1
|
El-Mahrouk SR, El-Ghiaty MA, El-Kadi AOS. The role of nuclear factor erythroid 2-related factor 2 (NRF2) in arsenic toxicity. J Environ Sci (China) 2025; 150:632-644. [PMID: 39306435 DOI: 10.1016/j.jes.2024.02.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 09/25/2024]
Abstract
Arsenic, a naturally occurring toxic element, manifests in various chemical forms and is widespread in the environment. Exposure to arsenic is a well-established risk factor for an elevated incidence of various cancers and chronic diseases. The crux of arsenic-mediated toxicity lies in its ability to induce oxidative stress, characterized by an unsettling imbalance between oxidants and antioxidants, accompanied by the rampant generation of reactive oxygen species and free radicals. In response to this oxidative turmoil, cells deploy their defense mechanisms, prominently featuring the redox-sensitive transcription factor known as nuclear factor erythroid 2-related factor 2 (NRF2). NRF2 stands as a primary guardian against the oxidative harm wrought by arsenic. When oxidative stress activates NRF2, it orchestrates a symphony of downstream antioxidant genes, leading to the activation of pivotal antioxidant enzymes like glutathione-S-transferase, heme oxygenase-1, and NAD(P)H: quinone oxidoreductase 1. This comprehensive review embarks on the intricate and diverse ways by which various arsenicals influence the NRF2 antioxidant pathway and its downstream targets, shedding light on their roles in defending against arsenic exposure toxic effects. It offers valuable insights into targeting NRF2 as a strategy for safeguarding against or treating the harmful and carcinogenic consequences of arsenic exposure.
Collapse
Affiliation(s)
- Sara R El-Mahrouk
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada; Faculty of Pharmacy, Tanta University, Tanta, Gharbia, Egypt
| | - Mahmoud A El-Ghiaty
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2E1, Canada.
| |
Collapse
|
2
|
Sedrati F, Bouzahouane H, Khaldi F, Menaa M, Bouarroudj T, Gzara L, Zaidi H, Bensalem M, Laouar O, Sleimi N, Nasri H, Ouali K. In vivo assessment of oxidative stress, neurotoxicity and histological alterations induction in the marine gastropod Stramonita haemastoma exposed to Cr 2O 3 and Al 2O 3 nanoparticles. CHEMOSPHERE 2024; 366:143434. [PMID: 39357654 DOI: 10.1016/j.chemosphere.2024.143434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/06/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
The increased use of nanoparticles (NPs) is expected to raise their presence in the marine ecosystem, which is considered as the final destination of released NPs. This study investigated the toxicity of Cr2O3 (42 nm) and Al2O3 (38 nm) NPs (1, 2.5, and 5 mg/L) on the digestive glands of Stramonita haemastoma for 7, 14, and 28 days by oxidative stress biomarkers, neurotoxicity indicator assessment, and histological study. Results revealed an imbalance in antioxidants at all periods. Following 7 days, both NPs caused GSH depletion with marked impacts from Al2O3. GPx, CAT, and AChE were also decreased with the highest changes induced by Cr2O3. Both NPs inducted GSH and GST levels on days 14 and 28, with more effects from Cr2O3 exposure. GPx, AChE, and MDA induction were observed on day 28, while MT varied through NPs and time, with imbalanced levels at all periods noticed, SOD was mostly not affected. Histology revealed alterations including necrosis and interstitial deteriorations; quantitative analysis through the histological condition index revealed dose-dependent impacts, with the highest values attributed to Cr2O3 exposure. While PCA revealed the co-response of GSH, GST, GPx, CAT, and AchE with separated MT responses. This study reported oxidative stress induction through a multi-biomarkers investigation, neurotoxicity, and histological damages in the digestive gland of S. haemastoma following Cr2O3 and Al2O3 NPs exposure.
Collapse
Affiliation(s)
- Fateh Sedrati
- Laboratory of Sciences and Technology of Water and Environment, Mohamed Cherif Messaadia University, BP 1553, 41000, Souk Ahras, Algeria
| | - Hana Bouzahouane
- Department of Biology, Faculty of Nature and Life Sciences, Mohamed Cherif Messaadia University, Souk Ahras, 41000, Algeria; Laboratory of Environmental Biosurveillance, Department of Biology, Faculty of Sciences, Badji Mokhtar University, BP 12, El Hadjar, Annaba, 23000, Algeria.
| | - Fadila Khaldi
- Laboratory of Sciences and Technology of Water and Environment, Mohamed Cherif Messaadia University, BP 1553, 41000, Souk Ahras, Algeria; Department of Biology, Faculty of Nature and Life Sciences, Mohamed Cherif Messaadia University, Souk Ahras, 41000, Algeria
| | - Mohcen Menaa
- Department of Biology, Faculty of Nature and Life Sciences, Mohamed Cherif Messaadia University, Souk Ahras, 41000, Algeria
| | - Tayeb Bouarroudj
- Scientific and Technical Research Center in Physico-Chemical Analyses (CRAPC), Industrial Zone, PO-Box 384 Bousmail, Tipaza, Algeria
| | - Lassaad Gzara
- Center of Excellence in Desalination Technology, King Abdulaziz University, P.O. Box: 80200, Jeddah, 21589, Saudi Arabia
| | - Hadjer Zaidi
- Laboratory of Biodiversity and Ecosystems Pollution, Faculty of Life and Nature Sciences, University of Chadli Bendjedid, El Taref, Algeria
| | - Mounira Bensalem
- University August 20, 1955, Skikda, Bp26 El Hadaik Skikda, Algeria
| | - Omar Laouar
- Central Laboratory of Pathology and Molecular biology, CHU, Annaba, Algeria; Faculty of Medicine, Badji Mokhtar University, BP 12, El Hadjar, Annaba, 23000, Algeria
| | - Noomene Sleimi
- RME-Laboratory of Resources, Materials, and Ecosystems, Faculty of Sciences of Bizerte, University of Carthage, Bizerte, 7021, Tunisia
| | - Hichem Nasri
- Laboratory of Biodiversity and Ecosystems Pollution, Faculty of Life and Nature Sciences, University of Chadli Bendjedid, El Taref, Algeria
| | - Kheireddine Ouali
- Laboratory of Environmental Biosurveillance, Department of Biology, Faculty of Sciences, Badji Mokhtar University, BP 12, El Hadjar, Annaba, 23000, Algeria
| |
Collapse
|
3
|
Wang W, Ye Y, Liu Y, Sun H, Gao C, Fu X, Li T. Induction of oxidative stress and cardiac developmental toxicity in zebrafish embryos by arsenate at environmentally relevant concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116529. [PMID: 38843745 DOI: 10.1016/j.ecoenv.2024.116529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024]
Abstract
The contamination of water by arsenic (As) has emerged as a significant environmental concern due to its well-documented toxicity. Environmentally relevant concentrations of As have been reported to pose a considerable threat to fish. However, previous studies mainly focused on the impacts of As at environmentally relevant concentrations on adult fish, and limited information is available regarding its impacts on fish at early life stage. In this study, zebrafish embryos were employed to evaluate the environmental risks following exposure to different concentrations (0, 25, 50, 75 and 150 μg/L) of pentavalent arsenate (AsV) for 120 hours post fertilization. Our findings indicated that concentrations ≤ 150 μg/L AsV did not exert significant effects on survival or aberration; however, it conspicuously inhibited heart rate of zebrafish larvae. Furthermore, exposure to AsV significantly disrupted mRNA transcription of genes associated with cardiac development, and elongated the distance between the sinus venosus and bulbus arteriosus at 75 μg/L and 150 μg/L treatments. Additionally, AsV exposure enhanced superoxide dismutase (SOD) activity at 50, 75 and 150 μg/L treatments, and increased mRNA transcriptional levels of Cu/ZnSOD and MnSOD at 75 and 150 μg/L treatments. Concurrently, AsV suppressed metallothionein1 (MT1) and MT2 mRNA transcriptions while elevating heat shock protein70 mRNA transcription levels in zebrafish larvae resulting in elevated malondialdehyde (MDA) levels. These findings provide novel insights into the toxic effects exerted by low concentrations of AsV on fish at early life stage, thereby contributing to an exploration into the environmental risks associated with environmentally relevant concentrations.
Collapse
Affiliation(s)
- Wenqian Wang
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua 321007, China; College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yanan Ye
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yingying Liu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjie Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Chang Gao
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xiaoyan Fu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua 321007, China.
| | - Tao Li
- Jinhua Center for Disease Control and Prevention, Jinhua 321000, China.
| |
Collapse
|
4
|
Chen X, Yan X, Tang X, Wang Y, Zhang X, Cao X, Ran X, Ma G, Hu T, Qureshi A, Luo P, Shen L. Study on the mechanism of arsenic-induced renal injury based on SWATH proteomics technology. J Trace Elem Med Biol 2024; 83:127390. [PMID: 38266420 DOI: 10.1016/j.jtemb.2024.127390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Arsenic (As) poisoning is a worldwide endemic disease affecting thousands of people. As is excreted mainly through the renal system, and arsenic has toxic effects on the kidneys, but the mechanism has not been elucidated. In this study, the molecular basis of arsenic's nephrotoxicity was studied by using a high-throughput proteomics technique. METHODS Eight SD (Sprague-Dawley) rats, half male and half female, were fed an As diet containing 50 mg/kg NaAsO2. Age- and sex-matched rats fed with regular chow were used as controls. At the end of the experiment (90 days), kidney tissue samples were collected and assessed for pathological changes using hematoxylin-eosin staining. Proteomic methods were used to identify alterations in protein expression levels in kidney tissues, and bioinformatic analyses of differentially expressed proteins between arsenic-treated and control groups were performed. The expression of some representative proteins was validated by Western blot analysis. RESULTS NaAsO2 could induce renal injury. Compared with the control group, 112 proteins were up-regulated, and 46 proteins were down-regulated in the arsenic-treated group. These proteins were associated with the electron transport chain, oxidative phosphorylation, mitochondrial membrane, apoptosis, and proximal tubules, suggesting that the mechanisms associated with them were related to arsenic-induced kidney injury and nephrotoxicity. The expressions of Atp6v1f, Cycs and Ndufs1 were verified, consistent with the results of omics. CONCLUSION These results provide important evidence for arsenic-induced kidney injury and provide new insights into the molecular mechanism of arsenic-induced kidney injury.
