pesticides in sediments of Pampean streams, Argentina. CHEMOSPHERE 2023; 313:137598. [PMID: 36549510 DOI: 10.1016/j.chemosphere.2022.137598] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
After their application in agricultural areas, pesticides are dispersed throughout the environment, causing contamination problems. In Argentina, the main promoter of transgenic biotechnology in the region, the total consumption of agrochemicals has increased significantly in recent years. Most chemicals dumped near surface waters eventually end up in bottom sediments and can be toxic to the organisms that live there. However, published data on the mixing of pesticides in this compartment is still scarce. The objective of this work was to detect and quantify pesticide residues in the sediment of rural streams in the Pampas region and to carry out acute and chronic risk assessment in these aquatic ecosystems. The study area comprises the mountainous system of Tandilia, located in one of the most productive agricultural areas in the country. The concentration of atrazine, acetochlor, chlorpyrifos, cypermethrin, and 2,4-D in the sediment of four rural streams was determined in three different seasons, and the toxic units (TU) and the risk ratios (RQ) were calculated. All the compounds analyzed were detected in most of the sampling seasons and study sites, at concentrations higher than those established in the national and international quality guidelines for the protection of aquatic biota in surface waters and for human consumption. Chlorpyrifos, cypermethrin, and acetochlor were the main pesticides contributing to the TU and RQ values, representing a medium or high ecological risk in most of the sites. Therefore, the evaluation of these pesticides in the bottom sediments could be a decisive factor in assessing the risk to the aquatic environment.
Collapse
Affiliation(s)
- M R Fernández San Juan
- Instituto Multidisciplinario Sobre Ecosistemas y Desarrollo Sustentable (ECOSISTEMAS), UNICEN, Tandil, Argentina; Laboratorio de Ecotoxicología y Biología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria Tandil (CIVETAN-CIC-CONICET), UNICEN, Tandil, Argentina.
| | - S M L Lavarías
- Instituto de Limnología "Dr. Raúl A. Ringuelet" (ILPLA-CCT CONICET) La Plata - UNLP, La Plata, Argentina.
| | - V Aparicio
- Instituto Nacional de Tecnología Agropecuaria (INTA), EEA Balcarce, Ruta 226 Km 73,3, Balcarce, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Argentina.
| | - K E Larsen
- Laboratorio de Farmacología, Centro de Investigación Veterinaria de Tandil (CIVETAN-CIC-CONICET), Facultad de Ciencias Veterinarias, UNICEN, Tandil, Argentina.
| | - J E Colman Lerner
- Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. Jorge J. Ronco" (CONICET-UNLP-CICPBA), La Plata, Argentina.
| | - A Cortelezzi
- Instituto Multidisciplinario Sobre Ecosistemas y Desarrollo Sustentable (ECOSISTEMAS), UNICEN, Tandil, Argentina; CONICET, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Argentina.
| |
Collapse
|
11
|
Genotoxicity and cytotoxicity of textile production effluents, before and after Bacillus subitilis bioremediation, in Astyanax lacustris (Pisces, Characidae). MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 886:503588. [PMID: 36868696 DOI: 10.1016/j.mrgentox.2023.503588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/09/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Textile effluents may be highly toxic and mutagenic. Monitoring studies are important for sustaining the aquatic ecosystems contaminated by these materials, which can cause damage to organisms and loss of biodiversity. We have evaluated the cyto- and genotoxicity of textile effluents on erythrocytes of Astyanax lacustris, before and after bioremediation by Bacillus subitilis treatment. We tested 60 fish (five treatment conditions, four fish per condition, in triplicate). Fish were exposed to contaminants for 7 days. The assays used were biomarker analysis, the micronucleus (MN) test, analysis of cellular morphological changes (CMC), and the comet assay. All concentrations of effluent tested, and the bioremediated effluent, showed damage significantly different from the controls. We conclude that water pollution assessment can be accomplished with these biomarkers. Biodegradation of the textile effluent was only partial, indicating the need for more thorough bioremediation to effect complete neutralization of toxicity.
Collapse
|
12
|
Gaaied S, Oliveira M, Barreto A, Zakhama A, Banni M. 2,4-Dichlorophenoxyacetic acid (2,4-D) affects DNA integrity and retina structure in zebrafish larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85402-85412. [PMID: 35794326 DOI: 10.1007/s11356-022-21793-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Monitoring the potential risk of herbicides in non-target organisms is a crucial issue for environmental safety. 2,4-D is an herbicide of high environmental relevance that has been shown to exert toxic effects to soil and aquatic biota. In the present study, we investigated the possible genotoxic and retinal development effects of 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide in early life stages zebrafish (Danio rerio). Genotoxicity was evaluated by measuring DNA damage using the comet assay and also by the mRNA expression of genes implicated in apoptosis and/or DNA repair. Retinal development toxicity was evaluated with histological approach. The results obtained revealed that 2,4-D alters DNA integrity of zebrafish larvae. Moreover, transcriptomic data showed a significant induction of p-53 and casp-3 genes and a significant decrease of lig-4 in larvae exposed to the highest tested concentration of 2,4-D (0.8 mg/L). This suggested that p-53 gene regulates the process of DNA repair and apoptosis with increased levels of 2,4-D. The histopathological analysis revealed that early exposure to 2,4-D damaged the structure of larvae retina. Overall, this study is the first to report the DNA damage, casp-3, lig-4 and p-53 regulation, as well as the ocular developmental toxicity in zebrafish larvae at environmentally relevant concentrations of 2,4-D herbicide.
Collapse
Affiliation(s)
- Sonia Gaaied
- Laboratory of Agrobiodiversity and Ecotoxicology "LR02AGR21", ISA, Chott-Mariem, 4042, Sousse, Tunisia.
| | - Miguel Oliveira
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Angela Barreto
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Abdelfattah Zakhama
- Department of Pathology, Fattouma Bourguiba University Hospital, 5000, Monastir, Tunisia
| | - Mohamed Banni
- Laboratory of Agrobiodiversity and Ecotoxicology "LR02AGR21", ISA, Chott-Mariem, 4042, Sousse, Tunisia
| |
Collapse
|
13
|
Rapid effectual entrapment of pesticide pollutant by phosphorus-doped biochar: Effects and response sequence of functional groups. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Ji D, Huang Z, Du B. Synthesis of CoFe2O4/Peanut Shell Powder Composites and the Associated Magnetic Solid Phase Extraction of Phenoxy Carboxylic Acid Herbicides in Water. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148450. [PMID: 35886300 PMCID: PMC9319414 DOI: 10.3390/ijerph19148450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022]
Abstract
The magnetic biochar material CoFe2O4/PCPS (peanut shell powder) was prepared based on the hybrid calcination method. The properties of prepared composites and the extraction effect of magnetic solid phase extraction on phenoxy carboxylic acid herbicides were assessed. The morphology, crystal structure, specific surface area, and pore size distribution of the material were analysed using a transmission electron microscope (TEM), infrared Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and N2 absorption surface analysis (BET). The results of the magnetic solid phase extraction of a variety of phenoxy carboxylic acid herbicides in water using CoFe2O4/PCPS composites showed that, when the mass ratio of CoFe2O4 and PCPS was 1:1, 40 mg of the composite was used, and the adsorption time was 10 min at pH 8.50. Methanol was used as the eluent, and the recovery rates of the three phenoxy carboxylic acid herbicides were maintained at 81.95–99.07%. Furthermore, the actual water sample analysis results showed that the established method had good accuracy, stability, and reliability.
Collapse
|
15
|
Pompermaier A, Varela ACC, Mozzato MT, Soares SM, Fortuna M, Alves C, Tamagno WA, Barcellos LJG. Impaired initial development and behavior in zebrafish exposed to environmentally relevant concentrations of widely used pesticides. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109328. [PMID: 35292329 DOI: 10.1016/j.cbpc.2022.109328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 12/24/2022]
Abstract
Pesticides reach water bodies through different routes, either owing to incorrect packaging disposal, direct application to control macrophytes, leaching from fields, or natural degradation processes. In the aquatic environment, adverse effects in non-target species that come in contact with these substances are poorly understood. Currently, the most used pesticides are glyphosate (GBH) and 2,4-dichlorophenoxyacetic acid-based herbicides (DBH), as its presence in water bodies is already known, we used environmental concentrations and our exposure time comprised the entire period of organogenesis (3-120 h post-fertilization). We evaluated the response of embryos in their early development with the parameters of mortality, hatching, spontaneous movement, and heart rate; and it's through behavior the open field test and aversive stimulus, as well as biochemical analyzes of acetylcholinesterase activity (AChE), catalase (CTL) and superoxide dismutase (SOD) as a possible mechanism of action. Exposure to GBH decreased survival, caused hypermobility and anxiolytic behavior, negatively affected the anti-predatory behavior of the larvae, and increases acetylcholinesterase activity, whereas exposure to DBH caused only slight hypermobility in the larvae and increases acetylcholinesterase activity. These changes may compromise the perpetuation of the species, the search for partners/food, and facilitate the action of predators, which can result in serious ecological consequences.
Collapse
Affiliation(s)
- Aline Pompermaier
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, Rio Grande do Sul, Brazil
| | - Amanda Carolina Cole Varela
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Mateus Timbola Mozzato
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Suelen Mendonça Soares
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Milena Fortuna
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Carla Alves
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, Rio Grande do Sul, Brazil
| | - Wagner Antonio Tamagno
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil; Laboratório de Bioquímica e Biologia Molecular do Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - Campus Sertão, Sertão, Rio Grande do Sul, Brazil
| | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo, BR 285, São José, Passo Fundo, Rio Grande do Sul, Brazil; Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
16
|
González Núñez AA, Ferro JP, Campos LB, Eissa BL, Mastrángelo MM, Ferrari L, Ossana NA. Evaluation of the Acute Effects of Arsenic on Adults of the Neotropical Native Fish Cnesterodon decemmaculatus Using a Set of Biomarkers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1246-1259. [PMID: 35088913 DOI: 10.1002/etc.5299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/17/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Neotropical fish Cnesterodon decemmaculatus were exposed to different sublethal concentrations (0.5, 1.0 and 5.0 mg As/L) of sodium arsenite (As III) to determine the median lethal concentration (LC50; 96 h) and to evaluate the response of a set of biomarkers (genotoxic, behavioral, biochemical, and metabolic). At the end of the exposure (96 h), fish were video-recorded for behavior assessment. We used the micronucleus and nuclear abnormality tests and the comet assay in peripheral blood as genotoxicity biomarkers. In regard to biochemical and metabolic biomarkers, we dissected the brain for acetylcholinesterase (AChE) activity; the liver for glutathione-S-transferase (GST) and catalase (CAT) activity and glutathione content (GSH); the gills for GSH content; and muscle for AChE, energy metabolism of lipids, carbohydrates, and proteins, and the electron transport system activity of the mitochondrial chain. We calculated an index using metabolic biomarkers, to determine the cellular energy allocation. The LC50 value was 7.32 mg As/L. The As affected some swimming parameters in females. No significant differences in micronucleus were found compared with the control, whereas nuclear aberrations increased significantly at 1.0 and 5.0 mg As/L. The genomic damage index and the percentage of cells with DNA damage (measured by the comet assay) showed a significant increase in the As-treated groups, and this technique was the most sensitive for detecting genotoxic damage. The As affected the antioxidant system (mainly GSH, CAT, and GST) and reduced the lipid content. A preliminary baseline was generated for the response of C. decemmaculatus exposed to sublethal concentrations of As, when it alters swimming behavior and the antioxidant system, has genotoxic effects, and reduces lipid content. Environ Toxicol Chem 2022;41:1246-1259. © 2022 SETAC.
