1
|
Wu R, Zhu Z, Xiao W, Zou J, Nie Y, Yang Y, Zhao W, You Z, Li Y. Mechanism of chondrocyte injury induced by Benzophenone-3 through modulation of the IL-6/JAK2/STAT3 pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126064. [PMID: 40090449 DOI: 10.1016/j.envpol.2025.126064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/11/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Currently, limited research exists on the relationship between osteoarthritis (OA) and Benzophenone-3 (BP-3). This study aims to explore the potential molecular pathways involved, using both in vivo and in vitro biological experiments. In vivo experiments revealed that exposure to BP-3 leads to cartilage damage in the knee joints of rats, suggesting that BP-3 may be a significant risk factor in the development and progression of osteoarthritis. Proteomic sequencing of knee cartilage tissue revealed alterations in multiple inflammatory pathways in the BP-3 group. In vitro cellular experiments further demonstrated the toxic effects of BP-3 on chondrocytes, including inflammatory changes and increased transcriptional levels of IL-6. Cellular transcriptomics sequencing revealed significant changes in multiple intracellular inflammatory pathways, particularly the JAK-STAT pathway. Additional experiments demonstrated that BP-3 enhances STAT3 phosphorylation, promoting the degradation of extracellular matrix (ECM) proteins. Silence of STAT3 alleviated the impaired effects of BP-3 on chondrocytes. Overall, our data suggest that BP-3 exposure may be a significant risk factor for OA development. This study provides substantial evidence and a comprehensive understanding of the impact of BP-3 on OA development.
Collapse
Affiliation(s)
- Runtao Wu
- School of Public Health, Hangzhou Medical College, Hangzhou, 310053, China
| | - Zhenyu Zhu
- School of Public Health, Hangzhou Medical College, Hangzhou, 310053, China
| | - Wenfeng Xiao
- School of Public Health, Hangzhou Medical College, Hangzhou, 310053, China
| | - Jiarong Zou
- School of Public Health, Hangzhou Medical College, Hangzhou, 310053, China
| | - Yaoyao Nie
- Shanghai Jinshan District Central Hospital, Shanghai, 201500, China
| | - Ye Yang
- School of Public Health, Hangzhou Medical College, Hangzhou, 310053, China
| | - Wenxia Zhao
- School of Public Health, Hangzhou Medical College, Hangzhou, 310053, China
| | - Zhenqiang You
- School of Basic Medicine and Forensics, Hangzhou Medical College, Hangzhou, 310053, China.
| | - Yingjun Li
- School of Public Health, Hangzhou Medical College, Hangzhou, 310053, China.
| |
Collapse
|
2
|
Gautam K, Singh S, Vamadevan B, Anbumani S. Molecular response of earthworm, Eisenia fetida to Oxybenzone (Benzophenone-3) exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 975:179265. [PMID: 40158332 DOI: 10.1016/j.scitotenv.2025.179265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Benzophenone-type ultraviolet filters recently received significant attention to overlook regulatory agencies' safety potential due to their toxicological implications on humans and the environment. The present study has been carried out to explore the toxicity of Benzophenone-3 (BP-3) in earthworm Eisenia fetida. Low-level long-term exposure defiles earthworm health through elevated ROS and its detrimental impact on reproductive organs and reproduction. Based on KEGG and GO analysis, global transcriptomics reveals differentially expressed gene transcripts affecting key signaling pathways. Further validation by q-PCR showed significant upregulated expression of genes involved in stress (CuZn-SOD, CAT), metabolism (GST), reproduction and gametogenesis (ANN and Piwi-2), and endocrine (EcR) functions. Interestingly, lower concentrations of BP-3 are biologically effective in exhibiting a non-linear concentration-response pattern towards the expression of reproduction and endocrine function genes. In addition, BP-3, through soil exposure, significantly alters the gut microbiome by inducing changes in bacterial diversity, while fungal diversity remains unaffected. Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes have significantly affected phyla, whereas Ascomycota and Basidiomycota remain dominant, suggesting their potential role in metabolizing or tolerating the BP-3 contamination. The findings highlight the molecular consequences of BP-3 exposure in earthworms and indicate the broader environmental impacts of benzophenone-type organic UV filters on terrestrial biota. The information could also be helpful for chemical risk assessment in soil ecotoxicology.
Collapse
Affiliation(s)
- Krishna Gautam
- Ecotoxicology Laboratory, Regulatory Toxicology Group, REACT Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow 226008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sukhveer Singh
- System Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow 226008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Beena Vamadevan
- Central Pathology Laboratory, Regulatory Toxicology Group, REACT Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow 226008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, REACT Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow 226008, Uttar Pradesh, India; System Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow 226008, Uttar Pradesh, India.
| |
Collapse
|
3
|
Tihányi J, Horváthová E, Fábelová L, Murínová ĽP, Sisto R, Moleti A, Belovičová M, Trnovec T. Environmental ototoxicants: an update. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:8629-8642. [PMID: 40072761 DOI: 10.1007/s11356-025-36230-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Approximately 5 years ago, we proposed the establishment of a new category of ototoxicants: environmental ototoxicants, in addition to the recognized categories of occupational and drug-related ototoxicants. Since the publication of our review, the scientific literature has confirmed the potential for hearing impairment (HI) caused by the general population's exposure to various chemicals. However, the extent of this exposure's contribution to the global incidence of hearing loss (HL) has yet to be estimated. Due to the growing health, financial, and social challenges related to HL in the general population, we have reviewed the literature on HL in individuals exposed to environmental chemicals. Additionally, we have broadened the list of environmental ototoxicants to include several previously recognized as occupational ototoxicants. These substances include the following: organophosphate insecticides (OPIs), organochlorine pesticides (OCPs): hexachlorocyclohexane (HCH), dieldrin, dichlorodiphenyldichloroethylene (DDE), and hexachlorobenzene (HCB); pyrethroids, bisphenol A (BPA), benzophenone-3 (BP-3), triclosan (TCS), parabens (PBs), per- and polyfluorinated compounds (PFCs), metals and trace elements (such as cadmium (Cd), lead (Pb), manganese (Mn), iron (Fe), mercury (Hg), selenium (Se), barium (Ba), and arsenic (As)), polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), styrene. Additionally, we have included alcohol, which is widely consumed and known for its ototoxic effects.
Collapse
Affiliation(s)
- Juraj Tihányi
- Faculty of Public Health, Institute of Health Protection, Slovak Medical University in Bratislava, Limbová 2651/12, 833 03, Bratislava, Slovakia.
| | - Eva Horváthová
- Department of Preventive and Clinical Medicine, Faculty of Public Health, Slovak Medical University in Bratislava, Limbová 2651/12, 833 03, Bratislava, Slovakia
| | - Lucia Fábelová
- Department of Environmental Medicine, Faculty of Public Health, Institute of Health Protection, Slovak Medical University in Bratislava, Limbová 2651/12, 833 03, Bratislava, Slovakia
| | - Ľubica Palkovičová Murínová
- Department of Environmental Medicine, Faculty of Public Health, Institute of Health Protection, Slovak Medical University in Bratislava, Limbová 2651/12, 833 03, Bratislava, Slovakia
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance Against Accidents at Work (INAIL), Via Fontana Candida 1, 00078 Monte Porzio Catone, Rome, Italy
| | - Arturo Moleti
- Department of Physics, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Mária Belovičová
- Department of Preventive and Clinical Medicine, Faculty of Public Health, Slovak Medical University in Bratislava, Limbová 2651/12, 833 03, Bratislava, Slovakia
| | - Tomáš Trnovec
- Department of Environmental Medicine, Faculty of Public Health, Institute of Health Protection, Slovak Medical University in Bratislava, Limbová 2651/12, 833 03, Bratislava, Slovakia
| |
Collapse
|
4
|
Gao H, Yang X, Pan P, Liu X, Ma Y, Chen Y, Liu Y, Sun Y, Cao S, Tian Y, Yang Y. Pubertal low dose exposure to benzophenone-3 (BP-3) alters murine mammary stem cell functions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117982. [PMID: 40020383 DOI: 10.1016/j.ecoenv.2025.117982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Benzophenone-3 (BP-3) is an organic UV filter that is widely used in personal care products and has been indicated to have negative impacts on the environment and human health. The mammary glands of humans and rodents have been confirmed to be target organs affected by BP-3 exposure. However, limited information is available on the underlying mechanism currently. In this study, we hypothesized that low-concentration BP3 exposure during puberty might lead to a susceptibility to tumors through the mediation of mammary stem cells. Our findings revealed that BP-3 exposure at 50 mg/kg/day for 5 weeks during puberty led to reproductive outcomes such as reduced body weight, decreased serum estradiol and progesterone levels, and increased terminal end bud (TEB) numbers and areas. These effects were accompanied by a decreased fraction of basal mammary stem cells and decreased self-renewal and differentiation abilities of basal mammary stem cells in vitro and in vivo such as decreased sphere formation ability, a smaller 3D structure, increased branching points and hyperplastic lesions in regenerated mammary glands. Notably, for the regenerated mammary glands formed by the basal mammary stem cells of BP-3-treated mice, a decrease in the fraction of basal mammary stem cells and decreased expression levels of the milk protein β-casein and STAT5 were observed. Taken together, our data suggest that pubertal BP-3 exposure decreases the function of basal mammary stem cells such that they induce the abnormal development of mammary glands.
Collapse
Affiliation(s)
- Hui Gao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| | - Xintong Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Pengge Pan
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Xueli Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Yan Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Yadan Chen
- The first Clinical Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Yunxin Liu
- The first Clinical Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Yaqi Sun
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Sinan Cao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Yuan Tian
- The first Clinical Medical College, Ningxia Medical University, Yinchuan 750004, China
| | - Yanzhou Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
5
|
do Nascimento FH, Masini JC. Frontal affinity chromatography to investigate the interaction of benzophenone with humic acid supported on microbore monolithic columns. Heliyon 2025; 11:e42390. [PMID: 40034308 PMCID: PMC11872525 DOI: 10.1016/j.heliyon.2025.e42390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
The principles of frontal affinity chromatography were used to determine the sorption constants and sorption capacities of benzophenone on immobilized humic acid. Poly(glycidyl-co-ethylene dimethacrylate) monoliths were constructed inside microbore capillaries (12 cm long × 1.016 mm internal diameter) and further aminated with ethylenediamine. The free amine groups coordinated Cu(II), which served as an intermediate ligand to immobilize about 27.2-28.7 mg of humic acid per gram of polymer skeleton (or 93 ± 4 μg per cm of column). The reversible nature of the interactions with Cu(II) allowed to leach and reload humic acid, thus suggesting that a single Cu(II) modified column may be further explored to immobilize humic acids from different sources using the concept of exchangeable chemistries on a stable monolithic platform. Frontal affinity chromatograms were obtained by injecting 1000 μL of benzophenone solutions of various concentrations (1.11-112 μmol L-1) at 25 °C and pH 7.00 ± 0.1. The concentration-dependent elution volume enabled the construction of sorption isotherms that were fitted to Langmuir and Freundlich equations and the linearized Scatchard plot. The binding of benzophenone to the humic substance was ruled by two classes of interaction sites withK L = (1.2 ± 0.2) × 106 and (6.7 ± 0.8) × 103 L mol-1 and a maximum sorption capacity of 19.2 ± 1.2 μmol g-1. The results correspond to an average of duplicate injections in three columns, thus demonstrating the acceptable reproducibility and stability of the proposed methodology.
Collapse
Affiliation(s)
- Fernando H. do Nascimento
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, SP, Brazil
| | - Jorge C. Masini
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, SP, Brazil
| |
Collapse
|
6
|
Kryczyk-Poprawa A, Sánchez-Hidalgo A, Baran W, Adamek E, Sułkowska-Ziaja K, Kała K, Muszyńska B, Opoka W. The Toxicological Impact of the Ultraviolet Filter Oxybenzone on Antioxidant Profiles in In Vitro Cultures of Lentinula edodes. TOXICS 2025; 13:145. [PMID: 40137472 PMCID: PMC11946714 DOI: 10.3390/toxics13030145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025]
Abstract
A detailed understanding of the toxic effects of organic UV filters, such as oxybenzone, on living organisms is crucial for assessing the feasibility of bioremediation methods. Due to the widespread use of oxybenzone as an ultraviolet filter in sunscreens, it has become an emerging contaminant of concern in the environment. This concern extends to fungi, which have the potential to neutralize a wide variety of xenobiotics released into the environment. The primary objective of the study was to elucidate the alterations of antioxidant profiles of the white-rot fungus Lentinula edodes in response to oxybenzone exposure. Samples with oxybenzone at a final concentration of 0.1 mg mL-1 were cultured in vitro with the mycelium of L. edodes for 14 days. The contents of the following antioxidant compounds were assessed: indole derivatives (6-methyl-D,L-tryptophan, tryptophan), ergothioneine, and phenolic acid (p-hydroxybenzoic acid), as well as lovastatin and ergosterol. The addition of oxybenzone negatively affected biomass growth, reducing it from 3.205 ± 0.4022 g to 0.5803 ± 0.1019 g. A considerable reduction in oxybenzone amounts was found in the medium after incubation (from 25 mg to 0.2993 ± 0.1934 mg). After lyophilization, the mycelium contained 1.1591 ± 0.0323 mg of oxybenzone. Additionally, eleven biotransformation products were assessed in the mycelium and medium samples using UPLC-Q ToF. After incubation, the transformation products were identified based on monoisotopic molecular mass and fragmentation spectra. The observed increase in the content of some antioxidants, e.g., ergothioneine, while reducing the content of others, such as lovastatin, suggests that the impact of xenobiotics on the antioxidant profile of in vitro cultures of L. edodes is complex. Marked alterations in biomass growth suggest a potential toxicological risk associated with oxybenzone. This study contributes to the understanding of the environmental impact of UV filters and emphasizes the need for safer alternatives.
