1
|
Venkatesan S, Zare A, Stevanovic S. Pollen and sub-pollen particles: External interactions shaping the allergic potential of pollen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171593. [PMID: 38479525 DOI: 10.1016/j.scitotenv.2024.171593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/29/2024] [Accepted: 03/07/2024] [Indexed: 03/25/2024]
Abstract
Pollen allergies, such as allergic rhinitis, are triggered by exposure to airborne pollen. They are a considerable global health burden, with their numbers expected to rise in the coming decades due to the advent of climate change and air pollution. The relationships that exist between pollens, meteorological, and environmental conditions are complex due to a lack of clarity on the nature and conditions associated with these interactions; therefore, it is challenging to describe their direct impacts on allergenic potential clearly. This article attempts to review evidence pertaining to the possible influence of meteorological factors and air pollutants on the allergic potential of pollen by studying the interactions that pollen undergoes, from its inception to atmospheric traversal to human exposure. This study classifies the evidence based on the nature of these interactions as physical, chemical, source, and biological, thereby simplifying the complexities in describing these interactions. Physical conditions facilitating pollen rupturing for tree, grass, and weed pollen, along with their mechanisms, are studied. The effects of pollen exposure to air pollutants and their impact on pollen allergenic potential are presented along with the possible outcomes following these interactions, such as pollen fragmentation (SPP generation), deposition of particulate matter on pollen exine, and modification of protein levels in-situ of pollen. This study also delves into evidence on plant-based (source and biological) interactions, which could indirectly influence the allergic potential of pollen. The current state of knowledge, open questions, and a brief overview of future research directions are outlined and discussed. We suggest that future studies should utilise a multi-disciplinary approach to better understand this complex system of pollen interactions that occur in nature.
Collapse
Affiliation(s)
| | - Ali Zare
- School of Engineering, Deakin University, VIC 3216, Australia
| | | |
Collapse
|
2
|
Visez N, Hamzé M, Vandenbossche K, Occelli F, de Nadaï P, Tobon Y, Hájek T, Choël M. Uptake of ozone by allergenic pollen grains. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121793. [PMID: 37196838 DOI: 10.1016/j.envpol.2023.121793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/14/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023]
Abstract
Ozone exacerbates allergy symptoms to certain pollens. The molecular mechanisms by which ozone affects pollen grains (PGs) and allergies are not fully understood, especially as the effects of pollutants may vary depending on the type of pollen. In this work, pollens of 22 different taxa were exposed under laboratory conditions to ozone (100 ppb) to quantify the ozone uptake by the PGs. The ozone uptake was highly variable among the 22 taxa tested. The highest ozone uptake per PG was measured on Acer negundo PGs (2.5 ± 0.2 pg. PG-1). On average, tree pollens captured significantly more ozone than herbaceous pollens (average values of 0.5 and 0.02 pg. PG-1, respectively). No single parameter (such as the number of apertures, time of the year for the pollen season, pollen size, or lipid fraction) could predict a pollen's ability to take up ozone. Lipids seem to act as a barrier to ozone uptake and play a protective role for some taxa. After inhalation of PGs, pollen-transported ozone could be transferred to mucous membranes and exacerbate symptoms through oxidative stress and local inflammation. Although the amount of ozone transported is small in absolute terms, it is significant compared to the antioxidant capacity of nasal mucus at a microscale. This mechanism of pollen-induced oxidative stress could explain the aggravation of allergic symptoms during ozone pollution episodes.
Collapse
Affiliation(s)
- Nicolas Visez
- Univ. Lille, CNRS, UMR, 8516, LASIRE - Laboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement, F-59000, Lille, France.
| | - Mona Hamzé
- Univ. Lille, CNRS, UMR, 8516, LASIRE - Laboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement, F-59000, Lille, France; Univ. Lille, CNRS, UMR 8522 - PC2A - Physicochimie des Processus de Combustion et de L'Atmosphère, F-59000, Lille, France
| | - Klervi Vandenbossche
- Univ. Lille, CNRS, UMR, 8516, LASIRE - Laboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement, F-59000, Lille, France; Univ. Lille, Institut Mines-Télécom, Univ. Artois, Junia, ULR, 4515, LGCgE, Laboratoire de Génie Civil et Géo-Environnement, F-59000, Lille, France
| | - Florent Occelli
- Univ. Lille, Institut Mines-Télécom, Univ. Artois, Junia, ULR, 4515, LGCgE, Laboratoire de Génie Civil et Géo-Environnement, F-59000, Lille, France
| | - Patricia de Nadaï
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France
| | - Yeny Tobon
- Univ. Lille, CNRS, UMR, 8516, LASIRE - Laboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement, F-59000, Lille, France
| | - Tomáš Hájek
- University of South Bohemia, Faculty of Science, Branišovská 1760, 370 05, České Budějovice, Czech Republic
| | - Marie Choël
- Univ. Lille, CNRS, UMR, 8516, LASIRE - Laboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement, F-59000, Lille, France
| |
Collapse
|
3
|
Stawoska I, Myszkowska D, Oliwa J, Skoczowski A, Wesełucha-Birczyńska A, Saja-Garbarz D, Ziemianin M. Air pollution in the places of Betula pendula growth and development changes the physicochemical properties and the main allergen content of its pollen. PLoS One 2023; 18:e0279826. [PMID: 36696393 PMCID: PMC9876359 DOI: 10.1371/journal.pone.0279826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 12/14/2022] [Indexed: 01/26/2023] Open
Abstract
Pollen allergy becomes an increasing problem for humans, especially in the regions, where the air pollution level increases due to the traffic and urbanization. These factors may also affect the physiological activity of plants, causing changes in pollen allergenicity. The aim of the study was to estimate the influence of air pollutants on the chemical composition of birch pollen and the secondary structures of the Bet v1 protein. The research was conducted in seven locations in Malopolska region, South of Poland of a different pollution level. We have found slight fluctuations in the values of parameters describing the photosynthetic light reactions, similar spectra of leaf reflectance and the negligible differences in the discrimination values of the δ13C carbon isotope were found. The obtained results show a minor effect of a degree of pollution on the physiological condition B. pendula specimen. On the other hand, mean Bet v1 concentration measured in pollen samples collected in Kraków was significantly higher than in less polluted places (p = .03886), while FT-Raman spectra showed the most distinct variations in the wavenumbers characteristic of proteins. Pollen collected at sites of the increased NOx and PM concentration, show the highest percentage values of potential aggregated forms and antiparallel β-sheets in the expense of α-helix, presenting a substantial impact on chemical compounds of pollen, Bet v1 concentration and on formation of the secondary structure of proteins, what can influence their functions.
