1
|
Jiang L, Yang J, Yang H, Kong L, Ma H, Zhu Y, Zhao X, Yang T, Liu W. Advanced understanding of the polybrominated diphenyl ethers (PBDEs): Insights from total environment to intoxication. Toxicology 2024; 509:153959. [PMID: 39341352 DOI: 10.1016/j.tox.2024.153959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are brominated compounds connected by ester bonds between two benzene rings. There are 209 congeners of PBDEs, classified according to the number and position of the bromine atoms. Due to their low cost and superior flame retardant properties, PBDEs have been extensively used as flame retardants in electronic products, plastics, textiles, and other materials since the 1970s. PBDEs are classified as persistent organic pollutants (POPs) under the Stockholm Convention because of their environmental persistence, bioaccumulation, and toxicity to both humans and wildlife. Due to their extensive use and significant quantities, PBDEs have been detected across a range of environments and biological organisms. These compounds are known to cause damage to the metabolic system, exhibit neurotoxicity, and pose reproductive hazards. This review investigates the environmental distribution and human exposure pathways of PBDEs. Using China-a country with significant PBDE use-as an example, it highlights substantial regional and temporal variations in PBDE concentrations and notes that certain environmental levels may pose risks to human health. The article then examines the toxic effects and mechanisms of PBDEs on several major target organs, summarizing recent research and the specific mechanisms underlying these toxic effects from multiple toxicological perspectives. This review enhances our understanding of PBDEs' environmental distribution, exposure pathways, and toxic mechanisms, offering valuable insights for further research and management strategies.
Collapse
Affiliation(s)
- Liujiangshan Jiang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Jing Yang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Huajie Yang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Lingxu Kong
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Haonan Ma
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Yapei Zhu
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Xuan Zhao
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Tianyao Yang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China.
| | - Wei Liu
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China.
| |
Collapse
|
2
|
Tung PW, Bloomquist TR, Baccarelli AA, Herbstman JB, Rauh V, Perera F, Goldsmith J, Margolis A, Kupsco A. Mitochondrial DNA copy number and neurocognitive outcomes in children. Pediatr Res 2024:10.1038/s41390-024-03653-y. [PMID: 39415039 DOI: 10.1038/s41390-024-03653-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Low mitochondria DNA copy number (mtDNAcn) has been linked to cognitive decline. However, the role of mtDNAcn in healthy cognitive development is unclear. We hypothesized early-life mtDNAcn would be associated with children's learning and memory. METHODS We quantified mtDNAcn in umbilical cord blood and child blood at ages 5-7 from participants in a prospective birth cohort. We administered the Children's Memory Scale (CMS) at ages 9-14 (N = 342) and the Wechsler Intelligence Scale for Children (WISC-IV) at ages 7 and 9 (N = 457). Associations between mtDNAcn tertiles and CMS and WISC were evaluated with linear regression and linear mixed-effects models, respectively. We examined non-linear associations using generalized additive mixed models. RESULTS Relative to the middle tertile of mtDNAcn, lower childhood mtDNAcn was associated with lower WISC Working Memory (β = -2.65, 95% CI [-5.24, -0.06]) and Full-Scale IQ (β = -3.71 [-6.42, -1.00]), and higher CMS Visual Memory (β = 4.70 [0.47, 8.93]). Higher childhood mtDNAcn was linked to higher CMS Verbal Memory (β = 7.75 [2.50, 13.01]). In non-linear models, higher childhood mtDNAcn was associated with lower WISC Verbal Comprehension. CONCLUSIONS Our study provides novel evidence that mtDNAcn measured in childhood is associated with children's neurocognitive performance. mtDNAcn may be a marker of healthy child development. IMPACT Mitochondrial DNA copy number (mtDNAcn) may serve as a biomarker for early-life neurocognitive performances in the children's population. Both low and high mtDNAcn may contribute to poorer neurocognition, reflected through learning and memory abilities. This research elucidated the importance of investigating mitochondrial biomarkers in healthy populations and facilitated advancements of future studies to better understand the associations between mitochondrial markers and adverse children's health outcomes.
Collapse
Affiliation(s)
- Pei Wen Tung
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Tessa R Bloomquist
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Virginia Rauh
- Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Frederica Perera
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jeff Goldsmith
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Amy Margolis
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Allison Kupsco
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
3
|
Kramer NE, Fillmore CE, Slane EG, Barnett LMA, Wagner JJ, Cummings BS. Insights into brominated flame retardant neurotoxicity: mechanisms of hippocampal neural cell death and brain region-specific transcriptomic shifts in mice. Toxicol Sci 2024; 201:282-299. [PMID: 38995820 DOI: 10.1093/toxsci/kfae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024] Open
Abstract
Brominated flame retardants (BFRs) reduce flammability in a wide range of products including electronics, carpets, and paint, but leach into the environment to result in continuous, population-level exposure. Epidemiology studies have correlated BFR exposure with neurological problems, including alterations in learning and memory. This study investigated the molecular mechanisms mediating BFR-induced cell death in hippocampal cells and clarified the impact of hexabromocyclododecane (HBCD) exposure on gene transcription in the hippocampus, dorsal striatum, and frontal cortex of male mice. Exposure of hippocampus-derived HT-22 cells to various flame retardants, including tetrabromobisphenol-A (current use), HBCD (phasing out), or 2,2',4,4'-tetrabromodiphenyl ether (BDE-47, phased out) resulted in time, concentration, and chemical-dependent cellular and nuclear morphology alterations, alterations in cell cycle and increases in annexin V staining. All 3 BFRs increased p53 and p21 expression; however, inhibition of p53 nuclear translocation using pifthrin-α did not decrease cell death. Transcriptomic analysis upon low (10 nM) and cytotoxic (10 μM) BFR exposure indicated that HBCD and BDE-47 altered genes mediating autophagy-related pathways. Further evaluation showed that BFR exposure increased LC3-II conversion and autophagosome/autolysosome formation, and co-exposure with the autophagy inhibitor 3-methyladenine (3-MA) attenuated cytotoxicity. Transcriptomic assessment of select brain regions from subchronically HBCD-exposed male mice demonstrated alteration of genes mediating vesicular transport, with greater impact on the frontal cortex and dorsal striatum compared with the dorsal and ventral hippocampus. Immunoblot analysis demonstrated no increases in cell death or autophagy markers, but did demonstrate increases in the SNARE binding complex protein SNAP29, specifically in the dorsal hippocampus. These data demonstrate that BFRs can induce chemical-dependent autophagy in neural cells in vitro and provide evidence that BFRs induce region-specific transcriptomic and protein expression in the brain suggestive of changes in vesicular trafficking.
Collapse
Affiliation(s)
- Naomi E Kramer
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
| | - Courtney E Fillmore
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, United States
| | - Elizabeth G Slane
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, United States
| | - Lillie M A Barnett
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States
| | - John J Wagner
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA 30602, United States
| | - Brian S Cummings
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, United States
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, United States
| |
Collapse
|
4
|
Riley KW, Guo J, Wang S, Factor-Litvak P, Miller RL, Andrews H, Hoepner LA, Margolis AE, Rauh V, Rundle A, Perera F, Herbstman JB. Cohort Profile: The Mothers and Newborns (MN) Cohort of the Columbia Center for Children's Environmental Health. Int J Epidemiol 2024; 53:dyae011. [PMID: 38327188 PMCID: PMC10850846 DOI: 10.1093/ije/dyae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Affiliation(s)
- Kylie W Riley
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Jia Guo
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Shuang Wang
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Rachel L Miller
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Howard Andrews
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Amy E Margolis
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Virginia Rauh
- Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Andrew Rundle
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Frederica Perera
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
5
|
Lan Y, Gao X, Xu H, Li M. 20 years of polybrominated diphenyl ethers on toxicity assessments. WATER RESEARCH 2024; 249:121007. [PMID: 38096726 DOI: 10.1016/j.watres.2023.121007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/17/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) serve as brominated flame retardants which continue to receive considerable attention because of their persistence, bioaccumulation, and potential toxicity. Although PBDEs have been restricted and phased out, large amounts of commercial products containing PBDEs are still in use and discarded annually. Consequently, PBDEs added to products can be released into our surrounding environments, particularly in aquatic systems, thus posing great risks to human health. Many studies and reviews have described the possible toxic effects of PBDEs, while few studies have comprehensively summarized and analyzed the global trends of their toxicity assessment. Therefore, this study utilizes bibliometrics to evaluate the worldwide scientific output of PBDE toxicity and analyze the hotspots and future trends of this field. Firstly, the basic information including the most contributing countries/institutions, journals, co-citations, influential authors, and keywords involved in PBDE toxicity assessment will be visualized. Subsequently, the potential toxicity of PBDE exposure to diverse systems, such as endocrine, reproductive, neural, and gastrointestinal tract systems, and related toxic mechanisms will be discussed. Finally, we conclude this review by outlining the current challenges and future perspectives in environmentally relevant PBDE exposure, potential carriers for PBDE transport, the fate of PBDEs in the environment and human bodies, advanced stem cell-derived organoid models for toxicity assessment, and promising omics technologies for obtaining toxic mechanisms. This review is expected to offer systematical insights into PBDE toxicity assessments and facilitate the development of PBDE-based research.
Collapse
Affiliation(s)
- Yingying Lan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xue Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Minghui Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.
| |
Collapse
|
6
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
7
|
Margolis AE, Greenwood P, Dranovsky A, Rauh V. The Role of Environmental Chemicals in the Etiology of Learning Difficulties: A Novel Theoretical Framework. MIND, BRAIN AND EDUCATION : THE OFFICIAL JOURNAL OF THE INTERNATIONAL MIND, BRAIN, AND EDUCATION SOCIETY 2023; 17:301-311. [PMID: 38389544 PMCID: PMC10881209 DOI: 10.1111/mbe.12354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/09/2023] [Indexed: 02/24/2024]
Abstract
Children from economically disadvantaged communities have a disproportionate risk of exposure to chemicals, social stress, and learning difficulties. Although animal models and epidemiologic studies link exposures and neurodevelopment, little focus has been paid to academic outcomes in environmental health studies. Similarly, in the educational literature, environmental chemical exposures are overlooked as potential etiologic factors in learning difficulties. We propose a theoretical framework for the etiology of learning difficulties that focuses on these understudied exogenous factors. We discuss findings from animal models and longitudinal, prospective birth cohort studies that support this theoretical framework. Studies reviewed point to the effects of prenatal exposure to polycyclic aromatic hydrocarbons on reading comprehension and math skills via effects on inhibitory control processes. Long term, this work will help close the achievement gap in the United States by identifying behavioral and neural pathways from prenatal exposures to learning difficulties in children from economically disadvantaged families.