Collapse
Affiliation(s)
- Agata Kryczyk-Poprawa
- Department of Inorganic and Pharmaceutical Analytics, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland; (A.S.-H.); (W.O.)
| | - Adrián Sánchez-Hidalgo
- Department of Inorganic and Pharmaceutical Analytics, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland; (A.S.-H.); (W.O.)
| | - Wojciech Baran
- Department of General and Analytical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (W.B.); (E.A.)
| | - Ewa Adamek
- Department of General and Analytical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jagiellońska 4, 41-200 Sosnowiec, Poland; (W.B.); (E.A.)
| | - Katarzyna Sułkowska-Ziaja
- Department of Medicinal Plant and Mushroom Biotechnology, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland; (K.S.-Z.); (K.K.); (B.M.)
| | - Katarzyna Kała
- Department of Medicinal Plant and Mushroom Biotechnology, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland; (K.S.-Z.); (K.K.); (B.M.)
| | - Bożena Muszyńska
- Department of Medicinal Plant and Mushroom Biotechnology, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland; (K.S.-Z.); (K.K.); (B.M.)
| | - Włodzimierz Opoka
- Department of Inorganic and Pharmaceutical Analytics, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Kraków, Poland; (A.S.-H.); (W.O.)
| |
Collapse
|
7
|
Bloom MS, Upadhyaya S, Nzegwu AW, Kuiper JR, Buckley JP, Aschner J, Barr D, Barrett ES, Bennett DH, Dabelea D, Dunlop AL, Fuller A, Karagas M, Liang D, Meeker J, Miller R, O'Connor TG, Romano ME, Sathyanarayana S, Starling AP, Stroustrup A, Watkins DJ. Racial and ethnic differences in prenatal exposure to environmental phenols and parabens in the ECHO Cohort. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2025:10.1038/s41370-025-00750-w. [PMID: 39955434 DOI: 10.1038/s41370-025-00750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Research suggests racial/ethnic disparities in prenatal exposure to endocrine disrupting environmental phenols (EPs) in limited populations. However, no studies have investigated racial/ethnic disparities in prenatal EP exposure across the U.S. OBJECTIVES To estimate demographic differences in prenatal urinary EPs among participants in the Environmental influences on Child Health Outcomes (ECHO) Cohort. METHODS An analysis of 4006 pregnant ECHO participants was performed, with 7854 specimens collected from 1999-2020. Racial/ethnic identity was self-reported. Urinary levels of 2,4-dichlorophenol (2,4-DCP), 2,5-dichlorophenol (2,5-DCP), benzophenone-3 (BP-3), bisphenols A (BPA), F (BPF), and S (BPS), and methyl- (MePb), ethyl- (EtPb), propyl- (PrPb), and butyl- (BuPb) parabens were measured at one or more time points during pregnancy. Effect estimates were adjusted for age, pre-pregnancy body mass index, educational level, gestational age and season at urine collection, and ECHO cohort. RESULTS Participants were classified as Hispanic of any race (n = 1658), non-Hispanic White (n = 1478), non-Hispanic Black (n = 490), and non-Hispanic Other (n = 362), which included individuals of multiple races. Urinary 2,4-DCP and 2,5-DCP concentrations were 2- to 4-fold higher among Hispanic, non-Hispanic Black, and non-Hispanic Other participants relative to non-Hispanic White participants. MePb was ~2-fold higher among non-Hispanic Black (95% confidence interval (CI): 1.7-3.1) and non-Hispanic Other (95% CI: 1.5-2.8) participants. PrPb was similarly higher among non-Hispanic Black (95% CI: 1.7-3.7) and non-Hispanic Other (95% CI: 1.3-3.1) participants. EtPb was higher among non-Hispanic Black participants (3.1-fold; 95% CI 1.7-5.8). BP-3 was lower in Hispanic (0.7-fold; 95% CI: 0.5-0.9), non-Hispanic Black (0.4-fold; 95% CI: 0.3-0.5), and non-Hispanic Other (0.5-fold; 95% CI: 0.4-0.7) participants. Urinary BuPb, BPA, BPF, and BPS were similar across groups. IMPACT STATEMENT This multisite, observational cohort study investigated whether there are racial and ethnic differences in prenatal exposure to endocrine disrupting environmental phenols and parabens. Among 4006 participants from multiple U.S. cohorts who provided urine specimens during pregnancy, those who self-reported a racial and ethnic identity other than non-Hispanic White had higher urinary concentrations of 2,4-dichlorophenol, 2,5-dichlorophenol, methyl paraben, ethyl paraben, and propyl paraben and lower urinary concentrations of benzophenone-3 than those reporting as non-Hispanic White. These data show differences in prenatal concentrations of endocrine disrupting environmental phenols and parabens by racial and ethnic identity.
Collapse
Affiliation(s)
- Michael S Bloom
- Department of Global and Community Health, College of Public Health, George Mason University, Fairfax, VA, USA.
| | - Sudhi Upadhyaya
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Adaeze W Nzegwu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jordan R Kuiper
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Jessie P Buckley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Judy Aschner
- Hackensack Meridian Health Center for Discovery and Innovation, Hackensack, NJ, USA
| | - Dana Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, and Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Dana Dabelea
- Department of Epidemiology, University of Colorado, Colorado School of Public Health, Aurora, CO, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alma Fuller
- School of Nursing, College of Public Health, George Mason University, Fairfax, VA, USA
| | - Margaret Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - John Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Rachel Miller
- Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas G O'Connor
- Departments of Psychiatry, Neuroscience, Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | - Anne P Starling
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Annemarie Stroustrup
- Northwell Health, Cohen Children's Medical Center and the Departments of Pediatrics and Occupational Medicine, Epidemiology & Prevention, Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Sikri N, Behera B, Kumar A, Kumar V, Pandey OP, Mehta J, Kumar S. Recent advancements on 2D nanomaterials as emerging paradigm for the adsorptive removal of microcontaminants. Adv Colloid Interface Sci 2025; 340:103441. [PMID: 40023124 DOI: 10.1016/j.cis.2025.103441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 03/04/2025]
Abstract
Water reservoirs are facing increasing prevalence of microcontaminants originating from agricultural runoff, industrial effluents, and domestic wastewater. The persistence of microcontaminants leads to disruptions in aquatic ecosystems and poses potential long-term health risks to humans, even at minimal concentrations. However, traditional wastewater treatment methods are inefficient to eliminate the microcontaminants because of their intricate chemical structures and low concentration. In this regard, nano-adsorption employing nanomaterials as adsorbents presents a viable alternative, offering enhanced efficiency and specificity towards the removal of microcontaminants. Amongst all, two-dimensional (2D) nanomaterials, including graphene oxide (GO), layered double hydroxides (LDHs), MXenes, and boron nitrides (BNs), exhibit distinctive characteristics such as a high surface area, remarkable chemical stability, and tendency of diverse surface functionalization, rendering them particularly effective in adsorbing pollutants from water. Therefore, the present review provides an exhaustive literature and comparative analysis of the aforementioned 2D nanomaterials-based adsorbents concerning their efficacy in adsorbing microcontaminants of pharmaceuticals and personal care products origin such as antibiotics, steroids, bisphenols, phthalates, parabens, and benzophenones. The different aspects of 2D adsorbents including adsorption capacity, mechanisms involved, kinetic and isotherm models followed for removal of a variety of microcontaminants have been congregated. Also, the information on recyclability, reusability, and stability of the adsorbents has been summarized to highlight their viability. Further, the limitations and future aspects related to the use of 2D nanomaterials-based adsorbents towards pollutant removal have been discussed. Overall, 2D nanomaterials holds great promise as efficient adsorbents for environmental remediation and can also be explored for industrial adsorption applications.
Collapse
Affiliation(s)
- Nidhi Sikri
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India
| | - Bunushree Behera
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India
| | - Akshay Kumar
- Department of Physics, Punjab Engineering College (Deemed to be University), Chandigarh 160012, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute, Mohali 140308, Punjab, India
| | - O P Pandey
- Department of Physics and Material Science, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India
| | - Jyotsana Mehta
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India.
| | - Sandeep Kumar
- Department of Physics, Punjab Engineering College (Deemed to be University), Chandigarh 160012, India.
| |
Collapse
|
9
|
Murzyn A, Popiół J, Gunia-Krzyżak A, Żelaszczyk D, Dąbrówka B, Koczurkiewicz-Adamczyk P, Piska K, Żmudzki P, Pękala E, Słoczyńska K. Biotransformation of oxybenzone and 3-(4-methylbenzylidene)camphor in Cunninghamella species: Potential for environmental clean-up of widely used sunscreen agents. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137544. [PMID: 39954436 DOI: 10.1016/j.jhazmat.2025.137544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
The extensive use of organic UV filters (OUVFs) has led to these compounds being ubiquitously detected in the environment and considered a new kind of environmental pollutant. As OUVFs cannot be efficiently eliminated by conventional treatment processes, there is an urgent need to develop new innovative solutions for their removal. The present work investigates the efficacy of three Cunninghamella strains in the biodegradation of OUVFs: oxybenzone (BP-3) and 3-(4-methylbenzylidene)camphor (4-MBC). Moreover, a cytochrome P450 (CYP450) inhibition study was conducted, and Cunninghamella-processed samples in silico and in vitro toxicity were evaluated. Our results indicated the ability of Cunninghamella strains to utilize OUVFs. Among the tested Cunninghamella strains, both agents were the most efficiently removed by C. blakesleeana. These results were comparable with A. niger biodegradation capacity. In vitro studies of the fungi-processed samples confirmed no mutagenicity in the Ames test and the lack of cytotoxicity against HepG2 cell line. Moreover, Cunninghamella treatment positively influenced OUVFs SH-SY5Y neurotoxicity and ecotoxicity. After fungal treatment, BP-3 agonistic estrogenic activity was higher, whereas antagonistic androgenic effect was lower than before biotransformation. 4-MBC, after biotransformation, lost agonistic estrogenic activity, but gained antagonistic estrogenic properties. Additionally, this study confirmed the involvement of CYP450 enzymes in BP-3 and 4-MBC biotransformation, thus contributing to a better understanding of the detoxification pathways of OUVFs in fungi. In conclusion, these findings demonstrated, for the first time, that using environmental fungi Cunninghamella for the biodegradation of BP-3 and 4-MBC represents a potent approach for eliminating contaminants from the natural environment.
Collapse
Affiliation(s)
- Aleksandra Murzyn
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland.
| | - Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland.
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland.
| | - Dorota Żelaszczyk
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland.
| | - Barbara Dąbrówka
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland.
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland.
| | - Kamil Piska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland.
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Krakow 30-688, Poland.
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland.
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, Kraków 30-688, Poland.
| |
Collapse
|
10
|
Ask AV, Jaspers VLB, Zhang J, Asimakopoulos AG, Frøyland SH, Jolkkonen J, Prian WZ, Wilson NM, Sonne C, Hansen M, Öst M, Koivisto S, Eeva T, Vakili FS, Arzel C. Contaminants of emerging concern in an endangered population of common eiders (Somateria mollissima) in the Baltic Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125409. [PMID: 39613177 DOI: 10.1016/j.envpol.2024.125409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/20/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Contaminants of emerging concern (CECs) are ubiquitous in aquatic environments and pose a range of biological effects including endocrine disruption. Yet, knowledge of their occurrence in wildlife including seabirds remains scarce. We investigated the occurrence of selected bisphenols, benzophenones, phthalate metabolites, benzotriazoles, benzothiazoles, parabens, triclosan, and triclocarban in plasma of 18 breeding female common eiders (Somateria mollissima) from an endangered population in the Baltic Sea as most of these CECs have never before been examined in eiders. We sampled blood at the start (T1) and end (T2) of incubation to investigate concentration changes during incubation. As early- and late-breeding eiders tend to differ in how they finance reproduction (local vs stored nutrient reserves), we compared early and late breeders to assess whether CEC concentrations differed by breeding phenology. Of the 58 targeted CECs, 21 were detected in at least one female, with bisphenol A (BPA) and benzophenone-3 (BzP-3) occurring most frequently (T1: 78% and 61%; T2: 61% and 67%, respectively), while mono(2-ethyl-1-hexyl) phthalate (mEHP), BPA, and monoethyl phthalate (mEP) were detected in the highest concentrations (median concentrations 27.1, 12.7, and 11.2 ng/g wet weight, respectively, at T1). No CEC concentrations differed between early and late incubation. Late breeders had significantly higher concentrations of BzP-3, monomethyl phthalate (mMP), and mEP during early incubation (4.55 vs 1.24 ng/g ww, 7.05 vs 3.52, and 11.2 vs < limit of detection (LOD), respectively) and significantly higher concentrations of mMP and mEP during late incubation (6.16 vs
Collapse
Affiliation(s)
- Amalie V Ask
- Department of Biology, University of Turku, FI-20014, Turku, Finland.
| | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Junjie Zhang
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Alexandros G Asimakopoulos
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Sunniva H Frøyland
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Juho Jolkkonen
- Department of Biological and Environmental Science, FI-40014, University of Jyväskylä, Finland
| | - Wasique Z Prian
- Department of Biology, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Nora M Wilson
- Ab Bengtskär Oy, FI-25950, Rosala, Finland; Physics, Faculty of Science and Engineering, Åbo Akademi University, FI-20500, Turku, Finland
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Arctic Research Centre (ARC), DK-4000, Roskilde, Denmark
| | - Martin Hansen
- Department of Environmental Science, Aarhus University, DK-4000, Roskilde, Denmark
| | - Markus Öst
- Environmental and Marine Biology, Åbo Akademi University, FI-20500, Turku, Finland
| | - Sanna Koivisto
- Finnish Safety and Chemicals Agency, P.O. Box 66, FI-00521, Helsinki, Finland
| | - Tapio Eeva
- Department of Biology, University of Turku, FI-20014, Turku, Finland
| | - Farshad S Vakili
- Department of Biology, University of Turku, FI-20014, Turku, Finland
| | - Céline Arzel
- Department of Biology, University of Turku, FI-20014, Turku, Finland
| |
Collapse
|
11
|
Li HM, Gao YR, Chang Q, Pei XY, Sun JH, Lin YJ, Tian YN, Qiang-Wang, Zhao B, Xie HQ, Ma HM, Xu HM. BP-3 exposure at environmentally relevant concentrations induced male developmental reproductive toxicity via ER/CCL27/ROS pathway in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117556. [PMID: 39689453 DOI: 10.1016/j.ecoenv.2024.117556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 12/13/2024] [Indexed: 12/19/2024]
Abstract
BP-3 is the most widely used ultraviolet absorber, but its toxic effects and mechanisms far from being elucidated. This study evaluated the male developmental reproductive toxicities and mechanism of low-doses of BP-3. The results indicated that BP-3 (2.28 and 228 μg/L) led to a decrease in sperm quantity, quality and testosterone level, impaired blood-testis barrier (BTB) integrity and cytoskeleton, accompanied by aggravated oxidative stress in testes of mice on postnatal day 56 (PND 56). Notably, chemokine CCL27, a driver of oxidative stress, was significantly upregulated induced by BP-3. Similar disrupted effects were detected in testes of mice on PND14, which could be antagonized by ICI 182780 (estrogen receptor antagonist). Mechanistically, BP-3 directly interacted with ER, which boosted CCL27 expression, reactive oxygen species (ROS) accumulation, and BTB and cytoskeleton impairment. In vitro, si-CCL27 and/or ROS scavenger treatment significantly antagonized BP-3-induced oxidative stress and the decrease of BTB and cytoskeleton related genes in TM4 cells. These findings demonstrate that prolonged exposure to low-doses of BP-3 resulted in detrimental effects on testicular development through activation of the ER/CCL27/ROS axis. This study provides a novel perspective understanding the male reproductive toxicity risk caused by BPs exposure at low-doses.
Collapse
Affiliation(s)
- Hong-Mei Li
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yan-Rong Gao
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Qing Chang
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Xiu-Ying Pei
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Jia-He Sun
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Yu-Jia Lin
- School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Ya-Nan Tian
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Qiang-Wang
- Medical Science and Technology Research Center, Yinchuan, Ningxia 750004, China
| | - Bin Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Heidi Qunhui Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hui-Ming Ma
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Hai-Ming Xu
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; School of Public Health, Ningxia Medical University, Yinchuan, Ningxia 750004, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
12
|
Ma H, Li J, Ma H. Associations of phenols, parabens, and phthalates with biological aging: stratified analyses by chronological age and lifestyle in NHANES 2005-2010. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-17. [PMID: 39801106 DOI: 10.1080/09603123.2025.2451626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025]
Abstract
Humans are widely exposed to phenols, parabens, and phthalates with health risks, while the effects of these chemicals on biological aging remain unclear. Among 3,441 adults in the National Health and Nutrition Examination Survey 2005-2010, phenol, paraben, and phthalate concentrations were measured and phenotypic age acceleration (PhenoAgeAccel) was calculated. Linear regression and weighted quantile sum (WQS) regression were used to evaluate the associations of single and mixed chemicals with PhenoAgeAccel. Stratified analyses by chronological age and lifestyle were also performed. Individual phthalates were positively associated with PhenoAgeAccel. The WQS model found the positive relationship between mixed chemicals with PhenoAgeAccel (β = 0.175, 95%CI: 0.001, 0.349). The adverse impacts of phenols and phthalates on biological aging were stronger in older participants with significant interactions. Adherence to healthier lifestyle might partly reduce the positive relationships of phenols and phthalates with biological aging, especially among older adults, which is expected to be a viable intervention in the future.
