1
|
Panfili M, Guicciardi o Guizzardi S, Frapiccini E, Truzzi C, Girolametti F, Marini M, Santojanni A, Annibaldi A, Illuminati S, Colella S. Influence of Contaminants Mercury and PAHs on Somatic Indexes of the European Hake ( Merluccius merluccius, L. 1758). Animals (Basel) 2024; 14:2938. [PMID: 39457868 PMCID: PMC11503758 DOI: 10.3390/ani14202938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
This research investigates the dynamics of contaminant exposure in European hake (Merluccius merluccius, L. 1758) from the Adriatic Sea (Central Mediterranean Sea) by examining the levels of total mercury (THg) and polycyclic aromatic hydrocarbons (PAHs) in the muscle fish tissues. The study explores the correlations between these pollutants and somatic indexes to identify the early warning signals of pollution and ecological effects. The levels of pollutants are influenced by season and sex. Lipids appear to have a minimal effect on the PAH levels, whereas they exhibit a positive correlation with mercury levels in the muscle. No significant relationships between the pollutants and condition indexes were observed, except for a positive correlation between THg and the gonadosomatic index, indicating a potential impact on the reproductive health of fish. In contrast, PAHs showed no meaningful correlation with condition indexes. Differences in contaminant accumulations and lipid levels between sexes reflect variations in metabolic activity, reproductive costs, and adaptive strategies to seasonal changes and energy demands. This study highlights the importance of long-term monitoring to improve pollution management, environmental conservation, and the protection of marine organisms' health.
Collapse
Affiliation(s)
- Monica Panfili
- Institute for Marine Biological Resources and Biotechnologies, National Research Council (IRBIM-CNR), 60125 Ancona, Italy; (M.P.); (S.G.o.G.); (M.M.); (A.S.); (S.C.)
| | - Stefano Guicciardi o Guizzardi
- Institute for Marine Biological Resources and Biotechnologies, National Research Council (IRBIM-CNR), 60125 Ancona, Italy; (M.P.); (S.G.o.G.); (M.M.); (A.S.); (S.C.)
| | - Emanuela Frapiccini
- Institute for Marine Biological Resources and Biotechnologies, National Research Council (IRBIM-CNR), 60125 Ancona, Italy; (M.P.); (S.G.o.G.); (M.M.); (A.S.); (S.C.)
| | - Cristina Truzzi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.G.); (A.A.); (S.I.)
| | - Federico Girolametti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.G.); (A.A.); (S.I.)
| | - Mauro Marini
- Institute for Marine Biological Resources and Biotechnologies, National Research Council (IRBIM-CNR), 60125 Ancona, Italy; (M.P.); (S.G.o.G.); (M.M.); (A.S.); (S.C.)
| | - Alberto Santojanni
- Institute for Marine Biological Resources and Biotechnologies, National Research Council (IRBIM-CNR), 60125 Ancona, Italy; (M.P.); (S.G.o.G.); (M.M.); (A.S.); (S.C.)
| | - Anna Annibaldi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.G.); (A.A.); (S.I.)
| | - Silvia Illuminati
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.G.); (A.A.); (S.I.)
| | - Sabrina Colella
- Institute for Marine Biological Resources and Biotechnologies, National Research Council (IRBIM-CNR), 60125 Ancona, Italy; (M.P.); (S.G.o.G.); (M.M.); (A.S.); (S.C.)
| |
Collapse
|
2
|
Younis AM, Hanafy S, Elkady EM, Alluhayb AH, Alminderej FM. Assessment of health risks associated with heavy metal contamination in selected fish and crustacean species from Temsah Lake, Suez Canal. Sci Rep 2024; 14:18706. [PMID: 39134587 PMCID: PMC11319458 DOI: 10.1038/s41598-024-69561-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Marine pollution caused by heavy metals has emerged as a significant environmental concern, garnering increased attention in recent years. The accumulation of heavy metals in the tissues of marine organisms poses substantial threats to both marine ecosystems and human populations that rely on seafood as a primary food source. Fish and crustaceans are effective biomonitors for assessing heavy metal contamination in aquatic environments. In this study, we determined the concentrations of several heavy metals, including cadmium (Cd), lead (Pb), nickel (Ni), mercury (Hg), and tin (Sn), in four fish species (Mugil cephalus, Mugil capito, L. aurata, and Morone labrax) and five crustacean species (S. rivulatus, Cerastoderma glaucum, Paratapes undulatus, R. decussatus, Callinectes sapidus, and Metapenaeus Stebbingi) from Temsah Lake during both winter and summer seasons. To evaluate the potential ecological and health risks associated with consuming these fish and crustacean species, we calculated the metal pollution index (MPI), weekly intake (EWI), target hazard quotient (THQ), and carcinogenic risk (CR) values. The results revealed a noticeable increase in metal levels during the summer compared to winter in the studied samples. Moreover, the concentration of heavy metals in the muscles of the species generally exceeded those in the liver and gills. The MPI values indicated that Morone labrax exhibited the highest values during winter, while L. aurata showed the highest values during summer. Mugil cephalus demonstrated the lowest MPI values in both seasons. The EWI values for the studied metals were found to be lower than the corresponding tolerable weekly intake (TWI) values. Additionally, under average exposure conditions, the THQ and HI data were generally below one for most study species in the area. The calculated CR values for investigated metals in the studied species indicated acceptable carcinogenic risk levels. Therefore, this suggests that consuming studied species within Temsah lake does not present any potential health hazards for consumers.
Collapse
Affiliation(s)
- Alaa M Younis
- Department of Chemistry, College of Science, Qassim University, 51452, Buraidah, Saudi Arabia.
- Department of Aquatic Environment, Faculty of Fish Resources, Suez University, Suez, 43518, Egypt.
| | - Said Hanafy
- Egyptian Environmental Affairs Agency-Assiut Branch, Assiut, 71764, Egypt
| | - Eman M Elkady
- National Institute of Oceanography & Fisheries (NIOF), Cairo, Egypt
| | - Abdullah H Alluhayb
- Department of Chemistry, College of Science, Qassim University, 51452, Buraidah, Saudi Arabia
| | - Fahd M Alminderej
- Department of Chemistry, College of Science, Qassim University, 51452, Buraidah, Saudi Arabia
| |
Collapse
|
3
|
Naccari C, Ferrantelli V, Cammilleri G, Galluzzo FG, Macaluso A, Riolo P, Lo Dico GM, Bava R, Palma E. Metal Levels in Striped Dolphins ( Stenella coeruleoalba) and Common Dolphins ( Delphinus delphis) Stranded along the Sicilian Coastlines of the Mediterranean Sea. Animals (Basel) 2024; 14:2063. [PMID: 39061525 PMCID: PMC11274124 DOI: 10.3390/ani14142063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Dolphins, top predators of the aquatic food chain, are used as sentinel species of marine pollution as they are sensitive to environmental changes and able to accumulate a large content of contaminants. Several EU directives promote study of marine mammalians as bio-indicators to evaluate the presence of contaminants in the aquatic environment, such as the Mediterranean Sea, which is rich in environmental pollutants due to its geographic and geo-morphological characteristics. The aim of this study was to evaluate the content of toxic and essential metals and metalloids (Hg, Pb, Cd, As, Se and Zn), through ICP-MS analysis, in organs/tissues (liver, muscle, lung, kidney and skin) of striped dolphins (Stenella coeruleoalba) and common dolphins (Delphinus delphis) stranded along the Sicilian coastlines of the Mediterranean Sea. The results confirm the exposure of dolphins to toxic metals and metalloids, with the highest Hg levels observed in skin and liver, although a low Metal Pollution Index (MPI) was found in all samples of both dolphin species. From a comparative analysis of trace metals and metalloids according to sex and state of development, the highest levels of Cd and As were found in females vs. males and adults vs. juveniles, except for Pb in both species, and significant differences were observed between the two species, size of specimens, and organs/tissues analyzed. The highest Hg levels were correlated to those of essential metals Se and Zn, expressed as molar ratios, to evaluate the potential synergic effect of these detoxifying elements against Hg toxicity. This study confirms the rule of Stenella coeruleoalba and Delphinus delphis as valid sentinel species of the Mediterranean Sea, to verify the trend of metals pollution in this aquatic environment and, consequently, the health of these marine species.
Collapse
Affiliation(s)
- Clara Naccari
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (R.B.); (E.P.)
| | - Vincenzo Ferrantelli
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (V.F.); (G.C.); (F.G.G.); (A.M.); (P.R.); (G.M.L.D.)
| | - Gaetano Cammilleri
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (V.F.); (G.C.); (F.G.G.); (A.M.); (P.R.); (G.M.L.D.)
| | - Francesco Giuseppe Galluzzo
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (V.F.); (G.C.); (F.G.G.); (A.M.); (P.R.); (G.M.L.D.)
| | - Andrea Macaluso
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (V.F.); (G.C.); (F.G.G.); (A.M.); (P.R.); (G.M.L.D.)
| | - Pietro Riolo
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (V.F.); (G.C.); (F.G.G.); (A.M.); (P.R.); (G.M.L.D.)
| | - Gianluigi Maria Lo Dico
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (V.F.); (G.C.); (F.G.G.); (A.M.); (P.R.); (G.M.L.D.)
| | - Roberto Bava
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (R.B.); (E.P.)
| | - Ernesto Palma
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (R.B.); (E.P.)
- Interdepartmental Service Center—Center for Pharmacological Research, Food Safety, High Tech and Health (CIS-IRC-FSH) University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Rind KH, Aslam S, Memon NH, Raza A, Saeed MQ, Mushtaq A, Ujan JA, Habib SF, Al-Rejaie SS, Mohany M. Heavy Metal Concentrations in Water, Sediment, and Fish Species in Chashma Barrage, Indus River: A Comprehensive Health Risk Assessment. Biol Trace Elem Res 2024:10.1007/s12011-024-04290-6. [PMID: 38956009 DOI: 10.1007/s12011-024-04290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024]
Abstract
The increasing levels of heavy metals in aquatic environments, driven by human activities, pose a critical threat to ecosystems' overall health and sustainability. This study investigates the bioaccumulation of heavy metals (Pb, Cu, Cr, and Cd) in water, sediment, and three fish species (Catla catla, Labeo rohita, Cirrhinus mrigala) of different feeding zones within Chashma Barrage, located in the Mianwali district of Punjab, Pakistan, on the Indus River. A comprehensive analysis, including an assessment of associated human health risks, was conducted. Thirty samples from all three sites for each fish species, with an average body weight of 160 ± 32 g, were collected from Chashma Barrage. Water quality parameters indicated suitability for fish growth and health. Heavy metal concentrations were determined using an atomic absorption spectrometer. Results indicated elevated levels of Cd, Cr, and Cu in sediment and Pb and Cd in water, surpassing WHO standard limits. Among the fish species, bottom feeder (C. mrigala) exhibited significantly (P < 0.05) higher heavy metal levels in its tissues (gills, liver, and muscle) compared to column feeder (L. rohita) and surface feeder (C. catla). Liver tissues across all species showed higher heavy metal bioaccumulation, followed by gills. Principal component analysis (PCA) revealed strong correlations among heavy metals in sediment, gills, muscle, and water in every fish species. However, the vector direction suggests that Cr was not correlated with other heavy metals in the system, indicating a different source. The human health risk analysis revealed lower EDI, THQ, and HI values (< 1) for the fish species, indicating no adverse health effects for the exposed population. The study emphasizes the bioaccumulation differences among fish species, underscoring the higher heavy metal concentrations in bottom feeder fish within Chashma Barrage.
Collapse
Affiliation(s)
- Khalid Hussain Rind
- Department of Molecular Biology and Genetics, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Sindh, 67450, Pakistan
| | - Sonia Aslam
- Department of Zoology, Government Girls Postgraduate College Kohat, Kohat, 26030, Khyber Pakhtunkhwa, Pakistan
| | - Nazakat Hussain Memon
- Department of Biochemistry, Ghulam Muhammad Mahar Medical College Sukkur, Shaheed Mohtarma Benazir Bhutto Medical University Larkana, 77150, Larkana, Sindh, Pakistan
| | - Asif Raza
- Government Degree College Nasirabad, Qambar Shahdadkot District, 770020, Sindh, Pakistan
| | - Muhammad Qamar Saeed
- Department of Microbiology and Molecular Genetics, Bahauddin Zakariya University, Punjab, 60800, Multan , Pakistan
| | - Alia Mushtaq
- Plant and Environmental Protection, National Agricultural Research Centre, Islamabad, 45500, Pakistan
| | - Javed Ahmed Ujan
- Department of Zoology, Shah Abdul Latif University, KhairpurKhairpur, 66020, Sindh, Pakistan
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32608, USA
| | - Syed Fahad Habib
- Department of Zoology, Khushal Khan Khattak University, Khyber Pakhtunkhwa, 27200, Karak, Pakistan.
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, 11451, Riyadh, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Boota MW, Soomro SEH, Xia H, Qin Y, Kakakhel MA, Yan C, Weiran L, Xu J. Distribution and bioaccumulation of trace elements in two Cyprinidae fish species in the Indus river, Pakistan, including the impact of hydraulic structure on macroinvertebrates' biodiversity. ENVIRONMENTAL RESEARCH 2024; 252:118882. [PMID: 38582426 DOI: 10.1016/j.envres.2024.118882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/24/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
The concentration of trace elements (chromium, lead, zinc, copper, manganese, and iron) was determined in water, sediment and tissues of two Cyprinidae fish species - Labeo rohita and Tor putitora - collected from the eight sampling stations of Indus River in 2022 for four successive seasons (autumn, winter, spring, summer), and also study the present condition of macroinvertebrates after the construction of hydraulic structure. The obtained results of trace element concentrations in the Indus River were higher than the acceptable drinking water standards by WHO. The nitrate concentration ranges from 5.2 to 59.6 mg l-1, turbidity ranges from 3.00 to 63.9 NTU, total suspended solids and ammonium ions are below the detection limit (<0.05). In the liver, highest dry wt trace elements (μg/g) such as Cr (4.32), Pb (7.07), Zn (58.26), Cu (8.38), Mn (50.27), and Fe (83.9) for the Labeo rohita; and Tor Putitora has significantly greater accumulated concentration (Cr, Pb, Zn, Cu, Mn, Fe) in muscle and liver than did Labeo rohita species. Additionally, lower number of macroinvertebrates were recorded during the monsoonal season than pre-monsoon and post-monsoon. Local communities surrounded by polluted environments are more probably to consume more fish and expose them to higher concentrations of toxic trace elements (lead and copper). The findings also provide a basis for broader ecological management of the Indus River, which significantly influenced human beings and socioeconomic disasters, particularly in the local community.