Collapse
Affiliation(s)
- Iwona Stawoska
- Institute of Biology, Pedagogical University of Krakow, Kraków, Poland
| | - Dorota Myszkowska
- Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Kraków, Poland
| | - Jakub Oliwa
- Institute of Biology, Pedagogical University of Krakow, Kraków, Poland
| | | | | | - Diana Saja-Garbarz
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - Monika Ziemianin
- Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Kraków, Poland
- * E-mail:
| |
Collapse
|
4
|
Price D, Hughes KM, Dona DW, Taylor PE, Morton DAV, Stevanovic S, Thien F, Choi J, Torre P, Suphioglu C. The perfect storm: temporal analysis of air during the world's most deadly epidemic thunderstorm asthma (ETSA) event in Melbourne. Ther Adv Respir Dis 2023; 17:17534666231186726. [PMID: 37646293 PMCID: PMC10469229 DOI: 10.1177/17534666231186726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/22/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND There have been 26 epidemic thunderstorm asthma (ETSA) events worldwide, with Melbourne at the epicentre of ETSA with 7 recorded events, and in 2016 experienced the deadliest ETSA event ever recorded. Health services and emergency departments were overwhelmed with thousands requiring medical care for acute asthma and 10 people died. OBJECTIVES This multidisciplinary study was conducted across various health and science departments with the aim of improving our collective understanding of the mechanism behind ETSA. DESIGN This study involved time-resolved analysis of atmospheric sampling of the air for pollen and fungal spores, and intact and ruptured pollen compared with different weather parameters, pollution levels and clinical asthma presentations. METHODS Time-resolved pollen and fungal spore data collected by Deakin AirWATCH Burwood, underwent 3-h analysis, to better reflect the 'before', 'during' and 'after' ETSA time points, on the days leading up to and following the Melbourne 2016 event. Linear correlations were conducted with atmospheric pollution data provided by the Environment Protection Authority (EPA) of Victoria, weather data sourced from Bureau of Meteorology (BOM) and clinical asthma presentation data from the Victorian Agency for Health Information (VAHI) of Department of Health. RESULTS Counts of ruptured grass pollen grains increased 250% when the thunderstorm outflow reached Burwood. Increased PM10, high relative humidity, decreased temperature and low ozone concentrations observed in the storm outflow were correlated with increased levels of ruptured grass pollen. In particular, high ozone levels observed 6 h prior to this ETSA event may be a critical early indicator of impending ETSA event, since high ozone levels have been linked to increasing pollen allergen content and reducing pollen integrity, which may in turn contribute to enhanced pollen rupture. CONCLUSION The findings presented in this article highlight the importance of including ruptured pollen and time-resolved analysis to forecast ETSA events and thus save lives.
Collapse
Affiliation(s)
- Dwan Price
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC, Australia
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC, Australia
- Deakin AirWATCH Pollen and Spore Counting and Forecasting Facility, Deakin University, VIC, Australia
- Victorian Department of Health, Melbourne, VIC, Australia
- Centre for Sustainable Bioproducts (CSB), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, VIC, Australia
| | - Kira M Hughes
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC, Australia
- Deakin AirWATCH Pollen and Spore Counting and Forecasting Facility, Deakin University, VIC, Australia
- Centre for Sustainable Bioproducts (CSB), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, VIC, Australia
| | - Dulashi Withanage Dona
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC, Australia
- Deakin AirWATCH Pollen and Spore Counting and Forecasting Facility, Deakin University, VIC, Australia
- Centre for Sustainable Bioproducts (CSB), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, VIC, Australia
| | - Philip E Taylor
- Pharmacy and Biomedical Science, School of Molecular Sciences, La Trobe University, Bendigo, VIC, Australia
| | - David A V Morton
- School of Engineering, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC, Australia
| | - Svetlana Stevanovic
- School of Engineering, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC, Australia
| | - Francis Thien
- Respiratory Medicine, Eastern Health, Box Hill Hospital and Monash University, Box Hill, VIC, Australia
| | - Jason Choi
- Environment Protection Authority, Centre for Applied Sciences, Macleod, VIC, Australia
| | - Paul Torre
- Environment Protection Authority, Centre for Applied Sciences, Macleod, VIC, Australia
| | - Cenk Suphioglu
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds Campus, 75 Pidgons Road, Geelong, VIC 3216, Australia
- NeuroAllergy Research Laboratory (NARL), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC, Australia
- Deakin AirWATCH Pollen and Spore Counting and Forecasting Facility, Deakin University, VIC, Australi
- Centre for Sustainable Bioproducts (CSB), School of Life and Environmental Sciences, Faculty of Science, Engineering and Built Environment, Deakin University, Waurn Ponds, VIC, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, VIC, Australia
| |
Collapse
|
5
|
Fernández-González M, Ribeiro H, Rodríguez-Rajo FJ, Cruz A, Abreu I. Short-Term Exposure of Dactylis glomerata Pollen to Atmospheric Gaseous Pollutants Is Related to an Increase in IgE Binding in Patients with Grass Pollen Allergies. PLANTS (BASEL, SWITZERLAND) 2022; 12:76. [PMID: 36616204 PMCID: PMC9823458 DOI: 10.3390/plants12010076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
The concentrations of nitrogen dioxide (NO2) and tropospheric ozone (O3) in urban and industrial site atmospheres are considered key factors associated with pollen-related respiratory allergies. This work studies the effects of NO2 and O3 on the protein expression profile and IgE binding in patients with grass allergies to Dactylis glomerata pollen extracts. Pollens were collected during the flowering season and were exposed to NO2 and O3 in a controlled environmental chamber. The amount of soluble protein was examined using the Bradford method, and the protein expression profile and antigenic properties were analysed using the immunoblotting and enzyme-linked immunosorbent assay (ELISA), respectively. Our results showed apparent inter-sera differences concerning the number and intensity of IgE reactivity, with the most prominent at bands of 55 kDa, 35, 33, and 13 kDa. In the 13 kDa band, both gases tend to induce an increase in IgE binding, the band at 33 kDa showed a tendency towards a reduction, particularly pollen exposed to O3. Reactive bands at 55 and 35 kDa presented an increase in the IgE binding pattern for all the patient sera samples exposed to NO2, but the samples exposed to O3 showed an increase in some sera and in others a decrease. Regarding the ELISA results, out of the 21 tested samples, only 9 showed a statistically significant increase in total IgE reactivity after pollen exposure to the pollutants. Our study revealed that although airborne pollen allergens might be affected by air pollution, the possible impacts on allergy symptoms might vary depending on the type of pollutant and the patient's sensitisation profile.