Collapse
Affiliation(s)
- Ayelén A González Núñez
- Programa de Ecofisiología Aplicada, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
- Instituto de Ecología y Desarrollo Sustentable (Universidad Nacional de Luján, Consejo Nacional de Investigaciones Científicas y Técnicas), Luján, Buenos Aires, Argentina
| | - Juan P Ferro
- Programa de Ecofisiología Aplicada, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
- Instituto de Ecología y Desarrollo Sustentable (Universidad Nacional de Luján, Consejo Nacional de Investigaciones Científicas y Técnicas), Luján, Buenos Aires, Argentina
| | - Liria B Campos
- Programa de Ecofisiología Aplicada, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
- Instituto de Ecología y Desarrollo Sustentable (Universidad Nacional de Luján, Consejo Nacional de Investigaciones Científicas y Técnicas), Luján, Buenos Aires, Argentina
| | - Bettina L Eissa
- Programa de Ecofisiología Aplicada, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
- Instituto de Ecología y Desarrollo Sustentable (Universidad Nacional de Luján, Consejo Nacional de Investigaciones Científicas y Técnicas), Luján, Buenos Aires, Argentina
| | - Martina M Mastrángelo
- Programa de Ecofisiología Aplicada, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
- Instituto de Ecología y Desarrollo Sustentable (Universidad Nacional de Luján, Consejo Nacional de Investigaciones Científicas y Técnicas), Luján, Buenos Aires, Argentina
| | - Lucrecia Ferrari
- Programa de Ecofisiología Aplicada, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
| | - Natalia A Ossana
- Programa de Ecofisiología Aplicada, Departamento de Ciencias Básicas, Universidad Nacional de Luján, Luján, Buenos Aires, Argentina
- Instituto de Ecología y Desarrollo Sustentable (Universidad Nacional de Luján, Consejo Nacional de Investigaciones Científicas y Técnicas), Luján, Buenos Aires, Argentina
| |
Collapse
|
17
|
Silberschmidt Freitas J, da Silva Pinto TJ, Cardoso Yoshii MP, Conceição Menezes da Silva L, de Palma Lopes LF, Pretti Ogura A, Girotto L, Montagner CC, de Oliveira Gonçalves Alho L, Castelhano Gebara R, Schiesari L, Gaeta Espíndola EL. Realistic exposure to fipronil, 2,4-D, vinasse and their mixtures impair larval amphibian physiology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118894. [PMID: 35085654 DOI: 10.1016/j.envpol.2022.118894] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/31/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Expansion of sugarcane crops may have contributed to the increased contamination of native habitats in Brazil. Several species of amphibians inhabit ponds formed in flooded farmlands, where pesticide concentrations are usually high. This study evaluated the ecotoxicological effects of the sugarcane pesticides fipronil and 2,4-D, as well as the fertilizer vinasse (isolated and mixed), on physiological responses of Leptodactylus fuscus and Lithobates catesbeianus tadpoles. In situ assays were conducted in mesocosms with concentrations based on the doses recommended by the manufacturer. Vinasse (1.3% dilution) caused 100% tadpoles' mortality immediately after its application. Fipronil and/or 2,4-D altered antioxidant and biotransformation responses, induced neurotoxicity and changed lipid contents in tadpoles. A multivariate approach indicated that the mixture of pesticides induced most of the sublethal effects in both tadpole species, in addition to the isolated fipronil in L. fuscus. Fipronil alone increased glucose-6-phosphate dehydrogenase (G6PDH) activity, decreased acetylcholinesterase (AChE) and total lipid contents, and altered some individual lipid classes (e.g., free fatty acids and acetone-mobile polar lipids) in L. fuscus. The interaction between fipronil and 2,4-D in this species were more evident for lipid contents, although enzymatic alterations in G6PDH, AChE and glutathione-S-transferase (GST) were also observed. In L. catesbeianus, the mixture of pesticides reduced triglycerides and total lipids, as well as increased GST and decreased AChE activities. The detoxifying enzyme carboxylesterase was reduced by 2,4-D (alone or in mixture) in both species. Isolated pesticides also modulated specific lipid classes, suggesting their disruptive action on energy metabolism of tadpoles. Our study showed that fipronil, 2,4-D, and vinasse, individually or mixed, can be harmful to amphibians during their larval phase, causing mortality or impairing their functional responses.
Collapse
Affiliation(s)
- Juliane Silberschmidt Freitas
- NEEA/UEMG, Department of Agrarian and Natural Sciences, Minas Gerais State University (UEMG), R. Ver. Geraldo Moisés da Silva, s/n - Universitário, 38302-192, Ituiutaba, MG, Brazil.
| | - Thandy Junio da Silva Pinto
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Maria Paula Cardoso Yoshii
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Laís Conceição Menezes da Silva
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Laís Fernanda de Palma Lopes
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Allan Pretti Ogura
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Laís Girotto
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | | | | | - Luís Schiesari
- EACH, USP - School of Arts, Sciences and Humanities, University of São Paulo, Av. Arlindo Bétio 1000, São Paulo, SP, 03828-000, Brazil
| | - Evaldo Luiz Gaeta Espíndola
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| |
Collapse
|
18
|
Ogura AP, Moreira RA, da Silva LCM, Negro GS, Freitas JS, da Silva Pinto TJ, Lopes LFDP, Yoshii MPC, Goulart BV, Montagner CC, Espíndola ELG. Irrigation with Water Contaminated by Sugarcane Pesticides and Vinasse Can Inhibit Seed Germination and Crops Initial Growth. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:330-340. [PMID: 35138446 DOI: 10.1007/s00244-022-00914-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Sugarcane crops are dependent on chemicals for maintaining plantations. Therefore, environmental consequences concern adjacent areas that can be affected by contaminants in common use, including pesticides and vinasse (i.e., a by-product from the ethanol industry). This study aimed to evaluate phytotoxicity through two plant bioassays with water from mesocosms contaminated with the herbicide 2,4-D (447.0 μg L-1), the insecticide fipronil (63.5 μg L-1), and sugarcane vinasse (1.3%). First, the germination test (4 d) with Eruca sativa L. assessed water samples collected three times after the contamination (2 h, 14 d, and 30 d), considering germination, shoot, and root growth. The results from this bioassay indicated higher phytotoxicity for 2,4-D as it fully inhibited the shoot and root growth even in low concentrations (0.2 μg L-1). However, no significant effect was reported for fipronil and vinasse. Also, the 2,4-D effects drastically decreased due to an expressive concentration reduction (99.4% after 30 d in mixture with vinasse). Second, the irrigation test with Phaseolus vulgaris L. and Zea mays L. considered shoot and root growth and biomass under 21 days after plants emergence. The herbicide 2,4-D inhibited the initial growth of tested species, especially the roots (up to 45% inhibition). Furthermore, sugarcane vinasse caused harmful effects on plant growth (up to 31% inhibition). Therefore, our data showed that these contaminants could inhibit plant germination and initial growth under our tested conditions. These evaluations can endorse risk assessments and water management in sugarcane crops surrounding areas.
Collapse
Affiliation(s)
- Allan Pretti Ogura
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil.
| | - Raquel Aparecida Moreira
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
| | - Laís Conceição Menezes da Silva
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
| | - Giovana Spinelli Negro
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
| | - Juliane Silberschmidt Freitas
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
- Department of Biological Sciences, Minas Gerais State University (UEMG), Ituiutaba, Minas Gerais, Brazil
| | - Thandy Junio da Silva Pinto
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
| | - Laís Fernanda de Palma Lopes
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
| | - Maria Paula Cardoso Yoshii
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
| | - Bianca Veloso Goulart
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, São Paulo, Brazil
| | | | - Evaldo Luiz Gaeta Espíndola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos School of Engineering, University of São Paulo, Trabalhador Sancarlense Avenue, 400, São Carlos, São Paulo, 13560-970, Brazil
| |
Collapse
|
19
|
Vijitkul P, Kongsema M, Toommakorn T, Bullangpoti V. Investigation of genotoxicity, mutagenicity, and cytotoxicity in erythrocytes of Nile tilapia ( Oreochromis niloticus) after fluoxetine exposure. Toxicol Rep 2022; 9:588-596. [PMID: 35392157 PMCID: PMC8980867 DOI: 10.1016/j.toxrep.2022.03.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/11/2022] [Accepted: 03/26/2022] [Indexed: 11/25/2022] Open
Abstract
Fluoxetine (FLX) is an antidepressant that is increasingly being detected in aquatic environments. However, this contaminated FLX can affect aquatic organisms. Therefore, the aim of this study was to evaluate the genotoxic, mutagenic, and cytotoxic potential of FLX on erythrocytes in Nile tilapia (Oreochromis niloticus) after acute exposure. Fish were exposed to different concentrations of FLX (10, 100 and 1000 µg/L) for 96 h. Then, the condition factor (K value) was used to assess the general fish condition. The genotoxicity was investigated using a comet assay, and the mutagenicity was examined using micronucleus (MN) and erythrocytic nuclear abnormalities (ENAs) assays. In addition, the cytotoxicity was analyzed by erythrocyte morphometry and erythrocyte maturity index (EMI). The results showed that FLX did not affect the fish's health. Nevertheless, 100 and 1000 µg/L FLX significantly increased DNA damage. Furthermore, a higher concentration of FLX presented a significantly increased frequency of MNs and ENAs, also leading to changes in some erythrocyte morphometric indices and significantly decreased mature erythrocytes. In conclusion, our results indicate that FLX induces genotoxic, mutagenic, and cytotoxic effects in erythrocytes of O. niloticus.
Collapse
Affiliation(s)
- Pachara Vijitkul
- Animal Toxicology and Specialty Research Unit, Department of Zoology, Faculty of Science, Kasetsart University, Phahonyothin Road, Bangkok 10900, Thailand
| | - Mesayamas Kongsema
- Animal Toxicology and Specialty Research Unit, Department of Zoology, Faculty of Science, Kasetsart University, Phahonyothin Road, Bangkok 10900, Thailand
| | - Thularath Toommakorn
- Animal Toxicology and Specialty Research Unit, Department of Zoology, Faculty of Science, Kasetsart University, Phahonyothin Road, Bangkok 10900, Thailand
| | - Vasakorn Bullangpoti
- Animal Toxicology and Specialty Research Unit, Department of Zoology, Faculty of Science, Kasetsart University, Phahonyothin Road, Bangkok 10900, Thailand
| |
Collapse
|
20
|
Peluso J, Furió Lanuza A, Pérez Coll CS, Aronzon CM. Synergistic effects of glyphosate- and 2,4-D-based pesticides mixtures on Rhinella arenarum larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:14443-14452. [PMID: 34617223 DOI: 10.1007/s11356-021-16784-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate and 2,4-D are two herbicides commonly used together. Since there is little information about the interactions between these pesticides, the aim of this study was to evaluate the single and joint lethal toxicity of the glyphosate-based herbicide (GBH) ATANOR® (43.8% of glyphosate, isopropylamine salt) and the 2,4-D-based herbicide (2,4-DBH) Así Max 50® (602000 mg/L of 2,4-D) on Rhinella arenarum larvae. Equitoxic and non-equitoxic mixtures were prepared according to the recommendation for their combination and analyzed with a fixed ratio design at different exposure times and levels of lethality (LC10, LC50, and LC90). GBH (504h-LC50=38.67 mg ae/L) was significantly more toxic than 2,4-DBH (504h-LC50=250.31 mg ae/L) and their toxicity was time-dependent. At 48h, the equitoxic mixture toxicity was additive and from the 96h was antagonistic at LC10 and LC50 effect level. The non-equitoxic mixture toxicity was additive at LC10 effect level from the 48h to the 168h, and synergistic from the 240h. At LC50 and LC90 effect level, the mixture interaction resulted synergistic for all exposure times. This is the first study to report the synergistic interactions between GBH and 2,4-DBH on amphibians, alerting about its negative impact on aquatic ecosystems.
