1
|
Kim J, Choi J, Hong Y, Han Y, Huynh T, Tran KM, Kwak HJ, Seo S, Heo C, Lee H. Indoor-Light-Activated Blue TiO 2-Molecule-WO 3 Visible Photocatalyst for Antibacterial Performance against Escherichia coli. ACS Infect Dis 2024; 10:1890-1895. [PMID: 38738652 DOI: 10.1021/acsinfecdis.4c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Currently used visible light catalysts either operate with high-power light sources or require prolonged periods of time for catalytic reactions. This presents a limitation regarding facile application in indoor environments and spaces frequented by the public. Furthermore, this gives rise to elevated power consumption. Here, we enhance photocatalytic performance with blue TiO2 and WO3 complexes covalently coupled through an organic molecule, 3-mercaptopropionic acid, under indoor light. Antibacterial experiments against 108 CFU/mL Escherichia coli (E. coli) suspensions were conducted under indoor light exposure conditions. They showed a sterilization effect of almost 90% within 70 min and nearly 100% after 110 min. The complex generates reactive oxygen species (ROS), such as •OH and O2•-, under natural air conditions. We also showed that h+ and •OH are important for sterilizing E. coli using common scavengers. This research highlights the potential of these complexes to generate ROS, effectively playing a crucial role in antibacterial effects under indoor light.
Collapse
Affiliation(s)
- Joosung Kim
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, South Korea
- Centre for Integrated Nanostructure Physics (CINAP), Sungkyunkwan University, Suwon 16419, South Korea
| | - Jungsue Choi
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yeseul Hong
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
- Centre for Integrated Nanostructure Physics (CINAP), Sungkyunkwan University, Suwon 16419, South Korea
| | - Yeonsu Han
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | - Thuy Huynh
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, South Korea
- Institute of Quantum Biophysics (IQB), Suwon 16419, South Korea
| | - Kim My Tran
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
- Centre for Integrated Nanostructure Physics (CINAP), Sungkyunkwan University, Suwon 16419, South Korea
| | - Hee-Jin Kwak
- Centre for Integrated Nanostructure Physics (CINAP), Sungkyunkwan University, Suwon 16419, South Korea
- Institute of Basic Science (IBS), Suwon 16419, South Korea
| | - Sohyeon Seo
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
- Creative Research Institute (CRI), Sungkyunkwan University, Suwon 16419, South Korea
| | - Chaejeong Heo
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, South Korea
- Centre for Integrated Nanostructure Physics (CINAP), Sungkyunkwan University, Suwon 16419, South Korea
- Institute of Basic Science (IBS), Suwon 16419, South Korea
- Institute of Quantum Biophysics (IQB), Suwon 16419, South Korea
| | - Hyoyoung Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
- Centre for Integrated Nanostructure Physics (CINAP), Sungkyunkwan University, Suwon 16419, South Korea
- Institute of Basic Science (IBS), Suwon 16419, South Korea
- Institute of Quantum Biophysics (IQB), Suwon 16419, South Korea
- Creative Research Institute (CRI), Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
2
|
Li Z, Yang D, Li S, Yang L, Yan W, Xu H. Advances on electrochemical disinfection research: Mechanisms, influencing factors and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169043. [PMID: 38070567 DOI: 10.1016/j.scitotenv.2023.169043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
Disinfection, a vital barrier against pathogenic microorganisms, is crucial in halting the spread of waterborne diseases. Electrochemical methods have been extensively researched and implemented for the inactivation of pathogenic microorganisms from water and wastewater, primarily owing to their simplicity, efficiency, and eco-friendliness. This review succinctly outlined the core mechanisms of electrochemical disinfection (ED) and systematically examined the factors influencing its efficacy, including anode materials, system conditions, and target species. Additionally, the practical application of ED in water and wastewater treatment was comprehensively reviewed. Case studies involving various scenarios such as drinking water, hospital wastewater, black water, rainwater, and ballast water provided concrete instances of the expansive utility of ED. Finally, coupling ED with other technologies and the resulting synergies were introduced as pivotal foundations for subsequent engineering advancements.
Collapse
Affiliation(s)
- Zhen Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Duowen Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Shanshan Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Liu Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou 311200, China
| | - Hao Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou 311200, China.
| |
Collapse
|
3
|
Espinosa-Barrera PA, Gómez-Gómez M, Vanegas J, Machuca-Martinez F, Torres-Palma RA, Martínez-Pachón D, Moncayo-Lasso A. Systematic analysis of the scientific-technological production on the use of the UV, H 2O 2, and/or Cl 2 systems in the elimination of bacteria and associated antibiotic resistance genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6782-6814. [PMID: 38165540 PMCID: PMC10821820 DOI: 10.1007/s11356-023-31435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
This study presents a systematic review of the scientific and technological production related to the use of systems based on UV, H2O2, and Cl2 for the elimination of antibiotic-resistant bacteria (ARB) and genes associated with antibiotic resistance (ARGs). Using the Pro Know-C (Knowledge Development Process-Constructivist) methodology, a portfolio was created and analyzed that includes 19 articles and 18 patents published between 2011 and 2022. The results show a greater scientific-technological production in UV irradiation systems (8 articles and 5 patents) and the binary combination UV/H2O2 (9 articles and 4 patents). It was emphasized that UV irradiation alone focuses mainly on the removal of ARB, while the addition of H2O2 or Cl2, either individually or in binary combinations with UV, enhances the removal of ARB and ARG. The need for further research on the UV/H2O2/Cl2 system is emphasized, as gaps in the scientific-technological production of this system (0 articles and 2 patents), especially in its electrochemically assisted implementation, have been identified. Despite the gaps identified, there are promising prospects for the use of combined electrochemically assisted UV/H2O2/Cl2 disinfection systems. This is demonstrated by the effective removal of a wide range of contaminants, including ARB, fungi, and viruses, as well as microorganisms resistant to conventional disinfectants, while reducing the formation of toxic by-products.
Collapse
Affiliation(s)
- Paula Andrea Espinosa-Barrera
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
- Doctorado en Ciencia Aplicada (DCA), Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Marcela Gómez-Gómez
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Javier Vanegas
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Fiderman Machuca-Martinez
- Centro de Excelencia en Nuevos Materiales, Universidad del Valle, Calle 13 No. 100-00, Cali, Colombia
| | - Ricardo Antonio Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Diana Martínez-Pachón
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia
| | - Alejandro Moncayo-Lasso
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá D.C., Colombia.
| |
Collapse
|
4
|
Mosquera-Romero S, Ntagia E, Rousseau DP, Esteve-Núñez A, Prévoteau A. Water treatment and reclamation by implementing electrochemical systems with constructed wetlands. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100265. [PMID: 37101565 PMCID: PMC10123341 DOI: 10.1016/j.ese.2023.100265] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Seasonal or permanent water scarcity in off-grid communities can be alleviated by recycling water in decentralized wastewater treatment systems. Nature-based solutions, such as constructed wetlands (CWs), have become popular solutions for sanitation in remote locations. Although typical CWs can efficiently remove solids and organics to meet water reuse standards, polishing remains necessary for other parameters, such as pathogens, nutrients, and recalcitrant pollutants. Different CW designs and CWs coupled with electrochemical technologies have been proposed to improve treatment efficiency. Electrochemical systems (ECs) have been either implemented within the CW bed (ECin-CW) or as a stage in a sequential treatment (CW + EC). A large body of literature has focused on ECin-CW, and multiple scaled-up systems have recently been successfully implemented, primarily to remove recalcitrant organics. Conversely, only a few reports have explored the opportunity to polish CW effluents in a downstream electrochemical module for the electro-oxidation of micropollutants or electro-disinfection of pathogens to meet more stringent water reuse standards. This paper aims to critically review the opportunities, challenges, and future research directions of the different couplings of CW with EC as a decentralized technology for water treatment and recovery.
Collapse
Affiliation(s)
- Suanny Mosquera-Romero
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias Naturales y Matemáticas, BOX9050, Ecuador
- Department of Green Chemistry and Technology, Ghent University, Sint-Martens-Latemlaan 2B, B-8500, Kortrijk, Belgium
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000, Ghent, Belgium
| | - Eleftheria Ntagia
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
- Université Paris-Saclay, INRAE, PROSE, 92160, Antony, France
| | - Diederik P.L. Rousseau
- Department of Green Chemistry and Technology, Ghent University, Sint-Martens-Latemlaan 2B, B-8500, Kortrijk, Belgium
| | - Abraham Esteve-Núñez
- Universidad de Alcalá, Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Alcalá de Henares, Spain
| | - Antonin Prévoteau
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, 9000, Ghent, Belgium
| |
Collapse
|
5
|
Ren Y, Meng X, Zhang X, He Y, Gao G, Wang P, Gu Y, Ding Y, Jiang W. Potential for selective oxidation of aniline in soil washing effluent by active chlorine and testing its practicality. CHEMOSPHERE 2023; 311:137082. [PMID: 36336015 DOI: 10.1016/j.chemosphere.2022.137082] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/21/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
Recovery of surfactants in the soil washing effluent (SWE) can significantly reduce the cost of the soil washing (SW) technology. This paper consists of two parts experiments. The first part constructed a selective oxidation system of active chlorine by electrochemical technology to treat SWE. Three factors, current density, NaCl concentration and TW 80 to aniline concentration ratio (T/A), were set up for a total of nine sets of experiments after orthogonal design. The results of ANOVA analysis and visual analysis showed that the NaCl concentration greatly affected the aniline removal efficiency (ARE) and the TW 80 retention efficiency (TW 80 RE), and the effects were in opposite directions. The biotoxicity of the SWE decreased as the experiment progressed, and at the end of the experiment, 30%-45% of TW 80 was still present in each set. And the oxidation group quenching experiments determined that the degradation of aniline was mainly contributed by active chlorine. Because active chlorine slowed the loss rate of TW 80, the electrochemical treatment of SWE + soil in-situ sequential batch recirculation washing method was designed, and 50% of aniline in the soil was washed out after 125h. At the end of the experiment, the less biotoxic SWE was collected where no aniline and TW 80 were present, and only small organic acids were present after the GC-MS test. The method has a great potential to be applied as it shows good results in the treatment of soil pollution incidents.