Collapse
Affiliation(s)
- Xiaolu Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xi Yan
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Yi Wang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xinglai Zhang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoqian Ran
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Guanwei Ma
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Ting Hu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China
| | - Ayesha Qureshi
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Peng Luo
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China.
| | - Liming Shen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, PR China; College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
5
|
Kamila S, Dey KK, Islam S, Chattopadhyay A. Arsenic and chromium induced hepatotoxicity in zebrafish (Danio rerio) at environmentally relevant concentrations: Mixture effects and involvement of Nrf2-Keap1-ARE pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171221. [PMID: 38402821 DOI: 10.1016/j.scitotenv.2024.171221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Arsenic (As) and chromium (Cr), two well-known cytotoxic and carcinogenic metals are reported to coexist in industrial effluents and groundwater. Their individual toxicities have been thoroughly studied but the combined effects, especially the mechanism of toxicity and cellular stress response remain unclear. Considering co-exposure as a more realistic scenario, current study compared the individual and mixture effects of As and Cr in the liver of zebrafish (Danio rerio). Fish were exposed to environmentally relevant concentrations of As and Cr for 15, 30 and 60 days. ROS generation, biochemical stress parameters like lipid peroxidation, reduced glutathione content, catalase activity and histological alterations were studied. Results showed increase in ROS production, MDA content and GSH level; and vicissitude in catalase activity as well as altered histoarchitecture, indicating oxidative stress conditions after individual and combined exposure of As and Cr which were additive in nature. This study also included the expression of Nrf2, the key regulator of antioxidant stress responses and its nuclear translocation. Related antioxidant and xenobiotic metabolizing enzyme genes like keap1, nqo1, ho1, mnsod and cyp1a were also studied. Overall results indicated increased nrf2, nqo1, ho1, mnsod expression at all time points and increased cyp1a expression after 60 days exposure. Emphasizing on the Nrf2-Keap1 pathway, this study exhibited additive or sometimes synergistic effects of As and Cr in zebrafish liver.
Collapse
Affiliation(s)
- Sreejata Kamila
- Department of Zoology, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Koushik Kumar Dey
- Department of Zoology, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Shehnaz Islam
- Department of Zoology, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | | |
Collapse
|
6
|
Koomson AA, Delaney P, Khan N, Sadler KC. Sustained effects of developmental exposure to inorganic arsenic on hepatic gsto2 expression and mating success in zebrafish. Biol Open 2024; 13:bio060094. [PMID: 38446164 PMCID: PMC10941348 DOI: 10.1242/bio.060094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
The impacts of exposure to the pervasive environmental toxicant, inorganic arsenic (iAs), on human and fish health are well characterized and several lines of evidence suggest that some impacts can manifest years after exposure cessation. Using a developmental exposure protocol whereby zebrafish embryos were exposed to 0.5 and 1.5 mM iAs from 4-120 hours post fertilization (hpf) and then removed, we investigated the sustained effects of iAs on gene expression in the liver, survival, reproductive success, and susceptibility to iAs toxicity in the subsequent generation. Persistent exposure to iAs during development had substantial effects on the hepatic transcriptome, with 23% of all expressed genes significantly changed following developmental exposure. The gsto2 gene is involved in iAs metabolism and this gene was significantly downregulated in female livers 9 months after iAs was removed. Developmental exposure to 1.5 mM iAs, but not 0.5 mM, decreased survival by over 50% at 3 months of age. Adults that were developmentally exposed to 0.5 mM iAs had reduced mating success, but their offspring had no differences in observable aspects of development or their susceptibility to iAs toxicity. This demonstrates that developmental exposure of zebrafish to iAs reduces long-term survival, reproductive success and causes sustained changes to gsto2 expression in the liver.
Collapse
Affiliation(s)
- Abigail Ama Koomson
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Patrice Delaney
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Nouf Khan
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | - Kirsten C. Sadler
- Program in Biology, New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| |
Collapse
|
7
|
Ma L, Yang H, Xiao X, Chen Q, Lv W, Xu T, Jin Y, Wang W, Xiao Y. Co-exposure to sodium hypochlorite and cadmium induced locomotor behavior disorder by influencing neurotransmitter secretion and cardiac function in larval zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123070. [PMID: 38056588 DOI: 10.1016/j.envpol.2023.123070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/10/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Sodium hypochlorite (NaClO) and cadmium (Cd) are widely co-occurring in natural aquatic environment; however, no study has been conducted on effects of their combined exposure on aquatic organisms. To assess effects of exposure to NaClO and Cd in zebrafish larvae, we designed six treatment groups, as follows: control group, NaClO group (300 μg/L), 1/100 Cd group (48 μg/L), 1/30 Cd group (160 μg/L), NaClO+1/100 Cd group, and NaClO+1/30 Cd group analyzed behavior, neurological function and cardiac function. Results revealed that exposure to 1/30 Cd and NaClO+1/30 Cd caused abnormal embryonic development in larvae by altering body morphology and physiological indicators. Combined exposure to NaClO and 1/30 Cd affected the free-swimming activity and behavior of larvae in response to light-dark transition stimuli. Moreover, exposure to 1/30 Cd or NaClO+1/30 Cd resulted in a significant increase in tyrosine hydroxylase and acetylcholinesterase activities, as well as significant changes of various neurotransmitters. Lastly, exposure to 1/30 Cd or NaClO+1/30 Cd influenced the transcription of cardiac myosin-related genes and disturbed the myocardial contractile function. Altogether, our results suggested that combined exposure to NaClO and Cd induced oxidative damage in larvae, resulting in detrimental effects on nervous system and cardiac function, thus altering their swimming behavior.
Collapse
Affiliation(s)
- Lingyan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wentao Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ting Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
8
|
Ali MM, Kubra K, Alam E, Mondol AH, Akhtar S, Islam MS, Karim E, Ahmed ASS, Siddique MAB, Malafaia G, Rahman MZ, Rahman MM, Islam ARMT. Bioaccumulation and sources of metal(loid)s in fish species from a subtropical river in Bangladesh: a public health concern. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2343-2359. [PMID: 38057678 DOI: 10.1007/s11356-023-31324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Toxic metals and freshwater fish's metalloid contamination are significant environmental concerns for overall public health. However, the bioaccumulation and sources of metal(loids) in freshwater fishes from Bangladesh still remain unknown. Thus, the As, Pb, Cd, and Cr concentrations in various freshwater fish species from the Rupsha River basin were measured, including Tenualosa ilisha, Gudusia chapra, Otolithoides pama, Setipinna phasa, Mystus vittatus, Glossogobius giuris, and Pseudeutropius atherinoides. An atomic absorption spectrophotometer was used to determine metal concentrations. The mean concentrations of metal(loids) in the fish muscle (mg/kg) were found to be As (1.53) > Pb (1.25) > Cr (0.51) > Cd (0.39) in summer and As (1.72) > Pb (1.51) > Cr (0.65) > Cd (0.49) in winter. The analyzed fish species had considerably different metal(loid) concentrations with seasonal variation, and the distribution of the metals (loids) was consistent with the normal distribution. The demersal species, M. vittatus, displayed the highest bio-accumulative value over the summer. However, in both seasons, none of the species were bio-accumulative. According to multivariate statistical findings, the research area's potential sources of metal(loid) were anthropogenic activities linked to geogenic processes. Estimated daily intake, target hazard quotient (THQ), and carcinogenic risk (CR) were used to assess the influence of the risk on human health. The consumers' THQs values were < 1, indicating that there were no non-carcinogenic concerns for local consumers. Both categories of customers had CRs that fell below the permissible range of 1E - 6 to 1E - 4, meaning they were not at any increased risk of developing cancer. The children's group was more vulnerable to both carcinogenic and non-carcinogenic hazards. Therefore, the entry of metal(loids) must be regulated, and appropriate laws must be used by policymakers.
Collapse
Affiliation(s)
- Mir Mohammad Ali
- Department of Aquaculture, Sher-E-Bangla Agricultural University, Dhaka, 1207, Bangladesh
| | - Khadijatul Kubra
- Department of Aquaculture, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh
| | - Edris Alam
- Faculty of Resilience, Rabdan Academy, 114646, Abu Dhabi, United Arab Emirates
| | - Anwar Hossain Mondol
- Department of Aquaculture, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh
| | - Shahrina Akhtar
- Krishi Gobeshona Foundation (KGF), BARC Complex, Farmgate, Dhaka, 1215, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh
| | - Ehsanul Karim
- Bangladesh Fisheries Research Institute (BFRI), Mymensingh, 2201, Bangladesh
| | - A S Shafiuddin Ahmed
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, 75790 000, Brazil
| | - Md Zillur Rahman
- Quality Control Laboratory, Department of Fisheries, Khulna, 9000, Bangladesh
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh.