Collapse
Affiliation(s)
- Julieta Peluso
- Instituto de Investigación e Ingeniería Ambiental, IIIA, UNSAM-CONICET, 3iA, Campus Miguelete, 25 de Mayo y Francia, C.P. 1650 San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Agustina Furió Lanuza
- Instituto de Investigación e Ingeniería Ambiental, IIIA, UNSAM-CONICET, 3iA, Campus Miguelete, 25 de Mayo y Francia, C.P. 1650 San Martín, Buenos Aires, Argentina
| | - Cristina S Pérez Coll
- Instituto de Investigación e Ingeniería Ambiental, IIIA, UNSAM-CONICET, 3iA, Campus Miguelete, 25 de Mayo y Francia, C.P. 1650 San Martín, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
| | - Carolina M Aronzon
- Instituto de Investigación e Ingeniería Ambiental, IIIA, UNSAM-CONICET, 3iA, Campus Miguelete, 25 de Mayo y Francia, C.P. 1650 San Martín, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
21
|
Viana NP, da Silva LCM, Portruneli N, Soares MP, Cardoso IL, Bonansea RI, Goulart BV, Montagner CC, Espíndola ELG, Wunderlin DA, Fernandes MN. Bioconcentration and toxicological impacts of fipronil and 2,4-D commercial formulations (single and in mixture) in the tropical fish, Danio rerio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11685-11698. [PMID: 34546525 DOI: 10.1007/s11356-021-16352-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
The insecticide fipronil and the herbicide 2,4-D are the most applied pesticides in sugarcane crops leading to aquatic contamination. The whole-body bioconcentration of fipronil and 2,4-D, single and in mixture, was evaluated in Danio rerio after 96-h exposure. The activities of catalase (CAT) and glutathione S-transferase(GST) in whole body and in the gills and the acetylcholinesterase (AChE) in muscle were determined. The gill histopathology and the morphology of the pavement (PVC) and the mitochondria-rich(MRC) cells at gill surface were analyzed. Bioconcentration occurred after exposure to fipronil (2.69 L kg-1) and 2,4-D (1.73 L kg-1) single and in mixture of fipronil (3.10 L kg-1) and 2,4-D (1.27 L kg-1). Whole-body CAT activity was unchanged, and its activity decreased in the gills after exposure to fipronil and increased after exposure to 2,4-D and mixture. GST and AChE increased after single exposure to each pesticide and mixture of both. Fish exposed to mixture increased the MRC fractional area (MRCFA) which suggested possible ionic regulation disturbance and reduced the microridge of the PVC surface. Synergistic interactions occurred in the CAT activity and MRCFA after exposure to mixture of pesticides. The results indicate that the recommended application dose of fipronil and 2,4-D, single or in mixture, for sugarcane crops affects this fish species altering its homeostasis.
Collapse
Affiliation(s)
- Natália Prudêncio Viana
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luiz, km 235, São Carlos, São Paulo, 13565-905, Brazil
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
| | - Laís Conceição Menezes da Silva
- Programa de Pós-graduação em Ciências da Engenharia Ambiental, Escola de Engenharia de São Carlos (NEEA/CRHEA/SHS), Universidade de São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13566-590, Brazil
| | - Natália Portruneli
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luiz, km 235, São Carlos, São Paulo, 13565-905, Brazil
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
| | - Michelly Pereira Soares
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
- Programa Interinstitucional de Pós-graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual de São Paulo, Rodovia Washington Luiz, km 235, São Carlos, São Paulo, 13565-905, Brazil
| | - Israel Luz Cardoso
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil
- Programa Interinstitucional de Pós-graduação em Ciências Fisiológicas, Universidade Federal de São Carlos/Universidade Estadual de São Paulo, Rodovia Washington Luiz, km 235, São Carlos, São Paulo, 13565-905, Brazil
| | - Rocío Inés Bonansea
- Faculdade de Ciências Químicas, Universidade Nacional de Córdoba, Córdoba, Argentina
| | - Bianca Veloso Goulart
- Instituto de Química, Universidade de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-970, Brazil
| | - Cassiana Carolina Montagner
- Instituto de Química, Universidade de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, 13083-970, Brazil
| | - Evaldo Luiz Gaeta Espíndola
- Programa de Pós-graduação em Ciências da Engenharia Ambiental, Escola de Engenharia de São Carlos (NEEA/CRHEA/SHS), Universidade de São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13566-590, Brazil
| | | | - Marisa Narciso Fernandes
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, Rodovia Washington Luiz, km 235, São Carlos, São Paulo, 13565-905, Brazil.
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
22
|
Portruneli N, Bonansea RI, Valdés ME, da Silva LCM, Viana NP, Goulart BV, Souza IDC, Espíndola ELG, Montagner CC, Wunderlin DA, Fernandes MN. Whole-body bioconcentration and biochemical and morphological responses of gills of the neotropical fish Prochilodus lineatus exposed to 2,4-dichlorophenoxyacetic acid or fipronil individually or in a mixture. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105987. [PMID: 34644674 DOI: 10.1016/j.aquatox.2021.105987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/16/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) and the insecticide fipronil have been used widely in agriculture and detected in aquatic ecosystems, where they threaten wildlife. This study evaluated the whole-body bioconcentration and the biochemical and morphological changes in the gills of the neotropical fish Prochilodus lineatus exposed for 96 h to 2,4-D or fipronil as single compounds or as a mixture (2,4-D + fipronil). Fish exposed to either compound alone bioconcentrated 2,4-D (77 ± 23 ng g - 1 fish dry mass) and fipronil (789 ± 178 ng g - 1 fish dry mass). Fish exposed to 2,4-D + fipronil bioconcentrated fipronil (683 ± 73 ng g - 1 fish dry mass) but not 2,4-D. In the gills, catalase (CAT) and glutathione-S-transferase (GST) activities and the lipid peroxidation (LPO) level increased after exposure to 2,4-D. GST activity increased after exposure to fipronil. Conversely, no changes occurred in CAT and GST activities and LPO upon exposure to 2,4-D + fipronil. Histopathological changes such as hyperplasia, cellular hypertrophy, epithelial lifting, and vascular congestion were frequent in the gills of fish exposed to 2,4-D or fipronil individually or 2,4-D + fipronil. The mitochondria-rich cell (MRC) density increased on gill surface in fish exposed to fipronil or 2,4-D + fipronil. Only exposure to 2,4-D alone induced oxidative stress in the gills. Most morphological changes showed defense responses against the pesticides; however, hypertrophy and the change in MRC indicated compensatory responses to maintain the gill osmoregulatory function. The 2,4-D + fipronil mixture showed antagonistic interaction, except for the MRC fractional area at gill surface, which showed synergistic interaction. This is the first report showing antagonistic interaction of 2,4-D and fipronil in the gills after exposing fish to the mixture of both pesticides. The biochemical and morphological changes in gills endanger the gill functions, a phenomenon that implies an energy cost for fish.
Collapse
Affiliation(s)
- Natália Portruneli
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz km 235, 13565-905 São Carlos, SP, Brazil; Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz km 235, 13565-905 São Carlos, SP, Brasil
| | - Rocío Inés Bonansea
- ICYTAC: Instituto de Ciencia e Tecnologia de Alimentos Córdoba, CONICET e Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba - UNC, Córdoba, Argentina
| | - Maria Eugenia Valdés
- ICYTAC: Instituto de Ciencia e Tecnologia de Alimentos Córdoba, CONICET e Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba - UNC, Córdoba, Argentina
| | | | - Natália Prudêncio Viana
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz km 235, 13565-905 São Carlos, SP, Brazil; Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz km 235, 13565-905 São Carlos, SP, Brasil
| | - Bianca V Goulart
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, Brasil
| | - Iara da Costa Souza
- Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz km 235, 13565-905 São Carlos, SP, Brasil
| | | | - Cassiana Carolina Montagner
- Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, SP, Brasil
| | - Daniel Alberto Wunderlin
- ICYTAC: Instituto de Ciencia e Tecnologia de Alimentos Córdoba, CONICET e Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba - UNC, Córdoba, Argentina
| | - Marisa Narciso Fernandes
- Programa de Pós-graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz km 235, 13565-905 São Carlos, SP, Brazil; Departamento de Ciências Fisiológicas, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luiz km 235, 13565-905 São Carlos, SP, Brasil.
| |
Collapse
|
23
|
Martins RX, Vieira L, Souza JACR, Silva MGF, Muniz MS, Souza T, Queiroga FR, Machado MRF, da Silva PM, Farias D. Exposure to 2,4-D herbicide induces hepatotoxicity in zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109110. [PMID: 34144256 DOI: 10.1016/j.cbpc.2021.109110] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) herbicide is the main ingredient in over 1500 commercially available products such as Weedestroy® AM40 and DMA® 4 IVM. Although the liver has been identified as one of the organs that are affected by this herbicide, reports on its hepatotoxic effects available in the literature are restricted to rats. Thus, there is a gap in information on other organisms that may be vulnerable to 2,4-D exposure, such as fish. Therefore, the present work aimed to assess the hepatotoxic potential of 2,4-D in fish using zebrafish (Danio rerio) larvae as a model system. For this purpose, its acute toxicity to zebrafish embryos was assessed, as well as its sublethal effects (< LC50) on the activity of enzymes related to oxidative (GST, CAT and GPX) and metabolic (LDH) stress and liver parameters (AST, ALT and ALP) after 48 h of exposure. Morphological analyses of the liver were also assessed in zebrafish larvae. As a result, 2,4-D reduced larvae survival (LC50 15.010 mg/L in 96 h of exposure), induced malformations, altered the activity of LDH, GST and CAT enzymes and significantly increased the activity of all biomarkers for liver damage. Although no changes in the color or size of larval liver were observed, histopathological analysis revealed that treatment with 2,4-D caused severe changes in liver tissue, such as vacuolization of the cytosol, eccentric cell nucleus, loss of tissue architecture and cellular boundaries. Thus, the results showed that 2,4-D altered the enzymatic profile related to oxidative stress, and induces liver damage.
Collapse
Affiliation(s)
- Rafael Xavier Martins
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Leonardo Vieira
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Juliana Alves Costa Ribeiro Souza
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Marília Guia Flor Silva
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Marta Silva Muniz
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Terezinha Souza
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Fernando Ramos Queiroga
- Laboratory of Immunology and Pathology of Invertebrates (LABIPI), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | | | - Patricia Mirella da Silva
- Laboratory of Immunology and Pathology of Invertebrates (LABIPI), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Davi Farias
- Laboratory for Risk Assessment of Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil.
| |
Collapse
|
24
|
Liang X, Zhao Y, Guo N, Yang Q. Heterogeneous activation of peroxymonosulfate by Co3O4 loaded biochar for efficient degradation of 2,4-dichlorophenoxyacetic acid. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Amaç E, Liman R. Cytotoxic and genotoxic effects of clopyralid herbicide on Allium cepa roots. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48450-48458. [PMID: 33913105 DOI: 10.1007/s11356-021-13994-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Clopyralid is one of the synthetic pyridine-carboxylate auxin herbicides and used to control perennial and annual broadleaf weeds in wheat, sugar beets, canola, etc. In this study, dose-dependent cytotoxicity and genotoxicity of clopyralid at different concentrations (25, 50, and 100 μg/mL) have been evaluated on the Allium cepa roots. The evaluation has been performed at macroscopic (root growth) and microscopic levels [mitotic index (MI), chromosome aberrations (CAs) in ana-telophase cells, and DNA damage] using root growth inhibition, Allium ana-telophase, and comet tests. The percentage of root growth inhibition and concentration of reducing root growth by 50% (EC50) of clopyralid were determined compared with the negative control by using various concentrations of clopyralid (6.25-1000 μg/L). The 96 h EC50 of clopyralid was recorded as 50 μg/L. The gradual decrease in root growth and the MI reveals the cytotoxic effects of clopyralid. All the tested concentrations of clopyralid induced total CAs (polyploidy, stickiness, anaphase bridges, chromosome laggards, and disturbed ana-telophase) and DNA damage dose and time dependently. These results confirm the cytotoxic and genotoxic effects of clopyralid on non-target organism.