Collapse
Affiliation(s)
- Yi Ren
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xiangxin Meng
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Xuan Zhang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yuhai He
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Guangfei Gao
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Pengqi Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yawei Gu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China; Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Yue Ding
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Wenqiang Jiang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| |
Collapse
|
6
|
Nabgan W, Saeed M, Jalil AA, Nabgan B, Gambo Y, Ali MW, Ikram M, Fauzi AA, Owgi AHK, Hussain I, Thahe AA, Hu X, Hassan NS, Sherryna A, Kadier A, Mohamud MY. A state of the art review on electrochemical technique for the remediation of pharmaceuticals containing wastewater. ENVIRONMENTAL RESEARCH 2022; 210:112975. [PMID: 35196501 DOI: 10.1016/j.envres.2022.112975] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/29/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceutical wastewater is a frequent kind of wastewater with high quantities of organic pollutants, although little research has been done in the area. Pharmaceutical wastewaters containing antibiotics and high salinity may impair traditional biological treatment, resulting in the propagation of antibiotic resistance genes. The potential for advanced oxidation processes (AOPs) to break down hazardous substances instead of present techniques that essentially transfer contaminants from wastewater to sludge, a membrane filter, or an adsorbent has attracted interest. Among a variety of AOPs, electrochemical systems are a feasible choice for treating pharmaceutical wastewater. Many electrochemical approaches exist now to remediate rivers polluted by refractory organic contaminants, like pharmaceutical micro-pollutants, which have become a severe environmental problem. The first part of this investigation provides the bibliometric analysis of the title search from 1970 to 2021 for keywords such as wastewater and electrochemical. We have provided information on relations between keywords, countries, and journals based on three fields plot, inter-country co-authorship network analysis, and co-occurrence network visualization. The second part introduces electrochemical water treatment approaches customized to these very distinct discarded flows, containing how processes, electrode materials, and operating conditions influence the results (with selective highlighting cathode reduction and anodic oxidation). This section looks at how electrochemistry may be utilized with typical treatment approaches to improve the integrated system's overall efficiency. We discuss how electrochemical cells might be beneficial and what compromises to consider when putting them into practice. We wrap up our analysis with a discussion of known technical obstacles and suggestions for further research.
Collapse
Affiliation(s)
- Walid Nabgan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - M Saeed
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - B Nabgan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Y Gambo
- Chemical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - M W Ali
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - M Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, 54000, Punjab, Pakistan.
| | - A A Fauzi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - A H K Owgi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - I Hussain
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Asad A Thahe
- Department of X- Ray and Sonar, Faculty Of Medical Technology, AL-Kitab University, Iraq
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, PR China
| | - N S Hassan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - A Sherryna
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences (CAS), Urumqi, 830011, China.
| | - M Y Mohamud
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
7
|
Chithra A, Sekar R, Senthil Kumar P, Padmalaya G. A review on removal strategies of microorganisms from water environment using nanomaterials and their behavioural characteristics. CHEMOSPHERE 2022; 295:133915. [PMID: 35143869 DOI: 10.1016/j.chemosphere.2022.133915] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/29/2022] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
Significant findings for microbial removal have led to expertise on several kinds of nanomaterials that made new paths for removing various biological contaminants in a variety of water resources in recent years. Furthermore, advancements in multifunctional nanocomposites synthesis pave the enhanced possibility for their use in water treatment system design. The adsorption towards microbial elimination has been reviewed and compared in this review article using four common kinds of nanomaterials: carbon materials, metal oxides, metal/metal oxides, polymeric metal oxide nanocomposites and their most important mechanistic behavior also discussed. We also describe and analyze recent findings on the effects of engineered nanomaterials on microbial communities in natural and artificial environments. Understanding the removal mechanistic strategy is crucial to improving the nanoparticles (NPs) efficiency and increasing their applicability against a variety of bacteria in various environmental conditions. Also, our study focused on their behavioral effects on microbial structure and functionality towards the removal. Future research opportunities connected to the use of nanomaterials in microbial control and inactivation with societal and health implications are also discussed. We also highlight a number of interesting research subjects that might be of futuristic interest to the scientific community.
Collapse
Affiliation(s)
- A Chithra
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, 638401, Tamilnadu, India
| | - Rajaseetharama Sekar
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Erode, 638401, Tamilnadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, Tamilnadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamilnadu, India.
| | - G Padmalaya
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, Tamilnadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamilnadu, India
| |
Collapse
|
8
|
Budil J, Szabó O, Lišková P, Štenclová P, Izsák T, Potocký Š, Kromka A. Impact of electrolyte solution on electrochemical oxidation treatment of Escherichia coli K-12 by boron-doped diamond electrodes. Lett Appl Microbiol 2022; 74:924-931. [PMID: 35239229 DOI: 10.1111/lam.13687] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/27/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022]
Abstract
We studied the disinfection efficacy of boron-doped electrodes on Escherichia coli-contaminated water-based solutions in three different electrolytes, physiological solution (NaCl), phosphate buffer (PB), and phosphate buffer saline (PBS). The effect of the electrochemical oxidation treatment on the bacteria viability was studied by drop and spread plate cultivation methods, and supported by optical density measurements. We have found that bacterial suspensions in NaCl and PBS underwent a total inactivation of all viable bacteria within 10 min of the electrochemical treatment. By contrast, experiments performed in the PB showed a relatively minor decrease of viability by two orders of magnitude after two hours of the treatment, which is almost comparable with the untreated control. The enhanced bacterial inactivation was assigned to reactive chlorine species (RCS), capable of penetrating the bacterial cytoplasmic membrane and killing bacteria from within.
Collapse
Affiliation(s)
- Jakub Budil
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague 6, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic
| | - Ondrej Szabó
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague 6, Czech Republic
| | - Petra Lišková
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, 128 43 Prague 2, Czech Republic
| | - Pavla Štenclová
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague 6, Czech Republic
| | - Tibor Izsák
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague 6, Czech Republic.,Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04, Bratislava, Slovakia
| | - Štěpán Potocký
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague 6, Czech Republic
| | - Alexander Kromka
- Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10, 162 00, Prague 6, Czech Republic
| |
Collapse
|
9
|
Li L, Xiao K, Wong PK, Hu Z, Yu JC. Hydrogen Peroxide Production from Water Oxidation on a CuWO 4 Anode in Oxygen-Deficient Conditions for Water Decontamination. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7878-7887. [PMID: 35104100 DOI: 10.1021/acsami.1c20834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogen peroxide, an environmentally benign oxidant, is an effective chemical agent for water purification. On-site production of H2O2 is considered economical because it avoids the cost of storage and transportation. Traditional generation of H2O2 from oxygen reduction, as a heterogeneous electrochemical reaction, suffers from mass transfer problems because of the limited solubility and low diffusion rate of oxygen in water. These limitations can be overcome if H2O2 is formed by water oxidation. Herein, conversion of water to hydrogen peroxide was achieved efficiently on a CuWO4 anode. This water oxidation strategy can generate H2O2 at a rate of ∼11.8 μmol min-1 cm-2 at 3.0 V versus reversible hydrogen electrode. Importantly, this on-site H2O2 production shows high efficiency in water purification in O2-deficient conditions. This water oxidation anode offers a feasible way to provide a green purification agent with only water as the final byproduct, avoiding toxic intermediates and residues during the production and application.
Collapse
Affiliation(s)
- Lejing Li
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Kemeng Xiao
- School of Life Science, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Po Keung Wong
- School of Life Science, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhuofeng Hu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University Guangzhou 510275, China
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
10
|
Liu Y, Zhang S, Fang H, Wang Q, Jiang S, Zhang C, Qiu P. Inactivation of antibiotic resistant bacterium Escherichia coli by electrochemical disinfection on molybdenum carbide electrode. CHEMOSPHERE 2022; 287:132398. [PMID: 34597647 DOI: 10.1016/j.chemosphere.2021.132398] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic-resistant bacteria (ARB) pose a substantial threat to public health worldwide. Electrochemistry, as a low energy consumption and environmentally friendly technique, is ideal for inactivating ARB. This study explored the utility of electrochemical disinfection (ED) for inactivating ARB (Escherichia coli K-12 LE392 resistant to kanamycin, tetracycline, and ampicillin) and the regrowth potential of the treated ARB. The results revealed that 5.12-log ARB removal was achieved within 30 min of applying molybdenum carbide as the anode and cathode material under a voltage of 2.0 V. No ARB regrowth was observed in the cathode chamber after 60 min of incubation in unselective broth, demonstrating that the process in the cathode chamber was more effective for permanent inactivation of ARB. The mechanisms underlying the ARB inactivation were verified based on intercellular reactive oxygen species (ROS) measurement, membrane integrity detection, and genetic damage assessment. Higher ROS production and membrane permeability were observed in the cathode and anode groups (p < 0.001) compared to the control group (0 V). In addition, the DNA was more likely to be damaged during the ED process. Collectively, our results demonstrate that ED is a promising technology for disinfecting water to prevent the spread of ARB.