- Department of Development Studies, Daffodil International University, Dhaka, 1216, Bangladesh.
| |
Collapse
|
9
|
Koner D, Nag N, Kalita P, Padhi AK, Tripathi T, Saha N. Functional expression, localization, and biochemical characterization of thioredoxin glutathione reductase from air-breathing magur catfish, Clarias magur. Int J Biol Macromol 2023; 230:123126. [PMID: 36603726 DOI: 10.1016/j.ijbiomac.2022.123126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/04/2023]
Abstract
The glutathione (GSH) and thioredoxin (Trx) systems regulate cellular redox homeostasis and maintain antioxidant defense in most eukaryotes. We earlier reported the absence of gene coding for the glutathione reductase (GR) enzyme of the GSH system in the facultative air-breathing catfish, Clarias magur. Here, we identified three thioredoxin reductase (TrxR) genes, one of which was later confirmed as a thioredoxin glutathione reductase (TGR). We then characterized the novel recombinant TGR enzyme of C. magur (CmTGR). The tissue-specific expression of the txnrd genes and the tissue-specific activity of the TrxR enzyme were analyzed. The recombinant CmTGR is a dimer of ~133 kDa. The protein showed TrxR activity with 5,5'-diothiobis (2-nitrobenzoic acid) reduction assay with a Km of 304.40 μM and GR activity with a Km of 58.91 μM. Phylogenetic analysis showed that the CmTGR was related to the TrxRs of fishes and distantly related to the TGRs of platyhelminth parasites. The structural analysis revealed the conserved glutaredoxin active site and FAD- and NADPH-binding sites. To our knowledge, this is the first report of the presence of a TGR in any fish. This unusual presence of TGR in C. magur is crucial as it helps maintain redox homeostasis under environmental stressors-induced oxidative stress.
Collapse
Affiliation(s)
- Debaprasad Koner
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Niharika Nag
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Parismita Kalita
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Aditya K Padhi
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Timir Tripathi
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India.
| | - Nirmalendu Saha
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
10
|
Guidi C, Martínez-López E, Oliver JA, Sánchez-Vázquez FJ, Vera LM. Behavioural response to toxic elements, detoxification and organ accumulation are time-of-day-dependent in zebrafish. CHEMOSPHERE 2023; 316:137862. [PMID: 36642134 DOI: 10.1016/j.chemosphere.2023.137862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Toxic elements, such as mercury (Hg) and arsenic (As), are major pollutants in aquatic environments, posing ecological threats to living organisms due to their toxicity and bioaccumulation. This paper investigated whether zebrafish response to Hg and As displayed day/night differences. Fish were exposed to either 35 μg/L of mercury chloride for 6 h or 65 mg/L of sodium arsenate for 4 h, at two different times of the day: mid-light (day; ML) and mid-darkness (night; MD). Fish were video-recorded to investigate their behavioural response and at the end of each trial, gills and liver samples were collected for gene expression measurement. Gills, liver and brain samples were also obtained to determine Hg and As concentration. A control group (non-exposed) was video-recorded and sampled too. The effect of Hg and As on zebrafish swimming activity and the expression of antioxidant and metallothionein genes was time-of-day-dependent, with a stronger response being observed during the day than at night. However, the neurobehavioural effect of Hg was more affected by the time of exposure than the effect of As. In addition, Hg concentration in the gills was significantly higher in zebrafish exposed at ML than at MD. Altogether, these findings suggest that zebrafish response to Hg and As is time-of-day-dependent and remark the importance of considering toxicity rhythms when using this fish species as a model in toxicological research.
Collapse
Affiliation(s)
- Costanza Guidi
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, 30100, Spain
| | - Emma Martínez-López
- Area of Toxicology, Department of Health Sciences, Faculty of Veterinary Medicine, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, 30100, Spain; Toxicology and Risk Assessment Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), University of Murcia, Murcia, 30100, Spain
| | - José A Oliver
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, 30100, Spain
| | - Francisco J Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, 30100, Spain
| | - Luisa M Vera
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, 30100, Spain.
| |
Collapse
|
11
|
Qin Z, Wang W, Weng Y, Bao Z, Yang G, Jin Y. Bromuconazole exposure induces cardiotoxicity and lipid transport disorder in larval zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109451. [PMID: 36064135 DOI: 10.1016/j.cbpc.2022.109451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
Abstract
Bromuconazole (BRO), as one of the typical triazole fungicides, has not been reported on its effects on aquatic organisms. In this study, zebrafish embryos were used as experimental objects to evaluate the toxicity of BRO. In the acute embryo toxicity test, it was observed that the heart rate and growing development were affected by BRO in a concentration-dependent manner, and the half-lethal concentration (LC50) of BRO at 96 h post-fertilization (hpf) was about 11.83 mg/L. Then, low concentrations of BRO (50 ng/L, 0.075 mg/L, 0.3 mg/L, 1.2 mg/L), which were set according to the LC50 and environmental related concentrations, were used to analyze the toxic effects on the different endpoints in larval zebrafish. Interestingly, the transcriptomic analysis found that most different expressed genes (DEGs) could be focused on the pathways of lipid metabolism, myocardial function, glycometabolism, indicating that heart function and lipid metabolism in larval zebrafish were disrupted by BRO. For supporting this idea, we re-exposed the transgenic zebrafish and WT zebrafish embryos, proved that BRO caused damage to heart development and lipid transport on morphological and genetic level, which was consistent with transcriptomic results. In addition, BRO exposure caused oxidative damage in the larvae. Taken together, BRO exposure could affect the myocardial contraction function and lipid transport in larval zebrafish, accompanied by disturbances in the level of oxidative stress, which was of great significance for improving the biotoxicological information of BRO.
Collapse
Affiliation(s)
- Zhen Qin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Weitao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - You Weng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhiwei Bao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
12
|
Lim S, Kang H, Kwon B, Lee JP, Lee J, Choi K. Zebrafish (Danio rerio) as a model organism for screening nephrotoxic chemicals and related mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113842. [PMID: 35810668 DOI: 10.1016/j.ecoenv.2022.113842] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/16/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Because of essential role in homeostasis of the body fluid and excretion of wastes, kidney damage can lead to severe impacts on health and survival of humans. For most chemicals, nephrotoxic potentials and associated mechanisms are unclear. Hence, fast and sensitive screening measures for nephrotoxic chemicals are required. In this study, the utility of zebrafish (Danio rerio) was evaluated for the investigation of chemical-induced kidney toxicity and associated modes of toxicity, based on the literature review. Zebrafish has a well-understood biology, and many overlapping physiological characteristics with mammals. One such characteristic is its kidneys, of which histology and functions are similar to those of mammals, although unique differences of zebrafish kidneys, such as kidney marrow, should be noted. Moreover, the zebrafish kidney is simpler in structure and easy to observe. For these advantages, zebrafish has been increasingly used as an experimental model for screening nephrotoxicity of chemicals and for understanding related mechanisms. Multiple endpoints of zebrafish model, from functional level, i.e., glomerular filtration, to transcriptional changes of key genes, have been assessed to identify chemical-induced kidney toxicities, and to elucidate underlying mechanisms. The most frequently studied mechanisms of chemical-induced nephrotoxicity in zebrafish include oxidative stress, inflammation, DNA damage, apoptosis, fibrosis, and cell death. To date, several pharmaceuticals, oxidizing agents, natural products, biocides, alcohols, and consumer chemicals have been demonstrated to exert different types of kidney toxicities in zebrafish. The present review shows that zebrafish model can be efficiently employed for quick and reliable assessment of kidney damage potentials of chemicals, and related toxic mechanisms. The toxicological information obtained from this model can be utilized for identification of nephrotoxic chemicals and hence for protection of public health.
Collapse
Affiliation(s)
- Soyoung Lim
- Environmental Health Research Division, National Institute of Environmental Research, Ministry of Environment, Incheon, South Korea
| | - Habyeong Kang
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Department of Epidemiology, School of Public Health, University of Michigan, USA
| | - Bareum Kwon
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, South Korea
| | - Jeonghwan Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, South Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, South Korea; Institute of Health and Environment, Seoul National University, Seoul, South Korea.
| |
Collapse
|
13
|
Chen L, Su B, Yu J, Wang J, Hu H, Ren HQ, Wu B. Combined effects of arsenic and 2,2-dichloroacetamide on different cell populations of zebrafish liver. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:152961. [PMID: 35031379 DOI: 10.1016/j.scitotenv.2022.152961] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Arsenic (As) and disinfection by-products are important health risk factors in the water environment. However, their combined effects on different cell populations in the liver are not well known. Here, zebrafish were exposed to 100 μg/L As, 300 μg/L 2,2-dichloroacetamide (DCAcAm), and their combination for 23 days. Then transcriptome profiles of cell populations in zebrafish liver were analyzed by single-cell RNA sequencing (scRNA-seq). A total of 13,563 cells were obtained, which were identified as hepatocytes, hepatic duct cells, endothelial cells and macrophages. Hepatocytes were the main target cell subtype of As and DCAcAm exposures. DCAcAm exposure induced higher toxicity in male hepatocytes, which specifically changed amino acid metabolism, response to hormone and cofactor metabolism. However, As exposure caused higher toxicity in female hepatocytes, which altered lipid metabolism, carbon metabolism, and peroxisome. Combined exposure to As and DCAcAm decreased toxicities in hepatocytes compared to each one alone. Female hepatocytes had higher tolerance to co-exposure of As and DCAcAm than male hepatocytes. Further, combined exposure to As and DCAcAm induced functional changes in macrophages similar to As alone groups, which mainly altered the transfer of sterol and cholesterol. Hepatic duct cells and endothelial cells were not influenced by exposures to As and DCAcAm. This study for the first time highlights the cell-specific combined responses of As and DCAcAm in zebrafish liver, which provide useful information for their health risk assessment in a co-exposure environment.