Collapse
Affiliation(s)
- Eslem Amaç
- Molecular Biology and Genetics Department, Faculty of Arts and Sciences, Uşak University, 1 Eylül Campus, 64300, Uşak, Turkey
| | - Recep Liman
- Molecular Biology and Genetics Department, Faculty of Arts and Sciences, Uşak University, 1 Eylül Campus, 64300, Uşak, Turkey.
| |
Collapse
|
26
|
Anton BJ, Dehnert GK, Karasov WH. Subchronic impacts of 2,4-D herbicide Weedestroy®AM40 on associative learning in juvenile yellow perch (Perca flavescens). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105909. [PMID: 34273773 DOI: 10.1016/j.aquatox.2021.105909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Aquatic herbicides are commonly used to control a wide variety of invasive and nuisance plants. One common active ingredient used in commercial herbicide formulations in Midwestern states is 2,4-dichlorophenoxyacetic acid (2,4-D). Due to the stability of 2,4-D in aquatic environments, many non-target aquatic species experience prolonged exposure throughout critical developmental life stages that can affect essential behaviors. However, the impacts of 2,4-D exposure on learning behaviors in juvenile fish are poorly understood. Therefore, we conducted a series of experiments using a maze environment to determine the effects of a commercial 2,4-D amine salt herbicide formulation (Weedestroy®AM40; WAM40; at 0.00, 0.50, 2.00, and 50.00 mg/L 2,4-D acid equivalent (a.e.)) exposure on juvenile yellow perch's ability to perform a feed associated learning behavior. We observed a significant decrease in the ability of yellow perch to correctly complete the feed associated learning behavior within 200 s when exposed to WAM40 at 2.00 and 50.00 mg/L 2,4-D as compared to controls (p = 0.0002; p < 0.0001, respectively) and within 600 s when exposed to WAM40 at 2.00 and 50.0 mg/L 2,4-D as compared to the controls (p = 0.0107 and p < 0.0001). These data suggest that exposure to 2,4-D in WAM40 can both increase the amount of time it takes for yellow perch to complete a feed associated learning behavior and/or obstruct the behavior altogether. Further experiments showed no significant decreases in locomotion (p > 0.05), hunger motivation (p > 0.05), and a visually guided startle response (p > 0.05), in all treatment groups tested as compared to controls. This suggests that 2,4-D in WAM40 does not inhibit feed associated learning behaviors via interaction with these mechanisms. Altogether, the results indicate that the use of 2,4-D herbicides for weed control in aquatic ecosystems could present risks to cognitive functions that control essential behaviors of yellow perch.
Collapse
Affiliation(s)
- Brian J Anton
- Department of Forest and Wildlife Ecology University of Wisconsin - Madison, Madison, WI, USA.
| | - Gavin K Dehnert
- Department of Integrative Biology University of Wisconsin - Madison, Madison, WI, USA
| | - William H Karasov
- Department of Forest and Wildlife Ecology University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
27
|
Çongur G. Electrochemical investigation of the interaction of 2,4-D and double stranded DNA using pencil graphite electrodes. Turk J Chem 2021; 45:600-615. [PMID: 34385855 PMCID: PMC8326490 DOI: 10.3906/kim-2011-56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/30/2021] [Indexed: 11/03/2022] Open
Abstract
2,4-dichlorophenoxyacetic acid (2,4-D) is an auxinic herbicide used to control broadleaf weeds. It is also a threatening factor for not only aquatic life but also human health due to its genotoxicity and endocrine disruptive property. Herein, the interaction between 2,4-D and double stranded DNA was investigated by using single-use pencil graphite electrodes (PGE) in combination with electrochemical techniques. The detection mechanism was based on the monitoring of the changes at the guanine oxidation signal obtained before/after surface-confined interaction of 2,4-D and DNA at the surface of PGE. The electrochemical characterization of the interaction was studied by using microscopic and electrochemical techniques. The response obtained by interaction in the presence of another herbicide, glyphosate, which is widely used with 2,4-D for weed control, was compared to the one occurred in the presence of 2,4-D. Electrochemical monitoring of the interaction between the herbicide whose active molecule was 2,4-D and DNA was also investigated. The detection (LOD) and quantification limits (LOQ) for 2,4-D and the herbicide could be obtained in the linear concentration ranges of 30-70 µg/mL and 10-30 µg/mL, respectively and LOD and LOQ values were found to be 2.85 and 9.50 µg/mL for both 2,4-D and the herbicide. The sensitivity of the biosensor was calculated as 0.087 µA.mL / µg.cm2 .This is the first study in literature by means of not only voltammetric detection of 2,4-D and DNA interaction but also the herbicide-DNA interaction at the surface of PGE based on the changes at the guanine signal.
Collapse
Affiliation(s)
- Gülşah Çongur
- Vocational School of Health Services, Bilecik Şeyh Edebali University, Bilecik Turkey.,Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, Bilecik Turkey
| |
Collapse
|
28
|
Brovini EM, de Deus BCT, Vilas-Boas JA, Quadra GR, Carvalho L, Mendonça RF, Pereira RDO, Cardoso SJ. Three-bestseller pesticides in Brazil: Freshwater concentrations and potential environmental risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144754. [PMID: 33736156 DOI: 10.1016/j.scitotenv.2020.144754] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 05/22/2023]
Abstract
Agricultural production in Brazil is favored by weather conditions and by the large amount of available land. Therefore, currently, Brazil is the second largest exporter of agricultural products globally. Pesticides are widely used in Brazilian crops due to their high efficiency, their low cost, and permissive legislation. However, pesticides tend to reach water resources threatening organisms and the water quality. Thereby, we aimed to review the surface freshwater concentrations of the three-bestseller pesticides in Brazil (glyphosate, 2,4D, and atrazine), and discuss the results with sales, legislation, toxicity and potential risks. For that, we performed a systematic review of quantitative studies of glyphosate, atrazine, and 2,4D in Brazilian freshwater and included monitoring data provided by the Brazilian Ministry of Health in our analysis. Finally, we calculated the risk assessment for the three pesticides. Only a few scientific studies reported concentrations of either of the three-bestseller pesticides in Brazilian freshwaters. Between 2009 and 2018, an increase in the sales of 2,4D, atrazine, and glyphosate was observed. It was not possible to evaluate the relation between concentrations and sales, due to limited number of studies, lack of standard criteria for sampling, individual environmental properties, and type of pesticide. Atrazine showed a higher toxicity compared to 2,4D and glyphosate. Regarding the environmental risks, 65%, 72%, and 94% of the Brazilian states had a medium to high risk to 2,4D, atrazine, and glyphosate, respectively. Finally, 80% of the Brazilian states evaluated showed a high environmental risk considering a mixture of the three pesticides. Although most of the environmental concentrations registered were below the allowed limits according to the Brazilian legislation, they are already enough to pose a high risk for the aquatic ecosystems. We, therefore, strongly recommend a revaluation of the maximum allowed values in the national surface freshwater Brazilian legislation.
Collapse
Affiliation(s)
- Emília Marques Brovini
- Laboratório de Ecologia Aquática, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil; Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, 36036-900, Brazil.
| | - Beatriz Corrêa Thomé de Deus
- Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Jéssica Andrade Vilas-Boas
- Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, 36036-900, Brazil; Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil
| | - Gabrielle Rabelo Quadra
- Laboratório de Ecologia Aquática, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil; Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, 36036-900, Brazil
| | - Luana Carvalho
- Laboratório de Protozoologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil
| | - Raquel Fernandes Mendonça
- Laboratório de Ecologia Aquática, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil; Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, 36036-900, Brazil
| | - Renata de Oliveira Pereira
- Programa de Pós-Graduação em Engenharia Civil, Universidade Federal de Juiz de Fora, Juiz de Fora, MG 36036-900, Brazil
| | - Simone Jaqueline Cardoso
- Laboratório de Ecologia Aquática, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, Minas Gerais, Brazil; Programa de Pós-Graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, 36036-900, Brazil
| |
Collapse
|
29
|
Ramborger BP, Gomes Paz ME, Kieling KMC, Sigal Carriço MR, de Paula Gollino G, Costa MT, Ribeiro VB, Folmer V, Gasparotto Denardin EL, de Jesus Soares J, Roehrs R. Toxicological parameters of aqueous residue after using Plectranthus neochilus for 2,4-D phytoremediation. CHEMOSPHERE 2021; 270:128638. [PMID: 33268092 DOI: 10.1016/j.chemosphere.2020.128638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 05/11/2023]
Abstract
Phytoremediation is a technique that reduces the impact and environmental toxicity of toxic agents. Plectranthus neochilus, a species of aromatic plant, has already promoted phytoremediation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). In addition, it was unclear whether the degradation of 2,4-D alone allows for a non-toxic environment (decontamination efficiency). Therefore, the aim of the present study was to verify the changes of the volatile compounds and concentrated essential oil of P. neochilus after phytoremediation of 2,4-D and the subsequent antibacterial activity of this essential oil concentrate. In addition, the toxicity of the plant's tea and the aqueous medium (waste) after the decontamination of 2,4-D was analyzed. The exposure to 2,4-D did not cause many changes in the volatile compounds, nor in the essential oil concentrate from the plant. Therefore, this essential oil concentrate can be used as an antimicrobial after phytoremediation. Regarding the use of this plant in tea form, it was found to be unsafe, even after phytoremediation, as this tea was toxic to the Drosophila melanogaster model (death of up to 100% of flies). The aqueous medium after 2,4-D phytoremediation became less toxic than the initial one (bioassays with Artemia salina and Allium cepa in the waste groups). However, the efficiency of phytoremediation with this plant must be improved. Therefore, we are performing new studies with P. necohilus and 2,4-D in aqueous medium.
Collapse
Affiliation(s)
- Bruna Piaia Ramborger
- Laboratório de Análises Químicas Ambientais e Toxicológicas (LAQAT), Universidade Federal Do Pampa, Uruguaiana, RS, Brazil; Laboratório de Estudos Físico-Químicos e Produtos Naturais (LEFQPN), Universidade Federal Do Pampa, Uruguaiana, RS, Brazil
| | - Maria Elizabeth Gomes Paz
- Laboratório de Análises Químicas Ambientais e Toxicológicas (LAQAT), Universidade Federal Do Pampa, Uruguaiana, RS, Brazil
| | | | - Murilo Ricardo Sigal Carriço
- Laboratório de Análises Químicas Ambientais e Toxicológicas (LAQAT), Universidade Federal Do Pampa, Uruguaiana, RS, Brazil; Laboratório de Estudos Físico-Químicos e Produtos Naturais (LEFQPN), Universidade Federal Do Pampa, Uruguaiana, RS, Brazil
| | - Gabriel de Paula Gollino
- Laboratório de Pesquisa em Resistência Microbiana (LABREMIC), Universidade Federal Do Pampa, Uruguaiana, RS, Brazil
| | - Márcio Tavares Costa
- Grupo de Estudos em Nutrição, Saúde e Qualidade de Vida (GENSQ), Universidade Federal Do Pampa, Uruguaiana, RS, Brazil
| | - Vanessa Bley Ribeiro
- Laboratório de Pesquisa em Resistência Microbiana (LABREMIC), Universidade Federal Do Pampa, Uruguaiana, RS, Brazil
| | - Vanderlei Folmer
- Grupo de Estudos em Nutrição, Saúde e Qualidade de Vida (GENSQ), Universidade Federal Do Pampa, Uruguaiana, RS, Brazil
| | - Elton Luis Gasparotto Denardin
- Laboratório de Análises Químicas Ambientais e Toxicológicas (LAQAT), Universidade Federal Do Pampa, Uruguaiana, RS, Brazil; Laboratório de Estudos Físico-Químicos e Produtos Naturais (LEFQPN), Universidade Federal Do Pampa, Uruguaiana, RS, Brazil
| | - Jefferson de Jesus Soares
- Laboratório de Análises Químicas Ambientais e Toxicológicas (LAQAT), Universidade Federal Do Pampa, Uruguaiana, RS, Brazil; Laboratório de Estudos Físico-Químicos e Produtos Naturais (LEFQPN), Universidade Federal Do Pampa, Uruguaiana, RS, Brazil
| | - Rafael Roehrs
- Laboratório de Análises Químicas Ambientais e Toxicológicas (LAQAT), Universidade Federal Do Pampa, Uruguaiana, RS, Brazil; Laboratório de Estudos Físico-Químicos e Produtos Naturais (LEFQPN), Universidade Federal Do Pampa, Uruguaiana, RS, Brazil.