Collapse
Affiliation(s)
- Amy E. Margolis
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Columbia University Irving Medical Center
- New York State Psychiatric Institute
| | - Paige Greenwood
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Columbia University Irving Medical Center
| | - Alex Dranovsky
- New York State Psychiatric Institute
- Division of Neuroscience, Department of Psychiatry, Columbia University Irving Medical Center
| | - Virginia Rauh
- Population and Family Health, Mailman School of Public Health, Columbia University Irving Medical Center
| |
Collapse
|
8
|
Payne-Sturges DC, Taiwo TK, Ellickson K, Mullen H, Tchangalova N, Anderko L, Chen A, Swanson M. Disparities in Toxic Chemical Exposures and Associated Neurodevelopmental Outcomes: A Scoping Review and Systematic Evidence Map of the Epidemiological Literature. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:96001. [PMID: 37754677 PMCID: PMC10525348 DOI: 10.1289/ehp11750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Children are routinely exposed to chemicals known or suspected of harming brain development. Targeting Environmental Neuro-Development Risks (Project TENDR), an alliance of > 50 leading scientists, health professionals, and advocates, is working to protect children from these toxic chemicals and pollutants, especially the disproportionate exposures experienced by children from families with low incomes and families of color. OBJECTIVE This scoping review was initiated to map existing literature on disparities in neurodevelopmental outcomes for U.S. children from population groups who have been historically economically/socially marginalized and exposed to seven exemplar neurotoxicants: combustion-related air pollution (AP), lead (Pb), mercury (Hg), organophosphate pesticides (OPs), phthalates (Phth), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs). METHODS Systematic literature searches for the seven exemplar chemicals, informed by the Population, Exposure, Comparator, Outcome (PECO) framework, were conducted through 18 November 2022, using PubMed, CINAHL Plus (EBSCO), GreenFILE (EBSCO), and Web of Science sources. We examined these studies regarding authors' conceptualization and operationalization of race, ethnicity, and other indicators of sociodemographic and socioeconomic disadvantage; whether studies presented data on exposure and outcome disparities and the patterns of those disparities; and the evidence of effect modification by or interaction with race and ethnicity. RESULTS Two hundred twelve individual studies met the search criteria and were reviewed, resulting in 218 studies or investigations being included in this review. AP and Pb were the most commonly studied exposures. The most frequently identified neurodevelopmental outcomes were cognitive and behavioral/psychological. Approximately a third (74 studies) reported investigations of interactions or effect modification with 69% (51 of 74 studies) reporting the presence of interactions or effect modification. However, less than half of the studies presented data on disparities in the outcome or the exposure, and fewer conducted formal tests of heterogeneity. Ninety-two percent of the 165 articles that examined race and ethnicity did not provide an explanation of their constructs for these variables, creating an incomplete picture. DISCUSSION As a whole, the studies we reviewed indicated a complex story about how racial and ethnic minority and low-income children may be disproportionately harmed by exposures to neurotoxicants, and this has implications for targeting interventions, policy change, and other necessary investments to eliminate these health disparities. We provide recommendations on improving environmental epidemiological studies on environmental health disparities. To achieve environmental justice and health equity, we recommend concomitant strategies to eradicate both neurotoxic chemical exposures and systems that perpetuate social inequities. https://doi.org/10.1289/EHP11750.
Collapse
Affiliation(s)
| | | | - Kristie Ellickson
- Minnesota Pollution Control Agency, St. Paul, Minnesota, USA
- Union of Concerned Scientists, Cambridge, Massachusetts, USA
| | - Haley Mullen
- Department of Geographical Sciences, University of Maryland, College Park, Maryland, USA
| | | | - Laura Anderko
- M. Fitzpatrick College of Nursing, Villanova University, Villanova, Pennsylvania, USA
| | - Aimin Chen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
9
|
Xue J, Xiao Q, Zhang M, Li D, Wang X. Toxic Effects and Mechanisms of Polybrominated Diphenyl Ethers. Int J Mol Sci 2023; 24:13487. [PMID: 37686292 PMCID: PMC10487835 DOI: 10.3390/ijms241713487] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants used in plastics, textiles, polyurethane foam, and other materials. They contain two halogenated aromatic rings bonded by an ester bond and are classified according to the number and position of bromine atoms. Due to their widespread use, PBDEs have been detected in soil, air, water, dust, and animal tissues. Besides, PBDEs have been found in various tissues, including liver, kidney, adipose, brain, breast milk and plasma. The continued accumulation of PBDEs has raised concerns about their potential toxicity, including hepatotoxicity, kidney toxicity, gut toxicity, thyroid toxicity, embryotoxicity, reproductive toxicity, neurotoxicity, and immunotoxicity. Previous studies have suggested that there may be various mechanisms contributing to PBDEs toxicity. The present study aimed to outline PBDEs' toxic effects and mechanisms on different organ systems. Given PBDEs' bioaccumulation and adverse impacts on human health and other living organisms, we summarize PBDEs' effects and potential toxicity mechanisms and tend to broaden the horizons to facilitate the design of new prevention strategies for PBDEs-induced toxicity.
Collapse
Affiliation(s)
- Jinsong Xue
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (Q.X.); (M.Z.); (D.L.)
| | | | | | | | - Xiaofei Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China; (Q.X.); (M.Z.); (D.L.)
| |
Collapse
|
10
|
Park S, Cowell W, Margolis AE, Sjodin A, Jones R, Rauh V, Wang S, Herbstman JB. Prenatal exposure to polybrominated diphenyl ethers and inattention/hyperactivity symptoms in mid to late adolescents. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1061234. [PMID: 38455925 PMCID: PMC10910905 DOI: 10.3389/fepid.2023.1061234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/17/2023] [Indexed: 03/09/2024]
Abstract
Introduction Prenatal exposure to polybrominated diphenyl ethers (PBDEs) has been associated with increased symptoms of attention deficit/hyperactivity disorder (ADHD) in early to middle childhood, as well as early adolescence. However, data are limited for the long-lasting impact of exposure on outcomes assessed across the entire adolescent period and the sex-specificity of such associations. Methods We investigated the association between continuous natural-log-transformed cord plasma PBDE concentrations and ADHD rating scale 4th edition (ADHD-RS-IV) score from mid adolescence (approximately 11 years old) to late adolescence (approximately 17 years old). The study sample includes a subset (n = 219) of the African American and Dominican children enrolled in the Columbia Center for Children's Environmental Health Mothers and Newborns birth cohort. We used generalized estimating equations to account for the repeated measure of ADHD-RS scores. We examined interactions between exposure to PBDE and sex using cross-product terms and sex-stratified models. In addition, we used linear regression using an age-stratified sample as a sensitivity analysis. Results and Discussion Associations between prenatal exposure and parents' reports of ADHD symptoms varied by sex (p-interaction <0.20), with positive relationships observed among girls but not boys from sex-stratified models. Our finding suggests prenatal exposure to PBDE may affect ADHD symptoms assessed during middle to late adolescence and the sex-specificity of such impact. Our results can be confirmed by future studies with larger and more diverse samples.
Collapse
Affiliation(s)
- Seonyoung Park
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Whitney Cowell
- Departments of Pediatrics and Population Health, NYU Grossman School of Medicine, New York, NY, United States
| | - Amy E. Margolis
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - Andreas Sjodin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Richard Jones
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Virginia Rauh
- Department of Population and Family Health, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Shuang Wang
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Julie B. Herbstman
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| |
Collapse
|
11
|
Zhang M, Meng X, Li N, Zou W, Wei H, Liu R, Sun Y, Chen W, Cui J, Wang C. Integration of solid-phase microextraction and surface-enhanced Raman spectroscopy for in-vivo screening of polybrominated diphenyl ether. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122476. [PMID: 36787678 DOI: 10.1016/j.saa.2023.122476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/21/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
The monitoring of polybrominated diphenyl ethers (PBDEs) is of great significance owing to their high persistence, bioaccumulation, and toxicity to humans and animals. In this study, a sensitive and reproducible probe that integrates solid-phase microextraction and surface-enhanced Raman spectroscopy (SPME-SERS) was developed for screening PBDEs in multiphase specimens, including live fish, water, and electrical products. A roughed Cu fiber with an Ag layer was fabricated with dual functions. BDE-15 was readily extracted and detected on the SPME-SERS probe consisting of propanethiol-modified Ag nanoplates on a Cu wire. A clear linear relationship (R2 = 0.988) was established between the SERS intensity at 782 cm-1 and the logarithmic concentrations (from 100 ppb to 100 ppm), with a detection limit of 15 ppb. This proposed method enables continuous in vivo monitoring in fish without complicated pretreatments. The results obtained by this SPME-SERS approach were validated by high-performance liquid chromatography and showed good agreement. This "extracting and detecting" SPME-SERS method provides a potential tool to monitor the occurrence, formation, and migration of PBDEs.
Collapse
Affiliation(s)
- Mengping Zhang
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China
| | - Xiao Meng
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China
| | - Nianlu Li
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China
| | - Wei Zou
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China
| | - Haiyan Wei
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China
| | - Ranran Liu
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China
| | - Yaxin Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Wenwen Chen
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China
| | - Jingcheng Cui
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China.
| | - Cuijuan Wang
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, PR China.
| |
Collapse
|
12
|
Zhang B, Chen F, Xu T, Tian Y, Zhang Y, Cao M, Guo X, Yin D. The crosstalk effects of polybrominated diphenyl ethers on the retinoic acid and thyroid hormone signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163590. [PMID: 37088389 DOI: 10.1016/j.scitotenv.2023.163590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
The toxicological and pathological influences of polybrominated diphenyl ethers (PBDEs) on the animal central nervous system have attracted worldwide attention. However, their mechanism of action has not been completely elucidated. Given that retinoic acid (RA) and thyroid hormone (TH) signaling pathway are closely related to neurodevelopment, the crosstalk between the two signaling pathways at the levels of metabolite conversion, gene expression and ligand-receptor interaction after exposure to two representative PBDE congeners (BDE-47 and BDE-209) using zebrafish larvae, dual reporter gene assay, and docking simulation was studied. Our results clarified that BDE-47 could disrupt the transport and metabolism of retinoids, induce changes in expression of key genes, bind with the seven nuclear receptors, and activate RA signaling pathway. BDE-47 exhibited more effects on the indicators of the two signaling pathways than BDE-209. Furthermore, BDE-47 may disrupt TH signaling pathway by disrupting RA signaling pathway, indicating that RA signal is priorly influenced than TH signal. This work offered a new perspective to elucidate TH signal disruption mechanism induced by PBDEs from RA signaling pathway, which is of great significance to elucidate the health effects of PBDEs.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fu Chen
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yijun Tian
- Department of Health Toxicology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Yajie Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Miao Cao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xueping Guo
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
13
|
Gladieux M, Gimness N, Rodriguez B, Liu J. Adverse Childhood Experiences (ACEs) and Environmental Exposures on Neurocognitive Outcomes in Children: Empirical Evidence, Potential Mechanisms, and Implications. TOXICS 2023; 11:259. [PMID: 36977024 PMCID: PMC10055754 DOI: 10.3390/toxics11030259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
The purpose of this article is to examine the current literature regarding the relationship between adverse childhood experiences (ACEs) and environmental exposures. Specifically, the paper will focus on how this relationship between ACEs and physical environmental factors impacts the neurocognitive development of children. With a comprehensive literary search focusing on ACEs, inclusive of socioeconomic status (SES), and environmental toxins common in urban environments, the paper explores how these factors contribute to cognitive outcomes that are associated with the environment and childhood nurturing. The relationship between ACEs and environmental exposures reveals adverse outcomes in children's neurocognitive development. These cognitive outcomes include learning disabilities, lowered IQ, memory and attention problems, and overall poor educational outcomes. Additionally, potential mechanisms of environmental exposures and children's neurocognitive outcomes are explored, referencing data from animal studies and evidence from brain imaging studies. This study further analyzes the current gaps in the literature, such as the lack of data focusing on exposure to environmental toxicants resulting from experiencing ACEs and discusses the research and social policy implications of ACEs and environmental exposure in the neurocognitive development of children.