Collapse
Affiliation(s)
- María Fernández-González
- Department of Plant Biology and Soil Sciences, Faculty of Sciences, University of Vigo, 32004 Ourense, Spain
| | - Helena Ribeiro
- Earth Sciences Institute (ICT), Pole of the Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Department of Geosciences, Environment and Spatial Plannings, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto, Portugal
| | - Fco. Javier Rodríguez-Rajo
- Department of Plant Biology and Soil Sciences, Faculty of Sciences, University of Vigo, 32004 Ourense, Spain
| | - Ana Cruz
- Clinical Pathology Service, Immunology Laboratory Vila Nova de Gaia Hospitalar Centre, 4434-502 Vila Nova de Gaia, Portugal
| | - Ilda Abreu
- Earth Sciences Institute (ICT), Pole of the Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
- Department of Biology, Faculty of Sciences University of Porto, 4169-007 Porto, Portugal
| |
Collapse
|
6
|
Zhou W, Chi W, Shen W, Dou W, Wang J, Tian X, Gehring C, Wong A. Computational Identification of Functional Centers in Complex Proteins: A Step-by-Step Guide With Examples. FRONTIERS IN BIOINFORMATICS 2021; 1:652286. [PMID: 36303732 PMCID: PMC9581015 DOI: 10.3389/fbinf.2021.652286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
In proteins, functional centers consist of the key amino acids required to perform molecular functions such as catalysis, ligand-binding, hormone- and gas-sensing. These centers are often embedded within complex multi-domain proteins and can perform important cellular signaling functions that enable fine-tuning of temporal and spatial regulation of signaling molecules and networks. To discover hidden functional centers, we have developed a protocol that consists of the following sequential steps. The first is the assembly of a search motif based on the key amino acids in the functional center followed by querying proteomes of interest with the assembled motif. The second consists of a structural assessment of proteins that harbor the motif. This approach, that relies on the application of computational tools for the analysis of data in public repositories and the biological interpretation of the search results, has to-date uncovered several novel functional centers in complex proteins. Here, we use recent examples to describe a step-by-step guide that details the workflow of this approach and supplement with notes, recommendations and cautions to make this protocol robust and widely applicable for the discovery of hidden functional centers.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Wei Chi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Wanting Shen
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Wanying Dou
- Department of Computer Science, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Junyi Wang
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Xuechen Tian
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Christoph Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center of Wenzhou-Kean University, Wenzhou, China
- *Correspondence: Aloysius Wong
| |
Collapse
|
7
|
Plaza MP, Alcázar P, Oteros J, Galán C. Atmospheric pollutants and their association with olive and grass aeroallergen concentrations in Córdoba (Spain). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:45447-45459. [PMID: 32789634 PMCID: PMC8197725 DOI: 10.1007/s11356-020-10422-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/06/2020] [Indexed: 05/07/2023]
Abstract
Cumulative data indicate that pollen grains and air pollution reciprocally interact. Climate changes seem also to influence pollen allergenicity. Depending on the plant species and on the pollutant type and concentration, this interaction may modify the features and metabolism of the pollen grain. Previous results revealed a significant positive correlation between pollen and aeroallergen, even using two different samplers. However, some discrepancy days have been also detected with low pollen but high aeroallergen concentrations. The main aim of the present paper is to find how the environmental factors, and specially pollutants, could affect the amount of allergens from olive and grass airborne pollen. Pollen grains were collected by a Hirst-type volumetric spore trap. Aeroallergen was simultaneously sampled by a low-volume Cyclone Burkard sampler. Phl p 5 and Ole e 1 aeroallergen were quantified by double-sandwich ELISA test. The data related to air pollutants, pollen grains, and aeroallergens were analyzed with descriptive statistic. Spearman's correlation test was used to identify potential correlations between these variables. There is a significant positive correlation between aeroallergens and airborne pollen concentrations, in both studied pollen types, so allergen concentrations could be explained with the pollen concentration. The days with unlinked events coincide between olive and grass allergens. Nevertheless, concerning to our results, pollutants do not affect the amount of allergens per pollen. Even if diverse pollutants show an unclear relationship with the allergen concentration, this association seems to be a casual effect of the leading role of some meteorological parameters.
Collapse
Affiliation(s)
- Maria Pilar Plaza
- Chair and Institute of Environmental Medicine, UNIKA-T, University of Augsburg - Technical University of Munich (TUM) and Helmholtz Zentrum München, Neusässer Str. 47, 86156, Augsburg, Germany.
- Department of Botany, Ecology and Plant Physiology, University of Córdoba (UCO), Córdoba, Spain.
| | - Purificación Alcázar
- Department of Botany, Ecology and Plant Physiology, University of Córdoba (UCO), Córdoba, Spain
| | - José Oteros
- Department of Botany, Ecology and Plant Physiology, University of Córdoba (UCO), Córdoba, Spain
- Center of Allergy & Environment (ZAUM), Member of the German Center for Lung Research (DZL), Technische Universität München/Helmholtz Center, Munich, Germany
| | - Carmen Galán
- Department of Botany, Ecology and Plant Physiology, University of Córdoba (UCO), Córdoba, Spain
| |
Collapse
|
8
|
Candotto Carniel F, Fortuna L, Nepi M, Cai G, Del Casino C, Adami G, Bramini M, Bosi S, Flahaut E, Martín C, Vázquez E, Prato M, Tretiach M. Beyond graphene oxide acidity: Novel insights into graphene related materials effects on the sexual reproduction of seed plants. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122380. [PMID: 32126426 DOI: 10.1016/j.jhazmat.2020.122380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Graphene related materials (GRMs) are currently being used in products and devices of everyday life and this strongly increases the possibility of their ultimate release into the environment as waste items. GRMs have several effects on plants, and graphene oxide (GO) in particular, can affect pollen germination and tube growth due to its acidic properties. Despite the socio-economic importance of sexual reproduction in seed plants, the effect of GRMs on this process is still largely unknown. Here, Corylus avellana L. (common Hazel) pollen was germinated in-vitro with and without 1-100 μg mL-1 few-layer graphene (FLG), GO and reduced GO (rGO) to identify GRMs effects alternative to the acidification damage caused by GO. At 100 μg mL-1 both FLG and GO decreased pollen germination, however only GO negatively affected pollen tube growth. Furthermore, GO adsorbed about 10 % of the initial Ca2+ from germination media accounting for a further decrease in germination of 13 % at the pH created by GO. In addition, both FLG and GO altered the normal tip-focused reactive oxygen species (ROS) distribution along the pollen tube. The results provided here help to understand GRMs effect on the sexual reproduction of seed plants and to address future in-vivo studies.
Collapse
Affiliation(s)
- Fabio Candotto Carniel
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, I-34127, Trieste, Italy.
| | - Lorenzo Fortuna
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, I-34127, Trieste, Italy.
| | - Massimo Nepi
- Department of Life Sciences, University of Siena, via P. A. Mattioli 4, I-53100, Siena, Italy.
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via P. A. Mattioli 4, I-53100, Siena, Italy.
| | - Cecilia Del Casino
- Department of Life Sciences, University of Siena, via P. A. Mattioli 4, I-53100, Siena, Italy.
| | - Giampiero Adami
- Department of Chemical and Pharmaceutical Science, University of Trieste, via L. Giorgieri 1, I-34127, Trieste, Italy.
| | - Mattia Bramini
- Center for Synaptic Neuroscience, Italian Institute of Technology, Largo Rosanna Benzi 10, I-16132, Genova, Italy.
| | - Susanna Bosi
- Department of Chemical and Pharmaceutical Science, University of Trieste, via L. Giorgieri 1, I-34127, Trieste, Italy.
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N° 5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, 118, route de Narbonne, F-31062, Toulouse cedex 9, France.
| | - Cristina Martín
- Department of Organic Chemistry, Faculty of Chemical Science and Technology, University of Castilla-La Mancha, Av. Camilo José Cela, s/n, E-13005, Ciudad Real, Spain.
| | - Ester Vázquez
- Department of Organic Chemistry, Faculty of Chemical Science and Technology, University of Castilla-La Mancha, Av. Camilo José Cela, s/n, E-13005, Ciudad Real, Spain; Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, E-13071, Ciudad Real, Spain.
