1
|
Belmaker I, Anca ED, Rubin LP, Magen-Molho H, Miodovnik A, van der Hal N. Adverse health effects of exposure to plastic, microplastics and their additives: environmental, legal and policy implications for Israel. Isr J Health Policy Res 2024; 13:44. [PMID: 39256853 PMCID: PMC11385141 DOI: 10.1186/s13584-024-00628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/17/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Israel is a regional "hotspot" of plastic pollution, with little discussion of potential adverse health effects from exposure to plastic. This review aims to stimulate discussion and drive policy by focusing on these adverse health effects. MAIN BODY Plastics are synthetic polymers containing additives which can leach from food- and beverage-contact plastic into our food and beverages, and from plastic textiles onto our skin. Plastics persist in the environment for generations, fragmenting into MNPs: Micro (1 micron-5 mm)-Nano (1 nm-1 micron)-Plastic, which contaminate our atmosphere, water, and food chain. MNP can enter the human body through ingestion, inhalation and touch. MNP < 10 microns can cross epithelial barriers in the respiratory and gastrointestinal systems, and fragments < 100 nm can cross intact skin, enabling entry into body tissues. MNP have been found in multiple organs of the human body. Patients with MNP in atheromas of carotid arteries have increased risk of a combined measure of stroke, cardiovascular disease, and death. Toxic additives to plastics include bisphenols, phthalates, and PFAS, endocrine-disrupting chemicals (EDCs) which cause dysregulation of thyroid function, reproduction, and metabolism, including increased risk of obesity, diabetes, endometriosis, cancer, and decreased fertility, sperm count and quality. Fetal exposure to EDCs is associated with increased rates of miscarriages, prematurity and low birth weight. There is likely no safe level of exposure to EDCs, with increasing evidence of trans-generational and epigenetic effects. There are several existing Israeli laws to reduce plastic use and waste. Taxes on single-use plastic (SUP) were recently cancelled. There are many gaps in regulatory standards for food-, beverage- and child- safe plastic. Existing standards are poorly enforced. CONCLUSION Reduction in production and use of plastic, promotion of recycling and reduction of leaching of toxic additives into our food and beverages are essential policy goals. Specific recommendations: Periodic monitoring of MNP in bottled beverages, food, indoor air; Strengthen enforcement of standards for food-, beverage-, and child-safe plastic; Renew tax on SUPs; National ban on SUP at public beaches, nature reserves and parks; Ban products manufactured with MNP; Increase research on sources and health outcomes of exposure to MNP and EDCs.
Collapse
Affiliation(s)
- Ilana Belmaker
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Soroka Campus, Building M7, 8410501, Beer-Sheva, Israel.
| | | | - Lisa P Rubin
- School of Public Health, University of Haifa, 199 Aba Khoushy Ave., 3103301, Mount Carmel, Haifa, Israel
| | - Hadas Magen-Molho
- Hebrew University Center for Sustainability, The Hebrew University, Edmond J. Safra Campus, Givat Ram, 9190401, Jerusalem, Israel
| | - Anna Miodovnik
- Israel Plastic Pollution Prevention Coalition (IPPPC), Tel Aviv, Israel
| | - Noam van der Hal
- Department of Maritime Civilizations, Charney School for Marine Science, University of Haifa, 199 Aba Khoushy Ave., 3498838, Mount Carmel, Haifa, Israel
| |
Collapse
|
2
|
Gueta I, Ross J, Sheinberg R, Keidar R, Livne A, Berkovitch M, Berlin M, Lubetzky R, Mandel D, Marom R, Ovental A, Hazan A, Betser M, Moskovich M, Efriem S, Kohn E, Britzi M. Association between prenatal phthalate exposure and ano-genital indices among offsprings in an Israeli cohort. Heliyon 2024; 10:e33633. [PMID: 39040426 PMCID: PMC11261066 DOI: 10.1016/j.heliyon.2024.e33633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/24/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Background In-utero phthalate exposure was shown to be associated with shortened anogenital distance (AGD) in male newborns, but findings among female are inconsistent. While phthalate exposure among pregnant women in Israel is widespread, no study has examined the association with offspring AGD. The objective of the current study was to investigate the association between maternal phthalates urinary concentration and offspring AGD at time of delivery among a birth cohort in Israel. Methods We measured spot urinary concentration of monobutyl phthalate (MBP), monobenzyl phthalate (MBzP), mono-2-ethyl-5-carboxypentyl phthalate (MECPP), mono-2-ethyl-5-hydroxyhexylphthalate (MEHHP), mono-2-ethyl-5-oxohexyl phthalate (MEOHP) among women presenting to the delivery room at Shamir Medical Center in Israel. Birthweight, length and AGD were measured in all newborns using a standardized protocol. Each AGD measurement was adjusted to weight (ano-genital index). Confounders included socio-demographic characteristics, comorbidities and obstetrical history. Univariate and multivariate analyses assessed the associations between phthalates, confounders and AGD. Results Overall, 193 mother and infant were analyzed. All newborns were born at term and had normal Apgar scores. Mean maternal age was 32 ± 4.7 years old. Mean birth weight and pregnancy week were 3183 ± 498 g and 39 ± 1.3, respectively. Median (IQR) urinary phthalate concentration adjusted to creatinine (ug/g) were 3.96 (2.2-6.6), 1.22 (0.7-2), 10.84 (7-20.4), 6.36 (3.3-11.2) and 0.64 (0.4-1.1) for MBP, MBzP, MECPP, MEHHP and MEOHP, respectively. Univariate comparison showed a significant association between higher than median MBzP concentration, higher Ano-Fourchetal index (AFI: 4.4 vs. 4.1, p = 0.037) and Ano-clitoral index (ACI: 11.5 vs. 10.4, p = 0.032) in infants. Total urinary phthalates concentration ≥26.25 μg/g was significantly associated with smaller penile width index (3.5 vs. 3.7, p = 0.022), higher ACI (11.6 vs. 10.3, p = 0.013) and a trend towards significance for higher AFI (4.3 vs. 4.1, p = 0.055). Following multivariate linear regression only PWI remained significantly associated with total phthalate urinary concentration. Conclusions Maternal urinary phthalates concentration at delivery were not associated with female AGD, but total urinary phthalate concentration were inversely associated with penile width.
Collapse
Affiliation(s)
- Itai Gueta
- The Clinical Pharmacology Unit, Tel-Aviv Medical Center, Tel Aviv, Israel
- Internal Medicine F, Tel-Aviv Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jessica Ross
- Pediatrics Division, Shamir (Assaf Harofeh) Medical Center, Zerifin, Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Revital Sheinberg
- Pediatrics Division, Shamir (Assaf Harofeh) Medical Center, Zerifin, Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rimona Keidar
- Pediatrics Division, Shamir (Assaf Harofeh) Medical Center, Zerifin, Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ayelet Livne
- Pediatrics Division, Shamir (Assaf Harofeh) Medical Center, Zerifin, Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Matitiahu Berkovitch
- Pediatrics Division, Shamir (Assaf Harofeh) Medical Center, Zerifin, Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Andy Lebach Chair of Clinical Pharmacology and Toxicology, Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
- Clinical Pharmacology and Toxicology Unit, Shamir (Assaf Harofeh) Medical Center, Zerifin, Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maya Berlin
- Clinical Pharmacology and Toxicology Unit, Shamir (Assaf Harofeh) Medical Center, Zerifin, Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Lubetzky
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Departments of Neonatology and Pediatrics, Dana Dwek Children's Hospital, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Dror Mandel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Departments of Neonatology and Pediatrics, Dana Dwek Children's Hospital, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Ronella Marom
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Departments of Neonatology and Pediatrics, Dana Dwek Children's Hospital, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Amit Ovental
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Departments of Neonatology and Pediatrics, Dana Dwek Children's Hospital, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Ariela Hazan
- Clinical Pharmacology and Toxicology Unit, Shamir (Assaf Harofeh) Medical Center, Zerifin, Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Betser
- Obstetrics and Gynecology Division, Shamir (Assaf Harofeh) Medical Center, Zerifin, Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Miki Moskovich
- Obstetrics and Gynecology Division, Shamir (Assaf Harofeh) Medical Center, Zerifin, Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Solomon Efriem
- Kimron Veterinary Institute, National Residue Control Laboratory, Beit Dagan, Israel
| | - Elkana Kohn
- Clinical Pharmacology and Toxicology Unit, Shamir (Assaf Harofeh) Medical Center, Zerifin, Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Malka Britzi
- Kimron Veterinary Institute, National Residue Control Laboratory, Beit Dagan, Israel
| |
Collapse
|
3
|
Rafeletou A, Niemi JVL, Lagunas-Rangel FA, Liu W, Kudłak B, Schiöth HB. The exposure to UV filters: Prevalence, effects, possible molecular mechanisms of action and interactions within mixtures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:170999. [PMID: 38458461 DOI: 10.1016/j.scitotenv.2024.170999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 03/10/2024]
Abstract
Substances that can absorb sunlight and harmful UV radiation such as organic UV filters are widely used in cosmetics and other personal care products. Since humans use a wide variety of chemicals for multiple purposes it is common for UV filters to co-occur with other substances either in human originating specimens or in the environment. There is increasing interest in understanding such co-occurrence in form of potential synergy, antagonist, or additive effects of biological systems. This review focuses on the collection of data about the simultaneous occurrence of UV filters oxybenzone (OXYB), ethylexyl-methoxycinnamate (EMC) and 4-methylbenzylidene camphor (4-MBC) as well as other classes of chemicals (such as pesticides, bisphenols, and parabens) to understand better any such interactions considering synergy, additive effect and antagonism. Our analysis identified >20 different confirmed synergies in 11 papers involving 16 compounds. We also highlight pathways (such as transcriptional activation of estrogen receptor, promotion of estradiol synthesis, hypothalamic-pituitary-gonadal (HPG) axis, and upregulation of thyroid-hormone synthesis) and proteins (such as Membrane Associated Progesterone Receptor (MAPR), cytochrome P450, and heat shock protein 70 (Hsp70)) that can act as important key nodes for such potential interactions. This article aims to provide insight into the molecular mechanisms on how commonly used UV filters act and may interact with other chemicals.
Collapse
Affiliation(s)
- Alexandra Rafeletou
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jenni Viivi Linnea Niemi
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Wen Liu
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Błażej Kudłak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
4
|
Hoffmann-Dishon N, Barnett-Itzhaki Z, Zalko D, Hemi R, Farzam N, Hauser R, Racowsky C, Baccarelli AA, Machtinger R. Endocrine-disrupting chemical concentrations in follicular fluid and follicular reproductive hormone levels. J Assist Reprod Genet 2024; 41:1637-1642. [PMID: 38557803 PMCID: PMC11224170 DOI: 10.1007/s10815-024-03101-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
PURPOSE To determine correlations between chemicals in follicular fluid (FF) and follicular reproductive hormone levels. METHODS The analysis was part of a larger cohort study to determine associations between exposure to EDCs and in vitro fertilization (IVF) outcomes. FF was aspirated from a single leading follicle per participant. Demographics and data on exposure to EDCs were self-reported by the participants using a questionnaire. The concentrations of estradiol (E2), progesterone (PG), anti-Mullerian hormone (AMH), and inhibin B, as well as that of 12 phthalate metabolites and 12 phenolic chemicals were measured in each FF sample. Multivariate linear regression model was used to identify the drivers of hormone levels based on participant's age, BMI, smoking status, and chemical exposure for the monitored chemicals detected in more than 50% of the samples. Benjamini-Hochberg false discovery rate (FDR) correction was applied on the resulting p values (q value). RESULTS FF samples were obtained from 72 women (mean age 30.9 years). Most of the phthalates and phenolic substances monitored (21/24, 88%) were identified in FF. Ten compounds (7 phthalate metabolites, 3 phenols) were found in more than 50% of samples. In addition, there were positive associations between E2 levels and mono-n-butyl phthalate (MnBP) (beta = 0.01) and mono-isobutyl phthalate (MiBP) (beta = 0.03) levels (q value < 0.05). CONCLUSION Higher concentrations of several phthalate metabolites, present among others in personal care products, were associated with increased E2 levels in FF. The results emphasize the need to further investigate the mechanisms of action of such EDCs on hormonal cyclicity and fertility in women.
Collapse
Affiliation(s)
- Nathalie Hoffmann-Dishon
- Infertility and IVF Unit, Department of Obstetrics and Gynecology, Division of IVF, Sheba Medical Center, Ramat-Gan 5262000, Israel
| | - Zohar Barnett-Itzhaki
- Public Health Services, Ministry of Health, 9446724, Jerusalem, Israel
- Faculty of Engineering, Ruppin Academic Center, 4025000, Emek Hefer, Israel
- Ruppin Research Group in Environmental and Social Sustainability, Ruppin Academic Center, 4025000, Emek Hefer, Israel
| | - Daniel Zalko
- UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Rina Hemi
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Ramat-Gan 5262000, Israel
| | - Nahid Farzam
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Ramat-Gan 5262000, Israel
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Catherine Racowsky
- Department of Obstetrics, Gynecology and Reproductive Medicine, Hospital Foch, Suresnes, France
| | - Andrea A Baccarelli
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Ronit Machtinger
- Infertility and IVF Unit, Department of Obstetrics and Gynecology, Division of IVF, Sheba Medical Center, Ramat-Gan 5262000, Israel.
- School of Medicine, Tel-Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
5
|
Suwannarin N, Nishihama Y, Isobe T, Nakayama SF. Urinary concentrations of environmental phenol among pregnant women in the Japan Environment and Children's Study. ENVIRONMENT INTERNATIONAL 2024; 183:108373. [PMID: 38088018 DOI: 10.1016/j.envint.2023.108373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/25/2024]
Abstract
Humans are exposed to various bisphenols, alkylphenols and nitrophenols through dietary intake, food packaging and container materials, indoor and outdoor air/dust. This study aimed to evaluate exposure of Japanese pregnant women to environmental phenols by measuring target compounds in urine samples. From a cohort of the Japan Environment and Children's Study, 4577 pregnant women were selected. Bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), bisphenol AF (BPAF), para-nitrophenol (PNP), 3-methyl-4-nitrophenol (PNMC), branched 4-nonylphenol (4-NP), linear 4-nonylphenol and 4-tert-octylphenol (4-t-OP) were analysed using a high-performance liquid chromatograph coupled to a triple-quadrupole mass spectrometer. The urinary metabolite data were combined with a questionnaire to examine the determinants of phenol exposure by machine learning. The estimated daily intake (EDI) and hazard quotient (HQ) of BPA were calculated. PNP (68.2%) and BPA (71.5%) had the highest detection frequencies, with median concentrations of 0.76 and 0.46 μg/g creatinine, respectively. PNMC, BPS, BPF and 4-NP were determined in 24.9%, 11.9%, 1.3% and 0.4% of samples, respectively, whereas BPAF (0.02%) and 4-t-OP (0.02%) were only determined in a few samples. The PNP concentrations measured in this study were comparable with those reported in previous studies, whereas the BPA concentrations were lower than those reported previously worldwide. The EDI of BPA was 0.014 μg/kg body weight/day. Compared with the tolerable daily intake set by the German Federal Institute for Risk Assessment, the median (95th percentile) HQ was 0.044 (0.2). This indicates that the observed levels of BPA exposure pose a negligible health risk to Japanese pregnant women. Determinants of bisphenol and nitrophenol exposure could not be identified by analysing the questionnaire solely, suggesting that biological measurement is necessary to assess exposure of pregnant women to bisphenols and nitrophenols. This is the first study to report environmental phenol exposure of Japanese pregnant women on a nationwide scale.