Collapse
Affiliation(s)
- Yinghan Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Hao Fang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Shan Jiang
- South China Institute of Environmental Science, MEE, China
| | - Chenxi Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Pengxiang Qiu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
11
|
Isidro J, Sáez C, Llanos J, Lobato J, Cañizares P, Matthée T, Rodrigo MA. Adapting the low-cost pre-disinfection column PREDICO for simultaneous softening and disinfection of pore water. CHEMOSPHERE 2022; 287:132334. [PMID: 34563766 DOI: 10.1016/j.chemosphere.2021.132334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
In previous works, a low-cost predisinfection column that combined coagulation-flocculation and GAC filtration was proposed for combination with electrodisinfection in the successful treatment of highly faecal polluted surface water. In this work, this column is adapted for the treatment of pore water by transforming the coagulation chamber into a chemical reactor with lime and replacing the GAC of the filter with ion exchange resins. This adapted system can soften water, remove nitrate and condition water for very efficient electrochemical disinfection, where 4 logs and 3 logs in the removal of E. coli and P. aeruginosa, respectively, were reached using commercial electrochemical cells, i.e., CabECO ® or MIKROZON®. The availability and low cost of the technology are strong points for usage in poor areas of developing countries.
Collapse
Affiliation(s)
- J Isidro
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - C Sáez
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain.
| | - J Llanos
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - J Lobato
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - P Cañizares
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - T Matthée
- CONDIAS GmbH, Fraunhoferstraße 1b, 25524, Itzehoe, Germany
| | - M A Rodrigo
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| |
Collapse
|
12
|
Verbel-Olarte MI, Serna-Galvis EA, Salazar-Ospina L, Jiménez JN, Porras J, Pulgarin C, Torres-Palma RA. Irreversible inactivation of carbapenem-resistant Klebsiella pneumoniae and its genes in water by photo-electro-oxidation and photo-electro-Fenton - Processes action modes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148360. [PMID: 34146813 DOI: 10.1016/j.scitotenv.2021.148360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
Carbapenem-resistant Klebsiella pneumoniae is a critical priority pathogen according to the World Health Organization's classification. Effluents of municipal wastewater treatment plants (EWWTP) may be a route for K. pneumoniae dissemination. Herein, the inactivation of this microorganism in simulated EWWTP by the photo-electro-oxidation (PEO) and photo-electro-Fenton (PEF) processes was evaluated. Firstly, the disinfecting ability and action pathways of these processes were established. PEO achieved faster K. pneumoniae inactivation (6 log units in 75 min of treatment) than the PEF process (6 log units in 105 min of treatment). PEO completely inactivated K. pneumoniae due to the simultaneous action of UVA light, electrogenerated H2O2, and anodic oxidation pathways. The slower inactivation of K. pneumoniae when using PEF was related to interfering screen effects of iron oxides on light penetration and the diffusion of the bacteria to the anode. However, both PEO and PEF avoided the recovery and regrowth of treated bacteria (with no detectable increase in the bacteria concentration after 24 h of incubation). In addition to the bacteria evolution, the effect of treatment processes on the resistance gene was examined. Despite inactivation of K. pneumoniae by PEF was slower than by PEO, the former process induced a stronger degrading action on the gene, conferring the resistance to carbapenems (PEF had a Ct value of 24.92 cycles after 105 min of treatment, while PEO presented a Ct of 19.97 cycles after 75 min). The results of this research indicate that electrochemical processes such as PEO and PEF are highly effective at dealing with resistant K. pneumoniae in the EWWTP matrix.
Collapse
Affiliation(s)
- Martha I Verbel-Olarte
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Efraim A Serna-Galvis
- Grupo de Investigaciones Biomédicas Uniremington. Facultad de Ciencias de la Salud, Corporación Universitaria Remington (Uniremington), Calle 51 No. 51-27, Medellín, Colombia.
| | - Lorena Salazar-Ospina
- Grupo de Investigación en Microbiología Básica y Aplicada (MICROBA), Línea de Epidemiología Molecular Bacteriana, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - J Natalia Jiménez
- Grupo de Investigación en Microbiología Básica y Aplicada (MICROBA), Línea de Epidemiología Molecular Bacteriana, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Jazmín Porras
- Grupo de Investigaciones Biomédicas Uniremington. Facultad de Ciencias de la Salud, Corporación Universitaria Remington (Uniremington), Calle 51 No. 51-27, Medellín, Colombia
| | - Cesar Pulgarin
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; Institute of Chemical Science and Engineering, Swiss Federal Institute of Technology (EPFL), Station 6, CH-1015 Lausanne, Switzerland; Colombian Academy of Exact, Physical and Natural Sciences, Carrera 28 A No. 39A-63, Bogotá, Colombia
| | - Ricardo A Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
13
|
Qing G, Foster SL, Anari Z, Matlock M, Thoma G, Greenlee LF. Disinfection/ammonia removal from aquaculture wastewater and disinfection of irrigation water using electrochemical flow cells: A case study in Hawaii. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2149-2168. [PMID: 34022089 DOI: 10.1002/wer.1588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/20/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
This field case study reports findings on disinfection/ammonia removal from aquaculture wastewater and disinfection of irrigation water carried out at an aquaculture farm and two irrigation locations in Hawaii. We used a flow cell incorporating PtRu/graphite anode and graphite cathode for the disinfection/ammonia removal from aquaculture wastewater, and a flow cell assembled with graphite plates as both anode and cathode for the disinfection of irrigation water. The removal of ammonia followed the indirect oxidation mechanism mediated by free chlorine electro-generated at the PtRu/graphite anode. Ammonia removal rate increased with the increase in NaCl concentration, applied current density, or flow rate. The disinfection of aquaculture wastewater can be readily achieved due to the presence of highly germicidal free chlorine species. The disinfection of irrigation water was realized without the addition of chemicals. The disinfection mechanism was attributed to the formation of free chlorine from the anodic oxidation of chloride ions naturally occurring in the water sources. The disinfection efficiency decreased with increasing organic matter concentration. In addition to the flow cell approach, we also successfully demonstrated the disinfection of irrigation water by adding electrolyzed NaCl solution or purging with a mixture of air and chlorine gas, both of which were generated on-site. PRACTITIONER POINTS: Field case study on disinfection/ammonia removal from aquaculture wastewater and disinfection of irrigation water was carried out in Hawaii. Electrochemical flow cell assembled with PtRu/graphite anode and graphite cathode effectively removes ammonia from aquaculture wastewater. Ammonia removal proceeds via the indirect oxidation mechanism mediated by free chlorine electro-generated at the PtRu/graphite anode. Electrochemical flow cell assembled with commercial graphite electrodes enables fast disinfection of coliform bacteria and E. coli. The primary disinfection mechanism is through chlorine species electro-generated from chloride oxidation at the graphite anode.
Collapse
Affiliation(s)
- Geletu Qing
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Shelby L Foster
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Zahra Anari
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Marty Matlock
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Greg Thoma
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Lauren F Greenlee
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
14
|
Lin CJ, Zhang R, Waisner SA, Nawaz T, Center L, Gent DB, Johnson JL, Holland S. Effects of process factors on the performance of electrochemical disinfection for wastewater in a continuous-flow cell reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36573-36584. [PMID: 33704635 DOI: 10.1007/s11356-021-13193-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Although electrochemical disinfection has been shown to be an effective approach to inactivate bacteria in saline water, the effects of process parameters and reactor design for its application in low-salinity water have not been well understood. In this study, factorial experiments were performed to investigate the direct and confounded effects of applied current (5-20 mA), contact time (2.5-20 min), anode surface area (185-370 cm2), and chloride concentration (50-400 mg L-1) on the disinfection efficiency in fresh water and the secondary effluent of municipal wastewater. An electrochemical disinfection reactor cell with an internal volume of 75 cm3 was designed and fabricated. Residence time distribution analysis showed that the internal mixing of the reactor is similar to that of a dispersed plug-flow reactor. All studied process parameters showed significant effect on the kill efficiency, with the applied current and contact time having the most dominant effect. Although the effect of chloride concentration, which is responsible for electrochemical production of free chlorine in water, is statistically significant, it is not as prominent as those reported for high salinity water. A synergistic effect between chloride concentration and anode surface area was identified, leading to high kill efficiency (99.9%, 3 log kill) at low current density (0.0135 mA cm-2). Response surface modeling results suggested that a scaled-up disinfection reactor can be designed using large anode surface area with long contact time for high chloride water (400 mg L-1) or high current density with short contact time for low chloride water (50 mg L-1). The power requirement of a portable system treating 37.85 m3 day-1 (10,000 gpd) of municipal wastewater was estimated to be 1.9 to 8.3 kW to achieve a 3 log kill, depending on the reactor design.
Collapse
Affiliation(s)
- Che-Jen Lin
- Department of Civil & Environmental Engineering, Lamar University, Beaumont, TX, 77710, USA.
