1
|
Zhou X, Hu F, Chen Y, Xie K, Hong WJ, Li M, Guo LH. Insights into Toxicological Mechanisms of Per-/polyfluoroalkyl Substances by Using Omics-centered Approaches. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:125634. [PMID: 39755359 DOI: 10.1016/j.envpol.2025.125634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/31/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
The extensive presence of per-/polyfluoroalkyl substances (PFASs) in the environment and their adverse effects on organisms have garnered increasing concern. With the shift of industrial development from legacy to emerging PFASs, expanding the understanding of molecular responses to legacy and emerging PFASs is essential to accurately assess their risks to organisms. Compared with traditional toxicological approaches, omics technologies including transcriptomics, proteomics, metabolomics/lipidomics, and microbiomics allow comprehensive analysis of the molecular changes that occur in organisms after PFAS exposure. This paper comprehensively reviews the insights of omics approaches, especially the multi-omics approach, on the toxic mechanisms of both legacy and emerging PFASs in recent five years, focusing on hepatotoxicity, developmental toxicity, immunotoxicity, reproductive toxicity, neurotoxicity, and the endocrine-disrupting effect. PFASs exert various toxic effects via lipid and amino acid metabolism disruption, perturbations in several cell signal pathways, and binding to nuclear receptors. Notably, integrating multi-omics offers a thorough insight into the mechanisms of toxicity associated with PFASs. The gut microbiota plays an essential regulatory role in the toxic mechanisms of PFAS-induced hepatotoxicity. Finally, further research directions for PFAS toxicology based on omics technologies are prospected.
Collapse
Affiliation(s)
- Xinyi Zhou
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China
| | - Fanglin Hu
- College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China
| | - Yafang Chen
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China
| | - Kun Xie
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China
| | - Wen-Jun Hong
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China
| | - Minjie Li
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China.
| | - Liang-Hong Guo
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310016, PR China.
| |
Collapse
|
2
|
Widhalm R, Granitzer S, Natha B, Zoboli O, Derx J, Zeisler H, Salzer H, Weiss S, Schmitner N, Kimmel RA, Österreicher T, Oberle R, Hengstschläger M, Distel M, Gundacker C. Perfluorodecanoic acid (PFDA) increases oxidative stress through inhibition of mitochondrial β-oxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024:125595. [PMID: 39734044 DOI: 10.1016/j.envpol.2024.125595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/04/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024]
Abstract
PER: and polyfluoroalkyl substances (PFAS) are a large group of synthetic organic chemicals that are ubiquitous environmental pollutants. Among PFAS, perfluorodecanoic acid (PFDA) is one of the most toxic compounds, but the molecular basis behind its toxicity is not fully understood. In an interspecies comparison with placental cells (HTR-8/SVneo) and zebrafish embryos, we demonstrate that PFDA induces mitochondrial dysfunction and impairs fatty acid β-oxidation. Reduced β-oxidation leads to less TCA cycle activity, resulting in less NADH and consequently NADPH production. Thereby NADPH-dependent glutathione recycling is impaired, increasing cellular oxidative stress that can only be partially compensated by NRF2 activation.
Collapse
Affiliation(s)
- Raimund Widhalm
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria.
| | - Sebastian Granitzer
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria
| | - Benjamin Natha
- Zebrafish Platform Austria for Preclinical Drug Screening (ZANDR), St. Anna Children's Cancer Research Institute, Vienna, Austria
| | - Ottavia Zoboli
- Institute for Water Quality and Resource Management, TU Wien, Vienna
| | - Julia Derx
- Institute of Hydraulic Engineering and Water Resources Management, TU Wien, Vienna, Austria; Interuniversity Cooperation Centre Water and Health, Vienna, Austria
| | - Harald Zeisler
- Department of Obstetrics and Gynecology, Medical University Vienna, Austria
| | - Hans Salzer
- Clinic for Pediatrics and Adolescent Medicine, University Clinic Tulln, Tulln, Austria
| | | | - Nicole Schmitner
- Institute of Molecular Biology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Robin A Kimmel
- Institute of Molecular Biology, Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Tamina Österreicher
- Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry and Pathobiochemistry, Medical University of Vienna, Vienna, Austria
| | - Raimund Oberle
- Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry and Pathobiochemistry, Medical University of Vienna, Vienna, Austria
| | - Markus Hengstschläger
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Martin Distel
- Zebrafish Platform Austria for Preclinical Drug Screening (ZANDR), St. Anna Children's Cancer Research Institute, Vienna, Austria; Innovative Cancer Models, St. Anna Children's Cancer Research Institute, Vienna, Austria; Division of Pediatric Hematology and Oncology, Intermountain Primary Children's Hospital, Huntsman Cancer Institute, Spencer Fox Eccles School of Medicine at the University of Utah, Salt Lake City, USA
| | - Claudia Gundacker
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria; Exposome Austria, Research Infrastructure and National EIRENE Hub, Austria
| |
Collapse
|
3
|
Yavari MA, Molla Nadali Pishnamaz H, Baghdadi M, Abdoli MA. Perfluorooctanesulfonic acid (PFOS) removal from aqueous solution through N-doped porous copper-carbon composite derived from recycled copper obtained from fly ash incinerator: Water decontamination via municipal waste remnants. CHEMOSPHERE 2024; 370:143963. [PMID: 39694285 DOI: 10.1016/j.chemosphere.2024.143963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/20/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Invincible growth in waste production is the consequence of overpopulation, which should be addressed to reduce the occupied landfill surface needed for their disposal and to alleviate the leachate of extremely hazardous material into the soil and water bodies. In this study, copper (Cu) was extracted from fly ash of a municipal solid waste incinerator by an electro-chemical method, which was optimized to recover the highest amount of Cu, and then it was chelated with 4-aminobenzoic acid (AM) and terephthalic acid (TM) in an aqueous phase. The obtained composites were then heated to form a porous calcinated copper-carbon composite and utilized to adsorb the forever contaminant of PFOS from aqueous solutions. As the calcinated composite of Cu/AM with a ratio of 1:1 removed a greater amount of PFOS from the aqueous solution than Cu/TA, it was utilized as the ultimate adsorbent. The platform adsorbent was subjected to multiple characterizations, including XRD, FESEM, elemental mapping, TEM, BET, EDS, ICP-OES, FTIR, DLS, and point of zero charges, as well as optimization of several operational parameters involving pH, adsorbent dosage, initial PFOS concentration, and contact time. At the neutral pH, under the optimal conditions (adsorbent dosage of 1 g L-1 and 5 h), 97.23% of PFOS was eliminated from the solution spiked with 5 mg L-1 of PFOS. The equilibrium data were best fitted with Frundlich isotherm, and the maximum adsorption capacity of 402 mg g-1 was achieved. The optimal conditions were also applied to PFOA, demonstrating high adsorption of different types of PFAS. The recovery tests of the adsorbent conducted 5 times on the solution spiked with 10 mg L-1 of PFOS showed a slight decrease in PFOS removal at least for 5 regeneration cycles, demonstrating the high adsorption capacity and its reusability, thereby validating its feasibility for large-scale applications.
Collapse
Affiliation(s)
- Mohammad Ali Yavari
- Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran.
| | - Hossein Molla Nadali Pishnamaz
- Department of Civil, Structural, and Environmental Engineering, School of Engineering and Applied Sciences, State University of New York at Buffalo, NY, USA.
| | - Majid Baghdadi
- Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran.
| | - Mohammad Ali Abdoli
- Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran.
| |
Collapse
|
4
|
Bharal B, Ruchitha C, Kumar P, Pandey R, Rachamalla M, Niyogi S, Naidu R, Kaundal RK. Neurotoxicity of per- and polyfluoroalkyl substances: Evidence and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176941. [PMID: 39454776 DOI: 10.1016/j.scitotenv.2024.176941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals widely used in various products, including food packaging, textiles, and firefighting foam, owing to their unique properties such as amphiphilicity and strong CF bonds. Despite their widespread use, concerns have arisen due to their resistance to degradation and propensity for bioaccumulation in both environmental and human systems. Emerging evidence suggests a potential link between PFAS exposure and neurotoxic effects, spanning cognitive deficits, neurodevelopmental disorders, and neurodegenerative diseases. This review comprehensively synthesizes current knowledge on PFAS neurotoxicity, drawing insights from epidemiological studies, animal experiments, and mechanistic investigations. PFAS, known for their lipophilic nature, tend to accumulate in lipid-rich tissues, including the brain, breaching biological barriers such as the blood-brain barrier (BBB). The accumulation of PFAS within the central nervous system (CNS) has been implicated in a spectrum of neurological maladies. Neurotoxicity induced by PFAS manifests through a multitude of direct and indirect mechanisms. A growing body of research associated PFAS exposure with BBB disruption, calcium dysregulation, neurotransmitter alterations, neuroinflammation, oxidative stress, and mitochondrial dysfunction, all contributing to neuronal impairment. Despite notable strides in research, significant lacunae persist, necessitating further exploration to elucidate the full spectrum of PFAS-mediated neurotoxicity. Prospective research endeavors should prioritize developing biomarkers, delineating sensitive exposure windows, and exploring mitigation strategies aimed at safeguarding neurological integrity within populations vulnerable to PFAS exposure.
Collapse
Affiliation(s)
- Bhagyashree Bharal
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Chanda Ruchitha
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Paarth Kumar
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rukmani Pandey
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Ravinder K Kaundal
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India; Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India.
| |
Collapse
|
5
|
Ma Y, Hua Z, Wang P, Yang Y. Responses and mechanisms of perfluoroalkyl acid release to the cumulative effects of propeller jet force over time. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136345. [PMID: 39481263 DOI: 10.1016/j.jhazmat.2024.136345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/21/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
As the discharge of exogenous perfluoroalkyl acids (PFAAs) is gradually controlled, the secondary release of endogenous PFAAs is poised to become a major challenge. However, the effects of complex hydrodynamic conditions, such as disturbance from ship propeller jets, on PFAA release, are still poorly understood. In the present study, a propeller jet disturbance simulation experiment was carried out using an indoor flume to investigate the responses and mechanisms of PFAA release to the cumulative effects of jet force over time. Although an increase in jet action time (t) increased the total amount of dissolved PFAAs in the overlying water, PFAA dissolution intensity decreased. Conversely, increase in t induced a rise in both total PFAA amount adsorbed and adsorption intensity in suspended particulate matter (SPM). Moreover, differences in functional groups and carbon-fluorine chain lengths resulted in different types of PFAAs exhibiting different sensitivities to changes in t during dissolution and adsorption. During the jet disturbance, there were distinct shear zoning and pressure gradients in the flow field, contributing to the tendency of PFAAs to be distributed in the overlying water. However, after the disturbance, PFAAs tended to distribute in the SPM. Changes in t consistently affected the partition behavior of long-chain PFAAs (C ≥ 7), whereas the effect on the partition behavior of short-chain PFAAs (C < 7) was rather short-lived. In contrast, Perfluoroalkyl carboxylic acids were more readily released from the sediments and porewater than Perfluoroalkyl sulfonic acids; however, the difference decreased with increasing t. Both shear impulse and squeeze impulse showed a significant linear positive correlation with PFAA release (p < 0.05), but the effect of shear impulse was greater. The findings provide perspectives for further understanding of PFAA release under jet disturbance and could facilitate endogenous PFAA contamination control.
Collapse
Affiliation(s)
- Yixin Ma
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China.
| | - Peng Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China
| | - Yundong Yang
- Jiangsu Environmental Engineering Technology Co., Ltd, Nanjing 210098, PR China
| |
Collapse
|
6
|
Jang SI, Jo JH, Uwamahoro C, Jung EJ, Lee WJ, Bae JW, Shin S, Lee SI, Kim MO, Moon J, Kwon WS. Role of Rab proteins in PFOA-induced changes in boar sperm motility and capacitation. Reprod Toxicol 2024; 130:108745. [PMID: 39510201 DOI: 10.1016/j.reprotox.2024.108745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Perfluorooctanoic acid (PFOA), a pervasive environmental contaminant, elicits adverse effects on sperm functions, including sperm motility and capacitation status. However, the specific mechanisms by which PFOA disrupts sperm functions during capacitation remain poorly elucidated. Therefore, this study aimed to investigate the molecular mechanisms underlying the PFOA-induced inhibition of sperm motility and capacitation in boar spermatozoa by focusing on Ras-related (Rab) proteins, which regulate membrane trafficking and play key roles in male sperm development, acrosome formation, and the acrosome reaction. Results showed significant reductions in sperm motility and various kinematic parameters following PFOA exposure. Correlation analysis revealed that Rab14 was positively correlated with dance mean (DNM) and negatively correlated with wobble (WOB), indicating that PFOA might affect sperm motility through Rab14 and potentially lead to reduced pregnancy rates. Differences in Rab25 were positively correlated with differences in total motility (MOT), progressive motility (PRG), linearity (LIN), and mean angular displacement (MAD), suggesting that PFOA might influence sperm motility by altering Rab25. Differences in Rab34 were positively correlated with differences in acrosome-reacted spermatozoa, implicating its role in the acrosome reaction. These findings provided insights into the molecular mechanism of PFOA-induced reproductive toxicity and highlighted the function of Rab proteins as biomarkers for the assessment of the effects of similar environmental toxins on male fertility.