| |
Collapse
|
30
|
Congur G. Monitoring of glyphosate-DNA interaction and synergistic genotoxic effect of glyphosate and 2,4-dichlorophenoxyacetic acid using an electrochemical biosensor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116360. [PMID: 33412448 DOI: 10.1016/j.envpol.2020.116360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Glyphosate (GLY) is a broad-spectrum herbicide used worldwide to control broadleaf sedge, and grass weeds to control non-specific vegetation. Although it was evaluated as non-toxic agent in 20th century, its carcinogenic and genotoxic potential has being intensively investigated all over the world in the last decade. Moreover, the combination of GLY and 2,4-dichlorophenoxyacetic acid (2,4-D) has been widely applied. Although genotoxicity of GLY has been evaluated in vivo studies, there is no report in the literature for the monitoring of in vitro biointeraction of GLY and double stranded DNA, or how effect the combination of GLY and 2,4-D onto DNA. Herein, an electrochemical biosensor platform was developed for detection of the pesticide-DNA interaction by using disposable pencil graphite electrodes (PGEs). First, voltammetric detection of the interaction between GLY and DNA was investigated and the electrochemical characterization of the interaction was achieved. Taking a step further, the synergistic genotoxic effect of the mixture of GLY and 2,4-dichlorophenoxyacetic acid (2,4-D) or the mixture of their herbicide forms onto DNA could be monitored. This effect was concentration dependent, and the herbicide of GLY or the use of mixture of herbicides of GLY and 2,4-D had more genotoxic effect than analytical grade of the active molecules, GLY and 2,4-D. The single-use PGEs provided to fabricate robust, eco-friendly and time saver recognition platform for monitoring of herbicide-DNA interaction with the sensitive and reliable results. It is expected that this study will lead to be designed miniaturized lab-on-a chip platforms for on-line analysis of the pesticide-nucleic acid interactions.
Collapse
Affiliation(s)
- Gulsah Congur
- Bilecik Seyh Edebali University, Vocational School of Health Services, 11230 Bilecik, Turkey; Bilecik Seyh Edebali University, Biotechnology Application and Research Center, 11230, Bilecik, Turkey.
| |
Collapse
|
31
|
Zafra-Lemos L, Cusioli LF, Bergamasco R, Borin-Carvalho LA, Portela-Castro ALDB. Evaluation of the genotoxic and cytotoxic effects of exposure to the herbicide 2,4-dichlorophenoxyacetic acid in Astyanax lacustris (Pisces, Characidae) and the potential for its removal from contaminated water using a biosorbent. Mutat Res 2021; 865:503335. [PMID: 33865541 DOI: 10.1016/j.mrgentox.2021.503335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 01/27/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
The genotoxic and cytotoxic effects of 2,4-dichlorophenoxyacetic acid (2,4-D) on specimens of Astyanax lacustris were evaluated using different biomarkers. Additionally, this study evaluated the efficiency of an activated carbon filter made from the husks green coconut, which was used as a biosorbent to remove 2,4-D dissolved in the water, and the potential effectiveness of this procedure for the reduction of the toxic effects of this compound on A. lacustris. Three sublethal concentrations of 2,4-D (10, 20, and 40 mg L-1) were tested over 24, 48, and 72 h, and their effects on Astyanax lacustris were evaluated using chromosomal aberration test, the mitotic index, the frequency of micronuclei and nuclear alterations, and the comet assay. Exposure to 2,4-D increased the frequency of chromosomal aberrations, reduced the mitotic index, and caused significant levels of nuclear modification in some of the treatments, in comparison with the negative control. The comet assay revealed DNA damage (classes 1-3) at all 2,4-D concentrations, reaching significant levels in the 20 mg L-1 (48 h) and 40 mg L-1 (72 h) treatments. The coconut husk biosorbent was highly effective for the removal of 2,4-D and the fish exposed to the water decontaminated by this filter had low levels of cellular alteration. The findings of the present study demonstrated, for the first time, the genotoxic and cytotoxic effects of 2,4-D in Astyanax lacustris, as well as suggests the potential application of a biosorbent for the effective decontamination of water contaminated with pesticides.
Collapse
Affiliation(s)
- Layon Zafra-Lemos
- Department of Biotechnology, Genetics and Cellular Biology, Maringá State University, Av. Colombo, 5790 - Zona 7, Maringá, Paraná, Brazil.
| | - Luís Fernando Cusioli
- Department of Chemical Engineering, Maringá State University, Av. Colombo, 5790 - Zona 7, Maringá, Paraná, Brazil
| | - Rosangela Bergamasco
- Department of Chemical Engineering, Maringá State University, Av. Colombo, 5790 - Zona 7, Maringá, Paraná, Brazil
| | - Luciana Andreia Borin-Carvalho
- Department of Biotechnology, Genetics and Cellular Biology, Maringá State University, Av. Colombo, 5790 - Zona 7, Maringá, Paraná, Brazil
| | - Ana Luiza de Brito Portela-Castro
- Department of Biotechnology, Genetics and Cellular Biology, Maringá State University, Av. Colombo, 5790 - Zona 7, Maringá, Paraná, Brazil
| |
Collapse
|
32
|
Moreira RA, Araújo CVM, Junio da Silva Pinto T, Menezes da Silva LC, Goulart BV, Viana NP, Montagner CC, Fernandes MN, Gaeta Espindola EL. Fipronil and 2,4-D effects on tropical fish: Could avoidance response be explained by changes in swimming behavior and neurotransmission impairments? CHEMOSPHERE 2021; 263:127972. [PMID: 32822938 DOI: 10.1016/j.chemosphere.2020.127972] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Brazil is the largest producer of sugarcane, a crop largely dependent on chemical control for its maintenance. The insecticide fipronil and herbicide 2,4-D stand out among the most commonly used pesticides and, therefore, environmental consequences are a matter of concern. The present study aimed to investigate the toxicity mechanisms of Regent® 800 WG (a.i. fipronil) and DMA® 806 BR (a.i. 2,4-D) pesticides using forced and non-forced exposures through an integrative approach: firstly, to assess whether contamination by fipronil and 2,4-D can trigger the avoidance behavior of the fish Danio rerio (zebrafish) and Hyphessobrycon eques (serpae tetra or mato-grosso). Additionally, the effects on fish were analyzed considering the swimming behavior together with a biomarker of neurotoxicity, the activity of acetylcholinesterase (AChE). In avoidance tests with pesticide gradients, D. rerio avoided the highest concentrations of the two compounds and H. eques avoided only the highest concentration of 2,4-D. The swimming behavior (distance moved) was reduced and AChE was inhibited when D. rerio was exposed to fipronil. The 2,4-D affected the swimming (maximum speed) of H. eques, but AChE was not altered. Avoidance response seemed not to have been affected by possible effects of contaminants on swimming behavior and Ache activity. This study showed the importance of knowing the avoidance capacity, swimming behavior and neurotoxic effects of pesticides on fish in an integrated and realistic context of exposure in environments contaminated with pesticides and can be useful as ecologically relevant tools for ecological risk assessment.
Collapse
Affiliation(s)
- Raquel Aparecida Moreira
- NEEA/CRHEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil.
| | - Cristiano V M Araújo
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Universitario Río San Pedro, 11519, Puerto Real, Spain
| | - Thandy Junio da Silva Pinto
- NEEA/CRHEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Laís Conceição Menezes da Silva
- NEEA/CRHEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| | - Bianca Veloso Goulart
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Natália Prudêncio Viana
- Physiological Sciences Department, Federal University of São Carlos, Av. Washington Luiz Km 235, 13565-905, São Carlos, São Paulo, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Marisa Narciso Fernandes
- Physiological Sciences Department, Federal University of São Carlos, Av. Washington Luiz Km 235, 13565-905, São Carlos, São Paulo, Brazil
| | - Evaldo Luiz Gaeta Espindola
- NEEA/CRHEA/SHS and PPG-SEA, São Carlos Engineering School, University of São Paulo, Av Trabalhador São Carlense, 400, 13.560-970, São Carlos, Brazil
| |
Collapse
|
33
|
Thiel NA, Sachett A, Schneider SE, Garbinato C, Decui L, Eichwald T, Conterato GMM, Latini A, Piato A, Siebel AM. Exposure to the herbicide 2,4-dichlorophenoxyacetic acid impairs mitochondrial function, oxidative status, and behavior in adult zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45874-45882. [PMID: 32803608 DOI: 10.1007/s11356-020-10497-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the most commonly used herbicides worldwide. While the effects of 2,4-D in target organisms are well known, its consequences in nontarget organisms are not fully explained. Therefore, the purpose of this study was to investigate the effects of the herbicide on mitochondrial energy metabolism, oxidative status, and exploratory behavior in adult zebrafish. Animal exposure to 2,4-D increased cytochrome c oxidase and catalase activities and reduced SOD/CAT ratio, moreover, increased the total distance traveled and the number of crossings. Finally, animals exposed to 2,4-D spent more time in the upper zone of the tank and traveled a long distance in the upper zone. Overall, our results indicate the 2,4-D can provoke disabling effects in nontarget organisms. The obtained data showed that exposure to 2,4-D at environmentally relevant concentrations alters mitochondrial metabolism and antioxidant status and disturbs the zebrafish innate behavior.
Collapse
Affiliation(s)
- Nathana Andressa Thiel
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Efapi, Chapecó, SC, 89809-900, Brazil
| | - Adrieli Sachett
- Laboratório de Psicofarmacologia e Comportamento, Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Sarmento Leite, 500, Centro Histórico, Porto Alegre, RS, 90050-170, Brazil
| | - Sabrina Ester Schneider
- Laboratório de Genética e Ecotoxicologia Molecular, Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Efapi, Chapecó, SC, 89809-900, Brazil
| | - Cristiane Garbinato
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Efapi, Chapecó, SC, 89809-900, Brazil
| | - Laura Decui
- Laboratório de Genética e Ecotoxicologia Molecular, Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Efapi, Chapecó, SC, 89809-900, Brazil
| | - Tuany Eichwald
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Greicy M M Conterato
- Laboratório de Fisiologia da Reprodução Animal, Departamento de Agricultura, Biodiversidade e Floresta, Universidade Federal de Santa Catarina, Campus de Curitibanos, Rodovia Ulysses Gaboardi, Curitibanos, SC, 89520-000, Brazil
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Angelo Piato
- Laboratório de Psicofarmacologia e Comportamento, Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Sarmento Leite, 500, Centro Histórico, Porto Alegre, RS, 90050-170, Brazil
| | - Anna Maria Siebel
- Laboratório de Genética e Ecotoxicologia Molecular, Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Efapi, Chapecó, SC, 89809-900, Brazil.