Collapse
Affiliation(s)
- Neeranuch Suwannarin
- Japan Environment and Children's Study Office, Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0086, Japan.
| | - Yukiko Nishihama
- Japan Environment and Children's Study Office, Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0086, Japan; Paediatric Environmental Medicine, Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577, Japan.
| | - Tomohiko Isobe
- Japan Environment and Children's Study Office, Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0086, Japan.
| | - Shoji F Nakayama
- Japan Environment and Children's Study Office, Health and Environmental Risk Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-0086, Japan.
| |
Collapse
|
6
|
Hu Y, Lai S, Li Y, Wu X, Xing M, Li X, Xu D, Chen Y, Xiang J, Cheng P, Wang X, Chen Z, Ding H, Xu P, Lou X. Association of urinary bisphenols with thyroid function in the general population: a cross-sectional study of an industrial park in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107517-107532. [PMID: 37735335 DOI: 10.1007/s11356-023-29932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/13/2023] [Indexed: 09/23/2023]
Abstract
Bisphenols (BPs) are potential thyroid disruptors that are widely used in many consumer products, leading to their widespread exposure in the general population. Current cross-sectional and case-control studies have found associations between exposure to BPs and serum thyroid function, but the results were contradictory. The objectives of this study are to describe demographic characteristics, BP exposure levels, and thyroid function measurements in potentially exposed and control districts and to investigate the association of urinary BPs with thyroid function. Data were collected from a general population aged 3-79 years (N = 281) recruited by the Zhejiang Human Biomonitoring Program (ZJHBP). The concentrations of 10 kinds of BPs in urine and serum free triiodothyronine (FT3), total triiodothyronine (TT3), free thyroxine (FT4), total thyroxine (TT4), thyroid-stimulating hormone (TSH), thyroglobulin (Tg), thyroglobulin antibodies (TgAb), thyroid peroxidase antibodies (TPOAb), and thyrotropin receptor antibody (TRAb) in serum were measured. Multiple linear regression and weighted quantile sum (WQS) regression were used to estimate the relationship between single and mixed exposure of BPs and thyroid function. Bisphenol A (BPA), bisphenol S (BPS), and bisphenol P (BPP) were detected, respectively, in 82.73%, 94.24%, and 55.40% of the population in the exposed area and 81.69%, 61.27%, and 43.66% of the population in the control area. Among adult females, serum TT3 was negatively associated with urinary BPA (β = -0.033, 95% CI = -0.071, -0.008, P = 0.021). Among minor females, FT4 and Tg levels were negatively associated with the urinary BPA (β = -0.026, 95% CI = -0.051, -0.002, P = 0.032 for FT4; β = -0.129, 95% CI = -0.248, -0.009, P = 0.035 for Tg), and TPOAb was positively associated with urinary BPA (β = 0.104, 95% CI = 0.006, 0.203, P = 0.039). In WQS models, BPs mixture was positively associated with FT3 (βWQS = 0.022, 95% CI = 0.002, 0.042) and TT3 (βWQS = 0.033, 95% CI = 0.004, 0.062), and negatively associated with FT4 (βWQS = -0.024, 95% CI = -0.044, 0.004). We found widespread exposure to BPA, BPS, and BPP in the general population of Zhejiang province and found an association between BPA and thyroid hormones. This association is gender- and age-dependent and needs to be confirmed in further studies.
Collapse
Affiliation(s)
- Yang Hu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Shiming Lai
- Quzhou Center for Disease Control and Prevention, 154 Xi'an Road, Ke Cheng District, Quzhou, 324000, China
| | - Ying Li
- Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, Hangzhou, 310007, China
- Environmental Science Research & Design Institute of Zhejiang Province, Zhejiang, 310007, Hangzhou, China
| | - Xiaodong Wu
- Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, Hangzhou, 310007, China
- Environmental Science Research & Design Institute of Zhejiang Province, Zhejiang, 310007, Hangzhou, China
| | - Mingluan Xing
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Xueqing Li
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Dandan Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Yuan Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Jie Xiang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Ping Cheng
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Xiaofeng Wang
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Hao Ding
- Key Laboratory of Environmental Pollution Control Technology of Zhejiang Province, Hangzhou, 310007, China
- Environmental Science Research & Design Institute of Zhejiang Province, Zhejiang, 310007, Hangzhou, China
| | - Peiwei Xu
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, 3399 Bin Sheng Road, Binjiang District, Hangzhou, 310051, China.
| |
Collapse
|
7
|
Cohen-Eliraz L, Ornoy A, Ein-Mor E, Bar-Nitsan M, Pilowsky Peleg T, Calderon-Margalit R. Prenatal exposure to phthalates and emotional/behavioral development in young children. Neurotoxicology 2023; 98:39-47. [PMID: 37536470 DOI: 10.1016/j.neuro.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
INTRODUCTION Endocrine disrupting chemicals (EDCs) such as phthalates, found in our daily environment, are nowadays suggested to be associated with adverse outcomes. Prenatal exposure was found associated with neurodevelopmental complications such as behavioral difficulties in school age children. AIM To explore the association between intrauterine exposure to phthalates and emotional/behavioral development of 24 months old toddlers. METHODS Women were recruited at 11-18 weeks of gestation and provided spot urine samples, analyzed for phthalate metabolites (DEHP, DiNP, MBzBP). Offspring were examined at 24 months of age, using standard maternal report, regarding developmental and behavioral problems (CBCL, ASQ-3, HOME questionnaires) (N = 158). To explore the associations between metabolite levels and developmental outcomes, multivariate GLM analysis (General Linear Model) was used according to tertiles and developmental scores on each developmental outcome. RESULTS Associations of Di-(2-ethylhexyl) phthalate (DEHP) maternal exposure with behavioral-developmental outcomes were found only in boys. Compared with boys with lower DEHP maternal exposure, boys with high DEHP maternal exposure had lower developmental score in personal social abilities in the ASQ-3 questionnaire (50.68 + 8.06 and 44.14 + 11.02, high and low DEHP, respectively, p = 0.03), and more internalizing problems (for example, emotionally reactive score in high and low DEHP: 53.77 + 7.41 and 50.50 + 1.19, respectively, p = 0.029; anxious or depressed score: 53.38 + 5.01 and 50.75 + 1.34, respectively, p = 0.009; and somatic complaints scores 64.03 + 10.1 and 55.84 + 7.84, respectively, p = 0.003), and externalizing problems (49.28 + 8.59 and 43.33 + 9.11, respectively, p = 0.039). No differences were found in the development and behavior problems between high and low DEHP maternal exposure level in girls. CONCLUSION Maternal DEHP metabolite concentrations measured in first trimester urine was associated with children's emotional/behavioral developmental problems in 24-months old boys, supporting accumulating evidence of DEHP as a potentially harming chemical and call for environmental attention.
Collapse
Affiliation(s)
- Liron Cohen-Eliraz
- Psychology Department Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Asher Ornoy
- Department of Medical Neurobiology Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eliana Ein-Mor
- Hadassah-Hebrew University, Braun School of Public Health, P.O. Box 12272, Jerusalem 91120, Israel
| | - Moriah Bar-Nitsan
- Psychology Department Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tammy Pilowsky Peleg
- Psychology Department Hebrew University of Jerusalem, Jerusalem, Israel; The Neuropsychological Unit, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Ronit Calderon-Margalit
- Hadassah-Hebrew University, Braun School of Public Health, P.O. Box 12272, Jerusalem 91120, Israel
| |
Collapse
|
8
|
Borghese MM, Huang R, MacPherson S, Gaudreau E, Gagné S, Ashley-Martin J, Fisher M, Booij L, Bouchard MF, Arbuckle TE. A descriptive analysis of first trimester urinary concentrations of 14 bisphenol analogues in the MIREC Canadian pregnancy cohort. Int J Hyg Environ Health 2023; 253:114225. [PMID: 37542835 DOI: 10.1016/j.ijheh.2023.114225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/14/2023] [Accepted: 07/22/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Concern over the health effects of BPA, particularly for the developing fetus, has led to an increasing use of bisphenol analogues in industrial and consumer products, which may be as hormonally active as BPA. Biomonitoring data for many bisphenol analogues, especially in pregnant populations, are limited. METHODS We measured concentrations of 14 bisphenol analogues in 1st trimester urine samples (n = 1851) from the Maternal-Infant Research on Environmental Chemicals (MIREC) Canadian pregnancy cohort (2008-2011). We examined patterns of exposure according to sociodemographic and sampling characteristics as well as occupation and frequency of consumption of canned fish within the previous 3 months. RESULTS BPA was detected in 89% of participants with a specific gravity standardized geometric mean concentration of 0.990 μg/L. Biphenol 4,4' (BP 4,4'), 4,4'-dihydroxydiphenyl ether (DHDPE), and bisphenol E (BPE) were detected in >97% of participants. Bisphenol F (BPF) and bisphenol S (BPS) were detected in >60% of participants. Specific gravity standardized geometric mean concentrations of these 5 compounds ranged from 0.024 to 0.564 μg/L. Nine bisphenol analogues were detected in <9% of participants. Concentrations of BP 4,4', DHDPE, and BPE were higher in younger women and those with higher pre-pregnancy BMI, lower household income, lower education, and among smokers. We found a similar pattern of differences in BPF for age, education, and smoking status while BPS similarly differed across categories of pre-pregnancy BMI. Participants who were unemployed or working in the service industry had higher molar sum of 7 bisphenol analogues than those working in healthcare, education, or an office setting. Canned fish consumption was not related to bisphenol analogue concentrations. CONCLUSION BP 4,4', DHDPE, BPE, BPF, and BPS were highly detected in 1st trimester urine samples in this large pan-Canadian pregnancy cohort. This suggests widespread exposure to these analogues around 2008-2011 and warrants further investigation into associations with health outcomes.
Collapse
Affiliation(s)
- M M Borghese
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - R Huang
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - S MacPherson
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - E Gaudreau
- Centre du Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), Quebec, Canada.
| | - S Gagné
- Centre du Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), Quebec, Canada.
| | - J Ashley-Martin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - M Fisher
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - L Booij
- Department of Psychiatry, McGill University, Montréal, Québec, Canada; Sainte-Justine University Hospital Research Center, Montréal, Québec, Canada; Department of Environmental and Occupational Health, School of Public Health of the University of Montreal, Montréal, Québec, Canada.
| | - M F Bouchard
- Department of Environmental and Occupational Health, School of Public Health of the University of Montreal, Montréal, Québec, Canada.
| | - T E Arbuckle
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
9
|
Wu LH, Liu YX, Zhang YJ, Jia LL, Guo Y. Occurrence of bisphenol diglycidyl ethers and bisphenol analogs, and their associations with DNA oxidative damage in pregnant women. ENVIRONMENTAL RESEARCH 2023; 227:115739. [PMID: 36963715 DOI: 10.1016/j.envres.2023.115739] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/24/2023] [Accepted: 03/21/2023] [Indexed: 05/08/2023]
Abstract
Bisphenol diglycidyl ethers (BDGEs) and Bisphenol A and its analogs (bisphenols) may have the same exposure routes and coexposure phenomenon in sensitive populations such as pregnant women. Previous biomonitoring studies on BDGEs are limited. Levels of fifteen bisphenols, six BDGEs and the DNA oxidative damage biomarker 8-hydroxy-2-deoxyguanosine (8-OHdG) were measured in the urine of pregnant women recruited in south China (n = 358). We aimed to provide the occurrence of bisphenols and BDGEs in pregnant women, and to investigate the potential relationship between their exposure and oxidative stress. Bisphenol A, bisphenol S, bisphenol F, bisphenol AP and all BDGEs (except for BADGE·2HCl) were frequently detected. The total concentrations of all bisphenols and BDGEs were 0.402-338 and 0.104-32.5 ng/mL, with geometric means of 2.87 and 2.48 ng/mL, respectively. BFDGE was the most abundant chemical of BDGEs, with a median concentration of 0.872 ng/mL, followed by BADGE·H2O·HCl (0.297 ng/mL). Except for pre-pregnancy obesity, maternal age/height, employment, fasting in the morning and parity did not affect the urinary concentrations of BDGEs. Significant and weak correlations were observed between concentrations (unadjusted) of total bisphenols and BDGEs (r = 0.389, p < 0.01), indicating their similar sources and exposure routes. The biomarker 8-OHdG was detected in all samples, with concentrations ranging from 1.98 to 32.6 ng/mL (median: 9.96 ng/mL). Levels of 8-OHdG were positively correlated with urinary several bisphenol concentrations (adjusted β range: 0.037-0.089, p < 0.05) but were not correlated with those of BDGEs. Further studies should focus on whether BDGEs and bisphenols exert combined effects on oxidative stress. Our study provided the first BDGEs exposure data in pregnant women and indicated that BDGEs exposure was highly prevalent in pregnant women as early as 2015 in south China.
Collapse
Affiliation(s)
- Liu-Hong Wu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Yan-Xiang Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ying-Jie Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Lu-Lu Jia
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
10
|
Weng X, Zhu Q, Liao C, Jiang G. Cumulative Exposure to Phthalates and Their Alternatives and Associated Female Reproductive Health: Body Burdens, Adverse Outcomes, and Underlying Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37196176 DOI: 10.1021/acs.est.3c00823] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The global birth rate has recently shown a decreasing trend, and exposure to environmental pollutants has been identified as a potential factor affecting female reproductive health. Phthalates have been widely used as plasticizers in plastic containers, children's toys, and medical devices, and their ubiquitous presence and endocrine-disrupting potential have already raised particular concerns. Phthalate exposure has been linked to various adverse health outcomes, including reproductive diseases. Given that many phthalates are gradually being banned, a growing number of phthalate alternatives are becoming popular, such as di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH), di(2-ethylhexyl) adipate (DEHA), and di(2-ethylhexyl) terephthalate (DEHTP), and they are beginning to have a wide range of environmental effects. Studies have shown that many phthalate alternatives may disrupt female reproductive function by altering the estrous cycle, causing ovarian follicular atresia, and prolonging the gestational cycle, which raises growing concerns about their potential health risks. Herein, we summarize the effects of phthalates and their common alternatives in different female models, the exposure levels that influence the reproductive system, and the effects on female reproductive impairment, adverse pregnancy outcomes, and offspring development. Additionally, we scrutinize the effects of phthalates and their alternatives on hormone signaling, oxidative stress, and intracellular signaling to explore the underlying mechanisms of action on female reproductive health, because these chemicals may affect reproductive tissues directly or indirectly through endocrine disruption. Given the declining global trends of female reproductive capacity and the potential ability of phthalates and their alternatives to negatively impact female reproductive health, a more comprehensive study is needed to understand their effects on the human body and their underlying mechanisms. These findings may have an important role in improving female reproductive health and in turn decreasing the number of complications during pregnancy.