Collapse
Affiliation(s)
- Seung-Ik Jang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Jae-Hwan Jo
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Claudine Uwamahoro
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Eun-Ju Jung
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Woo-Jin Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Jeong-Won Bae
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Sangsu Shin
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Sang In Lee
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea
| | - Joonho Moon
- Seoul National University Hospital, Seoul 03080, Republic of Korea.
| | - Woo-Sung Kwon
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea; Research Institute for Innovative Animal Science, Kyungpook National University, Sangju, Gyeongsangbuk-do 37224, Republic of Korea.
| |
Collapse
|
7
|
Mahoney H, Ankley P, Roberts C, Lamb A, Schultz M, Zhou Y, Giesy JP, Brinkmann M. Unveiling the Molecular Effects of Replacement and Legacy PFASs: Transcriptomic Analysis of Zebrafish Embryos Reveals Surprising Similarities and Potencies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18554-18565. [PMID: 39392652 DOI: 10.1021/acs.est.4c04246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The prevalence of per- and poly fluoroalkyl substances (PFASs) in the environment has prompted restrictions on legacy PFASs due to their recognized toxic effects. Consequently, alternative "replacement" PFASs have been introduced and are prevalent in environmental matrices. Few studies have investigated the molecular effects of both legacy and replacement PFASs under short-term exposures. This study aimed to address this by utilizing transcriptomic sequencing to compare the molecular impacts of exposure to concentrations 0.001-5 mg/L of the legacy PFOS and two of its replacements, PFECHS and FBSA. Using zebrafish embryos, the research assessed apical effects (mortality, morphology, and growth), identified differentially expressed genes (DEGs) and enriched pathways, and determined transcriptomic points of departure (tPoDs) for each compound. Results indicated that PFOS exhibited the highest relative potency, followed by PFECHS and then FBSA. While similarities were observed among the ranked DEGs across all compounds, over-representation analysis revealed slight differences. Notably, PFOS demonstrated the lowest tPoD identified to date. These findings raise concerns regarding the safety of emerging replacement PFASs and challenge assumptions about PFAS toxicity solely resulting from their accumulative potential. As replacement PFASs proliferate in the environment, this study underscores the need for heightened scrutiny of their effects and questions current regulatory thresholds.
Collapse
Affiliation(s)
- Hannah Mahoney
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Phillip Ankley
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Catherine Roberts
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Alicia Lamb
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Matthew Schultz
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Yutong Zhou
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - John P Giesy
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
- Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, Texas 76798-7266, United States
| | - Markus Brinkmann
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
- School of Environment and Sustainability, University of Saskatchewan, 117 Science Pl, Saskatoon, Saskatchewan S7N 5C8, Canada
- Global Institute for Water Security, University of Saskatchewan, 11 Innovation Blvd, Saskatoon, Saskatchewan S7N 3H5, Canada
- Centre for Hydrology, University of Saskatchewan, 121 Research Dr, Saskatoon, Saskatchewan S7N 1K2, Canada
| |
Collapse
|
8
|
Kashobwe L, Sadrabadi F, Braeuning A, Leonards PEG, Buhrke T, Hamers T. In vitro screening of understudied PFAS with a focus on lipid metabolism disruption. Arch Toxicol 2024; 98:3381-3395. [PMID: 38953992 PMCID: PMC11402862 DOI: 10.1007/s00204-024-03814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are man-made chemicals used in many industrial applications. Exposure to PFAS is associated with several health risks, including a decrease in infant birth weight, hepatoxicity, disruption of lipid metabolism, and decreased immune response. We used the in vitro cell models to screen six less studied PFAS [perfluorooctane sulfonamide (PFOSA), perfluoropentanoic acid (PFPeA), perfluoropropionic acid (PFPrA), 6:2 fluorotelomer alcohol (6:2 FTOH), 6:2 fluorotelomer sulfonic acid (6:2 FTSA), and 8:2 fluorotelomer sulfonic acid (8:2 FTSA)] for their capacity to activate nuclear receptors and to cause differential expression of genes involved in lipid metabolism. Cytotoxicity assays were run in parallel to exclude that observed differential gene expression was due to cytotoxicity. Based on the cytotoxicity assays and gene expression studies, PFOSA was shown to be more potent than other tested PFAS. PFOSA decreased the gene expression of crucial genes involved in bile acid synthesis and detoxification, cholesterol synthesis, bile acid and cholesterol transport, and lipid metabolism regulation. Except for 6:2 FTOH and 8:2 FTSA, all tested PFAS downregulated PPARA gene expression. The reporter gene assay also showed that 8:2 FTSA transactivated the farnesoid X receptor (FXR). Based on this study, PFOSA, 6:2 FTSA, and 8:2 FTSA were prioritized for further studies to confirm and understand their possible effects on hepatic lipid metabolism.
Collapse
Affiliation(s)
- Lackson Kashobwe
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Faezeh Sadrabadi
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Pim E G Leonards
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Thorsten Buhrke
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Timo Hamers
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Hou J, Wang N, Hu C, Yang L, Yue X, Li J, Wang X. Distribution and ecological risk assessment of perfluoroalkyl carboxylic acids (PFCAs) in the coastal river, China. CHEMOSPHERE 2024; 365:143366. [PMID: 39306114 DOI: 10.1016/j.chemosphere.2024.143366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/25/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Perfluoroalkyl carboxylic acids (PFCAs) enter surface waters through wastewater discharge and atmospheric deposition, accumulating within aquatic ecosystems and organisms, causing dysfunction or mortality. This study investigates the migration, sources and ecological risks of six PFCAs in the coastal Wulong River basin and the estuary along the eastern coast of China. The six PFCAs detected in the Wulong River included, at concentrations ranging from 17.36 to 57.92 ng/L. The distribution of PFCAs concentrations throughout the estuary were as follows: Northeast China (414.07 ng/L) > North China (325.97 ng/L) > East China (249.53 ng/L) > South China (63.61 ng/L), with perfluorooctanoic acid (PFOA) being the dominant PFCA. Toxicity data was collected for all detected PFCAs and the species sensitivity distribution (SSD) method was used to derive the predicted no effect concentrations (PNECs) for all six PFCAs. The risk quotient (RQ) method showed that the risk posed to aquatic organisms in the river basin from all six PFCAs was relatively low (RQ < 1). However, joint probability curve (JPC) analysis revealed that the probability of perfluoropentanoic acid (PFPeA) causing harm to 5% of aquatic species reached 41.13%. Considering the frequency of occurrence and persistence of PFCAs in aquatic environments, these findings indicate they have the potential to induce serious toxic effects on aquatic organisms.
Collapse
Affiliation(s)
- Jinlong Hou
- School of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Nan Wang
- School of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Changqin Hu
- School of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Lei Yang
- National Research Center for Geoanalysis, Beijing, 100037, China; Key Laboratory of Ministry of Natural Resources for Eco-Geochemistry, Beijing 100037, China.
| | - Xun Yue
- Institute of Geological Surveying and Mapping of Anhui Province, Hefei, 230000, China
| | - Jin Li
- School of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Xiaocui Wang
- School of Environmental Sciences and Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
10
|
Wu L, Hu Z, Luo X, Ge C, Lv Y, Zhan S, Huang W, Shen X, Yu D, Liu B. Itaconic Acid Alleviates Perfluorooctanoic Acid-Induced Oxidative Stress and Intestinal Damage by Regulating the Keap1/Nrf2/Ho-1 Pathway and Reshaping the Gut Microbiota. Int J Mol Sci 2024; 25:9826. [PMID: 39337313 PMCID: PMC11432532 DOI: 10.3390/ijms25189826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Itaconic acid (IA) is recognized for its potential application in treating intestinal diseases owing to the anti-inflammatory and antioxidant properties. Perfluorooctanoic acid (PFOA) can accumulate in animals and result in oxidative and inflammatory damages to multi-tissue and organ, particularly in the intestinal tract. This study aimed to explore whether IA could mitigate intestinal damage induced by PFOA exposure in laying hens and elucidate its potential underlying mechanisms. The results showed that IA improved the antioxidant capacity of laying hens and alleviated the oxidative damage induced by PFOA, as evidenced by the elevated activities of T-SOD, GSH-Px, and CAT, and the decreased MDA content in both the jejunum and serum. Furthermore, IA improved the intestinal morphological and structural integrity, notably attenuating PFOA-induced villus shedding, length reduction, and microvillus thinning. IA also upregulated the mRNA expression of ZO-1, Occludin, Claudin-1, and Mucin-2 in the jejunum, thereby restoring intestinal barrier function. Compared with the PF group, IA supplementation downregulated the gene expression of Keap1 and upregulated the HO-1, NQO1, SOD1, and GPX1 expression in the jejunum. Meanwhile, the PF + IA group exhibited lower expressions of inflammation-related genes (NF-κB, IL-1β, IFN-γ, TNF-α, and IL-6) compared to the PF group. Moreover, IA reversed the PFOA-induced imbalance in gut microbiota by reducing the harmful bacteria such as Escherichia-Shigella, Clostridium innocuum, and Ruminococcus torques, while increasing the abundance of beneficial bacteria like Lactobacillus. Correlation analysis further revealed a significant association between gut microbes, inflammatory factors, and the Keap1/Nrf2/HO-1 pathway expression. In conclusion, dietary IA supplementation could alleviate the oxidative and inflammatory damage caused by PFOA exposure in the intestinal tract by reshaping the intestinal microbiota, modulating the Keap1/Nrf2/HO-1 pathway and reducing oxidative stress and inflammatory response, thereby promoting intestinal homeostasis.
Collapse
Affiliation(s)
- Lianchi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaoying Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Luo
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaoyue Ge
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujie Lv
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shenao Zhan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weichen Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Shen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongyou Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Shaoxing 312500, China
| | - Bing Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Shaoxing 312500, China
| |
Collapse
|
11
|
Llewellyn MJ, Griffin EK, Caspar RJ, Timshina AS, Bowden JA, Miller CJ, Baker BB, Baker TR. Identification and quantification of novel per- and polyfluoroalkyl substances (PFAS) contamination in a Great Lakes urban-dominated watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173325. [PMID: 38797403 DOI: 10.1016/j.scitotenv.2024.173325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/27/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large group of synthetic organic fluoro-compounds that are oil-, water-, and flame-resistant, making them useful in a wide range of commercial and consumer products, as well as resistant to environmental degradation. To assess the impact of urbanization and wastewater treatment processes, surface water and sediment samples were collected at 27 sites within the Great Lakes in the Lake Huron to Lake Erie corridor (HEC), an international waterway including the highly urbanized Detroit and Rouge Rivers. Samples were analyzed for 92 PFAS via UHPLC-MS/MS. Our previous data in the HEC found the highest amount of PFAS contamination at the Rouge River mouth. In addition to evaluating the input of the Rouge River into the HEC, we evaluated the transport of PFAS into the HEC from other major tributaries. PFAS were detected in both surface water and sediment at all sites in this study, with a total of 10 congeners quantified in all surface water samples and 16 congeners quantified in all sediment samples, indicating ubiquitous contamination. Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) were pervasive in the HEC as these two compounds were detected in all sites and matrices, often at concentrations above the US EPA's recommended lifetime interim updated health advisories. Surface water samples contained more perfluorohexanoic acid (PFHxA) than any other congener, with average aqueous PFHxA across all surface water samples exceeding the average concentration previously reported in the Great Lakes. Sediment samples were dominated by PFOS, but novel congeners, notably 3-Perfluoropentyl propanoic acid (FPePA), were also quantified in sediment. The Rouge River and other tributaries contribute significantly to the PFAS burden in the HEC including Lake Erie. Overall, our results indicate the need for expanding toxicological research and risk assessment focused on congeners such as PFHxA and PFAS mixtures, as well as regulation that is tighter at the onset of production and encompasses PFAS as a group at a national level.
Collapse
Affiliation(s)
- Mallory J Llewellyn
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, United States of America.
| | - Emily K Griffin
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, United States of America.
| | - Rachel J Caspar
- Department of Biology, College of Liberal Arts and Sciences, University of Florida, United States of America
| | - Alina S Timshina
- Department of Environmental Engineering Sciences, College of Engineering, University of Florida, United States of America.
| | - John A Bowden
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, United States of America.
| | - Carol J Miller
- Department of Civil and Environmental Engineering, College of Engineering, Wayne State University, United States of America.
| | - Bridget B Baker
- Department of Wildlife Ecology and Conservation, Institute of Food and Agricultural Sciences, University of Florida, United States of America.
| | - Tracie R Baker
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, United States of America; Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, United States of America.
| |
Collapse
|
12
|
Koval AM, Jenness GR, Shukla MK. Structural investigation of the complexation between vitamin B12 and per- and polyfluoroalkyl substances: Insights into degradation using density functional theory. CHEMOSPHERE 2024; 364:143213. [PMID: 39214410 DOI: 10.1016/j.chemosphere.2024.143213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Environmental remediation of per- and polyfluoroalkyl substances (PFAS) has become a significant research topic in recent years due to the fact that these materials are omnipresent, resistant to degradation and thus environmentally persistent. Unfortunately, they have also been shown to cause health concerns. PFAS are widely used in industrial applications and consumer products. Vitamin B12 (B12) has been identified as being catalytically active towards a variety of halogenated compounds such as PFAS. It has also been shown to be effective when using sulfide as a reducing agent for B12. This is promising as sulfide is readily available in the environment. However, there are many unknowns with respect to PFAS interactions with B12. These include the reaction mechanism and B12's specificity for PFAS with certain functionalization(s). In order to understand the specificity of B12 towards branched PFAS, we examined the atomistic interactions between B12 and eight different PFAS molecules using Density Functional Theory (B3LYP/cc-pVDZ). The PFAS test set included linear PFAS and their branched analogs, carboxylic acid and sulfonic acid headgroups, and aromatic and non-aromatic cyclic structures. Conformational analyses were carried out to determine the lowest energy configurations. This analysis showed that small chain PFAS such as perfluorobutanoic acid interact with the cobalt center of B12. Bulkier PFAS prefer to interact with the amine and carbonyl groups on the sidechains of the B12 ring system. Furthermore, computed complexation energies determined that, in general, branched PFAS (e.g. perfluoro-5-methylheptane sulfonic acid) interact more strongly than linear molecules (e.g. perfluorooctanesulfonic acid). Our results indicate that it may be possible to alter the interactions between B12 and PFAS by synthetically modifying the sidechains of the ring structure.