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Science, University of Trieste, via L. Giorgieri 1, I-34127, Trieste, Italy; Carbon Nanobiotechnology Laboratory CIC BiomaGUNE, Paseo de Miramón 182, E-20009, Donostia-San Sebastian, Spain.
| | - Mauro Tretiach
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, I-34127, Trieste, Italy.
| |
Collapse
|
9
|
Bastl K, Bastl M, Bergmann KC, Berger M, Berger U. Translating the Burden of Pollen Allergy Into Numbers Using Electronically Generated Symptom Data From the Patient's Hayfever Diary in Austria and Germany: 10-Year Observational Study. J Med Internet Res 2020; 22:e16767. [PMID: 32130130 PMCID: PMC7060495 DOI: 10.2196/16767] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/20/2019] [Accepted: 12/15/2019] [Indexed: 01/02/2023] Open
Abstract
Background Pollen allergies affect a significant proportion of the population globally. At present, Web-based tools such as pollen diaries and mobile apps allow for easy and fast documentation of allergic symptoms via the internet. Objective This study aimed to characterize the users of the Patient’s Hayfever Diary (PHD), a Web-based platform and mobile app, to apply different symptom score calculations for comparison, and to evaluate the contribution of organs and medications to the total score for the first time. Methods The PHD users were filtered with regard to their location in Austria and Germany, significant positive correlation to the respective pollen type (birch/grass), and at least 15 entries in the respective season. Furthermore, 4 different symptom score calculation methods were applied to the datasets from 2009 until 2018, of which 2 were raw symptom scores and 2 were symptom load index (normalized) calculations. Pearson correlation coefficients were calculated pairwise for these 4 symptom score calculations. Results Users were mostly male and belonged to the age groups of 21 to 40 years or >40 years. User numbers have increased in the last 5 years, especially when mobile apps were made available. The Pearson correlation coefficients showed a significant linear relationship above 0.9 among the 4 symptom score datasets and thus indicated no significant difference between the different methods of symptom score calculation. The nose contributed the most to the symptom score and determined about 40% of the score. Conclusions The exact method of calculation of the symptom score is not critical. All computation methods show the same behavior (increase/decrease during the season). Therefore, the symptom load index is a useful computation method in all fields exploring pollen allergy, and Web-based diaries are a globally applicable tool to monitor the effect of pollen on human health via electronically generated symptom data.
Collapse
Affiliation(s)
- Katharina Bastl
- Aerobiology and Pollen Information Research Unit, Department of Oto-Rhino-Laryngology, Medical University of Vienna, Vienna, Austria
| | - Maximilian Bastl
- Aerobiology and Pollen Information Research Unit, Department of Oto-Rhino-Laryngology, Medical University of Vienna, Vienna, Austria
| | - Karl-Christian Bergmann
- Foundation German Pollen Information, Berlin, Germany.,Department of Dermatology, Venerology and Allerogology, Charitè Universitätsmedizin, Berlin, Germany
| | - Markus Berger
- Aerobiology and Pollen Information Research Unit, Department of Oto-Rhino-Laryngology, Medical University of Vienna, Vienna, Austria.,Paracelsus Medizinische Privatuniversität, Salzburg, Austria
| | - Uwe Berger
- Aerobiology and Pollen Information Research Unit, Department of Oto-Rhino-Laryngology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Hu CH, Wang PQ, Zhang PP, Nie XM, Li BB, Tai L, Liu WT, Li WQ, Chen KM. NADPH Oxidases: The Vital Performers and Center Hubs during Plant Growth and Signaling. Cells 2020; 9:E437. [PMID: 32069961 PMCID: PMC7072856 DOI: 10.3390/cells9020437] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
NADPH oxidases (NOXs), mostly known as respiratory burst oxidase homologs (RBOHs), are the key producers of reactive oxygen species (ROS) in plants. A lot of literature has addressed ROS signaling in plant development regulation and stress responses as well as on the enzyme's structure, evolution, function, regulation and associated mechanisms, manifesting the role of NOXs/RBOHs as the vital performers and center hubs during plant growth and signaling. This review focuses on recent advances of NOXs/RBOHs on cell growth, hormone interaction, calcium signaling, abiotic stress responses, and immunity. Several primary particles, including Ca2+, CDPKs, BIK1, ROPs/RACs, CERK, FER, ANX, SnRK and SIK1-mediated regulatory mechanisms, are fully summarized to illustrate the signaling behavior of NOXs/RBOHs and their sophisticated and dexterous crosstalks. Diverse expression and activation regulation models endow NOXs/RBOHs powerful and versatile functions in plants to maintain innate immune homeostasis and development integrity. NOXs/RBOHs and their related regulatory items are the ideal targets for crop improvement in both yield and quality during agricultural practices.
Collapse
Affiliation(s)
- Chun-Hong Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, Henan, China
| | - Peng-Qi Wang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Peng-Peng Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiu-Min Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
11
|
Mizen A, Lyons J, Doherty R, Berridge D, Wilkinson P, Milojevic A, Carruthers D, Akbari A, Lake I, Davies GA, Sallakh MA, Mavrogianni A, Dearden L, Johnson R, Rodgers SE. Creating individual level air pollution exposures in an anonymised data safe haven: a platform for evaluating impact on educational attainment. Int J Popul Data Sci 2018; 3:412. [PMID: 32934998 PMCID: PMC7299475 DOI: 10.23889/ijpds.v3i1.412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Introduction There is a lack of evidence on the adverse effects of air pollution on cognition for people with air quality-related health conditions. We propose that educational attainment, as a proxy for cognition, may increase with improved air quality. This study will explore whether asthma and seasonal allergic rhinitis, when exacerbated by acute exposure to air pollution, is associated with educational attainment. Objective To describe the preparation of individual and household-level linked environmental and health data for analysis within an anonymised safe haven. Also to introduce our statistical analysis plan for our study: COgnition, Respiratory Tract illness and Effects of eXposure (CORTEX). Methods We imported daily air pollution and aeroallergen data, and individual level education data into the SAIL databank, an anonymised safe haven for person-based records. We linked individual-level education, socioeconomic and health data to air quality data for home and school locations, creating tailored exposures for individuals across a city. We developed daily exposure data for all pupils in repeated cross sectional exam cohorts (2009-2015). Conclusion We have used the SAIL databank, an innovative, data safe haven to create individual-level exposures to air pollution and pollen for multiple daily home and school locations. The analysis platform will allow us to evaluate retrospectively the impact of air quality on attainment for multiple cross-sectional cohorts of pupils. Our methods will allow us to distinguish between the pollution impacts on educational attainment for pupils with and without respiratory health conditions. The results from this study will further our understanding of the effects of air quality and respiratory-related health conditions on cognition. Highlights
Collapse
Affiliation(s)
- Amy Mizen
- Health Data Research UK Wales and Northern Ireland, Swansea University Medical School, Wales, UK
| | - Jane Lyons
- Health Data Research UK Wales and Northern Ireland, Swansea University Medical School, Wales, UK
| | - Ruth Doherty
- School of GeoSciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Damon Berridge
- Health Data Research UK Wales and Northern Ireland, Swansea University Medical School, Wales, UK
| | - Paul Wilkinson
- Department of Social and Environmental Health Research, London School of Hygiene & Tropical Medicine, 15-17 Tavistock Place, London WC1H 9SH, UK
| | - Ai Milojevic
- Department of Social and Environmental Health Research, London School of Hygiene & Tropical Medicine, 15-17 Tavistock Place, London WC1H 9SH, UK
| | - David Carruthers
- Cambridge Environmental Research Consultants, Cambridge, United Kingdom
| | - Ashley Akbari
- Health Data Research UK Wales and Northern Ireland, Swansea University Medical School, Wales, UK
| | - Iain Lake
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Gwyneth A Davies
- Asthma UK Centre for Applied Research, Swansea University Medical School, Singleton Park, Swansea, UK
| | - Mohammad Al Sallakh
- Health Data Research UK Wales and Northern Ireland, Swansea University Medical School, Wales, UK
| | - Anna Mavrogianni
- UCL Energy Institute, University College London, Gower Street, London
| | - Lorraine Dearden
- The Institute for Fiscal Studies, 7 Ridgmount Street, London WC1E 7AE
| | - Rhodri Johnson
- Health Data Research UK Wales and Northern Ireland, Swansea University Medical School, Wales, UK
| | - Sarah Elizabeth Rodgers
- Health Data Research UK Wales and Northern Ireland, Swansea University Medical School, Wales, UK.,Department of Public Health and Policy, University of Liverpool, Liverpool, UK
| |
Collapse
|
12
|
Sierra-Heredia C, North M, Brook J, Daly C, Ellis AK, Henderson D, Henderson SB, Lavigne É, Takaro TK. Aeroallergens in Canada: Distribution, Public Health Impacts, and Opportunities for Prevention. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1577. [PMID: 30044421 PMCID: PMC6121311 DOI: 10.3390/ijerph15081577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/04/2018] [Accepted: 07/18/2018] [Indexed: 12/17/2022]
Abstract
Aeroallergens occur naturally in the environment and are widely dispersed across Canada, yet their public health implications are not well-understood. This review intends to provide a scientific and public health-oriented perspective on aeroallergens in Canada: their distribution, health impacts, and new developments including the effects of climate change and the potential role of aeroallergens in the development of allergies and asthma. The review also describes anthropogenic effects on plant distribution and diversity, and how aeroallergens interact with other environmental elements, such as air pollution and weather events. Increased understanding of the relationships between aeroallergens and health will enhance our ability to provide accurate information, improve preventive measures and provide timely treatments for affected populations.
