1
|
Naccari C, Ginestra G, Micale N, Palma E, Galletta B, Costa R, Vadalà R, Nostro A, Cristani M. Binary Combinations of Essential Oils: Antibacterial Activity Against Staphylococcus aureus, and Antioxidant and Anti-Inflammatory Properties. Molecules 2025; 30:438. [PMID: 39942545 PMCID: PMC11820965 DOI: 10.3390/molecules30030438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/11/2025] [Accepted: 01/17/2025] [Indexed: 02/16/2025] Open
Abstract
Background: The lack of new antimicrobial drugs and increased antimicrobial resistance has focused attention on the employment of essential oils (EOs) in human and veterinary medicine. The aim of this study was to test new binary associations between known and uncommon EOs. Methods: EOs from Origanum vulgare L., Juniperus communis L., Cistus ladaniferus L., Citrus aurantium L. var. amara were tested individually and in binary combinations to study, as follows: antibacterial activity against Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA) and Escherichia coli; antioxidant capacity via redox-based assays (DPPH, ABTS and FRAP); and anti-inflammatory activity via the bovine serum albumin denaturation inhibition assay. Results: O. vulgare L. showed good antibacterial activity against all strains (MIC = 0.03-0.12%, v/v), followed by C. ladaniferus L., and also had the best antioxidant and anti-inflammatory activities. Synergistic and additive effects were observed for the EO combinations O. vulgare L./C. ladaniferus L. and O. vulgare L./J. communis L. against S. aureus and MRSA, respectively. A reduction in biofilm was noted. Antioxidant and anti-inflammatory activities were also detected. Conclusions: The results suggest that EO combinations may be a promising strategy in veterinary settings for the treatment of infectious diseases caused by S. aureus, including drug-resistant and biofilm-forming strains accompanied by oxidative stress and inflammation.
Collapse
Affiliation(s)
- Clara Naccari
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (C.N.); (E.P.)
| | - Giovanna Ginestra
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (B.G.); (A.N.); (M.C.)
| | - Nicola Micale
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (B.G.); (A.N.); (M.C.)
| | - Ernesto Palma
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy; (C.N.); (E.P.)
- CIS—Centro Servizio Interdipartimentale—IRC-FSH “Centro di Ricerche Farmacologiche, Sicurezza degli Alimenti e Salute ad Alto Contenuto Tecnologico”, Università “Magna Græcia” di Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Benedetta Galletta
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (B.G.); (A.N.); (M.C.)
- Fondazione “Prof. Antonio Imbesi”, Università degli Studi di Messina, Piazza Pugliatti 1, 98122 Messina, Italy
| | - Rosaria Costa
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, Università degli Studi di Messina, Via Consolare Valeria, 98100 Messina, Italy; (R.C.); (R.V.)
| | - Rossella Vadalà
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, Università degli Studi di Messina, Via Consolare Valeria, 98100 Messina, Italy; (R.C.); (R.V.)
| | - Antonia Nostro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (B.G.); (A.N.); (M.C.)
| | - Mariateresa Cristani
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università degli Studi di Messina, Viale F. Stagno D’Alcontres 31, 98166 Messina, Italy; (B.G.); (A.N.); (M.C.)
| |
Collapse
|
2
|
Vyhlídalová B, Ondrová K, Zůvalová I. Dietary monoterpenoids and human health: Unlocking the potential for therapeutic use. Biochimie 2025; 228:89-100. [PMID: 39260556 DOI: 10.1016/j.biochi.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/13/2024]
Abstract
Natural products are widely used in different aspects of our lives - from household cleaners and food production, via cosmetics and aromatherapy, to both alternative and traditional medicine. In our research group, we have recently described several monoterpenoids with potential in the antiviral and anticancer therapy by allosteric targeting of aryl hydrocarbon receptor (AhR). Prior to any practical application, biological effects on human organism must be taken in concern. This review article is focused on the biological effects of 5 monoterpenoids on the human health previously identified as AhR antagonists with a therapeutic potential as antiviral and anticancer agents. We have thoroughly described cytotoxic, anti-inflammatory, anti-proliferative, and anticancer effects, as well as known interactions with nuclear receptors. As clearly demonstrated, monoterpenoids in general represent almost an inexhaustible reservoir of natural compounds possessing the ability to influence, modulate and improve human health.
Collapse
Affiliation(s)
- Barbora Vyhlídalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Karolína Ondrová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Iveta Zůvalová
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
3
|
Meijer MMY, Brand HVD, Palmieri C, Niknafs S, Khaskheli AA, Roura E. Early-life immunomodulation by carvacrol delivered in ovo in broiler chickens. Poult Sci 2024; 103:104286. [PMID: 39326180 PMCID: PMC11470485 DOI: 10.1016/j.psj.2024.104286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
In the first 2 wk after hatching, broiler chickens are vulnerable to enteric pathogens due to underdeveloped gastrointestinal and immune systems. Carvacrol has been reported to improve digestive and immune functions. This study aimed to optimize immune development of broiler chickens by delivering carvacrol in ovo. Effects of 2 in ovo treatments delivered at embryonic day (E)17.5 (saline or carvacrol) were evaluated at 3 stages (E19.5, hatch, and d 14 posthatch). Hatchability, performance parameters, lymphoid organ and yolk sac weights were determined. Histomorphology assessment was performed for jejunal samples at hatch and bursa of Fabricius samples at hatch and d 14. Gene expression of immune-relevant genes was determined for jejunal, bursal, and yolk sac samples over time. At hatch, BW was 0.85% lower (P = 0.02) after in ovo carvacrol delivery compared to the controls. Interactions between in ovo treatment and age were found for gene expression. At hatch, carvacrol treatment resulted in lower expression of proinflammatory cytokines IL-8 and IFN-γ in the yolk sac compared to the controls (P = 0.05 and < .001, respectively) suggesting a potential role for carvacrol-mediated immune modulation. At d 14, carvacrol treatment led to lower expression of proinflammatory cytokine IL-6 in the bursa compared to the controls (P = 0.002). In ovo carvacrol delivery led to bursal histomorphometric changes, including a larger cortex in the bursal follicles (P = 0.03), and a higher cortex/medulla ratio (P = 0.04) compared to the controls, indicating increased B-cell stimulation and maturation. Main effects were found for carvacrol treatment in the jejunum, with overall higher expression of proinflammatory mediators IL-1β and NF-κB, and anti-inflammatory IL-10 compared to the controls (P = 0.04, 0.02, and 0.02 respectively) from E19.5 to d 14. Age-related main effects showed various alterations in expression dynamics of immune-related genes across all tissues over time. Our findings suggest changes in immune parameters occur as the chicken develops, but these mostly do not interact with in ovo carvacrol treatment. In ovo carvacrol treatment alters immune activity of broiler chickens independent of age.
Collapse
Affiliation(s)
- Mila M Y Meijer
- Centre for Animal Science and Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| | - Henry van den Brand
- Department of Animal Sciences, Adaptation Physiology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Chiara Palmieri
- School of Veterinary Science, University of Queensland, Brisbane, Australia
| | - Shahram Niknafs
- Centre for Animal Science and Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| | - Asad A Khaskheli
- Centre for Animal Science and Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| | - Eugeni Roura
- Centre for Animal Science and Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia.
| |
Collapse
|
4
|
Khalil M, Abdallah H, Calasso M, Khalil N, Daher A, Missaoui J, Diab F, Zeaiter L, Vergani L, Di Ciaula A, Portincasa P. Herbal Medicine in Three Different Mediterranean Living Areas During the COVID-19 Pandemic: The Role of Polyphenolic-Rich Thyme-like Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:3340. [PMID: 39683135 DOI: 10.3390/plants13233340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Despite herbal medicine being popular across the Mediterranean basin, there is no evidence in favor of COVID-19 infection. This study investigates the utilization and effects of medicinal plants in Italy, Lebanon, and Tunisia during COVID-19 and its effects on post-COVID-19 pandemics. We used a tailored, web-based "Google Form" questionnaire with the random sampling method. We gathered 812 complete responses (Italy: 116, Lebanon: 557, and Tunisia: 139), revealing diverse demographics and symptom experiences. Fatigue prevailed across all groups (89.0-94.2%), while psychological impacts ranged from 20.1% to 30.9%, with higher rates in Lebanon. Post-COVID-19 symptoms affected 22.4% (Italy), 48.8% (Lebanon), and 31.7% (Tunisia). General use of herbs was consistent (41.4-50.4%), with 23.3% (Italy), 50.2% (Lebanon), and 65.5% (Tunisia) employing herbs for COVID-19 therapy. Notably, in Lebanon, Za'atar, a thyme-like plant, correlated with reduced symptoms, suggesting potential protective effects that are likely due to its polyphenol richness. This study underscores the persistent reliance on traditional medicinal plants remedies in the Mediterranean area, with regional variations. Further exploration of herbal compounds for COVID-19-like symptoms is warranted.
Collapse
Affiliation(s)
- Mohamad Khalil
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Hala Abdallah
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Maria Calasso
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy
| | - Nour Khalil
- Rammal Laboratory, Faculty of Sciences, Lebanese University, Al-Hadath Campus, Beirut 1003, Lebanon
| | - Ahmad Daher
- Rammal Laboratory, Faculty of Sciences, Lebanese University, Al-Hadath Campus, Beirut 1003, Lebanon
| | - Jihen Missaoui
- Research Laboratory of BIORESSOURCES-Integrative Biology & Valorisation BIOLIVAL (LR14 ES06) at ISBM, Monastir 5000, Tunisia
| | - Farah Diab
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Lama Zeaiter
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132 Genova, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), University of Bari Medical School, 70124 Bari, Italy
| |
Collapse
|
5
|
Retnosari R, Ali AH, Zainalabidin S, Ugusman A, Oka N, Latip J. The recent discovery of a promising pharmacological scaffold derived from carvacrol: A review. Bioorg Med Chem Lett 2024; 109:129826. [PMID: 38830427 DOI: 10.1016/j.bmcl.2024.129826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Carvacrol, called CA, is a dynamic phytoconstituent characterized by a phenol ring abundantly sourced from various natural reservoirs. This versatile scaffold serves as a pivotal template for the design and synthesis of novel drug molecules, harboring promising biological activities. The active sites positioned at C-4, C-6, and the hydroxyl group (-OH) of CA offer fertile ground for creating potent drug candidates from a pharmacological standpoint. In this comprehensive review, we delve into diverse synthesis pathways and explore the biological activity of CA derivatives. We aim to illuminate the potential of these derivatives in discovering and developing efficacious treatments against a myriad of life-threatening diseases. By scrutinizing the structural modifications and pharmacophore placements that enhance the activity of CA derivatives, we aspire to inspire the innovation of novel therapeutics with heightened potency and effectiveness.
Collapse
Affiliation(s)
- Rini Retnosari
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; International Joint Department of Materials Science and Engineering Between National University of Malaysia and Gifu University, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Chemistry, Universitas Negeri Malang, Jl. Semarang No. 5 Malang, Indonesia
| | - Amatul Hamizah Ali
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Satirah Zainalabidin
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Natsuhisa Oka
- International Joint Department of Materials Science and Engineering Between National University of Malaysia and Gifu University, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Jalifah Latip
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
6
|
de Vitt MG, Signor MH, Corrêa NG, Breancini M, Wolschick GJ, Klein B, Silva LEL, Wagner R, Jung CTK, Kozloski GV, Bajay MM, Schroeder GS, Milarch CF, Da Silva AS. Combination of Phytoactives in the Diet of Lactating Jersey Cows: Effects on Productive Efficiency, Milk Composition and Quality, Ruminal Environment, and Animal Health. Animals (Basel) 2024; 14:2518. [PMID: 39272304 PMCID: PMC11394032 DOI: 10.3390/ani14172518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/12/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
This study's objective was to evaluate whether adding a combination of phytoactive (microencapsulated essential oils, minerals, turmeric extract, tannin, prebiotic, and probiotic) to the feed of lactating Jersey cows positively affects the production, composition, and quality of milk, rumen environment, and animal health. Fourteen Jersey cows were divided into two groups (control and phytogenic) for an experiment with two lactation phases of 45 days each (early lactation and mid-lactation). During the experiment, milk production was higher at various times in cows that consumed phytoactive, and these animals had the best feed efficiency. In mid-lactation, phytoactive intake increased nutrient digestibility. The number of lymphocytes in the blood is reduced when cows consume phytoactive substances. Globulin levels increased in these cows fed with the additive, which may be related to a higher concentration of immunoglobulins, especially IgA. Cows fed phytoactives had lower ceruloplasmin and haptoglobin concentrations. Lower serum lipid peroxidation, associated with greater glutathione S-transferase activity, is a good health indicator in cows that consume phytoactive substances. The higher concentration of volatile fatty acids was due to the higher proportion of acetic acid in the ruminal fluid combined with lower butyric acid. Somatic cell counts in milk were lower in cows that consumed phytoactives during mid-lactation, as well as the effect of the treatment on Streptococcus spp. (lower in cows that consumed the additive). We conclude that consuming the additive benefits cows' health modulates rumen fermentation and nutrient digestibility, and positively affects milk production and quality.