Collapse
Affiliation(s)
- Ashlyn M Koval
- Simetri, Inc., 7005 University Blvd, Winter Park, FL, 32792, United States
| | - Glen R Jenness
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, United States
| | - Manoj K Shukla
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, United States.
| |
Collapse
|
13
|
An Z, Li Y, Li J, Jiang Z, Duan W, Guo M, Zhu Y, Zeng X, Wang L, Liu Y, Li A, Guo H, Zhang X. Associations between co-exposure to per- and polyfluoroalkyl substances and organophosphate esters and erythrogram in Chinese adults. CHEMOSPHERE 2024; 362:142750. [PMID: 38960049 DOI: 10.1016/j.chemosphere.2024.142750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/31/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Erythrogram, despite its prevalent use in assessing red blood cell (RBC) disorders and can be utilized to evaluate various diseases, still lacks evidence supporting the effects of per- and polyfluoroalkyl substances (PFASs) and organophosphate esters (OPEs) on it. A cross-sectional study involving 467 adults from Shijiazhuang, China was conducted to assess the associations between 12 PFASs and 11 OPEs and the erythrogram (8 indicators related to RBC). Three models, including multiple linear regression (MLR), sparse partial least squares regression, and Bayesian kernel machine regression (BKMR) were employed to evaluate both the individual and joint effects of PFASs and OPEs on the erythrogram. Perfluorohexane sulfonic acid (PFHxS) showed the strongest association with HGB (3.68%, 95% CI: 2.29%, 5.10%) when doubling among PFASs in MLR models. BKMR indicated that PFASs were more strongly associated with the erythrogram than OPEs, as evidenced by higher group posterior inclusion probabilities (PIPs) for PFASs. Within hemoglobin and hematocrit, PFHxS emerged as the most significant component (conditional PIP = 1.0 for both). Collectively, our study emphasizes the joint effect of PFASs and OPEs on the erythrogram and identified PFASs, particularly PFHxS, as the pivotal contributors to the erythrogram. Nonetheless, further investigations are warranted to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zexuan Jiang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wenjing Duan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Mingmei Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yiming Zhu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiuli Zeng
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Linfeng Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, China
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, China.
| | - Xiaoguang Zhang
- Core Facilities and Centers of Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei Province, China.
| |
Collapse
|
14
|
Ma Y, Yang W, Liang P, Feng R, Qiu T, Zhang J, Sun X, Li Q, Yang G, Yao X. The VDAC1 oligomerization regulated by ATP5B leads to the NLRP3 inflammasome activation in the liver cells under PFOS exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116647. [PMID: 38944014 DOI: 10.1016/j.ecoenv.2024.116647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
As a persistent organic pollutant, perfluorooctane sulfonate (PFOS) has a serious detrimental impact on human health. It has been suggested that PFOS is associated with liver inflammation. However, the underlying mechanisms are still unclear. Here, PFOS was found to elevate the oligomerization tendency of voltage-dependent anion channel 1 (VDAC1) in the mice liver and human normal liver cells L-02. Inhibition of VDAC1 oligomerization alleviated PFOS-induced nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflammasome activation. Cytoplasmic membrane VDAC1 translocated to mitochondria was also observed in response to PFOS. Therefore, the oligomerization of VDAC1 occurred mainly in the mitochondria. VDAC1 was found to interact with the ATP synthase beta subunit (ATP5B) under PFOS treatment. Knockdown of ATP5B or immobilization of ATP5B to the cytoplasmic membrane alleviated the increased VDAC1 oligomerization and NLRP3 inflammasome activation. Therefore, our results suggested that PFOS induced NLRP3 inflammasome activation through VDAC1 oligomerization, a process dependent on ATP5B to transfer VDAC1 from the plasma membrane to the mitochondria. The findings offer novel perspectives on the activation of the NLRP3 inflammasome, the regulatory mode on VDAC1 oligomerization, and the mechanism of PFOS toxicity.
Collapse
Affiliation(s)
- Yu Ma
- Occupation and Environment Health Department, Dalian Medical University, 9 Lushun-South Road, Dalian, China
| | - Wei Yang
- Occupation and Environment Health Department, Dalian Medical University, 9 Lushun-South Road, Dalian, China
| | - Peiyao Liang
- Occupation and Environment Health Department, Dalian Medical University, 9 Lushun-South Road, Dalian, China
| | - Ruzhen Feng
- Occupation and Environment Health Department, Dalian Medical University, 9 Lushun-South Road, Dalian, China
| | - Tianming Qiu
- Occupation and Environment Health Department, Dalian Medical University, 9 Lushun-South Road, Dalian, China
| | - Jingyuan Zhang
- Occupation and Environment Health Department, Dalian Medical University, 9 Lushun-South Road, Dalian, China
| | - Xiance Sun
- Occupation and Environment Health Department, Dalian Medical University, 9 Lushun-South Road, Dalian, China
| | - Qiujuan Li
- Nutrition Department, Dalian Medical University, 9 Lushun-South Road, Dalian, China
| | - Guang Yang
- Nutrition Department, Dalian Medical University, 9 Lushun-South Road, Dalian, China
| | - Xiaofeng Yao
- Occupation and Environment Health Department, Dalian Medical University, 9 Lushun-South Road, Dalian, China.
| |
Collapse
|
15
|
Wang Q, Ruan Y, Shao Y, Jin L, Xie N, Yan M, Chen L, Schlenk D, Leung KMY, Lam PKS. Stereoselective Bioconcentration and Neurotoxicity of Perfluoroethylcyclohexane Sulfonate in Marine Medaka. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12933-12942. [PMID: 39003765 DOI: 10.1021/acs.est.4c03571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Perfluoroethylcyclohexane sulfonate (PFECHS) is an emerging per- and polyfluoroalkyl substance used to replace perfluorooctane sulfonate (PFOS), mainly in aircraft hydraulic fluids. However, previous research indicates the potential neurotoxicity of this replacement chemical. In this study, marine medaka (Oryzias melastigma) was exposed to environmentally relevant concentrations of PFECHS (concentrations: 0, 0.08, 0.26, and 0.91 μg/L) from the embryonic stage for 90 days. After exposure, the brain and eyes of the medaka were collected to investigate the bioconcentration potential of PFECHS stereoisomers and their effects on the nervous systems. The determined bioconcentration factors (BCFs) of PFECHS ranged from 324 ± 97 to 435 ± 89 L/kg and from 454 ± 60 to 576 ± 86 L/kg in the brain and eyes of medaka, respectively. The BCFs of trans-PFECHS were higher than those of cis-PFECHS. PFECHS exposure significantly altered γ-aminobutyric acid (GABA) levels in the medaka brain and disrupted the GABAergic system, as revealed by proteomics, implying that PFECHS can disturb neural signal transduction like PFOS. PFECHS exposure resulted in significant alterations in multiple proteins associated with eye function in medaka. Abnormal locomotion was observed in PFECHS-exposed medaka larvae, which was rescued by adding exogenous GABA, suggesting the involvement of disrupted GABA signaling pathways in PFECHS neurotoxicity.
Collapse
Affiliation(s)
- Qi Wang
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Yetong Shao
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Linjie Jin
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Naiyu Xie
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Meng Yan
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution (SKLMP), and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Department of Applied Science, School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR 999077, China
| |
Collapse
|
16
|
Qi Z, Cao Y, Li D, Wu C, Wu K, Song Y, Huang Z, Luan H, Meng X, Yang Z, Cai Z. Nontarget Analysis of Legacy and Emerging PFAS in a Lithium-Ion Power Battery Recycling Park and Their Possible Toxicity Measured Using High-Throughput Phenotype Screening. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39015019 DOI: 10.1021/acs.est.4c03552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Driven by the global popularity of electric vehicles and the shortage of critical raw materials for batteries, the spent lithium-ion power battery (LIPB) recycling industry has exhibited explosive growth in both quantity and scale. However, relatively little information is known about the environmental risks posed by LIPB recycling, in particular with regards to perfluoroalkyl and polyfluoroalkyl substances (PFAS). In this work, suspect screening and nontarget analysis were carried out to characterize PFAS in soil, dust, water and sediment from a LIPB recycling area. Twenty-five PFAS from nine classes were identified at confidence level 3 or above, including 13 legacy and 12 emerging PFAS, as well as two ultrashort-chain PFAS. Based on the target analysis of 16 PFAS, at least nine were detected in each environmental sample, indicating their widespread presence in a LIPB recycling area. Perfluorodecanoic acid, perfluorooctanesulfonic acid and trifluoromethanesulfonamide showed significant differences in the four phenotypic parameters (growth, movement, survival and fecundity) of Caenorhabditis elegans and were the most toxic substances in all target PFAS at an exposure concentration of 200 μM. Our project provides first-hand information on the existence and environmental risk of PFAS, facilitating the formulation of regulations and green development of the LIPB recycling industry.
Collapse
Affiliation(s)
- Zenghua Qi
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yutian Cao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Dan Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Chenguang Wu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Kaihan Wu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Zeji Huang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Hemi Luan
- Department of Biomedical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Zongwei Cai
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
17
|
Ren S, Wang J, Dong Z, Li J, Ma Y, Yang Y, Zhou T, Qiu T, Jiang L, Li Q, Sun X, Yao X. Perfluorooctane sulfonate induces ferroptosis-dependent non-alcoholic steatohepatitis via autophagy-MCU-caused mitochondrial calcium overload and MCU-ACSL4 interaction. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116553. [PMID: 38850699 DOI: 10.1016/j.ecoenv.2024.116553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The incidence of nonalcoholic steatohepatitis (NASH) is related with perfluorooctane sulfonate (PFOS), yet the mechanism remains ill-defined. Mounting evidence suggests that ferroptosis plays a crucial role in the initiation of NASH. In this study, we used mice and human hepatocytes L-02 to investigate the role of ferroptosis in PFOS-induced NASH and the effect and molecular mechanism of PFOS on liver ferroptosis. We found here that PFOS caused NASH in mice, and lipid accumulation and inflammatory response in the L-02 cells. PFOS induced hepatic ferroptosis in vivo and in vitro, as evidenced by the decrease in glutathione peroxidase 4 (GPX4), and the increases in cytosolic iron, acyl-CoA synthetase long-chain family member 4 (ACSL4) and lipid peroxidation. In the PFOS-treated cells, the increases in the inflammatory factors and lipid contents were reversed by ferroptosis inhibitor. PFOS-induced ferroptosis was relieved by autophagy inhibitor. The expression of mitochondrial calcium uniporter (MCU) was accelerated by PFOS, leading to subsequent mitochondrial calcium accumulation, and inhibiting autophagy reversed the increase in MCU. Inhibiting mitochondrial calcium reversed the variations in GPX4 and cytosolic iron, without influencing the change in ACSL4, induced by PFOS. MCU interacted with ACSL4 and the siRNA against MCU reversed the changes in ACSL4,GPX4 and cytosolic iron systemically. This study put forward the involvement of hepatic ferroptosis in PFOS-induced NASH and identified MCU as the mediator of the autophagy-dependent ferroptosis.
Collapse
Affiliation(s)
- Siyu Ren
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian 116044, PR China
| | - Jianyu Wang
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian 116044, PR China
| | - Zhanchen Dong
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian 116044, PR China
| | - Jixun Li
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian 116044, PR China
| | - Yu Ma
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian 116044, PR China
| | - Ying Yang
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian 116044, PR China
| | - Tian Zhou
- School of Public Health, Dalian Medical University, 9 West Lvshun South Road, Dalian 116044, PR China
| | - Tianming Qiu
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian 116044, PR China
| | - Liping Jiang
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian 116044, PR China
| | - Qiujuan Li
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian 116044, PR China
| | - Xiance Sun
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian 116044, PR China
| | - Xiaofeng Yao
- Department of Environmental and Occupational Health, Dalian Medical University, 9 West Lvshun South Road, Dalian 116044, PR China.
| |
Collapse
|
18
|
Gutsfeld S, Wehmas L, Omoyeni I, Schweiger N, Leuthold D, Michaelis P, Howey XM, Gaballah S, Herold N, Vogs C, Wood C, Bertotto L, Wu GM, Klüver N, Busch W, Scholz S, Schor J, Tal T. Investigation of Peroxisome Proliferator-Activated Receptor Genes as Requirements for Visual Startle Response Hyperactivity in Larval Zebrafish Exposed to Structurally Similar Per- and Polyfluoroalkyl Substances (PFAS). ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:77007. [PMID: 39046251 PMCID: PMC11268134 DOI: 10.1289/ehp13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl Substances (PFAS) are synthetic chemicals widely detected in humans and the environment. Exposure to perfluorooctanesulfonic acid (PFOS) or perfluorohexanesulfonic acid (PFHxS) was previously shown to cause dark-phase hyperactivity in larval zebrafish. OBJECTIVES The objective of this study was to elucidate the mechanism by which PFOS or PFHxS exposure caused hyperactivity in larval zebrafish. METHODS Swimming behavior was assessed in 5-d postfertilization (dpf) larvae following developmental (1-4 dpf) or acute (5 dpf) exposure to 0.43 - 7.86 μ M PFOS, 7.87 - 120 μ M PFHxS, or 0.4% dimethyl sulfoxide (DMSO). After developmental exposure and chemical washout at 4 dpf, behavior was also assessed at 5-8 dpf. RNA sequencing was used to identify differences in global gene expression to perform transcriptomic benchmark concentration-response (BMC T ) modeling, and predict upstream regulators in PFOS- or PFHxS-exposed larvae. CRISPR/Cas9-based gene editing was used to knockdown peroxisome proliferator-activated receptors (ppars) pparaa/ab, pparda/db, or pparg at day 0. Knockdown crispants were exposed to 7.86 μ M PFOS or 0.4% DMSO from 1-4 dpf and behavior was assessed at 5 dpf. Coexposure with the ppard antagonist GSK3787 and PFOS was also performed. RESULTS Transient dark-phase hyperactivity occurred following developmental or acute exposure to PFOS or PFHxS, relative to the DMSO control. In contrast, visual startle response (VSR) hyperactivity only occurred following developmental exposure and was irreversible up to 8 dpf. Similar global transcriptomic profiles, BMC T estimates, and enriched functions were observed in PFOS- and PFHxS-exposed larvae, and ppars were identified as putative upstream regulators. Knockdown of pparda/db, but not pparaa/ab or pparg, blunted PFOS-dependent VSR hyperactivity to control levels. This finding was confirmed via antagonism of ppard in PFOS-exposed larvae. DISCUSSION This work identifies a novel adverse outcome pathway for VSR hyperactivity in larval zebrafish. We demonstrate that developmental, but not acute, exposure to PFOS triggered persistent VSR hyperactivity that required ppard function. https://doi.org/10.1289/EHP13667.