- Laboratório de Genética e Ecotoxicologia Molecular, Curso de Ciências Biológicas, Universidade Comunitária da Região de Chapecó, Servidão Anjo da Guarda, 295-D, Efapi, Chapecó, SC, 89809-900, Brazil.
| |
Collapse
|
34
|
Pradhan D, Singh RK, Verma SK. Genotoxic Potential Assessment of the Herbicide Bispyribac-Sodium in a Fresh Water Fish Clarias batrachus (Linn.). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 105:715-720. [PMID: 32970224 DOI: 10.1007/s00128-020-03003-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Genotoxic potential of herbicide bispyribac-sodium was evaluated in fish Clarias batrachus using micronucleus (MN) test and comet assay. Fish were exposed to three environmentally relevant test concentrations of the herbicide for 20, 25 and 30 days. Significant effects (p < 0.05) for both concentration and duration of exposure were observed in herbicide exposed fish. Similar trend of DNA damage was observed through MN test and comet assay. Maximum DNA damage was observed in fish exposed to highest concentration of herbicide at all duration. Maximum damage was observed on day 25 at all concentrations followed by a decline. This study established C. batrachus as an ecotoxicological model for bispyribac-sodium induced genotoxicity testing. It further confirmed that both MN test and comet assay are useful tool for assessment of genotoxicity induced by water pollutants.
Collapse
Affiliation(s)
- Dibyajyoti Pradhan
- Department of Zoology, Dr. C. V. Raman University, Bilaspur, Chattisgarh, India
| | | | - Sushant Kumar Verma
- Department of Zoology, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur, Chattisgarh, India.
| |
Collapse
|
35
|
Pompermaier A, Kirsten K, Soares SM, Fortuna M, Kalichak F, Idalencio R, Koakoski G, Barreto RE, Barcellos LJG. Waterborne agrichemicals compromise the anti-predatory behavior of zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38559-38567. [PMID: 32623676 DOI: 10.1007/s11356-020-09862-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Due to human activities, there is an increasing presence of agrochemicals residues in water bodies, which could be attributed to an increased use of these chemicals, incorrect disposal of packaging materials, and crop leaching. The effects of these residues on prey-predator relationship of aquatic animals are poorly known. Here, we show that fish acutely exposed to glyphosate, 2,4-D, and methylbenzoate-based agrichemicals have their anti-predatory responses impaired. We exposed zebrafish to sub-lethal concentrations of agrichemicals and evaluated their behavioral reaction against a simulated bird predatory strike. We observed that agrichemical-exposed fish spent more time in a risky area, suggesting that the pesticides interfered with their ability of risk perception. Our results highlight the impairment and environmental consequences of agrochemical residues, which can affect aquatic life and crucial elements for life (food web) such as the prey-predator relationship.
Collapse
Affiliation(s)
- Aline Pompermaier
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Karina Kirsten
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Suelen Mendonça Soares
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Milena Fortuna
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Fabiana Kalichak
- Curso de Medicina Veterinária, Faculdades Integradas do Vale do Iguaçu (Uniguaçu), Rua Padre Saporiti, 717, Rio D'Areia, União da Vitória, PR, 84600-904, Brazil
| | - Renan Idalencio
- Curso de Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Gessi Koakoski
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
- Curso de Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil
| | - Rodrigo Egydio Barreto
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, CAUNESP, UNESP, Botucatu, SP, 18618-689, Brazil
| | - Leonardo José Gil Barcellos
- Programa de Pós-Graduação em Ciências Ambientais, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil.
- Programa de Pós-Graduação em Bioexperimentação, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil.
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima, 1000, Cidade Universitária, Camobi, Santa Maria, RS, 97105-900, Brazil.
- Curso de Medicina Veterinária, Universidade de Passo Fundo (UPF), BR 285, São José, Passo Fundo, RS, 99052-900, Brazil.
| |
Collapse
|
36
|
Wu G, Ma J, Wang S, Chai H, Guo L, Li J, Ostovan A, Guan Y, Chen L. Cationic metal-organic framework based mixed-matrix membrane for extraction of phenoxy carboxylic acid (PCA) herbicides from water samples followed by UHPLC-MS/MS determination. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122556. [PMID: 32224376 DOI: 10.1016/j.jhazmat.2020.122556] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
A novel kind of cationic metal-organic framework(MOF) based mixed-matrix membrane(MMM) namely cationic MOF-MMM was firstly designed and used for simultaneous dispersive membrane extraction(DME) of six phenoxy carboxylic acid(PCA) herbicides from water samples followed by determination using ultrahigh-performance liquid chromatography tandem mass spectrometry. The cationic MOF-MMM was synthesized by soaking the zirconium-based MOFs in a polyvinylidene fluoride(PVDF) solution and further functionalization with quaternary amine groups, viz., UiO-66-NMe3+ MMM. The well-prepared UiO-66-NMe3+ MMM was characterized by FT-IR, SEM, XRD, XPS, NMR and etc. Several main variables influencing the MMM based DME efficiency were investigated and optimized in detail, such as dosage ratio of MOF/PVDF, solution pH, extraction time, coexistent anions and ionic strength. Electrostatic interactions dominated adsorption mechanism between anionic PCAs and cationic UiO-66-NMe3+ MMM, along with ππ conjugation and cation-π bonding, leading to better adsorption performance. Low limits of detection in the range of 0.03-0.59 ng/L and satisfactory recoveries within 80.06-117.40 % for all the PCAs are a reliable witness to demonstrate supreme sensitivity and the applicability of the developed method. By relying on the obtained results, the present work implied cationic MOF-MMM based DME can be a versatile and worthy utility for extraction of pollutants from different water samples with high throughput.
Collapse
Affiliation(s)
- Gege Wu
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China.
| | - Shasha Wang
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Huining Chai
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| | - Liang Guo
- Qingdao Junray Intelligent Instrument Co., Ltd., Qingdao, 266000, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Yafeng Guan
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
37
|
Gupta P, Verma SK. Evaluation of genotoxicity induced by herbicide pendimethalin in fresh water fishClarias batrachus(linn.) and possible role of oxidative stress in induced DNA damage. Drug Chem Toxicol 2020; 45:750-759. [DOI: 10.1080/01480545.2020.1774603] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Priyanka Gupta
- Department of Zoology, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur, India
| | - Sushant Kumar Verma
- Department of Zoology, Guru Ghasidas Vishwavidyalaya (Central University), Bilaspur, India
| |
Collapse
|
38
|
Mitkovska V, Chassovnikarova T. Chlorpyrifos levels within permitted limits induce nuclear abnormalities and DNA damage in the erythrocytes of the common carp. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7166-7176. [PMID: 31879882 DOI: 10.1007/s11356-019-07408-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
The organophosphate pesticide chlorpyrifos (CPF) is defined as a priority pollutant in surface freshwaters according to Directive 2013/39/EU of the European Parliament. The focus of this study was to assess the potential cytotoxic and genotoxic effects of permissible CPF levels on juvenile forms of the common carp. We found that low-level CPF exposure did not induce elevated levels of micronuclei, but significantly increased the frequency of total nuclear abnormalities (NAs) proportional to dose and time; notched, blebbed, lobed and eight-shaped nuclei, nuclear buds, nuclear bridges and binucleated cells were all detected. Decreased frequencies of polychromatic erythrocytes (PCEs) and DNA damage detected by comet assay were also observed, confirming the cytotoxic and genotoxic effects of CPF. Altogether, these data (1) demonstrate that CPF is toxic even at permissible levels, possessing considerable genotoxic and cytotoxic potential in peripheral erythrocytes of exposed fish and (2) validate the assessment of NAs, PCEs and comet assay performance as sensitive biomarkers for the early detection of CPF pollution. These findings can be applied to guide environmental risk assessment and biomonitoring programs.
Collapse
Affiliation(s)
- Vesela Mitkovska
- Department of Zoology, Faculty of Biology, University of Plovdiv Paisii Hilendarski, 24 Tzar Asen Street, 4000, Plovdiv, Bulgaria
| | - Tsenka Chassovnikarova
- Department of Zoology, Faculty of Biology, University of Plovdiv Paisii Hilendarski, 24 Tzar Asen Street, 4000, Plovdiv, Bulgaria.
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1 Tsar Osvoboditel Blvd, 1000, Sofia, Bulgaria.
| |
Collapse
|
39
|
Sharif SNM, Hashim N, Isa IM, Bakar SA, Saidin MI, Ahmad MS, Mamat M, Hussein MZ. Controlled release formulation of zinc hydroxide nitrate intercalated with sodium dodecylsulphate and bispyribac anions: A novel herbicide nanocomposite for paddy cultivation. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
40
|
Carvalho WF, Ruiz de Arcaute C, Torres L, de Melo E Silva D, Soloneski S, Larramendy ML. Genotoxicity of mixtures of glyphosate with 2,4-dichlorophenoxyacetic acid chemical forms towards Cnesterodon decemmaculatus (Pisces, Poeciliidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:6515-6525. [PMID: 31873893 DOI: 10.1007/s11356-019-07379-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Acute genotoxicity of commercial glyphosate (GLY) (Credit®)-, 2,4-D-acid (2,4-D) (Dedalo Elite)-, 2,4-D-amine (2,4-D DMA) (Weedar Full®)- and 2,4-D-ester (2,4-D BE) (Herbifen Super®)-based herbicide formulations alone and their combinations were analysed in Cnesterodon decemmaculatus. Mortality was evaluated as a lethal end-point and the single cell gel electrophoresis (SCGE) bioassay was used as a sublethal end-point. LC5096h values for Dedalo Elite was 0.46 mg/L and Herbifen Super® was 2.67 mg/L based on 2,4-D and 2,4-D BE, respectively. Results reveal a higher toxicity exerted on C. decemmaculatus after exposure to 2,4-D- rather than 2,4-D BE-based herbicide formulations. Overall, results demonstrated an enhancement in the genetic damage index committed to an enhancement of damaged erythrocytes of C. decemmaculatus when exposed to Credit®, Dedalo Elite, Weedar Full® and Herbifen Super® at 5% and 10% of LC5096h values alone as well as in their combinations. Overall, the combination of GLY plus 2,4-D or GLY plus 2,4-D DMA showed a synergistic pattern whereas the combination of GLY plus 2,4-D BE was antagonic. Furthermore, this research is pioneer in the assessment of lethality and genotoxicity induced by 2,4-D-, 2,4-D DMA- and 2,4-D BE-based formulations when combined with GLY-based formulated herbicides in fish after they are acutely exposed.
Collapse
Affiliation(s)
- Wanessa F Carvalho
- Laboratório de Mutagênese, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Celeste Ruiz de Arcaute
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 N° 3, B1904AMA, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Luciano Torres
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 N° 3, B1904AMA, La Plata, Argentina
| | - Daniela de Melo E Silva
- Laboratório de Mutagênese, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Sonia Soloneski
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 N° 3, B1904AMA, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcelo L Larramendy
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 N° 3, B1904AMA, La Plata, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
41
|
Freitas JS, Girotto L, Goulart BV, Alho LDOG, Gebara RC, Montagner CC, Schiesari L, Espíndola ELG. Effects of 2,4-D-based herbicide (DMA ® 806) on sensitivity, respiration rates, energy reserves and behavior of tadpoles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109446. [PMID: 31323523 DOI: 10.1016/j.ecoenv.2019.109446] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/22/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Increased use of sugarcane pesticides and their destination to non-target environments in Brazil has generated concerns related to the conservation of more vulnerable groups, such as amphibians. Besides the high skin permeability, tadpoles are constantly restricted to small and ephemeral ponds, where exposure to high concentrations of pesticides in agricultural areas is inevitable. This study evaluated chronic effects caused by sub-lethal concentrations of 2,4-dichlorophenoxyacetic acid herbicide on energy storage, development, respiration rates, swimming performance and avoidance behavior of bullfrog tadpoles (Lithobates catesbeianus). Firstly, we conducted acute toxicity test (96 h) to estipulate sub-lethal concentrations of 2,4-D and evaluate the sensitivity of three tadpoles' species to this herbicide. Results showed that Leptodactylus fuscus presented the lowest LC50 96 h, 28.81 mg/L, followed by Physalaemus nattereri (143.08 mg/L) and L. catesbeianus (574.52 mg/L). Chronic exposure to 2,4-D (125, 250 and 500 μg/L) delayed metamorphosis and inhibited the growth of tadpoles at concentrations of 125 μg/L. Effects on biochemical reserves showed that 2,4-D increased total hepatic lipids in tadpoles, although some individual lipid classes (e.g. free fatty acids and triglycerides) were reduced. Protein and carbohydrates contents were also impaired by 2,4-D, suggesting a disruption on energy metabolism of amphibians by the herbicide. In addition to biochemical changes, respiration rates and swimming speed were also decreased after chronic exposure to 2,4-D, and these responses appeared to be correlated with the changes detected in the basic energy content. Avoidance test indicated that tadpoles of L. catesbeinus avoided the presence of 2,4-D, however they were unable to detect increasing gradients of the contaminant. Our data showed that chronic exposure to 2,4-D impaired biochemical, physiological and behavioral aspects of tadpoles, which may compromise their health and make them more vulnerable to environmental stressors in natural systems.