Collapse
Affiliation(s)
- Maksuel G de Vitt
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-630, SC, Brazil
| | - Mateus H Signor
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-630, SC, Brazil
| | - Natalia G Corrêa
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-630, SC, Brazil
| | - Michel Breancini
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-630, SC, Brazil
| | - Gabriel J Wolschick
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-630, SC, Brazil
| | - Bruna Klein
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-630, SC, Brazil
| | - Luiz Eduardo L Silva
- Department of Food Science, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil
| | - Roger Wagner
- Department of Food Science, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil
| | - Camila T K Jung
- Department of Animal Science, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil
| | - Gilberto V Kozloski
- Department of Animal Science, Universidade Federal de Santa Maria (UFSM), Santa Maria 97105-900, RS, Brazil
| | - Miklos M Bajay
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-630, SC, Brazil
| | | | | | - Aleksandro S Da Silva
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-630, SC, Brazil
- Department of Animal Science, Universidade do Estado de Santa Catarina (UDESC), Chapecó 89815-630, SC, Brazil
| |
Collapse
|
7
|
Nelson VK, Nuli MV, Ausali S, Gupta S, Sanga V, Mishra R, Jaini PK, Madhuri Kallam SD, Sudhan HH, Mayasa V, Abomughaid MM, Almutary AG, Pullaiah CP, Mitta R, Jha NK. Dietary anti-inflammatory and anti-bacterial medicinal plants and its compounds in bovine mastitis associated impact on human life. Microb Pathog 2024; 192:106687. [PMID: 38750773 DOI: 10.1016/j.micpath.2024.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Bovine mastitis (BM) is the most common bacterial mediated inflammatory disease in the dairy cattle that causes huge economic loss to the dairy industry due to decreased milk quality and quantity. Milk is the essential food in the human diet, and rich in crucial nutrients that helps in lowering the risk of diseases like hypertension, cardiovascular diseases and type 2 diabetes. The main causative agents of the disease include various gram negative, and positive bacteria, along with other risk factors such as udder shape, age, genetic, and environmental factors also contributes much for the disease. Currently, antibiotics, immunotherapy, probiotics, dry cow, and lactation therapy are commonly recommended for BM. However, these treatments can only decrease the rise of new cases but can't eliminate the causative agents, and they also exhibit several limitations. Hence, there is an urgent need of a potential source that can generate a typical and ideal treatment to overcome the limitations and eliminate the pathogens. Among the various sources, medicinal plants and its derived products always play a significant role in drug discovery against several diseases. In addition, they are also known for its low toxicity and minimum resistance features. Therefore, plants and its compounds that possess anti-inflammatory and anti-bacterial properties can serve better in bovine mastitis. In addition, the plants that are serving as a food source and possessing pharmacological properties can act even better in bovine mastitis. Hence, in this evidence-based study, we particularly review the dietary medicinal plants and derived products that are proven for anti-inflammatory and anti-bacterial effects. Moreover, the role of each dietary plant and its compounds along with possible role in the management of bovine mastitis are delineated. In this way, this article serves as a standalone source for the researchers working in this area to help in the management of BM.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Center for global health research, saveetha medical college, saveetha institute of medical and technical sciences, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saijyothi Ausali
- College of Pharmacy, MNR higher education and research academy campus, MNR Nagar, Sangareddy, 502294, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Vaishnavi Sanga
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Richa Mishra
- Department of Computer Engineering, Faculty of Engineering and Technology, Parul University, Vadodara, 391760, Gujrat, India
| | - Pavan Kumar Jaini
- Department of Pharmaceutics, Raffles University, Neemrana, Rajasthan, India
| | - Sudha Divya Madhuri Kallam
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur, Vadlamudi, Andhra Pradesh, 522213, India
| | - Hari Hara Sudhan
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Vinyas Mayasa
- GITAM School of Pharmacy, GITAM University Hyderabad Campus, Rudraram, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box, 59911, United Arab Emirates
| | - Chitikela P Pullaiah
- Department of Chemistry, Siddha Central Research Institute, Chennai, Tamil Nadu, 60016, India
| | - Raghavendra Mitta
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, Guntur, 522213, Andhra Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering & Technology (SSET), Sharda University, Greater Noida, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| |
Collapse
|
8
|
Potra Cicalău GI, Marcu OA, Ghitea TC, Ciavoi G, Iurcov RC, Beiusanu C, Trifan DF, Vicaș LG, Ganea M. Study of Periodontal Bacteria in Diabetic Wistar Rats: Assessing the Anti-Inflammatory Effects of Carvacrol and Magnolol Hydrogels. Biomedicines 2024; 12:1445. [PMID: 39062018 PMCID: PMC11274435 DOI: 10.3390/biomedicines12071445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/15/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Periodontal disease and diabetes often co-occur; both are characterized by chronic inflammation. This study aimed to investigate the anti-inflammatory effects of carvacrol and magnolol when incorporated into a periodontal hydrogel and topically applied to Wistar rats with diabetes-associated periodontal disease. Forty male albino Wistar rats were divided into four groups: PD (induced diabetes and periodontitis), PDC (induced diabetes and periodontitis treated with carvacrol), PDM (induced diabetes and periodontitis treated with magnolol), and PDCM (induced diabetes and periodontitis treated with both carvacrol and magnolol). Post treatment, gingival tissue samples were collected to measure levels of the pro-inflammatory cytokines IL-6 and TNF-α. The PDCM group exhibited significantly lower levels of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) compared to the PD group. The combined application of a periodontal hydrogel containing carvacrol and magnolol may significantly reduce gingival inflammation in rats with diabetes-associated periodontal disease.
Collapse
Affiliation(s)
- Georgiana Ioana Potra Cicalău
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania; (G.I.P.C.); (G.C.); (R.C.I.)
| | - Olivia Andreea Marcu
- Department of Preclinics, Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania; (O.A.M.); (C.B.)
| | - Timea Claudia Ghitea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania; (L.G.V.); (M.G.)
| | - Gabriela Ciavoi
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania; (G.I.P.C.); (G.C.); (R.C.I.)
| | - Raluca Cristina Iurcov
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania; (G.I.P.C.); (G.C.); (R.C.I.)
| | - Corina Beiusanu
- Department of Preclinics, Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania; (O.A.M.); (C.B.)
| | - Daniela Florina Trifan
- Department of Clinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania;
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania; (L.G.V.); (M.G.)
| | - Mariana Ganea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410068 Oradea, Romania; (L.G.V.); (M.G.)
| |
Collapse
|
9
|
Cui H, Zhang C, Su K, Fan T, Chen L, Yang Z, Zhang M, Li J, Zhang Y, Liu J. Oregano Essential Oil in Livestock and Veterinary Medicine. Animals (Basel) 2024; 14:1532. [PMID: 38891579 PMCID: PMC11171306 DOI: 10.3390/ani14111532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
With a growing global concern over food safety and animal welfare issues, the livestock and veterinary industries are undergoing unprecedented changes. These changes have not only brought challenges within each industry, but also brought unprecedented opportunities for development. In this context, the search for natural and safe products that can effectively replace traditional veterinary drugs has become an important research direction in the fields of animal husbandry and veterinary medicine. Oregano essential oil (OEO), as a natural extract, is gradually emerging in the fields of animal husbandry and veterinary medicine with its unique antibacterial, antioxidant, and multiple other biological activities. OEO not only has a wide antibacterial spectrum, effectively fighting against a variety of pathogenic microorganisms, but also, because of its natural properties, helps us to avoid traditional veterinary drugs that may bring drug residues or cause drug resistance problems. This indicates OEO has great application potential in animal disease treatment, animal growth promotion, and animal welfare improvement. At present, the application of OEO in the fields of animal husbandry and veterinary medicine has achieved preliminary results. Studies have shown that adding OEO to animal feed can significantly improve the growth performance and health status of animals and reduce the occurrence of disease. At the same time, pharmacokinetic studies in animals show that the absorption, distribution, metabolism, and excretion processes of OEO in animals shows good bioavailability. In summary, oregano essential oil (OEO), as a substitute for natural veterinary drugs with broad application prospects, is gradually becoming a research hotspot in the field of animal husbandry and veterinary medicine. In the future, we look forward to further tapping the potential of OEO through more research and practice and making greater contributions to the sustainable development of the livestock and veterinary industries.
Collapse
Affiliation(s)
- Huan Cui
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (H.C.); (C.Z.); (L.C.); (Z.Y.); (M.Z.); (J.L.); (Y.Z.)
| | - Cheng Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (H.C.); (C.Z.); (L.C.); (Z.Y.); (M.Z.); (J.L.); (Y.Z.)
| | - Kai Su
- Department of Agricultural and Animal Husbandry Engineering, Cangzhou Technical College, Cangzhou 061000, China; (K.S.); (T.F.)
| | - Tingli Fan
- Department of Agricultural and Animal Husbandry Engineering, Cangzhou Technical College, Cangzhou 061000, China; (K.S.); (T.F.)
| | - Ligong Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (H.C.); (C.Z.); (L.C.); (Z.Y.); (M.Z.); (J.L.); (Y.Z.)
| | - Zitong Yang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (H.C.); (C.Z.); (L.C.); (Z.Y.); (M.Z.); (J.L.); (Y.Z.)
| | - Mingda Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (H.C.); (C.Z.); (L.C.); (Z.Y.); (M.Z.); (J.L.); (Y.Z.)
| | - Jiaqi Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (H.C.); (C.Z.); (L.C.); (Z.Y.); (M.Z.); (J.L.); (Y.Z.)
| | - Yuxin Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (H.C.); (C.Z.); (L.C.); (Z.Y.); (M.Z.); (J.L.); (Y.Z.)
| | - Juxiang Liu
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China; (H.C.); (C.Z.); (L.C.); (Z.Y.); (M.Z.); (J.L.); (Y.Z.)
| |
Collapse
|
10
|
Taibi M, Elbouzidi A, Haddou M, Baraich A, Loukili EH, Moubchir T, Allali A, Amine khoulati, Bellaouchi R, Asehraou A, Addi M, Salamatullah AM, Bourhia M, Siddique F, El Guerrouj B, Chaabane K. Phytochemical characterization and multifaceted bioactivity assessment of essential oil from Ptychotis verticillata Duby: Anti-diabetic, anti-tyrosinase, and anti-inflammatory activity. Heliyon 2024; 10:e29459. [PMID: 38699706 PMCID: PMC11063393 DOI: 10.1016/j.heliyon.2024.e29459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
The aim of this study is to explore the pharmacological properties of the essential oil derived from Ptychotis verticillata Duby (PVEO), a medicinal plant native to Morocco, focusing on its antidiabetic, anti-tyrosinase, and anti-inflammatory effects. Additionally, the study aims to characterize the phytochemical composition of PVEO and evaluate its potential as a natural therapeutic alternative for various health conditions. To achieve this, phytochemical analysis was conducted using gas chromatography-mass spectrometry (GC-MS). Furthermore, in vitro assessments were conducted to investigate PVEO's antidiabetic activity by inhibiting α-amylase, xanthine oxidase, and α-glucosidase. Tests were also undertaken to evaluate the anti-inflammatory effect of PVEO on RAW 264.7 cells stimulated by lipopolysaccharide (LPS), as well as its efficacy as an anti-tyrosinase agent and its lipoxygenase inhibition activity. The results of the phytochemical analysis revealed that PVEO is rich in terpene compounds, with percentages of 40.35 % γ-terpinene, 22.40 % carvacrol, and 19.77 % β-cymene. Moreover, in vitro evaluations demonstrated that PVEO exhibits significant inhibitory activity against α-amylase, xanthine oxidase, and α-glucosidase, indicating promising antidiabetic, and anti-gout potential. Furthermore, PVEO showed significant anti-tyrosinase activity, with an IC50 of 27.39 ± 0.44 μg/mL, and remarkable lipoxygenase inhibition (87.33 ± 2.6 %), suggesting its candidacy for dermatoprotection. Additionally, PVEO displayed a dose-dependent capacity to attenuate the production of NO and PGE2, two inflammatory mediators implicated in various pathologies, without compromising cellular viability. The findings of this study provide a solid foundation for future research on natural therapies and the development of new drugs, highlighting the therapeutic potential of PVEO in the treatment of gout, diabetes, pigmentation disorders, and inflammation.
Collapse
Affiliation(s)
- Mohamed Taibi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
- Centre de L’Oriental des Sciences et Technologies de L’Eau et de L’Environnement (COSTEE), Université Mohammed Premier, Oujda, 60000, Morocco
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
- Euro-Mediterranean University of Fes (UEMF), Fes, Morocco
| | - Mounir Haddou
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
- Centre de L’Oriental des Sciences et Technologies de L’Eau et de L’Environnement (COSTEE), Université Mohammed Premier, Oujda, 60000, Morocco
| | - Abdellah Baraich
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda, 60000, Morocco
| | | | - Tarik Moubchir
- Polyvalent Team in Research and Development, Polydisciplinary Faculty of Beni Mellal (FPBM), University Sultan Moulay Slimane (USMS), Beni Mellal, 23000, Morocco
| | - Aimad Allali
- High Institute of Nursing Professions and Health Techniques Annex Taza, Fez, Morocco
| | - Amine khoulati
- Faculté de Médecine et de Pharmacie, Université Mohammed Premier, Oujda, 60000, Morocco
| | - Reda Bellaouchi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda, 60000, Morocco
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda, 60000, Morocco
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, 11 P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, 80060, Agadir, Morocco
| | - Farhan Siddique
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Bouchra El Guerrouj
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
- Centre de L’Oriental des Sciences et Technologies de L’Eau et de L’Environnement (COSTEE), Université Mohammed Premier, Oujda, 60000, Morocco
| | - Khalid Chaabane
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
| |
Collapse
|
11
|
Alarabei AA, Abd Aziz NAL, AB Razak NI, Abas R, Bahari H, Abdullah MA, Hussain MK, Abdul Majid AMS, Basir R. Immunomodulating Phytochemicals: An Insight Into Their Potential Use in Cytokine Storm Situations. Adv Pharm Bull 2024; 14:105-119. [PMID: 38585461 PMCID: PMC10997936 DOI: 10.34172/apb.2024.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/17/2023] [Accepted: 07/14/2023] [Indexed: 04/09/2024] Open
Abstract
Phytochemicals are compounds found in plants that possess a variety of bioactive properties, including antioxidant and immunomodulatory properties. Recent studies have highlighted the potential of phytochemicals in targeting specific signalling pathways involved in cytokine storm, a life-threatening clinical condition resulting from excessive immune cell activation and oversupply of proinflammatory cytokines. Several studies have documented the immunomodulatory effects of phytochemicals on immune function, including their ability to regulate essential cellular and molecular interactions of immune system cells. This makes them a promising alternative for cytokine storm management, especially when combined with existing chemotherapies. Furthermore, phytochemicals have been found to target multiple signalling pathways, including the TNF-α/NF-κB, IL-1/NF-κB, IFN-γ/JAK/STAT, and IL-6/JAK-STAT. These pathways play critical roles in the development and progression of cytokine storm, and targeting them with phytochemicals represents a promising strategy for controlling cytokine release and the subsequent inflammation. Studies have also investigated certain families of plant-related constituents and their potential immunomodulatory actions. In vivo and in vitro studies have reported the immunomodulatory effects of phytochemicals, which provide viable alternatives in the management of cytokine storm syndrome. The collective data from previous studies suggest that phytochemicals represent a potentially functional source of cytokine storm treatment and promote further exploration of these compounds as immunomodulatory agents for suppressing specific signalling cascade responses. Overall, the previous research findings support the use of phytochemicals as a complementary approach in managing cytokine storm and improving patient outcomes.
Collapse
Affiliation(s)
- Abdusalam Abdullah Alarabei
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nur Aimi Liyana Abd Aziz
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nur Izah AB Razak
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Razif Abas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Maizaton Atmadini Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Khairi Hussain
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Amin Malik Shah Abdul Majid
- Natureceuticals Sdn Bhd, Kedah Halal Park, Kawasan Perindustrian Sg. Petani, 08000 Sg. Petani, Kedah, Malaysia
| | - Rusliza Basir
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
12
|
de Souza RL, Opretzka LCF, de Morais MC, Melo CDO, de Oliveira BEG, de Sousa DP, Villarreal CF, Oliveira EE. Nanoemulsion Improves the Anti-Inflammatory Effect of Intraperitoneal and Oral Administration of Carvacryl Acetate. Pharmaceuticals (Basel) 2023; 17:17. [PMID: 38276002 PMCID: PMC10821396 DOI: 10.3390/ph17010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Carvacryl acetate (CA) is a monoterpene obtained from carvacrol, which exhibits anti-inflammatory activity. However, its low solubility in aqueous media limits its application and bioavailability. Herein, we aimed to develop a carvacryl acetate nanoemulsion (CANE) and assess its anti-inflammatory potential in preclinical trials. The optimized nanoemulsion was produced by ultrasound, and stability parameters were characterized for 90 days using dynamic light scattering after hydrophilic-lipophilic balance (HLB) assessment. To evaluate anti-inflammatory activity, a complete Freund's adjuvant-induced inflammation model was established. Paw edema was measured, and local interleukin (IL)-1β levels were quantified using ELISA. Toxicity was assessed based on behavioral changes and biochemical assays. The optimized nanoemulsion contained 3% CA, 9% surfactants (HLB 9), and 88% water and exhibited good stability over 90 days, with no signs of toxicity. The release study revealed that CANE followed zero-order kinetics. Dose-response curves for CA were generated for intraperitoneal and oral administration, demonstrating anti-inflammatory effects by both routes; however, efficacy was lower when administered orally. Furthermore, CANE showed improved anti-inflammatory activity when compared with free oil, particularly when administered orally. Moreover, daily treatment with CANE did not induce behavioral or biochemical alterations. Overall, these findings indicate that nanoemulsification can enhance the anti-inflammatory properties of CA by oral administration.