Collapse
Affiliation(s)
- Sebastian Gutsfeld
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Leah Wehmas
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Ifeoluwa Omoyeni
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Nicole Schweiger
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - David Leuthold
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Paul Michaelis
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Xia Meng Howey
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Shaza Gaballah
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Nadia Herold
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Carolina Vogs
- Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carmen Wood
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Luísa Bertotto
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Gi-Mick Wu
- Research and Development Institute for the Agri-Environment, Quebec, Quebec, Canada
| | - Nils Klüver
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Wibke Busch
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Jana Schor
- Department of Computational Biology and Chemistry, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Tamara Tal
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
- Medical Faculty, University Leipzig, Leipzig, Germany
| |
Collapse
|
19
|
Tessmann JW, Deng P, Durham J, Li C, Banerjee M, Wang Q, Goettl RA, He D, Wang C, Lee EY, Evers BM, Hennig B, Zaytseva YY. Perfluorooctanesulfonic acid exposure leads to downregulation of 3-hydroxy-3-methylglutaryl-CoA synthase 2 expression and upregulation of markers associated with intestinal carcinogenesis in mouse intestinal tissues. CHEMOSPHERE 2024; 359:142332. [PMID: 38754493 PMCID: PMC11157449 DOI: 10.1016/j.chemosphere.2024.142332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/06/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Perfluorooctanesulfonic acid (PFOS) is a widely recognized environment pollutant known for its high bioaccumulation potential and a long elimination half-life. Several studies have shown that PFOS can alter multiple biological pathways and negatively affect human health. Considering the direct exposure to the gastrointestinal (GI) tract to environmental pollutants, PFOS can potentially disrupt intestinal homeostasis. However, there is limited knowledge about the effect of PFOS exposure on normal intestinal tissues, and its contribution to GI-associated diseases remains to be determined. In this study, we examined the effect of PFOS exposure on the gene expression profile of intestinal tissues of C57BL/6 mice using RNAseq analysis. We found that PFOS exposure in drinking water significantly downregulates mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a rate-limiting ketogenic enzyme, in intestinal tissues of mice. We found that diets containing the soluble fibers inulin and pectin, which are known to be protective against PFOS exposure, were ineffective in reversing the downregulation of HMGCS2 expression in vivo. Analysis of intestinal tissues also demonstrated that PFOS exposure leads to upregulation of proteins implicated in colorectal carcinogenesis, including β-catenin, c-MYC, mTOR and FASN. Consistent with the in vivo results, PFOS exposure leads to downregulation of HMGCS2 in mouse and human normal intestinal organoids in vitro. Furthermore, we show that shRNA-mediated knockdown of HMGCS2 in a human normal intestinal cell line resulted in increased cell proliferation and upregulation of key proliferation-associated proteins such as cyclin D, survivin, ERK1/2 and AKT, along with an increase in lipid accumulation. In summary, our results suggest that PFOS exposure may contribute to pathological changes in normal intestinal cells via downregulation of HMGCS2 expression and upregulation of pro-carcinogenic signaling pathways that may increase the risk of colorectal cancer development.
Collapse
Affiliation(s)
- Josiane Weber Tessmann
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA.
| | - Pan Deng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| | - Jerika Durham
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA.
| | - Chang Li
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| | - Moumita Banerjee
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| | - Qingding Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| | - Ryan A Goettl
- Markey Cancer Center Biostatistics and Bioinformatics Shared Resource Facility, University of Kentucky, Lexington, KY 40536, USA.
| | - Daheng He
- Markey Cancer Center Biostatistics and Bioinformatics Shared Resource Facility, University of Kentucky, Lexington, KY 40536, USA.
| | - Chi Wang
- Markey Cancer Center Biostatistics and Bioinformatics Shared Resource Facility, University of Kentucky, Lexington, KY 40536, USA.
| | - Eun Y Lee
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY 40536, USA.
| | - B Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| | - Bernhard Hennig
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40536, USA.
| | - Yekaterina Y Zaytseva
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
20
|
Zhu C, Lv W, Hong S, Han M, Song W, Liu C, Yao C, Jiang Q. Gradual effects of gradient concentrations of perfluorooctane sulfonate on the antioxidant ability and gut microbiota of red claw crayfish (Cherax quadricarinatus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172962. [PMID: 38705306 DOI: 10.1016/j.scitotenv.2024.172962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/07/2024]
Abstract
Perfluorooctane sulfonate (PFOS) is a typical persistent organic pollutant that is characterized by environmental persistence, bioaccumulation, and toxicity. In this study, we investigated the gut microbial response of the red claw crayfish Cherax quadricarinatus after 28 days of exposure to 0 ng/L, 1 ng/L, 10 μg/L, or 10 mg/L of PFOS as a stressor. We measured oxidative stress-related enzyme activities and expression of molecules related to detoxification mechanisms to evaluate the toxic effects of PFOS. We found that PFOS disturbed microbial homeostasis in the gut of C. quadricarinatus, resulting in increased abundance of the pathogen Shewanella and decreased abundance of the beneficial bacterium Lactobacillus. The latter especially disturbed amino acid transport and carbohydrate transport. We also found that the activities of glutathione S-transferase and glutathione peroxidase were positively correlated with the expression levels of cytochrome P450 genes (GST1-1, GSTP, GSTK1, HPGDS, UGT5), which are products of PFOS-induced oxidative stress and play an antioxidant role in the body. The results of this study provided valuable ecotoxicological data to better understand the biological fate and effects of PFOS in C. quadricarinatus.
Collapse
Affiliation(s)
- Chenxi Zhu
- Geography, School of Humanities, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Weiwei Lv
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Shuang Hong
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; College of Fisheries and Life Science, Shanghai Ocean university, Shanghai 201306, China
| | - Mingming Han
- Geography, School of Humanities, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Weiguo Song
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Chengbin Liu
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Chunxia Yao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Qichen Jiang
- Geography, School of Humanities, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China.
| |
Collapse
|
21
|
Wang Y, Yin D, Sun X, Zhang W, Ma H, Huang J, Yang C, Wang J, Geng Q. Perfluoroalkyl sulfonate induces cardiomyocyte apoptosis via endoplasmic reticulum stress activation and autophagy flux inhibition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172582. [PMID: 38649052 DOI: 10.1016/j.scitotenv.2024.172582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Perfluoroalkyl sulfonate (PFOS) is a commonly used chemical compound that often found in materials such as waterproofing agents, food packaging, and fire retardants. Known for its stability and persistence in the environment, PFOS can enter the human body through various pathways, including water and the food chain, raising concerns about its potential harm to human health. Previous studies have suggested a cardiac toxicity of PFOS, but the specific cellular mechanisms remained unclear. Here, by using AC16 cardiomyocyte as a model to investigate the molecular mechanisms potential the cardiac toxicity of PFOS. Our findings revealed that PFOS exposure reduced cell viability and induces apoptosis in human cardiomyocyte. Proteomic analysis and molecular biological techniques showed that the Endoplasmic Reticulum (ER) stress-related pathways were activated, while the cellular autophagy flux was inhibited in PFOS-exposed cells. Subsequently, we employed strategies such as autophagy activation and ER stress inhibition to alleviate the PFOS-induced apoptosis in AC16 cells. These results collectively suggest that PFOS-induced ER stress activation and autophagy flux inhibition contribute to cardiomyocyte apoptosis, providing new insights into the mechanisms of PFOS-induced cardiomyocyte toxicity.
Collapse
Affiliation(s)
- Yuanhao Wang
- Department of Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Da Yin
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Xin Sun
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People's Hospital, The First Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Wei Zhang
- Department of Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Huan Ma
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, No.106 Zhongshan Er Road, Guangzhou, Guangdong, China
| | - Jingnan Huang
- Department of Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China
| | - Chuanbin Yang
- Department of Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China.
| | - Jigang Wang
- Department of Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China; State Key Laboratory for Quality Esurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Qingshan Geng
- Department of Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, Guangdong, China.
| |
Collapse
|
22
|
Qin W, Escher BI, Huchthausen J, Fu Q, Henneberger L. Species Difference? Bovine, Trout, and Human Plasma Protein Binding of Per- and Polyfluoroalkyl Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:9954-9966. [PMID: 38804966 PMCID: PMC11171458 DOI: 10.1021/acs.est.3c10824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/03/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) strongly bind to proteins and lipids in blood, which govern their accumulation and distribution in organisms. Understanding the plasma binding mechanism and species differences will facilitate the quantitative in vitro-to-in vivo extrapolation and improve risk assessment of PFAS. We studied the binding mechanism of 16 PFAS to bovine serum albumin (BSA), trout, and human plasma using solid-phase microextraction. Binding of anionic PFAS to BSA and human plasma was found to be highly concentration-dependent, while trout plasma binding was linear for the majority of the tested PFAS. At a molar ratio of PFAS to protein ν < 0.1 molPFAS/molprotein, the specific protein binding of anionic PFAS dominated their human plasma binding. This would be the scenario for physiological conditions (ν < 0.01), whereas in in vitro assays, PFAS are often dosed in excess (ν > 1) and nonspecific binding becomes dominant. BSA was shown to serve as a good surrogate for human plasma. As trout plasma contains more lipids, the nonspecific binding to lipids affected the affinities of PFAS for trout plasma. Mass balance models that are parameterized with the protein-water and lipid-water partitioning constants (chemical characteristics), as well as the protein and lipid contents of the plasma (species characteristics), were successfully used to predict the binding to human and trout plasma.
Collapse
Affiliation(s)
- Weiping Qin
- Department
of Cell Toxicology, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, Schnarrenbergstr. 94-96, DE-72076 Tübingen, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, Schnarrenbergstr. 94-96, DE-72076 Tübingen, Germany
| | - Julia Huchthausen
- Department
of Cell Toxicology, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, Schnarrenbergstr. 94-96, DE-72076 Tübingen, Germany
| | - Qiuguo Fu
- Department
of Environmental Analytical Chemistry, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
| | - Luise Henneberger
- Department
of Cell Toxicology, UFZ—Helmholtz
Centre for Environmental Research, 04318 Leipzig, Germany
| |
Collapse
|
23
|
Gao TN, Huang S, Nooijen R, Zhu Y, Kociok-Köhn G, Stuerzer T, Li G, Bitter JH, Salentijn GIJ, Chen B, Miloserdov FM, Zuilhof H. Rim-Based Binding of Perfluorinated Acids to Pillararenes Purifies Water. Angew Chem Int Ed Engl 2024; 63:e202403474. [PMID: 38506404 DOI: 10.1002/anie.202403474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/21/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) pose a rapidly increasing global problem as their widespread use and high stability lead worldwide to water contamination, with significant detrimental health effects.[1] Supramolecular chemistry has been invoked to develop materials geared towards the specific capture of PFAS from water,[2] to reduce the concentration below advisory safety limits (e.g., 70 ng/L for the sum of perfluorooctane sulfonic acid, PFOS and perfluorooctanoic acid, PFOA). Scale-up and use in natural waters with high PFAS concentrations has hitherto posed a problem. Here we report a new type of host-guest interaction between deca-ammonium-functionalized pillar[5]arenes (DAF-P5s) and perfluoroalkyl acids. DAF-P5 complexes show an unprecedented 1 : 10 stoichiometry, as confirmed by isothermal calorimetry and X-ray crystallographic studies, and high binding constants (up to 106 M-1) to various polyfluoroalkyl acids. In addition, non-fluorinated acids do not hamper this process significantly. Immobilization of DAF-P5s allows a simple single-time filtration of PFAS-contaminated water to reduce the PFOS/PFOA concentration 106 times to 15-50 ng/L level. The effective and fast (<5 min) orthogonal binding to organic molecules without involvement of fluorinated supramolecular hosts, high breakthrough capacity (90 mg/g), and robust performance (>10 regeneration cycles without decrease in performance) set a new benchmark in PFAS-absorbing materials.