Collapse
Affiliation(s)
- Muhammad Waseem Boota
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China; Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng, 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China; Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization Jointly Built by Henan Province and Ministry of Education, Henan University, Kaifeng, 475004, China.
| | - Shan-E-Hyder Soomro
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China.
| | - Haoming Xia
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China; Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng, 475004, China; Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China; Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center on Yellow River Civilization Jointly Built by Henan Province and Ministry of Education, Henan University, Kaifeng, 475004, China.
| | - Yaochen Qin
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China.
| | - Mian Adnan Kakakhel
- College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, 443002, China.
| | - Chaode Yan
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China.
| | - Luo Weiran
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China; Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng, 475004, China.
| | - Jikun Xu
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Warjri CD, Kshetriya D, Ghosh S. Seasonal variation of heavy metals in water and Cyprinus carpio L. from Umiam Lake reservoir of Meghalaya, India: Potential health risk assessment for human consumption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39782-39793. [PMID: 38833047 DOI: 10.1007/s11356-024-33778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
The purpose of this study is to assess the seasonal variation of heavy metal concentration in water and fish tissues of common carp (Cyprinus carpio L.) from the Umiam Lake reservoir located in the Ri bhoi district of Meghalaya, India, and to elucidate the possible human health risk of ingesting fish captured from the contaminated lake. Results show significant (p < 0.05) seasonal differences of heavy metal concentrations in the water and different tissues of fish Cyprinus carpio L.. The total concentration of heavy metals in the water exceeds the WHO and BIS standards and thus poses a significant threat to the aquatic flora and fauna of the reservoir. The heavy metal concentrations in fish tissues were tissue-dependent, where the average concentration of heavy metals in all the tissues of Cyprinus carpio L. was in the order of Cr > Pb > Cu > Cd. In addition, the health risk assessment suggests that the heavy metals in the fish muscle from the Umiam Lake reservoir might have adverse effects on human. Therefore, the overall results of the study provide an understanding on the seasonal distribution of heavy metals in water, provide insight on their bioaccumulation in the fish tissues, and highlights the potential health risk for the local population of long-term fish consumption from Umiam Lake reservoir.
Collapse
Affiliation(s)
- Calvin Donkupar Warjri
- Department of Zoology, North Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Diwakar Kshetriya
- Department of Zoology, North Eastern Hill University, Shillong, Meghalaya, 793022, India
| | - Srimoyee Ghosh
- Department of Zoology, North Eastern Hill University, Shillong, Meghalaya, 793022, India.
| |
Collapse
|
7
|
Naccari C, Ferrantelli V, Cammilleri G, Ruga S, Castagna F, Bava R, Palma E. Trace Elements in Stenella coeruleoalba: Assessment of Marine Environmental Pollution and Dolphin Health Status. Animals (Basel) 2024; 14:1514. [PMID: 38891561 PMCID: PMC11171398 DOI: 10.3390/ani14111514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Heavy metals are environmental contaminants and can easily accumulate and biomagnify in various marine species (fishes and mammalians) at the top of the aquatic food chain. Among marine mammalians, the striped dolphin (Stenella coeruleoalba) is the most abundant cetacean in the Mediterranean Sea and is considered to be a sentinel species to monitor the environmental marine pollution. In this study, the contents of toxic metals and metalloids (Cd, Pb, Hg, and As), micro-elements (Ni, Cr, Cu, Fe, Co, Mn, Se and Zn) and macro-elements (Na, Ca, K, Mg and P) were evaluated by ICP-MS analysis in several organs/tissues (lung, skin, muscle and liver) of Stenella coeruleoalba. The assessment of marine environmental pollution and dolphins health status was carried out through further analysis of the same specific parameters such as the metal pollution index (MPI) and coefficient of condition (K). Finally, the correlation between toxic metals and metalloids and essential micro-elements, expressed as molar ratios, was analyzed to evaluate the detoxifying ability (effectiveness) of Zn, Se and Cu. Data obtained showed the presence of toxic metals and metalloids analyzed in the Stenella coeruleoalba samples but the MPI values suggested a low environmental contamination of the Mediterranean Sea where dolphins lived. The content of micro- and macro-elements was found to be in a normal range for this species and predictive of dolphins good health status, as confirmed by the coefficient of condition K. However, the correlation between toxic and essential metals, expressed as molar ratios, showed that the following toxic metals cannot be detoxified by the essential metals: 66Zn/201Hg, 82Se/201Hg, 63Cu/201Hg and 66Zn/52Cr, 82Se/52Cr, 63Cu/52Cr. Therefore, this study highlights the key role of dolphin Stenella coeruleoalba to assess marine pollution and the importance of analyzing the complete mineral profile to evaluate the animal health status.
Collapse
Affiliation(s)
- Clara Naccari
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (S.R.); (F.C.); (R.B.); (E.P.)
| | - Vincenzo Ferrantelli
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (V.F.); (G.C.)
| | - Gaetano Cammilleri
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy; (V.F.); (G.C.)
| | - Stefano Ruga
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (S.R.); (F.C.); (R.B.); (E.P.)
| | - Fabio Castagna
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (S.R.); (F.C.); (R.B.); (E.P.)
| | - Roberto Bava
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (S.R.); (F.C.); (R.B.); (E.P.)
| | - Ernesto Palma
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (S.R.); (F.C.); (R.B.); (E.P.)
- Interdepartmental Service Center—Center for Pharmacological Research, Food Safety, High Tech and Health (CIS-IRC–FSH) University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
8
|
Arisekar U, Shalini R, Iburahim SA, Deepika S, Reddy CPK, Anantharaja K, Albeshr MF, Ramkumar S, Kalidass B, Tamilarasan K, Kumar NN. Biomonitoring of mercury and selenium in commercially important shellfish: Distribution pattern, health benefit assessment and consumption advisories. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:122. [PMID: 38483653 DOI: 10.1007/s10653-024-01880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/21/2024] [Indexed: 03/19/2024]
Abstract
This study aims to explore the concentrations of Se and Hg in shellfish along the Gulf of Mannar (GoM) coast (Southeast India) and to estimate related risks and risk-based consumption limits for children, pregnant women, and adults. Se concentrations in shrimp, crab, and cephalopods ranged from 0.256 to 0.275 mg kg-1, 0.182 to 0.553 mg kg-1, and 0.176 to 0.255 mg kg-1, respectively, whereas Hg concentrations differed from 0.009 to 0.014 mg kg-1, 0.022 to 0.042 mg kg-1 and 0.011 to 0.024 mg kg-1, respectively. Se and Hg content in bamboo shark (C. griseum) was 0.242 mg kg-1 and 0.082 mg kg-1, respectively. The lowest and highest Se concentrations were found in C. indicus (0.176 mg kg-1) and C. natator (0.553 mg kg-1), while Hg was found high in C. griseum (0.082 mg kg-1) and low in P. vannamei (0.009 mg kg-1). Se shellfishes were found in the following order: crabs > shrimp > shark > cephalopods, while that of Hg were shark > crabs > cephalopods > shrimp. Se in shellfish was negatively correlated with trophic level (TL) and size (length and weight), whereas Hg was positively correlated with TL and size. Hg concentrations in shellfish were below the maximum residual limits (MRL) of 0.5 mg kg-1 for crustaceans and cephalopods set by FSSAI, 0.5 mg kg-1 for crustaceans and 1.0 mg kg-1 for cephalopods and sharks prescribed by the European Commission (EC/1881/2006). Se risk-benefit analysis, the AI (actual intake):RDI (recommended daily intake) ratio was > 100%, and the AI:UL (upper limit) ratio was < 100%, indicating that all shellfish have sufficient level of Se to meet daily requirements without exceeding the upper limit (UL). The target hazard quotient (THQ < 1) and hazard index (HI < 1) imply that the consumption of shellfish has no non-carcinogenic health impacts for all age groups. However, despite variations among the examined shellfish, it was consistently observed that they all exhibited a Se:Hg molar ratio > 1. This finding implies that the consumption of shellfish is generally safe in terms of Hg content. The health benefit indexes, Se-HBV and HBVse, consistently showed high positive values across all shellfish, further supporting the protective influence of Se against Hg toxicity and reinforcing the overall safety of shellfish consumption. Enhancing comprehension of food safety analysis, it is crucial to recognize that the elevated Se:Hg ratio in shellfish may be attributed to regular selenoprotein synthesis and the mitigation of Hg toxicity by substituting Se bound to Hg.
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute (FC&RI), Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India.
| | - Rajendran Shalini
- Department of Fish Quality Assurance and Management, Fisheries College and Research Institute (FC&RI), Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin, 628 008, Tamil Nadu, India.
| | | | - S Deepika
- Department of Aquatic Animal Health Management, Dr MGR Fisheries College and Research Institute, Thalainayeru, Nagapattinam, 614 712, India
| | | | - Kanagaraja Anantharaja
- Regional Research Centre of ICAR-Central Institute of Freshwater Aquaculture, Bengaluru, Karnataka, 560089, India
| | - Mohammed F Albeshr
- Department of Zoology, College of Sciences, King Saud University, P.O. Box. 2455, 11451, Riyadh, Saudi Arabia
| | - Sugumar Ramkumar
- ICAR-Central Marine Fisheries Research Institute, Mumbai, Maharashtra, 400061, India
| | | | - K Tamilarasan
- Livestock Production and Management Division, ICAR-Research Complex for NEH Region, Kolasib, Mizoram, 796 081, India
| | - N Nandha Kumar
- ICAR-Indian Institute of Soil and Water Conservation Research Centre, Vasad, Gujarat, 388 306, India
| |
Collapse
|
9
|
Arisekar U, Shalini R, Jeya Shakila R, Abuthagir Iburahim S, Anantharaja K, Bharathi Rathinam R, Sundhar S. Selenium and mercury concentration, Se/Hg molar ratio and risk-benefit assessment of marine fish consumption: Human health risks and protective role of Se against Hg toxicity. Food Res Int 2024; 180:114086. [PMID: 38395583 DOI: 10.1016/j.foodres.2024.114086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/14/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
This study aimed to explore the concentrations of Se and Hg in marine fish along the Gulf of Mannar (southeast coast of India) and to assess related risks and risk-based consumption limits for children, pregnant women, and adults. Se concentrations in pelagic and benthic fish ranged from 0.278 to 0.470 mg/kg and 0.203 to 0.294 mg/kg, respectively, whereas Hg concentrations ranged from 0.028 to 0.106 mg/kg and 0.026 to 0.097 mg/kg, respectively. Se and Hg contents in demersal fish (Nemipterus japonicus) were 0.282 and 0.039 mg/kg, respectively. The lowest and highest Hg concentrations in pelagic fish were found in Scomberomorus commersoni and Euthynnus affinis whereas the lowest and highest Se concentrations in benthic fish were found in Scarus ghobban and Siganus javus. Se concentrations in marine fishes were found in the following order: pelagic > demersal > benthic whereas Hg concentrations were found in the following order: pelagic > benthic > demersal. The presence of Se in fish was positively correlated with trophic level (TL) and size whereas that of Hg was weakly correlated with TL and habitat and negatively correlated with size. Se risk-benefit analysis, the AI/RDI (actual intake/recommended daily intake) ratio was > 100 % and the AI/UL (upper limit) ratio was < 100 %, indicating that all fish have sufficient levels of Se to meet daily requirements without exceeding the UL. Hg level was below the maximum residual limit (MRL) of 0.5 mg/kg for most fish but it was 1 mg/kg in E. affinis and Lethrinus lentjan. The target hazard quotient (THQ < 1) and hazard index (HI < 1) imply that the consumption of fish poses no noncarcinogenic health risks. However, all examined fish had a mean Se/Hg molar ratio > 1, indicating that human intake of fishwas rather safe relative to Hg content. Health benefit indexes (Se-HBV and HBVse) with high positive values in all fish supported the protective effect of Se against Hg toxicity, suggesting the overall safety of fish consumption. The high Se/Hg ratio in fish could be attributed to the replacement of Se bound to Hg, thereby suppressing Hg toxicity and maintaining normal selenoprotein synthesis. This insight is useful for a better understanding of food safety analysis.
Collapse
Affiliation(s)
- Ulaganathan Arisekar
- Fisheries College and Research Institute (FC&RI), Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India.
| | - Rajendran Shalini
- Fisheries College and Research Institute (FC&RI), Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India.
| | - Robinson Jeya Shakila
- Fisheries College and Research Institute (FC&RI), Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India
| | | | - Kanagaraja Anantharaja
- Regional Research Centre of ICAR - Central Institute of Freshwater Aquaculture, Bengaluru 560 089, Karnataka, India
| | - R Bharathi Rathinam
- ICAR-Central Institute of Fisheries Education, Mumbai 400 061, Maharashtra, India
| | - Shanmugam Sundhar
- Fisheries College and Research Institute (FC&RI), Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), Tuticorin 628 008, Tamil Nadu, India
| |
Collapse
|
10
|
Guabloche A, Alvariño L, Acioly TMDS, Viana DC, Iannacone J. Assessment of Essential and Potentially Toxic Elements in Water and Sediment and the Tissues of Sciaena deliciosa (Tschudi, 1846) from the Coast of Callao Bay, Peru. TOXICS 2024; 12:68. [PMID: 38251023 PMCID: PMC10819353 DOI: 10.3390/toxics12010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
The lorna drum Sciaena deliciosa is a coastal demersal species and one of the underlying artisanal fisheries in some areas of Peru, and is also a source of protein for Peruvian coastal dwellers. The investigation addresses concern about the environmental impact on this fish species and the potential risks to human health through the consumption of contaminated seafood. This research endeavors to assess the concentration of potentially toxic and essential elements in the muscle and liver tissues of S. deliciosa, in addition to the presence thereof in water and sediment capture areas on the coast of Callao, Peru. The study revealed that, in water samples, Ag, Ni, and Zn exceed Peruvian standards, but were below international standards, and Ba, P, Se, and Sn exceed international standards. In the sediments, As, Cd, Pb, Fe, and Zn were above international standards. In the fish, S. delicious muscle demonstrated As, Hg, and Pb exceeding at least one international standard. In the liver, As, Hg, Pb, and Cu exceed international standards. The study approach increased accuracy in risk assessments, offering crucial insights into the interplay between heavy metal pollution, water quality, and animal health, informing risk management strategies. Future studies can explore the long-term effects of heavy metal exposure on different organisms and consider their cumulative impact on health.
Collapse
Affiliation(s)
- Angélica Guabloche
- Laboratorio de Ecología y Biodiversidad Animal (LEBA), Grupo de Investigacion de Sostenibilidad Ambiental (GISA), Facultad de Ciencias Naturales y Matemática, Universidad Nacional Federico Villarreal, Lima 15007, Peru; (A.G.); (L.A.)
| | - Lorena Alvariño
- Laboratorio de Ecología y Biodiversidad Animal (LEBA), Grupo de Investigacion de Sostenibilidad Ambiental (GISA), Facultad de Ciencias Naturales y Matemática, Universidad Nacional Federico Villarreal, Lima 15007, Peru; (A.G.); (L.A.)
| | - Thiago Machado da Silva Acioly
- Postgraduate in Animal Science (PPGCA/UEMA), State University of Maranhão, São Luís 65081-400, Brazil; (T.M.d.S.A.); (D.C.V.)
| | - Diego Carvalho Viana
- Postgraduate in Animal Science (PPGCA/UEMA), State University of Maranhão, São Luís 65081-400, Brazil; (T.M.d.S.A.); (D.C.V.)
- State University of the Tocantina Region of Maranhão (UEMASUL), Imperatriz 65900-000, Brazil
| | - José Iannacone
- Laboratorio de Ecología y Biodiversidad Animal (LEBA), Grupo de Investigacion de Sostenibilidad Ambiental (GISA), Facultad de Ciencias Naturales y Matemática, Universidad Nacional Federico Villarreal, Lima 15007, Peru; (A.G.); (L.A.)