Collapse
Affiliation(s)
- Xueyu Weng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Deng M, Gao T, Tao L, Tang W, Wang X, Jiang Y, Xu DX, Fang M, Huang Y. Are human exposure assessment the same for non-persistent organic chemicals? -from the lens of urinary variability and predictability. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161542. [PMID: 36649764 DOI: 10.1016/j.scitotenv.2023.161542] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Assessment of human exposure to mixtures of non-persistent chemicals from food matrices and consumer products requires accurate characterization and estimation of their preceding exposure levels, and assessment sampling approaches for these varying chemicals remain disputable. Here, we used high-throughput targeted method to quantify urinary concentrations of 59 most common non-persistent chemicals (6 parabens, 14 bisphenols, 1 triclosan, 7 benzophenones, 2 dichlorophenols, 13 phthalate metabolites and 16 antioxidants) in 158 consecutive spot samples from 11 participants over three consecutive days, 33 samples of which were first morning voids (FMVs). We found 49 chemicals with detection frequencies over 70 % in all urine samples. Principal component analyses showed greater inter-person variations than each person's inter-day variations. Intraclass correlation coefficient (ICC) to assess the reproducibility of targeted chemicals demonstrated that regardless of sampling approaches, dichlorophenols, most parabens, benzophenones and triclosan showed moderate to high reproducibility (0.445 < ICC < 0.969), with relatively high predictive power of FMVs for 24-h collections. Notably, most phthalates, bisphenols and antioxidants showed low ICC values. Together, our work demonstrates that FMV samples may be adequate for assessing human exposure to parabens, benzophenones, triclosan and dichlorophenols, whereas multiple consecutive urine collections may be advantageous for evaluating exposure to most phthalates, bisphenols and antioxidants.
Collapse
Affiliation(s)
- Man Deng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Tianrui Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Lin Tao
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Weitian Tang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Xinying Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - Ye Jiang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei 230032, China.
| |
Collapse
|
12
|
Ding T, Cai M, Wu CC, Bao LJ, Li J. Distribution profiles of bisphenols in school supplies and implications for human exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157938. [PMID: 35952887 DOI: 10.1016/j.scitotenv.2022.157938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol compounds (BPs) are usually applied in the production of school supplies, however, little is known on the occurrence of BPs in school supplies. In this study, 15 BPs were detected in 121 samples of school supplies collected from commercial market. Among all compounds studied, BPA, BPF, and BPS were the dominant compounds in school supplies with the detection frequency of 93.15 %, 85.62 % and 82.53 %, respectively, and at median concentrations of 161, 23.64 and 14.11 ng g-1 dw. The total concentrations of BPs varied among types of school supplies in the following order: paper (median: 1347 ng g-1 dw) > fabric (521.4 ng g-1 dw) > plastic (472.7 ng g-1 dw) > rubber (352.4 ng g-1 dw). Risk assessment of BPs in school supplies was evaluated by the estimated daily intake (EDI) via dermal absorption, and the median EDIs of ∑15 BPs were 156.78 ng d-1 (11.27-37,042.37 ng d-1) and 432.75 ng d-1 (32.44-91,624.22 ng d-1) for general and occupational people, respectively.
Collapse
Affiliation(s)
- Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Miao Cai
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chen-Chou Wu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Lian-Jun Bao
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
13
|
Tchen R, Tan Y, Boyd Barr D, Barry Ryan P, Tran V, Li Z, Hu YJ, Smith AK, Jones DP, Dunlop AL, Liang D. Use of high-resolution metabolomics to assess the biological perturbations associated with maternal exposure to Bisphenol A and Bisphenol F among pregnant African American women. ENVIRONMENT INTERNATIONAL 2022; 169:107530. [PMID: 36148711 PMCID: PMC9664380 DOI: 10.1016/j.envint.2022.107530] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/23/2022] [Accepted: 09/16/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Human and animal exposure to bisphenol A (BPA) has been associated with adverse developmental and reproductive effects. The molecular mechanisms by which BPA exposure exerts its effects are not well-understood, even less known about its analogues bisphenol F (BPF). To address these knowledge gaps, we conducted an untargeted metabolome-wide association study (MWAS) to identify metabolic perturbations associated with BPA/BPF exposures in a pregnant African American cohort. METHODS From a subset of study participants enrolled in the Atlanta African American Maternal-Child cohort, we collected both urine samples, for targeted exposure assessment of BPA (N = 230) and BPF (N = 48), and serum samples, for high-resolution metabolomics (HRM) profiling (N = 230), during early pregnancy (8-14 weeks' gestation). Using an established untargeted HRM workflow consisting of MWAS modeling, pathway enrichment analysis, and chemical annotation and confirmation, we investigated the potential metabolic pathways and features associated with BPA/BPF exposures. RESULTS The geometric mean creatinine-adjusted concentrations of urinary BPA and BPF were 0.85 ± 2.58 and 0.70 ± 4.71 µg/g creatinine, respectively. After false positive discovery rate correction at 20 % level, 264 and 733 unique metabolic features were significantly associated with urinary BPA and BPF concentrations, representing 10 and 12 metabolic pathways, respectively. Three metabolic pathways, including steroid hormones biosynthesis, lysine and lipoate metabolism, were significantly associated with both BPA and BPF exposure. Using chemical standards, we have confirmed the chemical identity of 16 metabolites significantly associated with BPA or BPF exposure. CONCLUSIONS Our findings support that exposure to BPA and BPF in pregnant women is associated with the perturbation of aromatic amino acid metabolism, xenobiotics metabolism, steroid biosynthesis, and other amino acid metabolism closely linked to stress responses, inflammation, neural development, reproduction, and weight regulation.
Collapse
Affiliation(s)
- Rachel Tchen
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Youran Tan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - P Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - ViLinh Tran
- Clinical Biomarkers Laboratory, Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Zhenjiang Li
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Yi-Juan Hu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
14
|
Abrantes-Soares F, Lorigo M, Cairrao E. Effects of BPA substitutes on the prenatal and cardiovascular systems. Crit Rev Toxicol 2022; 52:469-498. [PMID: 36472586 DOI: 10.1080/10408444.2022.2142514] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bisphenol A (BPA) is a ubiquitous chemical compound constantly being released into the environment, making it one of the most persistent endocrine-disrupting chemical (EDC) in nature. This EDC has already been associated with developing various pathologies, such as diabetes, obesity, and cardiovascular, renal, and behavioral complications, among others. Therefore, over the years, BPA has been replaced, gradually, by its analog compounds. However, these compounds are structurally similar to BPA, so, in recent years, questions have been raised concerning their safety for human health. Numerous investigations have been performed to determine the effects BPA substitutes may cause, particularly during pregnancy and prenatal life. On the other hand, studies investigating the association of these compounds with the development of cardiovascular diseases (CVD) have been developed. In this sense, this review summarizes the existing literature on the transgenerational transfer of BPA substitutes and the consequent effects on maternal and offspring health following prenatal exposure. In addition, these compounds' effects on the cardiovascular system and the susceptibility to develop CVD will be presented. Therefore, this review aims to highlight the need to investigate further the safety and benefits, or hazards, associated with replacing BPA with its analogs.
Collapse
Affiliation(s)
- Fatima Abrantes-Soares
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.,FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
15
|
McGraw MS, Daigneault BW. Environment to embryo: intersections of contaminant exposure and preimplantation embryo development in agricultural animals. Biol Reprod 2022; 107:869-880. [PMID: 35691671 DOI: 10.1093/biolre/ioac121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/26/2022] [Accepted: 06/03/2022] [Indexed: 11/14/2022] Open
Abstract
Environmental impacts on reproductive function are well documented in humans, yet little information is known about effects on large animals. The interface of environment and reproduction has evolved prudently with a concerted effort to ensure global food sustainability tightly integrated with application of technological advances in agriculture production that include nutrient and resource management. Exposure to environmental toxicants through chemical pesticide application and industry practices have coincided with a decline in cattle and human fertility. The increased adoption of agriculture animals for human biomedical models further emphasizes the importance of understanding the consequences of livestock exposure to environmentally and physiologically relevant levels of contaminants to preimplantation embryo development. In addition, increased awareness of paternal contributions to the early embryo that include both genetic and non-genetic factors support the need to define environmental interactions from gamete to genome. Herein we summarize current knowledge of common environmental contaminants on reproductive function including direct and indirect effects on embryo development success in livestock. Information obtained from a diverse number of species including humans is presented to illustrate gaps in knowledge within livestock directly pertaining to agriculture success, sustainability, clinical practice and biomedical research.
Collapse
Affiliation(s)
- Maura S McGraw
- Department of Animal Science, University of Florida, Gainesville, Florida
| | | |
Collapse
|
16
|
Karzi V, Tzatzarakis MN, Alegakis A, Vakonaki E, Fragkiadoulaki I, Kaloudis K, Chalkiadaki C, Apalaki P, Panagiotopoulou M, Kalliantasi A, Kouretas D, Docea AO, Calina D, Tsatsakis A. In Vivo Estimation of the Biological Effects of Endocrine Disruptors in Rabbits after Combined and Long-Term Exposure: Study Protocol. TOXICS 2022; 10:toxics10050246. [PMID: 35622659 PMCID: PMC9148075 DOI: 10.3390/toxics10050246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 01/25/2023]
Abstract
Recently, an increasing number of chemical compounds are being characterized as endocrine disruptors since they have been proven to interact with the endocrine system, which plays a crucial role in the maintenance of homeostasis. Glyphosate is the active substance of the herbicide Roundup®, bisphenol A (BPA) and di (2-ethylhexyl) phthalate (DEHP) are used as plasticizers, while triclosan (TCS), methyl (MePB), propyl (PrPB), and butyl (BuPB) parabens are used as antimicrobial agents and preservatives mainly in personal care products. Studies indicate that exposure to these substances can affect humans causing developmental problems and problems in the endocrine, reproductive, nervous, immune, and respiratory systems. Although there are copious studies related to these substances, there are few in vivo studies related to combined exposure to these endocrine disruptors. The aim of the present pilot study is the investigation and assessment of the above substances’ toxicity in rabbits after twelve months of exposure to glyphosate (both pure and commercial form) and to a mixture of all the above substances at subtoxic levels. The lack of data from the literature concerning rabbits’ exposure to these substances and the restrictions of the 3Rs Principle will result in a limited number of animals available for use (four animals per group, twenty animals in total).
Collapse
Affiliation(s)
- Vasiliki Karzi
- Center of Toxicology, Medicine School, University of Crete, 70013 Heraklion, Greece; (V.K.); (M.N.T.); (A.A.); (E.V.); (I.F.); (K.K.); (C.C.); (P.A.); (M.P.); (A.K.)
| | - Manolis N. Tzatzarakis
- Center of Toxicology, Medicine School, University of Crete, 70013 Heraklion, Greece; (V.K.); (M.N.T.); (A.A.); (E.V.); (I.F.); (K.K.); (C.C.); (P.A.); (M.P.); (A.K.)
| | - Athanasios Alegakis
- Center of Toxicology, Medicine School, University of Crete, 70013 Heraklion, Greece; (V.K.); (M.N.T.); (A.A.); (E.V.); (I.F.); (K.K.); (C.C.); (P.A.); (M.P.); (A.K.)
| | - Elena Vakonaki
- Center of Toxicology, Medicine School, University of Crete, 70013 Heraklion, Greece; (V.K.); (M.N.T.); (A.A.); (E.V.); (I.F.); (K.K.); (C.C.); (P.A.); (M.P.); (A.K.)
| | - Irene Fragkiadoulaki
- Center of Toxicology, Medicine School, University of Crete, 70013 Heraklion, Greece; (V.K.); (M.N.T.); (A.A.); (E.V.); (I.F.); (K.K.); (C.C.); (P.A.); (M.P.); (A.K.)
| | - Konstantinos Kaloudis
- Center of Toxicology, Medicine School, University of Crete, 70013 Heraklion, Greece; (V.K.); (M.N.T.); (A.A.); (E.V.); (I.F.); (K.K.); (C.C.); (P.A.); (M.P.); (A.K.)
| | - Christina Chalkiadaki
- Center of Toxicology, Medicine School, University of Crete, 70013 Heraklion, Greece; (V.K.); (M.N.T.); (A.A.); (E.V.); (I.F.); (K.K.); (C.C.); (P.A.); (M.P.); (A.K.)
| | - Paraskevi Apalaki
- Center of Toxicology, Medicine School, University of Crete, 70013 Heraklion, Greece; (V.K.); (M.N.T.); (A.A.); (E.V.); (I.F.); (K.K.); (C.C.); (P.A.); (M.P.); (A.K.)
| | - Maria Panagiotopoulou
- Center of Toxicology, Medicine School, University of Crete, 70013 Heraklion, Greece; (V.K.); (M.N.T.); (A.A.); (E.V.); (I.F.); (K.K.); (C.C.); (P.A.); (M.P.); (A.K.)
| | - Aikaterini Kalliantasi
- Center of Toxicology, Medicine School, University of Crete, 70013 Heraklion, Greece; (V.K.); (M.N.T.); (A.A.); (E.V.); (I.F.); (K.K.); (C.C.); (P.A.); (M.P.); (A.K.)
| | - Demetrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece;
| | - Anca Oana Docea
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Correspondence: (A.O.D.); (D.C.); (A.T.)
| | - Daniela Calina
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Correspondence: (A.O.D.); (D.C.); (A.T.)
| | - Aristidis Tsatsakis
- Center of Toxicology, Medicine School, University of Crete, 70013 Heraklion, Greece; (V.K.); (M.N.T.); (A.A.); (E.V.); (I.F.); (K.K.); (C.C.); (P.A.); (M.P.); (A.K.)