Collapse
Affiliation(s)
- Tu-Nan Gao
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
- Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, 6708WG, Wageningen, The Netherlands
| | - Si Huang
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, 410081, Changsha, China
| | - Rick Nooijen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Yumei Zhu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Gabriele Kociok-Köhn
- Materials and Chemical Characterisation Facility (MC2), University of Bath Claverton Down, BA2 7AY, Bath, United Kingdom
| | - Tobias Stuerzer
- Bruker AXS GmbH, Östliche Rheinbrückenstraße 49, 76187, Karlsruhe, Germany
| | - Guanna Li
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
- Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, 6708WG, Wageningen, The Netherlands
| | - Johannes H Bitter
- Biobased Chemistry and Technology, Wageningen University, Bornse Weilanden 9, 6708WG, Wageningen, The Netherlands
| | - Gert I J Salentijn
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, 6700AE, Wageningen, The Netherlands
| | - Bo Chen
- Key Laboratory of Phytochemical R&D of Hunan Province and Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research of Ministry of Education, Hunan Normal University, 410081, Changsha, China
| | - Fedor M Miloserdov
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708WE, Wageningen, The Netherlands
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- China-Australia Institute for Advanced Materials and Manufacturing, Jiaxing University, 314001, Jiaxing, China
| |
Collapse
|
24
|
Huang J, Zhang J, Sun J, Gong M, Yuan Z. Exposure to polystyrene microplastics and perfluorooctane sulfonate disrupt the homeostasis of intact planarians and the growth of regenerating planarians. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171653. [PMID: 38485023 DOI: 10.1016/j.scitotenv.2024.171653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Microplastics (MPs) and perfluorinated compounds (PFAS) are widespread in the global ecosystem. MPs have the ability to adsorb organic contaminants such as perfluorooctane sulfonate (PFOS), leading to combined effects. The current work aims to explore the individual and combined toxicological effects of polystyrene (PS) and PFOS on the growth and nerves of the freshwater planarian (Dugesia japonica). The results showed that PS particles could adsorb PFOS. PS and PFOS impeded the regeneration of decapitated planarians eyespots, whereas the combined treatment increased the locomotor speed of intact planarians. PS and PFOS caused significant DNA damage, while co-treatment with different PS concentrations aggravated and attenuated DNA damage, respectively. Further studies at the molecular level have shown that PS and PFOS affect the proliferation and differentiation of neoblasts in both intact and regenerating planarians, alter the expression levels of neuronal genes, and impede the development of the nervous system. PS and PFOS not only disrupted the homeostasis of intact planarians, but also inhibited the regeneration of decapitated planarians. This study is the first to assess the multiple toxicity of PS and PFOS to planarians after combined exposure. It provides a basis for the environmental and human health risks of MPs and PFAS.
Collapse
Affiliation(s)
- Jinying Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Jianyong Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Jingyi Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Mengxin Gong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China
| | - Zuoqing Yuan
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, Shandong, China.
| |
Collapse
|
25
|
Lu M, Liu Y, Zheng X, Liu W, Liu Y, Bao J, Feng A, Bao Y, Diao J, Liu H. Amino Group-Driven Adsorption of Sodium p-Perfluorous Nonenoxybenzene Sulfonate in Water by the Modified Graphene Oxide. TOXICS 2024; 12:343. [PMID: 38787122 PMCID: PMC11125578 DOI: 10.3390/toxics12050343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Sodium p-perfluorous nonenoxybenzene sulfonate (OBS) is one of the key alternatives to perfluoroalkyl substances (PFASs). Its widespread tendency has increased extensive contamination in the aquatic environment. However, the present treatment technology for OBS exhibited insignificant adsorption capacity and long adsorption time. In this study, three proportions (1:5, 3:5, and 10:1) of chitosan-modified amino-driven graphene oxide (CS-GO) were innovated to strengthen the OBS adsorption capacity, compared with graphene oxide (GO) and graphene (GH). Through the characterization of SEM, BET, and FTIR, it was discovered that CS was synthetized on GO surfaces successfully with a low specific surface area. Subsequently, batch single influence factor studies on OBS removal from simulated wastewater were investigated. The optimum removal efficiency of OBS could be achieved up to 95.4% within 2 h when the adsorbent was selected as CS-GO (10:1), the dosage was 2 mg, and the pH was 3. The addition of inorganic ions could promote the adsorption efficiency of OBS. In addition, CS-GO presented the maximum adsorption energy due to additional functional groups of -NH3, and electrostatic interaction was the foremost motive for improving the adsorption efficiency of OBS. Moreover, OBS exhibited the fastest diffusion coefficient in the CS-GO-OBS solution, which is consistent with the fitting results of adsorption kinetics.
Collapse
Affiliation(s)
- Mengyuan Lu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (M.L.); (A.F.); (Y.B.)
| | - Yang Liu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (M.L.); (A.F.); (Y.B.)
| | - Xinning Zheng
- Shenyang Zhenxing Sewage Treatment Co., Ltd., Shenyang 110143, China;
| | - Wenjuan Liu
- Dalian Xigang District Center for Disease Control and Prevention, Dalian 116021, China;
| | - Yang Liu
- Shenyang Hoper Group Co., Ltd., Shenyang 110112, China;
| | - Jia Bao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (M.L.); (A.F.); (Y.B.)
| | - Ao Feng
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (M.L.); (A.F.); (Y.B.)
| | - Yueyao Bao
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China; (M.L.); (A.F.); (Y.B.)
| | - Jiangyong Diao
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (J.D.); (H.L.)
| | - Hongyang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; (J.D.); (H.L.)
| |
Collapse
|
26
|
Li S, Wu L, Zeng H, Zhang J, Qin S, Liang LX, Andersson J, Meng WJ, Chen XY, Wu QZ, Lin LZ, Chou WC, Dong GH, Zeng XW. Hepatic injury and ileitis associated with gut microbiota dysbiosis in mice upon F-53B exposure. ENVIRONMENTAL RESEARCH 2024; 248:118305. [PMID: 38307183 DOI: 10.1016/j.envres.2024.118305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/04/2024]
Abstract
Chlorinated polyfluorinated ether sulfonate (F-53B), a substitute of perfluorooctane sulfonic acid (PFOS), has attracted significant attention for its link to hepatotoxicity and enterotoxicity. Nevertheless, the underlying mechanisms of F-53B-induced enterohepatic toxicity remain incompletely understood. This study aimed to explore the role of F-53B exposure on enterohepatic injury based on the gut microbiota, pathological and molecular analysis in mice. Here, we exposed C57BL/6 mice to F-53B (0, 4, 40, and 400 μg/L) for 28 days. Our findings revealed a significant accumulation of F-53B in the liver, followed by small intestines, and feces. In addition, F-53B induced pathological collagen fiber deposition and lipoid degeneration, up-regulated the expression of fatty acid β-oxidation-related genes (PPARα and PPARγ, etc), while simultaneously down-regulating pro-inflammatory genes (Nlrp3, IL-1β, and Mcp1) in the liver. Meanwhile, F-53B induced ileal mucosal barrier damage, and an up-regulation of pro-inflammatory genes and mucosal barrier-related genes (Muc1, Muc2, Claudin1, Occludin, Mct1, and ZO-1) in the ileum. Importantly, F-53B distinctly altered gut microbiota compositions by increasing the abundance of Akkermansia and decreasing the abundance of Prevotellaceae_NK3B31_group in the feces. F-53B-altered microbiota compositions were significantly associated with genes related to fatty acid β-oxidation, inflammation, and mucosal barrier. In summary, our results demonstrate that F-53B is capable of inducing hepatic injury, ileitis, and gut microbiota dysbiosis in mice, and the gut microbiota dysbiosis may play an important role in the F-53B-induced enterohepatic toxicity.
Collapse
Affiliation(s)
- Shenpan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - LuYin Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - HuiXian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Jing Zhang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - ShuangJian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Li-Xia Liang
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - John Andersson
- Department of Psychology Umeå University, Umeå, SE-90187, Sweden.
| | - Wen-Jie Meng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xing-Yu Chen
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Qi-Zhen Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Li-Zi Lin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Wei-Chun Chou
- Center for Environmental and Human Toxicology, Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, United States.
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
27
|
Lamichhane HB, Arrigan DWM. Modulating the ion-transfer electrochemistry of perfluorooctanoate with serum albumin and β-cyclodextrin. Analyst 2024; 149:2647-2654. [PMID: 38546701 DOI: 10.1039/d3an02164e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are durable synthetic pollutants that persist in the environment and resist biodegradation. Ion-transfer electrochemistry at aqueous-organic interfaces is a simple strategy for the detection of ionised PFAS. Herein, we investigate the modulation of the ion transfer voltammetry of perfluorooctanoate (PFOA) at liquid-liquid micro-interface arrays by aqueous phase bovine serum albumin (BSA) or β-cyclodextrin (β-CD) and examine the determination of association constants for these binding interactions. By tracking the ion transfer current due to ionised, uncomplexed PFOA as a function of BSA or β-CD concentration, titration curves are produced. Fitting of a binding isotherm to these data provides the association constants. The association constant of PFOA with the BSA determined in this way was ca. 105 M-1 assuming a 1 : 1 binding. Likewise, the association constant for PFOA with β-CD was ca. 104 M-1 for a 1 : 1 β-CD-PFOA complex. Finally, the simultaneous effect of both BSA and β-CD on the ion transfer voltammetry of PFOA was studied, showing clearly that PFOA bound to BSA is released (de-complexed) upon addition of β-CD. The results presented here show ion transfer voltammetry as a simple strategy for the study of molecular and biomolecular binding of ionised PFAS and is potentially useful in understanding the affinity of different PFAS with aqueous phase binding agents such as proteins and carbohydrates.
Collapse
Affiliation(s)
- Hum Bahadur Lamichhane
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia.
| | - Damien W M Arrigan
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia.
| |
Collapse
|
28
|
Yen TH, Lee SH, Tang CH, Liang HJ, Lin CY. Lipid responses to perfluorooctane sulfonate exposure for multiple rat organs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116368. [PMID: 38669874 DOI: 10.1016/j.ecoenv.2024.116368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/16/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent chemical that has long been a threat to human health. However, the molecular effects of PFOS on various organs are not well studied. In this study, male Sprague-Dawley rats were treated with various doses of PFOS through gavage for 21 days. Subsequently, the liver, lung, heart, kidney, pancreas, testis, and serum of the rats were harvested for lipid analysis. We applied a focusing lipidomic analytical strategy to identify key lipid responses of phosphorylcholine-containing lipids, including phosphatidylcholines and sphingomyelins. Partial least squares discriminant analysis revealed that the organs most influenced by PFOS exposure were the liver, kidney, and testis. Changes in the lipid profiles of the rats indicated that after exposure, levels of diacyl-phosphatidylcholines and 22:6-containing phosphatidylcholines in the liver, kidney, and testis of the rats decreased, whereas the level of 20:3-containing phosphatidylcholines increased. Furthermore, levels of polyunsaturated fatty acids-containing plasmenylcholines decreased. Changes in sphingomyelin levels indicated organ-dependent responses. Decreased levels of sphingomyelins in the liver, nonmonotonic dose responses in the kidney, and irregular responses in the testis after PFOS exposure are observed. These lipid responses may be associated with alterations pertaining to phosphatidylcholine synthesis, fatty acid metabolism, membrane properties, and oxidative stress in the liver, kidney, and testis. Lipid responses in the liver could have contributed to the observed increase in liver to body weight ratios. The findings suggest potential toxicity and possible mechanisms associated with PFOS in multiple organs.
Collapse
Affiliation(s)
- Tzu-Hsin Yen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Sheng-Han Lee
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chuan-Ho Tang
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Hao-Jan Liang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ching-Yu Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
29
|
Liu Y, Peng L, Li Y, Lu X, Wang F, Chen D, Lin N. Effect of liver cancer on the accumulation and hepatobiliary transport of per- and polyfluoroalkyl substances. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133743. [PMID: 38377901 DOI: 10.1016/j.jhazmat.2024.133743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
In this study, we examined the distribution of per- and polyfluoroalkyl substances (PFASs) in liver and bile tissues from the patients with liver cancer (n = 202) and healthy controls (n = 30), and calculated the hepatobiliary transport efficiency (TB-L) of PFASs. Among 21 PFASs, 13 PFASs were frequently detected in the liver (median: 8.80-16.3 ng/g) and bile (median: 11.03-14.26 ng/mL) samples. PFAS concentrations in liver were positively correlated with age, with higher levels of PFASs in the older. Variance analysis showed that gender and BMI (Body Mass Index) have an important impact on the distribution of PFASs. A U-shaped trend in TB-L of PFASs with the increasing of carbon chain length was found for the first time, and the TB-L of most PFASs in the control was higher than that of those in cases (p < 0.05), suggesting that hepatic injury would affect their transport. PFASs were positively associated with liver injury biomarkers, including γ-glutamyl transferase (GGT), alanine aminotransferase (ALT), and total bilirubin (TB) levels (p < 0.05). This is the first study on examining the hepatobiliary transport characteristics of PFASs, which may help understand the connection between PFAS accumulation and liver cancer risk.
Collapse
Affiliation(s)
- Ying Liu
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Lin Peng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, the Hong Kong Special Administrative Region of China
| | - Yanjie Li
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xingwen Lu
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Fei Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Da Chen
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Nan Lin
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
30
|
Mao X, Liu Y, Wei Y, Li X, Liu Y, Su G, Wang X, Jia J, Yan B. Threats of per- and poly-fluoroalkyl pollutants to susceptible populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171188. [PMID: 38395163 DOI: 10.1016/j.scitotenv.2024.171188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Environmental exposure to per- and poly-fluoroalkyl substances (PFAS) has raised significant global health concerns due to potential hazards in healthy adults. However, the impact of PFAS on susceptible populations, including pregnant individuals, newborns, the older people, and those with underlying health conditions, has been overlooked. These susceptible groups often have physiological changes that make them less resilient to the same exposures. Consequently, there is an urgent need for a comprehensive understanding of the health risks posed by PFAS exposure to these populations. In this review, we delve into the potential health risks of PFAS exposure in these susceptible populations. Equally important, we also examine and discuss the molecular mechanisms that underlie this susceptibility. These mechanisms include the induction of oxidative stress, disruption of the immune system, impairment of cellular metabolism, and alterations in gut microbiota, all of which contribute to the enhanced toxicity of PFAS in susceptible populations. Finally, we address the primary research challenges and unresolved issues that require further investigation. This discussion aims to foster research for a better understanding of how PFAS affect susceptible populations and to pave the way for strategies to minimize their adverse effects.