Collapse
Affiliation(s)
- Han Ma
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, P.R.China
| | - Jinyue Li
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hanping Ma
- Office of Human Resources, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Wei X, Zhang N, Zhu Q, Hu Y, Wang X, Weng X, Liao C, Jiang G. Exposure to Multiple Endocrine-Disrupting Chemicals and Associations with Female Infertility: A Case-Control Study. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:902-911. [PMID: 39722846 PMCID: PMC11667288 DOI: 10.1021/envhealth.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 12/28/2024]
Abstract
Parabens (PBs) and their metabolites (MBs), triclocarban (TCC), triclosan (TCS), bisphenols (BPs), benzophenones (BzPs), and phthalate metabolites (mPAEs) are typical endocrine-disrupting chemicals (EDCs) used in industrial production and daily life. Studies have suggested that these EDCs affect the reproductive system and may cause infertility; however, epidemiological evidence linking EDC exposure to infertility is still lacking. Herein, a total of 302 serum samples from women of reproductive age were collected, and six categories of typical EDCs were analyzed. The results revealed that EDCs are ubiquitous in female serum. The geometric mean (GM) concentrations of ∑PBs, ∑MBs, ∑(TCS+TCC), ∑BPs, ∑BzPs, and ∑mPAEs were 3.36, 297, 3.87, 4.39, 0.257, and 4.56 ng/mL, respectively. The serum concentrations of ∑PBs, ∑MBs, ∑(TCS+TCC), and ∑mPAEs from infertile women (GM: 4.16, 397, 4.01, and 7.33, respectively) were higher than those from fertile women (2.45, 192, 3.65, and 2.27, respectively) (p < 0.05). The results of binary logistic regression and random forest suggest that mPAEs, such as mBP/miBP and mEHP, may contribute to infertility. This study provides insight into the relationship between the EDC exposure and reproductive outcomes.
Collapse
Affiliation(s)
- Xianping Wei
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Na Zhang
- Department
of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, China
| | - Qingqing Zhu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Yu Hu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Wang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueyu Weng
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
- Institute
of Environment and Health, Hangzhou Institute for Advanced Study,
UCAS, Hangzhou, Zhejiang 310024, China
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan, Hubei 430056, China
| | - Guibin Jiang
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
- Institute
of Environment and Health, Hangzhou Institute for Advanced Study,
UCAS, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
14
|
Li HM, Gao YR, Liu C, Sheng YX, Pu YJ, Sun JH, Tian YN, Yang L, Ma HM, Xu HM. Preliminary Study on the Positive Expression Regulation of Alpha2-Macroglobulin in the Testicular Tissue of Male Mice by Environmental Estrogens. Int J Mol Sci 2024; 25:13434. [PMID: 39769199 PMCID: PMC11676208 DOI: 10.3390/ijms252413434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
The male reproductive impairment caused by environmental estrogens (EEs) stands as a pivotal research area in environmental toxicology. Alpha2-macroglobulin (A2M) emerges as a promising molecule capable of counteracting oxidative stress induced by EEs. This study conducted exposure experiments spanning PND1 to PND56 employing ICR mice, aiming to delve into the expression patterns of A2M and its modulated IL-6 in the testicular tissue of mice subsequent to diethylstilbestrol (DES) and benzophenone (BP) exposure, while elucidating the pivotal role of ERs in this intricate process. Our findings revealed that upon DES exposure (10 and 100 nM), there was a pronounced upregulation of A2M (mRNA and in situ protein levels) in mouse testicular tissue. Similarly, exposure to BPs (BP-1, BP-2, and BP-3, each at 10 and 1000 nM) exhibited comparable effects and increasing A2M levels in serum. Notably, BP exposure also caused an elevation in IL-6 levels (which could be directly regulated by A2M) within testicular tissue (mRNA and in situ protein). Remarkably, the specific estrogen receptor antagonist ICI 182780 (0.5 mg/kg/day) was effective in reversing the upregulation of both A2M and IL-6 induced by BP exposure. Significantly, the results of theoretical prediction of the potential ERE site in the A2m gene promoter region and ChIP-qPCR experiment provide essential and strong evidence for the key conclusion that A2m is the target gene of ER. Taken together, our study highlights EEs' ability to regulate A2M expression in the male reproductive system via the ER signaling pathway. This vital insight deepens our understanding of molecular mechanisms protecting against oxidative stress caused by EEs.
Collapse
Affiliation(s)
- Hong-Mei Li
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (H.-M.L.); (Y.-R.G.); (C.L.); (Y.-X.S.); (Y.-J.P.); (J.-H.S.); (Y.-N.T.)
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China
| | - Yan-Rong Gao
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (H.-M.L.); (Y.-R.G.); (C.L.); (Y.-X.S.); (Y.-J.P.); (J.-H.S.); (Y.-N.T.)
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China
| | - Chang Liu
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (H.-M.L.); (Y.-R.G.); (C.L.); (Y.-X.S.); (Y.-J.P.); (J.-H.S.); (Y.-N.T.)
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Yu-Xin Sheng
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (H.-M.L.); (Y.-R.G.); (C.L.); (Y.-X.S.); (Y.-J.P.); (J.-H.S.); (Y.-N.T.)
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China
| | - Ya-Jia Pu
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (H.-M.L.); (Y.-R.G.); (C.L.); (Y.-X.S.); (Y.-J.P.); (J.-H.S.); (Y.-N.T.)
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China
| | - Jia-He Sun
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (H.-M.L.); (Y.-R.G.); (C.L.); (Y.-X.S.); (Y.-J.P.); (J.-H.S.); (Y.-N.T.)
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Ya-Nan Tian
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (H.-M.L.); (Y.-R.G.); (C.L.); (Y.-X.S.); (Y.-J.P.); (J.-H.S.); (Y.-N.T.)
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Li Yang
- Laboratory Animal Centre, Ningxia Medical University, Yinchuan 750004, China
| | - Hui-Ming Ma
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (H.-M.L.); (Y.-R.G.); (C.L.); (Y.-X.S.); (Y.-J.P.); (J.-H.S.); (Y.-N.T.)
- School of Basic Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Hai-Ming Xu
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan 750004, China; (H.-M.L.); (Y.-R.G.); (C.L.); (Y.-X.S.); (Y.-J.P.); (J.-H.S.); (Y.-N.T.)
- School of Public Health, Ningxia Medical University, Yinchuan 750004, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
15
|
Przepiórska-Drońska K, Łach A, Pietrzak-Wawrzyńska BA, Rzemieniec J, Kajta M, Wawrzczak-Bargieła A, Bilecki W, Noworyta K, Wnuk A. Multigenerational Consequences of Prenatal Exposure to Benzophenone-3 Demonstrate Sex- and Region-Dependent Neurotoxic and Pro-Apoptotic Effects in Mouse Brain. TOXICS 2024; 12:906. [PMID: 39771121 PMCID: PMC11728767 DOI: 10.3390/toxics12120906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Benzophenone-3 (BP-3), commonly used as a UV filter in personal care products and as a stabilizer, is an alleged endocrine disruptor with potential neurodevelopmental impacts. Despite its abundance in the environment, the studies on its effect on brain development are scarce, especially in terms of multigenerational impact. In this work, for the first time, we examined neurotoxic and pro-apoptotic effects of BP-3 on mouse brain regions (cerebral cortex and hippocampus) in both the first (F1) and second (F2) generations after maternal exposure to environmentally relevant BP-3 levels. We found disregulated markers of cell damage (LDH, H2O2, caspase-3 and -8) and observed increased expression of pro-apoptotic Fas/FAS or Fasl/FASL. BP-3 exposure disrupted the BAX/BCL2 pathway, showing stronger effects in the F1 than in the F2 generation, with a dominance of extrinsic pathway (FAS, FASL, caspase-8) over intrinsic one (BAX, BCL2), suggesting that BP-3-induced apoptosis primarily operates via the extrinsic pathway and could impair brain homeostasis across generations. This study underscores the potential of BP-3 to increase multigenerational risks associated with disrupted neurodevelopment and highlights the importance of understanding its long-term neurotoxic effects.
Collapse
Affiliation(s)
- Karolina Przepiórska-Drońska
- Laboratory of Neuropharmacology and Epigenetics, Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland; (K.P.-D.); (A.Ł.); (B.A.P.-W.); (M.K.)
| | - Andrzej Łach
- Laboratory of Neuropharmacology and Epigenetics, Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland; (K.P.-D.); (A.Ł.); (B.A.P.-W.); (M.K.)
| | - Bernadeta Angelika Pietrzak-Wawrzyńska
- Laboratory of Neuropharmacology and Epigenetics, Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland; (K.P.-D.); (A.Ł.); (B.A.P.-W.); (M.K.)
| | - Joanna Rzemieniec
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy;
| | - Małgorzata Kajta
- Laboratory of Neuropharmacology and Epigenetics, Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland; (K.P.-D.); (A.Ł.); (B.A.P.-W.); (M.K.)
| | - Agnieszka Wawrzczak-Bargieła
- Department of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (A.W.-B.); (W.B.)
| | - Wiktor Bilecki
- Department of Pharmacology and Brain Biostructure, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland; (A.W.-B.); (W.B.)
| | - Karolina Noworyta
- Affective Cognitive Neuroscience Laboratory, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland;
| | - Agnieszka Wnuk
- Laboratory of Neuropharmacology and Epigenetics, Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Krakow, Poland; (K.P.-D.); (A.Ł.); (B.A.P.-W.); (M.K.)
| |
Collapse
|
16
|
Zhang Y, Tu L, Chen J, Zhou L. Interference Mechanisms of Endocrine System and Other Systems of Endocrine-Disrupting Chemicals in Cosmetics-In Vitro Studies. Int J Endocrinol 2024; 2024:2564389. [PMID: 39659890 PMCID: PMC11631346 DOI: 10.1155/ije/2564389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 10/07/2024] [Accepted: 11/02/2024] [Indexed: 12/12/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs), found in various cosmetic products, interfere with the normal functioning of the endocrine system, impacting hormone regulation and posing risks to human health. Common cosmetic EDCs, such as ultraviolet (UV) filters, parabens, and triclosan, can enter the human body through different routes, including skin absorption. Their presence has been linked to adverse effects on reproduction, immune function, and development. High-throughput in vitro assays, using various human cell lines, were employed to assess the effects of common cosmetic EDCs such as ethylhexyl methoxycinnamate (EHMC), benzophenone-3 (BP-3), homosalate, and parabens. Despite ongoing regulatory efforts, gaps persist in understanding their long-term impacts, particularly when they are present as mixtures or degradation products in the environment. This study focuses on recent in vitro research to investigate the mechanisms through which cosmetic-related EDCs disrupt the endocrine system and other physiological systems. The in vitro findings highlight the broader systemic impact of these chemicals, extending beyond the endocrine system to include immune, reproductive, and cardiovascular effects. This research underscores the importance of developing safer cosmetic formulations and enhancing public health protection, emphasizing the need for stricter regulations.
Collapse
Affiliation(s)
- Yixuan Zhang
- NMPA Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai Innovation R&D, Testing and Evaluation Technical Service Platform of Cosmetics (22DZ2292100), Department of Evaluation of Cosmetics, Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhongshan Rd. W., Changning, Shanghai 200336, China
| | - Lihong Tu
- Division of Public Health Service and Safety Assessment, Shanghai Institute of Preventive Medicine, 1380 Zhongshan Rd. W., Changning, Shanghai 200336, China
| | - Jian Chen
- NMPA Key Laboratory for Monitoring and Evaluation of Cosmetics, Shanghai Innovation R&D, Testing and Evaluation Technical Service Platform of Cosmetics (22DZ2292100), Department of Evaluation of Cosmetics, Shanghai Municipal Center for Disease Control and Prevention, 1380 Zhongshan Rd. W., Changning, Shanghai 200336, China
| | - Lihong Zhou
- Division of Public Health Service and Safety Assessment, Shanghai Institute of Preventive Medicine, 1380 Zhongshan Rd. W., Changning, Shanghai 200336, China
| |
Collapse
|
17
|
Li Y, Wang G, Liu P, Zhang L, Hu H, Yang X, Liu H. The impact of Benzophenone-3 on osteoarthritis pathogenesis: a network toxicology approach. Toxicol Res (Camb) 2024; 13:tfae199. [PMID: 39677492 PMCID: PMC11645663 DOI: 10.1093/toxres/tfae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/13/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
Background Arthritis is a degenerative joint disease influenced by various environmental factors, including exposure to Benzophenone-3 (BP3), a common UV filter. This study aims to elucidate the toxicological impact of BP3 on arthritis pathogenesis using network toxicology approaches. Method We integrated data from the Comparative Toxicogenomics Database (CTD) and Gene Expression Omnibus (GEO) to identify differentially expressed BP3-related toxicological targets in osteoarthritis (OA). Enrichment analyses were conducted to determine the implicated biological processes, cellular components, and molecular functions. Further, the involvement of the PI3K-Akt signaling pathway was investigated, along with correlations with immune cell infiltration and immune-related pathways. Molecular docking analysis was performed to examine BP3 interactions with key PI3K-Akt pathway proteins. Results A total of 74 differentially expressed BP3-related targets were identified. Enrichment analysis revealed significant pathways, including PI3K-Akt, MAPK, and HIF-1 signaling. The PI3K-Akt pathway showed notable dysregulation in OA, with reduced activity and differential expression of key genes such as ANGPT1, ITGA4, and PIK3R1. Correlation analysis indicated significant associations between PI3K-Akt pathway activity and various immune cell types and immune pathways. Molecular docking highlighted strong interactions between BP3 and proteins like AREG, suggesting potential disruptions in signaling processes. Conclusions BP3 exposure significantly alters the expression of toxicological targets and disrupts the PI3KAkt signaling pathway, contributing to OA pathogenesis. These findings provide insights into the molecular mechanisms of BP3-induced OA and identify potential therapeutic targets for mitigating its effects.