Collapse
Affiliation(s)
- Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bei Su
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Jing Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Hong-Qiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
14
|
Noman MA, Feng W, Zhu G, Hossain MB, Chen Y, Zhang H, Sun J. Bioaccumulation and potential human health risks of metals in commercially important fishes and shellfishes from Hangzhou Bay, China. Sci Rep 2022; 12:4634. [PMID: 35301375 PMCID: PMC8931090 DOI: 10.1038/s41598-022-08471-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/04/2022] [Indexed: 11/08/2022] Open
Abstract
Hangzhou Bay is facing severe anthropogenic perturbation because of its geographic position. We studied species-specific bioaccumulation of metals in commercially important fishes and shellfishes, and calculated the potential human health hazards through their consumption, which has not been reported earlier from this area. The hierarchy of metal concentration in organisms was in the decreasing order of Zn (10.32 ± 7.13) > Cu (2.40 ± 2.66) > As (0.42 ± 0.26) > Cr (0.11 ± 0.08) > Cd (0.07 ± 0.07) > Pb (0.05 ± 0.02) > Hg (0.012 ± 0.009). Except for Cd and As concentrations in fishes, metal concentrations have not exceeded the national and international guideline values. P. laevis and P. trituberculatus were the most bioaccumulative of the species studied. According to the non-carcinogenic risk assessment, children were more susceptible to metal contamination than adults. The carcinogenic risk (CR) values indicated that children were likely to experience carcinogenic threats for taking cancer-causing agents As and Cd through fish consumption. In terms of organisms, intake of two crab species, P. trituberculatus and E. sinensis, as well as the oyster species P. laevis, could be detrimental to consumers.
Collapse
Affiliation(s)
- Md Abu Noman
- College of Marine Science and Technology, China University of Geosciences (Wuhan), No.388 Road Rumo, Wuhan, 430074, China
| | - Weihua Feng
- Key Laboratory of Marine Ecosystem Dynamics and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Genhai Zhu
- Key Laboratory of Marine Ecosystem Dynamics and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - M Belal Hossain
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Sonapur, Noakhali, Bangladesh
- School of Engineering and Built Environment, Griffith University, Nathan Campus, Griffith, QLD, Australia
| | - Yue Chen
- Key Laboratory of Marine Ecosystem Dynamics and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Haifeng Zhang
- Key Laboratory of Marine Ecosystem Dynamics and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences (Wuhan), No.388 Road Rumo, Wuhan, 430074, China.
| |
Collapse
|
15
|
Meng Y, Zhang L, Yao ZL, Ren YB, Wang LQ, Ou XB. Arsenic Accumulation and Physiological Response of Three Leafy Vegetable Varieties to As Stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2501. [PMID: 35270194 PMCID: PMC8909813 DOI: 10.3390/ijerph19052501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 12/10/2022]
Abstract
Arsenic (As) in leafy vegetables may harm humans. Herein, we assessed As accumulation in leafy vegetables and the associated physiological resistance mechanisms using soil pot and hydroponic experiments. Garland chrysanthemum (Chrysanthemum coronarium L.), spinach (Spinacia oleracea L.), and lettuce (Lactuca sativa L.) were tested, and the soil As safety threshold values of the tested leafy vegetables were 91.7, 76.2, and 80.7 mg kg−1, respectively, i.e., higher than the soil environmental quality standard of China. According to growth indicators and oxidative stress markers (malondialdehyde, the ratio of reduced glutathione to oxidized glutathione, and soluble protein), the order of As tolerance was: GC > SP > LE. The high tolerance of GC was due to the low transport factor of As from the roots to the shoots; the high activity of superoxide dismutase, glutathione peroxidase, and catalase; and the high content of phytochelatin in the roots. Results of this work shed light on the use of As-contaminated soils and plant tolerance of As stress.
Collapse
Affiliation(s)
- Yuan Meng
- College of Agriculture and Forestry, Longdong University, Qingyang 745000, China; (L.Z.); (Z.-L.Y.); (Y.-B.R.)
| | - Liang Zhang
- College of Agriculture and Forestry, Longdong University, Qingyang 745000, China; (L.Z.); (Z.-L.Y.); (Y.-B.R.)
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Qingyang 745000, China;
| | - Zhi-Long Yao
- College of Agriculture and Forestry, Longdong University, Qingyang 745000, China; (L.Z.); (Z.-L.Y.); (Y.-B.R.)
| | - Yi-Bin Ren
- College of Agriculture and Forestry, Longdong University, Qingyang 745000, China; (L.Z.); (Z.-L.Y.); (Y.-B.R.)
| | - Lin-Quan Wang
- College of Resources and Environment, Northwest A&F University, Xiangyang 712100, China;
| | - Xiao-Bin Ou
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Qingyang 745000, China;
| |
Collapse
|
16
|
Kirilovsky ER, Anguiano OL, Bongiovanni GA, Ferrari A. Effects of acute arsenic exposure in two different populations of Hyalella curvispina amphipods from North Patagonia Argentina. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:71-88. [PMID: 34496719 DOI: 10.1080/15287394.2021.1975589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Arsenic (As) is a toxic metalloid present in high levels in diverse regions of Argentina. The aim of this study was to determine acute As-mediated toxicity in two different populations of autochthonous Hyalella curvispina amphipods from a reference site (LB) and an agricultural one (FO) within North Patagonia Argentina. Previously, both populations exhibited significant differences in pesticide susceptibility. Lab assays were performed to determine acute lethal concentrations, as well as some biochemical parameters. Lethal concentration (LC50) values obtained after 48 and 96 hr As exposure were not significantly different between these populations, although FO amphipods appeared slightly less susceptible. LC50-48 hr values were 3.33 and 3.92 mg/L As, while LC50-96 hr values were 1.76 and 2.14 mg/L As for LB and FO amphipods. The no observed effect concentration (NOEC) values were 0.5 mg/L As. Cholinesterase (ChE) activity was significantly diminished by As acute exposure (0.5-1.5 mg/L As), indicative of a significant neurotoxic action for this metalloid in both amphipod populations. Activities of catalase (CAT) and glutathione S-transferase (GST) and levels of reduced glutathione (GSH) were differentially altered following As exposure. CAT activity was increased after 96 hr As exposure. GST activity and GSH levels were significantly elevated followed by either a decrease or a return to control values after 96 hr treatment. However, additional studies are necessary to understand the mechanisms underlying the As-mediated oxidative effects in H. curvispina. Our findings suggest that measurement of ChE activity in H. curvispina amphipods might serve as a useful biomarker of As exposure and effect.
Collapse
Affiliation(s)
- Eva R Kirilovsky
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN, (CONICET- UNCo), Neuquén, Argentina
- Facultad De Ciencias Médicas, Universidad Nacional Del Comahue (UNCo), Río Negro, Argentina
| | - Olga L Anguiano
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN, (CONICET- UNCo), Neuquén, Argentina
- Facultad De Ingeniería, Universidad Nacional Del Comahue (UNCo), Neuquén, Argentina
| | - Guillermina A Bongiovanni
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN, (CONICET- UNCo), Neuquén, Argentina
- Facultad De Ciencias Agrarias, Universidad Nacional Del Comahue (UNCo), Neuquén, Argentina
| | - Ana Ferrari
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN, (CONICET- UNCo), Neuquén, Argentina
- Facultad De Ciencias Médicas, Universidad Nacional Del Comahue (UNCo), Río Negro, Argentina
| |
Collapse
|
17
|
Zhao WJ, Li X, Xu ZQ, Fang KM, Hong HC, Sun HJ, Guan DX, Yu XW. Environmentally relevant concentrations of arsenic induces apoptosis in the early life stage of zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112883. [PMID: 34653941 DOI: 10.1016/j.ecoenv.2021.112883] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) in the aquatic environment is a considerable environmental issue, previous studies have reported the toxic effects of low concentrations (≤ 150 μg/L) of As on fish. However, limited information is available regarding the impact of low levels of As on apoptosis. To evaluate this, zebrafish embryos were exposed to different concentrations (0, 25, 50, 75, and 150 μg/L) of As (arsenite [AsIII] and arsenate [AsV]) for 120 h. Our results indicated that low concentrations of AsIII exposure significantly inhibited the survival of zebrafish larvae, and significantly increased the transcription of Caspase-9 and Caspase-3, the ratio of Bax/Bcl-2 transcription, and protein levels of Caspase-3. In contrast, AsV decreased the ratios of Bax/Bcl-2 transcription and protein levels, as well as protein levels of Caspase-3. Our data demonstrated that AsIII and AsV exert different toxic effects, AsIII induced apoptosis via the mitochondrial pathway and the extrinsic pathway, while AsV induced apoptosis only via the mitochondrial pathway.
Collapse
Affiliation(s)
- Wen-Jun Zhao
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Xiang Li
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Ze-Qiong Xu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Ke-Ming Fang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Hua-Chang Hong
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Hong-Jie Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China; Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Dong-Xing Guan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin-Wei Yu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang 316021, China; College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316021, China.
| |
Collapse
|
18
|
Koner D, Banerjee B, Kumari A, Lanong AS, Snaitang R, Saha N. Molecular characterization of superoxide dismutase and catalase genes, and the induction of antioxidant genes under the zinc oxide nanoparticle-induced oxidative stress in air-breathing magur catfish (Clarias magur). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1909-1932. [PMID: 34609607 DOI: 10.1007/s10695-021-01019-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The deduced amino acid sequences from the complete cDNA coding sequences of three antioxidant enzyme genes (sod1, sod2, and cat) demonstrated that phylogenetically the magur catfish (Clarias magur) is very much close to other bony fishes with complete conservation of active site residues among piscine, amphibian, and mammalian species. The three-dimensional structures of three antioxidant enzyme proteins are very much similar to mammalian counterparts, thereby suggesting the functional similarities of these enzymes. Exposure to ZnO NPs resulted in an oxidative stress as evidenced by an initial sharp rise of intracellular concentrations of hydrogen peroxide (H2O2) and malondialdehyde (MDA) but decreased gradually at later stages. The level of glutathione (GSH) also increased gradually in all the tissues examined after an initial decrease. Biochemical and gene expression analyses indicated that the magur catfish has the ability to defend the ZnO NP-induced oxidative stress by inducing the SOD/CAT enzyme system and also the GSH-related enzymes that are mediated through the activation of various antioxidant-related genes both at the transcriptional and translational levels in various tissues. Furthermore, it appeared that the stimulation of NO, as a consequence of induction nos2 gene, under NP-induced oxidative stress serves as a modulator to induce the SOD/CAT system in various tissues of magur catfish as an antioxidant strategy. Thus, it can be contemplated that the magur catfish possesses a very efficient antioxidant defensive mechanisms to defend against the oxidative stress and also from related cellular damages during exposure to ZnO NPs into their natural environment.