Collapse
Affiliation(s)
| | - Michelle North
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3H7, Canada.
- Department of Biomedical & Molecular Sciences and Division of Allergy & Immunology, Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
- Allergy Research Unit, Kingston General Hospital, Kingston, ON K7L 2V7, Canada.
| | - Jeff Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M3H 5T4, Canada.
| | - Christina Daly
- Air Quality Health Index, Health Canada, Ottawa, ON K1A 0K9, Canada.
| | - Anne K Ellis
- Department of Biomedical & Molecular Sciences and Division of Allergy & Immunology, Department of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada.
- Allergy Research Unit, Kingston General Hospital, Kingston, ON K7L 2V7, Canada.
| | - Dave Henderson
- Health and Air Quality Services, Environment and Climate Change Canada, Gatineau, QC K1A 0H3, Canada.
| | - Sarah B Henderson
- Environmental Health Services, BC Centre for Disease Control, Vancouver, BC V5Z 4R4, Canada.
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Éric Lavigne
- Air Health Science Division, Health Canada, Ottawa, ON K1A 0K9, Canada.
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON K1G 5Z3, Canada.
| | - Tim K Takaro
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
13
|
|
14
|
Ganie ZA, Jhala AJ. Modeling pollen-mediated gene flow from glyphosate-resistant to -susceptible giant ragweed (Ambrosia trifida L.) under field conditions. Sci Rep 2017; 7:17067. [PMID: 29213093 PMCID: PMC5719015 DOI: 10.1038/s41598-017-16737-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/16/2017] [Indexed: 12/22/2022] Open
Abstract
A field experiment was conducted to quantify pollen mediated gene flow (PMGF) from glyphosate-resistant (GR) to glyphosate-susceptible (GS) giant ragweed under simulated field conditions using glyphosate resistance as a selective marker. Field experiments were conducted in a concentric design with the GR giant ragweed pollen source planted in the center and GS giant ragweed pollen receptors surrounding the center in eight directional blocks at specified distances (between 0.1 and 35 m in cardinal and ordinal directions; and additional 50 m for ordinal directions). Seeds of GS giant ragweed were harvested from the pollen receptor blocks and a total of 100,938 giant ragweed plants were screened with glyphosate applied at 2,520 g ae ha-1 and 16,813 plants confirmed resistant. The frequency of PMGF was fit to a double exponential decay model selected by information-theoretic criteria. The highest frequency of gene flow (0.43 to 0.60) was observed at ≤0.5 m from the pollen source and reduced rapidly with increasing distances; however, gene flow (0.03 to 0.04) was detected up to 50 m. The correlation between PMGF and wind parameters was inconsistent in magnitude, direction, and years.
Collapse
Affiliation(s)
- Zahoor A Ganie
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, 68583, Nebraska, USA
| | - Amit J Jhala
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, 68583, Nebraska, USA.
| |
Collapse
|
15
|
Jimenez-Quesada MJ, Carmona R, Lima-Cabello E, Traverso JÁ, Castro AJ, Claros MG, Alché JDD. Generation of nitric oxide by olive (Olea europaea L.) pollen during in vitro germination and assessment of the S-nitroso- and nitro-proteomes by computational predictive methods. Nitric Oxide 2017. [PMID: 28645873 DOI: 10.1016/j.niox.2017.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nitric oxide is recognized as a signaling molecule involved in a broad range of physiological processes in plants including sexual reproduction. NO has been detected in the pollen grain at high levels and regulates pollen tube growth. Previous studies demonstrated that NO as well as ROS are produced in the olive reproductive tissues in a stage- and tissue-specific manner. The aim of this study was to assess the production of NO throughout the germination of olive (Olea europaea L.) pollen in vitro. The NO fluorescent probe DAF-2DA was used to image NO production in situ, which was correlated to pollen viability. Moreover, by means of a fluorimetric assay we showed that growing pollen tubes release NO. GSNO -a mobile reservoir of NO, formed by the S-nitrosylation of NO with reduced glutathione (GSH) - was for the first time detected and quantified at different stages of pollen tube growth using a LC-ES/MS analysis. Exogenous NO donors inhibited both pollen germination and pollen tube growth and these effects were partially reverted by the specific NO-scavenger c-PTIO. However, little is known about how NO affects the germination process. With the aim of elucidating the putative relevance of protein S-nitrosylation and Tyr-nitration as important post-translational modifications in the development and physiology of the olive pollen, a de novo assembled and annotated reproductive transcriptome from olive was challenged in silico for the putative capability of transcripts to become potentially modified by S-nitrosylation/Tyr-nitration according to well-established criteria. Numerous gene products with these characteristics were identified, and a broad discussion as regards to their potential role in plant reproduction was built after their functional classification. Moreover, the importance of both S-nitrosylation/Tyr-nitrations was experimentally assessed and validated by using Western blotting, immunoprecipitation and proteomic approaches.