Collapse
Affiliation(s)
- Rafael Limongi de Souza
- Laboratory of Synthesis and Drug Delivery, State University of Paraíba, Rua Horácio Trajano, SN, João Pessoa 58071-160, PB, Brazil
| | - Luíza Carolina França Opretzka
- Laboratório de Farmacologia e Terapêutica Experimental, Faculdade de Farmácia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, 147, Ondina, Salvador 40170-115, BA, Brazil (C.F.V.)
| | - Mayara Castro de Morais
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil (D.P.d.S.)
| | - Camila de Oliveira Melo
- Laboratory of Synthesis and Drug Delivery, State University of Paraíba, Rua Horácio Trajano, SN, João Pessoa 58071-160, PB, Brazil
| | | | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil (D.P.d.S.)
| | - Cristiane Flora Villarreal
- Laboratório de Farmacologia e Terapêutica Experimental, Faculdade de Farmácia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, 147, Ondina, Salvador 40170-115, BA, Brazil (C.F.V.)
| | - Elquio Eleamen Oliveira
- Laboratory of Synthesis and Drug Delivery, State University of Paraíba, Rua Horácio Trajano, SN, João Pessoa 58071-160, PB, Brazil
| |
Collapse
|
13
|
Tafish AM, El-Sherbiny M, Al‐Karmalawy AA, Soliman OAEA, Saleh NM. Carvacrol-Loaded Phytosomes for Enhanced Wound Healing: Molecular Docking, Formulation, DoE-Aided Optimization, and in vitro/in vivo Evaluation. Int J Nanomedicine 2023; 18:5749-5780. [PMID: 37849641 PMCID: PMC10578319 DOI: 10.2147/ijn.s421617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023] Open
Abstract
Background Despite recent advances in wound healing products, phytochemicals have been considered promising and attractive alternatives. Carvacrol (CAR), a natural phenolic compound, has been reported to be effective in wound healing. Purpose This work endeavored to develop novel CAR-loaded phytosomes for the enhancement of the wound healing process. Methods Molecular docking was performed to compare the affinities of the different types of phospholipids to CAR. Phytosomes were prepared by three methods (thin-film hydration, cosolvency, and salting out) using Lipoid S100 and Phospholipon 90H with three levels of saturation percent (0%, 50%, and 100%), and three levels of phospholipid molar percent (66.67%, 75%, and 80%). The optimization was performed using Design Expert where particle size, polydispersity index, and zeta potential were chosen as dependent variables. The optimized formula (F1) was further investigated regarding entrapment efficiency, TEM, 1H-NMR, FT-IR, DSC, X-RD, in vitro release, ex vivo permeation, and stability. Furthermore, it was incorporated into a hydrogel formulation, and an in vivo study was conducted to investigate the wound-healing properties of F1. Results F1 was chosen as the optimized formula prepared via the thin-film hydration method with a saturation percent and a phospholipid molar percent of zero and 66.67, respectively. TEM revealed the spherical shape of phytosomal vesicles with uniform size, while the results of 1H-NMR, FT-IR, DSC, and X-RD confirmed the formation of the phytosomal complex. F1 demonstrated a higher in vitro release and a slower permeation than free CAR. The wound area of F1-treated animals showed a marked reduction associated with a high degree of collagen fiber deposition and enhanced cellular proliferation. Conclusion F1 can be considered as a promising remedy for the enhancement of wound healing and hence it would be hoped to undergo further investigation.
Collapse
Affiliation(s)
- Ahmed Mowafy Tafish
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed A Al‐Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University, New Damietta, 34518, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| | | | - Noha Mohamed Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
14
|
Vaz MSM, de Almeida de Souza GH, Dos Santos Radai JA, Fraga TL, de Oliveira GG, Wender H, da Silva KE, Simionatto S. Antimicrobial activity of cinnamaldehyde against multidrug-resistant Klebsiella pneumoniae: an in vitro and in vivo study. Braz J Microbiol 2023; 54:1655-1664. [PMID: 37392293 PMCID: PMC10485196 DOI: 10.1007/s42770-023-01040-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/10/2023] [Indexed: 07/03/2023] Open
Abstract
The emergence and spread of multidrug-resistant (MDR) Klebsiella pneumoniae strains have increased worldwide, posing a significant health threat by limiting the therapeutic options. This study aimed to investigate the antimicrobial potential of cinnamaldehyde against MDR-K. pneumoniae strains in vitro and in vivo assays. The presence of resistant genes in MDR- K. pneumoniae strains were evaluated by Polymerase Chain Reaction (PCR) and DNA sequencing. Carbapenem-resistant K. pneumoniae strains show the blaKPC-2 gene, while polymyxin-resistant K. pneumoniae presented blaKPC-2 and alterations in the mgrB gene. Cinnamaldehyde exhibited an inhibitory effect against all MDR- K. pneumoniae evaluated. An infected mice model was used to determine the in vivo effects against two K. pneumoniae strains, one carbapenem-resistant and another polymyxin-resistant. After 24 h of cinnamaldehyde treatment, the bacterial load in blood and peritoneal fluids decreased. Cinnamaldehyde showed potential effectiveness as an antibacterial agent by inhibiting the growth of MDR-K. pneumoniae strains.
Collapse
Affiliation(s)
- Marcia Soares Mattos Vaz
- Laboratório de Pesquisa Em Ciências da Saúde, Universidade Federal da Grande Dourados-UFGD, Cidade Universitária, Itahum, Km 12, Dourados, Mato Grosso Do Sul, CEP: 79804970, Brazil
| | - Gleyce Hellen de Almeida de Souza
- Laboratório de Pesquisa Em Ciências da Saúde, Universidade Federal da Grande Dourados-UFGD, Cidade Universitária, Itahum, Km 12, Dourados, Mato Grosso Do Sul, CEP: 79804970, Brazil
| | - Joyce Alencar Dos Santos Radai
- Laboratório de Pesquisa Em Ciências da Saúde, Universidade Federal da Grande Dourados-UFGD, Cidade Universitária, Itahum, Km 12, Dourados, Mato Grosso Do Sul, CEP: 79804970, Brazil
| | - Thiago Leite Fraga
- Centro Universitário da Grande Dourados-UNIGRAN, Dourados, Mato Grosso Do Sul, Brazil
| | | | - Heberton Wender
- Grupo de Pesquisa Em Nano E Fótons, Instituto de Física, Universidade Federal de Mato Grosso Do Sul, Campo Grande, Brazil
| | - Kesia Esther da Silva
- Laboratório de Pesquisa Em Ciências da Saúde, Universidade Federal da Grande Dourados-UFGD, Cidade Universitária, Itahum, Km 12, Dourados, Mato Grosso Do Sul, CEP: 79804970, Brazil
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, 94304, USA
| | - Simone Simionatto
- Laboratório de Pesquisa Em Ciências da Saúde, Universidade Federal da Grande Dourados-UFGD, Cidade Universitária, Itahum, Km 12, Dourados, Mato Grosso Do Sul, CEP: 79804970, Brazil.
| |
Collapse
|
15
|
Grazul M, Kwiatkowski P, Hartman K, Kilanowicz A, Sienkiewicz M. How to Naturally Support the Immune System in Inflammation-Essential Oils as Immune Boosters. Biomedicines 2023; 11:2381. [PMID: 37760822 PMCID: PMC10525302 DOI: 10.3390/biomedicines11092381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Efficient functionality of the immune system is needed to fight against the development of infectious diseases, including, among others, serious recurrent chronic infections. Research has shown that many modern common diseases, such as inflammatory bowel diseases and cardiovascular diseases, e.g., thromboembolism, cancer, obesity, or depression, are connected with inflammatory processes. Therefore, new, good stimulators of the immune system's response are sought. They include synthetic compounds as well as biological preparations such as lipopolysaccharides, enzymes, bacterial metabolites, and secondary metabolites of plants, demonstrating a multidirectional effect. Essential oils are characterized by many invaluable activities, including antimicrobial, antioxidant, anti-inflammatory, and immunostimulating. Essential oils may stimulate the immune system via the utilization of their constituents, such as antibodies, cytokines, and dendritic cells. Some essential oils may stimulate the proliferation of immune-competent cells, including polymorphonuclear leukocytes, macrophages, dendritic cells, natural killer cells, and B and T lymphocytes. This review is focused on the ability of essential oils to affect the immune system. It is also possible that essential oil components positively interact with recommended anti-inflammatory and antimicrobial drugs. Thus, there is a need to explore possible synergies between essential oils and their active ingredients for medical use.
Collapse
Affiliation(s)
- Magdalena Grazul
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Kacper Hartman
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Anna Kilanowicz
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
16
|
Ghazwani M, Hani U, Alam A, Alqarni MH. Quality-by-Design-Assisted Optimization of Carvacrol Oil-Loaded Niosomal Gel for Anti-Inflammatory Efficacy by Topical Route. Gels 2023; 9:gels9050401. [PMID: 37232993 DOI: 10.3390/gels9050401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Niosomes are multilamellar vesicles that effectively transfer active ingredients into the skin's layers. To improve the active substance's penetration across the skin, these carriers are frequently utilized as topical drug delivery systems. Essential oils (EOs) have garnered significant interest in the field of research and development owing to their various pharmacological activities, cost-effectiveness, and simple manufacturing techniques. However, these ingredients undergo degradation and oxidation over time, leading to a loss of functionality. Niosome formulations have been developed to deal with these challenges. The main goal of this work was to create a niosomal gel of carvacrol oil (CVC) to improve its penetration into the skin for anti-inflammatory actions and stability. By changing the ratio of drug, cholesterol and surfactant, various formulations of CVC niosomes were formulated using Box Behnken Design (BBD). A thin-film hydration technique using a rotary evaporator was employed for the development of niosomes. Following optimization, the CVC-loaded niosomes had shown: 180.23 nm, 0.265, -31.70 mV, and 90.61% of vesicle size, PDI, zeta potential, and EE%. An in vitro study on drug release discovered the rates of drug release for CVC-Ns and CVC suspension, which were found to be 70.24 ± 1.21 and 32.87 ± 1.03, respectively. The release of CVC from niosomes best fit the Higuchi model, and the Korsmeyer-Peppas model suggests that the release of the drug followed the non-Fickian diffusion. In a dermatokinetic investigation, niosome gel significantly increased CVC transport in the skin layers when compared to CVC-conventional formulation gel (CVC-CFG). Confocal laser scanning microscopy (CLSM) of rat skin exposed to the rhodamine B-loaded niosome formulation showed a deeper penetration of 25.0 µm compared to the hydroalcoholic rhodamine B solution (5.0 µm). Additionally, the CVC-N gel antioxidant activity was higher than that of free CVC. The formulation coded F4 was selected as the optimized formulation and then gelled with carbopol to improve its topical application. Niosomal gel underwent tests for pH determination, spreadability, texture analysis, and CLSM. Our findings imply that the niosomal gel formulations could represent a potential strategy for the topical delivery of CVC in the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Mohammed Ghazwani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Mohammed H Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| |
Collapse
|
17
|
Mączka W, Twardawska M, Grabarczyk M, Wińska K. Carvacrol-A Natural Phenolic Compound with Antimicrobial Properties. Antibiotics (Basel) 2023; 12:antibiotics12050824. [PMID: 37237727 DOI: 10.3390/antibiotics12050824] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The main purpose of this article is to present the latest research related to selected biological properties of carvacrol, such as antimicrobial, anti-inflammatory, and antioxidant activity. As a monoterpenoid phenol, carvacrol is a component of many essential oils and is usually found in plants together with its isomer, thymol. Carvacrol, either alone or in combination with other compounds, has a strong antimicrobial effect on many different strains of bacteria and fungi that are dangerous to humans or can cause significant losses in the economy. Carvacrol also exerts strong anti-inflammatory properties by preventing the peroxidation of polyunsaturated fatty acids by inducing SOD, GPx, GR, and CAT, as well as reducing the level of pro-inflammatory cytokines in the body. It also affects the body's immune response generated by LPS. Carvacrol is considered a safe compound despite the limited amount of data on its metabolism in humans. This review also discusses the biotransformations of carvacrol, because the knowledge of the possible degradation pathways of this compound may help to minimize the risk of environmental contamination with phenolic compounds.
Collapse
Affiliation(s)
- Wanda Mączka
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Martyna Twardawska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Małgorzata Grabarczyk
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Katarzyna Wińska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
18
|
Joshi S, Kundu S, Priya VV, Kulhari U, Mugale MN, Sahu BD. Anti-inflammatory activity of carvacrol protects the heart from lipopolysaccharide-induced cardiac dysfunction by inhibiting pyroptosis via NLRP3/Caspase1/Gasdermin D signaling axis. Life Sci 2023; 324:121743. [PMID: 37120013 DOI: 10.1016/j.lfs.2023.121743] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
AIMS Lipopolysaccharide (LPS) is a well-known agent to induce septic conditions. Sepsis-induced cardiomyopathy has an overwhelming death rate. Carvacrol (CVL), a monoterpene phenol, has anti-inflammatory and antioxidant properties. The research aimed to investigate the effect of CVL on LPS-induced dysfunction in the heart. In this study, we evaluated the effect of CVL in LPS-stimulated H9c2 cardiomyoblast cells and Balb/c mice. MAIN METHODS LPS was used to induce septic conditions in H9c2 cardiomyoblast cells in vitro and in Balb/C mice. A survival study was conducted to assess the survival rate of mice after LPS and/or CVL treatment. KEY FINDINGS In vitro studies indicated that CVL inhibits reactive oxygen species (ROS) generation and abates pyroptosis mediated by NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome in H9c2 cells. In mice, CVL intervention improved the survival rate in septic conditions. The CVL administration markedly improved the echocardiographic parameters and alleviated the LPS-induced reduction in the ejection fraction (%) and fraction shortening (%). The CVL intervention restored the myocardial antioxidants and histopathological alterations and decreased the pro-inflammatory cytokine contents in the heart. Further findings disclosed that CVL reduced the protein levels of NLRP3, apoptosis-associated speck-like protein (ASC), caspase 1, interleukin (IL)-18, IL-1β, and the pyroptosis-indicative protein, gasdermin-D (GSDMD) in the heart. The autophagy-indicative proteins, beclin 1, and p62, in the heart were also restored in the CVL-treated group. SIGNIFICANCE Altogether, our findings demonstrated that CVL has a beneficial effect and can be a potential molecule against sepsis-induced myocardial dysfunction.