Collapse
Affiliation(s)
- Debaprasad Koner
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Bodhisattwa Banerjee
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Annu Kumari
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Aquisha S Lanong
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Revelbornstar Snaitang
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India
| | - Nirmalendu Saha
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
19
|
Cimbalo A, Alonso-Garrido M, Font G, Frangiamone M, Manyes L. Transcriptional Changes after Enniatins A, A1, B and B1 Ingestion in Rat Stomach, Liver, Kidney and Lower Intestine. Foods 2021; 10:foods10071630. [PMID: 34359500 PMCID: PMC8303686 DOI: 10.3390/foods10071630] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/18/2021] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Enniatins (ENs) are depsipeptide mycotoxins produced by Fusarium fungi. They are known for their capacity to modulate cell membrane permeability and disruption of ionic gradients, affecting cell homeostasis and initiating oxidative stress mechanisms. The effect of the acute toxicity of ENs A, A1, B and B1 at two different concentrations after 8 h of exposure was analysed in Wistar rats by a transcriptional approach. The following key mitochondrial and nuclear codified genes related to the electron transport chain were considered for gene expression analysis in stomach, liver, kidney and lower intestine by quantitative Real-Time PCR: mitochondrially encoded NADH dehydrogenase 1 (MT-ND1), mitochondrially encoded cytochrome c oxidase 1 (MT-COX1), succinate dehydrogenase flavoprotein subunit A and ATP synthase F1 subunit alpha, respectively. Moreover, the expression of markers involved in oxidative stresssuperoxide dismutase 1 (SOD1), glutathione peroxidase 1 (Gpx1), heme oxygenase 1, apoptosis B-cell lymphoma 2, Bcl2 Associated protein X (Bax), tumor suppressor protein (p53), inhibition of apoptosis nuclear factor kappa of activated B cells, immune system interleukin 1β and intestinal tight junction Occludin merely in lower intestine tissues have been investigated. For mitochondrial genes, the main differences were observed for MT-ND1 and MT-COX1, showing its deficiency in all selected organs. With regard to the intestinal barrier’s cellular response to oxidative stress, the activity of the antioxidant gene SOD1 was decreased in a dose-dependent manner. Similarly, the catalytic enzyme GPx1 was also downregulated though merely at medium dose employed. On the contrary, the pro-apoptotic Bax and p53 regulators were activated after ENs exposure, reporting a significant increase in their expression. Furthermore, the alteration of intestinal permeability was assessed by the abnormal activity of the tight junction protein occludin. In summary, ENs may generate mitochondrial disorders and induce oxidative stress in intestinal barrier function.
Collapse
|
20
|
Wang Y, Zhao H, Liu Y, Guo M, Tian Y, Huang P, Xing M. Arsenite induce neurotoxicity of common carp: Involvement of blood brain barrier, apoptosis and autophagy, and subsequently relieved by zinc (Ⅱ) supplementation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 232:105765. [PMID: 33535132 DOI: 10.1016/j.aquatox.2021.105765] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/24/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Arsenic pollution is a common threat to aquatic ecosystems. The effects of chronic exposure to arsenite on the brains of aquatic organisms are unknown. This study was designed to evaluate arsenic-induced brain damage in common carp (Cyprinus carpio) and the ameliorating effects of divalent zinc ion (Zn2+) supplementation from the aspects of oxidative stress (OxS), tight junction (TJ), apoptosis and autophagy. After arsenite exposure (2.83 mg/L) for 30 days, oxidative damage to the brain was determined, as indicated by inhibited antioxidants system (catalase-superoxide dismutase system, and glutathione system) and elevated levels of biomacromolecule peroxidation (malondialdehyde and 8-hydroxydeoxyguanosine). Moreover, we also found functional damage to the brain as suggested by injuries to the blood-brain barrier (decreases in tight junction) and nerve conduction (depletion of AChE). Mechanisticly, apoptotic and autophagic cell death were indicated by typical morphologies including karyopyknosis and autophagosome, accompanying by key bio-indicators (Bcl-2, caspase and autophagy related gene family proteins). In contrast, the coadministration of Zn2+ (1 mg/L) with arsenite effectively alleviated this damage as suggested by the recovery of the aforementioned bioindicators. This study provides new insight into the brain toxicity caused by arsenite and suggests the application of zinc preparations in the aquatic pollution of arsenic.
Collapse
Affiliation(s)
- Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Menghao Guo
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Ye Tian
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Puyi Huang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
21
|
He L, Liu L, Lin C, Ruan J, Liang X, Zhou Y, Wei L. Effects of MC-LR on histological structure and cell apoptosis in the kidney of grass carp (Ctenopharyngodon idella). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:2005-2014. [PMID: 32712898 DOI: 10.1007/s10695-020-00833-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Microcystin-LR (MC-LR) is a well-known hepatotoxin; however, increasing evidence suggests that it might induce kidney injury. Grass carp (Ctenopharyngodon idella) is one of the most important farmed species and may be affected by MC-LR releasing into waterbody during cyanobacterial bloom. Here, this present study aimed to explore the nephrotoxicity of grass carp by MC-LR. The grass carp received a single intraperitoneal injection of different doses of MC-LR (0, 25, 75, and 100 μg/kg body weight (BW)), and the kidneys were isolated at 24 and 96 h post-injection (hpi). Histopathological examination revealed kidney lesions, with severe hemorrhage, necrosis of the interstitium, and dilation of Bowman's capsule in the 75 and 100 μg MC-LR/kg BW groups. Under transmission electron microscopy, a larger number of swelling and vacuolated degeneration of mitochondria were observed; moreover, apoptotic features, such as condensed chromatin and shrinkage of cells, were observed in the 75 and 100 μg MC-LR/kg BW groups at 96 hpi. MC-LR significantly upregulated the number of apoptotic cells in the 75 and 100 μg/kg BW groups at 96 hpi as indicated by terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling (TUNEL) assay (P < 0. 05). The results of quantitative assays showed that the mRNA expression of Bax, caspase-9, and caspase-3 in grass carp kidney were significantly increased at 96 hpi in the 75 and 100 μg MC-LR/kg BW groups compared with that in the control group, but Bcl-2 mRNA expression was significantly decreased in all the treatment groups at 24 and 96 hpi. Taken together, these results indicated that MC-LR damaged the kidney structure and resulted in renal apoptosis which may occur via the mitochondrial pathway.
Collapse
Affiliation(s)
- Li He
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Lin Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Changgao Lin
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Jiming Ruan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Ximei Liang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Ying Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China.
| |
Collapse
|
22
|
Sun HJ, Zhao WJ, Teng XQ, Shu SP, Li SW, Hong HC, Guan DX. Antioxidant responses and pathological changes in the gill of zebrafish (Danio rerio) after chronic exposure to arsenite at its reference dose. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110743. [PMID: 32464441 DOI: 10.1016/j.ecoenv.2020.110743] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Gill, as the organ of fish to contact most directly with xenobiotics, suffered more threat. To evaluate the impact of arsenite (AsIII) on the gill of fish, we measured the antioxidative responses (superoxide dismutase (SOD) and catalase (CAT) activities) and oxidative damage (malondialdehyde (MDA) content), histological changes and mRNA transcriptional responses of zebrafish gill, after exposure to AsIII (0, 10, 50, 100, and 150 μg L-1) solutions for 28 days. We found that AsIII increased the activities of CAT by 46%-87%, decreased the activities of SOD and the contents of MDA by 19% and 21%-32%. Furthermore, CuZnSOD and MnSOD mRNA transcription levels were also inhibited, decreasing by 62%-82% and 70%-77%. Besides, ≥ 100 μg L-1 AsIII also caused histological changes (a loss of mucus and desquamation in the surface of the epithelial cells) on zebrafish gill. These results showed that low concentrations of AsIII influenced biochemical and physiological performances of fish gill, which probably aggravates the toxic effect of AsIII on fish.
Collapse
Affiliation(s)
- Hong-Jie Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Wen-Jun Zhao
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Xiao-Qiang Teng
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Shui-Ping Shu
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China
| | - Shi-Wei Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Hua-Chang Hong
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, PR China.
| | - Dong-Xing Guan
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
23
|
Wang Y, Zhao H, Liu Y, Nie X, Xing M. Zinc exerts its renal protection effect on arsenic-exposed common carp: A signaling network comprising Nrf2, NF-κB and MAPK pathways. FISH & SHELLFISH IMMUNOLOGY 2020; 104:383-390. [PMID: 32544558 DOI: 10.1016/j.fsi.2020.06.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Epidemiological and laboratory investigations have extensively indicated that arsenic exposure accounts for several kidney diseases. Zinc has been suggested as a possible natural preventive and therapeutic agent. This study is designed to explore the beneficial effect of zinc supplementation against arsenic-induced renal toxicity in common carp, and the results point to signaling pathway possibly compromised. In the present study, renal injury was induced in common carp by waterborne exposure to arsenic (2.83 mg/L) for 30 days, and zinc (1 mg/L) was simultaneously supplemented. First, the arsenic-exposed fish showed histological and functional renal alterations (indicated by hematoxylin-eosin staining, biochemical indexes and a TUNEL assay). Moreover, as a reactive oxygen species (ROS) stimulant, arsenic was found to induce oxidative toxicity as determined by increased renal ROS, malondialdehyde, protein carbonyl and 8-hydroxydeoxyguanosine levels. When antioxidant-mediation attempts (through superoxide dismutase and glutathione)-mediated to restore homeostasis failed and ROS increased to extreme levels, inflammation (indicated by elevated inducible nitric oxide synthetase, tumor necrosis factor-alpha and interleukins levels) and apoptosis (through both mitochondrial- and death receptor-dependent pathways) were triggered. However, abnormalities in the upstream mediators Nrf2, NF-κB and MAPK were significantly ameliorated and blocked by treatment with zinc. In conclusion, zinc exerts a substantial protective effect against arsenic-triggered subchronic renal injury in common carp via the amelioration of oxidative stress, suppression of apoptosis and reduced inflammation through Nrf2, NF-κB and MAPK signaling.