- Laboratorio de Ingeniería Ambiental, Coastal Ecosystems of Peru Research Group (COEPERU), Facultad de Ciencias Ambientales, Universidad Científica del Sur, Lima 150142, Peru
- Laboratorio de Zoología, Grupo de Investigación “One Health”, Facultad de Ciencias Biológicas, Universidad Ricardo Palma, Lima 150140, Peru
| |
Collapse
|
11
|
Pedram Jarf M, Kamali A, Khara H, Pourang N, Shekarabi SPH. Microplastic pollution and heavy metal risk assessment in Perca fluviatilis from Anzali wetland: Implications for environmental health and human consumption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167978. [PMID: 37866589 DOI: 10.1016/j.scitotenv.2023.167978] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
The worldwide increase of anthropogenic contaminants in aquatic ecosystems has raised concerns, particularly heavy metals and microplastics (MPs), posing potential health risks for aquatic organisms. Therefore, this study aimed to investigate the presence of heavy metals (Cu, Ni, Pb, Cd, Hg, Zn, Mn, As, V, Co, Cr, Fe, and Se) and MPs in the muscle, liver, and gills of Perca fluviatilis Linnaeus 1758 from Anzali Wetland during the autumn-winter 2021 and spring-summer 2022 periods. The mean concentration of metals in the muscle was lower than that in the liver and gills. The highest level of metal in the liver, gills, and muscle was related to Fe (4.049 ± 1.192, 3.605 ± 0.878, and 3.459 ± 0.895 μg/g, respectively), while the lowest concentration in the muscle was related to Co (0.011 ± 0.004 μg/g), and in the liver and gills was related to Se (0.013 ± 0.004 and 0.012 ± 0.003 μg/g, respectively) and As (0.013 ± 0.004 and 0.012 ± 0.004 μg/g, respectively). The concentration of metals in summer was higher than in other seasons. The Hazard Index (HI) and Target Hazard Quotient (THQ) values below 1 indicate that consuming this fish does not pose any risk to consumers in terms of metal contamination. Moreover, MPs were identified in the gills of all fish, while no MPs were found in the muscle and liver. The mean number of MPs in the gills was 3.5 ± 1.02 item/individual, and the number of MPs in spring (4.6 ± 0.84 item/individual) was higher than in autumn, winter and summer (4.2 ± 1.22, 3 ± 1.63, and 2.4 ± 0.51 item/individual, respectively). The MPs were dominated by fiber in shape, black in color, 300-1000 μm in size, and nylon in polymer. No significant correlation was found between metal concentrations and MPs, except for Co.
Collapse
Affiliation(s)
- Maryam Pedram Jarf
- Department of Fisheries, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Abolghasem Kamali
- Department of Fisheries, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Hossein Khara
- Department of Fisheries, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
| | - Nima Pourang
- Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Tehran, Iran.
| | | |
Collapse
|
12
|
Das Pinkey P, Nesha M, Bhattacharjee S, Chowdhury MAZ, Fardous Z, Bari L, Koley NJ. Toxicity risks associated with heavy metals to fish species in the Transboundary River - Linked Ramsar Conservation Site of Tanguar Haor, Bangladesh. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115736. [PMID: 38039850 DOI: 10.1016/j.ecoenv.2023.115736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
The presence of trace metals in aquatic ecosystems can have detrimental effects on fish survival. The Tanguar haor, a Ramsar conservation wetland, receives sediment and water from multiple transboundary rivers. However, there have been limited studies on the metal concentrations in fish species in this sediment-rich wetland. This study aimed to analyze the concentrations of iron (Fe), manganese (Mn), chromium (Cr), copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) in water, sediment, and fish tissues. Higher concentrations of Cd and Pb were found in the water and sediment. All these metals were detected in eight fish species, including benthic and pelagic species. Among them, Systomus sarana, a pelagic fish that also consumes benthic organisms, exhibited a higher metal pollution index than other fish, particularly benthic species. The release of higher metal concentrations from sediment into the water has the potential to impact the accumulation of metals in fish. SYNOPSIS: This study on metal concentrations in fish species will aid policymaking on ecotoxicology research for transboundary river-connected wetlands.
Collapse
Affiliation(s)
- Priyanka Das Pinkey
- Department of Environmental Science & Management, North South University, Dhaka, Bangladesh
| | - Meherun Nesha
- Agrochemical and Environmental Research Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Ganakbari, Savar, Bangladesh
| | - Shubhra Bhattacharjee
- Department of Civil Environmental and Construction Engineering, Texas Tech University, TX, USA.
| | - Muhammed Alamgir Zaman Chowdhury
- Agrochemical and Environmental Research Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Ganakbari, Savar, Bangladesh
| | - Zeenath Fardous
- Agrochemical and Environmental Research Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Ganakbari, Savar, Bangladesh
| | - Latiful Bari
- Food Nutrition and Agricultural Research Laboratory, Centre for Advanced Research in Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Nusrat Jahan Koley
- Department of Geography and Environment, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
13
|
Baranoschi ÉF, da Silva IC, Zuanazzi NR, Comelli CL, Zimmer DF, Oliveira EC, Delariva RL, Neves MP, Montanher PF, Ghisi NC. Metals in species of the Cambeva (Teleostei: Trichomycteridae) genus of the Iguaçu River basin (Brazil). ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:68. [PMID: 38117368 DOI: 10.1007/s10661-023-12195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
The population growth is connected to the demand for resources and waste disposal in water. Metals are among several pollutants affecting aquatic ecosystems, posing risks to biota when in high concentrations. Metals can present a great danger to the aquatic ecosystem because they are not degradable and can bioaccumulate. Many rivers are already considered highly polluted. Among them is the Iguaçu River, located in southern Brazil, which is recognized for the Iguaçu Falls and its rate of endemism. One species of the Cambeva genus is among the endemic species found in the Iguaçu River and is threatened with extinction due to anthropization. Thus, we aimed to evaluate and compare the concentrations of copper, zinc, iron, lead, manganese, and cadmium in Cambeva stawiarski and Cambeva sp. 1 in four different streams of the Iguaçu River (Brazil). We collected 20 fish in two municipalities along the Iguaçu River tributaries. The results showed a statistical difference in the metal concentrations in different species and locations, mainly manganese, iron, and copper, observed in both species and municipalities and cadmium, which showed a statistical difference only for C. sp1. Fish from agricultural regions generally had the highest concentrations of metals, some above the permitted limits. Cadmium was found at high concentrations, generating great ecological concern since it is one of the most toxic metals, even in small quantities. The lack of limits in Brazilian legislation makes it challenging to predict the long-term effects of iron.
Collapse
Affiliation(s)
- Édina Fernanda Baranoschi
- Coordenação de Ciências Biológicas, Universidade Tecnológica Federal Do Paraná (UTFPR) - Campus Dois Vizinhos (UTFPR), Estrada Para Boa Esperança, S/N, Km 04, P.O. Box 157, Dois Vizinhos, PR, CEP:85660-000, Brazil
| | - Indianara Carniel da Silva
- Mestre Em Agroecossistemas, Universidade Tecnológica Federal Do Paraná (UTFPR) - Campus Dois Vizinhos (UTFPR), Estrada Para Boa Esperança, S/N, Km 04, P.O. Box 157, Dois Vizinhos, PR, CEP:85660-000, Brazil
| | - Natana Raquel Zuanazzi
- Programa de Pós-Graduação Em Biologia Comparada, Universidade Estadual de Maringá (UEM), Avenida Colombo, 5790 - Zona 7, Maringá, PR, CEP:87020-900, Brazil
| | - Camila Luiza Comelli
- Programa de Pós-Graduação Em Biotecnologia, Universidade Tecnológica Federal Do Paraná (UTFPR) - Campus Dois Vizinhos (UTFPR), Estrada Para Boa Esperança, S/N, Km 04, P.O. Box 157, Dois Vizinhos, PR, CEP:85660-000, Brazil
| | - Douglas Fernando Zimmer
- Programa de Pós-Graduação Em Biotecnologia, Universidade Tecnológica Federal Do Paraná (UTFPR) - Campus Dois Vizinhos (UTFPR), Estrada Para Boa Esperança, S/N, Km 04, P.O. Box 157, Dois Vizinhos, PR, CEP:85660-000, Brazil
| | - Elton Celton Oliveira
- Doutor Em Ecologia, Universidade Tecnológica Federal Do Paraná (UTFPR) - Campus Dois Vizinhos (UTFPR), Estrada Para Boa Esperança, S/N, Km 04, P.O. Box 157, Dois Vizinhos, PR, CEP:85660-000, Brazil
| | - Rosilene Luciana Delariva
- Laboratório de Ictiologia, Ecologia E Biomonitoramento (LIEB), Universidade Estadual Do Oeste Do Paraná (Unioeste) - R. Universitária, 1619, Cascavel, PR, CEP85819-110, Brazil
| | | | - Paula Fernandes Montanher
- Programa de Pós-Graduação Em Biotecnologia, Universidade Tecnológica Federal Do Paraná (UTFPR) - Campus Dois Vizinhos (UTFPR), Estrada Para Boa Esperança, S/N, Km 04, P.O. Box 157, Dois Vizinhos, PR, CEP:85660-000, Brazil
| | - Nédia Castilhos Ghisi
- Laboratório de Análises Biológicas E Biologia Molecular (BioMol), Doutora Em Ciências, Universidade Tecnológica Federal Do Paraná (UTFPR) - Campus Dois Vizinhos (UTFPR), Estrada Para Boa Esperança, S/N, Km 04, Comunidade de São Cristóvão, P.O. Box 157, Dois Vizinhos, PR, CEP:85660-000, Brazil.
| |
Collapse
|
14
|
Ramos-Miras JJ, Sanchez-Muros MJ, Renteria P, de Carrasco CG, Roca-Perez L, Boluda-Navarro M, Pro J, Martín JAR. Potentially toxic element bioaccumulation in consumed indoor shrimp farming associated with diet, water and sediment levels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121794-121806. [PMID: 37962756 PMCID: PMC10724093 DOI: 10.1007/s11356-023-30939-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
Shrimp production is an important industry for many countries and shrimp consumption is increasing worldwide. Shrimps are a highly nutritional food, but can pose a risk for human health if subject to high levels of environmental contaminants. This work studies the presence of As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn in shrimps from Ecuador and compares them to such contents noted in other shrimp-production areas in the world to evaluate the possible risks associated with these elements for consumer health, and to relate them to potentially toxic element (PTE) contents in water, sediments and diets, and also to animal biometric parameters. The PTE levels (mg kg-1 DM) obtained are as follows: in the head-As (3.52-6.11), Cd (0.02-0.10), Co (0.14-0.49) Cr (0.23-4.89), Cu (99.9--233.0), Ni (0.52-1.86), Pb (0.24-1.09), Zn (51.8-100.5) and Hg (μg kg-1 DM) (10.00-66.81); in the tail-(0.91-3.21), Cd (0.01-0.02), Co (0.01-0.43) Cr (0.01-6.52), Cu (20.0-72.44), Ni (0.15-2.03), Pb (0.01-0.69), Zn (31.2-66.1) and Hg (μg kg-1 DM) (10.00-67.18). The concentration of all the PTEs is generally lower than the limits set for seafood by European regulations, except for As in the cephalothorax (4.63 mg kg-1). Different behaviours for PTE accumulation in shrimps were found, which preferentially tend to accumulate in the cephalothorax, except for Hg (40.13 μg kg-1 DM), which accumulates in muscle (body) and is associated with contents of proteins, lipids and total shrimp weight. Nonetheless, the target hazard quotient (THQ) values for PTEs indicate that the consumption of shrimp muscles from Ecuador does not pose a human health risk because the values of these indices are below 1 in all cases.
Collapse
Affiliation(s)
- José Joaquín Ramos-Miras
- Dpto. Didácticas Específicas, Universidad de Córdoba, Avda. San Alberto Magno s/n, 14071, Córdoba, Spain
| | - Maria Jose Sanchez-Muros
- Dept. Biology, and Geology, University of Almería, Ctra. de Sacramento s/n, La Cañada, 04120, Almería, Spain
| | - Patricio Renteria
- Faculty of Agricultural Sciences, Technical University of Machala, 070102, Machala, Ecuador
| | - Carlos Gil de Carrasco
- Dept. Biology, and Geology, University of Almería, Ctra. de Sacramento s/n, La Cañada, 04120, Almería, Spain
| | - Luis Roca-Perez
- Dept. Biologia Vegetal, Facultat de Farmàcia, Universitat de València, Av. Vicent Andrés I Estellés S/n, 46100, Burjassot, Valencia, Spain
| | | | - Javier Pro
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de la Coruña km. 7,5, 28040, Madrid, Spain
| | - Jose Antonio Rodríguez Martín
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de la Coruña km. 7,5, 28040, Madrid, Spain.
| |
Collapse
|
15
|
Eduardo Azevedo-Silva C, Carolina Pizzochero A, Galvão PMA, Ometto JPHB, de Camargo PB, Azeredo A, Coelho-Souza SA, Das K, Bastos WR, Malm O, Dorneles PR. Trophic dynamics of methylmercury and trace elements in a remote Amazonian Lake. ENVIRONMENTAL RESEARCH 2023; 237:116889. [PMID: 37595826 DOI: 10.1016/j.envres.2023.116889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
Information on pollutant trophodynamics can be crucial for public health, as contaminated food consumption may lead to deleterious effects. This study was performed in Puruzinho Lake, a remote body of water in the Brazilian Amazon from which a riparian human population obtains an important part of its animal protein intake. Samples from 92 individuals, comprising 13 species and four trophic guilds (iliophagous, planktivorous, omnivorous, and piscivorous fish) were analysed for the determination of trace elements (Fe, Cr, Mn, Ni, Zn, Ca, Sr, Cd, Sn, Tl and Pb) and methylmercury concentrations. Samples from the same individuals had already been analysed for stable isotope (SI) measurements (δ13C and δ15N) in a previous investigation and the SI data have been statistically treated with those generated in this study for the evaluation of trophic dynamics of contaminants. Methylmercury was the only analyte that biomagnified, presenting TMF values of 4.65 and 4.55 for total and resident ichthyofauna, respectively. Trace elements presented either trophic dilution or independence from the trophic position, constituting a behaviour that was coherent with that found in the scientific literature. The similarity between Ni behaviour through the trophic web to that of essential elements contributes to the discussion on the essentiality of this metal to fish. Considering the Non-cancer Risk Assessment, the calculated Target Hazard Quotient (THQ) values were higher than 1.0 for all analysed individuals for methylmercury, as well as for only one individual for nickel. No other analyte rendered THQ values higher than 1.0.