Collapse
Affiliation(s)
- Shubhang Joshi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101, Assam, India
| | - Sourav Kundu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101, Assam, India
| | - Vikram Vamsi Priya
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101, Assam, India
| | - Uttam Kulhari
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101, Assam, India
| | - Madhav Nilakanth Mugale
- Toxicology & Experimental Medicine, CSIR- Central Drug Research Institute (CDRI), Lucknow 226 031, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101, Assam, India.
| |
Collapse
|
19
|
Combined carvacrol and cilostazol ameliorate ethanol-induced liver fibrosis in rats: Possible role of SIRT1/Nrf2/HO-1 pathway. Int Immunopharmacol 2023; 116:109750. [PMID: 36709594 DOI: 10.1016/j.intimp.2023.109750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/29/2022] [Accepted: 01/14/2023] [Indexed: 01/28/2023]
Abstract
Carvacrol is a natural phenolic monoterpenoid, and cilostazol is a selective phosphodiesterase-3 inhibitor with antioxidant, anti-inflammatory and antiapoptotic effects. This experiment aimed to explore the hepatoprotective effects of carvacrol and cilostazol alone and in combination against alcoholic liver fibrosis (ALF), and the underlying mechanisms, using silymarin as a reference anti-fibrotic product. ALF was induced by oral administration of ethanol (1 ml/100 g/day) thrice per week. Silymarin (100 mg/kg), carvacrol (70 mg/kg), cilostazol (50 mg/kg), or carvacrol + cilostazol combination were administered daily and concurrently with ethanol for six weeks. Hepatic changes were evaluated by quantifying serum biomarkers of liver injury, hepatic MDA, GSH and NOx as oxidative stress markers, interleukin (IL)-10 as an anti-inflammatory cytokine, 4-hydroxyproline (4-HYP) as a collagen synthesis indicator, transforming growth factor (TGF)-β1 as a profibrogenic cytokine, α-smooth muscle actin (α-SMA) as a marker of hepatic stellate cells (HSCs) activation, histopathological (necroinflammation and fibrosis) scores and hepatic sirtuin-1 (SIRT1), nuclear factor-erythroid 2-related factor 2 (Nrf2), and hemeoxygenase-1 (HO-1) mRNA levels. Our results showed that carvacrol, cilostazol, and their combination significantly ameliorated ethanol-induced hepatic fibrosis manifested as improving hepatic functions and histopathological features, attenuating α-SMA immunostaining, reducing TGF-β1 and 4-HYP levels, suppressing oxidativeinjury and elevating IL-10 contents. Such effects were accompanied by upregulating SIRT1, Nrf2 and HO-1 genes. This work disclosed for the first time the hepatoprotective effect of carvacrol against ALF and, to a greater extent, with carvacrol + cilostazol combination that could be partially accredited to SIRT1/Nrf2/HO-1 pathway with consequent antioxidant, anti-inflammatory, and anti-fibrotic features.
Collapse
|
20
|
Anyamele T, Onwuegbuchu PN, Ugbogu EA, Ibe C. Phytochemical composition, bioactive properties, and toxicological profile of Tetrapleura tetraptera. Bioorg Chem 2023; 131:106288. [PMID: 36470194 DOI: 10.1016/j.bioorg.2022.106288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
The use of medicinal plants has gained renewed wide popularity in Africa, Asia, and most parts of the world because of the decreasing efficacy of synthetic drugs. Thus, natural products serve as a potent source of alternative remedy. Tetrapleura tetraptera is a medicinal plant with cultural and traditional significance in West Africa. In addition to the plant being commonly used as a spice in the preparation of traditional spicy food for postpartum care it is also widely used to constitute herbal concoctions and decoctions for treatment of diseases. This review aimed to provide an up-to-date information on the ethnomedicinal uses, pharmacological activities and phytoconstituents of T. tetraptera. Preclinical studies regarding the plant's toxicity profile were also reviewed. For this updated review, literature search was done on PubMed, Science Direct, Wiley, and Google Scholar databases using the relevant keywords. The review used a total of 106 papers that met the inclusion criteria from January 1989 - February 2022 and summarised the bioactivities that have been reported for the rich phytoconstituents of T. tetraptera studied using various chemical methods. Considering the huge report, the review focused on the antimicrobial and antiinflammatory activities of the plant extracts and isolated compounds. Aridan, aridanin and several bioactive compounds of T. tetraptera have shown pharmacological activities though their mechanisms of action are yet to be fully understood. This study also highlighted the influence of plant parts and extraction solvents on its biological activities. It also presented data on the toxicological profile of the plant extracts using different models. From cultural uses to modern pharmacological research the bioactive compounds of T. tetraptera have proved effective in infectious disease management. We hope that this paper provided a robust summary of the biological activities and toxicological profile of T. tetraptera, thus calling for more research into the pharmacological and pharmacokinetic activities of natural products to help combat the growing threat of drug resistance and provide guidelines for their ethnomedicinal uses.
Collapse
Affiliation(s)
- ThankGod Anyamele
- Department of Microbiology, Faculty of Biological Sciences, Abia State University, Uturu, Nigeria
| | | | - Eziuche Amadike Ugbogu
- Department of Biochemistry, Faculty of Biological Sciences, Abia State University, Uturu, Nigeria
| | - Chibuike Ibe
- Department of Microbiology, Faculty of Biological Sciences, Abia State University, Uturu, Nigeria.
| |
Collapse
|
21
|
Phytochemical Compounds, Acute Toxicity, Anti-Inflammatory and Antioxidant Activities of Thymus leptobotrys Murb Essential Oil. Molecules 2023; 28:molecules28031355. [PMID: 36771022 PMCID: PMC9920518 DOI: 10.3390/molecules28031355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
The present study was conducted to evaluate the acute toxicity and anti-inflammatory effect in vivo, as well as the antioxidant activity, of the essential oil of Thymus leptobotrys Murb. The results indicate that the tested essential oil is non-toxic, with an estimated LD50 of 2500 mg kg-1 of mice body weight. The anti-inflammatory test revealed that, at a dose of 200 mg kg-1, the essential oil reduced rat paw edemas by 89.59% within 3 h of oral administration, this reduction in edema size was greater than that obtained with indomethacin (75.78%). The antioxidant activity (IC50) of Thymus leptobotrys Murb essential oil was 346.896 µg mL-1 and 861.136 mg Trolox equivalent/g essential oil in the 2.2-diphenyl1-picryl-hydrazyl radical scavenging capacity (DPPH) and Trolox equivalent antioxidant capacity (TEAC) assays, respectively. The toxicity test reveals an LD50 greater than 2500 mg kg-1 of body weight of mice which classifies it within category 5 of non-toxic substances that can be administered orally. These results suggest that the essential oil of Thymus leptobotrys Murb is not toxic, and it represents a valuable source of anti-inflammatory and antioxidant metabolites.
Collapse
|
22
|
Cunha MGDA, Alba DF, Leal KW, Marcon H, Milarch CF, Baldissera MD, Kavalek RL, Kempka AP, Vedovatto M, Silva ASDA. Microencapsulated herbal components in the diet of Lacaune ewes: impacts on physiology and milk production and quality. AN ACAD BRAS CIENC 2023; 95:e20201805. [PMID: 37075373 DOI: 10.1590/0001-3765202320201805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/07/2021] [Indexed: 04/21/2023] Open
Abstract
This study aimed to determine whether the addition of a microencapsulated herbal blend (MHB) based on thymol, carvacrol, and cinnamaldehyde in dairy sheep feed would improve production efficiency, milk quality, and animal health. Thirty lactating Lacaune ewes were divided into three groups: Control (T0), 150 mg blend/kg of feed (T150), and 250 mg blend/kg of feed (T250). Milk was measured before the beginning of the experiment (d 0), at the end of the adaptation period (d 15), and during the experiment (d 20). In milk samples, was measured the composition, somatic cell count (SCC), reactive oxygen species (ROS), lipoperoxidation (LPO), and total antioxidant capacity. The MHB improved the milk production (only T150 vs. T0 sheep on d 20), productive efficiency and feed efficiency, and reduced the milk SCC (only T250 vs. T0 sheep, on d 20), ROS and tended to reduce the milk levels of LPO (only T250 vs. T0 sheep on d 20). Also, MHB reduced the blood levels of neutrophils and ROS (only T250 vs. T0 sheep on d 20) and increased total protein and globulin levels. Thus, a microencapsulated blend of thymol, carvacrol, and cinnamaldehyde improved the productive performance and milk quality of sheep.
Collapse
Affiliation(s)
- Marily G DA Cunha
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina (UDESC), Rua Beloni Trombeta Zanini, 680-E, Santo Antônio, 89815-630 Chapecó, SC, Brazil
| | - Davi Fernando Alba
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina (UDESC), Rua Beloni Trombeta Zanini, 680-E, Santo Antônio, 89815-630 Chapecó, SC, Brazil
| | - Karoline W Leal
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina (UDESC), Rua Beloni Trombeta Zanini, 680-E, Santo Antônio, 89815-630 Chapecó, SC, Brazil
| | - Hiam Marcon
- Curso de Zootecnia, UDESC, Rua Beloni Trombeta Zanini, 680-E, Santo Antônio, 89815-630 Chapecó, SC, Brazil
| | - Carine F Milarch
- Programa de Pós-Graduação em Bioquímica Toxicologica, Universidade Federal de Santa Maria (UFSM), Avenida Roraima, 1000, Camobi, 97105-900 Santa Maria, SC, Brazil
- BOM JESUS/IELUSC, Instituto Superior e Centro Educacional Luterano, Rua Princesa Isabel, 438, Centro, 89201-270 Joinville, SC, Brazil
| | - Matheus D Baldissera
- Programa de Pós-Graduação em Farmacologia, UFSM, Avenida Roraima, 1000, Camobi, 97105-900 Santa Maria, SC, Brazil
| | - Renata L Kavalek
- Departamento de Engenharia de Alimentos, UDESC, Rua Fernando de Noronha, Km 573 - Margens da BR 282, Caixa Postal 47, 89870-000 Pinhalzinho, SC, Brazil
| | - Aniela P Kempka
- Departamento de Engenharia de Alimentos, UDESC, Rua Fernando de Noronha, Km 573 - Margens da BR 282, Caixa Postal 47, 89870-000 Pinhalzinho, SC, Brazil
| | - Marcelo Vedovatto
- Universidade Estadual de Mato Grosso do Sul, Departamento de Zootecnia, Cidade Universitária de Dourados, Caixa Postal 351, 79804-970 Aquidauana, MS, Brazil
| | - Aleksandro S DA Silva
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina (UDESC), Rua Beloni Trombeta Zanini, 680-E, Santo Antônio, 89815-630 Chapecó, SC, Brazil
| |
Collapse
|
23
|
Sharma RK, Dey G, Banerjee P, Maity JP, Lu CM, Siddique JA, Wang SC, Chatterjee N, Das K, Chen CY. New aspects of lipopeptide-incorporated nanoparticle synthesis and recent advancements in biomedical and environmental sciences: a review. J Mater Chem B 2022; 11:10-32. [PMID: 36484467 DOI: 10.1039/d2tb01564a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The toxicity of metal nanoparticles has introduced promising research in the current scenario since an enormous number of people have been potentially facing this problem in the world. The extensive attention on green nanoparticle synthesis has been focussed on as a vital step in bio-nanotechnology to improve biocompatibility, biodegradability, eco-friendliness, and huge potential utilization in various environmental and clinical assessments. Inherent influence on the study of green nanoparticles plays a key role to synthesize the controlled and surface-influenced molecule by altering the physical, chemical, and biological assets with the provision of various precursors, templating/co-templating agents, and supporting solvents. However, in this article, the dominant characteristics of several kinds of lipopeptide biosurfactants are discussed to execute a critical study of factors affecting synthesis procedure and applications. The recent approaches of metal, metal oxide, and composite nanomaterial synthesis have been deliberated as well as the elucidation of the reaction mechanism. Furthermore, this approach shows remarkable boosts in the production of nanoparticles with the very less employed harsh and hazardous processes as compared to chemical or physical method-based nanoparticle synthesis. This study also shows that the advances in strain selection for green nanoparticle production could be a worthwhile and strong economical approach in futuristic medical science research.
Collapse
Affiliation(s)
- Raju Kumar Sharma
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.,Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| | - Gobinda Dey
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Pritam Banerjee
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Jyoti Prakash Maity
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Chemistry, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Chung-Ming Lu
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Chemical Engineering, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | | | - Shau-Chun Wang
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Nalonda Chatterjee
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| | - Koyeli Das
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan. .,Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Chien-Yen Chen
- Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan.
| |
Collapse
|
24
|
In Vitro Antioxidant, Antimicrobial, Anticoccidial, and Anti-Inflammatory Study of Essential Oils of Oregano, Thyme, and Sage from Epirus, Greece. Life (Basel) 2022; 12:life12111783. [PMID: 36362938 PMCID: PMC9693314 DOI: 10.3390/life12111783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Origanum vulgare subsp. hirtum, Thymus vulgaris, and Salvia fructicosa are aromatic plants commonly found in Mediterranean countries and are traditionally used in Greece as a remedy for humans, since they are well known as potent antibacterial, antioxidant, and anti-inflammatory agents. Essential oils (EOs) derived from plants cultivated in the mountainous region of Epirus, Greece, were investigated for their inhibitory activity against key microorganisms with relevance to avian health, while also assessing their antioxidant and anti-inflammatory activity. The total phenolic content (TPC) of the EOs was estimated according to the Folin−Ciocalteu method, while the antioxidant capacity was tested through the EOs’ ability to scavenge free radicals by means of the DPPH, ABTS, and FRAP assays. Antibacterial and anti-inflammatory effects were examined by the agar disc diffusion method and the lipoxygenase (LOX) inhibition test, respectively. Furthermore, the EOs’ ability to inhibit the invasion of sporozoites of Eimeria tenella (Wisconsin strain) along with any toxic effects were assayed in Madin−Darby bovine kidney (MDBK) cells. The antioxidant activity of the EOs was observed in descending order: oregano > thyme > sage. The antimicrobial effects of thyme and oregano were equivalent and higher than that of sage, while the anti-inflammatory effect of thyme was higher compared to both sage and oregano. The intracellular invasion of sporozoites was evaluated by the detection of E. tenella DNA by qPCR from cell monolayers harvested at 2 and 24 h post-infection. Parasite invasion was inhibited by the addition of oregano essential oil at the concentration of 100 μg/mL by 83% or 93% after 2 or 24 h, respectively, and was higher compared to the addition of thyme and sage, which had similar effects, but at a less intensive level. The cytotoxic assessment of all three essential oils revealed that they had no effect on MDBK cells compared to dimethyl sulfoxide (DMSO), used as the control substance. The supplementation of oregano, thyme, and sage essential oils had a potent antioxidant, anti-inflammatory, antimicrobial, and anticoccidial in vitro effect that is comparable to synthetic substances or approved drugs, justifying the need for further evaluation by in vivo studies in broilers reared in the absence of antimicrobial and anticoccidial drugs or synthetic antioxidant and/or anti-inflammatory compounds.