Collapse
Affiliation(s)
- Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| | - Yachen Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - XiaoPan Nie
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
24
|
Sheik Abdul N, Marnewick JL. Fumonisin B 1 -induced mitochondrial toxicity and hepatoprotective potential of rooibos: An update. J Appl Toxicol 2020; 40:1602-1613. [PMID: 32667064 DOI: 10.1002/jat.4036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/27/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022]
Abstract
Fumonisins are a family of potentially carcinogenic mycotoxins produced by Fusarium verticillioides. Several fumonisins have been identified with fumonisin B1 (FB1 ) being the most toxic. The canonical mechanism of FB1 toxicity is centered on its structural resemblance with sphinganine and consequent competitive inhibition of ceramide synthase and disruption of lipidomic profiles. Recent and emerging evidence at the molecular level has identified the disruption of mitochondria and excessive generation of toxic reactive oxygen species (ROS) as alternative/additional mechanisms of toxicity. The understanding of how these pathways contribute to FB1 toxicity can lead to the identification of novel, effective approaches to protecting vulnerable populations. Natural compounds with antioxidant properties seem to protect against the induced toxic effects of FB1 . Rooibos (Aspalathus linearis), endemic to South Africa, has traditionally been used as a medicinal herbal tea with strong scientific evidence supporting its anecdotal claims. The unique composition of phytochemicals and combination of metabolic activators, adaptogens and antioxidants make rooibos an attractive yet underappreciated intervention for FB1 toxicoses. In the search for a means to address FB1 toxicoses as a food safety problem in developing countries, phytomedicine and traditional knowledge systems must play an integral part. This review aims to summarize the growing body of evidence succinctly, which highlights mitochondrial dysfunction as a secondary toxic effect responsible for the FB1 -induced generation of ROS. We further propose the potential of rooibos to combat this induced toxicity based on its integrated bioactive properties, as a socio-economically viable strategy to prevent and/or repair cellular damage caused by FB1 .
Collapse
Affiliation(s)
- Naeem Sheik Abdul
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville, South Africa
| | - Jeanine L Marnewick
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, Bellville, South Africa
| |
Collapse
|
25
|
Silvestre F. Signaling pathways of oxidative stress in aquatic organisms exposed to xenobiotics. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:436-448. [DOI: 10.1002/jez.2356] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Frédéric Silvestre
- Institute of Life, Earth, and Environment (ILEE)University of Namur Bruxelles Namur Belgium
| |
Collapse
|
26
|
Jha DK, Sayrav K, Mishra GP, Mishra BB, Kumari A, Kumar A, Khan PK. Risk assessment of low arsenic exposure using biomarkers of oxidative and genotoxic stress in a piscine model. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:669-679. [PMID: 31256308 DOI: 10.1007/s10646-019-02060-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
The high level exposure to arsenic induces marked oxidative and genotoxic stress. However, information on the potential of low level arsenic exposure in this context is still scanty. In the present study, the extent of oxidative stress and genetic toxicity induced by low arsenic exposure was explored in freshwater fish Channa punctatus. Fish were exposed to low levels of arsenic (10 and 50 µg L-1) as well as to its high level (500 µg L-1) using sodium arsenite in aquaria water for 14 consecutive days. The TBARS assay for lipid peroxidation exhibited the increased occurrence of oxidative damage in the erythrocytes of fish at both the lower and higher levels of arsenic exposure. The level of reduced glutathione was also elevated in all the three arsenic exposed groups of fish compared to control. In contrast, significant decline was observed in the levels of three major antioxidant enzymes namely, superoxide dismutase, catalase and glutathione peroxidase, upon exposure to higher as well as lower levels of arsenic. Significant increases in micronucleus induction were found in the erythrocytes of fish even at the low levels of arsenic exposure. The study further revealed the occurrence of DNA fragmentation in the erythrocytes of fish at low arsenic exposures as well. The low level exposure to arsenic (using sodium arsenite), therefore, appeared to be capable of inducing noticeable oxidative stress as well as potential genotoxic effect in Channa punctatus. Moreover, the ability of arsenic to induce oxidative stress invariably appeared correlated with its genotoxic potential.
Collapse
Affiliation(s)
- Deepak K Jha
- Department of Zoology, Patna University, Patna, 800 005, India
| | - Kumar Sayrav
- Department of Zoology, Patna University, Patna, 800 005, India
| | - Gaurav P Mishra
- Department of Zoology, Patna University, Patna, 800 005, India
| | - Bipin B Mishra
- Department of Biochemistry, Patna University, Patna, 800 005, India
| | - Anupma Kumari
- Department of Zoology, Patna University, Patna, 800 005, India
| | - Amod Kumar
- Kirori Mal College, University of Delhi, New Delhi, 110 007, India
| | - Parimal K Khan
- Department of Zoology, Patna University, Patna, 800 005, India.
| |
Collapse
|
27
|
Mondal P, Shaw P, Bandyopadhyay A, Dey Bhowmik A, Chakraborty A, Sudarshan M, Chattopadhyay A. Mixture effect of arsenic and fluoride at environmentally relevant concentrations in zebrafish (Danio rerio) liver: Expression pattern of Nrf2 and related xenobiotic metabolizing enzymes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105219. [PMID: 31195325 DOI: 10.1016/j.aquatox.2019.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/02/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
Nrf2 is a crucial transcription factor that regulates the expression of cytoprotective enzymes and controls cellular redox homeostasis. Both arsenic and fluoride are potent toxicants that are known to induce Nrf2. They are reported to coexist in many areas of the world leading to complex mixture effects in exposed organisms. The present study investigated the expression of Nrf2 and related xenobiotic metabolizing enzymes along with other stress markers such as histopathological alterations, catalase activity, reduced glutathione content and lipid peroxidation in zebrafish liver as a function of combined exposure to environmentally relevant concentrations of arsenic (37.87 μgL-1 or 5.05 × 10-7 M) and fluoride (6.8 mg L-1 or 3.57 × 10-4 M) for 60 days. The decrease in the total reduced glutathione level was evident in all treatment conditions. Hyperactivity of catalase along with conspicuous elevation in reactive oxygen species, malondialdehyde content and histo-architectural anomalies signified the presence of oxidative stress in the treatment groups. Nrf2 was seen to be induced at both transcriptional and translational levels in case of both individual and co-exposure. The same pattern was observed in case of its nuclear translocation also. From the results of qRT-PCR it was evident that at each time point co-exposure to arsenic and fluoride seemed to alter the gene expression of Cu/Zn Sod, Mn Sod, Gpx and Nqo1 just like their individual exposure but at a very low magnitude. In conclusion, this study demonstrates for the first time the differential expression and activity of Nrf2 and other stress response genes in the zebrafish liver following individual and combined exposure to arsenic and fluoride.
Collapse
Affiliation(s)
- Paritosh Mondal
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Pallab Shaw
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | | | - Arpan Dey Bhowmik
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Anindita Chakraborty
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, 3/LB-8, Bidhan Nagar, Kolkata, 700098, West Bengal, India
| | - Muthammal Sudarshan
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, 3/LB-8, Bidhan Nagar, Kolkata, 700098, West Bengal, India
| | | |
Collapse
|
28
|
Ahmed ASS, Rahman M, Sultana S, Babu SMOF, Sarker MSI. Bioaccumulation and heavy metal concentration in tissues of some commercial fishes from the Meghna River Estuary in Bangladesh and human health implications. MARINE POLLUTION BULLETIN 2019; 145:436-447. [PMID: 31590808 DOI: 10.1016/j.marpolbul.2019.06.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/29/2019] [Accepted: 06/12/2019] [Indexed: 06/10/2023]
Abstract
Despite the beneficial aspect of aquatic food's consumption, bioaccumulation of toxic metals in fish can enhance the health risk for the consumers. Heavy metals were measured from editable tissues of some commercial fish species like Latis calcarifer, Silonia silondia, Clupisoma garua, Planiliza subviridis, Otolithoides pama, Tenulosa ilisa, Rhinomugil corsula, and Aila coila in the Meghna river estuary in Noakhali district. Heavy metals such as As, Pb, Cd, Cu, and Cr were detected by ICP-MS, which were significantly different (p ≤ 0.01), and the hierarchy of all mean concentrations were: Cu (5.14 mg/kg) > Pb (3.79 mg/kg) > As (1.08 mg/kg) > Cr (0.78 mg/kg) > Cd (0.12 mg/kg). The mean concentration of Cu (6.62 mg/kg) imparted to the maximum level in L. calcarifer, which slightly exceeded the Bangladesh food safety guideline. The mean BAFs of the contaminants were found as: Pb (1042.29) > Cr (1036.47) > As (934.84) > Cd (832.77) > Cu (772). Further, L. calcarifer, S. silondia, C. garua, and P. subviridis showed the bioaccumulative status. To assess the health risk effects, estimated daily intake (EDI), target hazard quotient (THQ) and carcinogenic risk (CR) were conducted. THQs for both adult and children consumers were <1, indicating that, consumers would not experience the non-carcinogenic health effects. Although children were more susceptible than adults, CR for all the consumers was found in the acceptable range (10-6 to 10-4).