Collapse
Affiliation(s)
| | | | | | - Jianghong Liu
- Department of Family and Community Health, School of Nursing, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Zheng K, Zeng Z, Lin Y, Wang Q, Tian Q, Huo X. Current status of indoor dust PBDE pollution and its physical burden and health effects on children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19642-19661. [PMID: 36648715 DOI: 10.1007/s11356-022-24723-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are widely detected in indoor dust, which has been identified as a more important route of PBDE exposure for children than food intake. The physical burden and health hazards to children of PBDE exposure in house dust have not been adequately summarized; therefore, this article reviews the current status of PBDE pollution in indoor dust associated with children, highlighting the epidemiological evidence for physical burden and health risks in children. We find that PBDEs remain at high levels in indoor dust, including in homes, schools, and cars, especially in cars showing a significant upward trend. There is a trend towards an increase in the proportion of BDE-209 in household dust, which is indicative of recent PBDE contamination. Conversely, PBDE congeners in car and school indoor dust tended to shift from highly brominated to low brominated, suggesting a shift in current pollution patterns. Indoor dust exposure causes significantly higher PBDE burdens in children, especially infants in early life, than in adults. Exposure to dust also affects breast milk, putting infants at high risk of exposure. Although evidence is limited, available epidemiological studies suggest that exposure to indoor dust PBDEs promotes neurobehavioral problems and cancer development in children.
Collapse
Affiliation(s)
- Keyang Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zhijun Zeng
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China
| | - Yucong Lin
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, Berkeley, USA
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China
| | - Qianwen Tian
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China.
| |
Collapse
|
15
|
Longo V, Aloi N, Lo Presti E, Fiannaca A, Longo A, Adamo G, Urso A, Meraviglia S, Bongiovanni A, Cibella F, Colombo P. Impact of the flame retardant 2,2'4,4'-tetrabromodiphenyl ether (PBDE-47) in THP-1 macrophage-like cell function via small extracellular vesicles. Front Immunol 2023; 13:1069207. [PMID: 36685495 PMCID: PMC9852912 DOI: 10.3389/fimmu.2022.1069207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
2,2'4,4'-tetrabromodiphenyl ether (PBDE-47) is one of the most widespread environmental brominated flame-retardant congeners which has also been detected in animal and human tissues. Several studies have reported the effects of PBDEs on different health issues, including neurobehavioral and developmental disorders, reproductive health, and alterations of thyroid function. Much less is known about its immunotoxicity. The aim of our study was to investigate the effects that treatment of THP-1 macrophage-like cells with PBDE-47 could have on the content of small extracellular vesicles' (sEVs) microRNA (miRNA) cargo and their downstream effects on bystander macrophages. To achieve this, we purified sEVs from PBDE-47 treated M(LPS) THP-1 macrophage-like cells (sEVsPBDE+LPS) by means of ultra-centrifugation and characterized their miRNA cargo by microarray analysis detecting the modulation of 18 miRNAs. Furthermore, resting THP-1 derived M(0) macrophage-like cells were cultured with sEVsPBDE+LPS, showing that the treatment reshaped the miRNA profiles of 12 intracellular miRNAs. This dataset was studied in silico, identifying the biological pathways affected by these target genes. This analysis identified 12 pathways all involved in the maturation and polarization of macrophages. Therefore, to evaluate whether sEVsPBDE+LPS can have some immunomodulatory activity, naïve M(0) THP-1 macrophage-like cells cultured with purified sEVsPBDE+LPS were studied for IL-6, TNF-α and TGF-β mRNAs expression and immune stained with the HLA-DR, CD80, CCR7, CD38 and CD209 antigens and analyzed by flow cytometry. This analysis showed that the PBDE-47 treatment does not induce the expression of specific M1 and M2 cytokine markers of differentiation and may have impaired the ability to make immunological synapses and present antigens, down-regulating the expression of HLA-DR and CD209 antigens. Overall, our study supports the model that perturbation of miRNA cargo by PBDE-47 treatment contributes to the rewiring of cellular regulatory pathways capable of inducing perturbation of differentiation markers on naïve resting M(0) THP-1 macrophage-like cells.
Collapse
Affiliation(s)
- Valeria Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Noemi Aloi
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Elena Lo Presti
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Antonino Fiannaca
- High Performance Computing and Networking Institute, National Research Council of Italy (ICAR-CNR), Palermo, Italy
| | - Alessandra Longo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Giorgia Adamo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Alfonso Urso
- High Performance Computing and Networking Institute, National Research Council of Italy (ICAR-CNR), Palermo, Italy
| | - Serena Meraviglia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Antonella Bongiovanni
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Fabio Cibella
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy
| | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Palermo, Italy,*Correspondence: Paolo Colombo,
| |
Collapse
|
16
|
Casella M, Lori G, Coppola L, La Rocca C, Tait S. BDE-47, -99, -209 and Their Ternary Mixture Disrupt Glucose and Lipid Metabolism of Hepg2 Cells at Dietary Relevant Concentrations: Mechanistic Insight through Integrated Transcriptomics and Proteomics Analysis. Int J Mol Sci 2022; 23:ijms232214465. [PMID: 36430946 PMCID: PMC9697228 DOI: 10.3390/ijms232214465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent organic chemicals implied as flame retardants. Humans are mainly exposed to BDE-47, -99, and -209 congeners by diet. PBDEs are metabolic disruptors with the liver as the main target organ. To investigate their mode of action at a human-relevant concentration, we exposed HepG2 cells to these congeners and their mixture at 1 nM, analyzing their transcriptomic and proteomic profiles. KEGG pathways and GSEA Hallmarks enrichment analyses evidenced that BDE-47 disrupted the glucose metabolism and hypoxia pathway; all the congeners and the MIX affected lipid metabolism and signaling Hallmarks regulating metabolism as mTORC1 and PI3K/AKT/MTOR. These results were confirmed by glucose secretion depletion and increased lipid accumulation, especially in BDE-47 and -209 treated cells. These congeners also affected the EGFR/MAPK signaling; further, BDE-47 enriched the estrogen pathway. Interestingly, BDE-209 and the MIX increased ERα gene expression, whereas all the congeners and the MIX induced ERβ and PPARα. We also found that PBDEs modulated several lncRNAs and that HNRNAP1 represented a central hub in all the four interaction networks. Overall, the PBDEs investigated affected glucose and lipid metabolism with different underlying modes of action, as highlighted by the integrated omics analysis, at a dietary relevant concentration. These results may support the mechanism-based risk assessment of these compounds in relation to liver metabolism disruption.
Collapse
Affiliation(s)
- Marialuisa Casella
- Core Facilities, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Gabriele Lori
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
- Science Department, Università Degli Studi di Roma Tre, Viale Guglielmo Marconi 446, 00146 Rome, Italy
| | - Lucia Coppola
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Cinzia La Rocca
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
- Correspondence: ; Tel.: +39-06-49902839
| |
Collapse
|
17
|
Hu Y, Lu Q, Huang C, Gao Y, Tian Y, Fan L, Liu S. Associations between prenatal exposure to polybrominated diphenyl ethers and physical growth in a seven year cohort study. CHEMOSPHERE 2022; 303:135049. [PMID: 35618052 DOI: 10.1016/j.chemosphere.2022.135049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/03/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Although evidence suggests that prenatal exposure to polybrominated diphenyl ethers (PBDEs) alter offspring's physical growth, most studies rely upon physical growth at a single timepoint, and little is known regarding their longitudinal effects over time. In the current study, we determined the associations between prenatal PBDEs exposure and child physical growth by following up 207 mother-child pairs from the Laizhou Wan Birth Cohort (LWBC) from pregnancy until the children were seven years old. Child physical growth including weight, height, and body mass index (BMI) was assessed at birth, and at one, two and seven years of age. Prenatal exposure to PBDEs was quantified by measuring eight PBDE congeners (BDE-28, BDE-47, BDE-85, BDE-99, BDE-100, BDE-153, BDE-154, and BDE-183) in maternal serum samples collected upon hospital admission for delivery. Linear mixed models were applied to examine the associations between prenatal PBDEs exposure and repeated measures of child physical growth, and to determine whether these associations were modified by child's sex. Our findings indicated that BDE-28, BDE-85, BDE-153, BDE-183, and Σ7PBDEs were positively associated with child weight z-score; and that BDE-28, BDE-47, BDE-85, BDE-99, BDE-153, and Σ7PBDEs were positively associated with child height z-score. In addition, these associations were modified by the child's sex as reflected by pronounced positive associations among boys, while negative associations were noted among girls. In conclusion, our findings indicated the sex-specific associations between prenatal PBDE exposures and child physical growth during the first seven years of life.
Collapse
Affiliation(s)
- Yi Hu
- Department of Pediatrics, Hainan Women and Children's Medical Center, Haikou, China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Lu
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuican Huang
- Department of Child Health Care, Hainan Women and Children's Medical Center, Haikou, China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Hainan Women and Children's Medical Center, Haikou, China.
| | - Lichun Fan
- Department of Child Health Care, Hainan Women and Children's Medical Center, Haikou, China.
| | - Shijian Liu
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
18
|
Qiu H, Gao H, Yu F, Xiao B, Li X, Cai B, Ge L, Lu Y, Wan Z, Wang Y, Xia T, Wang A, Zhang S. Perinatal exposure to low-level PBDE-47 programs gut microbiota, host metabolism and neurobehavior in adult rats: An integrated analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154150. [PMID: 35218822 DOI: 10.1016/j.scitotenv.2022.154150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), a major class of flame retardants, have been extensively applied in plastics, electrical equipment, textile fabrics, and so on. Early-life exposure to PBDEs is correlated to neurobehavioral deficits in adulthood, yet the underlying mechanism has not been fully understood. Increasing evidence has demonstrated that gut microbiota dysbiosis and serum metabolites alterations play a role in behavioral abnormalities. However, whether their perturbation is implicated in PBDEs-induced neurotoxicity remains unclear. Here, we sought to explore the effects of developmental exposure to environmentally relevant levels of 2, 2', 4, 4'-tetrabromodiphenyl ether (PBDE-47), a major congener in human samples, on gut microbiota and serum metabolic profile as well as their link to neurobehavioral parameters in adult rats. The open field test showed that gestational and lactational exposure to PBDE-47 caused hyperactivity and anxiety-like behavior. Moreover, 16S rRNA sequencing of fecal samples identified a distinct community composition in gut microbiota following PBDE-47 exposure, manifested as decreased genera Ruminococcaceae and Moraxella, increased families Streptococcaceae and Deferribacteraceae as well as genera Escherichia-Shigella, Pseudomonas and Peptococcus. Additionally, the metabolomics of the blood samples based on liquid chromatography-mass spectrometry revealed a significant shift after PBDE-47 treatment. Notably, these differential serum metabolites were mainly involved in amino acid, carbohydrate, nucleotide, xenobiotics, and lipid metabolisms, which were further validated by pathway analysis. Importantly, the disturbed gut microbiota and the altered serum metabolites were associated with each other and with neurobehavioral disorders, respectively. Collectively, these results suggest that gut microbiota dysbiosis and serum metabolites alterations potentially mediated early-life low-dose PBDE-47 exposure-induced neurobehavioral impairments, which provides a novel perspective on understanding the mechanisms of PBDE-47 neurotoxicity.