Collapse
Affiliation(s)
- María José Jimenez-Quesada
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Rosario Carmona
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Elena Lima-Cabello
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - José Ángel Traverso
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - Antonio Jesús Castro
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain
| | - M Gonzalo Claros
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| | - Juan de Dios Alché
- Plant Reproductive Biology Laboratory, Department of Biochemistry, Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín (CSIC), Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
16
|
Zhao F, Durner J, Winkler JB, Traidl-Hoffmann C, Strom TM, Ernst D, Frank U. Pollen of common ragweed (Ambrosia artemisiifolia L.): Illumina-based de novo sequencing and differential transcript expression upon elevated NO 2/O 3. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:503-514. [PMID: 28284545 DOI: 10.1016/j.envpol.2017.02.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 12/15/2016] [Accepted: 02/14/2017] [Indexed: 05/28/2023]
Abstract
Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic annual ruderal plant and native to Northern America, but now also spreading across Europe. Air pollution and climate change will not only affect plant growth, pollen production and duration of the whole pollen season, but also the amount of allergenic encoding transcripts and proteins of the pollen. The objective of this study was to get a better understanding of transcriptional changes in ragweed pollen upon NO2 and O3 fumigation. This will also contribute to a systems biology approach to understand the reaction of the allergenic pollen to air pollution and climate change. Ragweed plants were grown in climate chambers under controlled conditions and fumigated with enhanced levels of NO2 and O3. Illumina sequencing and de novo assembly revealed significant differentially expressed transcripts, belonging to different gene ontology (GO) terms that were grouped into biological process and molecular function. Transcript levels of the known Amb a ragweed encoding allergens were clearly up-regulated under elevated NO2, whereas the amount of allergen encoding transcripts was more variable under elevated O3 conditions. Moreover transcripts encoding allergen known from other plants could be identified. The transcriptional changes in ragweed pollen upon elevated NO2 fumigation indicates that air pollution will alter the transcriptome of the pollen. The changed levels of allergenic encoding transcripts may have an influence on the total allergenic potential of ragweed pollen.
Collapse
Affiliation(s)
- Feng Zhao
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Biochemical Plant Pathology, Technische Universität München, Center of Life and Food Sciences Weihenstephan, Freising-Weihenstephan, Germany.
| | - J Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| | - Claudia Traidl-Hoffmann
- Institute of Environmental Medicine, UNIKA-T, Augsburg, Germany; CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos-Wolfgang, Switzerland.
| | - Tim-Matthias Strom
- Institute of Human Genetics, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.
| | - Dieter Ernst
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos-Wolfgang, Switzerland.
| | - Ulrike Frank
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos-Wolfgang, Switzerland.
| |
Collapse
|
17
|
Reinmuth-Selzle K, Kampf CJ, Lucas K, Lang-Yona N, Fröhlich-Nowoisky J, Shiraiwa M, Lakey PSJ, Lai S, Liu F, Kunert AT, Ziegler K, Shen F, Sgarbanti R, Weber B, Bellinghausen I, Saloga J, Weller MG, Duschl A, Schuppan D, Pöschl U. Air Pollution and Climate Change Effects on Allergies in the Anthropocene: Abundance, Interaction, and Modification of Allergens and Adjuvants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4119-4141. [PMID: 28326768 PMCID: PMC5453620 DOI: 10.1021/acs.est.6b04908] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 03/07/2017] [Accepted: 03/22/2017] [Indexed: 05/13/2023]
Abstract
Air pollution and climate change are potential drivers for the increasing burden of allergic diseases. The molecular mechanisms by which air pollutants and climate parameters may influence allergic diseases, however, are complex and elusive. This article provides an overview of physical, chemical and biological interactions between air pollution, climate change, allergens, adjuvants and the immune system, addressing how these interactions may promote the development of allergies. We reviewed and synthesized key findings from atmospheric, climate, and biomedical research. The current state of knowledge, open questions, and future research perspectives are outlined and discussed. The Anthropocene, as the present era of globally pervasive anthropogenic influence on planet Earth and, thus, on the human environment, is characterized by a strong increase of carbon dioxide, ozone, nitrogen oxides, and combustion- or traffic-related particulate matter in the atmosphere. These environmental factors can enhance the abundance and induce chemical modifications of allergens, increase oxidative stress in the human body, and skew the immune system toward allergic reactions. In particular, air pollutants can act as adjuvants and alter the immunogenicity of allergenic proteins, while climate change affects the atmospheric abundance and human exposure to bioaerosols and aeroallergens. To fully understand and effectively mitigate the adverse effects of air pollution and climate change on allergic diseases, several challenges remain to be resolved. Among these are the identification and quantification of immunochemical reaction pathways involving allergens and adjuvants under relevant environmental and physiological conditions.
Collapse
Affiliation(s)
| | - Christopher J. Kampf
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- Institute
of Inorganic and Analytical Chemistry, Johannes
Gutenberg University, Mainz, 55128, Germany
| | - Kurt Lucas
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Naama Lang-Yona
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | | | - Manabu Shiraiwa
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Pascale S. J. Lakey
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Senchao Lai
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
- South
China University of Technology, School of
Environment and Energy, Guangzhou, 510006, China
| | - Fobang Liu
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Anna T. Kunert
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Kira Ziegler
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Fangxia Shen
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Rossella Sgarbanti
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Bettina Weber
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| | - Iris Bellinghausen
- Department
of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, 55131, Germany
| | - Joachim Saloga
- Department
of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, 55131, Germany
| | - Michael G. Weller
- Division
1.5 Protein Analysis, Federal Institute
for Materials Research and Testing (BAM), Berlin, 12489, Germany
| | - Albert Duschl
- Department
of Molecular Biology, University of Salzburg, 5020 Salzburg, Austria
| | - Detlef Schuppan
- Institute
of Translational Immunology and Research Center for Immunotherapy,
Institute of Translational Immunology, University Medical Center, Johannes Gutenberg University, Mainz, 55131 Germany
- Division
of Gastroenterology, Beth Israel Deaconess
Medical Center and Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Ulrich Pöschl
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz, 55128, Germany
| |
Collapse
|
18
|
Lake IR, Jones NR, Agnew M, Goodess CM, Giorgi F, Hamaoui-Laguel L, Semenov MA, Solomon F, Storkey J, Vautard R, Epstein MM. Climate Change and Future Pollen Allergy in Europe. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:385-391. [PMID: 27557093 PMCID: PMC5332176 DOI: 10.1289/ehp173] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/12/2016] [Accepted: 06/10/2016] [Indexed: 05/05/2023]
Abstract
BACKGROUND Globally, pollen allergy is a major public health problem, but a fundamental unknown is the likely impact of climate change. To our knowledge, this is the first study to quantify the consequences of climate change upon pollen allergy in humans. OBJECTIVES We produced quantitative estimates of the potential impact of climate change upon pollen allergy in humans, focusing upon common ragweed (Ambrosia artemisiifolia) in Europe. METHODS A process-based model estimated the change in ragweed's range under climate change. A second model simulated current and future ragweed pollen levels. These findings were translated into health burdens using a dose-response curve generated from a systematic review and from current and future population data. Models considered two different suites of regional climate/pollen models, two greenhouse gas emissions scenarios [Representative Concentration Pathways (RCPs) 4.5 and 8.5], and three different plant invasion scenarios. RESULTS Our primary estimates indicated that sensitization to ragweed will more than double in Europe, from 33 to 77 million people, by 2041-2060. According to our projections, sensitization will increase in countries with an existing ragweed problem (e.g., Hungary, the Balkans), but the greatest proportional increases will occur where sensitization is uncommon (e.g., Germany, Poland, France). Higher pollen concentrations and a longer pollen season may also increase the severity of symptoms. Our model projections were driven predominantly by changes in climate (66%) but were also influenced by current trends in the spread of this invasive plant species. Assumptions about the rate at which ragweed spreads throughout Europe had a large influence upon the results. CONCLUSIONS Our quantitative estimates indicate that ragweed pollen allergy will become a common health problem across Europe, expanding into areas where it is currently uncommon. Control of ragweed spread may be an important adaptation strategy in response to climate change. Citation: Lake IR, Jones NR, Agnew M, Goodess CM, Giorgi F, Hamaoui-Laguel L, Semenov MA, Solomon F, Storkey J, Vautard R, Epstein MM. 2017. Climate change and future pollen allergy in Europe. Environ Health Perspect 125:385-391; http://dx.doi.org/10.1289/EHP173.