Collapse
Affiliation(s)
- Yongji Li
- Department of Orthopaedics and Traumatology I, Heilongjiang University of Chinese Medicine Second Affiliated Hospital Hanan Branch, No. 26, Hanan Second Avenue, Pingfang District, Harbin 150060, China
| | - Geqiang Wang
- Department of Orthopaedics and Traumatology III, The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, No. 26, Hanan Second Avenue, Pingfang District, Harbin 150040, China
| | - Peiran Liu
- Department of Orthopaedics and Traumatology I, Heilongjiang University of Chinese Medicine Second Affiliated Hospital Hanan Branch, No. 26, Hanan Second Avenue, Pingfang District, Harbin 150060, China
| | - Lin Zhang
- Department of Geriatrics, Heilongjiang University of Chinese Medicine Second Affiliated Hospital Hanan Branch, No. 26, Hanan Second Avenue, Pingfang District, Harbin 150060, China
| | - Hai Hu
- Department of Orthopaedics and Traumatology I, Heilongjiang University of Chinese Medicine Second Affiliated Hospital Hanan Branch, No. 26, Hanan Second Avenue, Pingfang District, Harbin 150060, China
| | - Xiangjun Yang
- Department of Orthopaedics and Traumatology I, Heilongjiang University of Chinese Medicine Second Affiliated Hospital Hanan Branch, No. 26, Hanan Second Avenue, Pingfang District, Harbin 150060, China
| | - Hongpeng Liu
- Department of Orthopaedics and Traumatology I, The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, No. 411, Gogol Street, Nangang District, Harbin 150000, China
| |
Collapse
|
18
|
Kley M, Stücheli S, Ruffiner P, Temml V, Boudon S, Schuster D, Odermatt A. Potential antiandrogenic effects of parabens and benzophenone-type UV-filters by inhibition of 3α-hydroxysteroid dehydrogenases. Toxicology 2024; 509:153997. [PMID: 39532263 DOI: 10.1016/j.tox.2024.153997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Parabens and UV-filters are frequently used additives in cosmetics and body care products that prolong shelf-life. They are assessed for potential endocrine disrupting properties. Antiandrogenic effects of parabens and benzophenone-type UV-filters by blocking androgen receptor (AR) activity have been reported. Effects on local androgen formation received little attention. Local 5α-dihydrotestosterone (DHT) production with subsequent AR activation is required for male external genitalia formation during embryogenesis. We investigated whether parabens and benzophenone-type UV-filters might cause potential antiandrogenic effects by inhibiting oxidative 3α-hydroxysteroid dehydrogenases (3α-HSDs) involved in the backdoor pathway of DHT formation. Five different 3α-HSDs were assessed for their efficiency to catalyze the 3α-oxidation reaction to form DHT and activate AR. 17β-hydroxysteroid dehydrogenase type 6 (HSD17B6), retinol dehydrogenases type 5 and 16 were further assessed using a radiometric in vitro activity assay to determine the conversion of 5α-androstane-3α-ol-17-one to 5α-androstane-3,17-dione in lysates of overexpressing HEK-293 cells. All parabens tested, except p-hydroxybenzoic acid (a main metabolite) inhibited HSD17B6 activity. Hexyl- and heptylparaben, as well as benzophenone (BP)-1 and BP-2, showed the highest inhibitory potencies, with nanomolar IC50 values. Molecular modeling predicted binding modes for the inhibitory parabens and BPs and provided an explanation for the observed structure-activity-relationship. Our results propose a novel mechanism of antiandrogenic action for commercially used parabens and BP UV-filters by inhibiting HSD17B6 and lowering DHT synthesis. Follow-up studies should assess BP-3 metabolism after topical application and whether the identified inhibitors reach concentrations in liver, testis, or prostate to inhibit HSD17B6, thereby causing antiandrogenic effects.
Collapse
Affiliation(s)
- Manuel Kley
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland; Swiss Centre for Applied Human Toxicology and Department of Pharmaceutical Sciences, University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland
| | - Simon Stücheli
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland
| | - Pamela Ruffiner
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland; Swiss Centre for Applied Human Toxicology and Department of Pharmaceutical Sciences, University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland
| | - Veronika Temml
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University, Strubergasse 21, Salzburg 5020, Austria
| | - Stéphanie Boudon
- Swiss Centre for Applied Human Toxicology and Department of Pharmaceutical Sciences, University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland
| | - Daniela Schuster
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University, Strubergasse 21, Salzburg 5020, Austria
| | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland; Swiss Centre for Applied Human Toxicology and Department of Pharmaceutical Sciences, University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland.
| |
Collapse
|
19
|
Parks CG, Jusko TA, Meier HCS, Wilkerson J, Rider LG, Miller FW, Sandler DP. Sunscreen use associated with elevated prevalence of anti-nuclear antibodies in U.S. adults. J Autoimmun 2024; 149:103340. [PMID: 39581147 PMCID: PMC11730459 DOI: 10.1016/j.jaut.2024.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/02/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
BACKGROUND Antinuclear antibody (ANA) prevalence in the U.S. population increased from 1988 to 2012, especially in white and more educated individuals. In adults ages 20-39 years from the National Health and Nutrition Examination Survey (NHANES) 2003-2004 and 2011-2012, ANA prevalence was previously associated with urinary concentrations of a common sunscreen ingredient, benzophenone 3, measured in winter. Spot urines may not capture relevant chronic exposures, thus we examined whether ANA was related to sunscreen use. METHODS In a cross-sectional study of adults ages 20-59 (N = 416 ANA positive, 2656 ANA negative, by Hep-2 immunofluorescence, 1:80 dilution), we examined associations of ANA with reported sunscreen use when in the sun for 1 h or more. Logistic regression was used to calculate covariate-adjusted prevalence odds ratios (POR) and 95 % Confidence Intervals (CI), overall and stratified by demographic factors, season, and vitamin D. We explored associations and joint effects with other sun protective behaviors and sunburn in the past 12 months. RESULTS The association of ANA with sunscreen differed by age (interaction p = 0.004): for ages 20-39, we saw an exposure response (POR 2.61, 95 % CI 1.50, 4.24 for using sunscreen always or most of the time, and POR 1.85; 1.12, 3.05 for less frequent versus never-use; trend p < 0.001). These associations were more apparent in females (interaction p = 0.082), non-Hispanic white and black participants (vs. other race/ethnicity, interaction p = 0.023), and those with sufficient serum vitamin D (≥50 vs. <50 nmol/L, interaction p = 0.001). ANA was not associated with other protective behaviors and not confounded or modified by these behaviors or recent sunburn. CONCLUSIONS These cross-sectional findings showed frequent sunscreen was associated with ANA in younger adults, supporting the need for replication, and longitudinal studies with detailed exposure histories.
Collapse
Affiliation(s)
- Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| | - Todd A Jusko
- Departments of Public Health Sciences, Environmental Medicine, and Pediatrics University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
| | - Helen C S Meier
- Population, Neurodevelopment and Genetics Program, Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, 48106, USA
| | | | - Lisa G Rider
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Frederick W Miller
- Environmental Autoimmunity Group, Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
20
|
Castillero-Rosales I, Alvarado-González NE, Núñez-Samudio V, Suárez B, Olea N, Iribarne-Durán LM. Exposure to bisphenols, parabens, and benzophenones in colostrum breast milk of Panamanian women: A pilot study from the PA-MAMI cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176677. [PMID: 39374701 DOI: 10.1016/j.scitotenv.2024.176677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
BACKGROUND Breast milk is the optimal source of nutrition for infants but can also expose them to endocrine-disrupting chemicals (EDCs), among other environmental contaminants. AIM To determine concentrations of non-persistent phenolic EDCs (three bisphenols, four parabens [PBs], and six benzophenones [BPs]), in colostrum samples from Panamanian mothers and to examine associated reproductive, sociodemographic, and life-style factors. METHODS Dispersive liquid-liquid microextraction was used to measure concentrations of bisphenol A (BPA), bisphenol F (BPF), bisphenol S (BPS), methyl- (MeP), ethyl- (EtP), propyl- (n-PrP), and butyl-paraben (n-BuP), and benzophenones BP-1, BP-2, BP-3, BP-6, BP-8, and 4-hydroxy-BP in colostrum milk samples from 36 mothers. An ad hoc questionnaire was used to collect data on potential influentially variables, and multiple linear and logistic regression analyses were conducted. RESULTS Two or more tested EDCs were detected in 36 colostrum samples (100 %), at least four in 14 samples (38.9 %), and at least six in 4 samples (11.1 %). The most frequently detected compounds were BPA (91.7 %), BP-8 (63.9 %), MeP (47.2 %), and BPF (41.7 %). The median concentration was 3.45 ng/mL for BP-8 and 1.37 ng/mL for BPA. No concentrations of n-PrP, BP-1, BP-6, or 4-hydroxy-BP were detected. Associations were observed between phenolic EDC concentrations and maternal place of residence, consumption frequency of poultry, fish, fresh cheese, fruit, yogurt and chocolate, intake of nutritional supplements, and application of some personal care products. CONCLUSIONS Bisphenols, parabens, and benzophenones were widely present in colostrum milk samples from Panamanian women. Preventive measures are needed to maximize the benefits of breastfeeding.
Collapse
Affiliation(s)
- I Castillero-Rosales
- Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Departamento de Química Analítica. Panamá
| | - N E Alvarado-González
- Instituto Especializado de Análisis (IEA), Vicerrectoría de Investigación y Postgrado, Universidad de Panamá, Panamá
| | - V Núñez-Samudio
- Departamento de Salud Pública, Sección de Epidemiología, Región de Salud de, Herrera. Ministerio de Salud. Panamá; Instituto de Ciencias Médicas, Las Tablas, Los Santos, Panamá
| | - B Suárez
- Departmento de Química Analítica, Universidad de Granada, 18071 Granada, Spain
| | - N Olea
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012 Granada. Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), E-28029 Madrid. Spain; Departamento de Radiología y Medicina Física, Universidad de Granada, E-18016 Granada. Spain; Unidad de Medicina Nuclear, Hospital Universitario San Cecilio, E-18016 Granada, Spain
| | - L M Iribarne-Durán
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), E-18012 Granada. Spain.
| |
Collapse
|
21
|
Gautam K, Anbumani S. Understudied and underestimated impacts of organic UV filters on terrestrial ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176008. [PMID: 39236826 DOI: 10.1016/j.scitotenv.2024.176008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/28/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Organic UV filters (OUVFs) are vital components in various personal care products (PCPs) and commercial goods, with the annual consumption estimated at 10,000 tons. Consequently, the unavoidable use of OUVFs in PCPs and other unregulated commercial applications could present a considerable risk to human and environmental health. These chemical entities enter terrestrial ecosystems through wastewater discharge, agriculture, atmospheric deposition, and recreational activities. Compared to aqueous ecosystems, the effects of OUVFs on terrestrial environments should be more studied and potentially underestimated. The present review addresses the abovementioned gap by summarizing 189 studies conducted between 2006 and 2024, focusing on the analytical measures, occurrence, and ecotoxicological effects of OUVFs on terrestrial ecosystems. These studies underscore the harmful effects of certain OUVFs on the development, reproduction, and endocrine systems of terrestrial organisms, highlighting the necessity for comprehensive toxicological assessments to understand their impacts on non-target species in terrestrial ecosystems. Besides, by underscoring the ecological effects of OUVFs, this review aims to guide future research and inform regulatory measures to mitigate the risks posed by these widespread contaminants. Meanwhile, interdisciplinary research is essential, integrating environmental science, toxicology, ecology, and chemistry to tackle OUVF challenges in terrestrial ecosystems.
Collapse
Affiliation(s)
- Krishna Gautam
- Ecotoxicology Laboratory, Regulatory Toxicology Group, REACT Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow 226008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, REACT Division, CSIR-Indian Institute of Toxicology Research, C.R. Krishnamurti (CRK) Campus, Lucknow 226008, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
22
|
Milutinov J, Pavlović N, Ćirin D, Atanacković Krstonošić M, Krstonošić V. The Potential of Natural Compounds in UV Protection Products. Molecules 2024; 29:5409. [PMID: 39598798 PMCID: PMC11597743 DOI: 10.3390/molecules29225409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Overexposure to ultraviolet radiation mainly leads to skin disorders (erythema, burns, immunosuppression), skin aging, and skin cancer as the most serious side effect. It has been widely accepted that using sunscreen products is an important way to protect against the harmful effects of UV rays. Although commercial sunscreens have constantly changed and improved over time, there are emerging concerns about the safety of conventional, organic, UV filters due to adverse effects on humans (such as photoallergic dermatitis, contact sensitivity, endocrine-disrupting effects, etc.) as well as accumulation in the environment and aquatic organisms. This is why natural compounds are increasingly being investigated and used in cosmetic and pharmaceutical sunscreens. Some of these compounds are widely available, non-toxic, safer for use, and have considerable UV protective properties and less side effects. Plant-based compounds such as flavonoids can absorb UVA and UVB rays and possess antioxidant, anticarcinogenic, and anti-inflammatory effects that contribute to photoprotection. Apart from flavonoids, other natural products such as certain vegetable oils, carotenoids, stilbenes, and ferulic acid also have UV-absorbing properties. Some vitamins might also be beneficial for skin protection due to their antioxidant activity. Therefore, the aim of this research was to gain insight into the potential of natural compounds to replace or reduce the amount of conventional UV filters, based on recent research.
Collapse
Affiliation(s)
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (J.M.); (D.Ć.); (M.A.K.); (V.K.)
| | | | | | | |
Collapse
|
23
|
Morgan EM, Fayez YM, Boltia SA, Obaydo RH, Abdelkawy M, Lotfy HM. ChlorTox scale assessment, greenness, and whiteness evaluation of selective spectrophotometric analysis of dimenhydrinate and cinnarizine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124740. [PMID: 38963943 DOI: 10.1016/j.saa.2024.124740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/07/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Nausea and vomiting are considered common series side effects induced by chemotherapy treatment in cancer patients. This annoying side effect can impair the patient's compliance to cancer treatment and affect their quality of life. Dimenhydrinate and cinnarizine in combined pharmaceutical dosage form is used to control chemotherapy induced nausea and vomiting in cancer patients. For safety, selective spectrophotometric methods based on novel dual resolution strategies were introduced to estimate dimenhydrinate and cinnarizine in presence of their harmful impurities namely benzophenone and 1- (diphenylmethyl)piperazine, respectively. These methods namely, dual ratio difference (DRD), dual ratio extraction (DRE) and dual absorbance extraction coupled with dual ratio extraction (DAE-DRE) were successfully performed to simultaneously analyze the drug of interests dimenhydrinate and cinnarizine in their pure form, synthetic mixtures and in market dosage form. Linearity ranges were 6.0-60.0 μg/mL and 3.0-30.0 μg/mL for dimenhydrinate and cinnarizine, respectively with good recovery% of Mean ± SD for all the proposed methods 99.82 ± 0.48, 99.79 ± 0.40, 100.14 ± 0.82, 100.03 ± 0.69, respectively. ICH guidelines were adhered in accordance with confirming validation of the proposed methods where fulfilling results were accomplished. Various unified greenness and whiteness assessment tools, such as the chlorTox scale, greenness index via spider chart, AGREE (The Analytical Greenness Metric), green certificate, and the RGB12 algorithm were employed in this research to assess the greenness and sustainability of the introduced UV-spectrophotometric methods in comparison to the reported HPLC method. As a result, these methods hold significant potential for utilization in the quality control department of pharmaceutical companies, contributing to enhanced pharmaceutical product analysis and overall sustainability practices.
Collapse
Affiliation(s)
- Eman M Morgan
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt, 11853 Cairo, Egypt
| | - Yasmin M Fayez
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., P.O. Box 11562, Cairo, Egypt
| | - Shereen A Boltia
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., P.O. Box 11562, Cairo, Egypt.
| | - Reem H Obaydo
- Analytical and Food Chemistry Department, Faculty of Pharmacy, Ebla Private University, 22743 Idlib, Syria.
| | - M Abdelkawy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., P.O. Box 11562, Cairo, Egypt
| | - Hayam M Lotfy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Future University in Egypt, 11853 Cairo, Egypt
| |
Collapse
|
24
|
Yang Y, Gao R, Zhu Z, Xiao W, Wang J, Zhao W, Li Y. Benzophenone-3 exposure induced apoptosis via impairing mitochondrial function in human chondrocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117286. [PMID: 39520751 DOI: 10.1016/j.ecoenv.2024.117286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Osteoarthritis (OA) is a chronic joint disease affecting millions of adults worldwide, characterized by degeneration of articular cartilage. Many environmental risk factors contribute to OA development. Benzophenone-3 (BP-3), a commonly used ultraviolet filter in personal care products, has been positively associated with OA risk. However, it remains unclear whether and how BP-3 induces toxic effects on articular chondrocytes and promote OA development. This study aims to investigate the damage of BP-3 at environmentally relevant concentrations to human chondrocytes, as well as potential mechanisms linking BP-3 with injury of chondrocytes. Notably, BP-3 significantly inhibited cell viability, induced apoptosis, and up-regulated matrix metalloproteinase (MMP) 1 and 13 which mediated cartilage degradation in C28/I2 human normal chondrocytes. Moreover, the function of mitochondria was impaired and oxidative stress occurred in BP-3 exposure groups, evidenced by elevation of reactive oxygen species (ROS) generation, reduction of mitochondrial membrane potential, decrease of ATP production and inhibition of mitochondrial respiratory chain complex I, II, III and IV. Meanwhile, BP-3 caused mitochondrial cristae vague and formation of autophagosomes. PTEN induced putative kinase 1/E3 ubiquitin protein ligase (PINK1/Parkin) pathway was also activated by BP-3. Addition of autophagy inhibitor, 3-Methyladenine (3-MA), suppressed PINK1/Parkin-mediated mitophagy, but increased BP-3-induced expression of MMP1 and 13, as well as exacerbated BP-3-induced apoptosis, suggesting mitophagy may exert a chondroprotective effect and partially alleviate apoptosis induced by this compound. In brief, BP-3 exposure may increase OA risk via inducing apoptosis and increasing breakdown of extracellular matrix in chondrocytes, and mitochondrial dysfunction and mitophagy may play a crucial role in the mechanisms of BP-3-induced toxicity to articular chondrocytes.