Collapse
Affiliation(s)
- Haixia Qiu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Gao
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangjin Yu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Boya Xiao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoning Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Cai
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Long Ge
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yinting Lu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengyi Wan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Xia
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aiguo Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; MOE Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
19
|
Wei S, Chen F, Xu T, Cao M, Yang X, Zhang B, Guo X, Yin D. BDE-99 Disrupts the Photoreceptor Patterning of Zebrafish Larvae via Transcription Factor six7. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5673-5683. [PMID: 35413178 DOI: 10.1021/acs.est.1c08914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Proper visual function is essential for collecting environmental information and supporting the decision-making in the central nervous system and is therefore tightly associated with wildlife survival and human health. Polybrominated diphenyl ethers (PBDEs) were reported to impair zebrafish vision development, and thyroid hormone (TH) signaling was suspected as the main contributor. In this study, a pentabrominated PBDE, BDE-99, was chosen to further explore the action mechanism of PBDEs on the disruption of zebrafish color vision. The results showed that BDE-99 could impair multiple photoreceptors in the retina and disturb the behavior guided by the color vision of zebrafish larvae at 120 h post-fertilization. Although the resulting alteration in photoreceptor patterning highly resembled the effects of 3,3',5-triiodo-l-thyroine, introducing the antagonist for TH receptors was unable to fully recover the alteration, which suggested the involvement of other potential regulatory factors. By modulating the expression of six7, a key inducer of middle-wavelength opsins, we demonstrated that six7, not THs, dominated the photoreceptor patterning in the disruption of BDE-99. Our work promoted the understanding of the regulatory role of six7 in the process of photoreceptor patterning and proposed a novel mechanism for the visual toxicity of PBDEs.
Collapse
Affiliation(s)
- Sheng Wei
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Fu Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, China
| | - Ting Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Miao Cao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xinyue Yang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bin Zhang
- State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
| | - Xueping Guo
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
20
|
Sprowles JL, Monaikul S, Aguiar A, Gardiner J, Monaikul N, Kostyniak P, Schantz SL. Associations of concurrent PCB and PBDE serum concentrations with executive functioning in adolescents. Neurotoxicol Teratol 2022; 92:107092. [DOI: 10.1016/j.ntt.2022.107092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 11/26/2022]
|
21
|
Guo J, Riley KW, Durham T, Margolis AE, Wang S, Perera F, Herbstman JB. Association Studies of Environmental Exposures, DNA Methylation and Children’s Cognitive, Behavioral, and Mental Health Problems. Front Genet 2022; 13:871820. [PMID: 35528545 PMCID: PMC9074894 DOI: 10.3389/fgene.2022.871820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
Introduction: Prenatal environmental exposures have been associated with children’s cognitive, behavioral, and mental health problems, and alterations in DNA methylation have been hypothesized as an underlying biological mechanism. However, when testing this hypothesis, it is often difficult to overcome the problem of multiple comparisons in statistical testing when evaluating a large number of developmental outcomes and DNA methylation sites as potential mediators. The objective of this study is to implement a ‘meet-in-the-middle’ approach with a sequential roadmap to address this concern. Methods: In the Columbia Center for Children’s Environmental Health birth cohort study, we implemented a 5-step sequential process for identifying CpG sites that mediate associations between prenatal environmental exposures and cognitive, behavioral, and mental health problems as measured by the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) and the Child Behavior Checklist (CBCL). These steps include 1) the identification of biological pathways that are relevant to each outcome of interest; 2) selection of a set of genes and CpGs on genes that are significantly associated with the outcomes; 3) identification of exposures that are significantly associated with selected CpGs; 4) examination of exposure-outcome relationships among those where significant CpGs were identified; and 5) mediation analysis of the selected exposures and corresponding outcomes. In this study, we considered a spectrum of environmental exposure classes including environmental phenols, pesticides, phthalates, flame retardants and air pollutants. Results: Among all considered exposures and outcomes, we found one CpG site (cg27510182) on gene (DAB1) that potentially mediates the effect of exposure to PAH on CBCL social problems at children aged 7. Conclusion: This ‘meet-in-the-middle’ approach attenuates concerns regarding multiple comparisons by focusing on genes and pathways that are biologically relevant for the hypothesis.
Collapse
Affiliation(s)
- Jia Guo
- Columbia Center for Children’s Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, United States
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Kylie W. Riley
- Columbia Center for Children’s Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, United States
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Teresa Durham
- Columbia Center for Children’s Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, United States
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Amy E. Margolis
- Columbia Center for Children’s Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, United States
- Division of Child and Adolescent Psychiatry, Columbia University Irving Medical Center, New York, NY, United States
| | - Shuang Wang
- Columbia Center for Children’s Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, United States
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Frederica Perera
- Columbia Center for Children’s Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, United States
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Julie B. Herbstman
- Columbia Center for Children’s Environmental Health, Mailman School of Public Health, Columbia University, New York, NY, United States
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, United States
- *Correspondence: Julie B. Herbstman,
| |
Collapse
|
22
|
Che S, Chen S, Li S, Ruan Z. Decabromodiphenyl ether initiates mitochondria-dependent apoptosis by disrupting calcium homeostasis in mice livers. CHEMOSPHERE 2022; 291:132767. [PMID: 34748805 DOI: 10.1016/j.chemosphere.2021.132767] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/26/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Decabromodiphenyl ether (BDE-209) tends to accumulate in lipid-rich tissues and targets the liver since its high lipophilicity. This study aimed to investigate the effects of BDE-209 on mouse liver and reveal the underlying toxicological mechanisms. Here we firstly confirmed that treatment of BDE-209 could lead to an imbalance of redox and promote apoptosis with a mitochondria-dependent manner in mice livers. Next, the transmission electron microscope (TEM) image revealed BDE-209 induced changes in mitochondrial morphology and increased endoplasmic reticulum (ER) - mitochondrial contact. ER stress was involved in the apoptosis process, which was displayed by the enhancive ER stress makers . Finally, from the increased abundance of cellular pivotal Ca2+ signals transducer CaM, activating Ca2+ release channel Sig-1R and IP3R1, and the stronger fluorescence density of mitochondria-specifically Ca2+ labeled probe Rhod-2 in vitro, we summarized that there was overloaded mitochondrial Ca2+ in hepatocytes of BDE-209 treated mice. In conclusion, these results partly illustrated evidence to reveal a potential mechanism of BDE-209-induced hepatoxicity, where oxidative stress-induced-ER stress led to the over-release of Ca2+, followed by the overloaded mitochondrial Ca2+, and cell apoptosis initiated. Our findings provided a theoretical basis for further studying.
Collapse
Affiliation(s)
- Siyan Che
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Sunni Chen
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Shiqi Li
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Nanchang Key Laboratory of Fruits and Vegetables Nutrition and Processing, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, 330047, China.
| |
Collapse
|
23
|
Cheng L, Rao Q, Zhang Q, Song W, Guan S, Jiang Z, Wu T, Zhao Z, Song W. The immunotoxicity of decabromodiphenyl ether (BDE-209) on broiler chicks by transcriptome profiling analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113284. [PMID: 35149409 DOI: 10.1016/j.ecoenv.2022.113284] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Decabromodiphenyl ether (BDE-209) has drawn significant attention due to its suppression of immune functions in animals and even humans. In order to explore the mechanism through which BDE-209 affects the immune system, broiler chicks were fed a diet containing various concentrations of BDE-209 (0, 0.004, 0.04, 0.4, and 4 g/kg) for 42 days. Histopathological observations of immune organs found damaged and necrotic lymphocytes in the spleen and bursa, and losses of lymphoid cells in thymic gland. The activities of catalase, glutathione, glutathione peroxidase, and superoxide dismutase in both the spleen and serum were affected by BDE-209. Obvious bioaccumulation effect was found in spleen tissues (high to 1339 ± 181.9 μg/kg). Furthermore, transcriptome sequencing analyses of the spleen identified 424 upregulated and 301 downregulated DEGs, and the cytokine-cytokine receptor interaction signal pathway was most significantly enriched based on the Kyoto Encyclopedia of Genes and Genomes database. Quantitative real-time PCR affirmed the decreased expressions of interleukin IL18, IL18R1, IL18RAP, IL21, as well as interferon gamma IFNG and tumor necrosis factor superfamily members TNFSF8, indicating significant interference to immunomodulation function and possible disease progression in inflammatory effects resulting from BDE-209 exposure. The immunotoxicity of BDE-209 may cause the suppression of immune and physiological functions of spleen cells, leading to inflammation and apoptosis and ultimately spleen atrophy.
Collapse
Affiliation(s)
- Lin Cheng
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Qinxiong Rao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Qicai Zhang
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Wei Song
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Shuhui Guan
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Zhilin Jiang
- College of Agriculture and Forestry, Puer University, Yunnan 665000, China
| | - Tian Wu
- College of Agriculture and Forestry, Puer University, Yunnan 665000, China
| | - Zhihui Zhao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China.
| | - Weiguo Song
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Science, Shanghai 201403, China.
| |
Collapse
|
24
|
Xu L, Wang Y, Song E, Song Y. Nucleophilic and redox properties of polybrominated diphenyl ether derived-quinone/hydroquinone metabolites are responsible for their neurotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126697. [PMID: 34329100 DOI: 10.1016/j.jhazmat.2021.126697] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/06/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a category of brominated flame retardants, which were widely used in industrial products since the 1970 s. Our previous studies indicated quinone-type metabolites of PBDEs (PBDE-Qs) cause neurotoxicity, however, their inherent toxicological mechanism remains unclear. Here, we first synthesized PBDE-Qs and corresponding reduced hydroquinone homologous (PBDE-HQs) with different pattern of bromine substitution. Their nucleophilic and redox properties were investigated. PBDE-Qs react with reduced glutathione (GSH) via Michael addition and bromine displacement reaction, whilst PBDE-HQs lack the ability of reacting with GSH. Of note, the displacement reaction only occurs with bromine on the quinone ring of PBDE-Qs but not phenyl ring. Next, electron paramagnetic resonance (EPR) analysis revealed the generation of SQ•-, along with their downstream hydroxyl radical (HO•) and methyl radical (•CH3) through a PBDE quinone/semiquinone/hydroquinone (Q/SQ•-/HQ) futile cycle. In addition, a structure-dependent cytotoxicity pattern was found, the exposure of PBDE-Q/HQ with bromine substitution on the quinone ring resulted in higher level of apoptosis and autophagy in BV2 cells. In conclusion, this work clearly demonstrated that the nucleophilic and redox properties of PBDE-Qs/HQs are responsible for their neurotoxicity, and this finding provide better understanding of neurotoxicity of PBDEs.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Yuting Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd, Haidian District, Beijing 100085, China.
| |
Collapse
|
25
|
The association between prenatal concentrations of polybrominated diphenyl ether and child cognitive and psychomotor function. Environ Epidemiol 2021; 5:e156. [PMID: 34131617 PMCID: PMC8196085 DOI: 10.1097/ee9.0000000000000156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/09/2021] [Indexed: 11/25/2022] Open
Abstract
Previous studies suggest a negative association between prenatal polybrominated diphenyl ethers (PBDEs) exposure and child cognitive and psychomotor development. However, the timing of the relationship between PBDE exposure and neurodevelopment is still unclear. We examined the association between PBDE concentration at two different prenatal times (early and late pregnancy) and cognitive function in children 6-8 years of age. Methods Eight hundred pregnant women were recruited between 2007 and 2009 from Sherbrooke, Canada. Four PBDE congeners (BDE-47, -99, -100, and -153) were measured in maternal plasma samples collected during early pregnancy (12 weeks of gestation) and at delivery. At 6-8 years of age, 355 children completed a series of subtests spanning multiple neuropsychologic domains: verbal and memory skills were measured using the Wechsler Intelligence Scale for Children, Fourth Edition; visuospatial processing using both Wechsler Intelligence Scale for Children, Fourth Edition and Neuropsychological Assessment second edition; and attention was assessed through the Test of Everyday Attention for Children. Additionally, parents completed subtests from the Developmental Coordination Disorder Questionnaire to measure child motor control. We used linear regression and quantile g-computation models to estimate associations of PBDE congener concentrations and psychologic test scores. Results In our models, no significant associations were detected between PBDE mixture and any of the child psychologic scores. BDE-99 concentration at delivery was nominally associated with higher scores on short-term and working memory while a decrease in spatial perception and reasoning was nominally associated with higher BDE-100 concentration at delivery. Conclusion Overall, our results did not show a significant association between PBDEs and child cognitive and motor development.