- Correspondence: (A.O.D.); (D.C.); (A.T.)
| |
Collapse
|
17
|
Meslin M, Beausoleil C, Zeman FA, Antignac JP, Kolossa-Gehring M, Rousselle C, Apel P. Human Biomonitoring Guidance Values (HBM-GVs) for Bisphenol S and Assessment of the Risk Due to the Exposure to Bisphenols A and S, in Europe. TOXICS 2022; 10:228. [PMID: 35622642 PMCID: PMC9146466 DOI: 10.3390/toxics10050228] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 01/14/2023]
Abstract
Within the European Joint Programme HBM4EU, Human Biomonitoring Guidance Values (HBM-GVs) were derived for several prioritised substances. In this paper, the derivation of HBM-GVs for the general population (HBM-GVGenPop) and workers (HBM-GVworker) referring to bisphenol S (BPS) is presented. For the general population, this resulted in an estimation of the total urinary concentration of BPS of 1.0 µg/L assuming a 24 h continuous exposure to BPS. For workers, the modelling was refined in order to reflect continuous exposure during the working day, leading to a total urinary concentration of BPS of 3.0 µg/L. The usefulness for risk assessment of the HBM-GVs derived for BPS and bisphenol A (BPA) is illustrated. Risk Characterisation Ratios (RCRs) were calculated leading to a clear difference between risk assessments performed for both bisphenols, with a very low RCR regarding exposure to BPA., contrary to that obtained for BPS. This may be due to the endocrine mediated endpoints selected to derive the HBM-GVs for BPS, whereas the values calculated for BPA are based on the temporary Tolerable Daily Intake (t-TDI) from EFSA set in 2015. A comparison with the revised TDI recently opened for comments by EFSA is also discussed. Regarding the occupational field, results indicate that the risk from occupational exposure to both bisphenols cannot be disregarded.
Collapse
Affiliation(s)
- Matthieu Meslin
- French Agency for Food, Environmental and Occupational Health & Safety, Anses, 14 Rue Pierre et Marie Curie, 94701 Maisons-Alfort, France; (M.M.); (C.B.)
| | - Claire Beausoleil
- French Agency for Food, Environmental and Occupational Health & Safety, Anses, 14 Rue Pierre et Marie Curie, 94701 Maisons-Alfort, France; (M.M.); (C.B.)
| | - Florence Anna Zeman
- French National Institute for Industrial Environment and Risks (INERIS), Parc ALATA BP2, 60550 Verneuil en Halatte, France;
| | - Jean-Philippe Antignac
- Oniris, National Research Institute for Agriculture, Food and the Environment (INRAE), LABERCA, 44300 Nantes, France;
| | - Marike Kolossa-Gehring
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany; (M.K.-G.); (P.A.)
| | - Christophe Rousselle
- French Agency for Food, Environmental and Occupational Health & Safety, Anses, 14 Rue Pierre et Marie Curie, 94701 Maisons-Alfort, France; (M.M.); (C.B.)
| | - Petra Apel
- German Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany; (M.K.-G.); (P.A.)
| |
Collapse
|
18
|
Cao Y, Li J, Wu R, Lin H, Lao JY, Ruan Y, Zhang K, Wu J, Leung KMY, Lam PKS. Phthalate esters in seawater and sediment of the northern South China Sea: Occurrence, distribution, and ecological risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151412. [PMID: 34742950 DOI: 10.1016/j.scitotenv.2021.151412] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
In this study, the occurrence and distribution of 15 phthalate esters (PAEs) in seawater and sediment from the northern South China Sea (NSCS) were investigated for the first time to improve understanding on the contamination status of PAEs in this region. The concentrations of total PAEs (∑15 PAEs) were found to range from 68.8 to 1500 ng/L, 46.0 to 7800 ng/L, and 49.2 to 440 ng/g dry weight in surface seawater, bottom seawater, and sediment, respectively. Among the 15 PAEs, dibutyl phthalate (DBP) and bis(2-ethylhexyl) phthalate (DEHP) were the predominant PAE congeners, with mean contributions of 44.7% and 24.0% in surface water, and 42.7% and 25.8% in bottom water, respectively. Moreover, diisobutyl phthalate (DiBP) constituted the majority of ∑15 PAEs in the sediment (61.3%). Comparatively high concentrations of Σ15 PAEs were observed in seawater at the sites within the western NSCS, whereas relatively higher concentrations of Σ15 PAEs were detected in sediments at the eastern NSCS. River input and atmospheric deposition could be the main sources of PAEs in the NSCS. Preliminary risk assessment implied that DBP, DiBP, and DEHP posed low to high potential risks for marine organisms at different trophic levels. These results would be valuable for implementing effective control measures and remediation strategies for PAEs contamination in the region.
Collapse
Affiliation(s)
- Yaru Cao
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Research Centre for the Oceans and Human Health, The City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Jing Li
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Rongben Wu
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
| | - Huiju Lin
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
| | - Jia-Yong Lao
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Research Centre for the Oceans and Human Health, The City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Kai Zhang
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Research Centre for the Oceans and Human Health, The City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| | - Jiaxue Wu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Office of the President, Hong Kong Metropolitan University, Hong Kong, SAR, China.
| |
Collapse
|
19
|
Rousselle C, Meslin M, Berman T, Woutersen M, Bil W, Wildeman J, Chaudhry Q. Using Human Biomonitoring Data to Support Risk Assessment of Cosmetic Ingredients—A Case Study of Benzophenone-3. TOXICS 2022; 10:toxics10020096. [PMID: 35202282 PMCID: PMC8877280 DOI: 10.3390/toxics10020096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/10/2022]
Abstract
Safety assessment of UV filters for human health by the Scientific Committee on Consumer Safety (SCCS) is based on the estimation of internal dose following external (skin) application of cosmetic products, and comparison with a toxicological reference value after conversion to internal dose. Data from human biomonitoring (HBM) could be very useful in this regard, because it is based on the measurement of real-life internal exposure of the human population to a chemical. UV filters were included in the priority list of compounds to be addressed under the European Human Biomonitoring Initiative (HBM4EU), and risk assessment of benzophenone-3 (BP-3) was carried out based on HBM data. Using BP-3 as an example, this study investigated the benefits and limitations of the use of external versus internal exposure data to explore the usefulness of HBM to support the risk assessment of cosmetic ingredients. The results show that both approaches did indicate a risk to human health under certain levels of exposure. They also highlight the need for more robust exposure data on BP-3 and other cosmetic ingredients, and a standardized framework for incorporating HBM data in the risk assessment of cosmetic products.
Collapse
Affiliation(s)
- Christophe Rousselle
- European and International Affairs Department, Anses, 94701 Maisons-Alfort, France;
| | - Matthieu Meslin
- Risk Assessment Department, Anses, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
- Correspondence:
| | | | - Marjolijn Woutersen
- RIVM National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands; (M.W.); (W.B.); (J.W.)
| | - Wieneke Bil
- RIVM National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands; (M.W.); (W.B.); (J.W.)
| | - Jenna Wildeman
- RIVM National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands; (M.W.); (W.B.); (J.W.)
| | - Qasim Chaudhry
- Department of Clinical Sciences and Nutrition, University of Chester, Parkgate Road, Chester CH1 4BJ, UK;
| |
Collapse
|
20
|
van den Dries MA, Ferguson KK, Keil AP, Pronk A, Spaan S, Ghassabian A, Santos S, Jaddoe VWV, Trasande L, Tiemeier H, Guxens M. Prenatal Exposure to Nonpersistent Chemical Mixtures and Offspring IQ and Emotional and Behavioral Problems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16502-16514. [PMID: 34878787 PMCID: PMC11148873 DOI: 10.1021/acs.est.1c04455] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Prenatal exposure to nonpersistent chemicals such as phthalates, bisphenols, and organophosphate (OP) pesticides is ubiquitous and occurs in mixtures. So far, epidemiological studies investigating neurodevelopmental consequences of these exposures have mainly been restricted to single-pollutant models. Thus, we studied the association between prenatal exposure to nonpersistent chemical mixtures and child IQ and emotional and behavioral problems. Data came from 782 mother-child pairs. Eleven phthalate, one bisphenol, and five OP pesticide urinary exposure biomarkers were measured three times during pregnancy and averaged. Nonverbal IQ, internalizing and attention problems, aggressive behavior, and autistic traits were assessed at child age 6 years. We used quantile g-computation to estimate the change in each outcome per quartile increase in all chemicals within the mixture. Higher exposure to the mixture was associated with lower nonverbal IQ (-4.0 points (95%CI = -7.0, -1.0), -5.5 points (95%CI = -10.2, -0.9), and -4.6 points (95%CI = -10.8, 1.5) for the second, third, and fourth quartile, respectively, compared to the first quartile). These results were mainly driven by the phthalate mixture. No association was observed with emotional and behavioral problems. Prenatal exposure to nonpersistent chemical mixtures was associated with lower nonverbal IQ in children. Exposure to chemical mixtures during gestation is universal and may impact neurodevelopment.
Collapse
Affiliation(s)
- Michiel A van den Dries
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 CN The Netherlands
- The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, The Generation R Study Group, Rotterdam, 3015 CN The Netherlands
- ISGlobal, Barcelona, 08003, Spain
- Pompeu Fabra University, Barcelona, 08002, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, 28029, Spain
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, North Carolina 27709, United States
| | - Alexander P Keil
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, North Carolina 27709, United States
- Department of Epidemiology, University of North Carolina, Chapel Hill North Carolina 27516, United States
| | - Anjoeka Pronk
- Department of Risk Analysis for Products in Development, TNO, Utrecht, 3584 CB, The Netherlands
| | - Suzanne Spaan
- Department of Risk Analysis for Products in Development, TNO, Utrecht, 3584 CB, The Netherlands
| | - Akhgar Ghassabian
- Department of Pediatrics, New York University School of Medicine, New York City, New York 10016, United States
- Department of Environmental Medicine, New York University School of Medicine, New York City, New York 10016, United States
- Department of Population Health, New York University School of Medicine, New York City, New York 10016, United States
| | - Susana Santos
- The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, The Generation R Study Group, Rotterdam, 3015 CN The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 CN The Netherlands
| | - Vincent W V Jaddoe
- The Generation R Study Group, Erasmus MC University Medical Center Rotterdam, The Generation R Study Group, Rotterdam, 3015 CN The Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, 3015 CN The Netherlands
| | - Leonardo Trasande
- Department of Pediatrics, New York University School of Medicine, New York City, New York 10016, United States
- Department of Environmental Medicine, New York University School of Medicine, New York City, New York 10016, United States
- Department of Population Health, New York University School of Medicine, New York City, New York 10016, United States
- New York University Wagner School of Public Service, New York City, New York 10012, United States
- New York University College of Global Public Health, New York City, New York 10003, United States
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 CN The Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, United States
| | - Mònica Guxens
- Department of Child and Adolescent Psychiatry, Erasmus MC University Medical Center Rotterdam, Rotterdam, 3015 CN The Netherlands
- ISGlobal, Barcelona, 08003, Spain
- Pompeu Fabra University, Barcelona, 08002, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, 28029, Spain
| |
Collapse
|
21
|
Zhang YJ, Guo JL, Xue JC, Bai CL, Guo Y. Phthalate metabolites: Characterization, toxicities, global distribution, and exposure assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118106. [PMID: 34520948 DOI: 10.1016/j.envpol.2021.118106] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Phthalates are plasticizers in various products and regarded as endocrine disruptors due to their anti-androgen effects. Environmental occurrence and toxicities of parent phthalates have been widely reported, while the current state of knowledge on their metabolites is rarely summarized. Based on the available literature, the present review mainly aims to 1) characterize the potential metabolites of phthalates (mPAEs) using the pharmacokinetics evidences acquired via animal or human models; 2) examine the molecular and cellular mechanism involved in toxicity for mPAEs; 3) investigate the exposure levels of mPAEs in different human specimens (e.g., urine, blood, seminal fluid, breast milk, amniotic fluid and others) across the globe; 4) discuss the models and related parameters for phthalate exposure assessment. We suggest there is subtle difference in toxic mechanisms for mPAEs compared to their parent phthalates due to their alternative chemical structures. Human monitoring studies performed in Asia, America and Europe have provided the population exposure baseline levels for typical phthalates in different regions. Urine is the preferred matrix than other specimens for phthalate exposure study. Among ten urinary mPAEs, the largest proportions of di-(2-ethylhexyl) phthalate (DEHP) metabolites (40%), monoethyl phthalate (mEP) (43%) and DEHP metabolites/mEP (both 29%) were observed in Asia, America and Europe respectively, and mono-5-carboxy-2-ethypentyl phthalate was the most abundant compounds among DEHP metabolites. Daily intakes of phthalates can be accurately calculated via urinary mPAEs if the proper exposure parameters were determined. Further work should focus on combining epidemiological and biological evidences to establish links between phthalates exposure and biological phenotypes. More accurate molar fractions (FUE) of the urinary excreted monoester related to the ingested diesters should be collected in epidemiological or pharmacokinetic studies for different population.
Collapse
Affiliation(s)
- Ying-Jie Zhang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Jia-Liang Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Jing-Chuan Xue
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Cui-Lan Bai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
22
|
Wang J, Mei H, Zhou AF, Huang LL, Cao ZQ, Hong AB, Yang M, Xie QT, Chen D, Yang SP, Xiao H, Yang P. The associations of birth outcome differences in twins with prenatal exposure to bisphenol A and its alternatives. ENVIRONMENTAL RESEARCH 2021; 200:111459. [PMID: 34126051 DOI: 10.1016/j.envres.2021.111459] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bisphenol A (BPA) and its alternatives, including BPF and BPS, exhibit endocrine disruption activities. However, the effects of bisphenols on fetal growth in twins remain unclear. OBJECTIVE To explore the associations of prenatal BPA, BPF, and BPS exposure with birth outcome differences in twins. METHODS We recruited 289 twin pregnant women who visited the hospital for prenatal examination during the first trimester from 2013 to 2016. Urinary bisphenol levels were determined during the first, second, and third trimesters. The associations of maternal exposure to bisphenols with birth outcome differences in twins were analyzed after stratification by different trimesters. We applied the multiple informant model to estimate trimester-specific associations between urinary bisphenol concentrations and birth outcome differences in twins. RESULTS We found low reproducibility (ICC<0.40) for maternal urinary BPA and moderate reproducibility (0.40 < ICC<0.75) for BPF and BPS. Urinary BPA concentrations were positively associated with within-pair twin birth weight difference when comparing the third vs. the first tertile in each of the three trimesters (i.e., 133.06 g, 95% CI: 68.19, 197.94; 144.5 g, 95%CI: 81.82-207.18 g; and 135.04 g, 95%CI: 71.37-198.71 g for the 1st, 2nd, and 3rd trimester, respectively). The effect of urinary BPA concentration on increased birth length difference within-pair twins were also observed across different trimesters (All P for trends < 0.05). Urinary BPA levels were positively associated with the within-pair birth weight and birth length differences across pregnancy trimesters (All of Type 3 P for values < 0.05). CONCLUSION Maternal BPA exposure appeared to influence birth wight and birth length differences in twins. Our results warrant further confirmation.