Collapse
Affiliation(s)
- Xuan Mao
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yujiao Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yongyi Wei
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Xiaodi Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Xiaohong Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Jianbo Jia
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
31
|
Ko MY, Chon SH, Park H, Min E, Kim Y, Cha SW, Seo JW, Lee BS, Ka M, Hyun SA. Perfluorooctanoic acid induces cardiac dysfunction in human induced pluripotent stem cell-derived cardiomyocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116170. [PMID: 38452704 DOI: 10.1016/j.ecoenv.2024.116170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Perfluorooctanoic acid (PFOA), commonly found in drinking water, leads to widespread exposure through skin contact, inhalation, and ingestion, resulting in detectable levels of PFOA in the bloodstream. In this study, we found that exposure to PFOA disrupts cardiac function in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). We observed reductions in field and action potentials in hiPSC-CMs exposed to PFOA. Furthermore, PFOA demonstrated a dose-dependent inhibitory effect on various ion channels, including the calcium, sodium, and potassium channels. Additionally, we noted dose-dependent inhibition of the expression of these ion channels in hiPSC-CMs following exposure to PFOA. These findings suggest that PFOA exposure can impair cardiac ion channel function and decrease the transcription of genes associated with these channels, potentially contributing to cardiac dysfunction such as arrhythmias. Our study sheds light on the electrophysiological and epigenetic consequences of PFOA-induced cardiac dysfunction, underscoring the importance of further research on the cardiovascular effects of perfluorinated compounds (PFCs).
Collapse
Affiliation(s)
- Moon Yi Ko
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Sun-Hwa Chon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea; Graduate School of Pre-Clinical Laboratory Science, Konyang University, Daejeon 35365, Republic of Korea
| | - Heejin Park
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Euijun Min
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Younhee Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Sin-Woo Cha
- Department of Nonclinical Studies, Korea Institute of Toxicology, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Joung-Wook Seo
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| | - Minhan Ka
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| | - Sung-Ae Hyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Republic of Korea.
| |
Collapse
|
32
|
Antonopoulou M, Spyrou A, Tzamaria A, Efthimiou I, Triantafyllidis V. Current state of knowledge of environmental occurrence, toxic effects, and advanced treatment of PFOS and PFOA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169332. [PMID: 38123090 DOI: 10.1016/j.scitotenv.2023.169332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are anthropogenic synthetic compounds, with high chemical and thermal stability and a persistent, stable and bioaccumulative nature that renders them a potential hazard for the environment, its organisms, and humans alike. Perfluorooctane sulfonic acid (PFOS) and Perfluorooctanoic acid (PFOA) are the most well-known substances of this category and even though they are phased out from production they are still highly detectable in several environmental matrices. As a result, they have been spread globally in water sources, soil and biota exerting toxic and detrimental effects. Therefore, up and coming technologies, namely advanced oxidation processes (AOPs) and advanced reduction processes (ARPs) are being tested for their implementation in the degradation of these pollutants. Thus, the present review compiles the current knowledge on the occurrence of PFOS and PFOA in the environment, the various toxic effects they have induced in different organisms as well as the ability of AOPs and ARPs to diminish and/or eliminate them from the environment.
Collapse
Affiliation(s)
- Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, 30131 Agrinio, Greece.
| | - Alexandra Spyrou
- Department of Sustainable Agriculture, University of Patras, 30131 Agrinio, Greece
| | - Anna Tzamaria
- Department of Sustainable Agriculture, University of Patras, 30131 Agrinio, Greece
| | - Ioanna Efthimiou
- Department of Biology, Section of Genetics Cell Biology and Development, University of Patras, 26500 Patras, Greece
| | | |
Collapse
|
33
|
Nannaware M, Mayilswamy N, Kandasubramanian B. PFAS: exploration of neurotoxicity and environmental impact. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:12815-12831. [PMID: 38277101 DOI: 10.1007/s11356-024-32082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widespread contaminants stemming from various industrial and consumer products, posing a grave threat to both human health and ecosystems. PFAS contamination arises from multiple sources, including industrial effluents, packaging, and product manufacturing, accumulating in plants and impacting the food chain. Elevated PFAS levels in water bodies pose significant risks to human consumption. This review focuses on PFAS-induced neurological effects, highlighting disrupted dopamine signalling and structural neuron changes in humans. Animal studies reveal apoptosis and hippocampus dysfunction, resulting in memory loss and spatial learning issues. The review introduces the BKMR model, a machine learning technique, to decipher intricate PFAS-neurotoxicity relationships. Epidemiological data underscores the vulnerability of young brains to PFAS exposure, necessitating further research. Stricter regulations, industry monitoring, and responsible waste management are crucial steps to reduce PFAS exposure.
Collapse
Affiliation(s)
- Mrunal Nannaware
- Department of Chemical Engineering, Institute of Chemical Technology Mumbai, Marathwada Campus Jalna, Jalna, 431203, India
| | - Neelaambhigai Mayilswamy
- Department of Metallurgical and Material Engineering, Defence Institute of Advanced Technology (DU), Girinagar, Pune, 411025, Maharashtra, India
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Material Engineering, Defence Institute of Advanced Technology (DU), Girinagar, Pune, 411025, Maharashtra, India.
| |
Collapse
|
34
|
Yang YD, Lu N, Tian R. The interaction of perfluorooctane sulfonate with hemoproteins and its relevance to molecular toxicology. Int J Biol Macromol 2024; 254:128069. [PMID: 37967600 DOI: 10.1016/j.ijbiomac.2023.128069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Perfluorooctane sulfonate (PFOS), a representative of perfluorinated compounds in industrial and commercial products, has posed a great threat to animals and humans via environmental exposure and dietary consumption. Herein, we investigated the effects of PFOS binding on the redox state and stability of two hemoproteins (hemoglobin (Hb) and myoglobin (Mb)). Fluorescence spectroscopy, circular dichroism and UV-vis absorption spectroscopy demonstrated that PFOS could induce the conformational changes of proteins along with the exposure of heme cavity and generation of hemichrome, which resulted in the increased release of free hemin. After that, free hemin liberated from hemoproteins led to reactive oxygen species formation, lipid peroxidation, cell membrane damage and loss of cell viability in vascular endothelial cells, while neither Hb nor Mb did show cytotoxicity. Chemical inhibitors of ferroptosis effectively mitigated hemin-caused toxicity, identifying the hemin-dependent ferroptotic cell death mechanisms. These data demonstrated that PFOS posed a potential threat of toxicity through a mechanism which involved its binding to hemoproteins, decreased oxygen transporting capacity, and increased hemin release. Altogether, our findings elucidate the binding mechanisms of PFOS with two hemoproteins, as well as possible risks on vascular endothelial cells, which would have important implications for the human and environmental toxicity of PFOS.
Collapse
Affiliation(s)
- Ya-Di Yang
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Naihao Lu
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Rong Tian
- Jiangxi Key Laboratory of Green Chemistry, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China.
| |
Collapse
|
35
|
Ismail T, Lee HK, Lee H, Kim Y, Kim E, Lee JY, Kim KB, Ryu HY, Cho DH, Kwon TK, Park TJ, Kwon T, Lee HS. Early life exposure to perfluorooctanesulfonate (PFOS) impacts vital biological processes in Xenopus laevis: Integrated morphometric and transcriptomic analyses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115820. [PMID: 38103469 DOI: 10.1016/j.ecoenv.2023.115820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Perfluorooctanesulfonate (PFOS) is a ubiquitous environmental pollutant associated with increasing health concerns and environmental hazards. Toxicological analyses of PFOS exposure are hampered by large interspecies variations and limited studies on the mechanistic details of PFOS-induced toxicity. We investigated the effects of PFOS exposure on Xenopus laevis embryos based on the reported developmental effects in zebrafish. X. laevis was selected to further our understanding of interspecies variation in response to PFOS, and we built upon previous studies by including transcriptomics and an assessment of ciliogenic effects. Midblastula-stage X. laevis embryos were exposed to PFOS using the frog embryo teratogenesis assay Xenopus (FETAX). Results showed teratogenic effects of PFOS in a time- and dose-dependent manner. The morphological abnormalities of skeleton deformities, a small head, and a miscoiled gut were associated with changes in gene expression evidenced by whole-mount in situ hybridization and transcriptomics. The transcriptomic profile of PFOS-exposed embryos indicated the perturbation in the expression of genes associated with cell death, and downregulation in adenosine triphosphate (ATP) biosynthesis. Moreover, we observed the effects of PFOS exposure on cilia development as a reduction in the number of multiciliated cells and changes in the directionality and velocity of the cilia-driven flow. Collectively, these data broaden the molecular understanding of PFOS-induced developmental effects, whereby ciliary dysfunction and disrupted ATP synthesis are implicated as the probable modes of action of embryotoxicity. Furthermore, our findings present a new challenge to understand the links between PFOS-induced developmental toxicity and vital biological processes.
Collapse
Affiliation(s)
- Tayaba Ismail
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyun-Kyung Lee
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hongchan Lee
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Youni Kim
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Eunjeong Kim
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jun-Yeong Lee
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kee-Beom Kim
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hong-Yeoul Ryu
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong-Hyung Cho
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Tae Joo Park
- Department of Biological Sciences, College of Information-Bio Convergence, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Taejoon Kwon
- Department of Biomedical Engineering, College of Information-Bio Convergence, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Hyun-Shik Lee
- KNU LAMP Research Center, KNU, Institute of Basic Sciences, BK21 FOUR KNU Creative BioResearch Group, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
36
|
Qin H, Lang Y, Wang Y, Cui W, Niu Y, Luan H, Li M, Zhang H, Li S, Wang C, Liu W. Adipogenic and osteogenic effects of OBS and synergistic action with PFOS via PPARγ-RXRα heterodimers. ENVIRONMENT INTERNATIONAL 2024; 183:108354. [PMID: 38043320 DOI: 10.1016/j.envint.2023.108354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
Sodium p-perfluorous nonenoxybenzenesulfonate (OBS) is a novel alternative to perfluorooctane sulfonate (PFOS), with environmental health risks largely unknown. The present study aims to unravel the adipogenesis effects and underlying molecular initiating events of OBS, which are crucial for understanding and predicting its adverse outcome. In undifferentiated human mesenchymal stem cells (hMSCs), exposure to 1-100 nM of OBS for 7 days stimulated reactive oxygen species production. In the subsequent multipotent differentiation, hMSCs favored adipogenesis and repressed osteogenesis. The point of departure (PoD) for cellular responses of OBS was 38.85 nM, higher than PFOS (0.39 nM). Notably, OBS/PFOS co-exposure inhibited osteogenesis and synergistically promoted adipogenesis. Consistently, the expression of adipogenic marker genes was up-regulated, while that of osteogenic marker genes was down-regulated. The decreased adiponectin and elevated tumor necrosis factor α (TNFα) secretion were observed in differentiated cells exposed to the mixture of OBS and PFOS. The co-treatment of a peroxisome proliferator-activated receptor γ (PPARγ) antagonist alleviated the adipogenic effects of PFOS and its combination with OBS. Moreover, OBS/PFOS co-exposure induced peroxisome PPARγ activation in reporter gene assays, and increased formation of PPARγ - retinoid X receptor α (RXRα) heterodimers measured by co-immunoprecipitation assays. Molecular docking showed interaction energy of OBS (-20.7 kcal/mol) with intact PPARγ-RXRα complex was lower than that of PFOS (-25.9 kcal/mol). Overall, single OBS exhibited lower potency in inducing adipogenesis but is comparable to PFOS in repressing osteogenesis, whereas OBS/PFOS co-exposure increases interaction with PPARγ-RXRα heterodimers, resulting in the synergistic activation of PPARγ, ultimately enhancing adipogenesis at the expense of osteogenic differentiation. The results indicate the potential health risks of increased obesity and decreased bone density caused by OBS and its co-exposure with PFOS, as well as other perfluorinated alkylated substances mixtures.
Collapse
Affiliation(s)
- Hui Qin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yueming Lang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yiteng Wang
- Central Hospital of Dalian University of Technology, Sports Medicine Department, Dalian 116021, China
| | - Wei Cui
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuxin Niu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Haiyang Luan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Minghan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Han Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shujing Li
- School of Bioengineering & Key Laboratory of Protein Modification and Disease, Liaoning Province, Dalian University of Technology, Dalian 116024, China
| | - Chenxi Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
37
|
Clark RB, Wagner DC, Holden DT, Roberts JJP, Zumbro E, Goodnight L, Huynh KT, Green RB, Grove JA, Dick JE. PFAS Electroanalysis in Low-Oxygen River Water Using Electrogenerated Dioxygen. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21815-21822. [PMID: 38085788 DOI: 10.1021/acs.est.3c03967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), nicknamed "forever chemicals" due to the strength of their carbon-fluorine bonds, are a class of potent micropollutants that cause deleterious health effects in mammals. The current state-of-the-art detection method requires the collection and transport of water samples to a centralized facility where chromatography and mass spectrometry are performed for the separation, identification, and quantification of PFAS. However, for efficient remediation efforts to be properly informed, a more rapid in-field testing method is required. We previously demonstrated the development and use of dioxygen as the mediator molecule. The use of dioxygen is predicated on the assumption that there will be consistent ambient dioxygen levels in natural waters. This is not always the case in hypoxic groundwater and at high altitudes. To overcome this challenge and further advance the strategies that will enable in-field electroanalysis of PFAS, we demonstrate, as a proof of concept, that dioxygen can be generated in solution through the hydrolysis of water. The electrogenerated dioxygen can then be used as a mediator molecule for the indirect detection of PFOS via molecularly imprinted polymer (MIP)-based electroanalysis. We demonstrate that calibration curves can be constructed with high precision and sensitivity (LOD < 1 ppt or 1 ng/L). Our results provide a foundation for enabling in-field hypoxic PFAS electroanalysis.