Collapse
|
26
|
Song J, Li Y, Zhao C, Zhou Q, Zhang J. Interaction of BDE-47 with nuclear receptors (NRs) based on the cytotoxicity: In vitro investigation and molecular interaction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111390. [PMID: 33049448 DOI: 10.1016/j.ecoenv.2020.111390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are endocrine-disrupting chemicals that possess neuroendocrine and reproductive toxicity to humans and disturb thyroid hormone homeostasis, neurobehavior, and development. The most predominant congener of PBDEs in humans and other organisms is 2,2',4,4'-tetrabromodiphenyl ether (BDE-47); however, the molecular mechanisms underlying its cytotoxicity remain largely unknown. Here, we evaluated the toxic effect and underlying mechanism of nuclear receptors (NRs) induced by BDE-47 in SK-N-SH human neuroblastoma cells. The CCK-8 cell viability assay showed that the proliferation of human SK-N-SH cells exposed to BDE-47 was significantly inhibited in time- and dose-dependent manners, and flow cytometry showed that cell cycle was arrested at the S phase after BDE-47 exposure. Moreover, compared with the control group, the expression of retinoic acid receptor alpha (RXRα), pregnane X receptor (PXR), thyroid hormone receptors (TRs), and peroxisome proliferator-activated receptors (PPARs) at the mRNA and protein levels was significantly increased, as determined by quantitative PCR and western blot analysis, demonstrating that BDE-47 activated the NRs in vitro. Moreover, BDE-47 could bind to all four NRs in the affinity order of PPARγ > PXR > TRβ > RXRα under molecular dynamics. Because RXR is the promiscuous dimerization partner for a large number of NRs, ZDock was used to calculate its interaction with other three NRs. Taking the number of hydrogen bonds and ZDock scores into account, the rank of docking ability between RXRα and the NRs was PXR > TRβ > PPARγ. Further analysis of the interaction between BDE-47 and dimerized-NRs, the affinity order was RXRα > TRβ > PXR > PPARγ via Glide. The results of this study demonstrated that BDE-47 interfered the cross-talk among NRs, especially the promiscuous RXRα, which might be critical for the harmonized re-adjustment of cytotoxicity and biological regulation. Our findings provide a better understanding of the mechanisms underlying toxic effects and intermolecular interaction induced by BDE-47.
Collapse
Affiliation(s)
- Jiayi Song
- POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yunxiu Li
- POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Chunyan Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianqing Zhang
- POPs Lab, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| |
Collapse
|
27
|
He H, Shi X, Lawrence A, Hrovat J, Turner C, Cui JY, Gu H. 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) induces wide metabolic changes including attenuated mitochondrial function and enhanced glycolysis in PC12 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 201:110849. [PMID: 32559690 DOI: 10.1016/j.ecoenv.2020.110849] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are extensively used as brominated flame retardants in various factory products. As environmental pollutants, the adverse effects of PBDEs on human health have been receiving considerable attention. However, the precise fundamental mechanisms of toxicity induced by PBDEs are still not fully understood. In this study, the mechanism of cytotoxicity induced by 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) was investigated by combining Seahorse XFp analysis and mass spectrometry-based metabolomics and flux approaches in PC12 cells, one of the most widely used neuron-like cell lines for investigating cytotoxic effects. The Seahorse results suggest that BDE-47 significantly attenuated mitochondrial respiration and enhanced glycolysis in PC12 cells. Additionally, metabolomics results revealed the reduction of TCA metabolites such as citrate, succinate, aconitate, malate, fumarate, and glutamate after BDE-47 exposure. Metabolic flux analysis showed that BDE-47 exposure reduced the oxidative metabolic capacity of mitochondria in PC12 cells. Furthermore, various altered metabolites were found in multiple metabolic pathways, especially in glycine-serine-threonine metabolism and glutathione metabolism. A total of 17 metabolic features were determined in order to distinguish potentially disturbed metabolite markers of BDE-47 exposure. Our findings provide possible biomarkers of cytotoxic effects induced by BDE-47 exposure, and elicit a deeper understanding of the intramolecular mechanisms that could be used in further studies to validate the potential neurotoxicity of PBDEs in vivo. Based on our results, therapeutic approaches targeting mitochondrial function and the glycolysis pathway may be a promising direction against PBDE exposure.
Collapse
Affiliation(s)
- Hailang He
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210029, PR China; Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, AZ, 85259, USA
| | - Xiaojian Shi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, AZ, 85259, USA
| | - Alex Lawrence
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, AZ, 85259, USA
| | - Jonathan Hrovat
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, AZ, 85259, USA
| | - Cassidy Turner
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, AZ, 85259, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98105, USA.
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, AZ, 85259, USA.
| |
Collapse
|
28
|
Li J, Ma W, Zhao Y, Jin Y, Xiao X, Ge W, Shi H, Zhang Y. Lactational exposure of polybrominated diphenyl ethers and its association with infant developmental measurements. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122031. [PMID: 31951989 DOI: 10.1016/j.jhazmat.2020.122031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/12/2019] [Accepted: 01/05/2020] [Indexed: 05/06/2023]
Abstract
This study was designed to assess the effect of lactational polybrominated diphenyl ether (PBDE) exposure on early physical development of both healthy and fetal growth restriction (FGR) infants. Z scores of head circumference-for-age (ZHC), length-for-age (ZLEN), weight-for-age (ZWEI) and weight-for-length (ZWFL) were calculated according to the WHO Child Growth Standards. FGR infants had a higher PBDE exposure level and faster growth speed from 42 days to 6 months compared with healthy infants. Exposure of lower brominated BDEs (BDE28∼154) and the sum of 18 BDE congeners (BDE28∼209) negatively associated with ZHC [mean difference estimate (95 % CI): -0.71 (-1.22, -0.22) and -0.81 (-1.31, -0.33)] in FGR boys. Both BDE153 and BDE196 exposure had a significant correlation with ZLEN of boys in FGR group [mean difference estimate (95 % CI): -0.28 (-0.48, -0.07) and -0.52 (-0.91, -0.14)]. Each 10 ng/g lipid increase in the concentrations of BDE154 were respectively associated with 0.16 increase in ZWEI among boys in healthy group. No significant association was found in girls. Lactational PBDE exposure had effects on the early growth of both FGR and healthy infants. The encouragement of breastfeeding should therefore be considered in conjunction with PBDE contamination levels.
Collapse
Affiliation(s)
- Jialin Li
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wenjuan Ma
- School of Nursing and Health Management, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Yingya Zhao
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yuting Jin
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xirong Xiao
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200032, China
| | - Wenzhen Ge
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Huijing Shi
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yunhui Zhang
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
29
|
Butryn DM, Chi LH, Gross MS, McGarrigle B, Schecter A, Olson JR, Aga DS. Retention of polybrominated diphenyl ethers and hydroxylated metabolites in paired human serum and milk in relation to CYP2B6 genotype. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:121904. [PMID: 31901712 DOI: 10.1016/j.jhazmat.2019.121904] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/30/2019] [Accepted: 12/14/2019] [Indexed: 05/06/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) and their hydroxylated metabolites (OH-BDEs) are endocrine disrupting compounds prevalent in human serum and breast milk. Retention of PBDEs and OH-BDEs in humans may be affected by differences in PBDE metabolism due to variants in cytochrome P450 2B6 (CYP2B6). The objectives of this study are to assess the partitioning profiles of PBDEs and OH-BDEs in forty-eight paired human serum and milk samples, and to evaluate the relationship between variants in CYP2B6 genotype and PBDE and OH-BDE accumulation in humans. Results show that the geometric mean (GM) concentrations of PBDEs are similar in serum (GM = 43.4 ng/g lipid) and milk samples (GM = 52.9 ng/g lipid), while OH-BDEs are retained primarily in serum (GM = 2.31 ng/g lipid), compared to milk (GM = 0.045 ng/g lipid). Participants with CYP2B6*6 genotype had a greater relative retention of PBDEs in serum and milk, and significant relationships (p < 0.05) were also observed for PBDE-47, 5-OH-BDE-47 and 6-OH-BDE-47 concentrations relative to CYP2B6*5 and CYP2B6*6 genotypes. These results are the first to show that CYP2B6 genotype is significantly related to the relative retention of PBDEs in humans, which may have direct implications for variability in the susceptibility of individuals to the potential adverse effects of these contaminants.
Collapse
Affiliation(s)
- Deena M Butryn
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, 611 Natural Sciences Complex, Buffalo, NY, 14260, USA
| | - Lai-Har Chi
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York. 102 Farber Hall, 3435 Main St, Buffalo, NY, 14214, USA; Department of Epidemiology and Environmental Health, University at Buffalo, The State University of New York, 102 Farber Hall, 3435 Main St, Buffalo, NY, 14214, USA
| | - Michael S Gross
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, 611 Natural Sciences Complex, Buffalo, NY, 14260, USA
| | - Barbara McGarrigle
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York. 102 Farber Hall, 3435 Main St, Buffalo, NY, 14214, USA; Department of Epidemiology and Environmental Health, University at Buffalo, The State University of New York, 102 Farber Hall, 3435 Main St, Buffalo, NY, 14214, USA
| | - Arnold Schecter
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, 323 East Chesnut Street, Louisville, KY, 40202, USA; University of Louisville School of Public Health and Information Sciences, 485 E Gray St. Louisville, KY, 40202, USA
| | - James R Olson
- Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York. 102 Farber Hall, 3435 Main St, Buffalo, NY, 14214, USA; Department of Epidemiology and Environmental Health, University at Buffalo, The State University of New York, 102 Farber Hall, 3435 Main St, Buffalo, NY, 14214, USA
| | - Diana S Aga
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, 611 Natural Sciences Complex, Buffalo, NY, 14260, USA.
| |
Collapse
|
30
|
Matovu H, Ssebugere P, Sillanpää M. Prenatal exposure levels of polybrominated diphenyl ethers in mother-infant pairs and their transplacental transfer characteristics in Uganda (East Africa). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113723. [PMID: 31869703 DOI: 10.1016/j.envpol.2019.113723] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 05/20/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are ubiquitous environmental pollutants with adverse effects on the foetus and infants. This study aimed at assessing in utero exposure levels and transplacental transfer (TPT) characteristics of BDE congeners in primiparous mothers from Kampala, the capital city of Uganda. Paired human samples (30 placenta and 30 cord blood samples) were collected between April and June 2018; and analysed for a suite of 24 tri-to deca-BDE congeners. Extraction was carried out using liquid-liquid extraction and sonication for cord blood and placenta samples, respectively. Clean-up was done on a solid phase (SPE) column and analysis was performed using gas chromatography/mass spectrometry (GC/MS). Total (∑) PBDEs were 0.25-30.9 ng/g lipid weight (lw) (median; 7.11 ng/g lw) in placental tissues and 1.65-34.5 ng/g lw (median; 11.9 ng/g lw) in cord blood serum, with a mean difference of 1.26 ng/g lw between the compartments. Statistical analysis showed no significant difference between the levels of PBDEs in cord blood and placenta samples (Wilcoxon signed rank test, p = 0.665), possibly because foetus and neonates have poorly developed systems to metabolise the pollutants from the mothers. BDE-209 was the dominant congener in both matrices (contributed 40.5% and 51.2% to ∑PBDEs in placenta and cord blood, respectively), suggesting recent and on-going maternal exposure to deca-BDE formulation. Non-significant associations were observed between ∑PBDEs in maternal placenta and maternal age, household income, pre-pregnancy body mass index (BMI), and beef/fish consumption. This suggested on-going exposure to PBDEs through multiple sources such as dust from indoor/outdoor environments and, ingestion of other foods. Based on absolute concentrations, the extent of transplacental transport was greater for higher congeners (BDE-209, -206 and -207) than for lower ones (such as BDE-47), suggesting alternative TPT mechanisms besides passive diffusion. More studies with bigger sample sizes are required to confirm these findings.