Collapse
Affiliation(s)
- Ye Yang
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| | - Rui Gao
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| | - Zhenyu Zhu
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| | - Wenfeng Xiao
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| | - Jing Wang
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| | - Wenxia Zhao
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China
| | - Yingjun Li
- School of Public Health, Hangzhou Medical College, Hangzhou 310013, China.
| |
Collapse
|
25
|
Hu CY, Xiong C, Lin YL, Zhang TY. Degradation kinetics and disinfection by-products formation of benzophenone-4 during UV/persulfate process. ENVIRONMENTAL TECHNOLOGY 2024; 45:5618-5629. [PMID: 38164528 DOI: 10.1080/09593330.2023.2298669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
The degradation kinetics, reaction pathways, and disinfection by-products formation of an organic UV filter, benzophenone-4 (BP4) during UV/persulfate oxidation were investigated. BP4 can hardly be degraded by UV alone, but can be effectively decomposed by UV/persulfate following pseudo-first order kinetics. BP4 degradation rate was enhanced with increasing persulfate dosage and decreasing pH from 8 to 5. However, the degradation rate of BP4 at pH 9 was higher than that at pH 8 because of the presence of phenolic group in BP4 structure. and SO 4 - ⋅ were confirmed as the major contributors to BP4 decomposition in radical scavenging experiments, and the second-order rate constants between HO ⋅ and BP4 as well as those between SO 4 - ⋅ and BP4 were estimated by establishing and solving a kinetic model. The presence of B r - and humic acid inhibited the decomposition of BP4, while N O 3 - promoted it. The mineralisation of BP4 was only 9.1% at the persulfate concentration of 50 μM. Six degradation intermediates were identified for the promulgation of the reaction pathways of BP4 during UV/persulfate oxidation were proposed as a result. In addition, the formation of DBP in the sequential chlorination was evaluated at different persulfate dosages, pH values, and water matrix. The results of this study can provide essential knowledge for the effective control of DBP formation with reducing potential hazard to provide safe drinking water to the public.
Collapse
Affiliation(s)
- Chen-Yan Hu
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, People's Republic of China
| | - Cun Xiong
- College of Environmental and Chemical Engineering, Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai, People's Republic of China
| | - Yi-Li Lin
- Department of Safety, Health, and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, ROC
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
26
|
Lu FF, Wang Z, Yang QQ, Yan FS, Xu C, Wang MT, Xu ZJ, Cai SY, Guan R. Investigating the metabolomic pathways in female reproductive endocrine disorders: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 15:1438079. [PMID: 39544240 PMCID: PMC11560792 DOI: 10.3389/fendo.2024.1438079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024] Open
Abstract
Introduction Reproductive endocrine disorders (RED), including polycystic ovary syndrome (PCOS), endometriosis (EMs), and female infertility (FI), significantly affect women's health globally, with varying prevalence across different regions. These conditions can be addressed through medication, surgical interventions, and lifestyle modifications. However, the limited understanding of RED's etiology and the substantial economic burden of its treatment highlight the importance of investigating its pathogenesis. Metabolites play a critical role in metabolic processes and are potentially linked to the development of RED. Despite existing studies suggesting correlations between metabolites and RED, conclusive evidence remains scarce, primarily due to the observational nature of these studies, which are prone to confounding factors. Methods This study utilized Mendelian Randomization (MR) to explore the causal relationship between metabolites and RED, leveraging genetic variants associated with metabolite levels as instrumental variables to minimize confounding and reverse causality. Data were obtained from the Metabolomics GWAS Server and the IEU OpenGWAS project. Instrumental variables were selected based on their association with the human gut microbiota composition, and the GWAS summary statistics for metabolites, PCOS, EMs, and FI were analyzed. The MR-Egger regression and random-effects inverse-variance weighted (IVW) methods were employed to validate the causal relationship. Cochran's Q test was employed to evaluate heterogeneity, sensitivity analysis was performed using leave-one-out analysis, and for pleiotropy analysis, the intercept term of MR-Egger's method was investigated. Results The MR analysis revealed significant associations between various metabolites and RED conditions. For instance, a positive association was found between 1-palmitoylglycerophosphocholine and PCOS, while a negative association was noted between phenylacetate and FI. The study identified several metabolites associated with an increased risk and others with protective effects against PCOS, EMs, and FI. These findings highlight the complex interplay between metabolites and RED, suggesting potential pathways through which these conditions could be influenced or treated. Conclusion This MR study provides valuable insights into the causal relationship between metabolites and female reproductive endocrine disorders, suggesting that metabolic alterations play a significant role in the pathogenesis of PCOS, EMs, and FI, and offering a foundation for future research and therapeutic development.
Collapse
Affiliation(s)
- Fei-fan Lu
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zheng Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qian-qian Yang
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Feng-shang Yan
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chang Xu
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ming-tang Wang
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhu-jing Xu
- Department of Obstetrics and Gynecology, Shanghai Sixth People’s Hospital, Shanghai, China
| | - Sheng-yun Cai
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Rui Guan
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
27
|
Ceolotto N, Jagadeesan K, Xu L, Standerwick R, Robertson M, Barden R, Barnett J, Kasprzyk-Hordern B. Personal care products use during SARS-CoV-2 pandemic: Environmental and public health impact assessment using wastewater-based epidemiology. WATER RESEARCH 2024; 268:122624. [PMID: 39490091 DOI: 10.1016/j.watres.2024.122624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024]
Abstract
The recent SARS-CoV-2 pandemic had profound consequences on people's wellbeing, societies and economy worldwide. This manuscript discusses public exposure to chemicals of concern in personal care products (parabens and benzophenones) during SARS-CoV-2 pandemic. These were monitored for two years in four catchments (two cities and two towns) in South West England accounting for >1 million people. Results showed slightly higher usage of personal care products in small towns than big cities. Major changes in usage of parabens (p values < 0.05) were observed during national lockdowns (NLs). This is likely due to increased awareness towards personal hygiene. In contrast, benzophenones showed seasonal trends; there were higher correlations with sunshine prevalence and temperature rather than NLs reflecting their usage in sunscreen products. Estimation of per capita intake of parabens and benzophenones using WBE revealed lower intake than the Acceptable Daily Intake (ADI) established by the EFSA; however, the metabolism factor used was considered putative due to the lack of pharmacokinetic studies. Prediction of environmental exposure revealed peaks of higher impact during NLs and first year of pandemic, nevertheless the overall predicted values were below Predicted No Effect Concentrations (PNEC).
Collapse
Affiliation(s)
- Nicola Ceolotto
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Institute for Sustainability, University of Bath, Bath BA2 7AY, UK; Centre of Excellence in Water Based Early Warning Systems for Health Protection, University of Bath, Bath BA2 7AY, UK
| | - Kishore Jagadeesan
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Centre of Excellence in Water Based Early Warning Systems for Health Protection, University of Bath, Bath BA2 7AY, UK
| | - Like Xu
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - Richard Standerwick
- Wessex Water, Bath BA2 7WW, UK; Environment Agency, Horizon House, Deanery Road, Bristol, UK
| | - Megan Robertson
- Centre of Excellence in Water Based Early Warning Systems for Health Protection, University of Bath, Bath BA2 7AY, UK; Wessex Water, Bath BA2 7WW, UK
| | - Ruth Barden
- Institute for Sustainability, University of Bath, Bath BA2 7AY, UK; Centre of Excellence in Water Based Early Warning Systems for Health Protection, University of Bath, Bath BA2 7AY, UK; Wessex Water, Bath BA2 7WW, UK
| | - Julie Barnett
- Centre of Excellence in Water Based Early Warning Systems for Health Protection, University of Bath, Bath BA2 7AY, UK; Department of Psychology, University of Bath, Bath BA2 7AY, UK
| | - Barbara Kasprzyk-Hordern
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK; Institute for Sustainability, University of Bath, Bath BA2 7AY, UK; Centre of Excellence in Water Based Early Warning Systems for Health Protection, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
28
|
Moreira Morais J, da Silva Brito R, Saiki P, Cirqueira Dias F, de Oliveira Neto JR, da Cunha LC, Lopes Rocha T, Bailão EFLC. Ecotoxicological assessment of UV filters benzophenone-3 and TiO 2 nanoparticles, isolated and in a mixture, in developing zebrafish ( Danio rerio). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:687-700. [PMID: 38836411 DOI: 10.1080/15287394.2024.2362809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The increasing use of UV filters, such as benzophenone-3 (BP-3) and titanium dioxide nanoparticles (TiO2 NPs), has raised concerns regarding their ecotoxicological effects on the aquatic environment. The aim of the present study was to examine the embryo-larval toxicity attributed to BP-3 or TiO2 NPs, either alone or in a mixture, utilizing zebrafish (Danio rerio) as a model after exposure to environmentally relevant concentrations of these compounds. Zebrafish embryos were exposed to BP-3 (10, 100, or 1000 ng/L) or TiO2 NPs (1000 ng/L) alone or in a mixture (BP-3 10, 100, or 1000 ng/L plus 1000 ng/L of TiO2 NPs) under static conditions for 144 hr. After exposure, BP-3 levels were determined by high-performance liquid chromatography (HPLC). BP-3 levels increased in the presence of TiO2 NPs, indicating that the BP-3 degradation decreased in the presence of the NPs. In addition, in the presence of zebrafish, BP-3 levels in water decreased, indicating that zebrafish embryos and larvae might absorb BP-3. Data demonstrated that, in general, environmentally relevant concentrations of BP-3 and TiO2 NPs, either alone or in a mixture, did not significantly induce changes in heart and spontaneous contractions frequencies, levels of reactive oxygen species (ROS), morphological and morphometric parameters as well as mortality rates during 144 hr exposure. However, the groups exposed to TiO2 NPs alone and in a mixture with BP-3 at 10 ng/L exhibited an earlier significant hatching rate than the controls. Altogether, the data indicates that a potential ecotoxicological impact on the aquatic environment exists.
Collapse
Affiliation(s)
- Jéssyca Moreira Morais
- Laboratory of Biotechnology, Central Campus, State University of Goiás, Anápolis, Goiás, Brazil
| | - Rafaella da Silva Brito
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Patrícia Saiki
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
- Federal Institute of Education, Science and Technology of Goiás (IFG), Goiânia, Goiás, Brazil
| | - Felipe Cirqueira Dias
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | | - Luiz Carlos da Cunha
- Center for Toxic-Pharmacological Studies and Research, Faculty of Pharmacy, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | | |
Collapse
|
29
|
Nguyen VK, Zimmerman S, Colacino J, Jolliet O, Patel CJ. Body dissatisfaction widens the racial disparities of Benzophenone-3, a chemical biomarker of personal care and consumer product usage. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.26.24312258. [PMID: 39252908 PMCID: PMC11383470 DOI: 10.1101/2024.08.26.24312258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Background Body dissatisfaction can drive individuals to use personal care products, exposing themselves to Benzophenone-3 (BP3). Yet, no study has examined the link between body dissatisfaction and elevated chemical exposures. Objectives Our study examines how body dissatisfaction impacts the racial differences in BP3 exposures. Methods Using NHANES 2003-2016 data for 3,072 women, we ascertained body dissatisfaction with a questionnaire on weight perception. We ran two generalized linear models with log10-transformed urinary concentrations of BP3 as the outcome variable and the following main predictors: one with race/ethnicity and another combining race/ethnicity and body dissatisfaction. We also conducted stratified analyses by race/ethnicity. We adjusted for poverty income ratio, BMI, urinary creatinine, and sunscreen usage. Results BP3 levels in Mexican American, Other Hispanic, Other Race, non-Hispanic White, and non-Hispanic Asian women were on average 59%, 56%, 33%, 16%, and 9% higher, respectively, compared to non-Hispanic Black women. Racial differences in BP3 levels are accentuated with body dissatisfaction. For example, Other Hispanic women perceiving themselves as overweight had 69% higher BP3 levels than non-Hispanic Black women (p-value = 0.01), while those perceiving themselves as at the right weight had 32% higher levels (p-value = 0.31). Moreover, minority women perceiving themselves as overweight tended to have higher BP3 levels than those who do not. For example, BP3 levels in Other Hispanic women perceiving themselves as overweight are significantly higher compared to those who do not (73%, p-value = 0.03). In contrast, such differences in the non-Hispanic White women are minimal (-0.5%, p-value = 0. 98). Discussion Minority women with body dissatisfaction show elevated BP3 exposure independent of sunscreen usage, implying that their elevated exposures may stem from using other personal care and consumer products. Further research is needed to determine if increases of exposure to potential toxicants occur among minority women with body dissatisfaction.
Collapse
Affiliation(s)
- Vy Kim Nguyen
- Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Samuel Zimmerman
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Justin Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
- Program in the Environment, School of Environment and Sustainability and College of Literature, Sciences, and the Arts, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Chirag J Patel
- Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Kim S, Cho SY, Yoon S, Kim D, Park HW, Kang J, Huh SW. Relationship between the use of hair products and urine benzophenone-3: the Korean National Environmental Health Survey (KoNEHS) cycle 4. Ann Occup Environ Med 2024; 36:e20. [PMID: 39188668 PMCID: PMC11345219 DOI: 10.35371/aoem.2024.36.e20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 08/28/2024] Open
Abstract
Background Benzophenone-3 is a type of ketone with 2 benzene rings attached to a carbonyl group (C=O) and one benzene ring attached to a hydroxyl group (-OH). As an endocrine-disrupting chemical, benzophenone-3 is known to be associated with reproductive, developmental, thyroid, and endocrine toxicities. Benzophenone-3 is commonly used in hair products, cosmetics, and ultraviolet (UV) filters because of its characteristic property to absorb UV light. This study aims to investigate the association between the use of hair products and urine benzophenone-3 using the data from the Korean National Environmental Health Survey (KoNEHS) cycle 4 (2018-2020), which represents the Korean population. Methods Using the KoNEHS cycle 4 survey, the data of 3,796 adults aged ≥ 19 years were analyzed. Based on the 75th percentile concentration of urine benzophenone-3, the participants were divided into the low- and high-concentration groups. Chi-square test was conducted to analyze the association of urine benzophenone-3 with distribution of general characteristics, use of personal care products, consumption of marine foods, and use of plastic products as the variable. Logistic regression analysis was conducted to calculate odds ratios (ORs) for the high-concentration group of urine benzophenone-3 based on the use of hair products. Results Women with < 6 times or ≥ 6 times of hair product usage had significantly higher adjusted ORs compared to those who did not use hair products. The calculated ORs were 1.24 (95% confidence interval [CI]: 1.12-1.38) for women with < 6 times of usage and 1.54 (95% CI: 1.33-1.79) for women with ≥ 6 times of usage. Conclusions This study revealed the association between the use of hair products and the concentration of urine benzophenone-3 in the general Korean population.