Collapse
Affiliation(s)
- Jie Wang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, PR China
| | - Hong Mei
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ai-Fen Zhou
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li-Li Huang
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, PR China
| | - Zhong-Qiang Cao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Ao-Bo Hong
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, PR China
| | - Meng Yang
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qi-Tong Xie
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, PR China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong, PR China
| | - Shao-Ping Yang
- Department of Child Public Healthcare, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Basic Medicine and Public Health, Jinan University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
23
|
Cui FP, Yang P, Liu C, Chen PP, Deng YL, Miao Y, Luo Q, Zhang M, Lu WQ, Zeng Q. Urinary bisphenol A and its alternatives among pregnant women: Predictors and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147184. [PMID: 33901963 DOI: 10.1016/j.scitotenv.2021.147184] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Exposure to bisphenol A (BPA) has been associated with various adverse health outcomes. Recently, an increasing concern on its alternatives such as bisphenol S (BPS) and bisphenol F (BPF) has been aroused due to the restriction use of BPA. Few studies have identified predictors of exposure to BPA alternatives and assessed their health risks. OBJECTIVE The aim of this study was to identify predictors of BPA and its alternatives and to assess their health risks among pregnant women. METHODS We detected first morning urinary concentrations of BPA and its alternatives (BPS and BPF) among 1097 pregnant women from an established Chinese cohort. A questionnaire was conducted to obtain demographic characteristics, dietary habits, and lifestyles. We examined the predictors of creatinine-adjusted urinary BPA and its alternatives concentrations using multivariable linear regression. Risk assessment of exposure to BPA and its alternatives was calculated based on the estimated of daily intake (EDI). RESULTS Geometric means of creatinine-adjusted urinary BPA, BPF, and BPS were 0.92, 0.12, and 0.08 μg/g creatinine, respectively. Pregnant women from Wuhan had lower concentrations of BPA, BPF, and ∑BPs (sum of BPA, BPF, and BPS) than those from Xiaogan. Intake of fried food was related to higher concentrations of BPA, and intake of pickled food was associated with higher concentrations of BPF and ∑BPs. The maximum EDI values for exposure to BPA, BPF, BPS, and ∑BPs ranged from 5.6428 to 13.3356 nmol/kg body weight/day, which were below the tolerable daily intake (TDI) for BPA defined by the European Food Safety Authority (EFSA) (18 nmol/kg body weight/day). The maximum hazard index (HI) value was 0.7409. CONCLUSION Several predictors identified in this study may inform public recommendations to reduce exposure to BPA and its alternatives.
Collapse
Affiliation(s)
- Fei-Peng Cui
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan Yang
- Department of Occupational and Environmental Health, School of Basic Medicine and Public Health, Jinan University, Guangzhou, Guangdong, China
| | - Chong Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiong Luo
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
24
|
Warner GR, Dettogni RS, Bagchi IC, Flaws JA, Graceli JB. Placental outcomes of phthalate exposure. Reprod Toxicol 2021; 103:1-17. [PMID: 34015474 PMCID: PMC8260441 DOI: 10.1016/j.reprotox.2021.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/14/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022]
Abstract
Proper placental development and function relies on hormone receptors and signaling pathways that make the placenta susceptible to disruption by endocrine disrupting chemicals, such as phthalates. Here, we review relevant research on the associations between phthalate exposures and dysfunctions of the development and function of the placenta, including morphology, physiology, and genetic and epigenetic effects. This review covers in vitro studies, in vivo studies in mammals, and studies in humans. We also discuss important gaps in the literature. Overall, the evidence indicates that toxicity to the placental and maternal-fetal interface is associated with exposure to phthalates. Further studies are needed to better elucidate the mechanisms through which phthalates act in the placenta as well as additional human studies that assess placental disruption through pregnancy with larger sample sizes.
Collapse
Affiliation(s)
- Genoa R Warner
- Dept of Comparative Biosciences, University of Illinois, Urbana, IL, USA
| | | | - Indrani C Bagchi
- Dept of Comparative Biosciences, University of Illinois, Urbana, IL, USA
| | - Jodi A Flaws
- Dept of Comparative Biosciences, University of Illinois, Urbana, IL, USA.
| | - Jones B Graceli
- Dept of Morphology, Federal University of Espirito Santo, Brazil
| |
Collapse
|
25
|
Lee G, Kim S, Park H, Lee J, Lee JP, Kho Y, Choi G, Park J, Worakhunpiset S, Moon HB, Choi K. Variability of urinary creatinine, specific gravity, and osmolality over the course of pregnancy: Implications in exposure assessment among pregnant women. ENVIRONMENTAL RESEARCH 2021; 198:110473. [PMID: 33189745 DOI: 10.1016/j.envres.2020.110473] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
Due to dilution status of the urine, chemical concentrations measured in spot urine are frequently adjusted using correction factors, such as creatinine, specific gravity (SG), or osmolarity of the urine. Urinary correction factors, however, can be influenced dramatically by physiological changes such as pregnancy. Details about the variation of urine dilution over the course of pregnancy are not well characterized. In the present study, we investigated the variation of urine correction factors over time among the pregnant women of Korea (n = 69) and Thailand (n = 102). Creatinine, SG, and osmolality were determined in the urine samples obtained in each trimester of the participating women, and were compared by sampling time and by nationality. Implication of the variation in these correction factors was studied using phthalate metabolites measured in the urine samples as model chemicals. Urinary correction factors significantly varied across the trimesters especially in Korean pregnant women: urinary creatinine and osmolality were significantly lower in the third trimester (T3) urine than the first trimester (T1) urine. Urinary creatinine and SG of the T3 urine of Korean pregnant women were also significantly lower than those reported from the non-pregnant women who participated in Korean National Environmental Health Survey (KoNEHS) 2015-2017. Among Thai women, however, these correction factors were rather stable across the pregnancy. Differences in ethnicity, or in behavior such as water consumption amount may partly explain the differences. Temporal changes in these urine correction factors influenced the urinary phthalate metabolite concentrations adjusted for dilution, in both Korean and Thai pregnant women. The present observations show that the variations of urinary correction factors should be considered in exposure assessment of urinary chemicals for pregnant women, in order to circumvent potential bias due to physiological changes occurring during pregnancy, and to reduce errors in exposure classification and association.
Collapse
Affiliation(s)
- Gowoon Lee
- School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Sunmi Kim
- School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea; Chemical Safety Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hyunwoong Park
- Department of Laboratory Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Jeonghwan Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung Pyo Lee
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam, Republic of Korea
| | - Gyuyeon Choi
- Department of Obstetrics and Gynecology, Soonchunhyang University Hospital, Seoul, Republic of Korea
| | - Jiwon Park
- Cheongdam Yeon & Nature Obstetrics & Gynecology, Seoul, Republic of Korea
| | - Suwalee Worakhunpiset
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, Republic of Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
26
|
Qin J, Dong R, Wu M, Yuan Y, Zhang H, Meng P, Zhang M, Chen J, Li S, Chen B. Phthalate exposure in association with the use of personal care products among general population from Shanghai. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28470-28478. [PMID: 33538972 DOI: 10.1007/s11356-021-12375-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Phthalates are used in a wide variety of personal care products (PCPs) as solubilizer, denaturant or color fixative. However, there are few studies referring the correlation between phthalate exposure and PCPs use among general population in China. In this study, ten metabolites of phthalates in spot urine samples (N = 500) were quantified using ultra-performance liquid chromatography tandem mass spectrometry. The frequency and duration of 12 types of PCPs were collected by questionnaire survey. The associations of phthalate metabolites and PCPs use were assessed by multivariable liner regression models. Median concentration of mono-benzylphthalate (MBzP) was significantly higher among frequent users of almost all PCPs. Low molecular weight phthalates (monomethyl phthalate (MMP), mono-n-butylphthalate (MnBP) and monoisobutylphthalate (MiBP)) were significantly lower among frequent user of some rinse-off PCPs (e.g., shampoo, facial cleanser, and body wash). Meanwhile, monoethylphthalate (MEP) was positive correlated with frequently use of facial moisturizer. Mono-2-ethylhexylphthalate (MEHP) and MBzP showed a significant positive association with frequently use of body lotion. Univariate linear analyses indicated a significant decreasing trend between urinary concentrations of MMP, MnBP, and the number of rinse-off PCPs being frequently used, and a significant increasing trend between urinary MBzP and the number of leave-on products being frequently used. These findings indicated that the use of some PCPs, especially leave-on PCPs, could be a potential source of exposure to some phthalates.
Collapse
Affiliation(s)
- Jin Qin
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Ruihua Dong
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Min Wu
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Yaqun Yuan
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Han Zhang
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Pai Meng
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Meiru Zhang
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Jingsi Chen
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Shuguang Li
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Bo Chen
- Key Laboratory of Public Health Safety of the Ministry of Education, School of Public Health, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.
| |
Collapse
|
27
|
Chen X, Zhong S, Zhang M, Zhong W, Bai S, Zhao Y, Li C, Lu S, Li W. Urinary parabens, bisphenol A and triclosan in primiparas from Shenzhen, China: Implications for exposure and health risks. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:251-259. [PMID: 34150233 PMCID: PMC8172738 DOI: 10.1007/s40201-020-00599-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/12/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
The usage of parabens, bisphenol A and triclosan in diverse consumer products is in widespread. Nevertheless, there are limited data concerning exposure to these chemicals in human being, especially in primiparas. Biomonitoring of chemicals in primiparas is useful for the estimation of chemical exposure risks for both primiparas and their offspring. This study aims to investigate urinary levels of parabens, bisphenol A and triclosan of 84 primiparas from Shenzhen, China and to evaluate their potential health risks. Methyl, ethyl, and n-propyl parabens bisphenol A and triclosan exhibited high detection rates (DRs) (> 97%) in urine samples, suggesting that primiparas are exposed to them widely. The median concentrations of methyl, ethyl, and n-propyl parabens, bispenol A and triclosan in urine were 2.14, 4.10, 0.46, 1.30 and 3.00 µg/L, respectively. Ethyl paraben was the predominant paraben accounting for nearly half of Σ3parabens (The sum concentrations of methyl, ethyl, n-propyl parabens). Positive associations with significance (p < 0.05) were found between the usage of plastic containers and urinary concentrations of ethyl paraben or BPA, indicating plastic containers might be an important factor influencing primipara exposure to these two chemicals. Urinary concentrations of methyl paraben were positively associated (p < 0.05) with the time of computer use by participant, suggesting that indoor dust might constitute an important source of parabens. The estimated daily intakes of parabens, bisphenol A and triclosan contrasted with the acceptable daily intakes in a comparatively low level. The hazard quotients (HQs) of these chemicals were all less than 1, suggesting no health risks for primiparas from South China. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40201-020-00599-1.
Collapse
Affiliation(s)
- Xueyan Chen
- Department of Clinical Laboratory, The People’s Hospital of Longhua, Shenzhen, 518109 China
| | - Shihua Zhong
- Agricultural Product Quality Safety Inspection and Testing Center of Shenzhen, 518055 Shenzhen, China
| | - Miao Zhang
- Department of Clinical Laboratory, The People’s Hospital of Longhua, Shenzhen, 518109 China
| | - Weichuan Zhong
- Department of Clinical Laboratory, The People’s Hospital of Longhua, Shenzhen, 518109 China
| | - Shi Bai
- Department of Clinical Laboratory, The People’s Hospital of Longhua, Shenzhen, 518109 China
| | - Yang Zhao
- School of Public Health (Shenzhen), Sun Yat-sen University, 510275 Guangzhou, China
| | - Chun Li
- School of Public Health (Shenzhen), Sun Yat-sen University, 510275 Guangzhou, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, 510275 Guangzhou, China
| | - Wenbo Li
- Shenzhen Center for Disease Control and Prevention, 518055 Shenzhen, China
| |
Collapse
|
28
|
Green MP, Harvey AJ, Finger BJ, Tarulli GA. Endocrine disrupting chemicals: Impacts on human fertility and fecundity during the peri-conception period. ENVIRONMENTAL RESEARCH 2021; 194:110694. [PMID: 33385395 DOI: 10.1016/j.envres.2020.110694] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 05/08/2023]
Abstract
It is becoming increasingly difficult to avoid exposure to man-made endocrine disrupting chemicals (EDCs) and environmental toxicants. This escalating yet constant exposure is postulated to partially explain the concurrent decline in human fertility that has occurred over the last 50 years. Controversy however remains as to whether associations exist, with conflicting findings commonly reported for all major EDC classes. The primary aim of this extensive work was to identify and review strong peer-reviewed evidence regarding the effects of environmentally-relevant EDC concentrations on adult male and female fertility during the critical periconception period on reproductive hormone concentrations, gamete and embryo characteristics, as well as the time to pregnancy in the general population. Secondly, to ascertain whether individuals or couples diagnosed as sub-fertile exhibit higher EDC or toxicant concentrations. Lastly, to highlight where little or no data exists that prevents strong associations being identified. From the greater than 1480 known EDCs, substantial evidence supports a negative association between exposure to phthalates, PCBs, PBDEs, pyrethroids, organochloride pesticides and male fertility and fecundity. Only moderate evidence exists for a negative association between BPA, PCBs, organochloride pesticides and female fertility and fecundity. Overall fewer studies were reported in women than men, with knowledge gaps generally evident for both sexes for all the major EDC classes, as well as a paucity of female fertility studies following exposure to parabens, triclosans, dioxins, PFAS, organophosphates and pyrethroids. Generally, sub-fertile individuals or couples exhibit higher EDC concentrations, endorsing a positive association between EDC exposure and sub-fertility. This review also discusses confounding and limiting factors that hamper our understanding of EDC exposures on fertility and fecundity. Finally, it highlights future research areas, as well as government, industry and social awareness strategies required to mitigate the negative effects of EDC and environmental toxicant exposure on human fertility and fecundity.
Collapse
Affiliation(s)
- Mark P Green
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Alexandra J Harvey
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Bethany J Finger
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Gerard A Tarulli
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
29
|
Galiano V, Solazzo G, Rabinovici J, Nahid F, Rina H, Baccarelli AA, Machtinger R. Cord blood androgen levels of females from same sex and opposite sex twins - A pilot study. Clin Endocrinol (Oxf) 2021; 94:85-89. [PMID: 32810873 DOI: 10.1111/cen.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/25/2020] [Accepted: 08/03/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Opposite-sex twins have shown behavioural and reproductive differences between females and males. These differences may be determined by higher intrauterine levels of androgens among females that were exposed to a male co-twin. The aim of this study was to compare cord blood androgen levels in females from same-sex and opposite-sex twins. DESIGN A prospective study. In this pilot study, we compared cord blood androgens (DHEA-S, Δ-4 androstenedione, total testosterone-TT) and sex hormone-binding globulin (SHBG) levels in 20 females from same sex and 20 females from opposite-sex dichorionic diamniotic twins. We used generalized estimating equation (GEE) modelling to assess differences in cord blood androgens between females from same-sex twin pregnancies and females from opposite-sex twin pregnancies. PATIENTS Twenty opposite-sex twin pairs (female-male twins) and 20 same-sex twin pairs (female-female). MEASUREMENTS Cord blood total testosterone, Δ-4 androstenedione, DHEA-S and sex hormone-binding globulin (SHBG) levels. RESULTS No difference in the levels of androgens as Δ-4 androstenedione, total testosterone and SHBG was identified between females that were exposed to a female co-twin compared with females that were exposed to a male co-twin. DHEA-S levels were significantly lower among females from opposite-sex twins compared with females from same-sex twins. CONCLUSIONS Our preliminary data do not support the hypothesis that females exposed to male co-twins are exposed to higher levels of androgens in utero compared with females exposed to female co-twins. Further studies are needed to explain the reported behavioural and reproductive differences among opposite-sex twins.