Collapse
Affiliation(s)
- Henry Matovu
- Department of Chemistry, Gulu University, P. O. Box 166, Gulu, Uganda; Department of Chemistry, Makerere University, P. O. Box 7062, Kampala, Uganda; Department of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50190, Mikkeli, Finland
| | - Patrick Ssebugere
- Department of Chemistry, Makerere University, P. O. Box 7062, Kampala, Uganda.
| | - Mika Sillanpää
- Department of Green Chemistry, Lappeenranta University of Technology, Sammonkatu 12, 50190, Mikkeli, Finland
| |
Collapse
|
31
|
Jakšić K, Matek Sarić M, Čulin J. Knowledge and attitudes regarding exposure to brominated flame retardants: a survey of Croatian health care providers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:7683-7692. [PMID: 31889280 DOI: 10.1007/s11356-019-07496-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
The exposure of pregnant and lactating women and their children to environmental contaminants such as brominated flame retardants (BFRs) is a subject of international concern, but the perception of these contaminants by health providers has not been extensively investigated. The aim of this study was to assess Croatian health care providers' knowledge of exposure to BFRs and their attitudes towards the responsibility to inform the public about the possible negative effects on human health. A cross-sectional survey was conducted from December 2017 to November 2018 with a sample of 400 health care providers. The instrument was a questionnaire consisting of sociodemographic questions, a BFR knowledge test and a BFR attitude assessment. Descriptive and inferential statistical analyses were performed with the STATISTICA 13 software. The results of our study indicate that health providers' knowledge of BFR exposure is lacking, as evidenced by the high frequency of incorrect responses, irrespective of the field of medicine or profession. Neither age nor interest in the topic was significantly correlated with the correctness of answers. Participants expressed a moderate interest in the topic, regardless of the profession or field of medicine. Therefore, we suggest including additional information for health providers about the health effects of BFRs in continuing education programmes organized by Croatian medical associations, nurse associations and other professional bodies as well as in existing high school and university education programmes for health professionals.
Collapse
Affiliation(s)
- Krešimir Jakšić
- Department of Psychology, University of Zadar, Obala kralja Petra Krešimira IV. 2, 23000, Zadar, Croatia
| | - Marijana Matek Sarić
- Department of Health Studies, University of Zadar, Splitska 1, 23000, Zadar, Croatia
| | - Jelena Čulin
- Maritime Department, University of Zadar, M. Pavlinovića 1, 23000, Zadar, Croatia.
| |
Collapse
|
32
|
Dunnick JK, Shockley KR, Morgan DL, Travlos G, Gerrish KE, Ton TV, Wilson RE, Brar SS, Brix AE, Waidyanatha S, Mutlu E, Pandiri AR. Hepatic Transcriptomic Patterns in the Neonatal Rat After Pentabromodiphenyl Ether Exposure. Toxicol Pathol 2020; 48:338-349. [PMID: 31826744 PMCID: PMC7596650 DOI: 10.1177/0192623319888433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human exposure to pentabromodiphenyl ether (PBDE) mixture (DE-71) and its PBDE-47 congener can occur both in utero and during lactation. Here, we tested the hypothesis that PBDE-induced neonatal hepatic transcriptomic alterations in Wistar Han rat pups can inform on potential toxicity and carcinogenicity after longer term PBDE exposures. Wistar Han rat dams were exposed to either DE-71 or PBDE-47 daily from gestation day (GD 6) through postnatal day 4 (PND 4). Total plasma thyroxine (T4) was decreased in PND 4 pups. In liver, transcripts for CYPs and conjugation enzymes, Nrf2, and ABC transporters were upregulated. In general, the hepatic transcriptomic alterations after exposure to DE-71 or PBDE-47 were similar and provided early indicators of oxidative stress and metabolic alterations, key characteristics of toxicity processes. The transcriptional benchmark dose lower confidence limits of the most sensitive biological processes were lower for PBDE-47 than for the PBDE mixture. Neonatal rat liver transcriptomic data provide early indicators on molecular pathway alterations that may lead to toxicity and/or carcinogenicity if the exposures continue for longer durations. These early toxicogenomic indicators may be used to help prioritize chemicals for a more complete toxicity and cancer risk evaluation.
Collapse
Affiliation(s)
- J. K. Dunnick
- Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - K. R. Shockley
- Biostatistics & Computational Biology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - D. L. Morgan
- Toxicology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - G. Travlos
- Cellular & Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - K. E. Gerrish
- Molecular Genomics Core, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - T. V. Ton
- Cellular & Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - R. E. Wilson
- Cellular & Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - S. S. Brar
- Cellular & Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - A. E. Brix
- EPL, Inc., Research Triangle Park, North Carolina
| | - S. Waidyanatha
- Program Operations Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - E. Mutlu
- Program Operations Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - A. R. Pandiri
- Cellular & Molecular Pathology Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
33
|
Margolis AE, Banker S, Pagliaccio D, De Water E, Curtin P, Bonilla A, Herbstman JB, Whyatt R, Bansal R, Sjödin A, Milham MP, Peterson BS, Factor-Litvak P, Horton MK. Functional connectivity of the reading network is associated with prenatal polybrominated diphenyl ether concentrations in a community sample of 5 year-old children: A preliminary study. ENVIRONMENT INTERNATIONAL 2020; 134:105212. [PMID: 31743804 PMCID: PMC7048018 DOI: 10.1016/j.envint.2019.105212] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 05/22/2023]
Abstract
Genetic factors explain 60 percent of variance in reading disorder. Exposure to neurotoxicants, including polybrominated diphenyl ethers (PBDEs), may be overlooked risk factors for reading problems. We used resting-state functional magnetic resonance imaging (rs-fMRI) to examine associations between prenatal PBDE concentrations and functional connectivity of a reading-related network (RN) in a community sample of 5-year-old children (N = 33). Maternal serum PBDE concentrations (∑PBDE) were measured at 12.2 ± 2.8 weeks gestation (mean ± SD). The RN was defined by 12 regions identified in prior task-based fMRI meta-analyses; global efficiency (GE) was used to measure network integration. Linear regression evaluated associations between ∑PBDE, word reading, and GE of the RN and the default mode network (DMN); the latter to establish specificity of findings. Weighted quantile sum regression analyses evaluated the contributions of specific PBDE congeners to observed associations. Greater RN efficiency was associated with better word reading in these novice readers. Children with higher ∑PBDE showed reduced GE of the RN; ∑PBDE was not associated with DMN efficiency, demonstrating specificity of our results. Consistent with prior findings, ∑PBDE was not associated word reading at 5-years-old. Altered efficiency and integration of the RN may underlie associations between ∑PBDE concentrations and reading problems observed previously in older children.
Collapse
Affiliation(s)
- Amy E Margolis
- The Division of Child and Adolescent Psychiatry in the Department of Psychiatry, The New York State Psychiatric Institute and the Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Sarah Banker
- The Division of Child and Adolescent Psychiatry in the Department of Psychiatry, The New York State Psychiatric Institute and the Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David Pagliaccio
- The Division of Child and Adolescent Psychiatry in the Department of Psychiatry, The New York State Psychiatric Institute and the Vagelos College of Physicians & Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Erik De Water
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anny Bonilla
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julie B Herbstman
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, and Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Robin Whyatt
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, and Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ravi Bansal
- Institute for the Developing Mind, Children's Hospital Los Angeles and the Department of Psychiatry at the Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Andreas Sjödin
- Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | | - Bradley S Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles and the Department of Psychiatry at the Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Pam Factor-Litvak
- Columbia Center for Children's Environmental Health, Department of Environmental Health Sciences, and Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Megan K Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
34
|
Cao Z, Chen Q, Zhu C, Chen X, Wang N, Zou W, Zhang X, Zhu G, Li J, Mai B, Luo X. Halogenated Organic Pollutant Residuals in Human Bared and Clothing-Covered Skin Areas: Source Differentiation and Comprehensive Health Risk Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14700-14708. [PMID: 31633338 DOI: 10.1021/acs.est.9b04757] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To comprehensively clarify human exposure to halogenated flame retardants (HFRs) and polychlorinated biphenyls (PCBs) through dermal uptake and hand-to-mouth intake, skin wipe samples from four typical skin locations from 30 volunteers were collected. The total concentration of the target chemicals (24 HFRs and 16 PCBs) ranged from 203 to 4470 ng/m2. BDE-209 and DBDPE accounted for about 37 and 40% of ∑24HFRs, respectively, and PCB-41 and PCB-110 were the dominant PCB congeners, with proportion of 24 and 10%, respectively. Although exhibiting relatively lower concentrations of contaminants than bared skin locations, clothing-covered skin areas were also detected with considerable levels of HFRs and PCBs, indicating clothing to be a potentially significant exposure source. Significant differences in HFR and PCB levels and profiles were also observed between males and females, with more lower-volatility chemicals in male-bared skin locations and more higher-volatility compounds in clothing-covered skin locations of female participants. The mean estimated whole-body dermal absorption doses of ∑8HFRs and ∑16PCBs (2.9 × 10-4 and 6.7 × 10-6 mg/kg·d) were 1-2 orders of magnitude higher than ingestion doses via hand-to-mouth contact (6.6 × 10-7 and 3.1 × 10-7 mg/kg·d). The total noncarcinogenic health risk resulted from whole-body dermal absorption and oral ingestion to ∑7HFRs and ∑16PCBs were 5.2 and 0.35, respectively.