Collapse
Affiliation(s)
- Rebecca B Clark
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dane C Wagner
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dylan T Holden
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | | | - Emiko Zumbro
- MITRE Corporation, McLean, Virginia 22102, United States
| | | | - Kathy T Huynh
- MITRE Corporation, McLean, Virginia 22102, United States
| | - Ryan B Green
- Department of Electrical and Computer Engineering, Mississippi State University, Mississippi State, Mississippi 39762, United States
| | - Jamie A Grove
- MITRE Corporation, McLean, Virginia 22102, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
38
|
Cho S, Kim Y. J-Aggregate-Triggering BODIPYs: an Ultrasensitive Chromogenic and Fluorogenic Sensing Platform for Perfluorooctanesulfonate. Chemistry 2023; 29:e202302897. [PMID: 37864280 DOI: 10.1002/chem.202302897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/22/2023]
Abstract
Contamination of water supplies by polyfluoroalkyl substances, notably perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), has serious health and environmental consequences. Therefore, the development of straightforward and effective means of monitoring and removing PFASs is urgently required. In this study, we report a rapid and sensitive method for the detection of PFOS and PFOA in water that rely on the J-aggregate formation of meso-ester-BODIPY dyes. The dye C10-mim, which contains a hydrophilic methylimidazolium group and a hydrophobic alkylated BODIPY, self-assembles in water into weakly green-emissive micellar assemblies. Upon binding to PFOS or PFOA, a spontaneous disassembly and reorganization forms orange-emissive J-aggregates. The rapid formation (≤5 s) of J-aggregates and the accompanying spectral shifts provide a superior sensing performance, with excellent sensitivity (limit of detection=0.18 ppb for PFOS) and distinct chromogenic and fluorogenic "turn-on" responses.
Collapse
Affiliation(s)
- Siyoung Cho
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| | - Youngmi Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea
| |
Collapse
|
39
|
Almeida NMS, Bali SK, James D, Wang C, Wilson AK. Binding of Per- and Polyfluoroalkyl Substances (PFAS) to the PPARγ/RXRα-DNA Complex. J Chem Inf Model 2023; 63:7423-7443. [PMID: 37990410 DOI: 10.1021/acs.jcim.3c01384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Nuclear receptors are the fundamental building blocks of gene expression regulation and the focus of many drug targets. While binding to DNA, nuclear receptors act as transcription factors, governing a multitude of functions in the human body. Peroxisome proliferator-activator receptor γ (PPARγ) and the retinoid X receptor α (RXRα) form heterodimers with unique properties and have a primordial role in insulin sensitization. This PPARγ/RXRα heterodimer has been shown to be impacted by per- and polyfluoroalkyl substances (PFAS) and linked to a variety of significant health conditions in humans. Herein, a selection of the most common PFAS (legacy and emerging) was studied utilizing molecular dynamics simulations for PPARγ/RXRα. The local and global structural effects of PFAS binding on the known ligand binding pockets of PPARγ and RXRα as well as the DNA binding domain (DBD) of RXRα were inspected. The binding free energies were predicted computationally and were compared between the different binding pockets. In addition, two electronic structure approaches were utilized to model the interaction of PFAS within the DNA binding domain, density functional theory (DFT) and domain-based pair natural orbital coupled cluster with perturbative triples (DLPNO-CCSD(T)) approaches, with implicit solvation. Residue decomposition and hydrogen-bonding analysis were also performed, detailing the role of prominent residues in molecular recognition. The role of l-carnitine is explored as a potential in vivo remediation strategy for PFAS interaction with the PPARγ/RXRα heterodimer. In this work, it was found that PFAS can bind and act as agonists for all of the investigated pockets. For the first time in the literature, PFAS are postulated to bind to the DNA binding domain in a nonspecific manner. In addition, for the PPARγ ligand binding domain, l-carnitine shows promise in replacing smaller PFAS from the pocket.
Collapse
Affiliation(s)
- Nuno M S Almeida
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Semiha Kevser Bali
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Deepak James
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Cong Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| |
Collapse
|
40
|
Zhu Y, Pan X, Jia Y, Yang X, Song X, Ding J, Zhong W, Feng J, Zhu L. Exploring Route-Specific Pharmacokinetics of PFAS in Mice by Coupling in Vivo Tests and Physiologically Based Toxicokinetic Models. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127012. [PMID: 38088889 PMCID: PMC10718298 DOI: 10.1289/ehp11969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Oral ingestion, inhalation, and skin contact are important exposure routes for humans to uptake per- and polyfluoroalkyl substances (PFAS). However, nasal and dermal exposure to PFAS remains unclear, and accurately predicting internal body burden of PFAS in humans via multiple exposure pathways is urgently required. OBJECTIVES We aimed to develop multiple physiologically based toxicokinetic (PBTK) models to unveil the route-specific pharmacokinetics and bioavailability of PFAS via respective oral, nasal, and dermal exposure pathways using a mouse model and sought to predict the internal concentrations in various tissues through multiple exposure routes and extrapolate it to humans. METHODS Mice were administered the mixed solution of perfluorohexane sulfonate, perfluorooctane sulfonate, and perfluorooctanoic acid through oral, nasal, and dermal exposure separately or jointly. The time-dependent concentrations of PFAS in plasma and tissues were determined to calibrate and validate the individual and combined PBTK models, which were applied in single- and repeated-dose scenarios. RESULTS The developed route-specific PBTK models successfully simulated the tissue concentrations of PFAS in mice following single or joint exposure routes as well as long-term repeated dose scenarios. The time to peak concentration of PFAS in plasma via dermal exposure was much longer (34.1-83.0 h) than that via nasal exposure (0.960 h). The bioavailability of PFAS via oral exposure was the highest (73.2%-98.0%), followed by nasal (33.9%-66.8%) and dermal exposure (4.59%-7.80%). This model was extrapolated to predict internal levels in human under real environment. DISCUSSION Based on these data, we predict the following: PFAS were absorbed quickly via nasal exposure, whereas a distinct hysteresis effect was observed for dermal exposure. Almost all the PFAS to which mice were exposed via gastrointestinal route were absorbed into plasma, which exhibited the highest bioavailability. Exhalation clearance greatly depressed the bioavailability of PFAS via nasal exposure, whereas the lowest bioavailability in dermal exposure was because of the interception of PFAS within the skin layers. https://doi.org/10.1289/EHP11969.
Collapse
Affiliation(s)
- Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Xiaoyu Pan
- Beijing Sankuai Online Technology Co., Ltd., Beijing, P. R. China
| | - Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Xin Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Xiaohua Song
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Jiaqi Ding
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Jianfeng Feng
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| |
Collapse
|
41
|
Paquette SE, Martin NR, Rodd A, Manz KE, Allen E, Camarillo M, Weller HI, Pennell K, Plavicki JS. Evaluation of Neural Regulation and Microglial Responses to Brain Injury in Larval Zebrafish Exposed to Perfluorooctane Sulfonate. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:117008. [PMID: 37966802 PMCID: PMC10650473 DOI: 10.1289/ehp12861] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are biopersistent, global pollutants. Although some in vitro and epidemiological studies have explored the neurotoxic potential of perfluorooctane sulfonate (PFOS), a prevalent PFAS congener, it is unknown how developmental PFOS exposure affects neuronal signaling, microglia development, and microglial-neuron communication. OBJECTIVES We sought to determine the extent to which PFOS exposure disrupts brain health, neuronal activity, and microglia-neuron communication during development. In addition, although PFOS impairs humoral immunity, its impact on innate immune cells, including resident microglia, is unclear. As such, we investigated whether microglia are cellular targets of PFOS, and, if so, whether disrupted microglial development or function could contribute to or is influenced by PFOS-induced neural dysfunction. METHODS Zebrafish were chronically exposed to either a control solution [0.1% dimethyl sulfoxide (DMSO)], 7 μ M PFOS, 14 μ M PFOS, 28 μ M PFOS, or 64 μ M perfluorooctanoic acid (PFOA). We used in vivo imaging and gene expression analysis to assess microglial populations in the developing brain and to determine shifts in the microglia state. We functionally challenged microglia state using a brain injury model and, to assess the neuronal signaling environment, performed functional neuroimaging experiments using the photoconvertible calcium indicator calcium-modulated photoactivatable ratiometric integrator (CaMPARI). These studies were paired with optogenetic manipulations of neurons and microglia, an untargeted metabolome-wide association study (MWAS), and behavioral assays. RESULTS Developmental PFOS exposure resulted in a shift away from the homeostatic microglia state, as determined by functional and morphological differences in exposed larvae, as well as up-regulation of the microglia activation gene p2ry12. PFOS-induced effects on microglia state exacerbated microglia responses to brain injury in the absence of increased cell death or inflammation. PFOS exposure also heightened neural activity, and optogenetic silencing of neurons or microglia independently was sufficient to normalize microglial responses to injury. An untargeted MWAS of larval brains revealed PFOS-exposed larvae had neurochemical signatures of excitatory-inhibitory imbalance. Behaviorally, PFOS-exposed larvae also exhibited anxiety-like thigmotaxis. To test whether the neuronal and microglial phenotypes were specific to PFOS, we exposed embryos to PFOA, a known immunotoxic PFAS. PFOA did not alter thigmotaxis, neuronal activity, or microglial responses, further supporting a role for neuronal activity as a critical modifier of microglial function following PFOS exposure. DISCUSSION Together, this study provides, to our knowledge, the first detailed account of the effects of PFOS exposure on neural cell types in the developing brain in vivo and adds neuronal hyperactivity as an important end point to assess when studying the impact of toxicant exposures on microglia function. https://doi.org/10.1289/EHP12861.
Collapse
Affiliation(s)
- Shannon E. Paquette
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Nathan R. Martin
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - April Rodd
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Katherine E. Manz
- School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Eden Allen
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Manuel Camarillo
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Hannah I. Weller
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Kurt Pennell
- School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Jessica S. Plavicki
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
42
|
Wilsey MK, Taseska T, Meng Z, Yu W, Müller AM. Advanced electrocatalytic redox processes for environmental remediation of halogenated organic water pollutants. Chem Commun (Camb) 2023; 59:11895-11922. [PMID: 37740361 DOI: 10.1039/d3cc03176d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Halogenated organic compounds are widespread, and decades of heavy use have resulted in global bioaccumulation and contamination of the environment, including water sources. Here, we introduce the most common halogenated organic water pollutants, their classification by type of halogen (fluorine, chlorine, or bromine), important policies and regulations, main applications, and environmental and human health risks. Remediation techniques are outlined with particular emphasis on carbon-halogen bond strengths. Aqueous advanced redox processes are discussed, highlighting mechanistic details, including electrochemical oxidations and reductions of the water-oxygen system, and thermodynamic potentials, protonation states, and lifetimes of radicals and reactive oxygen species in aqueous electrolytes at different pH conditions. The state of the art of aqueous advanced redox processes for brominated, chlorinated, and fluorinated organic compounds is presented, along with reported mechanisms for aqueous destruction of select PFAS (per- and polyfluoroalkyl substances). Future research directions for aqueous electrocatalytic destruction of organohalogens are identified, emphasizing the crucial need for developing a quantitative mechanistic understanding of degradation pathways, the improvement of analytical detection methods for organohalogens and transient species during advanced redox processes, and the development of new catalysts and processes that are globally scalable.
Collapse
Affiliation(s)
- Madeleine K Wilsey
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
| | - Teona Taseska
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
| | - Ziyi Meng
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
| | - Wanqing Yu
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
| | - Astrid M Müller
- Materials Science Program, University of Rochester, Rochester, New York 14627, USA.
- Department of Chemical Engineering, University of Rochester, Rochester, New York 14627, USA
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
43
|
Enyoh CE, Ovuoraye PE, Qingyue W, Wang W. Examining the impact of nanoplastics and PFAS exposure on immune functions through inhibition of secretory immunoglobin A in human breast milk. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132103. [PMID: 37527590 DOI: 10.1016/j.jhazmat.2023.132103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/18/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023]
Abstract
Emerging contaminants such as nanoplastics (NPs) and per- and polyfluoroalkyl substances (PFAS), have been detected in the environment and breast milk, thus exposing infants to potentially harmful chemicals during breastfeeding. Breast milk contains secretory immunoglobulin A (SIgA), an antibody that plays a vital role in disease protection and the development of the infant's immune system. This study employed molecular simulation and fractional factorial designs to assess the toxicity of NPs and PFAS on breast milk and their influence on infant immunity by inhibiting SIgA. The research found that NPs and PFAS have higher binding affinities to SIgA compared to the control compound. Polycarbonate (-10.7 kcal/mol) had the highest binding affinity among plastics, while Perfluorodecanoic acid (PFDA, - 8.0 kcal/mol) had the highest binding affinity among PFAS. The relative toxic index was higher for PFAS (2.4) than for plastics (1.9), suggesting that PFAS may pose a higher overall toxicity burden on the protein. The presence of specific combinations of NPs and PFAS in breast milk may potentially harm breastfeeding infants, although additional experimental studies are required to validate these findings. These results underscore the potential risks associated with these emerging contaminants in breast milk and their impact on infant immunity.