- Center for Advances in Water & Air Quality, Lamar University, Beaumont, TX, 77710, USA.
| | - Ruolin Zhang
- Department of Civil & Environmental Engineering, Lamar University, Beaumont, TX, 77710, USA
| | - Scott A Waisner
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, 39180, USA
| | - Tabish Nawaz
- Center for Advances in Water & Air Quality, Lamar University, Beaumont, TX, 77710, USA
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Powai, Maharashtra, 400076, India
| | - Lori Center
- Texas Research Institute for Environmental Studies, Sam Houston State University, Huntsville, TX, 77341, USA
| | - David B Gent
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, 39180, USA
| | - Jared L Johnson
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, MS, 39180, USA
| | - Sabin Holland
- Texas Research Institute for Environmental Studies, Sam Houston State University, Huntsville, TX, 77341, USA
| |
Collapse
|
15
|
Synergic Effect of Adsorption and Biodegradation by Microsphere Immobilizing Bacillus velezensis for Enhanced Removal Organics in Slaughter Wastewater. Processes (Basel) 2021. [DOI: 10.3390/pr9071145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bacterial cell immobilization offers considerable advantages over traditional biotreatment methods using free bacteria. Bacillus velezensis was underwented isolation and genetic identification as COD-degrading bacteria in slaughter wastewaterand immobilized on the surface of polyvinyl alcohol (PVA) microsphere with the adhesion to bio-carrier through direct physical adsorption. The removal CODMn rates of microsphere (PVA) immobilized cells were 16.99%, increased 9.38% from a 50% concentration of slaughter wastewater within 24 h at 37 °C, pH 7.0, and 120 rpm, which was about 2.2 times that of the free bacteria. A significant difference was found in two groups (p < 0.01 p value less than 0.01 means statistical significance), and the COD degradation rate of the microsphere immobilized Bacillus velezensis strain was higher than the control group (PVA: control vs 20.08: 10.81), with the processing time reaching 36 h (p < 0.05). Additionally, similar results were obtained from a 20% concentration of slaughter wastewater within 24 h and 36 h. Moreover, the starch and protein digestibility of the immobilized Bacillus velezensis strain was higher than that of the free bacteria (20.1%: 42.2% vs. 17.5%: 37.2%). These findings revealed that the PVA-bacteria system was a simple, green, and inexpensive process, as well as a promising method. The research goal is aimed to synergize the effects of adsorption and biodegradation, as it can enhance organic removal by immobilized Bacillus velezensis in slaughter wastewater. Moreover, it may be possible that more potential materials can be used as biological carriers for the immobilization of bacterial cells later, which is beneficial for the recycling of resources.
Collapse
|
16
|
Herraiz-Carboné M, Cotillas S, Lacasa E, Cañizares P, Rodrigo MA, Sáez C. Enhancement of UV disinfection of urine matrixes by electrochemical oxidation. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124548. [PMID: 33246823 DOI: 10.1016/j.jhazmat.2020.124548] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 05/03/2023]
Abstract
This work focuses on the removal of antibiotic-resistant bacteria (ARB) contained in hospital urines by UV disinfection enhanced by electrochemical oxidation to overcome the limitations of both single processes in the disinfection of this type of effluents. UV disinfection, electrolysis, and photoelectrolysis of synthetic hospital urine intensified with K. pneumoniae were studied. The influence of the current density and the anode material was assessed on the disinfection performance of combined processes and the resulting synergies and/or antagonisms of coupling both technologies were also evaluated. Results show that the population of bacteria contained in hospital urine is only reduced by 3 orders of magnitude during UV disinfection. Electrolysis leads to complete disinfection of hospital urine when working at 50 A m-2 using Boron Doped Diamond (BDD) and Mixed Metal Oxides (MMO) as anodes. The coupling of electrolysis to the UV disinfection process leads to the highest disinfection rates, attaining a complete removal of ARB for all the current densities and anode materials tested. The use of MMO anodes leads to higher synergies than BDD electrodes. Results confirm that UV disinfection can be enhanced by electrolysis for the removal of ARB in urine, considering both technical and economic aspects.
Collapse
Affiliation(s)
- Miguel Herraiz-Carboné
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071 Albacete, Spain
| | - Salvador Cotillas
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Engracia Lacasa
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071 Albacete, Spain
| | - Pablo Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - Manuel A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - Cristina Sáez
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain.
| |
Collapse
|
17
|
Chen YD, Duan X, Zhou X, Wang R, Wang S, Ren NQ, Ho SH. Advanced oxidation processes for water disinfection: Features, mechanisms and prospects. CHEMICAL ENGINEERING JOURNAL 2021. [PMID: 0 DOI: 10.1016/j.cej.2020.128207] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
|
18
|
Qing G, Anari Z, Foster SL, Matlock M, Thoma G, Greenlee LF. Electrochemical disinfection of irrigation water with a graphite electrode flow cell. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:535-548. [PMID: 32920945 DOI: 10.1002/wer.1456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
In this work, we report experimental studies on the disinfection of irrigation water using a flow cell assembled with low-cost graphite plates as both anode and cathode. Natural irrigation waters collected from two irrigation locations (Reservoir 225 and Bott Well Pond) in Hawaii were used, and synthetic irrigation waters were prepared based on the chemical analysis of natural irrigation waters. The concentration of chloride was 10.2 mg/L in the synthetic Reservoir 225 water and 6.9 mg/L in the synthetic Bott Well pond water. Escherichia coli K12 ER2738 was selected as a model bacterium to evaluate the disinfection capability of the flow cell. Experiments performed in the synthetic irrigation waters showed that E. coli was inactivated by free chlorine species electro-generated from oxidation of chloride ions at the graphite anode. Complete removal of E. coli was achieved within 10 min in the synthetic irrigation waters. The disinfection of the natural irrigation waters took about four times longer than the disinfection of the synthetic irrigation waters. This result is most likely due to the presence of organic matter (and possibly other oxidizable species) in the natural irrigation waters. PRACTITIONER POINTS: Electrochemical flow cell disinfects to 99.9% with commercial graphite electrodes. E. coli is removed in 10 min from synthetic irrigation water by a flow cell. E. coli removal takes 4× longer in natural irrigation water. A minimum current density of ≥1 mA/cm2 is required for disinfection. The primary disinfection mechanism is through chlorine generated from chloride ions.
Collapse
Affiliation(s)
- Geletu Qing
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Zahra Anari
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Shelby L Foster
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Marty Matlock
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Greg Thoma
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas
| | - Lauren F Greenlee
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, Arkansas
| |
Collapse
|
19
|
Hand S, Cusick RD. Electrochemical Disinfection in Water and Wastewater Treatment: Identifying Impacts of Water Quality and Operating Conditions on Performance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3470-3482. [PMID: 33616403 PMCID: PMC7970539 DOI: 10.1021/acs.est.0c06254] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 05/31/2023]
Abstract
Electrochemical disinfection-a method in which chemical oxidants are generated in situ via redox reactions on the surface of an electrode-has attracted increased attention in recent years as an alternative to traditional chemical dosing disinfection methods. Because electrochemical disinfection does not entail the transport and storage of hazardous materials and can be scaled across centralized and distributed treatment contexts, it shows promise for use both in resource limited settings and as a supplement for aging centralized systems. In this Critical Review, we explore the significance of treatment context, oxidant selection, and operating practice on electrochemical disinfection system performance. We analyze the impacts of water composition on oxidant demand and required disinfectant dose across drinking water, centralized wastewater, and distributed wastewater treatment contexts for both free chlorine- and hydroxyl-radical-based systems. Drivers of energy consumption during oxidant generation are identified, and the energetic performance of experimentally reported electrochemical disinfection systems are evaluated against optimal modeled performance. We also highlight promising applications and operational strategies for electrochemical disinfection and propose reporting standards for future work.
Collapse
Affiliation(s)
- Steven Hand
- Department of Civil and Environmental
Engineering University of Illinois at Urbana−Champaign, Urbana, Illinois 61801-2352, United States
| | - Roland D. Cusick
- Department of Civil and Environmental
Engineering University of Illinois at Urbana−Champaign, Urbana, Illinois 61801-2352, United States
| |
Collapse
|
20
|
Study on the efficacy of sterilization in tap water by electrocatalytic technique. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-020-01513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Song P, Xiao Y, Ren ZJ, Brooks JP, Lu L, Zhou B, Zhou Y, Freguia S, Liu Z, Zhang N, Li Y. Electrochemical biofilm control by reconstructing microbial community in agricultural water distribution systems. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123616. [PMID: 32781280 DOI: 10.1016/j.jhazmat.2020.123616] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/10/2020] [Accepted: 07/26/2020] [Indexed: 05/14/2023]
Abstract
Biofilm causes considerable technical challenges in agricultural water distribution systems. Electrochemical treatment (ECT) is a potential technique for controlling biofilm in the systems. Given the limited information on how ECT performance changes of irrigation systems and microbial biofilm community shifts. In this study, the effect of anti-biofilm was assessed. Illumina Miseq high-throughput sequencing, combined with molecular ecological network analysis, were applied to detect the effects of ECT on attached biofilm microbial communities. We found that ECT effectively mitigated biofilm formation with the fixed-biofilm biomass reduced by 37.5 %-79.9 %. ECT significantly shifted the bacterial community structures in the biofilm, reduced the communities' diversity, and changed the dominant species. Molecular ecological network analysis showed that the complexity and size of bacterial networks were destabilized under ECT and decreased the interactions among bacterial species. The reconstruction in bacterial community and networks were responsible for the decline in extracellular polymer substances and biofilm biomass. However, chlorine-resistant bacteria were found increased after ECT, and higher relative abundance and low biofilm removal was identified in continuous ECT as compared with intermittent ECT. These results aimed to highlight the opportunity for biofouling mitigation by ECT for irrigation systems, and reveal the potential anti-biofilm microbial mechanisms of ECT.
Collapse
Affiliation(s)
- Peng Song
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yang Xiao
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Zhiyong Jason Ren
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, United States
| | - John P Brooks
- Genetics and Sustainable Agricultural Research Unit, United States Department of Agriculture, Starkville, MS 39762, USA
| | - Lu Lu
- Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, United States
| | - Bo Zhou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yunpeng Zhou
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Stefano Freguia
- Advanced Water Management Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhidan Liu
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Ning Zhang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yunkai Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
22
|
Application of electrical treatment on Euglena gracilis for increasing paramylon production. Appl Microbiol Biotechnol 2021; 105:1031-1039. [PMID: 33415369 DOI: 10.1007/s00253-020-11033-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/10/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
Paramylon also called β-1,3-glucan is a value-added product produced from Euglena gracilis. Recently, researchers have developed various strategies for the enhanced paramylon production, among which electrical treatment for microbial stimulation can be an alternative owing to the applicability to large-scale cultivation. In this study, we applied the electrical treatment for enhanced paramylon production and found the proper treatment conditions. Under the treatment with platinum electrodes at 10 mA, the paramylon production of treated cells was significantly increased about 2.5-fold, compared to those of the untreated cells, although the density of cells was maintained due to considerable stress. The size of treated cells became larger, possibly due to the increased level of paramylon production within the cells. Accordingly, the contents of glucose uptake, glucose-6-phosphate (G6P), glucose-1-phosphate (G1P), and uridine diphosphoglucose (UDPG) were shifted to appropriate states for the process of paramylon synthesis under the treatment. The increased level of transcripts encoding glucan synthase-like 2 (EgGSL2) was also confirmed via droplet digital PCR (ddPCR) under the treatment. Overall, this study makes a major contribution to research on electrical stimulation and provides new insights into E. gracilis metabolism like paramylon synthesis. KEY POINTS: • Electrical treatment induced the paramylon production and morphological change of Euglena gracilis. • The glucose uptake of E. gracilis was increased during the electrical treatment, fueling the paramylon synthesis.