Collapse
Affiliation(s)
- A S Shafiuddin Ahmed
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Bangladesh.
| | - Moshiur Rahman
- National Agricultural technology Program Phase-II Project (NATP-02), Department of Fisheries, Bangladesh
| | | | - S M Omar Faruque Babu
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Bangladesh
| | | |
Collapse
|
29
|
Cordeiro L, Müller L, Manske Nunes S, Kist LW, Bogo MR, Ruas CP, Gelesky M, Wasielesky W, Fattorini D, Regoli F, Monserrat JM, Ventura-Lima J. Co-exposure to nTiO 2 impairs arsenic metabolism and affects antioxidant capacity in the marine shrimp Litopenaeus vannamei. Drug Chem Toxicol 2019; 44:30-38. [PMID: 31257991 DOI: 10.1080/01480545.2018.1563610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Aquatic animals are vulnerable to arsenic (As) toxicity. However, rarely does a contaminant occur alone in the aquatic environment. For this reason, this study was conducted to evaluate whether titanium dioxide nanoparticles (nTiO2) can interfere with the effects induced by As in Litopenaeus vannamei. Arsenic accumulation and metabolic capacity; expression and enzymatic activity of GSTΩ (glutathione-S-transferase omega isoform); antioxidant responses such as GSH, GR, and GST (reduced glutathione levels, glutathione reductase, and glutathione-S-transferase activity, respectively); and lipid peroxidation in the gills and hepatopancreas of shrimp were evaluated. The results are summarized as follows: (1) higher accumulation of As occurred in both tissues after exposure to As alone; (2) co-exposure to nTiO2 affected the capacity to metabolize As; (3) GSTΩ gene expression was not modified, but its activity was decreased by co-exposure to both contaminants; (4) As alone increased the GSH levels in the hepatopancreas, and co-exposure to nTiO2 reduced these levels in both tissues; (5) a decrease in the GST activity in the gills occurred with all treatments; (6) in the gills, GR activity was increased by As, and nTiO2 reversed this increase, whereas in the hepatopancreas co-exposure inhibited enzyme activity; (7) only in the hepatopancreas lipid damage was observed when animals were exposed to As or nTiO2 but not in co-exposure. The results showed that the As induces toxic effects in both tissues of shrimp and that co-exposure to nTiO2 can potentiate these effects and decrease the capacity to metabolize As, favoring the accumulation of more toxic compounds.
Collapse
Affiliation(s)
- Lucas Cordeiro
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, Brasil.,Programa de Pós-Graduação em Ciências Fisiológicas- FURG, Rio Grande, Brasil
| | - Larissa Müller
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, Brasil
| | - Silvana Manske Nunes
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, Brasil.,Programa de Pós-Graduação em Ciências Fisiológicas- FURG, Rio Grande, Brasil
| | - Luiza Wilges Kist
- Centro de Biologia Genômica e Molecular-Pontificia Universidade Católica do Rio Grande do Sul-PUCRS, Rio Grande, Brasil
| | - Mauricio Reis Bogo
- Centro de Biologia Genômica e Molecular-Pontificia Universidade Católica do Rio Grande do Sul-PUCRS, Rio Grande, Brasil
| | - Caroline Pires Ruas
- Programa de Pós-Graduação em Química Tecnológica e Ambiental-FURG, Rio Grande, Brasil
| | - Marcos Gelesky
- Programa de Pós-Graduação em Química Tecnológica e Ambiental-FURG, Rio Grande, Brasil
| | | | - Daniele Fattorini
- Dipartimento di Scienze della Vita e dell'Ambiente Università Politecnica delle Marche, Ancona, Italy.,Conisma Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente Università Politecnica delle Marche, Ancona, Italy.,Conisma Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma, Italy
| | - José Marìa Monserrat
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, Brasil.,Programa de Pós-Graduação em Ciências Fisiológicas- FURG, Rio Grande, Brasil.,Programa de Pós-Graduação em Aquacultura-FURG, Rio Grande, Brasil
| | - Juliane Ventura-Lima
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, Brasil.,Programa de Pós-Graduação em Ciências Fisiológicas- FURG, Rio Grande, Brasil.,Programa de Pós-Graduação em Aquacultura-FURG, Rio Grande, Brasil
| |
Collapse
|
30
|
Jamwal A, Saibu Y, MacDonald TC, George GN, Niyogi S. The effects of dietary selenomethionine on tissue-specific accumulation and toxicity of dietary arsenite in rainbow trout (Oncorhynchus mykiss) during chronic exposure. Metallomics 2019; 11:643-655. [DOI: 10.1039/c8mt00309b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selenomethionine facilitated arsenic deposition in the brain and likely in other tissues, possibly via bio-complexation. Elevated dietary selenomethionine can increase the tissue-specific accumulation and toxicity of As3+ in fish during chronic dietary exposure.
Collapse
Affiliation(s)
- Ankur Jamwal
- Department of Biology
- University of Saskatchewan
- Saskatoon
- Canada
| | - Yusuf Saibu
- Toxicology Centre
- University of Saskatchewan
- Saskatoon
- Canada
| | | | - Graham N. George
- Toxicology Centre
- University of Saskatchewan
- Saskatoon
- Canada
- Department of Geology
| | - Som Niyogi
- Department of Biology
- University of Saskatchewan
- Saskatoon
- Canada
- Toxicology Centre
| |
Collapse
|
31
|
Wang Z, Li G, Wu Q, Liu C, Shen J, Yan W. Microcystin-LR exposure induced nephrotoxicity by triggering apoptosis in female zebrafish. CHEMOSPHERE 2019; 214:598-605. [PMID: 30290360 DOI: 10.1016/j.chemosphere.2018.09.103] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Recently, several studies showed that microcystin-LR (MCLR) can accumulate and induce toxicity in kidney. However, the exact mechanism is unknown. The aim of this study was to explore the mechanism of MCLR-induced nephrotoxicity. To this end, adult zebrafish were exposed to MCLR (0, 1, 5 and 25 μg/L) for 60 days. Exposure to MCLR caused histopathological lesions, which were characterized by renal tubules filled with eosinophilic casts, abnormal renal tubules, intertubular space decrease, and blood infiltration in renal cells. RNA-Seq analysis indicated that exposure to MCLR significantly interfered with renal gene expressions, and these genes were enriched in various pathways, such as oxidative phosphorylation, cell cycle, and protein processing in endoplasmic reticulum, which were related to apoptosis. Furthermore, terminal deoxynucleotide transferase-mediated deoxy-UTP nick end labelling (TUNEL) assay showed that MCLR exposure induced renal cell apoptosis. In addition, negative changes of the reactive oxygen species (ROS) level as well as apoptotic-related gene, protein expressions and enzyme activities suggested that MCLR could induce production of ROS, subsequently triggering apoptosis via p53-bcl-2 and caspase-dependent pathway in the kidney of zebrafish. Therefore, it can be concluded that apoptosis is a primary case of MCLR-induced nephrotoxicity.
Collapse
Affiliation(s)
- Zhikuan Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - JianZhong Shen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wei Yan
- Institute of Quality Standard & Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
32
|
Dai J, Zhang L, Du X, Zhang P, Li W, Guo X, Li Y. Effect of Lead on Antioxidant Ability and Immune Responses of Crucian Carp. Biol Trace Elem Res 2018; 186:546-553. [PMID: 29594948 DOI: 10.1007/s12011-018-1316-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/20/2018] [Indexed: 02/01/2023]
Abstract
The aim of this study was to explore the effects of lead exposure on the antioxidant and immune responses of Crucian carp. Three hundred sixty healthy Crucian carp were randomly grouped into four groups and exposed to different doses of lead (0, 0.05, 0.5, and 1 mg/L). Fish were sampled at 30 and 60 days, respectively, and antioxidant capability, immune parameters, ALAD activity, and immune-related genes were assessed. The results showed that T-AOC and GSH activities of the liver were significantly increased in 60 days (P < 0.05); the activities of SOD, CAT, T-AOC, and GSH were significantly increased (P < 0.05) compared to the control in the kidney in 60 days. With an increase in Pb dose, the activity and expression of lysozyme and the content of immunoglobulin M were significantly decreased compared to the control. Compared with the control group, the activity of ALAD in the lead-exposed group decreased significantly (P < 0.05). The expression of the HSP70, tumor necrosis factor-α (TNF-α), interleukins (IL-10), and immunoglobulin M genes was all enhanced in lead-exposed group, whereas lysozyme gene expression was decreased. The results indicated that lead induced oxidative stress and had immunotoxic effects on Crucian carp.
Collapse
Affiliation(s)
- Jing Dai
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Linbo Zhang
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Xiaoyan Du
- Freshwater Fisheries Research Institute of Jilin Province, Changchun, 130000, China
| | - Peijun Zhang
- Health monitoring and inspection center of Jilin Province, Changchun, 130062, China
| | - Wei Li
- China-Japan union Hospital of Jilin University, Jilin University, Changchun, 130000, China
| | - Xiyao Guo
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Yuehong Li
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China.
| |
Collapse
|
33
|
Dong WQ, Sun HJ, Zhang Y, Lin HJ, Chen JR, Hong HC. Impact on growth, oxidative stress, and apoptosis-related gene transcription of zebrafish after exposure to low concentration of arsenite. CHEMOSPHERE 2018; 211:648-652. [PMID: 30098560 DOI: 10.1016/j.chemosphere.2018.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
Low concentrations of arsenic (As) contamination in aquatic environment is a worldwide issue, which is of great concern. To evaluate the impact of low concentrations of As on zebrafish, we measured the growth, antioxidant enzymes including superoxide dismutase (SOD) and catalase (CAT), oxidative damage (malondialdehyde, MDA) and apoptosis-related genes (nrf2, p53 and c-jun) of adult zebrafish after exposing to different AsIII concentrations (0, 10, 50, 100 or 150 μg L-1) for 28 d. Results indicated that exposure to low AsIII concentrations decreased the zebrafish weight by 14%, increased the activities of SOD and CAT by 23-41% and 31-59%, decreased the contents of MDA by 29-54%, and modulated transcription of apoptosis related genes. Our study showed that chronic exposure to AsIII concentrations <150 μg L-1 generated oxidative stress and damage on zebrafish, and altered apoptosis-related genes in zebrafish.