Collapse
Affiliation(s)
- Christian Ebere Enyoh
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan.
| | - Prosper E Ovuoraye
- Department of Chemical Engineering, Federal University of Petroleum Resources, PMB 1221 Effurun, Nigeria
| | - Wang Qingyue
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan.
| | - Weiqian Wang
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| |
Collapse
|
44
|
Xu W, Li S, Wang W, Sun P, Yin C, Li X, Yu L, Ren G, Peng L, Wang F. Distribution and potential health risks of perfluoroalkyl substances (PFASs) in water, sediment, and fish in Dongjiang River Basin, Southern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99501-99510. [PMID: 37610541 DOI: 10.1007/s11356-023-29327-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) have attracted worldwide attention due to their high stability, refractory degradation, and bioaccumulation. The Dongjiang River is one of the most important water sources in the Pearl River Delta region. It flows from Jiangxi Province to Guangdong Province and finally into the Pearl River, providing domestic water for cities such as Guangzhou, Shenzhen, and Hong Kong. In this study, 17 PFASs in water, sediment, and fish in the Dongjiang River Basin in southern China were investigated using high-performance liquid chromatography-mass spectrometry. Total PFAS concentrations ranged from 20.83 to 372.8 ng/L in water, from 1.050 to 3.050 ng/g in sediments, and from 12.28 to 117.4 ng/g in fish. Among six species of fish, Oreochromis mossambicus (mean: 68.55 ng/g) had the highest concentration of PFASs, while Tilapia zillii (36.90 ng/g) had the lowest concentration. Perfluorooctanoic acid (PFOA) predominates in water and sediments, while perfluorooctanesulfonic acid (PFOS) predominates in fish. Long-chain perfluorocarboxylates (PFCAs) and perfluorosulfonates (PFSAs) showed higher bioaccumulation, and the field-sourced sediment-water partition coefficients (Kd) and bioaccumulation factors (BAFs) of PFASs increased with the length of perfluorocarbon chains. PFAS concentration in the lower reaches (urban area) of the Dongjiang River is higher than that in the upper and middle reaches (rural area). The calculated hazard ratio (HR) of PFOS and PFOA levels in fish in the Dongjiang River Basin was far less than 1; hence, the potential risk to human health was limited.
Collapse
Affiliation(s)
- Wang Xu
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Shibo Li
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Guangzhou, 510632, Guangdong, China
| | - Weimin Wang
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Ping Sun
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Chunyang Yin
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Xuxia Li
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Liang Yu
- Shenzhen Environmental Monitoring Center, Shenzhen, 518049, China
| | - Gang Ren
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Guangzhou, 510632, Guangdong, China
| | - Lin Peng
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Guangzhou, 510632, Guangdong, China
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Fei Wang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
45
|
Durham J, Tessmann JW, Deng P, Hennig B, Zaytseva YY. The role of perfluorooctane sulfonic acid (PFOS) exposure in inflammation of intestinal tissues and intestinal carcinogenesis. FRONTIERS IN TOXICOLOGY 2023; 5:1244457. [PMID: 37662676 PMCID: PMC10469509 DOI: 10.3389/ftox.2023.1244457] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
PFAS (per- and polyfluoroalkyl substances) are organofluorine substances that are used commercially in products like non-stick cookware, food packaging, personal care products, fire-fighting foam, etc. These chemicals have several different subtypes made of varying numbers of carbon and fluorine atoms. PFAS substances that have longer carbon chains, such as PFOS (perfluorooctane sulfonic acid), can potentially pose a significant public health risk due to their ability to bioaccumulate and persist for long periods of time in the body and the environment. The National Academies Report suggests there is some evidence of PFOS exposure and gastrointestinal (GI) inflammation contributing to ulcerative colitis. Inflammatory bowel diseases such as ulcerative colitis are precursors to colorectal cancer. However, evidence about the association between PFOS and colorectal cancer is limited and has shown contradictory findings. This review provides an overview of population and preclinical studies on PFOS exposure and GI inflammation, metabolism, immune responses, and carcinogenesis. It also highlights some mitigation approaches to reduce the harmful effects of PFOS on GI tract and discusses the dietary strategies, such as an increase in soluble fiber intake, to reduce PFOS-induced alterations in cellular lipid metabolism. More importantly, this review demonstrates the urgent need to better understand the relationship between PFOS and GI pathology and carcinogenesis, which will enable development of better approaches for interventions in populations exposed to high levels of PFAS, and in particular to PFOS.
Collapse
Affiliation(s)
- Jerika Durham
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Josiane Weber Tessmann
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Pan Deng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Bernhard Hennig
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Yekaterina Y. Zaytseva
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
46
|
Cai D, Li QQ, Mohammed Z, Chou WC, Huang J, Kong M, Xie Y, Yu Y, Hu G, Qi J, Zhou Y, Tan W, Lin L, Qiu R, Dong G, Zeng XW. Fetal Glucocorticoid Mediates the Association between Prenatal Per- and Polyfluoroalkyl Substance Exposure and Neonatal Growth Index: Evidence from a Birth Cohort Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11420-11429. [PMID: 37494580 DOI: 10.1021/acs.est.2c08831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Glucocorticoid plays a key role in the growth and organ maturation of fetus. However, the effect of glucocorticoid on the association between per- and polyfluoroalkyl substance (PFAS) exposure and fetal growth is still unknown. We detected cord cortisol (active glucocorticoid in human) and 34 PFAS concentrations in the maternal serum samples, which were collected from 202 mother-fetus pairs in the Maoming Birth Cohort from 2015 to 2018. The mediation effect of cord cortisol on the association between maternal PFAS and the neonatal growth index (NGI) was estimated. We found that higher PFAS concentrations were associated with lower NGI in terms of ponderal index, birth weight (BW), head circumference (HC), and its z-scores (BWZ and HCZ) (P < 0.05). Fetal cortisol could mediate 12.6-27.3% of the associations between PFAS and NGI. Specifically, cord cortisol mediated the association between branched perfluorooctane sulfonate (branched PFOS) and HCZ by 20.4% and between perfluorooctanoate (PFOA) and HCZ by 27.3%. Our findings provide the first epidemiological data evincing that fetal cortisol could mediate the association between prenatal PFAS exposure and fetal growth. Further investigations are recommended to elucidate the interactions among cord cortisol, PFAS, and fetal growth.
Collapse
Affiliation(s)
- Dan Cai
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Qing-Qing Li
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zeeshan Mohammed
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei-Chun Chou
- Center for Environmental and Human Toxicology, Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida 32611, United States
| | - Jinbo Huang
- Maoming Maternal and Child Health Hospital, Maoming 525000, China
| | - Minli Kong
- Maoming Maternal and Child Health Hospital, Maoming 525000, China
| | - Yanqi Xie
- Maoming Maternal and Child Health Hospital, Maoming 525000, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Guocheng Hu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jianying Qi
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Weihong Tan
- Department of Reproductive Medicine and Genetics Center, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Lizi Lin
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Guanghui Dong
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Wen Zeng
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
47
|
Guo TY, Li HW, Zhang CX, Wu Y. The colorimetry and smartphone determination of perfluorooctane sulfonate based on cytidine 5'-monophosphate-capped gold nanoclusters with peroxidase-like activity. Analyst 2023. [PMID: 37466370 DOI: 10.1039/d3an00763d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Besides being a luminescent material, cytidine 5'-monophosphate-capped gold nanoclusters (AuNCs@CMP) also show superior peroxidase-like activity which can promote TMB oxidation in the presence of H2O2, causing the solution to turn efficiently from pale to blue. However, the presence of perfluorooctane sulfonate (PFOS) in the above system inhibited TMB oxidation and bluing of the solution, consequently establishing a colorimetric platform of AuNCs/H2O2/TMB for PFOS determination. The results showed that it responded to PFOS over a wide range of 2.0-50 μM, with a limit of detection (LOD) as low as 150 nM. Furthermore, in-depth mechanism investigation revealed that, rather than the active site of the catalyst being occupied by PFOS, such a hypochromatic effect originated from depletion of the reactive oxygen species (ROS) by PFOS degradation, thereby also offering a unique strategy to scavenge the lethal toxicity of PFOS. In addition, the colorimetric response of AuNCs/H2O2/TMB to PFOS was extended to smartphone determination conveniently based on RGB values. Finally, the established platform was applied to PFOS determination both in soil extracts and in tap water with good recovery, which supplies a novel colorimetric platform for visual determination of PFOS in practice. The method has the advantages of being rapid, sensitive and highly selective, which highlight the design and construction of more systems for determination and elimination of lethal pollutants in environmental water.
Collapse
Affiliation(s)
- Tian-Yuan Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, P. R. China.
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, P. R. China
| | - Hong-Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, P. R. China.
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, P. R. China
| | - Chun-Xia Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, P. R. China.
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, P. R. China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, P. R. China.
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, P. R. China
| |
Collapse
|
48
|
Zhang H, Zhang C, Xu D, Wang Q, Xu D. Effects of subchronic exposure of perfluorooctane sulfonate on cognitive function of mice and its mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121650. [PMID: 37062406 DOI: 10.1016/j.envpol.2023.121650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is an emerging persistent organic pollutant, and its potential impact on cognitive function remains unclear. We adopted the C57BL/6J mouse model to investigate the effect of PFOS on cognitive function, as well as the underlying mechanisms. Subchronic exposure was performed by administering PFOS via drinking water for 6 months (at doses of 0, 0.2, and 2.0 mg/kg/day), starting from 10.5 months old. The object recognition ability was tested at 2, 4, and 6 months of exposure, and spatial learning and memory were assessed at endpoint. The apoptosis of neurons and astrocytes in the cortex and hippocampus was analyzed, as well as the potential apoptotic signaling pathways. Our results showed that exposure to PFOS for 6 months caused a decrease in object recognition ability and a decline in learning and spatial memory. PFOS selectively increased apoptosis in neurons of the cerebral cortex and specifically activated the endoplasmic reticulum stress PERK/CHOP signaling pathway. In conclusion, our results confirmed that subchronic exposure to PFOS can lead to cognitive impairment in mice, which might be closely associated with the specific activation of an endoplasmic reticulum stress-induced pro-apoptosis pathway in the cerebral cortex neurons.
Collapse
Affiliation(s)
- Haijing Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Chao Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Donggang Xu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Qin Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Dongqun Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| |
Collapse
|
49
|
Wang T, Zhao X, Liu T, Zhang J, Qiu J, Li M, Weng R. Transcriptional investigation of the toxic mechanisms of perfluorooctane sulfonate in rats based on an RNA-Seq approach. CHEMOSPHERE 2023; 329:138629. [PMID: 37030344 DOI: 10.1016/j.chemosphere.2023.138629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Perfluorooctane sulfonate (PFOS) was widely used in industrial applications before it was listed as a persistent organic pollutant by the Conference of the Parties in the Stockholm Convention in 2009. Although the potential toxicity of PFOS has been studied, its toxic mechanisms remain largely undefined. Here, we investigated novel hub genes and pathways affected by PFOS to gain new conceptions of the toxic mechanisms of PFOS. Reduced body weight gain and abnormal ultra-structures in the liver and kidney tissues were spotted in PFOS-exposed rats, indicating successful establishment of the PFOS-exposed rat model. The transcriptomic alterations of blood samples upon PFOS exposure were analysed using RNA-Seq. GO analysis indicates that the differentially expressed gene-enriched GO terms are related to metabolism, cellular processes, and biological regulation. Kyoto encyclopaedia of gene and genomes (KEGG) and gene set enrichment analysis (GSEA) were conducted to identify six key pathways: spliceosome, B cell receptor signalling pathway, acute myeloid leukaemia, protein processing in the endoplasmic reticulum, NF-kappa B signalling pathway, and Fc gamma R-mediated phagocytosis. The top 10 hub genes were screened from a protein-protein interaction network and verified via quantitative real-time polymerase chain reaction. The overall pathway network and hub genes may provide new insights into the toxic mechanisms of PFOS exposure states.
Collapse
Affiliation(s)
- Tianrun Wang
- Key Laboratory of Agro-food Safety and Quality of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Xuying Zhao
- Key Laboratory of Quality and Risk Assessment for Tobacco and Aromatic Plant Products (Qingdao) of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, Shandong, China
| | - Tianze Liu
- Key Laboratory of Quality and Risk Assessment for Tobacco and Aromatic Plant Products (Qingdao) of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, Shandong, China
| | - Jiguang Zhang
- Key Laboratory of Quality and Risk Assessment for Tobacco and Aromatic Plant Products (Qingdao) of Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, Shandong, China
| | - Jing Qiu
- Key Laboratory of Agro-food Safety and Quality of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mei Li
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Rui Weng
- Key Laboratory of Agro-food Safety and Quality of Ministry of Agriculture and Rural Affairs, Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
50
|
An Z, Yang J, Xiao F, Lv J, Xing X, Liu H, Wang L, Liu Y, Zhang Z, Guo H. Hippocampal Proteomics Reveals the Role of Glutamatergic Synapse Activation in the Depression Induced by Perfluorooctane Sulfonate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7866-7877. [PMID: 37191230 DOI: 10.1021/acs.jafc.3c01344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Perfluorooctane sulfonate (PFOS), a new type of persistent organic pollutant in the environment of water, has drawn significant attention in recent years due to its widespread prevalence and high toxicity. Neurotoxicity is regarded as one of the major toxic effects of PFOS, while research studies on PFOS-induced depression and the underlying mechanisms remain scarce. In this study, behavioral tests revealed the depressive-like behaviors in PFOS-exposed male mice. Neuron damages including pyknosis and staining deepening were identified through hematoxylin and eosin staining. Then, we noticed the elevation of glutamate and proline levels as well as the decline of glutamine and tryptophan levels. Proteomics analysis identified 105 differentially expressed proteins that change in a dose-dependent manner and revealed that PFOS exposure activated the glutamatergic synapse signaling pathway, which were further confirmed by Western blot, and the data were consistent with the findings of the proteomics analysis. Additionally, the downstream signaling cyclic AMP-responsive element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) and synaptic plasticity-related postsynaptic density protein 95, synaptophysin, were downregulated. Our results highlight that PFOS exposure may inhibit the synaptic plasticity of the hippocampus via glutamatergic synapse and the CREB/BDNF signaling pathway to cause depressive-like behaviors in male mice.
Collapse
Affiliation(s)
- Ziwen An
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Jing Yang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Fang Xiao
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Junli Lv
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiaoqing Xing
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang 050017, China
| | - Heqiong Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Lei Wang
- Department of Medicinal Chemistry, Hebei Medical University, Shijiazhuang 050017, China
| | - Yi Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhanchi Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China
| | - Huicai Guo
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| |
Collapse
|