Collapse
|
23
|
Isidro J, Brackemeyer D, Sáez C, Llanos J, Lobato J, Cañizares P, Matthée T, Rodrigo M. Electro-disinfection with BDD-electrodes featuring PEM technology. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117081] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
24
|
Mesones S, Mena E, López-Muñoz MJ, Adán C, Marugán J. Synergistic and antagonistic effects in the photoelectrocatalytic disinfection of water with TiO2 supported on activated carbon as a bipolar electrode in a novel 3D photoelectrochemical reactor. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
25
|
Isidro J, Brackemeyer D, Sáez C, Llanos J, Lobato J, Cañizares P, Matthée T, Rodrigo MA. Testing the use of cells equipped with solid polymer electrolytes for electro-disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138379. [PMID: 32278177 DOI: 10.1016/j.scitotenv.2020.138379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
This work focuses on disinfection of water using electrolysis with boron doped diamond (BDD) coatings and faces this challenge by comparing the performance of two different cells manufactured by CONDIAS GmbH (Izehoe, Germany): CONDIACELL® ECWP and CabECO cells. They are both equipped with diamond electrodes, but the mechanical design is completely different, varying not only by geometry but also by the flow conditions. ECWP is a flow-through cell with perforated electrodes while the CabECO cell is a zero-gap cell with a proton exchange membrane as a solid polymer electrolyte (SPE) separating the anode and cathode. At 0.02 Ah dm-3 both cells attain around 3-5 logs pathogen removal, but design and sizing parameters give an advantage to the CabECO: it can minimize the production of chlorates and perchlorates when operating in a single-pass mode, which becomes a really remarkable point. In this paper, we report tests in which we demonstrate this outstanding performance and we also explain the differences observed in the two cells operating with the same water.
Collapse
Affiliation(s)
- J Isidro
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - D Brackemeyer
- CONDIAS GmbH, Fraunhoferstraße 1b, 25524 Itzehoe, Germany
| | - C Sáez
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain.
| | - J Llanos
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - J Lobato
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - P Cañizares
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - T Matthée
- CONDIAS GmbH, Fraunhoferstraße 1b, 25524 Itzehoe, Germany
| | - M A Rodrigo
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| |
Collapse
|
26
|
Isidro J, Brackemeyer D, Sáez C, Llanos J, Lobato J, Cañizares P, Matthée T, Rodrigo MA. How to avoid the formation of hazardous chlorates and perchlorates during electro-disinfection with diamond anodes? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 265:110566. [PMID: 32275236 DOI: 10.1016/j.jenvman.2020.110566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/24/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
This work focuses on disinfection of water using electrolysis with diamond coatings avoiding or minimizing the formation of hazardous chlorates and perchlorates using a special type of commercial cells designed by CONDIAS (Itzehoe, Germany) in two different sizes: the CabECO and the MIKROZON cells. In these cells, the electrolyte that separates the anode and cathode is a proton exchange membrane. This helps to minimize the production of perchlorate and this behavior is enhanced in the smallest cell for which the very low contact times between the electrodes and the water allows to avoid the production of perchlorates when operating in a single-pass mode, which becomes a really remarkable point. In this paper, we report tests in which we demonstrate this outstanding performance and we also explain the differences observed in the two cells operating with the same water.
Collapse
Affiliation(s)
- J Isidro
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - D Brackemeyer
- CONDIAS GmbH, Fraunhoferstraße 1b, 25524, Itzehoe, Germany
| | - C Sáez
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - J Llanos
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain.
| | - J Lobato
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - P Cañizares
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - T Matthée
- CONDIAS GmbH, Fraunhoferstraße 1b, 25524, Itzehoe, Germany
| | - M A Rodrigo
- Chemical Engineering Department, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| |
Collapse
|
27
|
Towards Electrochemical Water Desalination Techniques: A Review on Capacitive Deionization, Membrane Capacitive Deionization and Flow Capacitive Deionization. MEMBRANES 2020; 10:membranes10050096. [PMID: 32408502 PMCID: PMC7281590 DOI: 10.3390/membranes10050096] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 11/16/2022]
Abstract
Electrochemical water desalination has been a major research area since the 1960s with the development of capacitive deionization technique. For the latter, its modus operandi lies in temporary salt ion adsorption when a simple potential difference (1.0-1.4 V) of about 1.2 V is supplied to the system to temporarily create an electric field that drives the ions to their different polarized poles and subsequently desorb these solvated ions when potential is switched off. Capacitive deionization targets/extracts the solutes instead of the solvent and thus consumes less energy and is highly effective for brackish water. This paper reviews Capacitive Deionization (mechanism of operation, sustainability, optimization processes, and shortcomings) with extension to its counterparts (Membrane Capacitive Deionization and Flow Capacitive Deionization).
Collapse
|
28
|
Huo ZY, Du Y, Chen Z, Wu YH, Hu HY. Evaluation and prospects of nanomaterial-enabled innovative processes and devices for water disinfection: A state-of-the-art review. WATER RESEARCH 2020; 173:115581. [PMID: 32058153 DOI: 10.1016/j.watres.2020.115581] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/13/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
This study provided an overview of established and emerging nanomaterial (NM)-enabled processes and devices for water disinfection for both centralized and decentralized systems. In addition to a discussion of major disinfection mechanisms, data on disinfection performance (shortest contact time for complete disinfection) and energy efficiency (electrical energy per order; EEO) were collected enabling assessments firstly for disinfection processes and then for disinfection devices. The NM-enabled electro-based disinfection process gained the highest disinfection efficiency with the lowest energy consumption compared with physical-based, peroxy-based, and photo-based disinfection processes owing to the unique disinfection mechanism and the direct mean of translating energy input to microbes. Among the established disinfection devices (e.g., the stirred, the plug-flow, and the flow-through reactor), the flow-through reactor with mesh/membrane or 3-dimensional porous electrodes showed the highest disinfection performance and energy efficiency attributed to its highest mass transfer efficiency. Additionally, we also summarized recent knowledge about current and potential NMs separation and recovery methods as well as electrode strengthening and optimization strategies. Magnetic separation and robust immobilization (anchoring and coating) are feasible strategies to prompt the practical application of NM-enabled disinfection devices. Magnetic separation effectively solved the problem for the separation of evenly distributed particle-sized NMs from microbial solution and robust immobilization increased the stability of NM-modified electrodes and prevented these electrodes from degradation by hydraulic detachment and/or electrochemical dissolution. Furthermore, the study of computational fluid dynamics (CFD) was capable of simulating NM-enabled devices, which showed great potential for system optimization and reactor expansion. In this overview, we stressed the need to concern not only the treatment performance and energy efficiency of NM-enabled disinfection processes and devices but also the overall feasibility of system construction and operation for practical application.
Collapse
Affiliation(s)
- Zheng-Yang Huo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ye Du
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing, 100084, PR China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, 518055, PR China
| |
Collapse
|
29
|
Syam Babu D, Nidheesh PV. A review on electrochemical treatment of arsenic from aqueous medium. CHEM ENG COMMUN 2020. [DOI: 10.1080/00986445.2020.1715956] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- D. Syam Babu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - P. V. Nidheesh
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| |
Collapse
|
30
|
Cyclophosphamide Neutralization in Wastewaters Using an Asymmetric Current Density Electrochemical Microreactor. REVISTA DE CHIMIE 2020. [DOI: 10.37358/rc.19.12.7721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alkylating antineoplastic agents used in modern oncological treatments constitute noteworthy environmental hazards with a great long-term impact on human health. This paper introduces an asymmetric current density electrochemical microreactor specifically designed to neutralize alkylating cytostatic drugs from wastewaters. The reactor is based on the principle of anodic electro-oxidation (AEO) and on chemical oxidation via anode-generated chlorine reactive species (CRS). The design of this electrochemical reactor facilitates very good (approx. 99%) neutralization yields for the substance used in this study.
Keywords: electrochemical reactor, asymmetric current density, cytostatic drug waste, electrooxidation
Collapse
|
31
|
Gu Y, Xiao F, Luo L, Zhou X, Zhou X, Li J, Li Z. Bacterial Disinfection by CuFe 2O 4 Nanoparticles Enhanced by NH 2OH: A Mechanistic Study. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 10:E18. [PMID: 31861627 PMCID: PMC7022556 DOI: 10.3390/nano10010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022]
Abstract
Many disinfection technologies have emerged recently in water treatment industry, which are designed to inactivate water pathogens with extraordinary efficiency and minimum side effects and costs. Current disinfection processes, including chlorination, ozonation, UV irradiation, and so on, have their inherent drawbacks, and have been proven ineffective under certain scenarios. Bacterial inactivation by noble metals has been traditionally used, and copper is an ideal candidate as a bactericidal agent owing to its high abundance and low cost. Building on previous findings, we explored the bactericidal efficiency of Cu(I) and attempted to develop it into a novel water disinfection platform. Nanosized copper ferrite was synthesized, and it was reduced by hydroxylamine to form surface bound Cu(I) species. Our results showed that the generated Cu(I) on copper ferrite surface could inactivate E. coli at a much higher efficiency than Cu(II) species. Elevated reactive oxygen species' content inside the cell primarily accounted for the strong bactericidal role of Cu(I), which may eventually lead to enhanced oxidative stress towards cell membrane, DNA, and functional proteins. The developed platform in this study is promising to be integrated into current water treatment industry.