Collapse
Affiliation(s)
- Claudio Eduardo Azevedo-Silva
- Laboratório de Radioisótopos Eduardo Penna, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro. Av. Carlos Chagas Filho S/n, Bloco G, Sala 60, Subsolo. Cidade Universitária, Ilha Do Fundão, Rio de Janeiro, RJ, Brazil
| | - Ana Carolina Pizzochero
- Laboratório de Radioisótopos Eduardo Penna, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro. Av. Carlos Chagas Filho S/n, Bloco G, Sala 60, Subsolo. Cidade Universitária, Ilha Do Fundão, Rio de Janeiro, RJ, Brazil
| | - Petrus M A Galvão
- Laboratório de Radioisótopos Eduardo Penna, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro. Av. Carlos Chagas Filho S/n, Bloco G, Sala 60, Subsolo. Cidade Universitária, Ilha Do Fundão, Rio de Janeiro, RJ, Brazil
| | - Jean P H B Ometto
- Instituto Nacional de Pesquisas Espaciais, Centro de Ciências Do Sistema Terrestre. Avenida Dos Astronautas, 1758, Jardim da Granja, São José Dos Campos, SP, Brazil
| | - Plínio B de Camargo
- Laboratório de Ecologia Isotópica, Centro de Energia Nuclear Na Agricultura, Universidade de São Paulo, Avenida Centenário, 303, São Dimas, Piracicaba, SP, Brazil
| | - Antonio Azeredo
- Núcleo de Estudos de Saúde Coletiva, Universidade Federal Do Rio de Janeiro. Avenida Horácio Macedo, S/N. Ilha Do Fundão, Rio de Janeiro, RJ, Brazil
| | - Sergio A Coelho-Souza
- Centro de Biologia Marinha, Universidade de São Paulo, (USP), Rod. Manoel Hipólito Do Rego, Km 131.5, Praia Do Cabelo Gordo, 11612-109, São Sebastião, SP, Brazil
| | - Krishna Das
- Freshwater and Oceanic Sciences Unit of Research (FOCUS), Laboratory of Oceanology, University of Liege, Belgium
| | - Wanderley R Bastos
- Laboratório de Biogeoquímica Ambiental - Universidade Federal de Rondônia. Br 364 Km 9,5. Sentido Acre, Porto Velho, RO, Brazil
| | - Olaf Malm
- Laboratório de Radioisótopos Eduardo Penna, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro. Av. Carlos Chagas Filho S/n, Bloco G, Sala 60, Subsolo. Cidade Universitária, Ilha Do Fundão, Rio de Janeiro, RJ, Brazil
| | - Paulo R Dorneles
- Laboratório de Radioisótopos Eduardo Penna, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro. Av. Carlos Chagas Filho S/n, Bloco G, Sala 60, Subsolo. Cidade Universitária, Ilha Do Fundão, Rio de Janeiro, RJ, Brazil; Freshwater and Oceanic Sciences Unit of Research (FOCUS), Laboratory of Oceanology, University of Liege, Belgium.
| |
Collapse
|
16
|
Narwal N, Katyal D, Kataria N, Rose PK, Warkar SG, Pugazhendhi A, Ghotekar S, Khoo KS. Emerging micropollutants in aquatic ecosystems and nanotechnology-based removal alternatives: A review. CHEMOSPHERE 2023; 341:139945. [PMID: 37648158 DOI: 10.1016/j.chemosphere.2023.139945] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
There is a significant concern about the accessibility of uncontaminated and safe drinking water, a fundamental necessity for human beings. This concern is attributed to the toxic micropollutants from several emission sources, including industrial toxins, agricultural runoff, wastewater discharges, sewer overflows, landfills, algal blooms and microbiota. Emerging micropollutants (EMs) encompass a broad spectrum of compounds, including pharmaceutically active chemicals, personal care products, pesticides, industrial chemicals, steroid hormones, toxic nanomaterials, microplastics, heavy metals, and microorganisms. The pervasive and enduring nature of EMs has resulted in a detrimental impact on global urban water systems. Of late, these contaminants are receiving more attention due to their inherent potential to generate environmental toxicity and adverse health effects on humans and aquatic life. Although little progress has been made in discovering removal methodologies for EMs, a basic categorization procedure is required to identify and restrict the EMs to tackle the problem of these emerging contaminants. The present review paper provides a crude classification of EMs and their associated negative impact on aquatic life. Furthermore, it delves into various nanotechnology-based approaches as effective solutions to address the challenge of removing EMs from water, thereby ensuring potable drinking water. To conclude, this review paper addresses the challenges associated with the commercialization of nanomaterial, such as toxicity, high cost, inadequate government policies, and incompatibility with the present water purification system and recommends crucial directions for further research that should be pursued.
Collapse
Affiliation(s)
- Nishita Narwal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, 110078, New Delhi, India
| | - Deeksha Katyal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, 110078, New Delhi, India.
| | - Navish Kataria
- Department of Environmental Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India.
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, 125055, Haryana, India
| | - Sudhir Gopalrao Warkar
- Department of Applied Chemistry, Delhi Technological University, Shahbad Daulatpur Village, Rohini, 110042, New Delhi, India
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Suresh Ghotekar
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
| |
Collapse
|
17
|
Khan K, Zeb M, Younas M, Sharif HMA, Yaseen M, Al-Sehemi AG, Kavil YN, Shah NS, Cao X, Maryam A, Qasim M. Heavy metals in five commonly consumed fish species from River Swat, Pakistan, and their implications for human health using multiple risk assessment approaches. MARINE POLLUTION BULLETIN 2023; 195:115460. [PMID: 37660661 DOI: 10.1016/j.marpolbul.2023.115460] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
This study analyzed the levels of heavy metals bioaccumulation in commonly consumed riverine fish species, including G. cavia, T. macrolepis, G. gotyla, S. plagiostomus, and M. armatus from River Swat in Pakistan, and quantify their potential risk to children and adults in general and fisherfolk communities using multiple pollution and risk assessment approaches. The highest metal detected by inductive coupled plasma mass spectrometry (ICP-MS) was Zn, which ranged from 49.61 to 116.83 mg/kg, followed by Fe (19.25-101.33 mg/kg) > Mn (5.25-40.35 mg/kg) > Cr (3.05-14.59 mg/kg) > Ni (4.26-11.80 mg/kg) > Al (1.59-12.25 mg/kg) > Cu (1.24-8.59 mg/kg) > Pb (0.29-1.95 mg/kg) > Co (0.08-0.46 mg/kg) > Cd (0.01-0.29 mg/kg), demonstrating consistent fluctuation with the safe recommendations of global regulatory bodies. The average bioaccumulation factor (BAF) values in the examined fish species were high (BAF > 5000) for Pb, Zn, Mn, Cu, Cr, Ni, and Cd, bioaccumulate (1000 > BAF < 5000) for Co, and probable accumulative (BAF <1000) for Fe, and Al, while the overall ∑heavy metals pollution index (MPI) values were greater than one (MPI > 1) indicating sever heavy metals toxicity in G. cavia, followed by S. plagiostomus, M. armatus, G. gotyla, and T. macrolepis. The multivariate Pearson's correlation analysis identified the correlation coefficients between heavy metal pairs (NiCr, CuCr, PbCr, AlCo, CuNi, and PbNi), the hierarchical cluster analysis (CA) determined the origin by categorizing heavy metal accumulation into Cluster-A, Cluster-B, and Cluster-C, and the principal component analysis (PCA) discerned nearby weathering, mining, industrial, municipal, and agricultural activities as the potential sources of heavy metals bioaccumulation in riverine fish. As per human risk perspective, S.plagiostomus contributed significantly to the estimated daily intake (EDI) of heavy metals, followed by G.cavia > M.armatus > G.gotyla > T.macrolepis in dependent children and adults of the fisherfolk followed by the general population. The non-carcinogenic target hazard quotient (THQ) and hazard index (HI) values for heavy metal intake through fish exposure were < 1, while the carcinogenic risk (CR) for individual metal intake and the total carcinogenic risk (TCR) for cumulative Cr, Cd, and Pb intake were within the risk threshold of 10-6-10-4, suggesting an acceptable to high non-carcinogenic and carcinogenic risk for both children and adults in the fisherfolk, followed by the general population.
Collapse
Affiliation(s)
- Kifayatullah Khan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan.
| | - Maria Zeb
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan
| | - Muhammad Younas
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan
| | - Hafiz Muhammad Adeel Sharif
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Muhammad Yaseen
- Institute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia; Department of Chemistry, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Yasar N Kavil
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, P.O. Box 80207, Jeddah 21589, Saudi Arabia
| | - Noor Samad Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Xianghui Cao
- China Institute of Geo-Environment Monitoring, Beijing 100081, China
| | - Afsheen Maryam
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan; Department of Environmental Science-ACES-b (Institutionen för miljövetenskap), Stockholm University, Stockholm 106 91, Sweden
| | - Muhammad Qasim
- Department of Environmental and Conservation Sciences, University of Swat, Swat 19120, Pakistan
| |
Collapse
|
18
|
Piro AJ, Taipale SJ, Laiho HM, Eerola ES, Kahilainen KK. Fish muscle mercury concentration and bioaccumulation fluctuate year-round - Insights from cyprinid and percid fishes in a humic boreal lake. ENVIRONMENTAL RESEARCH 2023; 231:116187. [PMID: 37224941 DOI: 10.1016/j.envres.2023.116187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Boreal lakes demonstrate pronounced seasonality, where the warm open-water season and subsequent cold and ice-covered season dominate natural cycles. While fish muscle total mercury concentration (mg/kg) [THg] is well documented in open-water summer months, there is limited knowledge on the ice-covered winter and spring mercury dynamics in fish from various foraging and thermal guilds. This year-round study tested how seasonality influences [THg] and its bioaccumulation in three percids, perch (Perca fluviatilis), pikeperch (Sander lucioperca), ruffe (Gymnocephalus cernua), and three cyprinids, roach (Rutilus rutilus), bleak (Alburnus alburnus), and bream (Abramis brama) in deep boreal mesotrophic Lake Pääjärvi, southern Finland. Fish were sampled and [THg] was quantified in the dorsal muscle during four seasons in this humic lake. Bioaccumulation regression slopes (mean ± STD, 0.039 ± 0.030, range 0.013-0.114) between [THg] and fish length were steepest during and after spawning and shallowest during autumn and winter for all species. Fish [THg] was significantly higher in the winter-spring than summer-autumn in all percids, however, not in cyprinids. The lowest [THg] was observed in summer and autumn, likely due to recovery from spring spawning, somatic growth and lipid accumulation. Fish [THg] was best described by multiple regression models (R2adj: 52-76%) which included total length and varying combinations of seasonally changing environmental (water temperature, total carbon, total nitrogen, and oxygen saturation) and biotic factors (gonadosomatic index, and sex) in all species. The seasonal variation in [THg] and bioaccumulation slopes across multiple species suggests a need for standardized sampling seasons in long-term monitoring to avoid any seasonality bias. From the fisheries and fish consumption perspective in seasonally ice-covered lakes, monitoring of both winter-spring and summer-autumn would improve knowledge of [THg] variation in fish muscle.
Collapse
Affiliation(s)
- A J Piro
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, FI-16900, Lammi, Finland.
| | - S J Taipale
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35 (YA), FI-40014, Jyväskylä, Finland
| | - H M Laiho
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, FI-16900, Lammi, Finland
| | - E S Eerola
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, FI-16900, Lammi, Finland
| | - K K Kahilainen
- Lammi Biological Station, University of Helsinki, Pääjärventie 320, FI-16900, Lammi, Finland
| |
Collapse
|
19
|
Bartz KK, Hannam MP, Wilson TL, Lepak RF, Ogorek JM, Young DB, Eagles-Smith CA, Krabbenhoft DP. Understanding drivers of mercury in lake trout (Salvelinus namaycush), a top-predator fish in southwest Alaska's parklands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121678. [PMID: 37119998 PMCID: PMC10716799 DOI: 10.1016/j.envpol.2023.121678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/13/2023]
Abstract
Mercury (Hg) is a widespread element and persistent pollutant, harmful to fish, wildlife, and humans in its organic, methylated form. The risk of Hg contamination is driven by factors that regulate Hg loading, methylation, bioaccumulation, and biomagnification. In remote locations, with infrequent access and limited data, understanding the relative importance of these factors can pose a challenge. Here, we assessed Hg concentrations in an apex predator fish species, lake trout (Salvelinus namaycush), collected from 14 lakes spanning two National Parks in southwest Alaska, U.S.A. We then examined factors associated with the variation in fish Hg concentrations using a Bayesian hierarchical model. We found that total Hg concentrations in water were consistently low among lakes (0.11-0.50 ng L-1). Conversely, total Hg concentrations in lake trout spanned a thirty-fold range (101-3046 ng g-1 dry weight), with median values at 7 lakes exceeding Alaska's human consumption threshold. Model results showed that fish age and, to a lesser extent, body condition best explained variation in Hg concentration among fish within a lake, with Hg elevated in older, thinner lake trout. Other factors, including plankton methyl Hg content, fish species richness, volcano proximity, and glacier loss, best explained variation in lake trout Hg concentration among lakes. Collectively, these results provide evidence that multiple, hierarchically nested factors control fish Hg levels in these lakes.
Collapse
Affiliation(s)
- Krista K Bartz
- National Park Service, Southwest Alaska Inventory and Monitoring Network, 240 West 5th Avenue, Anchorage, AK, 99501, USA.
| | - Michael P Hannam
- National Park Service, Southwest Alaska Inventory and Monitoring Network, 240 West 5th Avenue, Anchorage, AK, 99501, USA
| | - Tammy L Wilson
- National Park Service, Southwest Alaska Inventory and Monitoring Network, 240 West 5th Avenue, Anchorage, AK, 99501, USA
| | - Ryan F Lepak
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, 53706, USA; U.S. Environmental Protection Agency Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN, 55804, USA
| | - Jacob M Ogorek
- U.S. Geological Survey, Upper Midwest Water Science Center, Mercury Research Laboratory, 1 Gifford Pinchot Dr, Madison, WI, 53726, USA
| | - Daniel B Young
- National Park Service, Lake Clark National Park and Preserve, 240 West 5th Avenue, Anchorage, AK, 99501, USA
| | - Collin A Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR, 97330, USA
| | - David P Krabbenhoft
- U.S. Geological Survey, Upper Midwest Water Science Center, Mercury Research Laboratory, 1 Gifford Pinchot Dr, Madison, WI, 53726, USA
| |
Collapse
|
20
|
Zhang L, Song Z, Zhou Y, Zhong S, Yu Y, Liu T, Gao X, Li L, Kong C, Wang X, He L, Gan J. The Accumulation of Toxic Elements (Pb, Hg, Cd, As, and Cu) in Red Swamp Crayfish ( Procambarus clarkii) in Qianjiang and the Associated Risks to Human Health. TOXICS 2023; 11:635. [PMID: 37505600 PMCID: PMC10384343 DOI: 10.3390/toxics11070635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Due to rapidly expanding crayfish consumption worldwide, the food safety of red swamp crayfish (Procambarus clarkii) is of great concern. China is the largest consumer and producer of crayfish globally. As of yet, it is unknown whether the main crayfish production cities in China are within safe levels of toxic heavy metals and metalloids. For 16 consecutive years, Qianjiang city ranked first in China in processing export volumes of red swamp crayfish. This study presents a comprehensive analysis of the enrichment levels and associated health risks of the species in Qianjiang. In our research, samples of four crayfish tissues, including the head, hepatopancreas, gills, and muscles, were collected from 38 sampling sites distributed in Qianjiang to evaluate the concentration levels of five heavy metals (Pb, Hg, Cd, As, and Cu). The concentration levels of all five metals in muscle did not surpass the national standard. Furthermore, eight significant correlations have been found. For further in-depth assess risk of crayfish in Qianjiang, estimated daily intake (EDI), target hazard quotient (THQ), carcinogenic risk (CR), and estimated maximum allowable consumption rates (CRmm) were evaluated in the abdomen muscle and hepatopancreas. The THQ values for each metal were found to be less than 1, while the CR values were below 10-6. Additionally, the CRmm for adults was determined to be 17.2 meals per month. These findings, based on the analysis of five metallic elements included in this study, suggest that the consumption of crayfish abdomen muscle in Qianjiang does not pose any significant health risks. However, it is noteworthy that certain regions exhibit elevated levels of arsenic in the hepatopancreas, surpassing the national standard, thereby rendering them unsuitable for excessive consumption. In general, the findings can be used to provide guidance for safe dietary practices in China.