Collapse
|
25
|
Duarte ME, Kim SW. Phytobiotics from Oregano Extracts Enhance the Intestinal Health and Growth Performance of Pigs. Antioxidants (Basel) 2022; 11:antiox11102066. [PMID: 36290789 PMCID: PMC9598381 DOI: 10.3390/antiox11102066] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 02/08/2023] Open
Abstract
This study aimed to investigate the effects of phytobiotics on the intestinal health and growth performance of pigs. Totals of 40 newly-weaned pigs with 6.4 ± 0.3 kg BW (Exp. 1) and 120 growing pigs with 27.9 ± 2.3 kg BW (Exp. 2) were allotted in RCBD in a 2 × 2 factorial arrangement. The factors were: antibiotics as growth promoter (AGP) and phytobiotics (PHY). Pigs were fed experimental diets during 21 d (Exp. 1) and 42 d (Exp. 2). Growth performance, health parameters, and nutrient digestibility were evaluated. In Exp. 1, AGP diet increased (p < 0.05) ADG and G:F compared with a diet without AGP or PHY and a diet with AGP combined with PHY. PHY decreased (p < 0.05) TNF-α and IgG in the jejunum and protein carbonyl in plasma, whereas it increased (p < 0.05) the villus height. In Exp. 2, AGP or PHY diets increased (p < 0.05) ADG, ADFI, and G:F compared with a diet without AGP or PHY and a diet with AGP combined with PHY. PHY decreased (p < 0.05) IgG and PC in plasma. Collectively, AGP and PHY improved growth performance by reducing oxidative stress and enhancing immune status and jejunal morphology. However, the combinational use of phytobiotics with antibiotics suppressed their effect.
Collapse
|
26
|
Souza RLD, Dantas AGB, Melo CDO, Felício IM, Oliveira EE. Nanotechnology as a tool to improve the biological activity of carvacrol: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
de Lima FO, Lauria PSS, do Espírito-Santo RF, Evangelista AF, Nogueira TMO, Araldi D, Soares MBP, Villarreal CF. Unveiling Targets for Treating Postoperative Pain: The Role of the TNF-α/p38 MAPK/NF-κB/Nav1.8 and Nav1.9 Pathways in the Mouse Model of Incisional Pain. Int J Mol Sci 2022; 23:11630. [PMID: 36232927 PMCID: PMC9570460 DOI: 10.3390/ijms231911630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Although the mouse model of incisional pain is broadly used, the mechanisms underlying plantar incision-induced nociception are not fully understood. This work investigates the role of Nav1.8 and Nav1.9 sodium channels in nociceptive sensitization following plantar incision in mice and the signaling pathway modulating these channels. A surgical incision was made in the plantar hind paw of male Swiss mice. Nociceptive thresholds were assessed by von Frey filaments. Gene expression of Nav1.8, Nav1.9, TNF-α, and COX-2 was evaluated by Real-Time PCR in dorsal root ganglia (DRG). Knockdown mice for Nav1.8 and Nav1.9 were produced by antisense oligodeoxynucleotides intrathecal treatments. Local levels of TNF-α and PGE2 were immunoenzymatically determined. Incised mice exhibited hypernociception and upregulated expression of Nav1.8 and Nav1.9 in DRG. Antisense oligodeoxynucleotides reduced hypernociception and downregulated Nav1.8 and Nav1.9. TNF-α and COX-2/PGE2 were upregulated in DRG and plantar skin. Inhibition of TNF-α and COX-2 reduced hypernociception, but only TNF-α inhibition downregulated Nav1.8 and Nav1.9. Antagonizing NF-κB and p38 mitogen-activated protein kinase (MAPK), but not ERK or JNK, reduced both hypernociception and hyperexpression of Nav1.8 and Nav1.9. This study proposes the contribution of the TNF-α/p38/NF-κB/Nav1.8 and Nav1.9 pathways to the pathophysiology of the mouse model of incisional pain.
Collapse
Affiliation(s)
- Flávia Oliveira de Lima
- Health Department, State University of Feira de Santana, Feira de Santana 44036900, BA, Brazil
| | | | | | - Afrânio Ferreira Evangelista
- SENAI Institute of Innovation in Advanced Health Systems, University Center SENAI/CIMATEC, Salvador 41650010, BA, Brazil
| | | | - Dionéia Araldi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas 13083-862, SP, Brazil
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Salvador 40296710, BA, Brazil
- SENAI Institute of Innovation in Advanced Health Systems, University Center SENAI/CIMATEC, Salvador 41650010, BA, Brazil
| | | |
Collapse
|
28
|
Demirci F, Teralı K, Karadağ AE, Biltekin SN, Ak Sakallı E, Demirci B, Koşar M, Başer KHC. In Vitro and In Silico Evaluation of ACE2 and LOX Inhibitory Activity of Origanum Essential Oils and Carvacrol. PLANTA MEDICA 2022. [PMID: 35439836 DOI: 10.1055/a-1828-2479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Origanum spp. are used both for culinary purposes and for their biological activities. In this study, commercial Origanum majorana, Origanum minutiflorum, Origanum vulgare, and Origanum onites essential oils and their prominent constituent carvacrol were evaluated for their in vitro and in silico angiotensin-converting enzyme 2 and lipoxygenase enzyme inhibitory potentials. The essential oils were analysed by gas chromatography-flame ionisation detection and gas chromatography-mass spectrometry, where carvacrol was identified as the major component (62 - 81%), confirming the quality. In vitro enzyme inhibition assays were conducted both with the essential oils (20 µg/mL) and with carvacrol (5 µg/mL). The comparative values of angiotensin-converting enzyme 2 percent inhibition for O. majorana, O. minutiflorum, O. vulgare, and O. onites essential oils were determined as 85.5, 79.1, 74.3, and 42.8%, respectively. As a result of the enzyme assays, carvacrol showed 90.7% in vitro angiotensin-converting enzyme 2 inhibitory activity. The in vitro lipoxygenase inhibition of the essential oils (in the same order) was 89.4, 78.9, 81.1, and 73.5%, respectively, where carvacrol showed 74.8% inhibition. In addition, protein-ligand docking and interaction profiling was used to gain structural and mechanistic insights into the angiotensin-converting enzyme 2 and lipoxygenase inhibitory potentials of major Origanum essential oil constituents. The in silico findings agreed with the significant enzyme inhibition activity observed in vitro. Further in vivo studies are suggested to confirm the safety and efficacy of the oils.
Collapse
Affiliation(s)
- Fatih Demirci
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, N. Cyprus, Mersin 10, Turkey
| | - Kerem Teralı
- Department of Medical Biochemistry, Faculty of Medicine, Girne American University, Kyrenia, Mersin 10, Turkey
| | - Ayşe Esra Karadağ
- Department of Pharmacognosy, School of Pharmacy, Istanbul Medipol University, Beykoz, Istanbul, Turkey
- Graduate School of Health Sciences, Anadolu University, Eskişehir, Turkey
| | - Sevde Nur Biltekin
- Department of Pharmaceutical Microbiology, School of Pharmacy, Istanbul Medipol University, Beykoz, Istanbul, Turkey
- Institute of Sciences, Istanbul University, Istanbul, Turkey
| | - Ezgi Ak Sakallı
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, N. Cyprus, Mersin 10, Turkey
| | - Betül Demirci
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Müberra Koşar
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, N. Cyprus, Mersin 10, Turkey
| | - K Hüsnü Can Başer
- Department of Pharmacognosy, Faculty of Pharmacy, Near East University, Nicosia, N. Cyprus, Mersin 10, Turkey
| |
Collapse
|
29
|
Çengel Kurnaz S, Kuruca N, Güvenç D, Kaya MT, Güvenç T. Topical Administration of Carvacrol Improves Healing in Nasal Septal Perforation: An Experimental Animal Study. Am J Rhinol Allergy 2022; 36:503-509. [PMID: 35238647 DOI: 10.1177/19458924221085157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Clinicians are exploring alternative treatments for nasal septum perforation since surgical treatment is challenging. OBJECTIVE The effects of topical carvacrol on the healing of nasal septal perforation were investigated in an animal model. METHOD Twenty-one male New Zealand rabbits were randomly divided into three equal groups. A 5-mm circular biopsy punch was used to perforate the nasal septum behind the columella. For 14 days, bilateral gelatin sponges impregnated with carvacrol in olive oil in group 1, and only olive oil in group 2 were placed. Perforation only was performed in the control group. Animals were then sacrificed, and their nasal septums were removed. The closure of the perforation was measured, and samples were examined histopathologically. MMP-9 reactivity was evaluated using the immunoperoxidase technique. Histopathologic parameters were scored as 0 = none, 1 = mild, 2 = moderate, and 3 = strong. RESULTS The septum perforation closure in the carvacrol group was statistically significant compared with the other groups (p < 0.001). Cartilage regeneration, connective tissue density, and MMP-9 immunoreactivity were significantly higher in the carvacrol group (p = 0.020, p = 0.009, and p = 0.008, respectively). CONCLUSION Topically administered carvacrol enhances wound healing in rabbit nasal septum perforation. It accelerated perforation closure by increasing cartilage regeneration, connective tissue, and MMP-9 expression.
Collapse
Affiliation(s)
- Senem Çengel Kurnaz
- Department of Otorhinolaryngology and Head & Neck Surgery, Ondokuz Mayis University Faculty of Medicine, Samsun, Turkey
| | - Nilüfer Kuruca
- Department of Pathology, Ondokuz Mayis University Faculty of Veterinary Medicine, Samsun, Turkey
| | - Dilek Güvenç
- Department of Pharmacology, Ondokuz Mayis University Faculty of Veterinary Medicine, Samsun, Turkey
| | - Muhammed Taha Kaya
- Department of Pathology, Ondokuz Mayis University Faculty of Veterinary Medicine, Samsun, Turkey
| | - Tolga Güvenç
- Department of Pathology, Ondokuz Mayis University Faculty of Veterinary Medicine, Samsun, Turkey
| |
Collapse
|
30
|
Macêdo CAF, Paiva GOD, Menezes PMN, Ribeiro TF, Brito MC, Vilela DAD, Duarte Filho LAMDS, Ribeiro FPRDA, Lucchese AM, Lima JTD, Silva FS. Lippia origanoides essential oil induces tocolytic effect in virgin rat uterus and inhibits writhing in a dysmenorrhea mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115099. [PMID: 35167934 DOI: 10.1016/j.jep.2022.115099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The species Lippia origanoides Kunth, popularly known as "salva-de-marajó", is used in Brazilian traditional "quilombola" communities to treat menstrual cramps and uterine inflammation. AIM OF THE STUDY Evaluate the spasmolytic activity of Lippia origanoides essential oil (LOO) on experimental models of uterine conditions related to menstrual cramps and investigate its mechanism of action. MATERIALS AND METHODS Virgin rat-isolated uterus was mounted in the organ bath apparatus to evaluate the spasmolytic effect of LOO on basal tonus and contractions induced by carbachol, KCl, or oxytocin. We used pharmacological agents to verify the relaxation mechanism of LOO. The evaluation of uterine contractility in virgin rats, after treatment with LOO for three consecutive days, was carried out by the construction of a concentration-response curve with oxytocin or carbachol. The primary dysmenorrhea animal model was replicated with an injection of estradiol cypionate in female mice for three consecutive days, followed by intraperitoneal application of oxytocin. RESULTS LOO relaxed the rat uterus precontracted with 10-2 IU/mL oxytocin (logEC50 = 1.98 ± 0.07), 1 μM carbachol (logEC50 = 1.42 ± 0.07) or 60 mM KCl (logEC50 = 1.53 ± 0.05). It was also able relax uterus on spontaneous contractions (logEC50 = 0.41 ± 0.05). Preincubation with glibenclamide, propranolol, phentolamine or L-NAME in contractions induced by carbachol did not alter significantly the relaxing effect of LOO. However, in the presence of 4-aminopyridine, CsCl or tetraethylammonium there was a reduction of LOO potency, whereas the blockers methylene blue, ODQ, aminophylline and heparin potentiated the LOO relaxing effect. Preincubation with LOO in a Ca2+ free medium at concentrations of 27 μg/mL or 81 μg/mL reduced the contraction induced by carbachol. The administration of LOO for 3 days did not alter uterus contractility. The treatment with LOO at 30 or 100 mg/kg intraperitoneally, or 100 mg/kg orally, inhibited writhing in female mice. The association of LOO at 10 mg/kg with nifedipine or mefenamic acid potentiated writhing inhibition in mice. CONCLUSIONS The essential oil of L. origanoides has tocolytic activity in rat isolated uterus pre-contracted with KCl, oxytocin, or carbachol. This effect is possibly related to the opening of potassium channels (Kir, KV, and KCa), cAMP increase, and diminution of intracellular Ca2+. This relaxant effect, probably, contributed to reduce the number of writhings in an animal model of dysmenorrhea being potentiated by nifedipine or mefenamic acid. Taken together, the results here presented indicate that this species has a pharmacological potential for the treatment of primary dysmenorrhea, supporting its use in folk medicine.
Collapse
Affiliation(s)
| | - Gabriela Olinda de Paiva
- Laboratório de Farmacologia Experimental, Colegiado de Farmácia, Universidade Federal do Vale do São Francisco (UNIVASF), Brazil.
| | - Pedro Modesto Nascimento Menezes
- Laboratório de Farmacologia Experimental, Colegiado de Farmácia, Universidade Federal do Vale do São Francisco (UNIVASF), Brazil; Rede Nordeste de Biotecnologia, Universidade Federal Rural de Pernambuco (UFRPE), Brazil.
| | - Tiago Feitosa Ribeiro
- Rede Nordeste de Biotecnologia, Universidade Federal Rural de Pernambuco (UFRPE), Brazil.
| | - Mariana Coelho Brito
- Laboratório de Farmacologia Experimental, Colegiado de Farmácia, Universidade Federal do Vale do São Francisco (UNIVASF), Brazil.
| | | | | | | | - Angélica Maria Lucchese
- Laboratório de Química de Produtos Naturais e Bioativos, Departamento de Ciências Exatas, Universidade Estadual de Feira de Santana (UEFS), Brazil.
| | - Julianeli Tolentino de Lima
- Laboratório de Farmacologia Experimental, Colegiado de Farmácia, Universidade Federal do Vale do São Francisco (UNIVASF), Brazil.
| | - Fabrício Souza Silva
- Pós-graduação em Biociênicas, Universidade Federal do Vale do São Francisco (UNIVASF), Brazil; Laboratório de Farmacologia Experimental, Colegiado de Farmácia, Universidade Federal do Vale do São Francisco (UNIVASF), Brazil.
| |
Collapse
|
31
|
Riaz M, Al Kury LT, Atzaz N, Alattar A, Alshaman R, Shah FA, Li S. Carvacrol Alleviates Hyperuricemia-Induced Oxidative Stress and Inflammation by Modulating the NLRP3/NF-κB Pathwayt. Drug Des Devel Ther 2022; 16:1159-1170. [PMID: 35496367 PMCID: PMC9041362 DOI: 10.2147/dddt.s343978] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/22/2022] [Indexed: 12/20/2022] Open
Abstract
Purpose Gouty arthritis is generally induced by the accumulation of monosodium urate (MSU) crystals in the joints due to elevated serum uric acid levels, potentially leading to serious pathological disorders such as nephrolithiasis, renal failure, and acute gouty arthritis. In this study, we aimed to validate the anti-gout effects of carvacrol, a phenolic monoterpene. Materials and Methods Male Sprague–Dawley rats were divided into normal saline, disease group by injecting potassium mono-oxonate (PO) at a dose of 250 mg/kg, and three treatment groups, either with carvacrol 20 mg/kg or 50 mg/kg and 10 mg/kg allopurinol. The blood and tissue samples were subsequently collected and analyzed using different biochemical and histopathological techniques. Results Our results revealed a significant increase in the serum levels of oxidative stress-related markers, namely, uric acid and C-reactive protein (CRP), and NLRP3 inflammasome-dependent inflammatory mediators, including nuclear factor kappa B (NF-κB) and tumor necrosis factor-alpha (TNF-α). Carvacrol administration for seven consecutive days exhibited significant anti-hyperuricemic and anti-inflammatory effects in a dose-dependent manner. Notably, the 50 mg/kg carvacrol treatment was observed to produce results similar to the allopurinol treatment. Furthermore, the renal safety of carvacrol was confirmed by the renal function test. Conclusion Carvacrol potentially alleviates hyperuricemia-induced oxidative stress and inflammation by regulating the ROS/NRLP3/NF-κB pathway, thereby exerting protective effects against joint degeneration.