Collapse
Affiliation(s)
- Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education , Henan Normal University , Xinxiang 453007 , China
- Beijing Key Laboratory for Emerging Organic Contaminants Control , Tsinghua University , Beijing 100084 , China
| | - Qiaoying Chen
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education , Henan Normal University , Xinxiang 453007 , China
| | - Chunyou Zhu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Xi Chen
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education , Henan Normal University , Xinxiang 453007 , China
| | - Neng Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education , Henan Normal University , Xinxiang 453007 , China
| | - Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education , Henan Normal University , Xinxiang 453007 , China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education , Henan Normal University , Xinxiang 453007 , China
| | - Guifen Zhu
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education , Henan Normal University , Xinxiang 453007 , China
| | - Jinghua Li
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education , Henan Normal University , Xinxiang 453007 , China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| |
Collapse
|
35
|
Li X, Zhu Y, Zhang C, Liu J, Zhou G, Jing L, Shi Z, Sun Z, Zhou X. BDE-209 induces male reproductive toxicity via cell cycle arrest and apoptosis mediated by DNA damage response signaling pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113097. [PMID: 31520908 DOI: 10.1016/j.envpol.2019.113097] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Decabromodiphenyl ether (BDE-209) is commonly used as a flame retardant, usually in products that were utilized in electronic equipment, plastics, furniture and textiles. To identify the impacts of BDE-209 on the male reproductive system and the underlying toxicological mechanisms, 40 male ICR mice were randomly divided into four groups, which were then exposed to BDE-209 at 0, 7.5, 25 and 75 mg kg-1 d-1 for four weeks, respectively. With regard to the in vitro study, GC-2spd cells were treated with BDE-209 at 0, 2, 8 and 32 μg mL-1 for 24 h, respectively. The results from the in vivo experiments showed that BDE-209 resulted in damage to the testis structure, led to cell apoptosis in testis and decreased sperm number and motility, while sperm malformation rates were significantly increased. Moreover, BDE-209 could induce oxidative stress with decreased testosterone levels, result in DNA damage and activate DNA damage response signaling pathways (ATM/Chk2, ATR/Chk1 and DNA-PKcs/XRCC4/DNA ligase Ⅳ). The data from the in vitro experiments showed that BDE-209 led to cytotoxicity by reducing cell viability and increasing LDH release as well. BDE-209 also induced DNA strand breaks, cell cycle arrest at G1 phase and elevated reactive oxygen species (ROS) level in GC-2 cells. These results suggested that BDE-209 could lead to male reproductive toxicity by inducing DNA damage and failure of DNA damage repair which resulted in cell cycle arrest and apoptosis of spermatogenic cell. The present study provided new evidence to elucidate the potential mechanism of male reproductive toxicity induced by BDE-209.
Collapse
Affiliation(s)
- Xiangyang Li
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, China
| | - Yupeng Zhu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, China
| | - Chonghai Zhang
- Department of Internal Medicine, Zibo Seventh People's Hospital, 255000, Shandong, China
| | - Jianhui Liu
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, China
| | - Guiqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, China
| | - Li Jing
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, China
| | - Zhixiong Shi
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, China
| | - Zhiwei Sun
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, China
| | - Xianqing Zhou
- Department of Toxicology and Hygienic Chemistry, School of Public Health, Capital Medical University, 100069, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, 100069, Beijing, China.
| |
Collapse
|
36
|
Matovu H, Sillanpää M, Ssebugere P. Polybrominated diphenyl ethers in mothers' breast milk and associated health risk to nursing infants in Uganda. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:1106-1115. [PMID: 31539942 DOI: 10.1016/j.scitotenv.2019.07.335] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/20/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to investigate levels of polybrominated diphenyl ethers (PBDEs) in breast milk samples from healthy primiparous mothers who had lived in Kampala capital city (urban area) and Nakaseke district (a rural area) for the last five years. Fifty samples were collected between March and June 2018 and were extracted by dispersive solid-phase extraction (SPE). Clean-up was performed on an SPE column and analysis was done using gas chromatography-mass spectrometry. Total (∑) PBDEs (BDE 28, 47, 49, 66, 77, 99, 100,138,153, 154, 183 and 209) ranged from 0.59 to 8.11 ng/g lipid weight (lw). The levels of PBDEs in samples from Kampala capital city were significantly higher than those from Nakaseke (p < 0.01, Mann-Whitney U test). The most dominant congeners were BDE-209 and -47 (contributed 37.1% and 20.2%, respectively to ∑PBDEs), suggesting recent exposure of mothers to deca-and penta-BDE formulations. Fish and egg consumption, plastics/e-waste recycling and paint fumes were associated with higher levels of BDE-47, -153 and -99, respectively, implying that diet and occupation were possible sources of the pollutants. Estimated dietary intakes (ng kg-1 body weight day-1) for BDE-47, -99 and -153 were below the US EPA reference doses for neurodevelopmental toxicity, suggesting minimal health risks to nursing infants who feed on the milk. Generally, the risk quotients for BDE-47, -99 and -153 were <1 in majority (96%) samples, indicating that the breast milk of mothers in Uganda was fit for human consumption.
Collapse
Affiliation(s)
- Henry Matovu
- Department of Chemistry, Gulu University, P. O. Box 166, Gulu, Uganda; Department of Chemistry, Makerere University, P. O. Box 7062, Kampala, Uganda; Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli, Finland
| | - Mika Sillanpää
- Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, 50130 Mikkeli, Finland
| | - Patrick Ssebugere
- Department of Chemistry, Makerere University, P. O. Box 7062, Kampala, Uganda.
| |
Collapse
|
37
|
Nesan D, Kurrasch DM. Gestational Exposure to Common Endocrine Disrupting Chemicals and Their Impact on Neurodevelopment and Behavior. Annu Rev Physiol 2019; 82:177-202. [PMID: 31738670 DOI: 10.1146/annurev-physiol-021119-034555] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Endocrine disrupting chemicals are common in our environment and act on hormone systems and signaling pathways to alter physiological homeostasis. Gestational exposure can disrupt developmental programs, permanently altering tissues with impacts lasting into adulthood. The brain is a critical target for developmental endocrine disruption, resulting in altered neuroendocrine control of hormonal signaling, altered neurotransmitter control of nervous system function, and fundamental changes in behaviors such as learning, memory, and social interactions. Human cohort studies reveal correlations between maternal/fetal exposure to endocrine disruptors and incidence of neurodevelopmental disorders. Here, we summarize the major literature findings of endocrine disruption of neurodevelopment and concomitant changes in behavior by four major endocrine disruptor classes:bisphenol A, polychlorinated biphenyls, organophosphates, and polybrominated diphenyl ethers. We specifically review studies of gestational and/or lactational exposure to understand the effects of early life exposure to these compounds and summarize animal studies that help explain human correlative data.
Collapse
Affiliation(s)
- Dinushan Nesan
- Department of Medical Genetics, University of Calgary, Calgary, Alberta T2N 4N1, Canada; , .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, Alberta T2N 4N1, Canada; , .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
38
|
Cao Z, Chen Q, Ren M, Zhang L, Shen F, Wang X, Shi S, Zhao Y, Yan G, Peng J. Higher health risk resulted from dermal exposure to PCBs than HFRs and the influence of haze. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:223-231. [PMID: 31271988 DOI: 10.1016/j.scitotenv.2019.06.429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
To investigate the influence of haze on human dermal exposure to a series of halogenated flame retardants (HFRs) and polychlorinated biphenyls (PCBs), paired forehead wipes were collected from 46 volunteers (23 males, 23 females) using gauze pads soaked in isopropyl alcohol under heavy and light haze pollution levels. The median levels of ∑27HFRs and ∑27PCBs in all 92 samples were 672 and 1300ng/m2, respectively. Decabromodiphenyl ether (BDE-209) (171ng/m2) and decabromodiphenylethane (DBDPE) (134ng/m2) were the dominant components of HFRs, indicating that dermal exposure may also be the significant pathway for non-volatile compounds. PCB-37 contributed the most to ∑27PCBs, with a median concentration of 194ng/m2, followed by PCB-60 (141ng/m2). Generally, PBDE, PCB and DD (dehalogenated derivatives of DPs) levels on the foreheads of female participants (291, 1340, 0.92ng/m2) were higher (p=0.037, 0.001, and 0.031, respectively) than those of male participants (226, 989, and 0.45ng/m2). A significant difference (p=0.001) in PCBs was found between light (1690ng/m2) and heavy (996ng/m2) haze pollution conditions. Nevertheless, HFR levels under heavy (median=595ng/m2, ranging from 295 to 1490ng/m2) and light haze pollution conditions (ranging from 205 to 1220ng/m2 with a median of 689ng/m2) did not show significant differences (p=0.269). The non-carcinogenic health risk resulting from dermal exposure to ∑8HFRs and ∑27PCBs was 8.72×10-5 and 1.63×10-2, respectively, raising more concern about populations' exposure to PCBs than HFRs.
Collapse
Affiliation(s)
- Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China; Beijing Key Laboratory for Emerging Organic Contaminants Control, Tsinghua University, Beijing 100084, China.
| | - Qiaoying Chen
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Meihui Ren
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Ling Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Fangfang Shen
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Xiaoying Wang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Shiyu Shi
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Youhua Zhao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Guangxuan Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| | - Jianbiao Peng
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
39
|
Li P, Ma R, Dong L, Liu L, Zhou G, Tian Z, Zhao Q, Xia T, Zhang S, Wang A. Autophagy impairment contributes to PBDE-47-induced developmental neurotoxicity and its relationship with apoptosis. Am J Cancer Res 2019; 9:4375-4390. [PMID: 31285767 PMCID: PMC6599662 DOI: 10.7150/thno.33688] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022] Open
Abstract
Apoptosis is involved in 2,2',4,4'- tetrabromodiphenyl ether (PBDE-47)-induced developmental neurotoxicity. However, little is known about the role of autophagy, especially its relationship with apoptosis underlying such neurotoxic process. Methods: Using female Sprague-Dawley rats exposed to low-dose PBDE-47 (0.1, 1.0 and 10 mg/kg/day) from pre-pregnancy until weaning of offspring to mimic human exposure, we investigated the effects of PBDE-47 on autophagy and apoptosis in relation to cognitive impairment of adult offspring rats. We also evaluated relationship between autophagy and apoptosis using neuroendocrine pheochromocytoma (PC12) cells, a widely used neuron-like cell line for neuronal development. Results: In vivo, perinatal exposure to PBDE-47 induced memory deficits in adult rats. This is accompanied by hippocampal neuronal loss partly as a result of apoptosis, as evidenced by caspase-3 activation and PARP cleavage. Further study identified that PBDE-47 triggered autophagic vesicles accumulation, increased levels of microtubule-associated protein 1 light chain 3 (LC3)-II, an essential protein for autophagosomes formation, and autophagy substrate sequestosome 1 (SQSTM1/p62), but reduced levels of autophagy-related protein (ATG) 7, a key protein for autophagosomes elongation, suggestive of autophagy impairment. These findings were further demonstrated by an in vitro model of PBDE-47-treated PC12 cells. Mechanistically, autophagy alteration is more sensitive to PBDE-47 treatment than apoptosis induction. Importantly, while stimulation of autophagy by the chemical inducer rapamycin and adenovirus-mediated Atg7 overexpression aggravated PBDE-47-induced apoptosis and cell death, inhibition of autophagy by the chemical inhibitor wortmannin and siRNA knockdown of Atg7 reversed PBDE-47-produced detrimental outcomes. Interestingly, blockage of apoptosis by caspase-3 inhibitor Ac-DEVD-CHO ameliorated PBDE-47-exerted autophagy impairment and cell death, though in combination with autophagy inhibitor did not further promote cell survival. Conclusion: Our data suggest that autophagy impairment facilitates apoptosis, which, in turn, disrupts autophagy, ultimately resulting in cell death, and that autophagy may act as a promising therapeutic target for PBDE-47-induced developmental neurotoxicity.