Collapse
Affiliation(s)
- Valentina Galiano
- Department of Obstetrics and Gynecology, San Paolo Hospital Medical School, University of Milan, Milan, Italy
| | - Giulia Solazzo
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jaron Rabinovici
- Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Farzam Nahid
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel Hashomer, Israel
| | - Hemi Rina
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel Hashomer, Israel
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ronit Machtinger
- Department of Obstetrics and Gynecology, Sheba Medical Center, Tel Hashomer, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
30
|
Wang L, Song L, Liu B, Wu M, Liu Y, Bi J, Liu Q, Chen K, Cao Z, Xu S, Zhou A, Tian Y, Wang Y. Prenatal exposure to bisphenol S and altered newborn mitochondrial DNA copy number in a baby cohort study: Sex-specific associations. CHEMOSPHERE 2021; 263:128019. [PMID: 33297043 DOI: 10.1016/j.chemosphere.2020.128019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/16/2020] [Accepted: 08/13/2020] [Indexed: 06/12/2023]
Abstract
Bisphenol S (BPS) is a main substitute for bisphenol A, which are ubiquitous in human daily products. Newborn mitochondrial DNA copy number (mtDNAcn) is considered as a marker for biological aging and human health, and has been related to diseases in later life. We recruited 762 mother-newborn pairs in a birth cohort study between 2013 and 2015 in Wuhan, China. Urinary BPS concentrations were detected using ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). MtDNAcn from cord blood was measured by quantitative real-time polymerase chain reaction (qPCR). We applied multiple informant models based on generalized estimating equations to assess the associations between prenatal BPS exposure and mtDNAcn. The median urine concentrations of BPS were 0.32 μg/L, 0.34 μg/L, and 0.36 μg/L in the first, second, and third trimesters, respectively. In the multiple informant models, we observed significant associations between BPS and mtDNAcn among male newborns. Compared with the lowest quarters, the second, third, and the highest quarter of BPS level were associated with 58.00% (95% CI: 76.58%, -24.66%), 64.65% (95% CI: 79.40%, -39.33%) and 59.07% (95% CI: 75.16%, -32.58%) reductions of mtDNAcn in the first trimester, respectively. No significant associations were found in the second and third trimesters. The associations between BPS and mtDNAcn were not found among female newborns. Findings from this study suggested that BPS exposure was related to decreased mtDNAcn in male newborns. The first trimester was identified as the critical windows for BPS exposure during pregnancy.
Collapse
Affiliation(s)
- Lulin Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bingqing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunyun Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Chen
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongqiang Cao
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Aifen Zhou
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaohua Tian
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, And State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
31
|
Yang P, Lin BG, Zhou B, Cao WC, Chen PP, Deng YL, Hou J, Sun SZ, Zheng TZ, Lu WQ, Cheng LM, Zeng WJ, Zeng Q. Sex-specific associations of prenatal exposure to bisphenol A and its alternatives with fetal growth parameters and gestational age. ENVIRONMENT INTERNATIONAL 2021; 146:106305. [PMID: 33395947 DOI: 10.1016/j.envint.2020.106305] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bisphenol A (BPA) can cause detrimental effects on fetal growth. However, the effects of BPA alternatives, such as bisphenol F (BPF) and bisphenol S (BPS), on fetal growth are less known. OBJECTIVE To investigate the relationships of prenatal BPA, BPF, and BPS exposures with fetal growth parameters and gestational age. METHODS Urinary BPA, BPF, and BPS were measured in 1,197 pregnant women before delivery in a Chinese cohort. The associations of prenatal exposure to BPA, BPF, and BPS with fetal growth parameters and gestational age were examined, and associations stratified by fetal sex were also conducted. We used a restricted cubic splines (RCS) model to examine the dose-response associations between exposures and outcomes. RESULTS Maternal urinary BPA and BPF were negatively related to birth length (-0.30 cm, 95% CI: -0.44, -0.15 and -0.21 cm, 95% CI: -0.36, -0.07 comparing the extreme exposure groups, respectively, both p for trends < 0.01). These associations were more pronounced in girls with inverted U-shaped dose-response relationships. Maternal urinary BPA and BPF were positively related to ponderal index (0.05 g/cm3 × 100, 95% CI: 0.01, 0.09 and 0.04 g/cm3 × 100, 95% CI: 0.01, 0.08 comparing the extreme exposure groups, respectively, both p for trends = 0.02), and maternal urinary BPS was associated with shorter gestational age (-0.20 weeks, 95% CI: -0.37, -0.03 comparing the extreme exposure groups, p for trend = 0.02). These associations were only observed in girls and exhibited a linear dose-response relationship. CONCLUSIONS Prenatal BPA, BPF, and BPS exposures were associated with detrimental effects on fetal growth parameters, and stronger effects were noted in female infants.
Collapse
Affiliation(s)
- Pan Yang
- Department of Occupational and Environmental Health, and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Basic Medicine and Public Health, Jinan University, Guangzhou, PR China
| | - Bi-Gui Lin
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Bin Zhou
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Cheng Cao
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, PR China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Sheng-Zhi Sun
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Tong-Zhang Zheng
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li-Ming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wan-Jiang Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA.
| |
Collapse
|
32
|
Sears CG, Braun JM. Phthalate Exposure, Adolescent Health, and the Need for Primary Prevention. Endocrinol Metab Clin North Am 2020; 49:759-770. [PMID: 33153678 DOI: 10.1016/j.ecl.2020.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phthalates, a class of endocrine-disrupting chemicals, are used widely in many consumer products, and exposure can interfere with a range of hormonal functions during early life. These disruptions may alter development during late childhood and adolescence. This article discusses the potential effects of phthalate exposure on adiposity, puberty, and neurodevelopment during late childhood and adolescence. It also highlights studies of behavioral interventions to reduce phthalate exposures and the roles of health care professionals and policy makers in preventing phthalate exposure.
Collapse
Affiliation(s)
- Clara G Sears
- Department of Epidemiology, Brown University School of Public Health, Box G-S121-2, 121 South Main Street, Providence, RI 02912, USA.
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, Box G-S121-2, 121 South Main Street, Providence, RI 02912, USA. https://twitter.com/JosephMBraun1
| |
Collapse
|
33
|
van den Dries MA, Guxens M, Spaan S, Ferguson KK, Philips E, Santos S, Jaddoe VW, Ghassabian A, Trasande L, Tiemeier H, Pronk A. Phthalate and Bisphenol Exposure during Pregnancy and Offspring Nonverbal IQ. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:77009. [PMID: 32716663 PMCID: PMC7384796 DOI: 10.1289/ehp6047] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 05/22/2020] [Accepted: 06/10/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Prenatal exposures to phthalates and bisphenols are associated with impaired brain development in animals. However, epidemiological studies investigating the association between prenatal phthalate or bisphenol exposure and cognition have produced mixed findings and mostly had modest sample sizes and measured the exposure during the third trimester. OBJECTIVE We examined the association between pregnancy maternal urinary biomarkers of phthalate or bisphenol exposure and nonverbal intelligence quotient (IQ) in children 6 years of age. METHOD The study sample consisted of 1,282 mother-child pairs participating in the Generation R Study, a population-based birth cohort in Rotterdam, Netherlands (enrollment 2002-2006). We measured maternal urinary concentrations of 18 phthalate metabolites and 8 bisphenols at < 18 , 18-25, and > 25 wks of gestation. Child nonverbal IQ was measured at 6 years of age using the Snijders-Oomen Nonverbal Intelligence Test-Revised. Linear regression models were fit for each of the three collection phases separately, the three collection phases jointly, and for the averaged prenatal exposure across pregnancy. RESULTS Higher urinary concentrations of phthalate metabolites during early pregnancy were associated with lower child nonverbal IQ score [e.g., B per 10-fold increase in summed low-molecular weight phthalates = - 1.7 (95% CI: - 3.1 , - 0.3 )]. This association remained unchanged when adjusted for mid and late pregnancy exposures. We also observed an inverse association between late pregnancy di-n-octyl phthalate (DNOP) exposure and nonverbal IQ. Maternal urinary concentrations of bisphenols were not associated with child nonverbal IQ. There was no effect estimate modification by sex. CONCLUSIONS We did not observe that maternal biomarkers of bisphenol exposure are associated with nonverbal IQ. We found that phthalate exposure in early pregnancy and DNOP exposure in late pregnancy are associated with lower nonverbal IQ scores in children. Our results might suggest that particularly early pregnancy is a sensitive window of phthalate exposure, but future studies are needed to replicate our findings. https://doi.org/10.1289/EHP6047.
Collapse
Affiliation(s)
- Michiel A. van den Dries
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, Netherlands
- Generation R Study Group, Erasmus Medical Center, Rotterdam, Netherlands
| | - Mònica Guxens
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, Netherlands
- Barcelona Institute for Global Health, Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Instituto de Salud Carlos III, Spain
| | - Suzanne Spaan
- Department of Risk Analysis for Products in Development, TNO, Utrecht, Netherlands
| | - Kelly K. Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, North Carolina, USA
| | - Elise Philips
- Generation R Study Group, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Centre, Rotterdam, Netherlands
| | - Susana Santos
- Generation R Study Group, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Centre, Rotterdam, Netherlands
| | - Vincent W.V. Jaddoe
- Generation R Study Group, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Centre, Rotterdam, Netherlands
| | - Akhgar Ghassabian
- Department of Pediatrics, New York University School of Medicine, New York, New York, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
- Department of Population Health, New York University School of Medicine, New York, New York, USA
| | - Leonardo Trasande
- Department of Pediatrics, New York University School of Medicine, New York, New York, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
- Department of Population Health, New York University School of Medicine, New York, New York, USA
- New York University Wagner School of Public Service, New York, New York, USA
- New York University College of Global Public Health, New York, New York, USA
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Anjoeka Pronk
- Department of Risk Analysis for Products in Development, TNO, Utrecht, Netherlands
| |
Collapse
|
34
|
Martínez MA, Rovira J, Sharma RP, Schuhmacher M, Kumar V. Reconstruction of phthalate exposure and DINCH metabolites from biomonitoring data from the EXHES cohort of Tarragona, Spain: A case study on estimated vs reconstructed DEHP using the PBPK model. ENVIRONMENTAL RESEARCH 2020; 186:109534. [PMID: 32361526 DOI: 10.1016/j.envres.2020.109534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/12/2020] [Accepted: 04/12/2020] [Indexed: 06/11/2023]
Abstract
Phthalates are known endocrine disruptors (EDs) and are associated with potential diseases, such as obesity and diabetes. In 2002, the plasticizer 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) was introduced as an alternative to phthalates in the European market. The objective of this study was to evaluate the total exposure to phthalate and DINCH metabolites from EXHES Tarragona, Spain cohort of pregnant women. On the one hand, the analytical determination of phthalate and DINCH metabolites in urine was carried out. On the other hand, the reconstructed exposure was calculated for phthalates and DINCH using their metabolites concentration measured in the urine. Thirteen different phthalate metabolites and two metabolites of DINCH were measured and detected in almost all pregnant women's urine samples (n = 60). There were significant correlations between metabolites of the same parent compounds, and also between DEHP and MBzP metabolites, DiNP and BBZP metabolites, and DEHP and DiNP metabolites respectively. The exposure of pregnant women to phthalate and DINCH parent compounds were also back calculated using the levels of each metabolite found in pregnant women urine (reconstructed exposure). Besides, to demonstrate the utility of this approach, the physiologically based pharmacokinetic (PBPK) model was used to predict the cumulative amount of MEHP (a principal metabolite of DEHP in urine). To proceed with that, DEHP reconstructed exposure and estimated exposure from the same cohort (previously studied by the same authors) were simulated using the PBPK model. Results showed that the reconstructed-PBPK simulation was closer to the 24 h biomonitoring data than the estimated PBPK-simulation., This clearly shows that the combination of reconstructed exposure with the PBPK model is a good tool to predict chemicals exposure. However, some discrepancies between simulated and biomonitored values were found. This can be associated with other sources that contribute to the total exposure and emphasises the need to consider multi-routes exposure for the widely distributed chemicals like phthalates and DINCH.
Collapse
Affiliation(s)
- M A Martínez
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain.
| | - J Rovira
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain.
| | - R Prasad Sharma
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain
| | - M Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201, Reus, Catalonia, Spain.
| | - V Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007, Tarragona, Catalonia, Spain; IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Reus, Spain.
| |
Collapse
|
35
|
Katsikantami I, Tzatzarakis MN, Alegakis AK, Karzi V, Hatzidaki E, Stavroulaki A, Vakonaki E, Xezonaki P, Sifakis S, Rizos AK, Tsatsakis AM. Phthalate metabolites concentrations in amniotic fluid and maternal urine: Cumulative exposure and risk assessment. Toxicol Rep 2020; 7:529-538. [PMID: 32368503 PMCID: PMC7186561 DOI: 10.1016/j.toxrep.2020.04.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 11/27/2022] Open
Abstract
Phthalates are used in industry as plasticizers or additives in everyday products and they have been considered as endocrine disrupting chemicals. Maternal exposure during pregnancy has been associated with neonatal exposure, preterm birth and impacts in the reproductive and respiratory systems. The aim of this study is to determine six phthalate metabolites (mono isobutyl phthalate, miBP, mono n-butyl phthalate, mnBP, mono benzyl phthalate, mBzP, mono ethylhexyl phthalate, mEHP, mono 2-ethyl-5-hydroxyhexyl phthalate, mEHHP, mono 2-ethyl-5-oxohexyl-phthalate, mEOHP) in amniotic fluid and urine from 100 pregnant women. Participants answered questionnaires for the use of plastics and cosmetics, dietary habits, health effects, pregnancy problems, health and infant development. Positive amniotic fluid samples ranged from 1% to 21% and urine from 27% to 54%. The median levels for amniotic fluid were 2.3 μg/L - 10.7 μg/L and for urine 4.9 μg/L - 46.7 μg/L. The major results include significant correlations between urinary phthalates indicating their common sources of exposure, the frequent use of deodorant was significantly associated with higher urinary miBP (p = 0.050) and mnBP (p = 0.028) and a weak inverse association was found for the use of make-up products with mBzP (p = 0.053). The frequent use of plastic food containers was significantly associated with urinary mEHP (p = 0.026), and a positive trend was noticed for mEHP in amniotic fluid (p = 0.093). An association although weak was found between urinary mEHP and lower birth length (rs = 0.396, p = 0.062). No other associations were found for infant health problems or development. The daily intake of the total phthalates was calculated 5.4 μg/kg body weight/day which corresponds to hazard index 0.10 and exposure follows the declining trend that has been observed the last decades.