Collapse
Affiliation(s)
- Muhammad Riaz
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Lina Tariq Al Kury
- Department of Natural and Health Sciences Zayed University, Abu Dhabi, United Arab Emirates
| | - Noreen Atzaz
- Department of Pathology, Benazir Bhutto Hospital, Rawalpindi, Pakistan
| | - Abdullah Alattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Fawad Ali Shah
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen, Shenzhen, People's Republic of China
| |
Collapse
|
32
|
Bora L, Avram S, Pavel IZ, Muntean D, Liga S, Buda V, Gurgus D, Danciu C. An Up-To-Date Review Regarding Cutaneous Benefits of Origanum vulgare L. Essential Oil. Antibiotics (Basel) 2022; 11:antibiotics11050549. [PMID: 35625193 PMCID: PMC9137521 DOI: 10.3390/antibiotics11050549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the plethora of pharmacological activities reported in the literature, Origanum vulgare L. is a valuable aromatic plant for the medicine of the XXI century. Recent studies highlight that Origanum vulgare L. essential oil (OvEo) has gained attention in the dermatological field due to the cosmeceutical potential correlated with the presence of thymol and carvacrol. As a result of the fulminant expansion of bacterial resistance to antibiotics and the aggressiveness of skin infections, OvEo was extensively studied for its antimicrobial activity against Staphyloccocus spp. and Pseudomonas aeruginosa. Moreover, researchers have also assessed the anti-inflammatory activity of OvEo, suggesting its tissue remodeling and wound healing potential. Whereas OvEo comprises important biological activities that are used in a wide range of pathologies, recently, essential oils have shown great potential in the development of new therapeutic alternatives for skin disorders, such as acne, wounds or aging. Furthermore, substantial efforts have been committed to the development of modern formulations, such as microemulsions and nanoemulsions, in order to create the possibility for topical application. The review brings to the fore the most recent findings in the dermatological field regarding potential plant-based therapies involving OvEo, emphasizing the modern pharmaceutical formulation approaches and the cutaneous benefits in skin disorders.
Collapse
Affiliation(s)
- Larisa Bora
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (L.B.); (S.A.); (I.Z.P.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Stefana Avram
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (L.B.); (S.A.); (I.Z.P.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Ioana Zinuca Pavel
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (L.B.); (S.A.); (I.Z.P.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Delia Muntean
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Multidisciplinary Research Center on Antimicrobial Resistance, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Correspondence: ; Tel.: +40-723-662-855
| | - Sergio Liga
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Valentina Buda
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Discipline of Clinical Pharmacy, Communication in Pharmacy and Pharmaceutical Care, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Daniela Gurgus
- Department of Balneology, Medical Recovery and Rheumatology, Family Discipline, Center for Preventive Medicine, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | - Corina Danciu
- Department of Pharmacognosy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (L.B.); (S.A.); (I.Z.P.); (C.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
33
|
The Developmental Toxicity of Thymus schimperi Essential Oil in Rat Embryos and Fetuses. J Toxicol 2022; 2022:4091839. [PMID: 35450157 PMCID: PMC9017522 DOI: 10.1155/2022/4091839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background In Ethiopian traditional medicine, the aerial parts of Thymus schimperi are widely used to treat diseases such as gonorrhea, cough, liver disease, kidney disease, hypertension, stomach pain, and fungal skin infections. In addition, they have been used as vegetables to flavor a broad variety of food products. However, there is an insufficient investigation of the toxic effect of Thymus schimperi essential oil. The aim of this study was, therefore, to evaluate the developmental toxicity of the essential oil of Thymus schimperi leaves on developing rat embryos and fetuses. Methods Essential oil of the aerial parts of Thymus schimperi was extracted by hydrodistillation. Pregnant Wistar albino rats were randomly divided into five groups. The doses 65 mg/kg, 130 mg/kg, and 260 mg/kg of the essential of Thymus schimperi were administered by force feeding to the III–V groups, respectively. Groups I and II were negative and ad libitum control groups. The embryos and fetuses were revealed on days 12 and 20 of gestations, respectively. The embryos were examined for developmental delays or growth retardation. Gross external, skeletal, and visceral anomalies in the fetuses were examined. Results In this study, the developmental scores of the number of implantation sites, crown-rump length, the number of somites, and morphological scores were significantly lower while the score of fetal resorptions was increased in a 12-day-old rat embryos treated with 260 mg/kg of the Thymus schimperi essential oil. There was also a significant delay in the development of the otic system, olfactory system, and a reduction in the number of branchial bars in 12-day-old embryos treated with 130 mg/kg and 260 mg/kg of the essential oil. However, external morphological examinations of rat fetuses revealed no detectable structural abnormalities. The fetal skull, vertebrae, hyoid, forelimb, and hindlimb ossification centers did not differ significantly across all the groups. Furthermore, there were no skeletal or soft-tissue malformations as a result of the essential oil treatment. Although the difference was not statistically significant, fetuses of the high-dose treatment group had a reduced number of ossification centers in the caudal vertebrae and hind limp phalanges. Conclusion The essential oil of Thymus schimperi at high doses has a detrimental effect on the development of rat embryos and fetuses. Its developmental toxicity is evidenced by significant delays in fetal and embryonic development, a decrease in the number of implantation sites, and an increase in fetal resorption. Furthermore, administration of the essential oil in higher doses resulted in a significant decrease in placenta weight and litter weight. In addition, the present study provided evidence that using the Thymus schimperi essential oil in a high dose could affect the developing embryo and fetus. Thus, it is recommended to discourage the use of Thymus schimperi essential oil in high doses.
Collapse
|
34
|
Wang Y, Yang Z, Zhou Y, Tan J, Sun H, Sun D, Mu Y, Peng J, Wei H. Effects of different amino acid levels and a carvacrol-thymol blend on growth performance and intestinal health of weaned pigs. J Anim Sci Biotechnol 2022; 13:22. [PMID: 35256011 PMCID: PMC8903733 DOI: 10.1186/s40104-022-00674-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/05/2022] [Indexed: 01/06/2023] Open
Abstract
Background Over the past years, antibiotic growth promoter had been restricted in animal husbandry production in many countries because of antimicrobial resistance and foodborne antibiotic residues. However, the problems of poor intestinal health and low growth efficiency of piglets have not been solved completely in an antibiotic-free diet, and it is urgent to explore alternatives to antimicrobial growth promoters. Methods Here, a total of 532 weaned pigs were assigned to one of 4 treatments, the low amino acid (AA) level diet (d 1 to d 14 is 1.35%, d 15 to d 42 is 1.25%) (Low AA), the low AA level diet supplementation with a carvacrol–thymol blend (50 mg carvacrol and 50 mg thymol/kg of diet) (CB) (Low AA+CB), the high AA level diet (d 1 to d 14 is 1.50%, d 15 to d 42 is 1.40%) (High AA), and the high AA level diet supplementation with a CB (High AA+CB), respectively. Then we measured growth performance and intestinal health indicators of weaned pigs. Results Results showed that high AA level significantly reduced plasma urea nitrogen, plasma Interleukin-6 (IL-6) and fecal lipocalin-2 contents (P < 0.05), significantly increased the relative abundance of fecal Lactobacillus and Enterococcus, and had a trend to increase the fecal secretory immunoglobulin A (sIgA) and mucin 2 (MUC 2) contents (P < 0.05) in piglets, thereby alleviating the diarrhea of piglets and reducing the feed conversion ratio (FCR) of piglets during d 1~14 after weaning. Dietary supplementation with CB significantly increased the activity of plasma antioxidant enzymes T-SOD and GSH-px (P < 0.05), while significantly reduced plasma malondialdehyde (MDA), plasma interleukin-1β (IL-1β), plasma endotoxin and D-lactic acid contents (P < 0.05). Meanwhile, CB significantly decreased fecal lipocalin-2 contents and the abundance of fecal Escherichia coli (P < 0.05). Thus, we hypothesis that dietary supplementation with CB significantly increased the average daily gain (ADG) of piglets (P < 0.05) during d 1~14 after weaning through promoting intestinal health. Conclusion These results suggest that high AA level and dietary supplementation with CB improved the growth performance of weaned pigs in an antibiotic-free diet by improving AA metabolism and intestinal antioxidant capacity.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhipeng Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanfei Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiajian Tan
- Guangxi Yangxiang Co., Ltd, Guigang, 537000, China
| | - Haiqing Sun
- Guangxi Yangxiang Co., Ltd, Guigang, 537000, China
| | - Defa Sun
- Novus International Trading (Shanghai) Co. Ltd, Shanghai, 200080, China
| | - Yuyun Mu
- Novus International Trading (Shanghai) Co. Ltd, Shanghai, 200080, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
| |
Collapse
|
35
|
Alavinezhad A, Ghorani V, Rajabi O, Boskabady MH. Zataria multiflora extract influenced asthmatic patients by improving respiratory symptoms, pulmonary function tests and lung inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114888. [PMID: 34863879 DOI: 10.1016/j.jep.2021.114888] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/23/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anti-inflammatory and anti-oxidant effects of Zataria multiflora Boiss (Z. multiflora) were reported in previous studies which is using in traditional and modern medicine. This plant is traditional used as an anti-tussive agent and for the management of respiratory disorders. AIM OF THE STUDY The preventive effect of the extract of leaves and stems of Z. multiflora on respiratory symptoms, pulmonary function tests, hematological indices, high sensitivity C-reactive protein (hs-CRP), level of interleukin-10 (IL-10) in the serum and supernatant of cultured peripheral blood mononuclear cells (PBMC) and gene expression of IL-10 in these cells in asthmatic patients was studied. MATERIALS AND METHODS 36 asthmatic patients in three groups (randomly divided) of placebo group (P), two groups treated with 5 and 10 mg/kg/day doses of Z. multiflora (Z5 and Z10) for two months completed the study. Drugs were administered double-blindly and different variables were assessed before and after (one and two months) starting treatment including respiratory symptoms, pulmonary function tests (PFT), hematological indices, hs-CRP, serum and supernatant levels as well as gene expression of IL-10. RESULTS Two months treatment with Z5 and Z10 led to significant reduction of respiratory symptoms (p < 0.05 to p < 0.001). Pulmonary function test values in treated groups were also significantly increased two months after starting treatment (p < 0.05 to p < 0.001). Total WBC, monocytes and eosinophils were also decreased in treated groups with the extract at the end of study period (p < 0.05 to p < 0.01). Hemoglobin and hematocrit in Z10 treated group (p < 0.05 and p < 0.01, respectively) and mean corpuscular volume (MCV) in both treated groups (p < 0.05 to p < 0.01) were significantly reduced. In addition, the level of hs-CRP in both treated groups was significantly reduced after two months (p < 0.05 to p < 0.01). IL-10 concentration in Z10 treated group in supernatant of PBMC was also significantly enhanced (p < 0.01). All comparisons were made compared to the baseline (beginning of the treatment) values. CONCLUSION Z. multiflora improved respiratory symptoms and increased pulmonary function tests in asthmatic patients. In addition, the plant was effective in decrement of inflammatory cells and hs-CRP as well as enhanced IL-10. Therefore, the plant showed possible preventive therapeutic effect on asthma.
Collapse
Affiliation(s)
- Azam Alavinezhad
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahideh Ghorani
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Clinical Research Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Omid Rajabi
- Department of Drug and Food Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
36
|
Wijesundara NM, Lee SF, Davidson R, Cheng Z, Rupasinghe HPV. Carvacrol Suppresses Inflammatory Biomarkers Production by Lipoteichoic Acid- and Peptidoglycan-Stimulated Human Tonsil Epithelial Cells. Nutrients 2022; 14:nu14030503. [PMID: 35276864 PMCID: PMC8840435 DOI: 10.3390/nu14030503] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/25/2022] Open
Abstract
Pharyngitis is an inflammation of the pharynx caused by viral, bacterial, or non-infectious factors. In the present study, the anti-inflammatory efficacy of carvacrol was assessed using an in vitro model of streptococcal pharyngitis using human tonsil epithelial cells (HTonEpiCs) induced with Streptococcus pyogenes cell wall antigens. HTonEpiCs were stimulated by a mixture of lipoteichoic acid (LTA) and peptidoglycan (PGN) for 4 h followed by exposure to carvacrol for 20 h. Following exposure, interleukin (IL)-6, IL-8, human beta defensin-2 (HBD-2), epithelial-derived neutrophil-activating protein-78 (ENA-78), granulocyte chemotactic protein-2 (GCP-2), cyclooxygenase-2 (COX-2), tumor necrosis factor-alpha (TNF-α), and prostaglandin (PGE2) were measured by enzyme-linked immunosorbent assays (ELISA). The levels of pro-inflammatory cytokines, IL-6, IL-8, ENA-78, and GCP-2 were decreased in a carvacrol dose-dependent manner. The production of HBD-2 was significantly suppressed over 24 h carvacrol treatments. PGE2 and COX-2 levels in the cell suspensions were affected by carvacrol treatment. TNF-α was not detected. The cell viability of all the tested carvacrol concentrations was greater than 80%, with no morphological changes. The results suggest that carvacrol has anti-inflammatory properties, and carvacrol needs to be further assessed for potential clinical or healthcare applications to manage the pain associated with streptococcal pharyngitis.
Collapse
Affiliation(s)
- Niluni M. Wijesundara
- Department of Biology, Faculty of Science, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Song F. Lee
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 6R8, Canada; (S.F.L.); (R.D.); (Z.C.)
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Canadian Center for Vaccinology, Dalhousie University, Nova Scotia Health Authority, and the Izaak Walton Killam Health Centre, Halifax, NS B3H 4R2, Canada
| | - Ross Davidson
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 6R8, Canada; (S.F.L.); (R.D.); (Z.C.)
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Pathology and Laboratory Medicine, Division of Microbiology, Queen Elizabeth II Health Sciences Centre, Nova Scotia Health Authority, Halifax, NS B3H 1V8, Canada
| | - Zhenyu Cheng
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 6R8, Canada; (S.F.L.); (R.D.); (Z.C.)