Collapse
Affiliation(s)
- Yu Gu
- School of Mechanical and Eletrical Engineering, Zhoukou Normal University, Zhoukou 466000, China; (L.L.); (X.Z.); (X.Z.); (J.L.)
| | - Furen Xiao
- College of Materials Science and Engineering and State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China;
| | - Liumin Luo
- School of Mechanical and Eletrical Engineering, Zhoukou Normal University, Zhoukou 466000, China; (L.L.); (X.Z.); (X.Z.); (J.L.)
| | - Xiaoyu Zhou
- School of Mechanical and Eletrical Engineering, Zhoukou Normal University, Zhoukou 466000, China; (L.L.); (X.Z.); (X.Z.); (J.L.)
| | - Xiaodong Zhou
- School of Mechanical and Eletrical Engineering, Zhoukou Normal University, Zhoukou 466000, China; (L.L.); (X.Z.); (X.Z.); (J.L.)
| | - Jin Li
- School of Mechanical and Eletrical Engineering, Zhoukou Normal University, Zhoukou 466000, China; (L.L.); (X.Z.); (X.Z.); (J.L.)
| | - Zhi Li
- California State University San Bernardino, 5500 University Pkwy, San Bernardino, CA 92407, USA;
| |
Collapse
|
32
|
Honarparvar S, Zhang X, Chen T, Na C, Reible D. Modeling technologies for desalination of brackish water — toward a sustainable water supply. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
33
|
Kilicli M, Baslar M, Durak MZ, Sagdic O. Effect of ultrasound and low-intensity electrical current for microbial safety of lettuce. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108509] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Kucera J. Biofouling of Polyamide Membranes: Fouling Mechanisms, Current Mitigation and Cleaning Strategies, and Future Prospects. MEMBRANES 2019; 9:E111. [PMID: 31480327 PMCID: PMC6780091 DOI: 10.3390/membranes9090111] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 11/16/2022]
Abstract
Reverse osmosis and nanofiltration systems are continuously challenged with biofouling of polyamide membranes that are used almost exclusively for these desalination techniques. Traditionally, pretreatment and reactive membrane cleanings are employed as biofouling control methods. This in-depth review paper discusses the mechanisms of membrane biofouling and effects on performance. Current industrial disinfection techniques are reviewed, including chlorine and other chemical and non-chemical alternatives to chlorine. Operational techniques such as reactive membrane cleaning are also covered. Based on this review, there are three suggested areas of additional research offering promising, polyamide membrane-targeted biofouling minimization that are discussed. One area is membrane modification. Modification using surface coatings with inclusion of various nanoparticles, and graphene oxide within the polymer or membrane matrix, are covered. This work is in the infancy stage and shows promise for minimizing the contributions of current membranes themselves in promoting biofouling, as well as creating oxidant-resistant membranes. Another area of suggested research is chemical disinfectants for possible application directly on the membrane. Likely disinfectants discussed herein include nitric oxide donor compounds, dichloroisocyanurate, and chlorine dioxide. Finally, proactive cleaning, which aims to control the extent of biofouling by cleaning before it negatively affects membrane performance, shows potential for low- to middle-risk systems.
Collapse
Affiliation(s)
- Jane Kucera
- Nalco Water, An Ecolab Company, 1601 West Diehl Road, Naperville, IL 60563, USA.
| |
Collapse
|
35
|
Khosravi A, Honarmand rad Z, Amirmahani N, Nasiri A, Malakootian M. The Application of Electrolysis Method to Disinfect Water Contaminated by Salmonella and Shigella. J WATER CHEM TECHNO+ 2019. [DOI: 10.3103/s1063455x19030081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Chaplin BP. The Prospect of Electrochemical Technologies Advancing Worldwide Water Treatment. Acc Chem Res 2019; 52:596-604. [PMID: 30768240 DOI: 10.1021/acs.accounts.8b00611] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Growing worldwide population, climate change, and decaying water infrastructure have all contributed to a need for a better water treatment and conveyance model. Distributed water treatment is one possible solution, which relies on the local treatment of water from various sources to a degree dependent on its intended use and, finally, distribution to local consumers. This distributed, fit-for-purpose water treatment strategy requires the development of new modular point-of-use and point-of-entry technologies to bring this idea to fruition. Electrochemical technologies have the potential to contribute to this vision, as they have several advantages over established water treatment technologies. Electrochemical technologies have the ability to simultaneously treat multiple classes of contaminants through the in situ production of chemicals at the electrode surfaces with low power and energy demands, thereby allowing the construction of compact, modular water treatment technologies that require little maintenance and can be easily automated or remotely controlled. In addition, these technologies offer the opportunity for energy recovery through production of fuels at the cathode, which can further reduce their energy footprint. In spite of these advantages, there are several challenges that need to be overcome before widespread adoption of electrochemical water treatment technologies is possible. This Account will focus primarily on destructive electrolytic technologies that allow for removal of water contaminants without the need for residual treatment or management. Most important to the development of destructive electrochemical technologies is a need to fabricate nontoxic, inexpensive, high-surface-area electrodes that have a long operational life and can operate without the production of unwanted toxic byproducts. Overcoming these barriers will decrease the capital costs of water treatment and allow the development of the point-of-use and point-of-entry technologies that are necessary to promote more sustainable water treatment solutions. However, to accomplish this goal, a reprioritization of research is needed. Current research is primarily focused on investigating individual contaminant transformation pathways and mechanisms. While this research is important for understanding these technologies, additional work is needed in developing inexpensive, high-surface-area, stable electrode materials, minimizing toxic byproduct formation, and determining the life cycle and technoeconomic analyses necessary for commercialization. Better understanding of these critical research areas will allow for strategic deployment of electrochemical water treatment technologies to promote a more sustainable future.
Collapse
Affiliation(s)
- Brian P. Chaplin
- Department of Chemical Engineering, University of Illinois at Chicago, 810 S. Clinton Street, Chicago, Illinois 60607, United States
| |
Collapse
|
37
|
Liu H, Ni XY, Huo ZY, Peng L, Li GQ, Wang C, Wu YH, Hu HY. Carbon Fiber-Based Flow-Through Electrode System (FES) for Water Disinfection via Direct Oxidation Mechanism with a Sequential Reduction-Oxidation Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3238-3249. [PMID: 30768244 DOI: 10.1021/acs.est.8b07297] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Flow-through configuration for electrochemical disinfection is considered as a promising approach to minimize the formation of toxic byproducts and energy consumption via the enhanced convective mass transport as compared with conventional flow-by one. Under this hydrodynamic condition, it is essential to ascertain the effect of sequential electro-redox processes with the cathode/anode then anode/cathode arrangements on disinfection performance. Here, carbon fiber felt (CFF) was utilized to construct two flow-through electrode systems (FESs) with sequential reduction-oxidation (cathode-anode) or oxidation-reduction (anode-cathode) processes to systematically compare their disinfection performance toward a model Escherichia coli ( E. coli) pathogen. In-situ sampling and live/dead backlight staining experiments revealed that E. coli inactivation mainly occurred on anode via an adsorption-inactivation-desorption process. In reduction-oxidation system, after the cathode-pretreatment, bulk solution pH increased significantly, leading to the negative charge of E. coli cells. Hence, E. coli cells were adsorbed and inactivated easily on the subsequent anode, finally resulting in its much better disinfection performance and energy efficiency than the oxidation-reduction system. Application of 3.0 V resulted in ∼6.5 log E. coli removal at 1500 L m-2 h-1 (50 mL min-1), suggesting that portable devices can be designed from CFF-based FES with potential application for point-of-use water disinfection.