Collapse
Affiliation(s)
- Iain R. Lake
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Natalia R. Jones
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Maureen Agnew
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Clare M. Goodess
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Filippo Giorgi
- Earth System Physics Section, International Centre for Theoretical Physics, Trieste, Italy
| | - Lynda Hamaoui-Laguel
- Laboratoire des sciences du climat et de l’environnement (LCSE), l’Institut Pierre Simon Laplace (IPSL), Centre d’Etudes Atomiques-Centre National de la Recherche Scientifique (CEA-CNRS) l’Université de Versailles Saint-Quentin (UVSQ), unité mixte de recherche (UMR) 8212, Gif sur Yvette, France
- Institut National de l’Environnement Industriel et des Risques, Parc technologique ALATA, Verneuil en Halatte, France
| | | | - Fabien Solomon
- Earth System Physics Section, International Centre for Theoretical Physics, Trieste, Italy
| | | | - Robert Vautard
- Laboratoire des sciences du climat et de l’environnement (LCSE), l’Institut Pierre Simon Laplace (IPSL), Centre d’Etudes Atomiques-Centre National de la Recherche Scientifique (CEA-CNRS) l’Université de Versailles Saint-Quentin (UVSQ), unité mixte de recherche (UMR) 8212, Gif sur Yvette, France
- Institut National de l’Environnement Industriel et des Risques, Parc technologique ALATA, Verneuil en Halatte, France
| | - Michelle M. Epstein
- Department of Dermatology, Division of Immunology, Allergy and Infectious Diseases, Experimental Allergy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
The dangerous liaison between pollens and pollution in respiratory allergy. Ann Allergy Asthma Immunol 2017; 118:269-275. [PMID: 28143681 DOI: 10.1016/j.anai.2016.12.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/06/2016] [Accepted: 12/19/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To recapitulate the more recent epidemiologic studies on the association of air pollution with respiratory allergic diseases prevalence and to discuss the main limitations of current approaches used to establish a link between pollinosis and pollution. DATA SOURCES Through the use of PubMed, we conducted a broad literature review in the following areas: epidemiology of respiratory allergic diseases, effect of pollution and climate changes on pollen grains, and immunomodulatory properties of pollen substances. STUDY SELECTIONS Studies on short- and long-term exposure to air pollutants, such as gaseous and particulate materials, on allergic sensitization, and on exacerbation of asthma symptoms were considered. RESULTS Trend in respiratory allergic disease prevalence has increased worldwide during the last 3 decades. Although recent epidemiologic studies on a possible association of this phenomenon with increasing pollution are controversial, botanic studies suggest a clear effect of several pollutants combined to climatic changes on the increased expression of allergenic proteins in several pollen grains. The current literature suggests the need for considering both pollen allergen and pollutant contents for epidemiologic evaluation of environmental determinants in respiratory allergies. We propose that a measure of allergenic potential of pollens, indicative of the increase in allergenicity of a polluted pollen, may be considered as a new risk indicator for respiratory health in urban areas. CONCLUSION Because public greens are located in strict proximity to the anthropogenic sources of pollution, the identification of novel more reliable parameters for risk assessment in respiratory allergic diseases is an essential need for public health management and primary prevention area.
Collapse
|
20
|
Depciuch J, Kasprzyk I, Sadik O, Parlińska-Wojtan M. FTIR analysis of molecular composition changes in hazel pollen from unpolluted and urbanized areas. AEROBIOLOGIA 2017; 33:1-12. [PMID: 28255194 PMCID: PMC5309270 DOI: 10.1007/s10453-016-9445-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/30/2016] [Indexed: 05/03/2023]
Abstract
ABSTRACT In this study, the effect of urbanization and environmental pollution on qualitative (structural) and quantitative changes of the Corylus avellana (hazel) pollen was investigated using scanning electron microscopy, Fourier Transform Infrared (FTIR) spectroscopy and curve-fitting analysis of amide I profile. The obtained spectroscopic results show significant variations in the fraction of proteins in the hazel pollen, which probably depend on various degrees of anthropopression. Our results suggest that alterations in the chemical composition of pollen, induced by urbanization and air pollutants, may intensify the allergenic potential and may cause the increase in the incidence of allergies in people. Mutations in nucleic acids are accompanied by a number of molecular changes leading to the formation of allergenic proteins. It seems that the type of habitat, where the pollen grew, affects the individual differentiation. Indeed, it was found that in the site exhibiting low pollution, the hazel pollen contain a lower amount of proteins than to the ones from a site with high anthropopression. Hence, FTIR spectroscopy and curve-fitting analysis of amide I profile can be successfully applied as tools for identifying quantitative and qualitative changes of proteins in hazel pollen. GRAPHICAL ABSTRACT Anthropogenic factors such as air pollution and urbanization lead to changes in structure and chemical composition of hazel pollen. Fourier Transform Infrared spectroscopy (FTIR) and Gaussian analysis showed structural changes in hazel pollen collected from sites with different absorbance values of individual chemical functional groups and changes in the secondary structure of proteins of the pollen.
Collapse
Affiliation(s)
- J. Depciuch
- Institute of Nuclear Physics Polish Academy of Sciences, 31342 Kraków, Poland
| | - I. Kasprzyk
- Department of Environmental Biology, Faculty of Biology and Agriculture, University of Rzeszow, Cwiklińskiej 1a, 35-601 Rzeszow, Poland
| | - O. Sadik
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902 USA
| | - M. Parlińska-Wojtan
- Institute of Nuclear Physics Polish Academy of Sciences, 31342 Kraków, Poland
| |
Collapse
|
21
|
Frank U, Ernst D. Effects of NO2 and Ozone on Pollen Allergenicity. FRONTIERS IN PLANT SCIENCE 2016; 7:91. [PMID: 26870080 PMCID: PMC4740364 DOI: 10.3389/fpls.2016.00091] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/18/2016] [Indexed: 05/27/2023]
Abstract
This mini-review summarizes the available data of the air pollutants NO2 and ozone on allergenic pollen from different plant species, focusing on potentially allergenic components of the pollen, such as allergen content, protein release, IgE-binding, or protein modification. Various in vivo and in vitro studies on allergenic pollen are shown and discussed.