Collapse
Affiliation(s)
| | - Laís Girotto
- NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, São Carlos, SP, Brazil
| | - Bianca Veloso Goulart
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | | | | | | | - Luis Schiesari
- EACH, USP - School of Arts, Sciences and Humanities, São Paulo, SP, Brazil
| | | |
Collapse
|
42
|
de Vasconcelos Lima M, de Andrade Pereira MI, Cabral Filho PE, Nascimento de Siqueira W, Milca Fagundes Silva HA, de França EJ, Saegesser Santos B, Mendonça de Albuquerque Melo AM, Fontes A. Studies on Toxicity of Suspensions of CdTe Quantum Dots to Biomphalaria glabrata Mollusks. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2128-2136. [PMID: 31233232 DOI: 10.1002/etc.4525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
Quantum dots have generated great interest because of their optical properties, both to life sciences and electronics applications. However, possible risks to the environment associated with these nanoparticles are still under investigation. The present study aimed to evaluate the toxicity of suspensions of cadmium telluride (CdTe) quantum dots to Biomphalaria glabrata mollusks, a very sensitive aquatic environmental bioindicator for physical and chemical agents. Toxicity was examined by using embryos and adult mollusks as well as hemocytes. The distribution of cadmium in the organs of adults was also assessed. Effects of the stabilizing agent of the quantum dots were also evaluated. Animals were exposed to suspensions of quantum dots for 24 h, at concentrations varying from 1.2 to 20 nM for embryos and from 50 to 400 nM for adult mollusks. Results showed that suspensions of quantum dots induced malformations and mortality in embryos and mortality in adults, depending on the concentration applied. In the cytotoxicity study, hemocyte apoptosis was observed in adults exposed to the highest concentration of quantum dots applied as well as to the stabilizing agent. Cell binucleation and micronucleus frequencies were not significative. Bioaccumulation evaluation revealed that quantum dots targeted the digestive gland (hepatopancreas). Taken together, outcomes suggested that specific nano-effects related directly not only to composition but also to the aggregation of quantum dots may be mediating the observed toxicity. Thus B. glabrata was determined to be a very sensitive species for interpreting possible nano-effects in aquatic environments. Environ Toxicol Chem 2019;38:2128-2136. © 2019 SETAC.
Collapse
Affiliation(s)
| | | | | | - Williams Nascimento de Siqueira
- Departamento de Biofísica e Radiobiologia, UFPE, Recife, Pernambuco, Brazil
- Serviço de Monitoração Ambiental, CRCN-NE, Recife, Pernambuco, Brazil
| | | | | | | | | | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, UFPE, Recife, Pernambuco, Brazil
| |
Collapse
|
43
|
Ahmad F, Ashraf N, Zhou RB, Da-Chuan Y. Enhanced remediation of bispyribac sodium by wheat (Triticum aestivum) and a bispyribac sodium degrading bacterial consortium (BDAM). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 244:383-390. [PMID: 31132619 DOI: 10.1016/j.jenvman.2019.05.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/08/2019] [Accepted: 05/18/2019] [Indexed: 06/09/2023]
Abstract
The use of plant-bacterial association is a promising approach for the enhanced remediation of pesticides. Generally, both rhizo- and endosphere bacteria assist their host plants to survive in the contaminated environment. In this work, we have studied the individual and combined effects of wheat (Triticum aestivum) and a previously optimized bispyribac sodium (BS) degrading bacterial consortium (BDAM) on the degradation of BS and plant biomass production. Results showed that the bacterial strains of the BDAM have successfully survived in the plant rhizo-as well as endosphere and enhanced degradation of BS and plant biomass. In soil spiked with 2 mg/kg and 5 mg/kg of BS and was planted and inoculated with BDAM (P_I) showed 100% degradation of BS both in rhizosphere soil and endosphere of the plant. However, during the same period (45 days) the degradation of BS was 96 and 90%, and 93 and 84% in inoculated but un-planted (I_UP) and planted but un-inoculated (P_UI) soils spiked with 2 and 5 mg/kg, respectively. Liquid chromatography-mass spectrometry (LC-MS) analysis of the treated samples showed novel degradation products of BS. Based on the results, we concluded that plant-bacterial association is an efficient tool for enhanced remediation of BS contaminated soil and herbicide free crop production.
Collapse
Affiliation(s)
- Fiaz Ahmad
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Noreen Ashraf
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Ren-Bin Zhou
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Yin Da-Chuan
- Key Laboratory for Space Bioscience & Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, PR China.
| |
Collapse
|
44
|
Çakmak E, Uncuoğlu AA, Aydın Y. Evaluation of in vitro genotoxic effects induced by in vitro anther culture conditions in sunflower. PLANT SIGNALING & BEHAVIOR 2019; 14:1633885. [PMID: 31366277 PMCID: PMC6768199 DOI: 10.1080/15592324.2019.1633885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 06/10/2023]
Abstract
Sunflower is a globally important oilseed, food, and ornamental crop. This study seeks to investigate the genotoxic effects of tissue culture parameters in sunflower calli tissues belongs to two genotypes obtained via anther culture. Anthers were pretreated with cold for 24 hours at 4°C and heat for 2 days at 35°C in the dark and plated onto media supplemented with different concentrations and combinations of 6-benzylaminopurine, 2,4-dichlorophenoxyacetic acid, α-naphthalene acetic acid and indole-3-acetic acid. Obtaining calli tissues were used to detect the DNA damage levels by Comet assay, evaluating changes on superoxide dismutase and guaiacol peroxidase activities derived from in vitro culture factors. 0.5 mg/L 2,4-dichlorophenoxyacetic acid and 2 mg/L α-naphthalene acetic acid from plant growth regulators showed acute genotoxic effect while 0.5 mg/L indole-3-acetic acid and 0.5 mg/L α-naphthalene acetic acid showed no genotoxic effect. Total protein content analysis of antioxidant enzymes revealed that although superoxide dismutase activity did not increase, Guaiacol peroxidase (GPOX) activity decreased in comparison to control. The obtained results have indicated that in vitro culture factors apparently lead to genotoxicity and oxidative stress.
Collapse
Affiliation(s)
- Elif Çakmak
- Faculty of Engineering, Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Ahu Altınkut Uncuoğlu
- Faculty of Engineering, Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Yıldız Aydın
- Faculty of Science and Art, Department of Biology, Marmara University, Istanbul, Turkey
| |
Collapse
|
45
|
Es Ruiz de Arcaute C, Ossana NA, Pérez-Iglesias JM, Soloneski S, Larramendy ML. Auxinic herbicides induce oxidative stress on Cnesterodon decemmaculatus (Pisces: Poeciliidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20485-20498. [PMID: 31102211 DOI: 10.1007/s11356-019-05169-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Pesticides might increase the production of reactive oxygen species (ROS). Dicamba (DIC) and 2,4-dichlorophenoxyacetic acid (2,4-D) are auxinic herbicides commonly applied in agroecosystems to control unwanted weeds. We analysed the oxidative damage exerted on the fish Cnesterodon decemmaculatus by an acute exposure to DIC- and 2,4-D-based herbicides formulations Banvel® and DMA®, respectively. The Endo III- and Fpg-modified alkaline comet assay was employed for detecting DNA damage caused by oxidative stress, whereas enzymatic and non-enzymatic biomarkers such as the activities of catalase (CAT), glutathione-S-transferase (GST), acetylcholinesterase (AChE), and glutathione content (GSH) were used to assess antioxidant response to these two herbicides. At the DNA level, results demonstrate that both auxinic herbicides induce oxidative damage at purines level. An increase on CAT and GST activities were detected in 48 h- and 96 h-treated specimens with both auxinics. GSH content decreased in fish exposed to DIC during 48 h and to 2,4-D after 96 h of exposure. Additionally, a diminished AChE activity in specimens treated with DIC and 2,4-D was observed only after 96 h. Total protein content decreased in fish exposed to both auxinics during 96 h. These results represent the first evaluation of oxidative damage related to DIC and 2,4-D exposure on a fish species as the Neotropical freshwater teleost C. decemmaculatus.
Collapse
Affiliation(s)
- Celeste Es Ruiz de Arcaute
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nro. 3 (esq. 120), B1904AMA, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Natalia A Ossana
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Programa de Ecofisiología Aplicada, Instituto de Ecología y Desarrollo Sustentable (PRODEA-INEDES), Universidad Nacional de Lujan, C.C. 221, Luján, Argentina
| | - Juan Manuel Pérez-Iglesias
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nro. 3 (esq. 120), B1904AMA, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sonia Soloneski
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nro. 3 (esq. 120), B1904AMA, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcelo L Larramendy
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nro. 3 (esq. 120), B1904AMA, La Plata, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
46
|
Dehnert GK, Karasov WH, Wolman MA. 2,4-Dichlorophenoxyacetic acid containing herbicide impairs essential visually guided behaviors of larval fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 209:1-12. [PMID: 30684730 DOI: 10.1016/j.aquatox.2019.01.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Aquatic herbicides are used worldwide to eradicate nuisance and invasive plants despite limited knowledge of their toxicity to non-target organisms. 2,4-Dichlorophenoxyacetic acid (2,4-D) is a common active ingredient in commercial herbicide formulations, which triggers plant cell death by mimicking the plant-specific hormone auxin. Application practices of 2,4-D commercial herbicides typically coincide with yearly freshwater fish spawning periods. This practice exposes fish to xenobiotics at their vulnerable larval stages. The full impacts of 2,4-D on larval fish remains poorly understood, and hence, whether it may alter larval survival, larval behavior, fish populations, and ecosystem dynamics. In the present study, we exposed embryonic and larval zebrafish (Danio rerio) to the active ingredient 2,4-D (pure 2,4-D) or a 2,4-D containing commercial herbicide DMA4®IVM (DMA4) and evaluated morphology, survival, behavior, and nervous system function. At 2,4-D concentrations producing no overt morphological defects during embryonic or early larval stages, we observed reduced survival throughout a 21-day larval assay (4-8 ppm DMA4 and 0.75-4 ppm pure 2,4-D). Notably, prey capture, a behavior essential to survival, was reduced in 2,4-D-exposed larval zebrafish (4-8 ppm DMA4 and 0.75-4 ppm pure 2,4-D) and yellow perch (Perca flavescens) (4-20 ppm DMA4). In zebrafish, 8 ppm DMA4 exposure reduced prey capture when exposure was restricted to the period of visual system development. Consistent with these results, larval zebrafish exposed to 8 ppm DMA4 showed reduced neural activity within the optic tectum following prey exposure. Together, our results suggest that 2,4-D alters the development and function of neural circuits underlying vision of larval fish, and thereby reduces visually guided behaviors required for survival.