Collapse
Affiliation(s)
- Lang Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ziwei Song
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Department of Genetics, Wuhan University, Wuhan 430071, China
| | - Yuntao Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Shan Zhong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Department of Genetics, Wuhan University, Wuhan 430071, China
| | - Yali Yu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ting Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xiaoping Gao
- Jiujiang Institute of Agricultural Sciences, Jiujiang 332005, China
| | - Lekang Li
- Jiujiang Institute of Agricultural Sciences, Jiujiang 332005, China
| | - Chiping Kong
- Jiujiang Institute of Agricultural Sciences, Jiujiang 332005, China
| | - Xinna Wang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Li He
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Wuhan 430223, China
| | - Jinhua Gan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Wuhan 430223, China
| |
Collapse
|
21
|
Senoro DB, Plasus MMG, Gorospe AFB, Nolos RC, Baaco AT, Lin C. Metals and Metalloid Concentrations in Fish, Its Spatial Distribution in PPC, Philippines and the Attributable Risks. TOXICS 2023; 11:621. [PMID: 37505586 PMCID: PMC10383155 DOI: 10.3390/toxics11070621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Fish is an important source of protein in human meals around the world. However, the fish that we are eating may be contaminated with toxicants such as metals and metalloids (MMs), which may pose health risks to consumers. Information on MMs content in fishes and their potential spatial distribution scenarios would provide knowledge to the community to create strategies and protect human health. Hence, this study assessed and determined the health risk levels of MMs in both brackish and marine water fish (BMF) in Puerto Princesa City (PPC), Palawan Province, Philippines. PPC has an existing abandoned open mine pit near the PPC coastline called the "pit lake". The concentrations of As, Ba, Cu, Fe, Mn, Hg, and Zn in fishes were analyzed using portable Olympus Vanta X-ray Fluorescence (pXRF), and the spatial distribution of MMs concentrations in BMF was analyzed using a GIS (geographic information system). Fishes were sampled from fishing boat landing sites and nearby seafood markets. The results revealed that the concentration of MMs in marine fish was generally higher than the brackish water fish. It was recorded that the Hg concentration in marine water fish meat was higher than in brackish water fish meat. The Mn concentration in marine water fish exceeded the permissible limits set by international bodies. An elevated concentration of Mn in BMF was detected across the northern part of PPC, and an elevated concentration of Hg in marine fishes was recorded in the southeast area, where the fish landing sites are located. Ba was also detected in BMF across the southern part of PPC. Moreover, an elevated concentration of Cu was detected in MBF in the northeast and in marine fish in the southeastern area of PPC. Further, this paper elaborates the non-carcinogenic and carcinogenic risks of these fishes to the PPC population and tourists with respect to the MMs content in fish meat.
Collapse
Affiliation(s)
- Delia B Senoro
- School of Civil, Environmental and Geological Engineering, Mapua University, Manila 1002, Philippines
- Resiliency and Sustainable Development Laboratory, Yuchengco Innovation Center, Mapua University, Manila 1002, Philippines
- Mapua-MSC Joint Research Laboratory, Marinduque State College, Boac 4900, Philippines
| | - Maria Mojena G Plasus
- College of Fisheries and Aquatic Sciences, Abba Building, Western Philippines University, San Juan 5300, Philippines
| | - Alejandro Felipe B Gorospe
- Resiliency and Sustainable Development Laboratory, Yuchengco Innovation Center, Mapua University, Manila 1002, Philippines
| | - Ronnel C Nolos
- Mapua-MSC Joint Research Laboratory, Marinduque State College, Boac 4900, Philippines
- College of Environmental Studies, Marinduque State College, Boac 4900, Philippines
| | - Allaine T Baaco
- College of Fisheries and Aquatic Sciences, Abba Building, Western Philippines University, San Juan 5300, Philippines
- College of Agriculture, Forestry and Environmental Sciences, Western Philippines University, San Juan 5302, Philippines
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| |
Collapse
|
22
|
Lau C, Le XC. Cadmium, chromium, copper, iron, lead, mercury, nickel, and zinc in freshwater fish: Assessing trophic transfer using stable isotope ratios of δ 15N and δ 13C. J Environ Sci (China) 2023; 128:250-257. [PMID: 36801038 DOI: 10.1016/j.jes.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Affiliation(s)
- Chester Lau
- Department of Chemistry, Faculty of Science, University of Alberta, Alberta T6G 2G2, Canada
| | - X Chris Le
- Department of Chemistry, Faculty of Science, University of Alberta, Alberta T6G 2G2, Canada; Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Alberta T6G 2G3, Canada.
| |
Collapse
|
23
|
Bakhshalizadeh S, Liyafoyi AR, Fazio F, Mora-Medina R, Ayala-Soldado N. Health risk assessment of heavy metal concentration in muscle of Chelon auratus and Chelon saliens from the southern Caspian Sea. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3377-3385. [PMID: 36322228 DOI: 10.1007/s10653-022-01401-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/13/2022] [Indexed: 06/01/2023]
Abstract
Heavy metals are one of the most serious pollutants in aquatic ecosystems, and their accumulation in fish products causes harmful effects on human health. In this context, we set out to determine the concentrations of heavy metals in the muscle of two fish species of commercial interest, Chelon auratus and Chelon saliens on the south coast of the Caspian Sea. We aimed to assess the degree of environment contamination in this area and to estimate the potential risk to human health derived from the consumption of fish. The mean concentrations of the different metals analysed were very varied in both species. In fact, some concentrations exceeded the permissible limits for the protection of human health for Cd and Pb, and some values of As were above those referenced by other authors in same species in the Caspian Sea. None of the estimated daily intake values exceeded the tolerable intake based on the consumption under consideration. Nonetheless, the accumulative hazard values evidenced a potential risk to human health, Pb and Hg being those giving a higher target hazard quotient. The cancer risk from exposure to As from fish consumption in children was above the "acceptable" risk to life. Thus, in view of the accumulative nature of heavy metals, a moderate and non-abusive fish consumption in this area, particularly in children, would be recommendable.
Collapse
Affiliation(s)
- Shima Bakhshalizadeh
- Department of Marine Science, Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| | | | - Francesco Fazio
- Department of Veterinary Science, Polo Universitario Dell'Annunziata, University of Messina, Messina, Italy
| | - Rafael Mora-Medina
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Nahúm Ayala-Soldado
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain.
| |
Collapse
|
24
|
Yánez-Jácome GS, Romero-Estévez D, Vélez-Terreros PY, Navarrete H. Total mercury and fatty acids content in selected fish marketed in Quito - Ecuador. A benefit-risk assessment. Toxicol Rep 2023; 10:647-658. [PMID: 37250532 PMCID: PMC10220416 DOI: 10.1016/j.toxrep.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Total mercury and fatty acids contents were determined in muscles of croaker, snapper, dolphinfish, blue marlin, and shark, from different markets in the Metropolitan District of Quito, Ecuador. Fifty-five samples were collected and analyzed for total mercury using cold vapor atomic fluorescence spectrometry, and the fatty acids were analyzed using gas chromatography equipped with a flame ionization detector. The lowest total mercury levels were found in snapper [0.041 µg·g-1 wet weight (ww)] while blue marlin showed the highest (5.883 µg·g-1 ww). EPA + DHA ranged from 1.0 mg·g-1 in snapper to 2.4 mg·g-1 in shark. A high omega-3/omega-6 ratio was found for all fish types; however, the HQEFA for the benefit-risk ratio was above 1, suggesting an evident risk to human health. Based on our results, consumption of croaker and dolphinfish is recommended up to one serving per week, considering the importance of EFAs intake and avoiding fish with elevated MeHg content. Therefore, Ecuadorian authorities could enhance public standards for seafood safety and develop consumer advice for pregnant women and young children to determine good fish choices or those to avoid.
Collapse
Affiliation(s)
- Gabriela S. Yánez-Jácome
- Centro de Estudios Aplicados en Química, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | - David Romero-Estévez
- Centro de Estudios Aplicados en Química, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | - Pamela Y. Vélez-Terreros
- Centro de Estudios Aplicados en Química, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | - Hugo Navarrete
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| |
Collapse
|
25
|
Yu YB, Choi JH, Choi CY, Kang JC, Kim JH. Toxic effects of microplastic (polyethylene) exposure: Bioaccumulation, hematological parameters and antioxidant responses in crucian carp, Carassius carassius. CHEMOSPHERE 2023; 332:138801. [PMID: 37121290 DOI: 10.1016/j.chemosphere.2023.138801] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
The purpose of this study was to evaluate the toxic effects of polyethylene microplastics (PE-MPs) by measuring the bioaccumulation, hematological parameters, and antioxidant responses in crucian carp (Carassius Carassius) exposed to waterborne 22-71 μm PE-MPs. C. carassius (mean weight, 24.0 ± 2.1 g; mean length, 13.1 ± 1.2 cm) were exposed to PE-MPs at concentration of 0, 4, 8, 16, 32, and 64 mg/L for 2 weeks. The accumulation of PE-MPs in each tissue of C. carassius was significantly increased in proportion to the PE-MPs concentration; the highest accumulation was observed in the intestine, followed by the gills and liver. Hematological parameters, plasma components and antioxidants responses were significantly affected by PE-MPs in a concentration-dependent manner. Exposure to ≥32 mg/L PE-MPs induced a significant decrease in red blood cells (RBCs), hemoglobin (Hb) content, and hematocrit values. However, exposure to ≥32 mg/L PE-MPs induced oxidative stress in the liver, gill, and intestine of C. carassius, thereby resulting in a significant increase in the levels of superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) and a decrease in glutathione (GSH) levels. The effects of interaction between the PE-MPs and exposure periods showed no significant changes in bioaccumulation, hematological parameters, plasma components and antioxidant responses. These finding indicate that the exposure to ≥32 mg/L PE-MPs could cause a significant accumulation in specific tissues of C. carassius, resulting in changes in hematological parameters, plasma components, and antioxidant responses. However, the interaction between PE-MPs and exposure periods had no significant effects, thereby suggesting the lack of toxicological interactions between PE-MPs and exposure periods in C. carassius.
Collapse
Affiliation(s)
- Young-Bin Yu
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| | - Jae-Ho Choi
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea
| | - Cheol Young Choi
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, 49112, South Korea.
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan, South Korea.
| | - Jun-Hwan Kim
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan-si, South Korea.
| |
Collapse
|
26
|
Li D, Pan B, Han X, Lu Y, Wang X. Toxicity risks associated with trace metals call for conservation of threatened fish species in heavily sediment-laden Yellow River. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130928. [PMID: 36746087 DOI: 10.1016/j.jhazmat.2023.130928] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Trace metals and metalloids in aquatic ecosystems may lead to adverse effects on the survival of fish, especially in the sensitive life stages of vulnerable species. It is still unknown whether threatened fish species in the heavily sediment-laden Yellow River are exposed to toxicity risks associated with multiple trace metals. Herein, we analyzed the concentrations of trace metals in aquatic environmental media and fish tissues across the Yellow River mainstream and assessed the level of metal toxicity to threatened fish. Significantly different concentrations of trace metals in fish tissues were measured between at least two categories among near-threatened, vulnerable, endangered, and critically endangered fish. No metal showed a higher concentration in demersal fish than in pelagic fish. Substantially low metal toxicity was observed for the gill of Rhinogobio nasutus (near-threatened) in the upper reaches, as well as for the gill and liver of Silurus lanzhouensis (endangered) in the middle reaches. High contents of suspended sediment in water and high metal concentrations in sediment and suspended matter could influence the survival and reproduction of fish, especially those already with threatened status.
Collapse
Affiliation(s)
- Dianbao Li
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, China.
| | - Xu Han
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| | - Yue Lu
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| | - Xinyuan Wang
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| |
Collapse
|
27
|
Topić Popović N, Čižmek L, Babić S, Strunjak-Perović I, Čož-Rakovac R. Fish liver damage related to the wastewater treatment plant effluents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48739-48768. [PMID: 36869954 PMCID: PMC9985104 DOI: 10.1007/s11356-023-26187-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/24/2023] [Indexed: 04/16/2023]
Abstract
Wastewater treatment plants (WWTPs) continuously release a complex mixture of municipal, hospital, industrial, and runoff chemicals into the aquatic environment. These contaminants are both legacy contaminants and emerging-concern contaminants, affecting all tissues in a fish body, particularly the liver. The fish liver is the principal detoxifying organ and effects of consistent pollutant exposure can be evident on its cellular and tissue level. The objective of this paper is thus to provide an in-depth analysis of the WWTP contaminants' impact on the fish liver structure, physiology, and metabolism. The paper also gives an overview of the fish liver biotransformation enzymes, antioxidant enzymes, and non-enzymatic antioxidants, their role in metabolizing xenobiotic compounds and coping with oxidative damage. Emphasis has been placed on highlighting the vulnerability of fish to xenobiotic compounds, and on biomonitoring of exposed fish, generally involving observation of biomarkers in caged or native fish. Furthermore, the paper systematically assesses the most common contaminants with the potential to affect fish liver tissue.
Collapse
Affiliation(s)
- Natalija Topić Popović
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia.
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia.
| | - Lara Čižmek
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Sanja Babić
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivančica Strunjak-Perović
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
28
|
Gu YG, Wang XN, Wang ZH, Huang HH, Gong XY. Metal Biological Enrichment Capacities, Distribution Patterns, and Health Risk Implications in Sea Bass (Lateolabrax japonicus). Biol Trace Elem Res 2023; 201:1478-1487. [PMID: 35488025 DOI: 10.1007/s12011-022-03255-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Seabass (Lateolabrax japonicus) is a major aquacultured fish species worldwide. The bioconcentration, bioaccumulation, and biomagnification of metals in water, sediments, and commercial feed were investigated in L. japonicus from an aquaculture pond in the Pearl River Delta of South China. Aluminum (Al), chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), and lead (Pb) were determined in the dorsal muscle, viscera, backbone, gill, and stomach contents of L. japonicus. The gill and stomach contents had higher levels of bioconcentration of most metals than other parts of fish. Based on the bioaccumulation factor, the gill and backbone exhibited the highest accumulation of Zn, while the viscera had the highest capacity to accumulate Cu. The mean biomagnification factor values exceeded for As in dorsal muscle, for Cu in the viscera, for Cr and Pb in the gill, and for Al, Cr, Fe, Cu, and Pb in the stomach contents, indicating efficient bioaccumulation from commercial feed and their habitat. Non-metric multidimensional scaling analysis revealed two groups that resulted from the accumulation of metals in various parts of L. japonicus. Moreover, health risk assessment indicated that no notable adverse health effects occurred from the ingestion of L. japonicus.
Collapse
Affiliation(s)
- Yang-Guang Gu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China.
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, 510300, China.
- Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China.
| | - Xu-Nuo Wang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, No. 213, Huadu Avenue East, Guangzhou, 510800, China
| | - Zeng-Huan Wang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, No. 213, Huadu Avenue East, Guangzhou, 510800, China
| | - Hong-Hui Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, 510300, China
- Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China
| | - Xiu-Yu Gong
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, 510300, China
- Key Laboratory of Open-Sea Fishery Development, Ministry of Agriculture and Rural Affairs, Guangzhou, 510300, China
| |
Collapse
|
29
|
Hamidian AH, Sheikhzadeh H, Boujari A, Eagderi S, Ashrafi S. Comparative assessment of human health risk associated with heavy metals bioaccumulation in fish species (Barbus grypus and Tenualosa ilisha) from the Karoon River, Iran: Elucidating the role of habitat and feeding habits. MARINE POLLUTION BULLETIN 2023; 188:114623. [PMID: 36689875 DOI: 10.1016/j.marpolbul.2023.114623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Concentrations of Cd, Ni, and Pb were measured in the liver and muscle tissues of benthic omnivorous (Barbus grypus) and pelagic herbivorous (Tenualosa ilisha) fish collected from two sampling sites along the Karoon River, Khuzestan Province, southwest of Iran. Potential human health risks were evaluated by measuring the estimated daily intake (EDI), target hazard quotient (THQ), hazard index (HI), and target cancer risk (TR). The results highlight the important role of habitat and feeding habits in the uptake of HMs by the two species. The EDI for all HMs exceeded the oral reference doses (RfDo) provided by the USEPA, indicating the two fish species are not entirely safe for human consumption. The THQ values were within the permissible limit (< 1), while HI values (> 1) showed there was non-carcinogenic risk for consumers. The TR values for Pb were within the acceptable range (1.00E-06-1.00E-04) for both species.