Collapse
Affiliation(s)
- Hai Liu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Xin-Ye Ni
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Zheng-Yang Huo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Lu Peng
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment , Tsinghua University , Beijing 100084 , PR China
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory , Tsinghua-Berkeley Shenzhen Institute , Shenzhen 518055 , PR China
| | - Guo-Qiang Li
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Chun Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment , Tsinghua University , Beijing 100084 , PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment , Tsinghua University , Beijing 100084 , PR China
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory , Tsinghua-Berkeley Shenzhen Institute , Shenzhen 518055 , PR China
| |
Collapse
|
38
|
Raut AS, Parker CB, Klem EJD, Stoner BR, Deshusses MA, Glass JT. Reduction in energy for electrochemical disinfection of E. coli in urine simulant. J APPL ELECTROCHEM 2019; 49:443-453. [PMID: 31031416 PMCID: PMC6454812 DOI: 10.1007/s10800-019-01292-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 02/11/2019] [Indexed: 11/26/2022]
Abstract
ABSTRACT We report the development of novel modes of operation for electrochemical disinfection of E. coli in human urine simulant with an aim to minimize the energy required for disinfection. The system employs boron-doped diamond electrodes and will be part of an energy neutral, water and additive free outdoor toilet being developed for use in developing countries. Disinfection had been previously demonstrated with voltage being continuously applied to the electrode until disinfection was achieved. In the present study, a new pulsed mode of operation is investigated. This includes a continuous on mode, where oxidants are generated until disinfection is achieved, a single cycle mode, where oxidants are generated for a fixed time and the water is circulated so allow already generated oxidants to disinfect, and a pulsed mode with different duty cycles, which is like the single cycle mode but with multiple cycles. Disinfection was achieved with pulsed mode operation with a 68% energy reduction compared to the continuous on mode. Energy saving was most likely achieved by lengthening the contact time of the disinfectant with the bacteria and increased generation of non-chlorine disinfecting oxidants. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Akshay S. Raut
- Department of Electrical and Computer Engineering, Duke University, Center for WaSH-AID, Durham, NC 27708 USA
| | - Charles B. Parker
- Department of Electrical and Computer Engineering, Duke University, Center for WaSH-AID, Durham, NC 27708 USA
| | - Ethan J. D. Klem
- RTI International, Discovery-Science-Technology Division, Research Triangle Park, NC 27709 USA
| | - Brian R. Stoner
- Department of Electrical and Computer Engineering, Duke University, Center for WaSH-AID, Durham, NC 27708 USA
| | - Marc A. Deshusses
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708 USA
| | - Jeffrey T. Glass
- Department of Electrical and Computer Engineering, Duke University, Center for WaSH-AID, Durham, NC 27708 USA
| |
Collapse
|
39
|
Gonzalez‐Rivas N, Reyes‐Pérez H, Barrera‐Díaz CE. Recent Advances in Water and Wastewater Electrodisinfection. ChemElectroChem 2019. [DOI: 10.1002/celc.201801746] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Nelly Gonzalez‐Rivas
- Centro Conjunto de Investigación en Química SustentableUAEM-UNAM Carretera Toluca-Atlacomulco, Km 14.5, Campus San Cayetano, C. P. 50200 Toluca México
| | - Horacio Reyes‐Pérez
- División de Ingeniería QuímicaTecnológico de Estudios Superiores de Jocotitlán Carretera Toluca-Atlacomulco km 44.8, Ejido de San Juan y San Agustin Jocotitlán, Edo. México
| | - Carlos E. Barrera‐Díaz
- Centro Conjunto de Investigación en Química SustentableUAEM-UNAM Carretera Toluca-Atlacomulco, Km 14.5, Campus San Cayetano, C. P. 50200 Toluca México
| |
Collapse
|
40
|
Ziemba C, Larivé O, Deck S, Huisman T, Morgenroth E. Comparing the anti-bacterial performance of chlorination and electrolysis post-treatments in a hand washing water recycling system. WATER RESEARCH X 2019; 2:100020. [PMID: 31119215 PMCID: PMC6510329 DOI: 10.1016/j.wroa.2018.100020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/24/2018] [Accepted: 11/30/2018] [Indexed: 05/05/2023]
Abstract
Innovative solutions are necessary to enable the decentralized recycling of greywater for applications requiring high-quality water, such as hand washing. While physical barriers such as ultrafiltration membranes effectively prevent the passage of bacteria, and chemical and biological treatments can effectively reduce the carbon content of the treated water, there exists a knowledge gap regarding the application of anti-bacterial strategies to prevent the growth of harmful bacteria following treatment. In this study, the effluent water from a household-scale greywater treatment system was fed to seven parallel experimental post-treatment tanks: three receiving direct chlorination with free chlorine residuals of 0.2, 1 or 5 mg Cl2/L, three with chlorine produced through electrolysis at the same residual concentrations, and one control with no chlorine added. For increasing concentrations of direct chlorination, the median total cell count (TCC) values were 9 × 104, 2.9 × 104 and 1.8 × 103 cells/mL, respectively. Electrolysis treatment produced very similar TCC concentrations, 8.8 × 104, 1.1 × 104 and 2.3 × 103 cells/mL. The TCC concentrations were lower than the concentration of the water entering each tank (∼3 × 105 cells/mL). Intact cell count (ICC) measurements indicated that the viable cell concentrations, were less than 10% of the TCC values. Though electrolysis treatment can produce powerful oxidants, such as hydroxyl radical, there was no evidence that electrolysis in this system provided additional benefits beyond chlorine production for control of total or intact cell counts. Oxidation of bacteria by chlorine was the dominant anti-bacterial mechanism in our system. Monitoring of dissolved organic carbon (DOC) and assimilable organic carbon (AOC) did not suggest that carbon-limitation significantly impacted cell counts when chlorination or electrolysis treatment was applied. This work demonstrates that either direct chlorination or electrolysis treatment are able to reduce bacteria concentrations over long-term operation of a hand washing water treatment system. We recommend selecting chlorine residual targets such that a chlorine residual is maintained during periods of challenging operating conditions. We observed that a target residual of 1 mg Cl2/L, in our system, maintained the TCC below the concentration found in Zurich drinking water.
Collapse
Affiliation(s)
- Christopher Ziemba
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093, Zürich, Switzerland
| | - Odile Larivé
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Svenja Deck
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Theo Huisman
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093, Zürich, Switzerland
| | - Eberhard Morgenroth
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093, Zürich, Switzerland
| |
Collapse
|
41
|
Operating the CabECO® membrane electrolytic technology in continuous mode for the direct disinfection of highly fecal-polluted water. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.04.070] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Jin Y, Shi Y, Chen R, Chen X, Zheng X, Liu Y. Electrochemical disinfection using a modified reticulated vitreous carbon cathode for drinking water treatment. CHEMOSPHERE 2019; 215:380-387. [PMID: 30336315 DOI: 10.1016/j.chemosphere.2018.10.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
A reticulated vitreous carbon (RVC) cathode modified by anodic polarization in 20 wt% H2SO4 solution was used for drinking water disinfection under a neutral low electrolyte concentration (0.25 g/L Na2SO4) condition. The contribution of the modified RVC anode and the Ti/RuO2 cathode to disinfection was investigated. The influences of current, initial Escherichia coli load, temperature and water volume were studied. The results show that H2O2 generation increased to approximately three times using the modification of the RVC. E. coli was mainly deactivated by the H2O2 generated at the cathode. For water with about 106 CFU/mL E. coli, the detection limit (<4 CFU/mL) was reached under different conditions. Increasing current could simultaneously shorten the treatment time and increase the energy consumption (EC) simultaneously. Although decreasing the initial load reduced the treatment time, the EC for per log E. coli removal increased. The time required for disinfection shortened from 3.5 to 2.5 h and the EC for per log removal decreased from 218.5 to 123.2 Wh/m3 when the temperature increased from 20 to 40 °C. Although more time was required for disinfection, the EC decreased from 218.5 to 141.4 Wh/m3 when the volume was doubled.
Collapse
Affiliation(s)
- Yanchao Jin
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian Province 350007, China
| | - Yijun Shi
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian Province 350007, China
| | - Riyao Chen
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian Province 350007, China.
| | - Xiao Chen
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian Province 350007, China
| | - Xi Zheng
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian Province 350007, China
| | - Yaoxing Liu
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, Fujian Province 350007, China
| |
Collapse
|
43
|
Kourdali S, Badis A, Boucherit A, Boudjema K, Saiba A. Electrochemical disinfection of bacterial contamination: Effectiveness and modeling study of E. coli inactivation by electro-Fenton, electro-peroxi-coagulation and electrocoagulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 226:106-119. [PMID: 30114570 DOI: 10.1016/j.jenvman.2018.08.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 08/01/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
The present work undertakes an examination and comparison of electro-Fenton (EF), electro-peroxi-coagulation (EPC) and electrocoagulation (EC) applied to the E. coli inactivation in batch reactor. Indeed, platinum (Pt (anode), EF), stainless steel (SS (cathode), EF, EPC) and ordinary steel (Fe (anode), EPC) and aluminum (Al, EC) were used respectively. The current intensity, nature of electrolytic support, bacterial density and hydrogen peroxide (H2O2) concentration are the most influenced study parameters. The obtained results showed that the high current intensities were significant for better inactivation and destruction of E. coli cells and caused a maximum of energy consumption. Both disinfection and energy consumption were improved by adding NaCl (or Na2SO4) in the three processes. Higher cellular density limited the electrochemical process and has negative effect in E. coli inactivation and the energy consumption. Only in the EPC case, the disinfection was considerably increased in function with H2O2 concentration. The modeling parameters of the inactivation kinetics of E. coli showed a good fitting of the established model (0.9560 < R2 < 0.9979, 0.9267 < R2 adjusted <0.997 and 0.0189 < RMSE <0.4821), faster kinetics of E. coli inactivation (significant values of Kmax and Sl) in the case of high current intensity (0.2442<Kmax<0.7440 and 10.50 < Sl < 24.69), the presence of chlorides or sulfates (0.6662<Kmax<0.7818 and 11.67 < Sl < 18.59), and the sufficient H2O2 concentration (0.4712<Kmax<0.9204 and 13.00 < Sl < 16.38). Moreover, the analysis of the results revealed that the EF is more effective in terms of the E. coli inactivation and the energy consumption comparatively to the other studied processes.