Collapse
Affiliation(s)
- Gavin K Dehnert
- Department of Integrative Biology, University of Wisconsin - Madison, Madison, WI, USA
| | - William H Karasov
- Department of Forest and Wildlife Ecology, University of Wisconsin - Madison, Madison, WI, USA
| | - Marc A Wolman
- Department of Integrative Biology, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
47
|
Sposito JCV, Francisco LFV, do Amaral Crispim B, da Silva Dantas FG, de Souza JP, Viana LF, Solórzano JCJ, de Oliveira KMP, Barufatti A. Influence of Land Use and Cover on Toxicogenetic Potential of Surface Water from Central-West Brazilian Rivers. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 76:483-495. [PMID: 30770948 DOI: 10.1007/s00244-019-00603-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
The objective of this study was to evaluate toxicogenetic potential of surface water samples from rivers of center-west Brazil and analyze the influence of land use and cover and physicochemical parameters in genetic damage. Samples were collected during winter (June) and summer (November) at sampling sites from Dourados and Brilhante Rivers (Mato Grosso do Sul/Brazil). The toxicogenetic variables, including chromosomal alterations, micronuclei, and mitotic index, were analyzed in meristematic cells of Allium cepa; and micronuclei, nuclear abnormalities, and DNA strand breaks (arbitrary units, AUT) were analyzed in erythrocytes of Astyanax lacustris. The rivers presented physicochemical values outside the Brazilian laws, which can be a characteristic of human pollution (domestic sewage and local agriculture). The results of A. cepa test suggest that the water samples from Dourados and Brilhante rivers exerted significant (p < 0.05) cytotoxic and genotoxic effects, in both periods of collection, especially alterations in mitotic index. In blood cells of A. lacustris, genotoxic effect of the water samples from the rivers also was observed as significant nuclear abnormalities, DNA breaks (UAT), in both sampling periods, compared with the negative control. Spearman correlation analyses revealed that data of land use and cover and physicochemical parameters were statistically correlated with DNA damages in bioassays. This study demonstrates toxicogenetic potential of water samples from Dourados and Brilhante rivers; furthermore, the type of land use and land cover and physicochemical parameters were revealed to have influence on toxicogenetic damage.
Collapse
Affiliation(s)
- Juliana Caroline Vivian Sposito
- Faculty of Exact Sciences and Technology, Federal University of Grande Dourados/UFGD, Street João Rosa Góes, Vila Progresso, Dourados, MS, 79.825-070, Brazil
| | - Luiza Flavia Veiga Francisco
- Faculty of Exact Sciences and Technology, Federal University of Grande Dourados/UFGD, Street João Rosa Góes, Vila Progresso, Dourados, MS, 79.825-070, Brazil
| | - Bruno do Amaral Crispim
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados/UFGD, Street João Rosa Góes, Vila Progresso, Dourados, MS, 79.825-070, Brazil
| | - Fabiana Gomes da Silva Dantas
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados/UFGD, Street João Rosa Góes, Vila Progresso, Dourados, MS, 79.825-070, Brazil
| | - Jéssica Pereira de Souza
- Faculty of Exact Sciences and Technology, Federal University of Grande Dourados/UFGD, Street João Rosa Góes, Vila Progresso, Dourados, MS, 79.825-070, Brazil
| | | | | | - Kelly Mari Pires de Oliveira
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados/UFGD, Street João Rosa Góes, Vila Progresso, Dourados, MS, 79.825-070, Brazil
| | - Alexeia Barufatti
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados/UFGD, Street João Rosa Góes, Vila Progresso, Dourados, MS, 79.825-070, Brazil.
| |
Collapse
|
48
|
Dargahi A, Ansari A, Nematollahi D, Asgari G, Shokoohi R, Samarghandi MR. Parameter optimization and degradation mechanism for electrocatalytic degradation of 2,4-diclorophenoxyacetic acid (2,4-D) herbicide by lead dioxide electrodes. RSC Adv 2019; 9:5064-5075. [PMID: 35514628 PMCID: PMC9060676 DOI: 10.1039/c8ra10105a] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/04/2019] [Indexed: 02/05/2023] Open
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the most commonly used herbicides in the world. In this work, the electro-catalytic degradation of 2,4-D herbicide from aqueous solutions was evaluated using three anode electrodes, i.e., lead dioxide coated on stainless steel 316 (SS316/β-PbO2), lead dioxide coated on a lead bed (Pb/β-PbO2), and lead dioxide coated on graphite (G/β-PbO2). The structure and morphology of the prepared electrodes were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The process of herbicide degradation was monitored during constant current electrolysis using cyclic voltammetry (CV). In this study, the experiments were designed based on the central composite design (CCD) and were analyzed and modeled by response surface methodology (RSM) to demonstrate the operational variables and the interactive effect of three independent variables on 3 responses. The effects of parameters including pH (3-11), current density (j = 1-5 mA cm-2) and electrolysis time (20-80 min) were studied. The results showed that, at j = 5 mA cm-2, by increasing the reaction time from 20 to 80 min and decreasing the pH from 11 to 3, the 2,4-D herbicide degradation efficiency using SS316/β-PbO2, Pb/β-PbO2 and G/β-PbO2 anode electrodes was observed to be 60.4, 75.9 and 89.8%, respectively. Moreover, the results showed that the highest COD and TOC removal efficiencies using the G/β-PbO2 electrode were 83.7 and 78.5%, under the conditions pH = 3, electrolysis time = 80 min and j = 5 mA cm-2, respectively. It was also found that G/β-PbO2 has lower energy consumption (EC) (5.67 kW h m-3) compared to the two other studied electrodes (SS316/β-PbO2 and Pb/β-PbO2). The results showed a good correlation between the experimental values and the predicted values of the quadratic model (P < 0.05). Results revealed that the electrochemical process using the G/β-PbO2 anode electrode has an acceptable efficiency in the degradation of 2,4-D herbicide and can be used as a proper pretreatment technique to treat wastewater containing resistant pollutants, e.g., phenoxy group herbicides (2,4-D).
Collapse
Affiliation(s)
- Abdollah Dargahi
- Department of Environmental Health Engineering, School of Health, Hamadan University of Medical Sciences Hamadan Iran
| | - Amin Ansari
- Department of Chemistry, Faculty of Chemistry, Bu-Ali-Sina University Hamadan Iran
| | - Davood Nematollahi
- Department of Chemistry, Faculty of Chemistry, Bu-Ali-Sina University Hamadan Iran
| | - Ghorban Asgari
- Department of Environmental Health Engineering, School of Health, Hamadan University of Medical Sciences Hamadan Iran
| | - Reza Shokoohi
- Department of Environmental Health Engineering, School of Health, Hamadan University of Medical Sciences Hamadan Iran
| | - Mohammad Reza Samarghandi
- Department of Environmental Engineering School of Public Health, Hamadan University of Medical Sciences Hamadan Iran
| |
Collapse
|
49
|
de Vasconcelos Lima M, de Siqueira WN, Silva HAMF, de Melo Lima Filho J, de França EJ, de Albuquerque Melo AMM. Cytotoxic and genotoxic effect of oxyfluorfen on hemocytes of Biomphalaria glabrata. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3350-3356. [PMID: 30506409 DOI: 10.1007/s11356-018-3848-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Chemicals released from anthropogenic activities such as industry and agriculture often end up in aquatic ecosystems. These substances can cause serious damage to these ecosystems, thus threatening the conservation of biodiversity. Among these substances are pesticides, such as oxyfluorfen, a herbicide used for the control of grasses and weeds. Considering its widespread use, it is important to investigate the possible toxicity of this compound to aquatic organisms, especially invertebrates. Hence, the use of biological systems able to detect such effects is of great importance. The mollusk Biomphalaria glabrata has been shown to be useful as an environmental indicator to assess the potential ecological effects of physical and chemical stressors in freshwater environments. The present study sought to detect mutagenic changes in hemocytes of B. glabrata exposed to oxyfluorfen. To perform these tests, this study used ten animals per group, exposed acutely (48 h) and chronically (15 days) to oxyfluorfen. The herbicide concentrations were 0.125, 0.25, and 0.5 mg/L. The results showed that oxyfluorfen induced significant frequencies of micronuclei, binucleated cells, and apoptosis in hemocytes of mollusks when compared to the control group. Unlike chronic exposure, acute exposure was dose-dependent. The present study's results demonstrate the cytotoxic and genotoxic effects of oxyfluorfen on hemocytes of B. glabrata.
Collapse
Affiliation(s)
- Maíra de Vasconcelos Lima
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Serviço de Monitoração Ambiental, Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, 50740-545, Brazil
- Laboratório de Radiobiologia, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rêgo, s/n, Recife, PE, 50780-901, Brazil
| | - Williams Nascimento de Siqueira
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-420, Brazil.
- Serviço de Monitoração Ambiental, Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, 50740-545, Brazil.
- Laboratório de Radiobiologia, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rêgo, s/n, Recife, PE, 50780-901, Brazil.
| | - Hianna Arely Milca Fagundes Silva
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Laboratório de Radiobiologia, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rêgo, s/n, Recife, PE, 50780-901, Brazil
| | - José de Melo Lima Filho
- Grupo de Dosimetria Numérica, Instituto Federal de Educação Ciência e Tecnologia de Pernambuco, Recife, Pernambuco, 50740-540, Brazil
| | - Elvis Joacir de França
- Serviço de Monitoração Ambiental, Centro Regional de Ciências Nucleares do Nordeste, Recife, Pernambuco, 50740-545, Brazil
| | - Ana Maria Mendonça de Albuquerque Melo
- Departamento de Biofísica e Radiobiologia, Universidade Federal de Pernambuco, Recife, Pernambuco, 50670-420, Brazil
- Laboratório de Radiobiologia, Universidade Federal de Pernambuco (UFPE), Av. Prof. Moraes Rêgo, s/n, Recife, PE, 50780-901, Brazil
| |
Collapse
|
50
|
Ruiz de Arcaute C, Larramendy ML, Soloneski S. Genotoxicity by long-term exposure to the auxinic herbicides 2,4-dichlorophenoxyacetic acid and dicamba on Cnesterodon decemmaculatus (Pisces: Poeciliidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:670-678. [PMID: 30228061 DOI: 10.1016/j.envpol.2018.09.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/09/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Long-term genotoxic effects of two auxinic herbicide formulations, namely, the 58.4% 2,4-dichlorophenoxyacetic acid (2,4-D)-based DMA® and the 57.7% dicamba (DIC)-based Banvel® were evaluated on Cnesterodon decemmaculatus. Primary DNA lesions were analyzed by the single-cell gel electrophoresis methodology. Two sublethal concentrations were tested for each herbicide corresponding to 2.5% and 5% of the LC5096h values. Accordingly, fish were exposed to 25.2 and 50.4 mg/L or 41 and 82 mg/L for 2,4-D and DIC, respectively. Fish were continuously exposed for 28 days with replacement of test solutions every 3 days. Genotoxicity was evaluated in ten individuals from each experimental point at the beginning of the exposure period (0 day) and at 7, 14, 21 and 28 days thereafter. Results demonstrated for first time that 2,4-D-based formulation DMA® induced primary DNA strand breaks after 7-28 days exposure on C. decemmaculatus regardless its concentration. On the other hand, DIC-based formulation Banvel® exerted its genotoxic effect after exposure during 7-14 days and 7 days of 2.5 and 5% LC5096h, respectively. The present study represents the first evidence of primary DNA lesions induced by two widely employed auxinic herbicides on C. decemmaculatus, namely 2,4-D and DIC, following long-term exposure.
Collapse
Affiliation(s)
- Celeste Ruiz de Arcaute
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nº 3, B1904AMA, La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Marcelo L Larramendy
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nº 3, B1904AMA, La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Sonia Soloneski
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nº 3, B1904AMA, La Plata, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|