Collapse
Affiliation(s)
- Amir Hossein Hamidian
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, P.O. Box: 4314, Karaj 31587-77878, Iran.
| | - Hassan Sheikhzadeh
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, P.O. Box: 4314, Karaj 31587-77878, Iran
| | - Azadeh Boujari
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, P.O. Box: 4314, Karaj 31587-77878, Iran
| | - Soheil Eagderi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, P.O. Box: 4314, Karaj 31587-77878, Iran
| | - Sohrab Ashrafi
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, P.O. Box: 4314, Karaj 31587-77878, Iran
| |
Collapse
|
30
|
Cai S, Zhou S, Yan X, Xiao Y, Cheng J, Wang Q, Zeng B. Comparative study on metal concentrations in water, sediments, and two fish species (Cyprinus carpio and Pelteobagrus fulvidraco) from the Wujiang River, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44845-44860. [PMID: 36701068 DOI: 10.1007/s11356-023-25533-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
In order to assess the metal pollution in the Wujiang River, concentrations of Cu, Zn, Fe, Mn, Pb, Cd, As, and Hg in the water, sediments, and two fish species Cyprinus carpio and Pelteobagrus fulvidraco from the middle reaches (Tuomugang, TMG) and lower reaches (Wulong, WL) of the Wujiang River were examined. The results indicated that all metal concentrations were lower than the values for grade one water quality according to the Environment Quality Standard for Surface Water of China (GB 3838-2002). The bioavailable fraction concentrations of Zn, Fe, Mn, Pb, and Hg in WL were significantly higher than those in TMG (p < 0.05), indicating that these metals in sediments of WL have higher bioavailability and mobility. The Cu, Zn, Fe, Pb, As, and Hg were mainly related to the residual fraction, while the Mn and Cd were mainly associated with the non-residual fraction. The risk assessment code (RAC) and the secondary phase to the primary phase (RSP) values indicated that Mn and Cd have a high risk of secondary release. The mean metal concentrations in the liver of the two fish species were higher than those in muscle. The higher metal concentrations of fish in WL suggested that bioaccumulation of metals in fish could be influenced by metal bioavailability. No identical relationships between metal concentrations and fish length were manifested in the present study. The values of target hazard quotient (THQ) and hazard index (HI), and carcinogenic risk (CR) of metals for the consumption of C. carpio and P. fulvidraco indicated that the anglers would likely not experience significant non-carcinogenic risk, but the carcinogenic risk of As cannot be ignored. Thanks to prohibited commercial fishing in the Wujiang River, the metal pollution will probably not pose a health risk to the general public for wild fish consumption.
Collapse
Affiliation(s)
- Shenwen Cai
- College of Resources and Environment, Zunyi Normal University, Zunyi, China.
| | - Shaoqi Zhou
- College of Resources and Environment Engineering, Guizhou University, Guiyang, China
| | - Xiong Yan
- College of Resources and Environment, Zunyi Normal University, Zunyi, China
| | - Ye Xiao
- College of Resources and Environment, Zunyi Normal University, Zunyi, China
| | - Junwei Cheng
- College of Resources and Environment, Zunyi Normal University, Zunyi, China
| | - Qinghe Wang
- College of Resources and Environment, Zunyi Normal University, Zunyi, China
| | - Boping Zeng
- College of Biology and Agriculture, Zunyi Normal University, Zunyi, China
| |
Collapse
|
31
|
Martínez-Durazo Á, Rivera-Domínguez M, García-Gasca SA, Betancourt-Lozano M, Cruz-Acevedo E, Jara-Marini ME. Assessing metal(loid)s concentrations and biomarkers in tilapia (Oreochromis niloticus) and largemouth bass (Micropterus salmoides) of three ecosystems of the Yaqui River Basin, Mexico. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:166-187. [PMID: 36689067 DOI: 10.1007/s10646-023-02620-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Aquatic ecosystems have been suffering deleterious effects due to the development of different economic activities. Metal(loid)s are one of the most persistent chemicals in environmental reservoirs, and may produce adverse effects on different organisms. Since fishes have been largely used in studies of metal(loid)s exposure, tilapia and largemouth bass were collected in three ecosystems from the Yaqui River Basin to measure the concentrations of metal(loid)s (chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), zinc (Zn) arsenic (As), mercury (Hg), and selenium (Se)) and some biomarkers (somatic indices, metallothionein expression and histopathological analysis) in tissues of both species. Metal(loid) concentrations varied seasonally among ecosystems in tissues of both species. The elements varied seasonally and spatially in tissues of both species, with a general distribution of liver > gills > gonads. Also, biomarkers showed variations indicative that the fish species were exposed to different environmental stressor conditions. The highest values of some biomarkers were in largemouth bass, possibly due to differences in their biological characteristics, mainly feeding habits. The multivariate analysis showed positive associations between metal(loid)s and biomarkers, which are usually associated to the use of these elements in metabolic and/or regulatory physiological processes. Both fish species presented histological damage at different levels, from SI types (changes that are reversible for organ structure) to SII types (changes that are more severe but may be repairable). Taken together, the results from this study suggest that the Yaqui River Basin is moderately impacted by metals and metalloids.
Collapse
Affiliation(s)
- Ángel Martínez-Durazo
- Posgrado en Ciencias, Centro de Investigación en Alimentación y Desarrollo, Unidad Hermosillo, Carretera Gustavo Astiazarán Rosas 46, Colonia La Victoria, Hermosillo, 83304, Sonora, Mexico
| | - Marisela Rivera-Domínguez
- Centro de Investigación en Alimentación y Desarrollo, Unidad Hermosillo, Carretera Gustavo Astiazarán Rosas 46, Colonia La Victoria, Hermosillo, 83304, Sonora, Mexico
| | - Silvia Alejandra García-Gasca
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán, Sábalo Cerritos s/n, Mazatlán, 82112, Sinaloa, Mexico
| | - Miguel Betancourt-Lozano
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán, Sábalo Cerritos s/n, Mazatlán, 82112, Sinaloa, Mexico
| | - Edgar Cruz-Acevedo
- Laboratorio de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Centro de Investigación Para el Desarrollo Integral y Sostenible, Universidad Peruana Cayetano Heredia, 15102, Lima, Peru
- Departamento de Ecología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Monterrey, NL, Mexico
| | - Martin Enrique Jara-Marini
- Centro de Investigación en Alimentación y Desarrollo, Unidad Hermosillo, Carretera Gustavo Astiazarán Rosas 46, Colonia La Victoria, Hermosillo, 83304, Sonora, Mexico.
| |
Collapse
|
32
|
Bandara S, Pathiratne A. Concentrations of trace metals in Siganus javus captured in Negombo estuary, Sri Lanka: Human health risk assessment through dietary exposure. MARINE POLLUTION BULLETIN 2023; 188:114639. [PMID: 36708614 DOI: 10.1016/j.marpolbul.2023.114639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/25/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Concentrations of aluminium, cadmium, chromium, lead, nickel and zinc in muscle and liver of a marine fish in Indo-Pacific region, Siganus javus captured in Negombo estuary were evaluated and potential human health risks associated with dietary exposure were assessed. Of the six metals analyzed, zinc was the most abundant metal in both tissues. No significant differences were found between muscle and liver with respect to cadmium and lead concentrations whereas concentrations of other metals were higher in liver compared to muscle. In human health perspective, estimated target hazard quotients for cadmium and lead were greater than the threshold of one indicating potential non-cancer health risks to heavy consumers. Estimated excess cancer risk of cadmium indicate carcinogenic health risks associated with their consumption even at moderate meal frequencies. The results revealed that consumption of S. javus from the estuary needs to be limited concerning non-cancer and cancer risks to human health.
Collapse
Affiliation(s)
- Sewwandi Bandara
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Kelaniya, GQ 11600, Sri Lanka
| | - Asoka Pathiratne
- Department of Zoology and Environmental Management, Faculty of Science, University of Kelaniya, Kelaniya, GQ 11600, Sri Lanka.
| |
Collapse
|
33
|
Barani HK, Alavi-Yeganeh MS, Bakhtiari AR. Metals bioaccumulation, possible sources and consumption risk assessment in five Sillaginid species, a case study: Bandar Abbas (Persian Gulf) and Chabahar Bay (Oman Sea), Iran. MARINE POLLUTION BULLETIN 2023; 187:114551. [PMID: 36628917 DOI: 10.1016/j.marpolbul.2022.114551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
In this study, the concentrations of 10 metals (As, Al, Cd, Cr, Cu, Fe, Hg, Ni, Pb and Zn) in different tissues (gill, muscle and otolith) of five sillaginid species (Sillago arabica, S. attenuata and S. sihama from the Persian Gulf and S. indica, S. sihama and Sillaginopodys chondropus from the Oman Sea) were analyzed using ICP-MS, and the potential human health risk assessment for local consumers was also conducted using standard indices. The concentration of trace metals (μg g-1 dw) in fish ranged from 0.24 to 16.09 (As), 7.88 to 167.51 (Al), 0.005 > -0.866 (Cd), 0.006 > -7.95 (Cr), 1.02-5.58 (Cu), 24.86 to 390.85 (Fe), 0.005 > -1.93 (Hg), 0.021 > -7.80 (Ni), 0.33-4.41 (Pb) and 4.78-170.43 (Zn). The levels of trace metals varied significantly among sampling sites, fish species and their tissues. Gill tissues accumulate higher concentrations of the analyzed elements, except for As and Hg, whose higher concentrations were found in muscle tissues. Among the species, S. sihama in the Persian Gulf showed the highest levels of toxic metals compared to the other species. The dendrogram of metal association in fish muscle tissues revealed that Ni, Cr, Cd, Pb and Hg in muscles mainly originated from anthropogenic sources, especially petroleum activities. A second dendrogram based on the association of these five metals in the muscle tissue separated the sillaginid species of the Persian Gulf from the Oman Sea. The mean concentrations of the analyzed metals in the edible tissues were lower than international standards of maximum permissible limits (MPL), except for inorganic As (iAs) and Pb. The index of estimated daily intake (EDI) for Cr and Hg in all sillaginid species, and iAs, Pb and Ni only in the Persian Gulf's sillaginid species was higher than the recommended values. The value of the target hazard quotient (THQ) indicated that the intake of individual heavy metals due to the consumption of sillaginid species was safe for human health (except Hg in S. arabica) whereas combined heavy metals' intake revealed potential health problems in the case of increased consumption for all three sillaginids in the Persian Gulf. Target cancer risk (TR) for iAs in all species and Cd, Cr and Ni in Persian Gulf species was higher than the acceptable range. The results indicated the health issues associated with high consumption, especially for sillaginids in the Persian Gulf, which should be considered in food safety monitoring for local people in the area.
Collapse
Affiliation(s)
- Hashem Khandan Barani
- Department of Marine Biology, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Nur, Mazandaran, Iran
| | - Mohammad Sadegh Alavi-Yeganeh
- Department of Marine Biology, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Nur, Mazandaran, Iran.
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Science, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Nur, Mazandaran, Iran
| |
Collapse
|
34
|
Kljaković-Gašpić Z, Sekovanić A, Orct T, Šebešćen D, Klasiček E, Zanella D. Potentially Toxic Elements in Water, Sediments and Fish from the Karstic River (Raša River, Croatia) Located in the Former Coal-Mining Area. TOXICS 2022; 11:42. [PMID: 36668768 PMCID: PMC9865867 DOI: 10.3390/toxics11010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The assessment of the environmental quality of a sensitive karst aquatic system under the centuries-long anthropogenic influence of the coal mining industry is important for both improving the quality of water resources and protecting aquatic wildlife and human health. In this study, we investigated the anthropogenic impact on the aquatic environment of the upper and middle course of the Raša River through the analysis of a suite of metal(loid)s in three aquatic compartments (water, sediment, fish) using inductively coupled plasma mass spectrometry (ICP-MS). Concentrations of inorganic constituents in water were low, while the chemical composition of stream sediments mainly reflected the geological background of the area, indicating the origin of metal(loid)s from predominantly natural sources. Although comparison with PEC-Q values indicated that existing sediment quality conditions could pose a threat to benthic organisms with regard to Cr and Ni, the constant vertical profiles of these elements suggested their natural origin from the weathering of flysch. Element levels in the muscle of targeted fish species were in accordance with the values typical for low-contaminated freshwater systems, while levels of Cd, Pb and Hg were mostly below the European regulatory limits for toxic elements in foods, indicating that the low concentrations of most contaminants in muscles of fish from the Raša River do not present a risk to humans or other consumers. The obtained data indicated a generally low contamination status of the western part of the Raša River basin with regard to the analyzed inorganic elements.
Collapse
Affiliation(s)
- Zorana Kljaković-Gašpić
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia
| | - Ankica Sekovanić
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia
| | - Tatjana Orct
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia
| | - Dora Šebešćen
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Elena Klasiček
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, 10000 Zagreb, Croatia
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Davor Zanella
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| |
Collapse
|
35
|
Liu H, Qian K, Zhang S, Yu Q, Du Y, Fu S. Lead exposure induces structural damage, digestive stress, immune response and microbiota dysbiosis in the intestine of silver carp (Hypophthalmichthys molitrix). Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109464. [PMID: 36108998 DOI: 10.1016/j.cbpc.2022.109464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/28/2022] [Accepted: 09/08/2022] [Indexed: 11/03/2022]
Abstract
Lead (Pb) is one of the most common trace metals in water, and its high concentration in the environment can cause harm to aquatic animals and humans. In the present study, the effects of Pb exposure (3.84 mg/kg) on the morphology, digestive enzyme activity, immune function and microbiota structure of silver carp (Hypophthalmichthys molitrix) intestines within 96 h were detected. Moreover, the correlation between them was analyzed. The results showed that Pb exposure on the one hand severely impaired the intestinal morphology, including significantly shortening the intestinal villi's length, increasing the goblet cells' number, causing the intestinal leukocyte infiltration, and thickening the intestinal wall abnormally, on the other hand, increasing the activity of intestinal digestive enzyme (trypsin and lipase). In addition, the mRNA expressions of structure-related genes (Claudin-7 and villin-1) were down-regulated, and the immune factors genes (IL-8, IL-10 and TNF-α) were up-regulated after Pb exposure. Furthermore, data of the MiSeq sequencing showed that the abundance of membrane transport, immune system function and digestive system of silver carp intestinal microbiota all decreased, while cellular antigens increased. Finally, the canonical correlation analysis (CCA) showed that there were correlations between silver carp's intestinal microbiota and intestinal morphology and immune factors. In conclusion, it is speculated that the entry of Pb into the intestine leads the microbiota dysbiosis, affects the intestinal immunity and digestive function, and further damages the intestinal barrier of silver carp.