Collapse
Affiliation(s)
- Siyoung Kim
- Department of Occupational and Environmental Medicine, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Seong-yong Cho
- Department of Occupational and Environmental Medicine, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Seongyong Yoon
- Department of Occupational and Environmental Medicine, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Daehwan Kim
- Department of Occupational and Environmental Medicine, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Hyun Woo Park
- Department of Occupational and Environmental Medicine, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Jisoo Kang
- Department of Occupational and Environmental Medicine, Soonchunhyang University Gumi Hospital, Gumi, Korea
| | - Sung Woo Huh
- Department of Occupational and Environmental Medicine, Soonchunhyang University Gumi Hospital, Gumi, Korea
| |
Collapse
|
31
|
Bommarito PA, Stevens DR, Welch BM, Meeker JD, Cantonwine DE, McElrath TF, Ferguson KK. Prenatal exposure to environmental phenols and fetal growth across pregnancy in the LIFECODES fetal growth study. ENVIRONMENT INTERNATIONAL 2024; 190:108866. [PMID: 38968832 PMCID: PMC11349462 DOI: 10.1016/j.envint.2024.108866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/31/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
INTRODUCTION Environmental phenols are endocrine disrupting chemicals hypothesized to affect early life development. Previous research examining the effects of phenols on fetal growth has focused primarily on associations with measures of size at delivery. Few have included ultrasound measures to examine growth across pregnancy. OBJECTIVE Investigate associations between prenatal exposure to phenols and ultrasound and delivery measures of fetal growth. METHODS Using the LIFECODES Fetal Growth Study (n = 900), a case-cohort including 248 small-for-gestational-age, 240 large-for-gestational age, and 412 appropriate-for-gestational-age births, we estimated prenatal exposure to 12 phenols using three urine samples collected during pregnancy (median 10, 24, and 35 weeks gestation). We abstracted ultrasound and delivery measures of fetal growth from medical records. We estimated associations between pregnancy-average phenol biomarker concentrations and repeated ultrasound measures of fetal growth using linear mixed effects models and associations with birthweight using linear regression models. We also used logistic regression models to estimate associations with having a small- or large-for-gestational birth. RESULTS We observed positive associations between 2,4-dichlorophenol, benzophenone-3, and triclosan (TCS) and multiple ultrasound measures of fetal growth. For example, TCS was associated with a 0.09 (95 % CI: 0.01, 0.18) higher estimated fetal weight z-score longitudinally across pregnancy. This effect size corresponds to a 21 g increase in estimated fetal weight at 30 weeks gestation. Associations with delivery measures of growth were attenuated, but TCS remained positively associated with birthweight z-scores (mean difference: 0.13, 95 % CI: 0.02, 0.25). Conversely, methylparaben was associated with higher odds of a small-for-gestational age birth (odds ratio: 1.45, 95 % CI: 1.06, 1.98). DISCUSSION We observed associations between some biomarkers of phenol exposure and ultrasound measures of fetal growth, though associations at the time of delivery were attenuated. These findings are consistent with hypotheses that phenols have the potential to affect growth during the prenatal period.
Collapse
Affiliation(s)
- Paige A Bommarito
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Danielle R Stevens
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Barrett M Welch
- School of Public Health, University of Nevada, Reno, NV, USA
| | - John D Meeker
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - David E Cantonwine
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas F McElrath
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kelly K Ferguson
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
32
|
Sharma N, Kumar V, S V, Umesh M, Sharma P, Thazeem B, Kaur K, Thomas J, Pasrija R, Utreja D. Hazard identification of endocrine-disrupting carcinogens (EDCs) in relation to cancers in humans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104480. [PMID: 38825092 DOI: 10.1016/j.etap.2024.104480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/21/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Endocrine disrupting chemicals or carcinogens have been known for decades for their endocrine signal disruption. Endocrine disrupting chemicals are a serious concern and they have been included in the top priority toxicants and persistent organic pollutants. Therefore, researchers have been working for a long time to understand their mechanisms of interaction in different human organs. Several reports are available about the carcinogen potential of these chemicals. The presented review is an endeavor to understand the hazard identification associated with endocrine disrupting carcinogens in relation to the human body. The paper discusses the major endocrine disrupting carcinogens and their potency for carcinogenesis. It discusses human exposure, route of entry, carcinogenicity and mechanisms. In addition, the paper discusses the research gaps and bottlenecks associated with the research. Moreover, it discusses the limitations associated with the analytical techniques for detection of endocrine disrupting carcinogens.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India
| | - Vinay Kumar
- Biomaterials & Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India.
| | - Vimal S
- Department of Biochemistry, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam 602105, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru, Karnataka 560029, India
| | - Preeti Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Basheer Thazeem
- Waste Management Division, Integrated Rural Technology Centre (IRTC), Palakkad, Kerala 678592, India
| | - Komalpreet Kaur
- Punjab Agricultural University, Institute of Agriculture, Gurdaspur, Punjab 143521, India
| | - Jithin Thomas
- Department of Biotechnology, Mar Athanasius College, Kerala, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| | - Divya Utreja
- Department of Chemistry, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| |
Collapse
|
33
|
Wang S, Huang Y, Sun W, Lin X. Synthesis, Characterization, and Evaluation of a Hindered Phenol-Linked Benzophenone Hybrid Compound as a Potential Polymer Anti-Aging Agent. Antioxidants (Basel) 2024; 13:894. [PMID: 39199140 PMCID: PMC11351231 DOI: 10.3390/antiox13080894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Hindered phenol antioxidants and benzophenone UV absorbers are common polymer additives and often used in combination applications to enhance the anti-aging performance of polymer materials. This study primarily aims to incorporate hindered phenol and benzophenone structures into a single molecule to develop a multifunctional polymer additive with good anti-aging performance. Thus, a novel potential polymer anti-aging agent, namely 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid 3-(4-benzoyl-3-hydroxyphenoxy)propyl ester (3C), was synthesized using 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid, 3-bromo-1-propanol, and 2,4-dihydroxybenzophenone as raw materials by two-step procedure. The structure of compound 3C was characterized by nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HRMS), Fourier-transform infrared (FT-IR) spectroscopy, and X-ray single crystal diffraction. Its thermal stability and UV resistance were assessed using thermogravimetric analysis (TGA) and UV absorption spectroscopy (UV). The compound 3C as an additive was incorporated into the preparation of polyolefin elastomer (POE) films. The anti-aging performance of POE films was evaluated by measuring parameters such as oxidation induction time, melt flow index, transmittance, and infrared spectra of the artificially aged POE films. The results indicate that the compound 3C exhibits a promising anti-aging performance in both thermo-oxidative aging and ultraviolet aging tests of POE films and is a potential polymer anti-aging agent.
Collapse
Affiliation(s)
| | | | | | - Xufeng Lin
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
34
|
Hrabáková K, Hložek T, Bosáková Z, Tůma P. Hydrophobic eutectic solvents for surface water treatment with a focus on benzophenone type UV filters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116528. [PMID: 38820821 DOI: 10.1016/j.ecoenv.2024.116528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Effective removal of organic UV filters from aquatic environmental compartments and swimming waters is very important because these substances are hazardous to humans and wildlife at low concentrations and act as endocrine disruptors. Therefore, the aim of the present article is to determine the extraction efficiencies of hydrophobic deep eutectic solvents (HDES) for the selected UV filters based on benzophenone structure (benzophenone, 2,4-dihydroxybenzophenone, 2,2´,4,4´-tetrahydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2,2´-dihydroxy-4-methoxybenzophenone, 4-methacryloxy-2-hydroxybenzophenone) from aqueous matrices. For this purpose, six HDESs based on dl-menthol in combination with caprylic, decanoic and lauric acid are prepared and compared with referent terpene solvents such as terpineol and linalool. The effect of various parameters such as HDES composition, volume ratio, frequency and shaking time are studied. The highest extraction efficiency is shown by HDES of menthol:caprylic acid (1:1) composition at the aqueous:organic phase volume ratio of 1:1, shaking frequency of 1500 rpm and shaking time of 15 min. The achieved extraction efficiencies are higher than 99.6 % for all benzophenones studied in the purification of stagnant pond water, swimming pool water and river water samples. After a simple and fast sample treatment, the residual levels of benzophenones in the waters are controlled by a newly developed sensitive HPLC-MS/MS method with LOQs in the range of 0.7 - 5.0 ng/mL.
Collapse
Affiliation(s)
- Kateřina Hrabáková
- Charles University, Faculty of Science, Department of Analytical Chemistry, Albertov 6, Prague 2 128 43, Czech Republic
| | - Tomáš Hložek
- Charles University, Third Faculty of Medicine, Department of Hygiene, Ruská 87, Prague 10 100 00, Czech Republic
| | - Zuzana Bosáková
- Charles University, Faculty of Science, Department of Analytical Chemistry, Albertov 6, Prague 2 128 43, Czech Republic.
| | - Petr Tůma
- Charles University, Third Faculty of Medicine, Department of Hygiene, Ruská 87, Prague 10 100 00, Czech Republic.
| |
Collapse
|
35
|
Lei X, Ao J, Li J, Gao Y, Zhang J, Tian Y. Maternal concentrations of environmental phenols during early pregnancy and behavioral problems in children aged 4 years from the Shanghai Birth Cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172985. [PMID: 38705299 DOI: 10.1016/j.scitotenv.2024.172985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Prenatal exposure to environmental phenols such as bisphenol (BPs), paraben (PBs), benzophenone (BzPs), and triclosan (TCS) is ubiquitous and occurs in mixtures. Although some of them have been suspected to impact child behavioral development, evidence is still insufficient, and their mixed effects remain unclear. OBJECTIVES To explore the association of prenatal exposure to multiple phenols with child behavioral problems. METHOD In a sample of 600 mother-child pairs from the Shanghai Birth Cohort, we quantified 18 phenols (6 PBs, 7 BPs, 4 BzPs, and TCS) in urine samples collected during early pregnancy. Parent-reported Strengths and Difficulties Questionnaires were utilized to evaluate child behavioral difficulties across four subscales, namely conduct, hyperactivity/inattention, emotion, and peer relationship problems, at 4 years of age. Multivariable linear regression was conducted to estimate the relationships between single phenolic compounds and behavioral problems. Additionally, weighted quantile sum (WQS) regression was employed to examine the overall effects of the phenol mixture. Sex-stratified analyses were also performed. RESULTS Our population was extensively exposed to 10 phenols (direction rates >50 %), with low median concentrations (1.00 × 10-3-6.89 ng/mL). Among them, single chemical analyses revealed that 2,4-dihydroxy benzophenone (BP1), TCS, and methyl 4-hydroxybenzoate (MeP) were associated with increased behavior problems, including hyperactivity/inattention (BP1: β = 0.16; 95 % confidence interval [CI]: 0.04, 0.30), emotional problems (BP1: β = 0.11; 95 % CI: 0.02, 0.20; TCS: β = 0.08; 95 % CI: 0.02, 0.14), and peer problems (MeP: β = 0.10; 95 % CI: 0.02, 0.18); however, we did not identify any significant association with conduct problems. Further phenol mixture analyses in the WQS model yielded similar results. Stratification for child sex showed stronger positive associations in boys. CONCLUSION Our findings indicated that maternal phenol levels during early pregnancy, specifically BP1, TCS, and MeP, are associated with high behavioral problem scores in 4-year-old children.
Collapse
Affiliation(s)
- Xiaoning Lei
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China.
| | - Junjie Ao
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China
| | - Jingjing Li
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China
| | - Ying Tian
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, PR China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, PR China.
| |
Collapse
|
36
|
Fu J, Yao Y, Huang Z, Huang J, Zhang D, Li X, Xu J, Xiao Q, Lu S. Prenatal exposure to benzophenone-type UV filters and the associations with neonatal birth outcomes and maternal health in south China. ENVIRONMENT INTERNATIONAL 2024; 189:108797. [PMID: 38838486 DOI: 10.1016/j.envint.2024.108797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/11/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Benzophenone (BP)-type UV filters are commonly added to sunscreens and cosmetics to protect against UV radiation for human skin and hair. As a result, BPs are ubiquitous in the environment and human body, and their endocrine-disrupting characteristics have been a hot topic of discussion. However, our knowledge regarding the detrimental effects of prenatal exposure to BPs on pregnant women and their offspring remains limited. To fill this gap, we determined five BP derivatives in 600 serum samples obtained from pregnant women. All the target analytes, except 2,4-dihydroxybenzophenone (BP-1), have achieved a 100 % detection rate. The most prevalent compound was 2-hydroxy-4-methoxybenzophenone (BP-3), with a median concentration of 0.545 ng/mL. Significant and positive correlations were observed among BP derivatives, indicating both endogenous metabolism and common external sources. Utilizing Bayesian kernel machine regression (BKMR) and quantile-based g-computation (QGC) models, we found relationships between BP exposure and reduced neonatal birth weight (BW) and birth chest circumference (BC) during the third trimester. Notably, the adverse effect of BPs on birth size was sex-specific. Moreover, triglyceride (TG) was identified as a potential mediator of the effect of BPs on blood pressure, and co-exposure to BPs was linked to disruptions in thyroid hormone levels and glucose regulation. Further research is warranted to unravel the toxicity of BPs and their detrimental effects on pregnant women and fetuses.
Collapse
Affiliation(s)
- Jinfeng Fu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yao Yao
- Genetics Laboratory, Longgang Maternity and Child Institute of Shantou University Medical College, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen 518172, Guangdong, China
| | - Zhihong Huang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jiayin Huang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Duo Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Xiangyu Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jiayi Xu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Qinru Xiao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
37
|
Galliani V, Abud JE, Zenclussen ML, Rodríguez HA. Female offspring of mice perinatally exposed to benzophenone-3 showed early subfertility linked to a poor oocyte stockpile. Arch Toxicol 2024; 98:1909-1918. [PMID: 38553590 DOI: 10.1007/s00204-024-03730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/07/2024] [Indexed: 05/21/2024]
Abstract
Previously, we found that the ultraviolet filter benzophenone-3 (BP3) causes fetal growth restriction in mice when is applied when implantation occurs (first week of gestation). However, whether BP3 can affect gestation and fertility after implantation period is unknown. We aimed to study the effects on reproductive physiology of the offspring caused by perinatal exposure to BP3. C57BL/6 pregnant mice were dermally exposed to 50 mg BP3/kg bw.day or olive oil (vehicle) from gestation day 9 (gd9) to postnatal day 21 (pnd1). We observed no differences in mother's weights, duration of gestation, number of pups per mother, onset of puberty or sex ratio. The weights of the pups exposed to benzophenone-3 were transiently lower than those of the control. Estrous cycle was not affected by perinatal exposure to BP3. Besides, we performed a fertility assessment by continuous breeding protocol: at 10 weeks of age, one F1 female and one F1 male mouse from each group was randomly chosen from each litter and housed together for a period of 6 months. We noticed a reduction in the number of deliveries per mother among dams exposed to BP3 during the perinatal period. To see if this decreased fertility could be associated to an early onset of oocytes depletion, we estimated the ovarian reserve of germ cells. We found reduced number of oocytes and primordial follicles in BP3. In conclusion, perinatal exposure to BP3 leads to a decline in the reproductive capacity of female mice in a continuous breeding protocol linked to oocyte depletion.
Collapse
Affiliation(s)
- Valentina Galliani
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Julián Elías Abud
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - María Laura Zenclussen
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Horacio Adolfo Rodríguez
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina.
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina.