Collapse
Key Words
- 2cx-mMHP, mono 2-carboxymethyl-hexyl phthalate
- Amniotic fluid
- BBzP, benzyl butyl phthalate
- DEHP, di 2-ethylhexyl phthalate
- Daily intake
- DiBP, di iso-butyl phthalate
- DiNP, di isononyl phthalate
- DnBP, di n-butyl phthalate
- EDCs, endocrine disrupting chemicals
- EDI, estimated daily intake HQ, hazard quotient
- HI, hazard index
- LC-APCI-MS, liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry
- Phthalate metabolites
- Risk assessment
- Urine
- mBzP, mono benzyl phthalate
- mECPP or 5cx-mEPP, mono 2-ethyl-5-carboxypentyl phthalate
- mEHHP or 5OH-mEHP, mono 2-ethyl-5-hydroxyhexyl phthalate
- mEHP, mono ethylhexyl phthalate
- mEOHP or 5oxo-mEHP, mono 2-ethyl-5-oxohexyl-phthalate
- mEP, mono ethyl phthalate
- miBP, mono iso-butyl phthalate
- mmP, mono methyl phthalate
- mnBP, mono n-butyl phthalate
Collapse
Affiliation(s)
- Ioanna Katsikantami
- Department of Chemistry, University of Crete & Foundation for Research and Technology-Hellas (FORTH-IESL), 71003, Heraklion, Crete, Greece
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003, Heraklion, Crete, Greece
| | - Manolis N. Tzatzarakis
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003, Heraklion, Crete, Greece
| | - Athanasios K. Alegakis
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003, Heraklion, Crete, Greece
| | - Vasiliki Karzi
- Department of Chemistry, University of Crete & Foundation for Research and Technology-Hellas (FORTH-IESL), 71003, Heraklion, Crete, Greece
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003, Heraklion, Crete, Greece
| | - Eleftheria Hatzidaki
- Department of Neonatology & NICU, University Hospital of Heraklion, Crete, Greece
| | - Athina Stavroulaki
- Department of Chemistry, University of Crete & Foundation for Research and Technology-Hellas (FORTH-IESL), 71003, Heraklion, Crete, Greece
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003, Heraklion, Crete, Greece
| | - Elena Vakonaki
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003, Heraklion, Crete, Greece
| | | | | | - Apostolos K. Rizos
- Department of Chemistry, University of Crete & Foundation for Research and Technology-Hellas (FORTH-IESL), 71003, Heraklion, Crete, Greece
| | - Aristidis M. Tsatsakis
- Laboratory of Toxicology Science and Research, Medical School, University of Crete, 71003, Heraklion, Crete, Greece
| |
Collapse
|
36
|
Jiang Y, Li J, Xu S, Zhou Y, Zhao H, Li Y, Xiong C, Sun X, Liu H, Liu W, Peng Y, Hu C, Cai Z, Xia W. Prenatal exposure to bisphenol A and its alternatives and child neurodevelopment at 2 years. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121774. [PMID: 32001102 DOI: 10.1016/j.jhazmat.2019.121774] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 05/26/2023]
Abstract
While increasing evidence has shown that prenatal bisphenol A (BPA) exposure is adversely associated with child neurodevelopment, little is known about the neurodevelopmental effects of BPA alternatives, such as bisphenol S (BPS) and bisphenol F (BPF). We aimed to evaluate the relationships of repeated measurements of bisphenol exposure during pregnancy with child neurodevelopment. From 2014-2015, 456 mother-child pairs were included in the present study. Each had a spot urine sample in the first, second, and third trimester, respectively, during pregnancy for BPA, BPS, and BPF measurements. Children's neurodevelopment was assessed using the Bayley Scales of Infant Development at 2 years. In adjusted models, children's psychomotor development index scores decreased across quartiles of BPS concentrations [-5.52 (95 % CI: -10.06, -0.99) in the 4th quartile vs. 1 st quartile, P-trend = 0.01]. Each 10-fold increase in BPA concentrations was related to lower mental development index scores only in the second trimester [-2.87 (95 % CI: -4.98, -0.75), Ptrimester-int = 0.04]. However, prenatal BPF exposure was not significantly associated with child neurodevelopment. We provide evidence that prenatal exposure to BPA and BPS may affect child neurodevelopment.
Collapse
Affiliation(s)
- Yangqian Jiang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China; Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jiufeng Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yanqiu Zhou
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, People's Republic of China
| | - Hongzhi Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, People's Republic of China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chao Xiong
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaojie Sun
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wenyu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yang Peng
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Chen Hu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, People's Republic of China.
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
37
|
Lee G, Kim S, Kho Y, Kim S, Lee S, Choi G, Park J, Worakhunpiset S, Moon HB, Okanurak K, Geounuppakul M, Tangtitawong J, Wetsutthanon K, Trisurat D, Choi K. Urinary levels of phthalates and DINCH metabolites in Korean and Thai pregnant women across three trimesters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134822. [PMID: 31818591 DOI: 10.1016/j.scitotenv.2019.134822] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Phthalates are anti-androgenic chemicals and may cause long-lasting adverse effects on growing fetuses. Understanding their exposure profile during pregnancy, therefore, is of public health importance. Because both behavioral and physiological changes of pregnant women are expected to be substantial, the amount of phthalate exposure is expected to vary significantly over the course of pregnancy. Temporal trend of phthalate exposure during pregnancy, however, is largely unknown, especially in Asian women. The purpose of this study is to investigate the urinary concentrations of metabolites for major phthalates and alternative plasticizers over the course of pregnancy among Korean (n = 81) and Thai women (n = 102). Twenty-four metabolites from 15 plasticizers, such as dimethyl phthalate (DMP), diethyl phthalate (DEP), di-isobutyl phthalate (DiBP), di-n-butyl phthalate (DnBP), benzyl butyl phthalate (BBzP), di(2-ethylhexyl) phthalate (DEHP), dioctyl phthalate (DnOP), diisononyl phthalate (DiNP), diisodecyl phthalate (DiDP), di(2-ethylhexyl) terephthalate (DEHTP), and di-(iso-nonyl)-cyclohexane-1,2-dicarboxylate (DINCH), were measured in urine samples collected in each trimester from pregnant women. While the levels of several phthalate metabolites were significantly different by trimester among Korean women, those of Thai women were relatively consistent. Urinary metabolites of DEP and DnOP were higher in Thai pregnant women compared to Korean pregnant women. The detection frequencies of the DINCH metabolite were 67.4% and 44.9% among Korean and Thai pregnant women, respectively. However, the ratio of DINCH to DEHP metabolites was significantly higher in Thai women. According to risk assessment, 11.9% of Korean and 5.3% of Thai women were considered at risk due to phthalate exposure, and DEHP, DnBP and DiBP were identified as major risk drivers. Considering the vulnerability of growing fetuses, further studies are warranted to identify major sources of exposure to these plasticizers during pregnancy.
Collapse
Affiliation(s)
- Gowoon Lee
- School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Sungmin Kim
- Department of Health, Environment & Safety, Eulji University, Seongnam, Republic of Korea; CentralBio Co., Ltd., Gimpo, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam, Republic of Korea.
| | - Sunmi Kim
- School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Seonyeong Lee
- School of Public Health, Seoul National University, Seoul, Republic of Korea; Korea Environmental Industry & Technology Institute, Seoul, Republic of Korea
| | - Gyuyeon Choi
- Department of Obstetrics and Gynecology, Soonchunhyang University Hospital, Seoul, Republic of Korea
| | - Jiwon Park
- Cheongdam Yeon & Nature Obestetrics & Gynecology, Seoul, Republic of Korea
| | - Suwalee Worakhunpiset
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan, Republic of Korea
| | - Kamolnetr Okanurak
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | | | | | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
38
|
Pan Y, Deng M, Li J, Du B, Lan S, Liang X, Zeng L. Occurrence and Maternal Transfer of Multiple Bisphenols, Including an Emerging Derivative with Unexpectedly High Concentrations, in the Human Maternal-Fetal-Placental Unit. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3476-3486. [PMID: 32092248 DOI: 10.1021/acs.est.0c00206] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In this study, a set of 15 bisphenols (BPs) and one emerging derivative (4-hydroxyphenyl 4-isoprooxyphenylsulfone, BPSIP) were analyzed in 60 pairs of maternal plasma, cord plasma, and placenta samples from pregnant women in South China. A total of 4 of the 15 target BPs, i.e., BPA, bisphenol S (BPS), bisphenol AF (BPAF), and bisphenol E (BPE), were frequently detected in the three human biological matrixes. The derivative BPSIP was identified in all maternal plasma samples at unexpectedly high levels, second only to BPA. The concentrations of bisphenols in maternal plasma were slightly higher than in cord plasma for BPA, BPS, and BPE but much higher for BPSIP and much lower for BPAF, indicating that the five frequently detected bisphenols have different placental transfer behaviors. The placental transfer efficiencies (PTEs) of BPA, BPS, and BPE were similar, which were significantly higher than the PTE of BPSIP. The PTE of BPAF was much higher than other BPs, indicating its strong maternal transfer and high fetal accumulation. The PTEs of bisphenols were structure-dependent, and passive diffusion was suggested as the potential mechanism of placental transfer. Significant concentration correlations of the five major bisphenols between maternal plasma and cord plasma were observed (p < 0.05). Meanwhile, significant associations of BPAF concentrations in maternal/cord plasma with some maternal characteristics and adverse birth outcomes were also identified (p < 0.05).
Collapse
Affiliation(s)
- Yanan Pan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Man Deng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Juan Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Bibai Du
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Shenyu Lan
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Xinxin Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
39
|
Cao M, Pan W, Shen X, Li C, Zhou J, Liu J. Urinary levels of phthalate metabolites in women associated with risk of premature ovarian failure and reproductive hormones. CHEMOSPHERE 2020; 242:125206. [PMID: 31678849 DOI: 10.1016/j.chemosphere.2019.125206] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 10/11/2019] [Accepted: 10/23/2019] [Indexed: 05/24/2023]
Abstract
Phthalates, a class of high production-volume chemicals widely used as plasticizers, have been shown to impair ovarian functions in female animals, but epidemiological evidence is very limited. In this case-control study, the associations between phthalate exposure and premature ovarian failure (POF) in women were assessed. A total of 173 POF cases and 246 control women were recruited in Zhejiang, China. The urinary concentrations of 8 phthalate metabolites and the serum levels of ovary-related hormones were determined. Mono-isobutyl phthalate (MiBP) was the metabolite with the highest median concentration of 27.23 μg/g of creatinine in the whole group. Compared with the lowest quartile, higher urinary concentrations of MiBP were significantly associated with increased odds of POF (OR = 1.38, 95% CI: 0.73-2.61 for the fourth quartile; p for trend = 0.01). The estradiol/FSH ratio, a marker of ovarian function, in control women was significantly negatively associated with the urinary concentrations of most tested phthalate metabolites. Our results suggest that exposure to some phthalates may impair ovarian function and increase the odds of POF in women.
Collapse
Affiliation(s)
- Miaofeng Cao
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wuye Pan
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xueyou Shen
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chunming Li
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jianhong Zhou
- Women's Reproductive Health Key Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
40
|
Shrestha P, Zhang Y, Chen WJ, Wong TY. Triclosan: antimicrobial mechanisms, antibiotics interactions, clinical applications, and human health. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2020; 38:245-268. [PMID: 32955413 DOI: 10.1080/26896583.2020.1809286] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The large-scale applications of Triclosan in industrial and household products have created many health and environmental concerns. Despite the fears of its drug-resistance and other issues, Triclosan is still an effective drug against many infectious organisms. Knowing the cross-interactions of Triclosan with different antibiotics, bacteria, and humans can provide much-needed information for the risk assessment of this drug. We review the current understanding of the antimicrobial mechanisms of Triclosan, how microbes become resistant to Triclosan, and the synergistic and antagonistic effects of Triclosan with different antibiotics. Current literature on the clinical applications of Triclosan and its effect on fetus/child development are also summarized.
Collapse
Affiliation(s)
- Prabin Shrestha
- Biological Sciences Department, University of Memphis, Memphis, Tennessee, USA
| | | | - Wen-Jen Chen
- Biological Sciences Department, University of Memphis, Memphis, Tennessee, USA
| | - Tit-Yee Wong
- Biological Sciences Department, University of Memphis, Memphis, Tennessee, USA
| |
Collapse
|
41
|
Campioli E, Lau M, Papadopoulos V. Effect of subacute and prenatal DINCH plasticizer exposure on rat dams and male offspring hepatic function: The role of PPAR-α. ENVIRONMENTAL RESEARCH 2019; 179:108773. [PMID: 31605871 DOI: 10.1016/j.envres.2019.108773] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Plasticizers are compounds added to plastics to modify their physical proprieties. The most well-known class of plasticizers, the phthalates, has been shown to possess antiandrogenic and tumor promoting activities. 1,2-Cyclohexane dicarboxylic acid diisononyl ester (DINCH) was approved for use in food contact containers in 2006 and has been used as a replacement for phthalates in toys and children products. However, we reported previously that the DINCH metabolite MINCH acts on primary rat adipocytes through the peroxisome proliferator activated receptor (PPAR)-α pathway in a manner similar to phthalates. Evidence from our studies, as well as from the current bibliography on DINCH, suggests that the liver might be one of its target organs. In the present study, we collected tissues from dams exposed subacutely and progeny at postnatal day (PND) 3 and 60 exposed in utero to DINCH (1, 10 and 100 mg/kg bw/day). Exposure to DINCH drastically affected liver gene expression in all 3 age groups tested and in particular at the dose of 1 mg/kg bw/day. The PPAR-α pathway along with other metabolic and DNA replication pathways were affected by DINCH. Modifications in PPAR-α and superoxide dismutase (SOD)-1 protein levels were observed in dams at PND21, as well as male progeny at PND3 and 60. No sign of fibrosis or direct liver toxicity was observed after 8 days of stimulus with low doses of DINCH. This study provides evidence that DINCH is not a biologically inert molecule in the rat, and in the liver its actions are mediated, at least in part, by PPAR-α.