Collapse
Affiliation(s)
- Wen-Qi Dong
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China
| | - Hong-Jie Sun
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China.
| | - Yu Zhang
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China
| | - Hong-Jun Lin
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China
| | - Jian-Rong Chen
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China
| | - Hua-Chang Hong
- College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, Zhejiang, 321004, People's Republic of China.
| |
Collapse
|
34
|
Hepatorenal protective effects of medicinal herbs in An-Gong-Niu-Huang Wan (AGNH) against cinnabar- and realgar-induced oxidative stress and inflammatory damage in mice. Food Chem Toxicol 2018; 119:445-456. [DOI: 10.1016/j.fct.2017.11.054] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023]
|
35
|
Hadwan MH. Simple spectrophotometric assay for measuring catalase activity in biological tissues. BMC BIOCHEMISTRY 2018; 19:7. [PMID: 30075706 PMCID: PMC6091033 DOI: 10.1186/s12858-018-0097-5] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 07/30/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND The details of a precise, accurate, and sensitive spectrophotometric method for measuring catalase activity are presented here. The assay was established for biological samples and depends on the rapid formation of a stable and colored carbonato-cobaltate (III) complex. Samples exhibiting catalase activity are incubated with hydrogen peroxide solution for 2 min prior to rapid mixing of the incubation enzymatic reaction mixture with cobalt-bicarbonate reagent, which assesses non-reacting hydrogen peroxide. Catalase activity is always directly proportional to the rate of dissociation of hydrogen peroxide. Hydrogen peroxide acts to oxidize cobalt (II) to cobalt (III) in the presence of bicarbonate ions; this process ends with the production of a carbonato-cobaltate (III) complex ([Co (CO3)3]Co). The formed end product has two maximum absorbance peaks: 440 nm and 640 nm. The 440-nm peak has been utilized for assessing catalase activity. RESULTS The catalase activity results of the current method for erythrocyte lysate homogenates were computationally identical to those of the dichromate method (r = 0.9950). The coefficient of variation was calculated to determine the imprecision of the current assay. The within-run and between-run results were 2.96 and 3.83%, respectively. CONCLUSION This method is appropriate for analyzing bacteria, red blood cells and liver and kidney tissue homogenates.
Collapse
Affiliation(s)
- Mahmoud Hussein Hadwan
- Chemistry Department College of Science, University of Babylon, Hilla City, Babylon Governorate, P.O. 51002, Iraq.
| |
Collapse
|
36
|
Liu Q, Liao Y, Shou L. Concentration and potential health risk of heavy metals in seafoods collected from Sanmen Bay and its adjacent areas, China. MARINE POLLUTION BULLETIN 2018; 131:356-364. [PMID: 29886958 DOI: 10.1016/j.marpolbul.2018.04.041] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/01/2018] [Accepted: 04/16/2018] [Indexed: 05/27/2023]
Abstract
Commercial marine fish, crustacean, and mollusc samples were collected from Sanmen Bay and its adjacent areas to investigate the accumulation of heavy metals in various species of marine organisms and evaluate the potential health risk for local consumers. The results indicated significant variations in metal contents among species. The highest concentrations of studied metals were found in molluscs, followed by crustaceans and fish. The first metal group of arsenic (As), cadmium, copper, and zinc were associated by their relatively high concentrations in the tissues of marine organisms, whereas chromium, mercury, and lead were identified the other group with low concentrations. Human health risk evaluation indicated that the exposure doses of most elements for coastal people were safe, except for As, which scored a high total target hazard quotient and target cancer risk value. Potential health risk of heavy metal exposure from seafood consumption should not be ignored.
Collapse
Affiliation(s)
- Qiang Liu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China
| | - Yibo Liao
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China
| | - Lu Shou
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China.
| |
Collapse
|
37
|
Park WH, Han BR, Park HK, Kim SZ. Arsenic trioxide induces growth inhibition and death in human pulmonary artery smooth muscle cells accompanied by mitochondrial O2•- increase and GSH depletion. ENVIRONMENTAL TOXICOLOGY 2018; 33:833-840. [PMID: 29708299 DOI: 10.1002/tox.22569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/01/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Arsenic trioxide (ATO; As2 O3 ) induces cell death in various cells via oxidative stress. Expose to chronic arsenic is involved in the development of vascular diseases. However, little is known about the cytotoxic effects of ATO on human normal vascular smooth muscle cells (VSMCs). Thus, in this study, we investigated the effects of ATO on cell growth and death in human pulmonary artery smooth muscle (HPASM) cells in relation to reactive oxygen species (ROS) and glutathione (GSH) levels. ATO treatment decreased the growth of HPASM cells with an IC50 of ∼30-50 μM at 24 h, and ATO induced HPASM cell death via apoptosis or necrosis dependent on the doses of it at this time. Treatment with 50 μM ATO did not increase ROS levels at the early time points, but it significantly increased mitochondrial O2•- levels at 24 h. ATO also induced GSH depletion in HPASM cells. N-acetyl cysteine (NAC; a well-known antioxidant) did not significantly affect apoptotic cell death, ROS levels, or GSH depletion in ATO-treated HPASM cells. However, l-buthionine sulfoximine (BSO; an inhibitor of GSH synthesis) intensified mitochondrial O2•- levels in ATO-treated HPASM cells, and significantly increased cell death and GSH depletion in these cells as well. In summary, we provided the first evidence that ATO inhibited the growth of HPASM cells, and induced apoptotic and/or necrotic cell death in these cells, accompanied by increases in mitochondrial O2•- level and GSH depletion.
Collapse
Affiliation(s)
- Woo Hyun Park
- Department of Physiology, Medical School, Research Institute for Endocrine Sciences, Chonbuk National University, 20 Geonji-ro, Deokjin, Jeonju, Jeollabuk, 54907, Republic of Korea
| | - Bo Ran Han
- Department of Physiology, Medical School, Research Institute for Endocrine Sciences, Chonbuk National University, 20 Geonji-ro, Deokjin, Jeonju, Jeollabuk, 54907, Republic of Korea
| | - Hyun Kyung Park
- Department of Physiology, Medical School, Research Institute for Endocrine Sciences, Chonbuk National University, 20 Geonji-ro, Deokjin, Jeonju, Jeollabuk, 54907, Republic of Korea
| | - Sung Zoo Kim
- Department of Physiology, Medical School, Research Institute for Endocrine Sciences, Chonbuk National University, 20 Geonji-ro, Deokjin, Jeonju, Jeollabuk, 54907, Republic of Korea
| |
Collapse
|
38
|
Liu Q, Chen YP, Maltby L, Ma QY. Conservation efforts of captive golden takin (Budorcas taxicolor bedfordi) are potentially compromised by the elevated chemical elements exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 143:72-79. [PMID: 28505482 DOI: 10.1016/j.ecoenv.2017.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 05/02/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Chemical elements exposure of endangered golden takins (Budorcas taxicolor bedfordi) living in the Qinling Mountains and in a captive breeding center was assessed by analyzing fecal samples. Concentrations of As, Co, Cr, Cu, Ni and Se were significantly higher in the feces of captive golden takins than the wild. There was no significant difference in the fecal concentrations of Cd, Mn, Hg, Pb or Zn for wild and captive animals. The element concentration of fecal samples collected from captive animals varied seasonally, with concentrations being lowest in spring and highest in winter and/or autumn. The food provided to captive animals varied both in the composition and the concentration of element present. Consumptions of feedstuff and additional foods such as D. sanguinalis and A. mangostanus for the captive golden takins were identified as the possible sources of chemical element exposure. The estimations of dietary intake of most elements by captive takins were below the oral reference dose, except for As and Pb, indicating that As and Pb were the key components which contributed to the potential non-carcinogenic risk for captive golden takins. In conclusion, captive golden takins were exposed to higher concentrations of chemical elements compared with the wild, which were likely due to their dietary difference. Conservation efforts of captive golden takin are potentially compromised by the elevated chemical element exposure and effort should focus on providing uncontaminated food for captive animals.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, China
| | - Yi-Ping Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China.
| | - Lorraine Maltby
- Department of Animal and Plant Sciences, The University of Sheffield, S10 2TN, UK
| | - Qing-Yi Ma
- Shaanxi Rare Wildlife Conservation and Breeding Center, Xi'an 710402, China
| |
Collapse
|
39
|
Integration of microRNAome, proteomics and metabolomics to analyze arsenic-induced malignant cell transformation. Oncotarget 2017; 8:90879-90896. [PMID: 29207610 PMCID: PMC5710891 DOI: 10.18632/oncotarget.18741] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/21/2017] [Indexed: 01/21/2023] Open
Abstract
Long-term exposure to arsenic has been linked to tumorigenesis in different organs and tissues, such as skin; however, the detailed mechanism remains unclear. In this present study, we integrated “omics” including microRNAome, proteomics and metabolomics to investigate the potential molecular mechanisms. Compared with non-malignant human keratinocytes (HaCaT), twenty-six miRNAs were significantly altered in arsenic-induced transformed cells. Among these miRNAs, the differential expression of six miRNAs was confirmed using Q-RT-PCR, representing potential oxidative stress genes. Two-dimensional gel electrophoresis (2D-PAGE) and mass spectrometry (MS) were performed to identify the differential expression of proteins in arsenic-induced transformed cells, and twelve proteins were significantly changed. Several proteins were associated with oxidative stress and carcinogenesis including heat shock protein beta-1 (HSPB1), peroxiredoxin-2 (PRDX2). Using ultra-performance liquid chromatography and Q-TOF mass spectrometry (UPLC/Q-TOF MS), 68 metabolites including glutathione, fumaric acid, citric acid, phenylalanine, and tyrosine, related to redox metabolism, glutathione metabolism, citrate cycle, met cycle, phenylalanine and tyrosine metabolism were identified and quantified. Taken together, these results indicated that arsenic-induced transformed cells exhibit alterations in miRNA, protein and metabolite profiles providing novel insights into arsenic-induced cell malignant transformation and identifying early potential biomarkers for cutaneous squamous cell carcinoma induced by arsenic.
Collapse
|