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence: ; Tel.: +1-902-893-6623
| |
Collapse
|
37
|
da Silva PR, do Espírito Santo RF, Melo CDO, Pachú Cavalcante FE, Costa TB, Barbosa YV, e Silva YMSDM, de Sousa NF, Villarreal CF, de Moura RO, dos Santos VL. The Compound (E)-2-Cyano- N,3-diphenylacrylamide (JMPR-01): A Potential Drug for Treatment of Inflammatory Diseases. Pharmaceutics 2022; 14:188. [PMID: 35057082 PMCID: PMC8777680 DOI: 10.3390/pharmaceutics14010188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
The compound (E)-2-cyano-N,3-diphenylacrylamide (JMPR-01) was structurally developed using bioisosteric modifications of a hybrid prototype as formed from fragments of indomethacin and paracetamol. Initially, in vitro assays were performed to determine cell viability (in macrophage cultures), and its ability to modulate the synthesis of nitrite and cytokines (IL-1β and TNFα) in non-cytotoxic concentrations. In vivo, anti-inflammatory activity was explored using the CFA-induced paw edema and zymosan-induced peritonitis models. To investigate possible molecular targets, molecular docking was performed with the following crystallographic structures: LT-A4-H, PDE4B, COX-2, 5-LOX, and iNOS. As results, we observed a significant reduction in the production of nitrite and IL-1β at all concentrations used, and also for TNFα with JMPR-01 at 50 and 25 μM. The anti-edematogenic activity of JMPR-01 (100 mg/kg) was significant, reducing edema at 2-6 h, similar to the dexamethasone control. In induced peritonitis, JMPR-01 reduced leukocyte migration by 61.8, 68.5, and 90.5% at respective doses of 5, 10, and 50 mg/kg. In silico, JMPR-01 presented satisfactory coupling; mainly with LT-A4-H, PDE4B, and iNOS. These preliminary results demonstrate the strong potential of JMPR-01 to become a drug for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Pablo Rayff da Silva
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); camillamello-@hotmail.com (C.d.O.M.); (R.O.d.M.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (F.E.P.C.); (T.B.C.); (Y.V.B.)
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil;
| | - Renan Fernandes do Espírito Santo
- Instituto Gonçalo Moniz, Fundação Osvaldo Cruz, Salvador 40296-710, BA, Brazil; (R.F.d.E.S.); (C.F.V.)
- Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-290, BA, Brazil
| | - Camila de Oliveira Melo
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); camillamello-@hotmail.com (C.d.O.M.); (R.O.d.M.)
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil;
| | - Fábio Emanuel Pachú Cavalcante
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (F.E.P.C.); (T.B.C.); (Y.V.B.)
| | - Thássia Borges Costa
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (F.E.P.C.); (T.B.C.); (Y.V.B.)
| | - Yasmim Vilarim Barbosa
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (F.E.P.C.); (T.B.C.); (Y.V.B.)
| | - Yvnni M. S. de Medeiros e Silva
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil;
| | - Natália Ferreira de Sousa
- Programa de Pós Graduação em Produtos Naturais, Sintéticos e Bioativos, Universidade Federal da Paraiba, João Pessoa 58051-900, PB, Brazil;
| | - Cristiane Flora Villarreal
- Instituto Gonçalo Moniz, Fundação Osvaldo Cruz, Salvador 40296-710, BA, Brazil; (R.F.d.E.S.); (C.F.V.)
- Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-290, BA, Brazil
| | - Ricardo Olímpio de Moura
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); camillamello-@hotmail.com (C.d.O.M.); (R.O.d.M.)
- Laboratório de Desenvolvimento e Síntese de Fármacos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil;
| | - Vanda Lucia dos Santos
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (P.R.d.S.); camillamello-@hotmail.com (C.d.O.M.); (R.O.d.M.)
- Laboratório de Ensaios Farmacológicos, Departamento de Farmácia, Universidade Estadual da Paraíba, Campina Grande 58429-500, PB, Brazil; (F.E.P.C.); (T.B.C.); (Y.V.B.)
| |
Collapse
|
38
|
Cicalău GIP, Babes PA, Calniceanu H, Popa A, Ciavoi G, Iova GM, Ganea M, Scrobotă I. Anti-Inflammatory and Antioxidant Properties of Carvacrol and Magnolol, in Periodontal Disease and Diabetes Mellitus. Molecules 2021; 26:6899. [PMID: 34833990 PMCID: PMC8623889 DOI: 10.3390/molecules26226899] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/03/2021] [Accepted: 11/13/2021] [Indexed: 12/15/2022] Open
Abstract
Periodontal disease and diabetes mellitus are two pathologies that are extremely widespread worldwide and share the feature of chronic inflammation. Carvacrol is a phenolic monoterpenoid, produced by a variety of herbs, the most well-known of which is Origanum vulgare. Magnolol is a traditional polyphenolic compound isolated from the stem bark of Magnolia officinalis, mainly used in Chinese medicine. The purpose of this paper is to review the therapeutic properties of these bioactive compounds, in the treatment of periodontitis and diabetes. Based on our search strategy we conducted a literature search in the PubMed and Google Scholar databases to identify studies. A total of one hundred eighty-four papers were included in the current review. The results show that carvacrol and magnolol have anti-inflammatory, antioxidant, antimicrobial, anti-osteoclastic, and anti-diabetic properties that benefit both pathologies. Knowledge of the multiple activities of carvacrol and magnolol can assist with the development of new treatment strategies, and the design of clinical animal and human trials will maximize the potential benefits of these extracts in subjects suffering from periodontitis or diabetes.
Collapse
Affiliation(s)
- Georgiana Ioana Potra Cicalău
- Doctoral School of Biomedical Science, University of Oradea, 1st University Street, 410087 Oradea, Romania;
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| | - Petru Aurel Babes
- Doctoral School of Biomedical Science, University of Oradea, 1st University Street, 410087 Oradea, Romania;
| | - Horia Calniceanu
- Department of Periodontology, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Periodontal and Periimplant Diseases Research Center “Prof. Dr. Anton Sculean”, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Adelina Popa
- Department of Orthodontics, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Orthodontic Research Center (ORTHO-CENTER), Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Gabriela Ciavoi
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| | - Gilda Mihaela Iova
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| | - Mariana Ganea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania;
| | - Ioana Scrobotă
- Department of Dental Medicine, Faculty of Medicine and Pharmacy, University of Oradea, 1st Decembrie Street, 410073 Oradea, Romania; (G.C.); (G.M.I.); (I.S.)
| |
Collapse
|
39
|
Rashidian A, Akbarzadeh D, Asgarpanah J, Dehpour A. Bunium persicum essential oil reduced acetic acid-induced rat colitis through suppression of NF-κB pathway. AVICENNA JOURNAL OF PHYTOMEDICINE 2021; 11:505-514. [PMID: 34745922 PMCID: PMC8554278 DOI: 10.22038/ajp.2021.18037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/09/2021] [Accepted: 01/18/2021] [Indexed: 11/24/2022]
Abstract
Objective: The aim of this study was to evaluate the anti-inflammatory effect of B. persicum essential oil on colonic inflammation and the role of suppression of NF-κB pathway in rat colitis induced by acetic acid solution. Materials and Methods: Induction of acute colitis was done by intra-luminal instillation of 2 ml of acetic acid (4%) diluted in normal saline. Two hours after colitis induction, 0.2% tween 80 in normal saline, prednisolone (4 mg/kg) or B. persicum essential oil (100, 200, and 400 mg/kg) were administered to the rats orally and continued for 5 consecutive days. The severity of macroscopic and microscopic damages was assessed. Myeloperoxidase and TNF-α activity was evaluated by biochemical analysis and ELISA respectively and protein expression of p-NF-κB was assessed by immunohistochemistry (IHC). Results: Prednisolone and B. persicum essential oil (100, 200, and 400 mg/kg) decreased macroscopic and microscopic injuries compared to the acetic acid group. On the other hand, prednisolone and B. persicum essential oil (200 and 400 mg/kg) decreased the activity of MPO and TNF-α in the colon tissue of rats compared with the acetic acid group. Furthermore, they suppressed the expression of p-NF-κB protein induced by acetic acid administration. Conclusion: It is suggested that the anti-inflammatory effect of B. persicum essential oil on acetic acid-induced colitis in rats may be due to the suppression of NF-κB pathway.
Collapse
Affiliation(s)
- Amir Rashidian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Dorna Akbarzadeh
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jinous Asgarpanah
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ahmadreza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
El Moussaoui A, Kadiri M, Bourhia M, Agour A, Salamatullah AM, Alzahrani A, Alyahya HK, Albadr NA, Chedadi M, Sfaira M, Bari A. Promising Antioxidant and Anticorrosion Activities of Mild Steel in 1.0 M Hydrochloric Acid Solution by Withania frutescens L. Essential Oil. Front Chem 2021; 9:739273. [PMID: 34708022 PMCID: PMC8543687 DOI: 10.3389/fchem.2021.739273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
The present study was conducted to evaluate the anticorrosive and antioxidant activities of essential oil from Withania frutescens L. In the present study, the extraction of Withania frutescens L. essential oil (Wf-EO) was conducted using hydrodistillation before being characterized by gas chromatographic analysis (GC/MS) and flame ionization detector (GC/FID). Four bioassays were used for antioxidant testing including 2,2-diphenyl-1-picrylhydrazyl (DPPH), total antioxidant capacity (TAC), ferric reducing antioxidant power (FRAP), and β-carotene bleaching. The inhibiting effect of Wf-EO on the corrosion behavior of mild steel in 1.0 M HCl was conducted by using polarization curves and electrochemical impedance spectroscopy techniques. The yield of Wf-EO was 0.46% including 175 compounds identified by GC-MS. The oil was mostly constituted of camphor (37.86%), followed by thujone (26.47%), carvacrol (6.84%), eucalyptol (3.18%), and linalool (2.20%). The anti-free radical activity of Wf-EO was 34.41 ± 0.91 μg/ml (DPPH), 9.67 ± 0.15 mg/ml (FRAP), 3.78 ± 0.41 mg AAE/g (TAC), and 89.94 ± 1.44% (β-carotene). The Wf-EO showed potent antioxidant activity in all bioassays used for testing. The anticorrosion activity, polarization curves as well as EIS diagrams indicated that the Wf-EO exhibited anticorrosive properties and reacted as a suitable corrosion inhibitor in an acidic medium.
Collapse
Affiliation(s)
- Abdelfattah El Moussaoui
- Laboratory of Biotechnology, Environment, Agrifood, and Health, Faculty of Sciences, Sidi Mohamed Ben Abdellah University (USMBA), Fez, Morocco
| | - Mariya Kadiri
- Laboratory of Engineering, Modeling and Systems Analysis (LIMAS), Faculty of Sciences, Sidi Mohamed Ben Abdellah University (USMBA), Fez, Morocco
| | - Mohammed Bourhia
- Laboratory of Chemistry-Biochemistry, Environment, Nutrition, and Health, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Abdelkrim Agour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life, Faculty of Sciences, Sidi Mohamed Ben Abdellah University (USMBA), Fez, Morocco
| | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulhakeem Alzahrani
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Heba Khalil Alyahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nawal A Albadr
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Chedadi
- Laboratory of Biotechnology, Environment, Agrifood, and Health, Faculty of Sciences, Sidi Mohamed Ben Abdellah University (USMBA), Fez, Morocco
| | - Mouhcine Sfaira
- Laboratory of Engineering, Modeling and Systems Analysis (LIMAS), Faculty of Sciences, Sidi Mohamed Ben Abdellah University (USMBA), Fez, Morocco
| | - Amina Bari
- Laboratory of Biotechnology, Environment, Agrifood, and Health, Faculty of Sciences, Sidi Mohamed Ben Abdellah University (USMBA), Fez, Morocco
| |
Collapse
|
41
|
de Carvalho FO, Silva JPR, Silva ÉR, de Albuquerque Júnior RLC, Nunes PS, de Souza Araújo AA. Would carvacrol be a supporting treatment option effective in minimizing the deleterious effects of COVID-19? Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2471-2474. [PMID: 34669001 PMCID: PMC8526353 DOI: 10.1007/s00210-021-02170-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/12/2021] [Indexed: 12/04/2022]
Abstract
The pathophysiological process of the disease, Covid-19, is mediated by innate immunity, with the presence of macrophages responsible for secreting type 1 and 6 interleukins (IL), tumor necrosis factor (TNF) leading to dilation of endothelial cells with a consequent increase in capillary permeability. The treatment of this disease has been much discussed, but the variability in the clinical picture, the difficulties for diagnosis and treatment, especially of those patients who have the most severe clinical condition of the disease. Immunization is an effective tool for controlling the spread and overload of health services, but its effectiveness involves high investments in the acquisition of inputs, development of vaccines, and logistics of storage and distribution. These factors can be obstacles for countries with lower economic, technological, and infrastructure indexes. Reflecting on these difficulties, we raised the possibility of adjuvant therapies with imminent research feasibility, as is the case with the use of carvacrol, a monoterpenic phenol whose has biological properties that serve as a barrier to processes mediated by free radicals, such as irritation and inflammation, due to its antioxidant action. Many authors highlighted the activity of carvacrol as a potent suppressor of COX-2 expression minimizing the acute inflammatory process, decreasing the release of some pro-inflammatory mediators such as IL-1β, TNF-α, PGE2. Anyway, the benefits of carvacrol are numerous and the therapeutic possibilities too. With this description, the question arises: would carvacrol be a supporting treatment option, effective in minimizing the deleterious effects of Covid-19? There is still a lot to discover and research.
Collapse
Affiliation(s)
- Fernanda Oliveira de Carvalho
- Health Sciences Graduate Center of Universidade Federal de Sergipe-UFS, São Cristóvão, SE, Brazil. .,Hospital Universitário de Sergipe (HU-UFS / EBSERH), Aracaju, SE, Brazil. .,Núcleo de Pós-Graduação Em Ciências da Saúde, Universidade Federal de Sergipe-UFS, Cidade Universitária Prof. "José Aloísio de Campos", Av. Marechal Rondon, s/n Jardim Rosa Elza, CEP 49.100-000, São Cristovão, SE, Brazil.
| | | | - Érika Ramos Silva
- Health Sciences Graduate Center of Universidade Federal de Sergipe-UFS, São Cristóvão, SE, Brazil.,Núcleo de Pós-Graduação Em Ciências da Saúde, Universidade Federal de Sergipe-UFS, Cidade Universitária Prof. "José Aloísio de Campos", Av. Marechal Rondon, s/n Jardim Rosa Elza, CEP 49.100-000, São Cristovão, SE, Brazil.,Physiotherapy Department, Universidade Federal de Sergipe-UFS, Lagarto, SE, Brazil
| | | | - Paula Santos Nunes
- Health Sciences Graduate Center of Universidade Federal de Sergipe-UFS, São Cristóvão, SE, Brazil.,Morphology Department, Universidade Federal de Sergipe-UFS, São Cristóvão, SE, Brazil
| | - Adriano Antunes de Souza Araújo
- Health Sciences Graduate Center of Universidade Federal de Sergipe-UFS, São Cristóvão, SE, Brazil.,Pharmacy Graduate Center, Universidade Federal de Sergipe-UFS, São Cristóvão, SE, Brazil
| |
Collapse
|
42
|
Lopes Jesus AJ, Fausto R, Reva I. Conformational Space, IR-Induced, and UV-Induced Chemistry of Carvacrol Isolated in a Low-Temperature Argon Matrix. J Phys Chem A 2021; 125:8215-8229. [PMID: 34506137 DOI: 10.1021/acs.jpca.1c05907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this work, monomers of carvacrol (5-isopropyl-2-methylphenol), a natural monoterpene exhibiting wide range bioactivity, were trapped in a cryogenic argon matrix and characterized by infrared spectroscopy, while quantum chemical calculations at the B3LYP and MP2 levels were employed to characterize the conformational landscape of the isolated molecule. Four conformers have been localized on the potential energy surface, and the factors accounting for their relative stability were analyzed. The two most stable conformers of carvacrol, differing in the relative orientation of the isopropyl group and both having the OH group pointing away from the vicinal methyl fragment, were identified in the cryomatrix for the first time. The individual spectral signatures of the two conformers were distinguished based on the change in their relative abundance induced by exposing the matrix to broadband infrared light. Matrix-isolated carvacrol was also irradiated with broadband UV light (λ > 200 nm), which resulted in the cleavage of the OH group. Recombination of the released H atom at the ortho- or para-position of the ring resulted in the formation of alkyl-substituted cyclohexadienones. These were found to undergo subsequent valence and open-ring isomerizations, leading, respectively, to the formation of a Dewar isomer and open-chain conjugated ketenes. Decarbonylation of the photoproducts was also observed for longer irradiation times. A mechanistic analysis of the observed photochemical transformations is presented.