Collapse
Affiliation(s)
- Enrico Campioli
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Matthew Lau
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; Department of Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Vassilios Papadopoulos
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada; Department of Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
42
|
Occurrence, toxicity and endocrine disrupting potential of Bisphenol-B and Bisphenol-F: A mini-review. Toxicol Lett 2019; 312:222-227. [DOI: 10.1016/j.toxlet.2019.05.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 01/08/2023]
|
43
|
Kasper-Sonnenberg M, Koch HM, Apel P, Rüther M, Pälmke C, Brüning T, Kolossa-Gehring M. Time trend of exposure to the phthalate plasticizer substitute DINCH in Germany from 1999 to 2017: Biomonitoring data on young adults from the Environmental Specimen Bank (ESB). Int J Hyg Environ Health 2019; 222:1084-1092. [PMID: 31378638 DOI: 10.1016/j.ijheh.2019.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 10/26/2022]
Abstract
DINCH (cyclohexane-1,2-dicarboxylic acid-diisononyl ester) is a phthalate plasticizer substitute introduced into the market in 2002. It is increasingly used especially in the production of toys, food contact materials and medical devices. In this measurement campaign on 24-h urine samples of young adults (20-29 years) from the German Environmental Specimen Bank (ESB) collected in 2010, 2011, 2013, 2015 and 2017 (in total 300 samples, 60 samples/year) we analyzed three specific, oxidized DINCH metabolites (OH-MINCH: cyclohexane-1,2-dicarboxylic acid-mono(hydroxy-isononyl) ester; cx-MINCH: cyclohexane-1,2-dicarboxylic acid-mono(carboxy-isooctyl) ester, oxo-MINCH: cyclohexane-1,2-dicarboxylic acid-mono(oxo-isononyl) ester). We merged these data with earlier data of the ESB from the years 1999-2012 and are now able to report levels and time trends of internal DINCH exposure from 1999 to 2017. After first detections of the major oxidized DINCH metabolite OH-MINCH in 2006 (6.7%) detection rates rapidly increased to 43.3% in 2009, 80% in 2010 and 98.3% in 2011 and 2012. From the year 2013 on we could detect OH-MINCH in every urine sample analyzed. The median concentrations of OH-MINCH rapidly increased from 0.15 μg/L in 2010 to twice the concentration in 2011 (0.31 μg/L) with further increases in 2013 (0.37 μg/L), 2015 (0.59 μg/L) and 2017 (0.70 μg/L). Similar increases, albeit at lower detection rates and concentration levels, could be observed for cx-MINCH and oxo-MINCH. All metabolites strongly correlate with each other. For the ESB study population, DINCH exposures are still far below health based guidance values such as the German Human Biomonitoring Value (HBM-I; 4,500 μg/L for the sum of OH-MINCH and cx-MINCH) or the tolerable daily intake (TDI) of EFSA (1 mg/kg bw/d). The median daily DINCH intake (DI) calculated for 2017 was 0.23 μg/kg bw/d, thus 4,310-times lower than the TDI. The maximum DI calculated for one individual in 2012 (42.60 μg/kg bw/d) was a factor of more than 20 below the TDI. The ongoing increase in DINCH exposure needs to be closely monitored in the future, including populations with potentially higher exposures such as children. This close monitoring will enable timely exposure and risk reduction measures if exposures reached critical levels, or if new toxicological data lead to lower health based guidance values. DINCH belongs to the European Human Biomonitoring Initiative (HBM4EU) priority substances for which policy relevant questions still have to be answered.
Collapse
Affiliation(s)
- Monika Kasper-Sonnenberg
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, D-44789, Bochum, Germany
| | - Holger M Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, D-44789, Bochum, Germany.
| | - Petra Apel
- German Environment Agency (UBA), Corrensplatz 1, D-14195, Berlin, Germany
| | - Maria Rüther
- German Environment Agency (UBA), Corrensplatz 1, D-14195, Berlin, Germany
| | - Claudia Pälmke
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, D-44789, Bochum, Germany
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp-Platz 1, D-44789, Bochum, Germany
| | | |
Collapse
|
44
|
Li J, Wu C, Zhao H, Zhou Y, Cao G, Yang Z, Hong Y, Xu S, Xia W, Cai Z. Exposure Assessment of Bisphenols in Chinese Women during Pregnancy: A Longitudinal Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7812-7820. [PMID: 31180214 DOI: 10.1021/acs.est.9b01281] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bisphenol S (BPS) and bisphenol F (BPF) are increasingly used in manufacturing consumer products to replace the use of bisphenol A (BPA), but exposure data are limited, particularly among pregnant women. Here, we measured BPA, BPS, and BPF levels in urine samples, collected from 941 pregnant women over three trimesters. We examined the correlations, coexposure patterns, variability, and predictors of bisphenols using Spearman's correlation coefficient, percentile analysis, intraclass correlation coefficient, and linear mixed models, respectively. We assessed health risks using average concentrations of bisphenols over three trimesters. The three bisphenols were detected in more than 50% of samples, among which BPA was the predominant one. Cashiers, office workers, teachers, and salespersons had elevated urinary BPS concentrations, while healthcare workers had relatively higher BPA concentrations. About 15 participants had potential health risks induced by exposure to bisphenol mixtures. These findings indicate that exposure to multiple bisphenols at low levels is common over three trimesters. Multiple measurements of urinary BPA and BPS concentrations are needed for more accurate evaluation of the exposure levels during pregnancy, while urinary BPF concentrations during pregnancy are moderately reliable. Occupational exposure should be taken into consideration in future demographic studies.
Collapse
Affiliation(s)
- Jiufeng Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Chuansha Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Hongzhi Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Yanqiu Zhou
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Guodong Cao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Zhiyi Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Yanjun Hong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry , Hong Kong Baptist University , Hong Kong SAR , China
| |
Collapse
|
45
|
Jamal A, Rastkari N, Dehghaniathar R, Aghaei M, Nodehi RN, Nasseri S, Kashani H, Yunesian M. Prenatal exposure to parabens and anthropometric birth outcomes: A systematic review. ENVIRONMENTAL RESEARCH 2019; 173:419-431. [PMID: 30974368 DOI: 10.1016/j.envres.2019.02.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 05/24/2023]
Abstract
Parabens are ubiquitous substances commonly used as preservatives because of their antibacterial activity. The estrogenic activity of parabens may cause undesirable health effects and adverse birth outcomes. The objective of the present systematic review was to investigate the association between prenatal exposure to parabens and anthropometric birth outcomes. PubMed, Web of Science, Scopus, and Embase databases were systematically searched until April 18, 2018. Of 326 records that remained after removing duplicates, 6 original articles were included in the final analysis after excluding irrelevant articles. The included studies indicated that most of the pregnant mothers were exposed to parabens, especially methyl and propyl parabens. However, no definitive association was found between the prenatal urinary concentration of parabens and birth weight or head circumference. In addition, a positive but non-significant association was detected between birth length and maternal exposure to parabens. The present systematic review revealed that assessment of significant associations in current epidemiological studies is impermissible due to methodological limitations and absence of inter-study consistency. Furthermore, because of the complexity of the effect of environmental factors on health, future large-scale studies with proper study design are required to investigate the effect of parabens exposure on birth outcomes.
Collapse
Affiliation(s)
- Akram Jamal
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Poorsina St., Tehran, Iran
| | - Noushin Rastkari
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Dehghaniathar
- Department of Urology and Nephrology, Firoozgar Clinical Research and Development Center (FCRDC), Iran University of Medical Sciences, Tehran, Iran
| | - Mina Aghaei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Poorsina St., Tehran, Iran
| | - Ramin Nabizadeh Nodehi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Poorsina St., Tehran, Iran
| | - Simin Nasseri
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Poorsina St., Tehran, Iran; Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Homa Kashani
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Poorsina St., Tehran, Iran; Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
46
|
Chen Y, Jiang L, Lu S, Kang L, Luo X, Liu G, Cui X, Yu Y. Organophosphate ester and phthalate ester metabolites in urine from primiparas in Shenzhen, China: Implications for health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:944-952. [PMID: 30823349 DOI: 10.1016/j.envpol.2019.01.107] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/10/2019] [Accepted: 01/26/2019] [Indexed: 05/16/2023]
Abstract
Organophosphate esters (OPEs) and phthalate esters (PAEs) are extensively used as additives in commercial and household products. However, knowledge on human exposure to OPEs and PAEs remains limited in China. This study aimed to investigate OPE and PAE metabolites in urine samples of primiparas and to evaluate the cumulative risk of OPE and PAE exposure. A total of 8 OPE metabolites and 11 PAE metabolites were measured in urine samples of 84 primiparas from Shenzhen, China. The OPE metabolites were found in at least 72% of the urine samples with bis(2-chloroethyl) phosphate (BCEP) being the dominant analogue. Among the 11 PAE metabolites, mono-n-butyl phthalate (mBP) was the most abundant analogue and had a median concentration (139 μg/L) greater than those reported in urine samples from other countries and regions. A significant, positive correlation was found between Σ8OPEMs (the sum of 8 OPE metabolites) and body mass index (BMI). The urinary concentration of Σ11PAEMs (the sum of 11 PAE metabolites) was positively associated with the time of computer using by the primiparas. The estimated daily intakes (EDI) of tris(2-chlorethyl) phosphate (TCEP, the parent chemical of BCEP) and di-n-butyl phthalate (DnBP, the parent chemical of mBP) were determined to be 0.47 and 9.14 μg/kg bw/day, respectively. The 95th percentile EDI values for TCEP and DnBP both exceeded their corresponding reference doses. Twelve and fifty-five percentage of the primiparas were estimated to have HIRfD (hazard index corresponding to reference doses) and HITDI (hazard index corresponding to tolerable daily intake) values exceeding 1 for OPEs and PAEs, respectively, suggesting a relatively high exposure risk.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Lei Jiang
- Shenzhen Maternal and Child Health Hospital, Shenzhen, 518028, Guangdong, PR China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, Guangdong, PR China.
| | - Li Kang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Xianru Luo
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Guihua Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, PR China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, PR China
| | - Yingxin Yu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| |
Collapse
|
47
|
Huang W, Zhao C, Zhong H, Zhang S, Xia Y, Cai Z. Bisphenol S induced epigenetic and transcriptional changes in human breast cancer cell line MCF-7. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:697-703. [PMID: 30616060 DOI: 10.1016/j.envpol.2018.12.084] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/07/2018] [Accepted: 12/27/2018] [Indexed: 05/18/2023]
Abstract
In recent years, concerns about using Bisphenol A (BPA) in daily consume products and its effects in many chronic human diseases have prompted the removal of BPA. However, the widely used BPA alternatives, including Bisphenol S (BPS), have a high structural similarity with BPA, suggesting that they may have similar biological effects towards human beings. Indeed, BPS was also found to have endocrine-disrupting effects. Epigenetic mechanism was reported to be involved in BPA-induced biological effects in both in vitro and in vivo models. However, there is no assessment on whether BPS could cause epigenetic changes. In this work, we investigated the possible epigenetic effects of BPS that might induce in human breast cancer cell line MCF-7. We found that BPS could change DNA methylation level of transposons. Besides, methylation status in promoter of breast cancer related genes CDH1, SFN, TNFRSF10C were also changed, which implied that BPS might play a role in the development of breast cancer. Gene expression profiling showed that some genes related to breast cancer progression were upregulated, including THBS4, PPARGC1A, CREB5, COL5A3. Gene ontology (GO) analysis of the differentially expressed genes revealed the significantly changes in PI3K-Akt signaling pathway and extracellular matrix, which were related to the proliferation, migration and invasion of breast cancer cells. These results illustrated that BPS exposure might play roles in the progression of breast cancer.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, PR China
| | - Chao Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, PR China
| | - Huan Zhong
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, PR China
| | - Shoudong Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, PR China
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, PR China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, PR China.
| |
Collapse
|
48
|
Hair as an alternative matrix to monitor human exposure to plasticizers – Development of a liquid chromatography - tandem mass spectrometry method. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1104:94-101. [DOI: 10.1016/j.jchromb.2018.09.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/14/2018] [Accepted: 09/30/2018] [Indexed: 01/10/2023]
|
49
|
Grami D, Rtibi K, Selmi S, Jridi M, Sebai H, Marzouki L, Sabovic I, Foresta C, De Toni L. Aqueous extract of Eruca Sativa protects human spermatozoa from mitochondrial failure due to bisphenol A exposure. Reprod Toxicol 2018; 82:103-110. [PMID: 30393182 DOI: 10.1016/j.reprotox.2018.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/08/2018] [Accepted: 10/17/2018] [Indexed: 01/11/2023]
Abstract
Medicinal plants are suggested to counteract health disorders from chemical pollutants. Here we explored the possible ameliorative effect of Eruca sativa aqueous extract (ESAE) on in vitro acute functional disturbance induced by Bisphenol A (BPA), a disruptor model in human spermatozoa. Phytochemical screening, high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) analysis and 2,2'-azino-bis [3-ethylbenzthiazoline-6-sulphonic acid]/α,α-diphenyl-β-picrylhydrazyl (ABTS/DPPH) tests disclosed antioxidant properties of ESAE, ascribed to polyphenols and flavonoids. The toxicological impact of BPA on sperm viability and motility was detected for concentration greater than 10 μM but co-incubation with ESAE recovered sperm function at low concentration (15.62 μg/ml). BPA reduced mitochondrial membrane potential (ΔΨm), with no impact on plasma membrane potential (ΔΨp). At low doses, ESAE recovered ΔΨm but higher doses were associated with impairment of both ΔΨm and ΔΨp. ESAE protects towards in vitro BPA-mediated toxicity and its possible use as complementary treatment for male reproductive disorders is critically discussed.
Collapse
Affiliation(s)
- Dhekra Grami
- Laboratory of Functional Physiology and Valorization of Bioresources-Higher Institute of Biotechnology of Beja, B.P. 382-9000 Beja, University of Jendouba, Tunisia.
| | - Kaïs Rtibi
- Laboratory of Functional Physiology and Valorization of Bioresources-Higher Institute of Biotechnology of Beja, B.P. 382-9000 Beja, University of Jendouba, Tunisia.
| | - Slimen Selmi
- Laboratory of Functional Physiology and Valorization of Bioresources-Higher Institute of Biotechnology of Beja, B.P. 382-9000 Beja, University of Jendouba, Tunisia.
| | - Morad Jridi
- Laboratory of Enzymatic Engineering and Microbiology, National School of Engineers of Sfax, University of Sfax, B.P. 1173, 3038 Sfax, Tunisia.
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bioresources-Higher Institute of Biotechnology of Beja, B.P. 382-9000 Beja, University of Jendouba, Tunisia.
| | - Lamjed Marzouki
- Laboratory of Functional Physiology and Valorization of Bioresources-Higher Institute of Biotechnology of Beja, B.P. 382-9000 Beja, University of Jendouba, Tunisia.
| | - Iva Sabovic
- Department of Medicine and Unit of Andrology and Reproductive Medicine, University of Padova, Via Giustiniani 2, 35128, Padova, Italy.
| | - Carlo Foresta
- Laboratory of Enzymatic Engineering and Microbiology, National School of Engineers of Sfax, University of Sfax, B.P. 1173, 3038 Sfax, Tunisia.
| | - Luca De Toni
- Department of Medicine and Unit of Andrology and Reproductive Medicine, University of Padova, Via Giustiniani 2, 35128, Padova, Italy.
| |
Collapse
|