- Cátedra de Fisiología Humana, FBCB, Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), UNL, Ciudad Universitaria, Paraje El Pozo, Casilla de Correo 242, 3000, Santa Fe, Argentina.
| |
Collapse
|
38
|
Gonkowski S, Martín J, Rychlik A, Aparicio I, Santos JL, Alonso E, Makowska K. An evaluation of dogs' exposure to benzophenones through hair sample analysis. J Vet Res 2024; 68:303-312. [PMID: 38947164 PMCID: PMC11210366 DOI: 10.2478/jvetres-2024-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/03/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction Benzophenones (BPs) are used in various branches of industry as ultraviolet radiation filters, but they pollute the natural environment, penetrate living organisms, and disrupt endocrine balance. Knowledge of the exposure of domestic animals to these substances is extremely scant. The aim of the study was to investigate long-term exposure of companion dogs to BPs and relate this to environmental factors. Material and Methods Hair samples taken from 50 dogs and 50 bitches from under 2 to over 10 years old were analysed for BP content with liquid chromatography-tandem mass spectrometry. Results The results revealed that dogs are most often exposed to 2-hydroxy-4-methoxybenzophenone (BP-3) and 4-dihydroxybenzophenone (BP-1). Concentration levels of BP-3 above the method quantification limit (MQL) were noted in 100% of the samples and fluctuated from 4.75 ng/g to 1,765 ng/g. In turn, concentration levels of BP-1 above the MQL were noted in 37% of the samples and ranged from <0.50 ng/g to 666 ng/g. Various factors (such as the use of hygiene and care products and the dog's diet) were found to affect BP concentration levels. Higher levels of BP-3 were observed in castrated/spayed animals and in animals that required veterinary intervention more often. Conclusion The results obtained show that the analysis of hair samples may be a useful matrix for biomonitoring BPs in dogs, and that these substances may be toxic to them.
Collapse
Affiliation(s)
| | - Julia Martín
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, E-41011Sevilla, Spain
| | - Andrzej Rychlik
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-957Olsztyn, Poland
| | - Irene Aparicio
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, E-41011Sevilla, Spain
| | - Juan Luis Santos
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, E-41011Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, E-41011Sevilla, Spain
| | - Krystyna Makowska
- Department of Clinical Diagnostics, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-957Olsztyn, Poland
| |
Collapse
|
39
|
Abud JE, Pagotto R, Galliani V, Teglia C, Culzoni J, Bollati-Fogolín M, Zenclussen ML, Rodríguez HA. In vitro blastocyst implantation and trophoblast migration are disrupted by the UV filter benzophenone-3 (BP3). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123840. [PMID: 38537797 DOI: 10.1016/j.envpol.2024.123840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024]
Abstract
Benzophenone-3 (BP3) is a common ingredient in personal care products (PCPs) due to its well-established effectiveness in absorbing UV radiation. Sunscreen products are among the most widely used PCPs-containing BP3 applied to the skin, resulting in significant human exposure to BP3 primarily through a dermal application. In the present work, we have tested the action of three environmentally relevant concentrations of BP3 (2, 20 and 200 μg/L) on an in vitro model of implantation of murine blastocysts and on migration ability of the human trophoblast cell line Swan 71. We showed that BP3 caused a significant reduction of blastocyst expansion and a delayed hatching in a non-monotonic way. Besides, embryos displayed a delayed attachment in the three BP3 groups, resulting in a smaller implantation area on the 6th day of culture: BP3(2) (0.32 ± 0.07 mm2); BP3(20) (0.30 ± 0.08 mm2) and BP3(200) (0.25 ± 0.06 mm2) in comparison to the control (0.42 ± 0.07 mm2). We also found a reduced migration capacity of the human first-trimester trophoblast cell line Swan 71 in a scratch assay when exposed to BP3: the lowest dose displayed a higher uncovered area (UA) at 6h when compared to the control, whereas a higher UA of the wound was observed for the three BP3 concentrations at 18 and 24 h of exposure. The changes in UA provoked by BP3 restored to normal values in the presence of flutamide, an androgen receptor (AR) inhibitor. These results indicate that a direct impairment on early embryo implantation and a defective migration of extravillous trophoblast cells through the androgen receptor pathway can be postulated as mechanisms of BP3-action on early gestation with potential impact on fetal growth.
Collapse
Affiliation(s)
- Julián Elías Abud
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), UNL, Santa Fe, Argentina
| | - Romina Pagotto
- Cell Biology Unit, Institut Pasteur Montevideo, Montevideo, Uruguay
| | - Valentina Galliani
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Argentina
| | - Carla Teglia
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, FBCB-UNL, Santa Fe, Argentina
| | - Julia Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Cátedra de Química Analítica I, FBCB-UNL, Santa Fe, Argentina
| | | | - Maria Laura Zenclussen
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), UNL, Santa Fe, Argentina
| | - Horacio Adolfo Rodríguez
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), UNL, Santa Fe, Argentina.
| |
Collapse
|
40
|
Alijagic A, Suljević D, Fočak M, Sulejmanović J, Šehović E, Särndahl E, Engwall M. The triple exposure nexus of microplastic particles, plastic-associated chemicals, and environmental pollutants from a human health perspective. ENVIRONMENT INTERNATIONAL 2024; 188:108736. [PMID: 38759545 DOI: 10.1016/j.envint.2024.108736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
The presence of microplastics (MPs) is increasing at a dramatic rate globally, posing risks for exposure and subsequent potential adverse effects on human health. Apart from being physical objects, MP particles contain thousands of plastic-associated chemicals (i.e., monomers, chemical additives, and non-intentionally added substances) captured within the polymer matrix. These chemicals are often migrating from MPs and can be found in various environmental matrices and human food chains; increasing the risks for exposure and health effects. In addition to the physical and chemical attributes of MPs, plastic surfaces effectively bind exogenous chemicals, including environmental pollutants (e.g., heavy metals, persistent organic pollutants). Therefore, MPs can act as vectors of environmental pollution across air, drinking water, and food, further amplifying health risks posed by MP exposure. Critically, fragmentation of plastics in the environment increases the risk for interactions with cells, increases the presence of available surfaces to leach plastic-associated chemicals, and adsorb and transfer environmental pollutants. Hence, this review proposes the so-called triple exposure nexus approach to comprehensively map existing knowledge on interconnected health effects of MP particles, plastic-associated chemicals, and environmental pollutants. Based on the available data, there is a large knowledge gap in regard to the interactions and cumulative health effects of the triple exposure nexus. Each component of the triple nexus is known to induce genotoxicity, inflammation, and endocrine disruption, but knowledge about long-term and inter-individual health effects is lacking. Furthermore, MPs are not readily excreted from organisms after ingestion and they have been found accumulated in human blood, cardiac tissue, placenta, etc. Even though the number of studies on MPs-associated health impacts is increasing rapidly, this review underscores that there is a pressing necessity to achieve an integrated assessment of MPs' effects on human health in order to address existing and future knowledge gaps.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, SE-701 82 Örebro, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden.
| | - Damir Suljević
- Department of Biology, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Muhamed Fočak
- Department of Biology, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Jasmina Sulejmanović
- Department of Chemistry, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Elma Šehović
- Department of Chemistry, Faculty of Science, University of Sarajevo, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Eva Särndahl
- Inflammatory Response and Infection Susceptibility Centre (iRiSC), Örebro University, SE-701 82 Örebro, Sweden; School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
41
|
Yoshida N, Lyu Z, Kim S, Park N, Hitomi T, Fujii Y, Kho Y, Choi K, Harada KH. Temporal trends in exposure to parabens, benzophenones, triclosan, and triclocarban in adult females in Kyoto, Japan, from 1993 to 2016. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37050-37059. [PMID: 38758445 DOI: 10.1007/s11356-024-33627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
Products used in daily life can contain chemicals such as parabens, benzophenones, triclosan, and triclocarban that have potential endocrine-disrupting effects. Little is known about the temporal trends of exposure levels to some of these chemicals in Japan. Our study assessed the intake and risk associated with exposure to commonly used chemicals. We measured the concentrations of five parabens, four benzophenones, and triclosan and triclocarban in 133 single spot urine samples. The urine samples were collected in 1993, 2000, 2003, 2009, 2011, and 2016 from healthy female residents in Kyoto, Japan. With the exception of methylparaben, ethylparaben, and butylparaben, there were no significant fluctuations in the concentrations of target chemicals over the study period; however, methylparaben, ethylparaben, and butylparaben showed temporal changes in concentrations. Methylparaben concentrations peaked in 2003 with a median value of 309 μg/g creatinine, ethylparaben concentrations peaked in 1993 with a median value of 17.3 μg/g creatinine, and butylparaben showed a decline, with the median values becoming non-detectable in 2009 and 2016. We calculated estimated daily intakes and hazard quotients for each chemical. In the analysis of total samples, 2.3% (3 samples) for butylparaben and 0.8% (1 sample) for propylparaben were found to surpass a hazard quotient of 1. Overall, 3% (n = 4) of the study participants exceeded a hazard index of 1. The potential health risks associated with exposure to butylparaben and propylparaben emphasize the need for further monitoring and research.
Collapse
Affiliation(s)
- Nao Yoshida
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto, 606-8501, Japan
| | - Zhaoqing Lyu
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto, 606-8501, Japan
| | - Sungmin Kim
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Korea
| | - Nayoun Park
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Korea
| | - Toshiaki Hitomi
- Department of Preventive Medicine, St. Marianna University School of Medicine, Kawasaki, 216-8511, Japan
| | - Yukiko Fujii
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, Fukuoka, 815-8511, Japan
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul, 08826, Korea
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto, 606-8501, Japan.
| |
Collapse
|
42
|
Sadr N, Qayyum R. Sunscreen compound benzophenone-3 and its relationship with white blood cell counts. Skin Res Technol 2024; 30:e13744. [PMID: 38771547 PMCID: PMC11107877 DOI: 10.1111/srt.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Evidence from animal models suggests a role for the organic ultraviolet filter benzophenone-3's (BP-3) on white blood cells (WBCs). However, BP-3's effect on WBCs in humans is unknown. MATERIALS AND METHODS We used National Health and Nutrition Examination Survey data from 2003 to 2016. We included participants >6 years with data on urinary BP-3, urinary creatinine, and WBC count. Quintiles of urinary creatinine-normalized BP-3 (CnBP-3) levels were used in linear regression models adjusting for age, gender, race, body mass index (BMI), smoking status, education level, family income to poverty threshold ratio, survey cycle, and season. RESULTS Of the 16 959 participants, 8564 (50.5%) were females, 6602 (38.9%) were White, and 3870 (22.8%) were Black. The mean (standard deviation) age was 37.6 (22.7) years, BMI was 26.8 (7.40) kg/m2, WBC count was 7.22 (2.53) × 109/L, neutrophil count was 4.15 (1.86) × 109/L, and lymphocyte count was 2.25 (1.33) × 109/L and median (interquartile range) of CnBP-3 was 12.1 (44.9) µg/gm. The highest quintile of CnBP-3 was associated with significantly lower WBC and neutrophil counts compared to the lowest quintile of CnBP-3 (Δ quintiles = -137 × 106/L, 95% CI: -249 to -24, p = 0.02 and = -177 × 106/L, 95% CI: -323 to -30, p = 0.02, respectively). In contrast, we did not observe a difference in lymphocyte count between the lowest and highest quintiles of CnBP-3 in unadjusted or adjusted analyses. CONCLUSION We found an inverse relationship between BP-3 levels and WBC and neutrophil counts, and not with lymphocyte count. Further research is needed to confirm our findings.
Collapse
Affiliation(s)
- Nargiza Sadr
- Department of MedicineEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Rehan Qayyum
- Department of MedicineEastern Virginia Medical SchoolNorfolkVirginiaUSA
| |
Collapse
|
43
|
Kim C, Kalčíková G, Jung J. Role of benzophenone-3 additive in the effect of polyethylene microplastics on Daphnia magna population dynamics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 270:106901. [PMID: 38493548 DOI: 10.1016/j.aquatox.2024.106901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
The adverse effects of microplastics (MPs) on Daphnia magna have been extensively studied; however, their population-level effects are relatively unknown. This study investigated the effect of polyethylene MP fragments (33.90 ± 17.44 μm) and benzophenone-3 (BP-3), which is a widely used plastic additive (2.91 ± 0.02% w/w), on D. magna population dynamics in a 34-day microcosm experiment. In the growth phase, neither MP nor MP/BP-3 fragments changed the population size of D. magna compared with the control. However, MP/BP-3 fragments significantly reduced (p < 0.05) the population biomass compared to that of the control, whereas MP fragments did not induce a significant reduction. The MP/BP-3 group had a significantly higher (p < 0.05) neonate proportion than that in the control and MP groups. MP/BP-3 fragments upregulated usp and downregulated ecrb, ftz-f1, and hr3, altering gene expression in the ecdysone signaling pathway linked to D. magna growth and development. These findings suggested that BP-3 in MP/BP-3 fragments may disrupt neonatal growth, thereby decreasing population biomass. In the decline phase, MP fragments significantly decreased (p < 0.05) the population size and biomass of D. magna compared with the control and MP/BP-3 fragments. This study highlights the importance of plastic additives in the population-level ecotoxicity of MPs.
Collapse
Affiliation(s)
- Changhae Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, the Republic of Korea
| | - Gabriela Kalčíková
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 113 Večna pot, SI-1000 Ljubljana, Slovenia
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, the Republic of Korea.
| |
Collapse
|
44
|
Fischer F, Kretschmer T, Seifert P, Howanski J, Krieger E, Rödiger J, Fink B, Yin Z, Bauer M, Zenclussen ML, Meyer N, Schumacher A, Zenclussen AC. Single and combined exposures to bisphenol A and benzophenone-3 during early mouse pregnancy have differential effects on fetal and placental development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171386. [PMID: 38431166 DOI: 10.1016/j.scitotenv.2024.171386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Endocrine disrupting chemicals (EDCs) possess the capability to interfere with the endocrine system by binding to hormone receptors, for example on immune cells. Specific effects have already been described for individual substances, but the impact of exposure to chemical mixtures during pregnancy on maternal immune regulation, placentation and fetal development is not known. In this study, we aimed to investigate the combined effects of two widespread EDCs, bisphenol A (BPA) and benzophenone-3 (BP-3), at allowed concentrations on crucial pregnancy processes such as implantation, placentation, uterine immune cell populations and fetal growth. From gestation day (gd) 0 to gd10, female mice were exposed to 4 μg/kg/d BPA, 50 mg/kg/d BP-3 or a BPA/BP-3 mixture. High frequency ultrasound and Doppler measurements were used to determine intrauterine fetal development and hemodynamic parameters. Furthermore, uterine spiral artery remodeling and placental mRNA expression were studied via histology and CHIP-RT-PCR, respectively. Effects of EDC exposure on multiple uterine immune cell populations were investigated using flow cytometry. We found that exposure to BP-3 caused intrauterine growth restriction in offspring at gd14, while BPA and BPA/BP-3 mixture caused varying effects. Moreover, placental morphology at gd12 and placental efficiency at gd14 were altered upon BP-3 exposure. Placental gene transcription was altered particularly in female offspring after in utero exposure to BP-3. Flow cytometry analyses revealed an increase in uterine T cells and NK cells in BPA and BPA/BP-3-treated dams at gd14. Doppler measurements revealed no effect on uterine hemodynamic parameters and spiral artery remodeling was not affected following EDC exposure. Our results provide evidence that exposure to BPA and BP-3 during early gestation affects fetal development in a sex-dependent manner, placental function and immune cell frequencies at the feto-maternal interface. These results call for inclusion of studies addressing pregnancy in the risk assessment of environmental chemicals.