Collapse
|
40
|
Xu H, Feng C, Cao Y, Lu Y, Xi J, Ji J, Lu D, Zhang XY, Luan Y. Distribution of the parent compound and its metabolites in serum, urine, and feces of mice administered 2,2',4,4'-tetrabromodiphenyl ether. CHEMOSPHERE 2019; 225:217-225. [PMID: 30877916 DOI: 10.1016/j.chemosphere.2019.03.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) is a predominant polybromodiphenyl ether congener in the environment. Its absorption, excretion, and metabolism in animals have been investigated; however, the distribution of BDE-47 and its metabolites in excreta and blood at steady-state conditions has been unclear. In the present study, we addressed the issue by determining the amounts of BDE-47, eight monohydroxylated metabolites (OH-BDEs), and 2,4-dibromophenol (2,4-DBP) in serum, urine, and feces of gpt delta transgenic mice orally administered BDE-47 at 1.5, 10, and 30 mg/kg/d for 6 weeks during the 24 h period (for urine and feces) or at 24 h (for blood) post-last dosing. The distribution profiles in the three matrices showed that BDE-47, OH-BDEs, and 2,4-DBP were mostly distributed in urine (59-70%), feces (95-96%), and urine (51-80%), respectively. In each matrix, BDE-47 was the predominant compound under all doses, which accounted for 84-96% in serum, 68-98% in urine, and 37-92% in feces. However, exclusive of BDE-47, OH-BDEs were the predominant class of metabolites in serum (72-86%) and feces (67-87%), whereas 2,4-DBP was the major metabolite in urine (98-99%). Among monohydroxylated metabolites, the dominant compounds were 4-hydroxy-2,2',3,4'-tetrabromodiphenyl ether (4-OH-BDE-42) and 4'-hydroxy-2,2',4,5'-tetrabromodiphenyl ether (4'-OH-BDE-49) in feces (27-33% and 25-43%, respectively), and 3-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (3-OH-BDE-47) in serum (26-43%). Thus, BDE-47 and 2,4-DBP were mostly present in urine, and OH-BDEs were primarily found in feces. Blood was not an important carrier for either BDE-47 or its metabolites. The data provide information for distribution and elimination of BDE-47 and its metabolites in mice at steady-state conditions.
Collapse
Affiliation(s)
- Hao Xu
- Center for Disease Control and Prevention of the Changning District of Shanghai, Shanghai 200051, China
| | - Chao Feng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Yiyi Cao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Lu
- Center for Disease Control and Prevention of the Changning District of Shanghai, Shanghai 200051, China
| | - Jing Xi
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jieyun Ji
- Center for Disease Control and Prevention of the Changning District of Shanghai, Shanghai 200051, China
| | - Dasheng Lu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China.
| | - Xin-Yu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yang Luan
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
41
|
Longo V, Longo A, Di Sano C, Cigna D, Cibella F, Di Felice G, Colombo P. In vitro exposure to 2,2',4,4'-tetrabromodiphenyl ether (PBDE-47) impairs innate inflammatory response. CHEMOSPHERE 2019; 219:845-854. [PMID: 30562690 DOI: 10.1016/j.chemosphere.2018.12.082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants that are added to numerous products to prevent accidental fires. PBDEs are present in the environment and they bio-accumulate in human and animal tissues. Recently, their presence has been correlated to several pathologies but little is known about their effect on the human innate immune system activity. In this study we investigated the effect of the congener 2,2',4,4'-Tetrabromodiphenyl ether (PBDE-47) on the functional activity of the THP-1 human macrophages cell line and on ex vivo freshly isolated human basophils. Cytotoxicity and genotoxicity studies showed that PBDE-47 was able to induce toxic effects on the THP-1 cell line viability at concentrations ≥25 μM. Immune function of THP-1 was studied after stimulation with bacterial lipopolysaccharide (LPS) and PBDE-47 exposure at concentrations granting macrophage viability. Two dimensional electrophoresis showed modification of the proteome in the 3 μM PBDE-47 treated sample and Real Time PCR and ELISA demonstrated a statistically significant reduction in the expression of IL-1β, IL-6 and TNF-α cytokines. Furthermore, PBDE-47 was able to perturbate genes involved in cell motility upregulating CDH-1 and downregulating MMP-12 expressions. Finally, basophil activation assay showed reduced CD63 activation in PBDE-47 treated samples. In conclusion, our study demonstrated that PBDE-47 may perturb the activities of cells involved in innate immunity dampening the expression of macrophage pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and genes involved in cell motility (MMP-12 and E-cadherin) and interfering with basophil activation suggesting that this compound can impair innate immune response.
Collapse
Affiliation(s)
- Valeria Longo
- Istituto di Biomedicina e di Immunologia Molecolare del Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Alessandra Longo
- Istituto di Biomedicina e di Immunologia Molecolare del Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Caterina Di Sano
- Istituto di Biomedicina e di Immunologia Molecolare del Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Diego Cigna
- Istituto di Biomedicina e di Immunologia Molecolare del Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Fabio Cibella
- Istituto di Biomedicina e di Immunologia Molecolare del Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Gabriella Di Felice
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Rome, Italy
| | - Paolo Colombo
- Istituto di Biomedicina e di Immunologia Molecolare del Consiglio Nazionale delle Ricerche, Palermo, Italy.
| |
Collapse
|
42
|
Liang H, Vuong AM, Xie C, Webster GM, Sjödin A, Yuan W, Miao M, Braun JM, Dietrich KN, Yolton K, Lanphear BP, Chen A. Childhood polybrominated diphenyl ether (PBDE) serum concentration and reading ability at ages 5 and 8 years: The HOME Study. ENVIRONMENT INTERNATIONAL 2019; 122:330-339. [PMID: 30503319 PMCID: PMC6324196 DOI: 10.1016/j.envint.2018.11.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) exist extensively in the environment and human beings. PBDE concentrations are higher in children than adults. A previous study found that prenatal PBDE exposure was associated with decreased reading skills in children; however, evidence is limited on the potential impact of childhood exposure to PBDEs. The study examined the association between childhood PBDE exposures and reading ability in children at ages 5 and 8 years. METHODS The study included 230 children from an ongoing prospective pregnancy and birth cohort study, the Health Outcomes and Measures of Environment (HOME) Study, conducted in Cincinnati, Ohio. Children's serum concentrations of eleven PBDE congeners were measured at 1, 2, 3, 5, and 8 years. The Woodcock-Johnson Tests of Achievement - III and the Wide Range Achievement Test - 4 were administered to assess children's reading skills at ages 5 and 8 years, respectively. We used multiple informant models to examine the associations between repeated measures of PBDEs and reading scores at ages 5 and 8 years. We also estimated the βs and 95% CIs of the association of PBDE measure at each age by including interaction terms between PBDE concentrations and child age in the models. RESULTS All childhood BDE-153 concentrations were inversely associated with reading scores at 5 and 8 years, but associations were not statistically significant after covariate adjustment. For example, a 10-fold increase in BDE-153 concentrations at ages 3 and 5 years was associated with a -5.0 (95% confidence interval (CI): -11.0, 1.0) and -5.5 (95% CI: -12.5, 1.4) point change in Basic Reading score at age 5 years, respectively. Similarly, the estimates for Brief Reading score at age 5 years were -4.5 (95% CI: -10.5, 1.5) and -5.2 (95% CI: -12.2, 1.7) point changes, respectively. Serum concentration of BDE-47, -99, -100, and Sum4PBDEs (sum of BDE-47, 99, 100, and 153) at every age were inversely associated with reading scores at ages 5 and 8 years in unadjusted analyses. While the adjusted estimates were much attenuated and became non-significant, the direction of most of the associations was not altered. CONCLUSION Our study has shown a suggestive but non-significant trend of inverse associations between childhood PBDE serum concentrations, particularly BDE-153, and children's reading skills. Future studies with a larger sample size are needed to examine these associations.
Collapse
Affiliation(s)
- Hong Liang
- Department of Reproductive Epidemiology and Social Medicine, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200237, China; Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ann M Vuong
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Changchun Xie
- Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Glenys M Webster
- BC Children's Hospital Research Institute, Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Andreas Sjödin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Wei Yuan
- Department of Reproductive Epidemiology and Social Medicine, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200237, China
| | - Maohua Miao
- Department of Reproductive Epidemiology and Social Medicine, NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, Shanghai 200237, China
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Kim N Dietrich
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kimberly Yolton
- Division of General and Community Pediatrics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Bruce P Lanphear
- BC Children's Hospital Research Institute, Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Aimin Chen
- Division of Epidemiology, Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
43
|
Berghuis SA, Van Braeckel KNJA, Sauer PJJ, Bos AF. Prenatal exposure to persistent organic pollutants and cognition and motor performance in adolescence. ENVIRONMENT INTERNATIONAL 2018; 121:13-22. [PMID: 30172231 DOI: 10.1016/j.envint.2018.08.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/04/2018] [Accepted: 08/12/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Prenatal exposure to persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), was found to be associated with poorer neurological development in children. Knowledge about the effects on outcomes until adolescence is limited. OBJECTIVES To determine whether prenatal exposure to POPs, particularly hydroxylated PCBs (OH-PCBs), is associated with cognitive and motor development in 13- to 15-year-old children. METHODS This prospective observational cohort study is part of the Development at Adolescence and Chemical Exposure (DACE)-study, a follow-up of two Dutch birth cohorts. Maternal pregnancy serum levels of PCB-153 and three OH-PCBs were measured, in part of the cohort also nine other PCBs and three OH-PCBs, and in another part five polybrominated diphenyl ethers (PBDEs), dichloroethene (DDE), pentachlorophenol (PCP) and hexabroomcyclododecane (HBCDD). Of the 188 invited adolescents, 101 (53.7%) participated, 55 were boys. Cognition (intelligence, attention, verbal memory) and motor performance (fine motor, ball skills, balance) were assessed. Scores were classified into 'normal' (IQ > 85; scores > P15) and '(sub)clinical' (IQ ≤ 85; scores ≤ P15). We used linear and logistic regression analyses, and adjusted for maternal education, maternal smoking, maternal alcohol use, breast feeding, and age at examination. RESULTS Several OH-PCBs were associated with more optimal sustained attention and balance. PCB-183 was associated with lower total intelligence (OR: 1.29; 95%CI:0.99-1.68; P = .060), and HBCDD with lower performance intelligence (OR: 3.62; 95%CI:0.97-13.49; P = .056). PCBs, OH-PCBs and PBDEs were negatively associated with verbal memory. CONCLUSIONS Prenatal background exposure to several POPs can influence neuropsychological outcomes in 13- to 15-year-old Dutch adolescents, although exposure to most compounds does not have clinically relevant consequences at adolescence.
Collapse
Affiliation(s)
- Sietske A Berghuis
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| | - Koenraad N J A Van Braeckel
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Pieter J J Sauer
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Arend F Bos
- Division of Neonatology, Department of Pediatrics, Beatrix Children's Hospital, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
44
|
Lin W, Li X, Yang M, Lee K, Chen B, Zhang BH. Brominated Flame Retardants, Microplastics, and Biocides in the Marine Environment: Recent Updates of Occurrence, Analysis, and Impacts. ADVANCES IN MARINE BIOLOGY 2018; 81:167-211. [PMID: 30471656 DOI: 10.1016/bs.amb.2018.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Emerging contaminants (ECs) may pose adverse effects on the marine ecosystem and human health. Based on the analysis of publications filed in recent years, this paper provides a comprehensive overview on three prominent groups of ECs, i.e., brominated flame retardants, microplastics, and biocides. It includes detailed discussions on: (1) the occurrence of ECs in seawater, sediment, and biota; (2) analytical detection and monitoring approaches for these target ECs; and (3) the biological impacts of the ECs on humans and other trophic levels. This review provides a summary of recent advances in the field and remaining knowledge gaps to address, to enable the assessment of risk and support the development of regulations and mitigation technologies for the control of ECs in the marine environment.
Collapse
Affiliation(s)
- Weiyun Lin
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Xixi Li
- The Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Min Yang
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, ON, Canada
| | - Bing Chen
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada
| | - Baiyu Helen Zhang
- Faculty of Engineering and Applied Science, Memorial University, St. John's, NL, Canada.
| |
Collapse
|