Collapse
Affiliation(s)
- Haisu Liu
- Guangdong Provincial Key Laboratory for Healthy and Saft Aquaculture, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Research Center for Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, PR China
| | - Kun Qian
- Guangdong Provincial Key Laboratory for Healthy and Saft Aquaculture, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Sanshan Zhang
- Guangdong Provincial Key Laboratory for Healthy and Saft Aquaculture, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Qianxun Yu
- Hubei Institute of Product Quality Supervision and Inspection, Wuhan 430061, PR China
| | - Yudong Du
- Guangdong Provincial Key Laboratory for Healthy and Saft Aquaculture, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Shengli Fu
- Guangdong Provincial Key Laboratory for Healthy and Saft Aquaculture, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
36
|
Habib SS, Batool AI, Rehman MFU, Naz S. Assessment and Bioaccumulation of Heavy Metals in Fish Feeds, Water, and Some Tissues of Cyprinus carpio Cultured in Different Environments (Biofloc Technology and Earthen Pond System). Biol Trace Elem Res 2022; 201:3474-3486. [PMID: 36201118 DOI: 10.1007/s12011-022-03415-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022]
Abstract
Fish feed quality is the main determinant of fish flesh quality, so it is important for successful aquaculture. The current study determines the concentration of heavy metals in fish feeds (A and B), water, and their bioaccumulation in gills, liver, and muscle of C. carpio cultured in different environments (biofloc technology and earthen pond systems). In addition, the correlation between heavy metals in fish feeds with bioaccumulated metals in fish tissues was also determined. Results revealed that most heavy metal concentration was significantly greater (P < 0.05) in feed B than in feed A but in permissible range, while all the heavy metal concentration was notably higher in earthen ponds than in biofloc technology. Result from the bioaccumulation factor and concentration of the metals showed that heavy metals were highly accumulated in the fish liver followed by gills. The metal concentration in fish feeds and fish edible parts (muscle) was lower than the WHO standard level; however, the amount of Pb was higher in the fish muscle, liver, and gills, which is harmful for human consumption and also for fish health. Though the correlation test revealed that all of the metals from the feeds were positively correlated to the metals in fish tissues, but most of the estimated correlation was significant and linearly correlated. It can be concluded that producers must measure feed quality correctly to avoid heavy metal contamination because it may assimilate and accumulate in the food chain.
Collapse
Affiliation(s)
- Syed Sikandar Habib
- Department of Zoology, University of Sargodha, Sargodha, 40100, Punjab, Pakistan.
| | - Aima Iram Batool
- Department of Zoology, University of Sargodha, Sargodha, 40100, Punjab, Pakistan
| | | | - Saira Naz
- Institute of Molecular Biology and Biotechnology, University of Lahore Sargodha Campus, Sargodha, 40100, Punjab, Pakistan
| |
Collapse
|
37
|
Yang B, Tuo F, Zhou Q, Zhang J, Li Z, Pang C. Dietary exposure of radionuclides and heavy metals in adult residents in a high background natural radiation area using duplicate diet method. Sci Rep 2022; 12:16676. [PMID: 36202835 PMCID: PMC9537425 DOI: 10.1038/s41598-022-19979-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Intake of radionuclides and heavy metals through food consumption is one of the important pathways for long-term health considerations. In this paper, the dietary exposure to radionuclides (210Pb, 210Po, 226Ra, 228Ra, 40K, 137Cs and 129I) and heavy metals (As, Hg, Pb, Cd and U) of adult residents in the high background natural radiation area (HBNRA) in Yangjiang, China, was comprehensively assessed using duplicate diet method. The estimated effective dose received by the inhabitants in HBNRA from ingestion of radionuclides was 0.33 mSv/y, and the associated lifetime cancer risk was 1.1 × 10–3. Both the dose and cancer risk to humans were at the acceptable range, and showed no difference between the HBNRA and the control area. With respect to heavy metals, the estimated daily intake of heavy metals (DIM) values for As, Hg, Pb, Cd and U in HBNRA were 0.47, 0.03, 15.0, 0.26 and 0.04 μg/kg bw/d, respectively, and the corresponding target hazard quotient (THQ) were 1.58, 0.09, 3.7, 2.56, 0.18. The DIM and THQ of Cd and U in HBNRA were similar to the control area, but the DIM and THQ of Pb were much higher than the corresponding values of 0.39 and 0.03 in the control area. The hazard index (HI) value of heavy metals in HBNRA was almost twice that of the control area. This suggests that the inhabitants in the HBNRA may have a health risk associated with the heavy metals.
Collapse
Affiliation(s)
- Baolu Yang
- Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, China
| | - Fei Tuo
- Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, China.
| | - Qiang Zhou
- Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, China
| | - Jing Zhang
- Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, China
| | - Zeshu Li
- Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, China
| | - Chaoya Pang
- Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, China
| |
Collapse
|
38
|
Nikolić D, Poleksić V, Skorić S, Tasić A, Stanojević S, Rašković B. The European Chub (Squalius cephalus) as an indicator of reservoirs pollution and human health risk assessment associated with its consumption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119871. [PMID: 35940479 DOI: 10.1016/j.envpol.2022.119871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Five reservoirs (Vlasina, Medjuvršje, Zaovine, Perućac, and Garaši) in Serbia were chosen as study sites, which differ by their position, purpose, stages of eutrophication, management policies, and levels of anthropogenic pressure. The objectives of this research were to: determine the concentrations of 26 elements in muscle, gills, and liver of the European chub by inductively-coupled plasma optical emission spectrometry (ICP-OES); determine the concentrations of 17 organochlorine pesticides in fish muscle by gas chromatography with mass spectrometric detection (GC-MS); compare these findings with condition factor (CF) and histopathological (HP) biomarkers; and assess the potential human health risks due to consumption of chub muscle tissue. The highest elemental accumulation was found in the gills. The European chub was not a good indicator of Pb pollution between reservoirs. Concentrations of Hg, As, and Cu were low and did not exceed the proscribed maximum allowed concentrations (MACs). 4,4'-DDE was detected only in individuals from Vlasina, 4,4'-DDD from Perućac and Zaovine, and heptachlor from Zaovine. Low to moderate levels of HP were observed for both gills and liver in all studied reservoirs. HP index for gills was significantly higher for Zaovine compared to Vlasina. Significantly lower HP index for liver and the total HP index value were observed for fish from Vlasina compared to Perućac. No significant human health risks due to the intake of examined pollutants in each reservoir were recorded; women were at higher risk compared to men. A reason for concern is a few muscle samples from Garaši, Vlasina, Perućac, and Medjuvršje in which Cd exceeded the MAC. A reservoir for water supply (Garaši) is generally considered the safest for fish consumption.
Collapse
Affiliation(s)
- Dušan Nikolić
- University of Belgrade - Institute for Multidisciplinary Research, Department of Inland Water Biology and Protection, Kneza Višeslava 1, 11030, Belgrade, Serbia.
| | - Vesna Poleksić
- University of Belgrade - Faculty of Agriculture, Institute of Animal Sciences, Nemanjina 6, Zemun, 11080, Belgrade, Serbia
| | - Stefan Skorić
- University of Belgrade - Institute for Multidisciplinary Research, Department of Inland Water Biology and Protection, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | - Aleksandra Tasić
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000, Belgrade, Serbia
| | - Slobodan Stanojević
- Institute of Veterinary Medicine of Serbia, Janisa Janulisa 14, 11000, Belgrade, Serbia
| | - Božidar Rašković
- University of Belgrade - Faculty of Agriculture, Institute of Animal Sciences, Nemanjina 6, Zemun, 11080, Belgrade, Serbia; University of Porto - Institute of Biomedical Sciences Abel Salazar (ICBAS) - School of Medicine and Biomedical Sciences, Department of Microscopy, Laboratory of Histology and Embryology, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| |
Collapse
|
39
|
Rahman MS, Akther S, Ahmed ASS, Saha N, Rahman LS, Ahmed MK, Arai T, Idris AM. Distribution and source apportionment of toxic and trace elements in some benthic and pelagic coastal fish species in Karnaphuli River Estuary, Bangladesh: Risk to human health. MARINE POLLUTION BULLETIN 2022; 183:114044. [PMID: 36007270 DOI: 10.1016/j.marpolbul.2022.114044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The Karnaphuli River is one of the prime and most important streams in the southeastern part of Bangladesh. The favorable water current and the geographic location have rendered the Karnaphuly River estuary a suitable habitat and a breeding ground for diverse fish species. Reversely, this estuary has been polluted by discharges from many point and non-point sources due to its location in the catchment area of a heavily industrialized area, Chattagram port city. However, published research concerning the status of toxic and trace elements in some commercially important benthic and pelagic coastal fish species in Karnaphuli River estuary was not found in the existing literature. Therefore, it's an important field of study on the assessment of toxic and trace elements concentration in the commercially important benthic and pelagic coastal fish species and their health taxation in the Karnaphuli River Estuary. Energy dispersive X-ray fluorescence (ED-XRF) was used to quantify trace metal concentration in edible parts of the fish species. This study revealed that the rank of the trace metals concentration was as follows (mg/kg): Zn (37.1) > Mn (16.12) > V (11.16) > Cu (9.49) > Rb (5.62) > Pb (2.98) > Cr (1.59) > Co (1.17). The F-test showed that a significant difference at 95 % confidence level in the distribution pattern of trace metals concentration among the examined fish species in the study area. The metal pollution index (MPI) in the muscle of fishes were found to be in the following order: L. bata > P. monodon > T. cirratus > M. bleekeri > O. pabda > H. nehereus > L. calcarifer > P. argenteus > P. paradiseus > T. toli, and the MPIs for most of the benthic fish species were higher compared to the pelagic fishes. On the other hand, the examined fish species were significantly bio-accumulative with the highest bio-accumulation factor value for benthic species. The multivariate analysis identified that the sources of the trace metals were associated with anthropogenic activities. For the human health risk assessment concern, estimated daily intake, target hazard quotient and cancer-causing risk were estimated. The results for non-cancer hazardous index values were found to be lower than unity. On the other hand, the total cancer risk data ranging from 1.24E-05 to 1.70E-05 were fallen within the range for the threshold values (1.0E-06 to 1.0E-04). However, considering the suggested values set by the environmental and regulatory agencies, it has been recommended that no significant non-carcinogenic and cancer-causing health risk for humans was seen due to the consumption of the studied fish species.
Collapse
Affiliation(s)
- M Safiur Rahman
- Water Quality Research Laboratory, Chemistry Division, Atomic Energy Center, Bangladesh Atomic Energy Commission, 4-Kazi Nazrul Islam Avenue, Shahbag, Dhaka 1000, Bangladesh; Air Particulate Research Laboratory, Chemistry Division, Bangladesh Atomic Energy Commission, Shahbag, Dhaka 1000, Bangladesh.
| | - Sharmin Akther
- Department of Oceanography, Faculty of Earth and Environmental Science, University of Dhaka, Dhaka 1000, Bangladesh
| | | | - Narottam Saha
- Sustainable Minerals Institute, Center for Mined Land Rehabilitation, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Lamisa S Rahman
- Faculty of Science, Dalhousie University, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada
| | - Md Kawser Ahmed
- Department of Oceanography, Faculty of Earth and Environmental Science, University of Dhaka, Dhaka 1000, Bangladesh
| | - Takaomi Arai
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
40
|
Ahmadi A, Moore F, Keshavarzi B, Shahimi H, Hooda PS. Bioaccumulation of selected trace elements in some aquatic organisms from the proximity of Qeshm Island ecosystems: Human health perspective. MARINE POLLUTION BULLETIN 2022; 182:113966. [PMID: 35969906 DOI: 10.1016/j.marpolbul.2022.113966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
In this study selected marine species from north Persian Gulf ecosystems were collected to investigate the concentration of 15 trace elements (Al, As, Co, Cr, Cu, Fe, Li, Mo, Ni, Pb, Se, Sr, V, Zn and Hg) in muscle and liver tissues for the purpose of evaluating potential health risks for human consumers. The results indicated that Fe, Zn, Sr, Cu and As are the most abundant TEs in the tissues of the species. The concentration of Cu in P. semisulcatus and As in most investigated species pose the highest risk of exposure. The carcinogenic risk values indicate that As and Ni concentrations in the species are above the acceptable lifetime risk for adults and children in most of the species. The margin of exposure risk approach indicated that the risk of detrimental effects due to dietary Pb intake for age groups is low, except for consumers of T. tonggol.
Collapse
Affiliation(s)
- Azam Ahmadi
- Department of Earth Sciences, College of Science, Shiraz University, 71454 Shiraz, Iran
| | - Farid Moore
- Department of Earth Sciences, College of Science, Shiraz University, 71454 Shiraz, Iran.
| | - Behnam Keshavarzi
- Department of Earth Sciences, College of Science, Shiraz University, 71454 Shiraz, Iran
| | - Haniyeh Shahimi
- Department of Earth Sciences, College of Science, Shiraz University, 71454 Shiraz, Iran
| | - Peter S Hooda
- School of Geography, Geology and the Environment, Kingston University London, Kingston Upon Thames KT12EE, UK
| |
Collapse
|
41
|
Distribution and Bioaccumulation of Essential and Toxic Metals in Tissues of Thaila (Catla catla) from a Natural Lake, Pakistan and Its Possible Health Impact on Consumers. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10070933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Although fish are often recommended as a component of a healthy diet, the environmental accumulation of heavy metals in many fish species has been of considerable concern for those weighing the nutritional health benefits against adverse toxic outcome of excess intake of toxic metals. This study aimed to determine the concentration of essential and toxic metals in the tissues of Catla catla in Mangla Lake and to assess the possible risk to the consumers. Fifty samples of Catla catla were collected from Mangla Lake, Mirpur, Azad Jammu and Kashmir, Pakistan and analyzed for eighteen metals including essential and trace metals. The measured range concentrations (µg/g, wet weight) in muscle tissues, in decreasing order, were: K (955–1632), Ca (550–2081), Na (449–896), Mg (129–312), Zn (61.2–215), Fe (11.6–26.8), Sr (2.60–9.27), Pb (1.72–7.81), Se (1.55–3.55), Co (0.12–4.08), Mn (1.04–4.33), Ni (0.69–3.06), Cu (0.88–2.78), Cr (0.45–1.88), As (0.67–1.58), Cd (0.28–0.56), Hg (0.17–0.57) and Li (0.12–0.38). The metal concentrations found in this study were comparatively higher than those reported in literature. A majority of the metals exhibited higher accumulation in gills compared with those in scales and muscles. Mean levels of Pb, As, Co, Mn, Cd, Cr and Zn in Catla catla muscle were found to be exceeding the international permissible limits for the safe human consumption. The condition factor (K), as an indicator of fish health status, indicated that Catla catla of Mangla Lake are in good health condition. The metal pollution index (MPI) of gills (27.9), scales (12.5) and muscle (7.57) indicated low contamination. Moreover, human health risk was evaluated using estimated weekly intake (EWI) and daily intake (EDI), target hazard quotient (THQ), hazard index (HI) and target cancer risk (TCR). Estimated weekly and daily intake values for As, Cd, Cr, Hg, Ni and Pb were higher than provisional permissible tolerable weekly intake and permissible tolerable daily intake while THQ for As, Cd, Cr, Hg, Pb, Se and Zn was higher than 1. The THQ for As, Hg and Pb was several folds higher than 1, indicative of lifetime non-carcinogenic health risks to the consumers. The hazard index indicated cumulative risk, which greatly increased with increasing fish consumption. Target cancer risk indicated that the people eating the Catla catla from Mangla Lake were exposed to As, Cd, Cr, Ni and Pb with a significant lifetime carcinogenic risk. In summary, consumption of Catla catla from this lake was found to be associated with an increased lifetime risk to the general health of the consumers.