Collapse
Affiliation(s)
- A J Lopes Jesus
- University of Coimbra, CQC, Faculty of Pharmacy, 3004-295 Coimbra, Portugal
| | - Rui Fausto
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Igor Reva
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal.,University of Coimbra, CIEPQPF, Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| |
Collapse
|
43
|
Yazarlu O, Iranshahi M, Kashani HRK, Reshadat S, Habtemariam S, Iranshahy M, Hasanpour M. Perspective on the application of medicinal plants and natural products in wound healing: A mechanistic review. Pharmacol Res 2021; 174:105841. [PMID: 34419563 DOI: 10.1016/j.phrs.2021.105841] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Wound is defined as any injury to the body such as damage to the epidermis of the skin and disturbance to its normal anatomy and function. Since ancient times, the importance of wound healing has been recognized, and many efforts have been made to develop novel wound dressings made of the best material for rapid and effective wound healing. Medicinal plants play a great role in the wound healing process. In recent decades, many studies have focused on the development of novel wound dressings that incorporate medicinal plant extracts or their purified active compounds, which are potential alternatives to conventional wound dressings. Several studies have also investigated the mechanism of action of various herbal medicines in wound healing process. This paper attempts to highlight and review the mechanistic perspective of wound healing mediated by plant-based natural products. The findings showed that herbal medicines act through multiple mechanisms and are involved in various stages of wound healing. Some herbal medicines increase the expression of vascular endothelial growth factor (VEGF) and transforming growth factor-β (TGF-β) which play important role in stimulation of re-epithelialization, angiogenesis, formation of granulation tissue, and collagen fiber deposition. Some other wound dressing containing herbal medicines act as inhibitor of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and inducible nitric oxide synthase (iNOS) protein expression thereby inducing antioxidant and anti-inflammatory properties in various phases of the wound healing process. Besides the growing public interest in traditional and alternative medicine, the use of herbal medicine and natural products for wound healing has many advantages over conventional medicines, including greater effectiveness due to diverse mechanisms of action, antibacterial activity, and safety in long-term wound dressing usage.
Collapse
Affiliation(s)
- Omid Yazarlu
- Mashhad University of Medical Sciences, Department of General Surgery, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Sara Reshadat
- Department of Internal Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Maede Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
44
|
de Alvarenga JFR, Genaro B, Costa BL, Purgatto E, Manach C, Fiamoncini J. Monoterpenes: current knowledge on food source, metabolism, and health effects. Crit Rev Food Sci Nutr 2021; 63:1352-1389. [PMID: 34387521 DOI: 10.1080/10408398.2021.1963945] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Monoterpenes, volatile metabolites produced by plants, are involved in the taste and aroma perception of fruits and vegetables and have been used for centuries in gastronomy, as food preservatives and for therapeutic purposes. Biological activities such as antimicrobial, analgesic and anti-inflammatory are well-established for some of these molecules. More recently, the ability of monoterpenes to regulate energy metabolism, and exert antidiabetic, anti-obesity and gut microbiota modulation activities have been described. Despite their promising health effects, the lack of reliable quantification of monoterpenes in food, hindered the investigation of their role as dietary bioactive compounds in epidemiological studies. Moreover, only few studies have documented the biotransformation of these compounds and identified the monoterpene metabolites with biological activity. This review presents up-to-date knowledge about the occurrence of monoterpenes in food, their bioavailability and potential role in the modulation of intermediate metabolism and inflammation, focusing on novel findings of molecular mechanisms, underlining research gaps and new avenues to be explored.
Collapse
Affiliation(s)
- José Fernando Rinaldi de Alvarenga
- Department of Food and Experimental Nutrition. Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Food Research Center (FoRC), University of São Paulo, São Paulo, Brazil
| | - Brunna Genaro
- Department of Food and Experimental Nutrition. Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruna Lamesa Costa
- Department of Food and Experimental Nutrition. Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eduardo Purgatto
- Department of Food and Experimental Nutrition. Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Food Research Center (FoRC), University of São Paulo, São Paulo, Brazil
| | - Claudine Manach
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France
| | - Jarlei Fiamoncini
- Department of Food and Experimental Nutrition. Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Food Research Center (FoRC), University of São Paulo, São Paulo, Brazil
| |
Collapse
|
45
|
Bouyahya A, Guaouguaou FE, El Omari N, El Menyiy N, Balahbib A, El-Shazly M, Bakri Y. Anti-inflammatory and analgesic properties of Moroccan medicinal plants: Phytochemistry, in vitro and in vivo investigations, mechanism insights, clinical evidences and perspectives. J Pharm Anal 2021; 12:35-57. [PMID: 35573886 PMCID: PMC9073245 DOI: 10.1016/j.jpha.2021.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/14/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Moroccan medicinal plants exhibit several pharmacological properties such as antimicrobial, anticancer, antidiabetic, analgesic, and anti-inflammatory effects, which are related to the presence of numerous bioactive compounds, including phenolic acids, flavonoids, and terpenoids. In the present review, we systematically evaluate previously published reports on the anti-inflammatory and analgesic effects of Moroccan medicinal plants. The in vitro investigations revealed that Moroccan medicinal plants inhibit several enzymes related to inflammatory processes, whereas in vivo studies noted significant anti-inflammatory and analgesic effects as demonstrated using different experimental models. Various bioactive compounds exhibiting in vitro and in vivo anti-inflammatory and analgesic effects, with diverse mechanisms of action, have been identified. Some plants and their bioactive compounds reveal specific secondary metabolites that possess important anti-inflammatory effects in clinical investigations. Our review proposes the potential applications of Moroccan medicinal plants as sources of anti-inflammatory and analgesic agents. Anti-inflammatory and analgesic effects of Moroccan medicinal plants were highlighted. Chemical nature of Moroccan medicinal plants with anti-inflammatory and analgesic effects was reported. Insights into anti-inflammatory mechanisms of bioactive compounds were highlighted. Toxicological investigations of Moroccan medicinal plants were reviewed.
Collapse
|
46
|
Relaxant effect of Zataria multiflora Boiss L. and its ingredients on smooth muscles, possible mechanisms and clinical application. PHYSIOLOGY AND PHARMACOLOGY 2021. [DOI: 10.52547/phypha.26.3.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
47
|
Development, Characterization, and Immunomodulatory Evaluation of Carvacrol-loaded Nanoemulsion. Molecules 2021; 26:molecules26133899. [PMID: 34202367 PMCID: PMC8271444 DOI: 10.3390/molecules26133899] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/05/2021] [Accepted: 06/16/2021] [Indexed: 01/12/2023] Open
Abstract
Carvacrol (CV) is an essential oil with numerous therapeutic properties, including immunomodulatory activity. However, this effect has not been studied in nanoemulsion systems. The objective of this study was to develop an innovative carvacrol-loaded nanoemulsion (CVNE) for immunomodulatory action. The developed CVNE comprised of 5% w/w oily phase (medium chain triglycerides + CV), 2% w/w surfactants (Tween 80®/Span 80®), and 93% w/w water, and was produced by ultrasonication. Dynamic light scattering over 90 days was used to characterize CVNE. Cytotoxic activity and quantification of cytokines were evaluated in peripheral blood mononuclear cell (PBMC) culture supernatants. CVNE achieved a drug loading of 4.29 mg/mL, droplet size of 165.70 ± 0.46 nm, polydispersity index of 0.14 ± 0.03, zeta potential of −10.25 ± 0.52 mV, and good stability for 90 days. CVNE showed no cytotoxicity at concentrations up to 200 µM in PBMCs. CV diminished the production of IL-2 in the PBMC supernatant. However, CVNE reduced the levels of the pro-inflammatory cytokines IL-2, IL-17, and IFN-γ at 50 µM. In conclusion, a stable CVNE was produced, which improved the CV immunomodulatory activity in PBMCs.
Collapse
|
48
|
Pino-Otín MR, Langa E, Val J, Mainar AM, Ballestero D. Impact of citronellol on river and soil environments using non-target model organisms and natural populations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112303. [PMID: 33714735 DOI: 10.1016/j.jenvman.2021.112303] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Citronellol is an acyclic monoterpenoid with a wide range of pharmacological activities (antibacterial, antifungal, anti-lice, repellent, lipolytic, anti-allergic, anti-inflammatory, antispasmodic, antidiabetic, anti-cholesterol, among other) and potential to replace synthetic products. However, the impact of citronellol on the environment remains unknown. We analysed, for the first time, the environmental impact of citronellol on river and soil environments using non-target model organisms and natural populations. The acute toxicity of citronellol on the aquatic invertebrate Daphnia magna, the plant Allium cepa L and the earthworm Eisenia fetida was quantified. The effect of citronellol in a river ecosystem was analysed using river periphyton communities taxonomically characterised and a river microbial community characterised through 16 S rRNA gene sequencing. Finally, a microbial community from natural soil was used to monitor the effect of citronellol on the soil ecosystem. The results showed that E. fetida was most sensitive to citronellol (LC50 = 12.34 mg/L), followed by D. magna (LC50 = 14.11 mg/L). Citronellol affected the photosynthesis of the fluvial periphyton (LC50 = 94.10 mg/L) and was phytotoxic for A. cepa. Furthermore, citronellol modified the growth and metabolism of both fluvial (LC50 = 0.19% v/v) and edaphic (LC50 = 5.07% v/v) bacterial populations. The metabolism of the microorganisms in the soil and water exposed to citronellol decreased with respect to the control, especially their ability to metabolise carbohydrates. Our results show that citronellol has a negative impact on the environment. Although acute effects cannot be expected, it is necessary to quantify the environmental levels as well as the long-term and persistent effects of this monoterpene.
Collapse
Affiliation(s)
| | - Elisa Langa
- Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain.
| | - Jonatan Val
- Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain.
| | - Ana M Mainar
- I3A, Universidad de Zaragoza, c/ Mariano Esquillor s/n, 50018, Zaragoza, Spain.
| | - Diego Ballestero
- Universidad San Jorge, Villanueva de Gállego, 50830, Zaragoza, Spain.
| |
Collapse
|
49
|
Mortazavi A, Mohammad Pour Kargar H, Beheshti F, Anaeigoudari A, Vaezi G, Hosseini M. The effects of carvacrol on oxidative stress, inflammation, and liver function indicators in a systemic inflammation model induced by lipopolysaccharide in rats. INT J VITAM NUTR RES 2021; 93:111-121. [PMID: 34024144 DOI: 10.1024/0300-9831/a000711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effect of carvacrol (CAR) on oxidative stress, inflammation, and liver dysfunction induced by lipopolysaccharide (LPS) was explored. The rats (n=40) were daily injected (2 weeks) by saline as control, LPS (1 mg/kg, i.p.), and 25, 50 or 100 mg/kg CAR (i.p.) before LPS. LPS increased aspartate transaminase (AST: 162±13 U/L), alanine aminotransferase (ALT: 74.6±2.15 U/L), alkaline phosphatase (ALK-P: 811±51 U/L), interlukine-1β (IL-1β: 1254±51 pg/g tissue), malondialdehyde (MDA: 32±1.09 nM/g tissue), and nitric oxide (NO: 224±13.5 nM/g tissue) (P<0.01-P<0.001) while, decreased total protein(4.08±0.38 g/dl), albumin(2.79±0.16 g/dl), thiol (5.16±0.19 μM/g tissue), superoxide dismutase (SOD: 10.57±0.13 U/g tissue), and catalase (CAT: 0.78±0.02 U/g tissue) compared to control (P<0.001). CAR reversed the effects of LPS (P<0.05-P<0.001). In the rats treated by 100 mg/kg CAR, the indicators were as follows: AST: 118±10.1 U/L, ALT: 42.5±4.13 U/L, ALK-P: 597±39.91 U/L, IL-1β: 494±15 pg/g tissue, and NO: 141±5.35 nM/g tissue. Both 50 and 100 mg/kg CAR corrected oxidative stress indicators and in the group treated by 100 mg/kg CAR, they were: MDA: 23.4±0.91 nM/g tissue, thiol: 7.98±0.18 μM/g tissue, SOD: 21±0.8 U/g tissue, and CAT: 1.12±0.02 U/g tissue(P<0.05-P<0.001). In conclusion, CAR improved liver function, accompanied with antioxidant and antiinflammatory effects.
Collapse
Affiliation(s)
- Alireza Mortazavi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Gholamhasan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Mahmoud Hosseini
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
50
|
Kandemir FM, Caglayan C, Darendelioğlu E, Küçükler S, İzol E, Kandemir Ö. Modulatory effects of carvacrol against cadmium-induced hepatotoxicity and nephrotoxicity by molecular targeting regulation. Life Sci 2021; 277:119610. [PMID: 33989663 DOI: 10.1016/j.lfs.2021.119610] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 11/30/2022]
Abstract
AIM Cadmium (Cd) is a toxic heavy metal that causes severe toxic effects on different tissues including liver and kidney. Therefore the research for alternatives to reduce the damage caused by Cd has substantial importance. This study was performed to examine the possible modulatory effects of carvacrol (CRV) against Cd-induced hepatorenal toxicities and the possible mechanisms underlying these effects. MATERIALS AND METHODS In the present study, 35 male Wistar rats were randomly divided into 5 groups. The rats were treated with Cd (25 mg/kg) and treated with CRV (25 and 50 mg/kg body weight) for 7 consecutive days. KEY FINDINGS CRV could modulate Cd-induced elevations of ALT, ALP, AST, urea, creatinine, MDA and enhance antioxidant enzymes' activities such as SOD, CAT, and GPx, and GSH's level. CRV also reversed the changes in levels of inflammatory biomarker and apoptotic genes that include NF-κB, Bcl-3, MAPK-14, iNOS, COX-2, MPO, PGE2, Bax, Bcl-2, P53, Caspase-9, Caspase-6 and Caspase-3 in both tissues. The levels of 8-OHdG in the Cd-induced liver and kidney tissues were modulated after CRV treatment. Furthermore, CRV treatment considerably lowered Cd, Na, Fe, and Zn content while increased K, Ca, Mg and Cu contents in both tissues as compared to the Cd-exposed rats. SIGNIFICANCE The results of the present study revealed that CRV supplementation could be a promising strategy to protect the liver and kidney tissues against Cd-induced oxidative damage, inflammation and apoptosis.
Collapse
Affiliation(s)
- Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey.
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000 Bingol, Turkey.
| | - Ekrem Darendelioğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Bingol University, 12000 Bingol, Turkey
| | - Sefa Küçükler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Turkey
| | - Ebubekir İzol
- Central Laboratory Application and Research Center, Bingol University, 12000 Bingol, Turkey
| | - Özge Kandemir
- Erzurum Veterinary Control Institute, 25070 Erzurum, Turkey
| |
Collapse
|