Collapse
Affiliation(s)
- Florence Fischer
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany; Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Tobias Kretschmer
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Paulina Seifert
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Julia Howanski
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Elisabeth Krieger
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Jonas Rödiger
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Beate Fink
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Ziran Yin
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Mario Bauer
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - María Laura Zenclussen
- Instituto de Salud y Ambiente del Litoral (UNL-CONICET), Santa Fe, Argentina; Cátedra de Fisiología Humana (FBCB-UNL), Santa Fe, Argentina
| | - Nicole Meyer
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Anne Schumacher
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz-Centre for Environmental Research - UFZ GmbH, Leipzig, Germany; Saxon Incubator for Clinical Translation, Medical Faculty, Leipzig University, Leipzig, Germany.
| |
Collapse
|
45
|
Nie Y, Liu H, Wu R, Fan J, Yang Y, Zhao W, Bao J, You Z, He F, Li Y. Interference with SPARC inhibits Benzophenone-3 induced ferroptosis in osteoarthritis: Evidence from bioinformatics analyses and biological experimentation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116217. [PMID: 38489904 DOI: 10.1016/j.ecoenv.2024.116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
The aim of this study is to conduct a thorough evaluation of the association between Benzophenone-3 (BP-3) exposure and OA, offering critical insights into the underlying mechanisms involved. The National Health and Nutrition Examination Survey (NHANES) database was utilized to investigate the correlation between BP-3 and osteoarthritis. Proteomic sequencing from clinical sample and the PharmMapper online tool were employed to predict the biological target of BP-3. Cellular molecular assays and transfection studies were performed to verify the prediction from bioinformatics analyses. Through cross-sectional analysis of the NHANES database, we identified BP-3 as a risk factor for OA development. The results of proteomic sequencing showed that Secreted Protein Acidic and Rich in Cysteine (SPARC) was significantly elevated in the area of damage compared to the undamaged area. SPARC was also among the potential biological targets of BP-3 predicted by the online program. Through in vitro cell experiments, we further determined that the toxicological effects of BP-3 may be due to SPARC, which elevates intracellular GPX4 levels, activates the glutathione system, and promotes lipid peroxidation to mitigate ferroptosis. Inhibiting SPARC expression has been shown to reduce inflammation and ferroptosis in OA contexts. This research provides an expansive understanding of BP-3's influence on osteoarthritis development. We have identified SPARC as a potent target for combating chondrocyte ferroptosis in BP-3-associated osteoarthritis.
Collapse
Affiliation(s)
- Yaoyao Nie
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China
| | - Houpu Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China
| | - Runtao Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China
| | - Jiayao Fan
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China
| | - Ye Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China
| | - Wenxia Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China
| | - Jiapeng Bao
- Department of Orthopaedics, the Second Affiliated Hospital of Zhejiang University, Hangzhou 310058, China
| | - Zhenqiang You
- Department of Food Science and Engineering, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China
| | - Fan He
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang 310051, China
| | - Yingjun Li
- Department of Epidemiology and Health Statistics, School of Public Health, Hangzhou Medical College, Hangzhou 310053, China.
| |
Collapse
|
46
|
Sung CR, Kim BJ, Park CJ, Oh IA, Lee YJ, Park YR, Kwack SJ. Evaluation of the anti-androgenic and cytotoxic effects of benzophenone-3 in male Sprague-Dawley rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:266-273. [PMID: 38166509 DOI: 10.1080/15287394.2023.2300785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Benzophenone-3 (BP-3, 2-hydroxy-4-methoxybenzophenone, oxybenzone) is one of the most widely used types of benzophenone organic sunscreen. However, this compound is a potentially harmful toxicant. The aim of this study was 2-fold to: (1) utilize a Hershberger bioassay in vivo in castrated male Sprague-Dawley rats to investigate the anti-androgenic activities of BP-3, and (2) use in vitro a methyl tetrazolium assay to compare the toxicity between Leydig cells (TM3 cells) and mouse fibroblast (NIH-3T3) cell lines. In the Hershberger assay, rats were divided into 6 groups (each of n = 7): a vehicle control, negative control, positive control, PB-3 low (40 mg/kg), BP-3 intermediate (200 mg/kg), and BP-3 high (1000 mg/kg)-dose. The weight of the ventral prostate was significantly decreased at BP-3 doses of 200 or 1,000 mg/kg/day. In addition, the levator anibulbocavernosus muscle weights were also significantly reduced at BP-3 doses of 40, 200, or 1,000 mg/kg/day. In the MTT assay, the viability of NIH-3T3 mouse fibroblast cells was within the normal range. However, the TM3 mouse testis Leydig cell viability was significantly lowered in a concentration-dependent manner. Therefore, data indicate that BP-3 might exert in vivo anti-androgenic and in vitro cytotoxic effects in cells associated with the male reproductive system compared to normal non-reproductive cells.Abbreviation: BP-3: benzophenone-3; CG: Cowper's gland; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; GP: glans penis; LABC: levator anibulbocavernosus muscle; MTT: methyl tetrazolium; NC: negative control; PC: positive control; SV: seminal vesicle; TP: testosterone propionate; VC: vehicle control; VP: ventral prostate.
Collapse
Affiliation(s)
- Chi Rim Sung
- Department of Bio Health Science, College of Natural Science, Changwon National University, Changwon, Republic of Korea
| | - Byeong Jun Kim
- Nonclinical Research Center, Chemon Inc., Yongin, Republic of Korea
| | - Chan Ju Park
- Department of Bio Health Science, College of Natural Science, Changwon National University, Changwon, Republic of Korea
| | - In Ah Oh
- Department of Bio Health Science, College of Natural Science, Changwon National University, Changwon, Republic of Korea
| | - Yu Jin Lee
- Department of Bio Health Science, College of Natural Science, Changwon National University, Changwon, Republic of Korea
| | - Yeo Rim Park
- Department of Bio Health Science, College of Natural Science, Changwon National University, Changwon, Republic of Korea
| | - Seung Jun Kwack
- Department of Bio Health Science, College of Natural Science, Changwon National University, Changwon, Republic of Korea
| |
Collapse
|
47
|
Schierano-Marotti G, Altamirano GA, Oddi S, Gomez AL, Meyer N, Muñoz-de-Toro M, Zenclussen AC, Rodríguez HA, Kass L. Branching morphogenesis of the mouse mammary gland after exposure to benzophenone-3. Toxicol Appl Pharmacol 2024; 484:116868. [PMID: 38382712 DOI: 10.1016/j.taap.2024.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
Pubertal mammary branching morphogenesis is a hormone-regulated process susceptible to exposure to chemicals with endocrine disruptive capacity, such as the UV-filter benzophenone-3 (BP3). Our aim was to assess whether intrauterine or in vitro exposure to BP3 modified the branching morphogenesis of the female mouse mammary gland. For this, pregnant mice were dermally exposed to BP3 (0.15 or 50 mg/kg/day) from gestation day (GD) 8.5 to GD18.5. Sesame oil treatment served as control. Changes of the mammary glands of the offspring were studied on postnatal day 45. Further, mammary organoids from untreated mice were cultured under branching induction conditions and exposed for 9 days to BP3 (1 × 10-6 M, 1 × 10-9 M, or 1 × 10-12 M with 0.01% ethanol as control) to evaluate the branching progression. Mice that were exposed to BP3 in utero showed decreased mRNA levels of progesterone receptor (PR) and WNT4. However, estradiol and progesterone serum levels, mammary histomorphology, proliferation, and protein expression of estrogen receptor alpha (ESR1) and PR were not significantly altered. Interestingly, direct exposure to BP3 in vitro also decreased the mRNA levels of PR, RANKL, and amphiregulin without affecting the branching progression. Most effects were found after exposure to 50 mg/kg/day or 1 × 10-6 M of BP3, both related to sunscreen application in humans. In conclusion, exposure to BP3 does not impair mammary branching morphogenesis in our models. However, BP3 affects PR transcriptional expression and its downstream mediators, suggesting that exposure to BP3 might affect other developmental stages of the mammary gland.
Collapse
Affiliation(s)
- Gonzalo Schierano-Marotti
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Gabriela A Altamirano
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sofia Oddi
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ayelen L Gomez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Nicole Meyer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research and Perinatal Immunology, Saxonian Incubator for Clinical Translation, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Mónica Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research and Perinatal Immunology, Saxonian Incubator for Clinical Translation, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Horacio A Rodríguez
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Laura Kass
- Instituto de Salud y Ambiente del Litoral (ISAL, UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
48
|
Jiang J, Chen B, Tang B, Li J, Zhang C, Tan D, Zhang T, Wei Q. Urinary phenols and parabens exposure in relation to urinary incontinence in the US population. BMC Public Health 2024; 24:515. [PMID: 38373965 PMCID: PMC10875867 DOI: 10.1186/s12889-024-17872-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Our study aimed to investigate the impact of urinary concentrations of personal care products (PCPs)-related phenols (PNs) and parabens (PBs), including Triclosan (TCS), Bisphenol A (BPA), Benzophenone-3 (BP-3), Butylparaben (BPB), Ethylparaben (EPB), Methylparaben (MPB), and Propylparaben (PPB), on urinary incontinence (UI) occurrence. METHOD We conducted a cross-sectional analysis using data from the National Health and Nutrition Examination Survey (NHANES) spanning the years 2007 to 2016. Regression analysis was employed to investigate the relationship between exposure to PCPs-related substances, various levels of exposure, and UI within both the general population and the female demographic. Additionally, the Bayesian Kernel Machine Regression (BKMR) model was used to assess the effects of mixtures on UI. RESULTS Our analysis comprised 7,690 participants who self-reported their diagnosis. Among them, 12.80% experienced stress urinary incontinence (SUI), 11.80% reported urge urinary incontinence (UUI), and 10.22% exhibited mixed urinary incontinence (MUI). In our fully adjusted multivariable models, BP-3 exposure exhibited a positive association with SUI (OR 1.07, 95% CI 1.02-1.14, p = 0.045). BPA exposure correlated with an increased risk of UUI (OR 1.21, 95% CI 1.01-1.44, p = 0.046) and MUI (OR 1.26, 95% CI 1.02-1.54, p = 0.029). TCS exposure displayed a negative correlation with the incidence of MUI (OR 0.87, 95% CI 0.79-0.97, p = 0.009). No significant links were observed between parabens and urinary incontinence. Notably, among the female population, our investigation revealed that BPA exposure heightened the risk of MUI (OR 1.28, 95% CI 1.01-1.63, p = 0.043). Participants in the highest tertile of BP-3 exposure demonstrated elevated likelihoods of SUI and MUI compared to those in the lowest tertile. In the BKMR analysis, negative trends were observed between the mixture and the risks of UUI and MUI when the mixture ranged from the 25th to the 40th and 35th to the 40th percentiles or above, respectively. Additionally, a positive trend was identified between the mixture and MUI when it was in the 40th to 55th percentile. CONCLUSION In conclusion, our findings suggest that exposure to BPA, TCS, and BP-3 may contribute to the development of urinary incontinence.
Collapse
Affiliation(s)
- Jinjiang Jiang
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan, China
| | - Bo Chen
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan, China
| | - Bo Tang
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan, China
| | - Jinze Li
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan, China
| | - Chensong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Frontiers Science Center for Disease-Related Molecular Network, and National Clinical Research Center for Geriatrics, Sichuan University, Chengdu, Sichuan, China
| | - Daqing Tan
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan, China
| | - Ting Zhang
- School of Basic Medicine, Harbin Medical Hospital, Harbin, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Lane, Chengdu, Sichuan, China.
| |
Collapse
|
49
|
Grau J, Chabowska A, Werner J, Zgoła-Grześkowiak A, Fabjanowicz M, Jatkowska N, Chisvert A, Płotka-Wasylka J. Deep eutectic solvents with solid supports used in microextraction processes applied for endocrine-disrupting chemicals. Talanta 2024; 268:125338. [PMID: 37931567 DOI: 10.1016/j.talanta.2023.125338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
The determination of endocrine-disrupting chemicals (EDCs) has become one of the biggest challenges in Analytical Chemistry. Due to the low concentration of these compounds in different kinds of samples, it becomes necessary to employ efficient sample preparation methods and sensitive measurement techniques to achieve low limits of detection. This issue becomes even more struggling when the principles of the Green Analytical Chemistry are added to the equation, since finding an efficient sample preparation method with low damaging properties for health and environment may become laborious. Recently, deep eutectic solvents (DESs) have been proposed as the most promising green kind of solvents, but also with excellent analytical properties due to the possibility of custom preparation with different components to modify their polarity, viscosity or aromaticity among others. However, conventional extraction techniques using DESs as extraction solvents may not be enough to overcome challenges in analysing trace levels of EDCs. In this sense, combination of DESs with solid supports could be seen as a potential solution to this issue allowing, in different ways, to determine lower concentrations of EDCs. In that aim, the main purpose of this review is the study of the different strategies with solid supports used along with DESs to perform the determination of EDCs, comparing their advantages and drawbacks against conventional DES-based extraction methods.
Collapse
Affiliation(s)
- Jose Grau
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain; Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Aneta Chabowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Justyna Werner
- Institute of Chemistry and Technical Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Agnieszka Zgoła-Grześkowiak
- Institute of Chemistry and Technical Electrochemistry, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60-965, Poznań, Poland
| | - Magdalena Fabjanowicz
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Natalia Jatkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland; Department of Analytical Chemistry, University of Valencia, Valencia, 46100, Spain
| | - Alberto Chisvert
- GICAPC Research Group, Department of Analytical Chemistry, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland; BioTechMed Center, Research Centre, Gdańsk University of Technology, G. Narutowicza St. 11/12, 80-233, Gdańsk, Poland.
| |
Collapse
|
50
|
Wang MM, Li ZL, Wu H, Chen KY, Guo F, Zuo GF, He Y, Yin XB. Self-assembled Fe 3O 4-NH 2 @g-C 3N 4 composite for magnetic solid-phase extraction of benzophenones in sea water and lake water coupled with LC-MS/MS determination. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132776. [PMID: 37844496 DOI: 10.1016/j.jhazmat.2023.132776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Magnetic solid-phase extraction (MSPE) was developed based on a well-designed Fe3O4-NH2 @g-C3N4 nanocomposite as sorbent for a mixture of six benzophenones (BPs) in environmental water samples. The composite fabricated via in-situ self-assembled g-C3N4 shell with homogeneous polymerization of cyanuric chloride and cyanuric acid on Fe3O4-NH2 core. While high adsorption capacity was derived from g-C3N4 via hydrophobic, π-π and hydrogen bonding interactions to the targets, the fast magnetic separation was realized with Fe3O4 core for less solvent consumption. In combination with LC-MS/MS, the Fe3O4-NH2 @g-C3N4 sorbent minimized the interfering components, reduced the matrix effects, and provided the enrichment factors of 121-150 for six BPs with relative standard deviations ≤ 9.7% even after 20 times extraction-desorption cycles. The present method gave the detection limits of 0.3-2.5 ng/L for six BPs with the linear ranges of 1.0-2000 ng/L, and the recoveries of 84.6%-104% in sea water and 86.2%-107% in lake water samples. Thus, the Fe3O4-NH2 @g-C3N4-based MSPE coupled with LC-MS/MS method provided a convenient, efficient, and reliable alternative to monitor trace BPs in environmental water samples.
Collapse
Affiliation(s)
- Man-Man Wang
- School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan 063210, Hebei, China.
| | - Zi-Ling Li
- School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Han Wu
- School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Ke-Yan Chen
- School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Fan Guo
- School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Gui-Fu Zuo
- College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
| | - Yu He
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Xue-Bo Yin
- Institute for Frontier Medical Technology, College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620 China.
| |
Collapse
|