Collapse
|
42
|
Arsenic, cadmium, lead and mercury content and health risk assessment of consuming freshwater fish with elements of chemometric analysis. Food Chem 2022; 379:132167. [DOI: 10.1016/j.foodchem.2022.132167] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/10/2021] [Accepted: 01/13/2022] [Indexed: 11/21/2022]
|
43
|
Moreira LS, Costa FS, Lidorio RDC, Toledo LWS, Oliveira A, Gonzalez MH, da Silva EGP, Amaral CDB. Evaluation of Trace Elements in Marine Biological Tissues by Graphite Furnace Atomic Absorption Spectrometry After Sample Treatment with Formic Acid. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Novotna Kruzikova K, Siroka Z, Jurajda P, Harustiakova D, Smolikova Z, Kubicek M, Svobodova Z. Mercury content in fish from drinking-water reservoirs in the Morava River Basin (Czech Republic). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17394-17405. [PMID: 34664172 DOI: 10.1007/s11356-021-16763-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
This study focused on the total mercury content in fish from seven drinking-water reservoirs located in the Morava River Basin: Bojkovice, Boskovice, Hubenov, Karolinka, Landstejn, Ludkovice and Nova Rise in the Czech Republic. A total of 308 fish were collected for the analysis. The content of total mercury was measured in the muscle tissue of bream, roach and perch using atomic absorption spectrometry and varied from 0.057±0.009 to 0.440 mg kg-1 in bream, from 0.030±0.005 to 0.393±0.138 mg kg-1 in roach and from 0.092±0.007 to 0.638±0.042 mg kg-1 in perch. The highest total mercury content was found in perch from Landstejn and the lowest was measured in roach from Ludkovice. A positive statistically significant relationship was found between fish weight and total mercury content in fish muscle for almost all species and all sampling sites, except for roach from Ludkovice. A total of 19 samples exceeded the maximum mercury level set by legislation on food contaminants-0.5 mg kg-1 in freshwater fish.
Collapse
Affiliation(s)
- Kamila Novotna Kruzikova
- Faculty of Veterinary Hygiene and Ecology, Department of Animal Protection and Welfare and Public Veterinary Health, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic.
| | - Zuzana Siroka
- Faculty of Veterinary Hygiene and Ecology, Department of Animal Protection and Welfare and Public Veterinary Health, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Pavel Jurajda
- Institute of Vertebrate Biology of the Czech Academy of Sciences v.v.i., Kvetna 8, 603 65, Brno, Czech Republic
| | - Danka Harustiakova
- Faculty of Science, RECETOX, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Faculty of Medicine, Institute of Biostatistics and Analyses, Masaryk University, Kamenice 126/3, 625 00, Brno, Czech Republic
| | - Zdenka Smolikova
- Faculty of Veterinary Hygiene and Ecology, Department of Animal Protection and Welfare and Public Veterinary Health, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Martin Kubicek
- Faculty of Veterinary Hygiene and Ecology, Department of Animal Protection and Welfare and Public Veterinary Health, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| | - Zdenka Svobodova
- Faculty of Veterinary Hygiene and Ecology, Department of Animal Protection and Welfare and Public Veterinary Health, University of Veterinary Sciences Brno, Palackeho tr. 1946/1, 612 42, Brno, Czech Republic
| |
Collapse
|
45
|
Łuczyńska J, Pietrzak-Fiećko R, Purkiewicz A, Łuczyński MJ. Assessment of Fish Quality Based on the Content of Heavy Metals. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:2307. [PMID: 35206490 PMCID: PMC8871952 DOI: 10.3390/ijerph19042307] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023]
Abstract
The aim of this study was to estimate the fish quality in terms of the Cu, Fe, Mn and Zn contents. The research material was the muscle tissue of the fish crucian carp (Carassius carassius Linnaeus, 1758), flounder (Platichthys flesus Linnaeus, 1758), Gilthead seabream (Sparus aurata Linnaeus, 1758), mackerel (Scomber scombrus Linnaeus, 1758), Blue grenadier (Macruronus novaezelandiae Hector, 1871), rainbow trout (Oncorhynchus mykiss Walbaum, 1792), tench (Tinca tinca Linnaeus, 1758), tilapia (Oreochromis niloticus Linnaeus, 1758), Walleye pollock (Gadus chalcogrammus Pallas, 1814) and perch (Perca fluviatilis Linnaeus, 1758.). Heavy metals were determined with the atomic absorption spectrometry method (AAS). Significantly high concentrations of zinc (19.52 mg/kg wet weight), copper (0.77 mg/kg) and iron (6.95 mg/kg) were found in the muscles of crucian carp (p < 0.05) compared to the other fish studied, whereas Walleye pollock had a higher content of manganese (0.266 mg/kg) (p < 0.05). All studied fish species do not pose a threat to humans from these four metals. This was indicated by quality indexes (THQ and HI) whose values were below one. The values of these metals also did not exceed the maximum allowable concentrations established by the FAO (1983), but monitoring both the aquatic environment and the fish living there is necessary, for example, for the time-changing abiotic and biotic factors that can cause an increase in metals in the organs of fish.
Collapse
Affiliation(s)
- Joanna Łuczyńska
- Department of Commodity and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-726 Olsztyn, Poland; (R.P.-F.); (A.P.)
| | - Renata Pietrzak-Fiećko
- Department of Commodity and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-726 Olsztyn, Poland; (R.P.-F.); (A.P.)
| | - Aleksandra Purkiewicz
- Department of Commodity and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-726 Olsztyn, Poland; (R.P.-F.); (A.P.)
| | - Marek Jan Łuczyński
- Department of Ichthyology, Hydrobiology and Ecology of Waters, The Stanisław Sakowicz Inland Fisheries Institute in Olsztyn, 10-719 Olsztyn, Poland;
| |
Collapse
|
46
|
Punitha S, Krishnamurthy R, Elumalai K, Mahboob S, Al-Ghanim KA, Ahmed Z, Mustafa A, Govindarajan M. Changes in the contour of karyology and histoarchitecture of the primary respiratory organ in the fish Oreochromis mossambicus (Peters, 1852) inhabiting the polluted estuarine ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118682. [PMID: 34921947 DOI: 10.1016/j.envpol.2021.118682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/28/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
The wetland ecosystem (WE) is subject to pollution by many anthropogenic activities, including domestic and industrial effluents. These effluents may contain toxic heavy metals that can interact within the aquatic ecosystem and have a capacity to disturb the metabolic activities, histological profile, and genetic structure and functions in aquatic species inhabiting the environment. The present study observed the karyological and histological alterations in gills of the freshwater fish, Mozambique tilapia, Oreochromis mossambicus in two different sublethal concentrations (1% and 3%) of heavy metals in 7, 15, and 30 days of experimental periods. The heavy metals induced various structural damages such as ring chromosome, sister chromatid exchange, acrocentric association region, condensed chromosomal morphology, heterochromatin region, and nucleolar organizer region in the chromosomes of O. mossambicus treated with 1% and 3% sublethal concentrations of water sample collected from Pallikaranai wetland ecosystem. Gills exposed to 1% and 3% effluent exhibited several variations in the respiratory surfaces of gill arches or lamellae in the light and scanning microscopical study. The gills exposed to 1% concentration for 30 days showed marked necrosis, and the secondary lamellae showed the lamellar membrane's dissolution. Exposure of gills to raw effluent in the field condition was observed in the presence of Cd, Pb, Cr, Cu, and Zn. Thus, this present study shows the environmental deterioration by heavy metal pollution on the structure of the gills in tilapia.
Collapse
Affiliation(s)
- Subramaniam Punitha
- Department of Advanced Zoology & Biotechnology, Government Arts College (Autonomous), Chennai, 600035, Tamil Nadu, India
| | - Rajamanickkam Krishnamurthy
- Department of Advanced Zoology & Biotechnology, Government Arts College (Autonomous), Chennai, 600035, Tamil Nadu, India
| | - Kuppusamy Elumalai
- Department of Advanced Zoology & Biotechnology, Government Arts College (Autonomous), Chennai, 600035, Tamil Nadu, India
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Zubair Ahmed
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmed Mustafa
- Department of Biology, Purdue University Fort Wayne, Fort Wayne, IN, USA
| | - Marimuthu Govindarajan
- Unit of Mycology and Parasitology, Department of Zoology, Annamalai University, Annamalainagar, 608 002, Tamil Nadu, India; Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam, 612 001, Tamil Nadu, India.
| |
Collapse
|
47
|
Ecological and Health Risk Assessment of Potential Toxic Elements from a Mining Area (Water and Sediments): The San Juan-Taxco River System, Guerrero, Mexico. WATER 2022. [DOI: 10.3390/w14040518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The San Juan-Taxco River system is situated in the Taxco mining district, which is a well-known international producer of silver, jewelry and precious metal handicrafts. The population and biota in the area have been affected by inappropriate disposal of anthropogenic activities that pollute the hydric resources and threaten their health and sustainability, since the inhabitants use the groundwater and river water for human consumption, domestic water supply and irrigation. This study was conducted to assess the pollution in the river system, human health implications and ecological risk in the aquatic environment (groundwater, surface water and superficial sediment). This evaluation was done on the base of hydrochemical, textural, mineralogical and geochemical analysis supported by calculation of human health risk using chronic daily intake (CDI), hazard quotient (HQ) and hazard index (HI) with environmental and geochemical indices for ecological risk evaluation. The health risk assessment indicated increasing non-health carcinogenic risk to the exposed population to the river water and dug wells (HI > 1), and thus, these resources are not recommended for human consumption, domestic activities and prolonged ingestion. The results demonstrated a high degree of pollution due to toxic elements and geochemical indices. The Pollution Load Index indicated potential risk that will cause harmful biological effects in the riverine environment.
Collapse
|
48
|
Ahmadi A, Moore F, Keshavarzi B, Soltani N, Sorooshian A. Potentially toxic elements and microplastics in muscle tissues of different marine species from the Persian Gulf: Levels, associated risks, and trophic transfer. MARINE POLLUTION BULLETIN 2022; 175:113283. [PMID: 35101745 DOI: 10.1016/j.marpolbul.2021.113283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Selected potentially toxic elements (PTEs), including As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Se, and Zn, along with microplastic particles (MPs) were characterized in the muscle of seafood species in order to study potential health risk and also investigate biomagnification of the contaminants. The results revealed high levels of the analyzed PTEs and MPs in crustaceans. The cancer risk among the consumer population (adult and children) posed by As is higher than the acceptable lifetime risk of 10-4. Portunus plagicus and Platycephalus indicus had the highest and lowest amount of MP particles in their muscles, respectively, among investigated species. Finally, PTEs (except Hg) and MPs are not biomagnified in the collected species. The results of this research emphasize the importance of accounting for health risks posed by potential pollutants via consumption of contaminated seafood.
Collapse
Affiliation(s)
- Azam Ahmadi
- Department of Earth Sciences, College of Science, Shiraz University, 71454 Shiraz, Iran
| | - Farid Moore
- Department of Earth Sciences, College of Science, Shiraz University, 71454 Shiraz, Iran
| | - Behnam Keshavarzi
- Department of Earth Sciences, College of Science, Shiraz University, 71454 Shiraz, Iran.
| | - Naghmeh Soltani
- Department of Earth Sciences, College of Science, Shiraz University, 71454 Shiraz, Iran
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, USA; Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
49
|
Kontas A, Alyuruk H, Bilgin M, Uluturhan E, Ünlüoğlu A, Darilmaz E, Altay O. Metal Bioaccumulation and Potential Health Risk Assessment in Different Tissues of Three Commercial Fish Species (Merluccius merluccius, Mullus barbatus, and Pagellus erythrinus) from Edremit Bay (Aegean Sea), Turkey. Biol Trace Elem Res 2022; 200:868-880. [PMID: 33763821 DOI: 10.1007/s12011-021-02683-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Metal levels and potential health risk assessment in muscle, liver, and gills of three fish species (Merluccius merluccius, Mullus barbatus, and Pagellus erythrinus) from the Edremit Bay were investigated in spring and autumn 2015. Metal concentrations (Hg, Cd, Pb, Cr, Cu, Zn, Mn, and Fe), metal pollution index, and bioaccumulation factors in P. erythrinus were observed to be generally higher than those in M. barbatus and M. merluccius. Tissue was the main factor that might be responsible from the variations of metals in fish species according to ANOVA and PCA. Hg concentrations in M. barbatus and P. erythrinus were greater than threshold limits defined by international authorities; however, no carcinogenic risks were found for Cd and Pb levels. According to the results, the bay has been negatively influenced by human activities, and further research on monitoring of the biota and sediments is recommended for Edremit Bay and similar coastal areas under human pressure.
Collapse
Affiliation(s)
- Aynur Kontas
- Institute of Marine Sciences and Technology, Dokuz Eylul University, Inciralti, 35340, Izmir, Turkey
| | - Hakan Alyuruk
- Institute of Marine Sciences and Technology, Dokuz Eylul University, Inciralti, 35340, Izmir, Turkey
| | - Mustafa Bilgin
- Graduate School of Natural and Applied Sciences, Dokuz Eylul University, Tinaztepe, 35160, Izmir, Turkey
| | - Esin Uluturhan
- Institute of Marine Sciences and Technology, Dokuz Eylul University, Inciralti, 35340, Izmir, Turkey.
| | - Aydın Ünlüoğlu
- Institute of Marine Sciences and Technology, Dokuz Eylul University, Inciralti, 35340, Izmir, Turkey
| | - Enis Darilmaz
- Institute of Marine Sciences and Technology, Dokuz Eylul University, Inciralti, 35340, Izmir, Turkey
| | - Oya Altay
- Institute of Marine Sciences and Technology, Dokuz Eylul University, Inciralti, 35340, Izmir, Turkey
| |
Collapse
|
50
|
Effect of Methylmercury Exposure on Bioaccumulation and Nonspecific Immune Respsonses in Hybrid Grouper Epinephelus fuscoguttatus × Epinephelus lanceolatus. Animals (Basel) 2022; 12:ani12020147. [PMID: 35049771 PMCID: PMC8772552 DOI: 10.3390/ani12020147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary The head kidney was primary organ that accumulated methylmercury in hybrid grouper. Muscle tissue had lower methylmercury content than the head kidney and liver. Nonspecific immune responses and bioaccumulation of methylmercury were linked to hybrid grouper health. Abstract Mercury (Hg) is a dangerous heavy metal that can accumulate in fish and is harmful when consumed by humans. This study investigated the bioaccumulation of mercury in the form of methylmercury (MeHg) and evaluated nonspecific immune responses such as phagocytic activity and superoxide anion (O2−) production in hybrid grouper (Epinephelus fuscoguttatus × E. lanceolatus). The hybrid grouper leukocytes were incubated with methylmercury chloride (CH3HgCl) at concentrations of 10–10,000 µg/L to determine cell viability, phagocytic activity, and O2− production in vitro. Subsequently, the grouper were exposed daily to CH3HgCl mixed in the experimental diets at concentrations of 0, 1, 5, and 10 mg/kg for 28 days. The bioaccumulation of MeHg in the liver, head kidney, and muscle tissue was measured, and the phagocytic activity and O2− production were evaluated. In vitro results indicated that cell viability was significantly lower than that of the control group at concentrations > 500 µg/L. The phagocytic rate and O2− production at concentrations ˃ 500 and ˃ 200 µg/L, respectively, were significantly lower than those of the control group. The dietary exposure demonstrated that MeHg accumulated more substantially in the liver and head kidney compared with the muscle tissue in the treatment groups. Moreover, the cumulative concentration significantly increased with higher concentrations and more days of exposure. The phagocytic rate and O2− production in the treatment groups were significantly lower than those in the control group from days 2 and 1, respectively. In conclusion, hybrid grouper accumulated significant MeHg in the liver and head kidney compared with the muscle tissue, and higher concentrations and more exposure days resulted in decreased cell viability, phagocytic activity, and O2− production.
Collapse
|