Collapse
Affiliation(s)
- Sidali Kourdali
- Department of Process Engineering, Faculty of Technology, University of Saàd Dahlab Blida 1, P.O. Box 270, 09000, Blida, Algeria; National Centre for Research and Development of Fisheries and Aquaculture (CNRDPA) 11, Bd Amirouche P.O. Box 67, Bousmail, W. Tipaza, Algeria.
| | - Abdelmalek Badis
- Department of Process Engineering, Faculty of Technology, University of Saàd Dahlab Blida 1, P.O. Box 270, 09000, Blida, Algeria; National Centre for Research and Development of Fisheries and Aquaculture (CNRDPA) 11, Bd Amirouche P.O. Box 67, Bousmail, W. Tipaza, Algeria; Laboratory of Natural Substances Chemistry and Biomolecules, University of Saàd Dahlab Blida 1, P.O. Box 270, 09000, Blida, Algeria
| | - Ahmed Boucherit
- Department of Process Engineering, Faculty of Technology, University of Saàd Dahlab Blida 1, P.O. Box 270, 09000, Blida, Algeria; Laboratory of Chemical Engineering, University Saad Dahlab of Blida 1, P.O.Box 270, 09000, Blida, Algeria
| | - Kamel Boudjema
- Department of Process Engineering, Faculty of Technology, University of Saàd Dahlab Blida 1, P.O. Box 270, 09000, Blida, Algeria; National Centre for Research and Development of Fisheries and Aquaculture (CNRDPA) 11, Bd Amirouche P.O. Box 67, Bousmail, W. Tipaza, Algeria
| | - Ali Saiba
- Department of Process Engineering, Faculty of Technology, University of Saàd Dahlab Blida 1, P.O. Box 270, 09000, Blida, Algeria
| |
Collapse
|
44
|
Glorian H, Schmalz V, Lochyński P, Fremdling P, Börnick H, Worch E, Dittmar T. Portable Analyzer for On-Site Determination of Dissolved Organic Carbon-Development and Field Testing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E2335. [PMID: 30360522 PMCID: PMC6266601 DOI: 10.3390/ijerph15112335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 11/16/2022]
Abstract
Dissolved organic carbon (DOC) is a sum parameter that is frequently used in water analytics. Highly resolved and accurate DOC data are necessary, for instance, for water quality monitoring and for the evaluation of the efficiency of treatment processes. The conventional DOC determination methods consist of on-site sampling and subsequent analysis in a stationary device in a laboratory. However, especially in regions where no or only poorly equipped laboratories are available, this method bears the risk of getting erroneous results. For this reason, the objective of the present study was to set up a reliable and portable DOC analyzer for on-site analysis. The presented DOC system is equipped with an electrolysis-based decomposition cell with boron-doped diamond electrodes (BDD) that oxidizes the organic compounds to carbon dioxide. Within this study, the influence of different electrode materials and the composition of the applied electrolytes on the DOC decomposition in an undivided electrolytic cell were systematically investigated. Furthermore, some technical aspects of the portable prototype are discussed. After a detailed validation, the prototype was used in an ongoing monitoring program in Northern India. The limit of detection is 0.1 mg L-1 C with a relative standard deviation of 2.3% in a linear range up to 1000 mg L C-1. The key features of the portable DOC analyzer are: No need for ultra-pure gases, catalysts or burning technology, an analyzing time per sample below 5 min, and a reliable on-site DOC determination.
Collapse
Affiliation(s)
- Heinrich Glorian
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany.
| | - Viktor Schmalz
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany.
| | - Paweł Lochyński
- Institute of Environmental Engineering, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland.
| | - Paul Fremdling
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany.
| | - Hilmar Börnick
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany.
| | - Eckhard Worch
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany.
| | - Thomas Dittmar
- Institute of Water Chemistry, Technische Universität Dresden, 01069 Dresden, Germany.
| |
Collapse
|
45
|
Tan X, Chen C, Hu Y, Wen J, Qin Y, Cheng J, Chen Y. Novel AgNWs-PAN/TPU membrane for point-of-use drinking water electrochemical disinfection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:408-417. [PMID: 29753229 DOI: 10.1016/j.scitotenv.2018.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
The safety of drinking water remains a major challenge in developing countries and point-of-use (POU) drinking water treatment device plays an important role in decentralised drinking water safety. In this study, a novel material, i.e. a silver nanowires-polyacrylonitrile/thermoplastic polyurethane (AgNWs-PAN/TPU) composite membrane, was fabricated via electrospinning and vacuum filtration deposition. Morphological and structural characterisation showed that the PAN/TPU fibres had uniform diameters and enhanced mechanical properties. When added to these fibres, the AgNWs formed a highly conductive network with good physical stability and low silver ion leaching (<100 ppb). A POU device equipped with a AgNWs-PAN/TPU membrane displayed complete removal of 105 CFU/mL bacteria, which were inactivated by silver ions released from the AgNWs within 6 h. Furthermore, under a voltage of 1.5 V, the bacteria were completely inactivated within 20-25 min. Inactivation efficiency in 5 mM NaCl solution was higher than those in Na2SO4 and NaNO3 solutions. We concluded that a strong electric field was formed at the AgNW tips. Additionally, silver ions and chlorine compounds worked synergistically in the disinfection process. This study provides a scientific basis for research and development of silver nanocomposite membranes, with high mechanical strength and high conductivity, for POU drinking water disinfection.
Collapse
Affiliation(s)
- Xiaojun Tan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, PR China
| | - Chao Chen
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, PR China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.
| | - Junjie Wen
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, PR China
| | - Yanzhe Qin
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China
| |
Collapse
|
46
|
Li C, Guo X, Wang X, Fan S, Zhou Q, Shao H, Hu W, Li C, Tong L, Kumar RR, Huang J. Membrane fouling mitigation by coupling applied electric field in membrane system: Configuration, mechanism and performance. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.150] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
De Battisti A, Formaglio P, Ferro S, Al Aukidy M, Verlicchi P. Electrochemical disinfection of groundwater for civil use - An example of an effective endogenous advanced oxidation process. CHEMOSPHERE 2018; 207:101-109. [PMID: 29778760 DOI: 10.1016/j.chemosphere.2018.05.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
Lab-scale experiments using real groundwater were carried out using the CabECO® reactor system in order to evaluate its suitability for producing safe water, acceptable for civil purposes. Trials were carried out in discontinuous and in continuous mode, analyzing the influence of electrical and hydraulic process parameters on the quality of treated water. The use of highly boron-doped diamond electrodes in the reactor allowed the electrosynthesis of considerable amounts of ozone. Because of the relatively high amount of chloride in the groundwater samples, a mixture of HOCl/ClO- was also synthesized. Somewhat unexpectedly, the increase in the current density in the explored range 100-1000 A m-2 was accompanied by an increase in the faradaic yield of the electrosynthesis of oxidants, which was more pronounced for ozone than for free chlorine. As reported in literature, the main radical intermediate in the relevant reactions is OH, which can lead to different oxidation products, namely ozone and HOCl/ClO-. The electrolytic treatment also caused a decrease in the concentration of minor components, including NH4+ and Br-. Other byproducts were ClO3- and ClO4-, although their concentration levels were low. Moreover, due to alkali formation at the cathode surface, the precipitation of calcium and magnesium carbonates was also observed. In addition, the experimental investigation showed that even Pseudomonas aeruginosa and Legionella could be completely removed in the treated stream, due to the unique capacity of the reactor to synthesize biocidal agents like ozone, HOCl/ClO-, and chloramines. These effects were particularly evident during batch experiments.
Collapse
Affiliation(s)
| | | | | | - Mustafa Al Aukidy
- Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy.
| | - Paola Verlicchi
- Department of Engineering, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy.
| |
Collapse
|
48
|
Disinfection Methods for Swimming Pool Water: Byproduct Formation and Control. WATER 2018. [DOI: 10.3390/w10060797] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
49
|
Nguyen MT, Allemann L, Ziemba C, Larive O, Morgenroth E, Julian TR. Controlling Bacterial Pathogens in Water for Reuse: Treatment Technologies for Water Recirculation in the Blue Diversion Autarky Toilet. FRONTIERS IN ENVIRONMENTAL SCIENCE 2017; 5:90. [PMID: 33365315 PMCID: PMC7705130 DOI: 10.3389/fenvs.2017.00090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/04/2017] [Indexed: 05/05/2023]
Abstract
The Blue Diversion AUTARKY Toilet is a urine-diverting toilet with on-site treatment. The toilet is being developed to provide a safe and affordable sanitation technology for people who lack access to sewer-based sanitation. Water used for personal hygiene, hand washing, and flushing to rinse urine- and feces-collection bowls is treated, stored, and recycled for reuse to reduce reliance on external water supplies. The system provides an opportunity to investigate hygiene of water for reuse following treatment. Treatment in the toilet includes a Biologically Activated Membrane Bioreactor (BAMBi) followed by a secondary treatment technology. To identify effective secondary treatment, three options, including granular activated carbon (GAC) only, GAC+chlorine (sodium hypochlorite), and GAC+electrolysis are considered based on the bacterial inactivation and growth inhibition efficiency. Four different hygiene-relevant bacteria are tested: Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, and Salmonella typhimurium. Our evaluation demonstrates that-despite treatment of water with the BAMBi-E. coli, P aeruginosa, and S. typhimurium have the potential to grow during storage in the absence of microbial competition. Including the indigenous microbial community influences bacterial growth in different ways: E. coli growth decreases but P. aeruginosa growth increases relative to no competition. The addition of the secondary treatment options considerably improves water quality. A column of GAC after the BAMBi reduces E. coli growth potential by 2 log10, likely due to the reduction of carbon sources. Additional treatments including chlorination and electrolysis provide further safety margins, with more than 5 log-10 inactivation of E. coli. However, reactivation and/or regrowth of E. coli and P. aeruginosa occurs under in the absence of residual disinfectant. Treatment including the BAMBi, GAC, and electrolysis appear to be promising technologies to control bacterial growth during storage in water intended for reuse.
Collapse
Affiliation(s)
- Mi T. Nguyen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Nguyen Tat Thanh Hi-Tech Institute, Nguyen Tat Thanh University Ho Chi Minh City, Vietnam
| | - Lukas Allemann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Christopher Ziemba
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, Zurich, Switzerland
| | - Odile Larive
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- EPFL, School of Architecture, Civil and Environmental Engineering, Lausanne, Switzerland
| | - Eberhard Morgenroth
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, Zurich, Switzerland
| | - Timothy R. Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Correspondence: Timothy R. Julian
| |
Collapse
|
50
|
Saha J, Gupta SK. Endeavor toward competitive electrochlorination by comparing the performance of easily affordable carbon electrodes with platinum. CHEM ENG COMMUN 2017. [DOI: 10.1080/00986445.2017.1365060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jayeeta Saha
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Sunil Kumar Gupta
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| |
Collapse
|