Collapse
|
22
|
Hoffman S, Nolin J, McMillan D, Wouters E, Janssen-Heininger Y, Reynaert N. Thiol redox chemistry: role of protein cysteine oxidation and altered redox homeostasis in allergic inflammation and asthma. J Cell Biochem 2016; 116:884-92. [PMID: 25565397 DOI: 10.1002/jcb.25017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/13/2014] [Indexed: 02/02/2023]
Abstract
Asthma is a pulmonary disorder, with an estimated 300 million people affected worldwide. While it is thought that endogenous reactive oxygen species (ROS) and reactive nitrogen species (RNS) such as hydrogen peroxide and nitric oxide, are important mediators of natural physiological processes, inflammatory cells recruited to the asthmatic airways have an exceptional capacity for producing a variety of highly reactive ROS and RNS believed to contribute to tissue damage and chronic airways inflammation. Antioxidant defense systems form a tightly regulated network that maintains the redox environment of the intra- as well as extracellular environment. Evidence for an oxidant-antioxidant imbalance in asthmatic airways is demonstrated in a number of studies, revealing decreased total antioxidant capacity as well as lower levels of individual antioxidants. Thiols in the form of GSH and sulfhydryl groups of proteins are among the most susceptible oxidant-sensitive targets, and hence, studies investigating protein thiol redox modifications in biology and disease have emerged. This perspective offers an overview of the combined efforts aimed at the elucidation of mechanisms whereby cysteine oxidations contribute to chronic inflammation and asthma, as well as insights into potential cysteine thiol-based therapeutic strategies.
Collapse
Affiliation(s)
- Sidra Hoffman
- Department of Pathology, University of Vermont, Burlington, 05405, Vermont
| | | | | | | | | | | |
Collapse
|
23
|
Zhao F, Elkelish A, Durner J, Lindermayr C, Winkler JB, Ruёff F, Behrendt H, Traidl-Hoffmann C, Holzinger A, Kofler W, Braun P, von Toerne C, Hauck SM, Ernst D, Frank U. Common ragweed (Ambrosia artemisiifolia L.): allergenicity and molecular characterization of pollen after plant exposure to elevated NO2. PLANT, CELL & ENVIRONMENT 2016; 39:147-64. [PMID: 26177592 DOI: 10.1111/pce.12601] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 05/27/2023]
Abstract
Ragweed pollen is the main cause of allergenic diseases in Northern America, and the weed has become a spreading neophyte in Europe. Climate change and air pollution are speculated to affect the allergenic potential of pollen. The objective of this study was to investigate the effects of NO2 , a major air pollutant, under controlled conditions, on the allergenicity of ragweed pollen. Ragweed was exposed to different levels of NO2 throughout the entire growing season, and its pollen further analysed. Spectroscopic analysis showed increased outer cell wall polymers and decreased amounts of pectin. Proteome studies using two-dimensional difference gel electrophoresis and liquid chromatography-tandem mass spectrometry indicated increased amounts of several Amb a 1 isoforms and of another allergen with great homology to enolase Hev b 9 from rubber tree. Analysis of protein S-nitrosylation identified nitrosylated proteins in pollen from both conditions, including Amb a 1 isoforms. However, elevated NO2 significantly enhanced the overall nitrosylation. Finally, we demonstrated increased overall pollen allergenicity by immunoblotting using ragweed antisera, showing a significantly higher allergenicity for Amb a 1. The data highlight a direct influence of elevated NO2 on the increased allergenicity of ragweed pollen and a direct correlation with an increased risk for human health.
Collapse
Affiliation(s)
- Feng Zhao
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Amr Elkelish
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Biochemical Plant Pathology, Technische Universität München, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt, Freising, 85350, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - J Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Franziska Ruёff
- Clinic and Polyclinic for Dermatology and Allergology, Faculty of Medicine, LMU München, Munich, 80337, Germany
| | - Heidrun Behrendt
- Center of Allergy & Environment München (ZAUM), Technische Universität and Helmholtz Zentrum München, Munich, 80802, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
| | - Claudia Traidl-Hoffmann
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
- Institute of Environmental Medicine, UNIKA-T, Technische Universität München, Augsburg, 86156, Germany
| | - Andreas Holzinger
- Institute for Botany, Leopold-Franzens Universität Innsbruck, Innsbruck, 6020, Austria
| | - Werner Kofler
- Institute for Botany, Leopold-Franzens Universität Innsbruck, Innsbruck, 6020, Austria
| | - Paula Braun
- Department of Applied Sciences and Mechanotronics, University of Applied Science Munich, Munich, 80335, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Dieter Ernst
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
| | - Ulrike Frank
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- CK-CARE, Christine Kühne - Center for Allergy Research and Education, Davos, 7265, Switzerland
| |
Collapse
|
24
|
Sénéchal H, Visez N, Charpin D, Shahali Y, Peltre G, Biolley JP, Lhuissier F, Couderc R, Yamada O, Malrat-Domenge A, Pham-Thi N, Poncet P, Sutra JP. A Review of the Effects of Major Atmospheric Pollutants on Pollen Grains, Pollen Content, and Allergenicity. ScientificWorldJournal 2015; 2015:940243. [PMID: 26819967 PMCID: PMC4706970 DOI: 10.1155/2015/940243] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 12/12/2022] Open
Abstract
This review summarizes the available data related to the effects of air pollution on pollen grains from different plant species. Several studies carried out either on in situ harvested pollen or on pollen exposed in different places more or less polluted are presented and discussed. The different experimental procedures used to monitor the impact of pollution on pollen grains and on various produced external or internal subparticles are listed. Physicochemical and biological effects of artificial pollution (gaseous and particulate) on pollen from different plants, in different laboratory conditions, are considered. The effects of polluted pollen grains, subparticles, and derived aeroallergens in animal models, in in vitro cell culture, on healthy human and allergic patients are described. Combined effects of atmospheric pollutants and pollen grains-derived biological material on allergic population are specifically discussed. Within the notion of "polluen," some methodological biases are underlined and research tracks in this field are proposed.
Collapse
Affiliation(s)
- Hélène Sénéchal
- Allergy & Environment Team, Biochemistry Department, Armand Trousseau Children Hospital (AP-HP), 26 avenue du Dr. Arnold Netter, 75571 Paris, France
| | - Nicolas Visez
- Physical Chemistry of Combustion and Atmosphere Processes (PC2A), UMR CNRS 8522, University of Lille, 59655 Villeneuve d'Ascq, France
| | - Denis Charpin
- Pneumo-Allergology Department, North Hospital, 265 chemin des Bourrely, 13915 Marseille 20, France
| | - Youcef Shahali
- Allergy & Environment Team, Biochemistry Department, Armand Trousseau Children Hospital (AP-HP), 26 avenue du Dr. Arnold Netter, 75571 Paris, France
- Persiflore, 18 avenue du Parc, 91220 Le Plessis-Pâté, France
| | | | - Jean-Philippe Biolley
- SEVE Team, Ecology and Biology of Interactions (EBI), UMR-CNRS-UP 7267, University of Poitiers, 3 rue Jacques Fort, 86073 Poitiers, France
| | | | - Rémy Couderc
- Biochemistry Department, Armand Trousseau Children Hospital (AP-HP), 26 avenue du Dr. Arnold Netter, 75571 Paris 12, France
| | - Ohri Yamada
- French Agency for Food, Environmental and Occupational Health Safety, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - Audrey Malrat-Domenge
- French Agency for Food, Environmental and Occupational Health Safety, 14 rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - Nhân Pham-Thi
- Allergology Department, Pasteur Institute, 25-28 rue du Dr. Roux, 75724 Paris 15, France
| | - Pascal Poncet
- Allergy & Environment Team, Biochemistry Department, Armand Trousseau Children Hospital (AP-HP), 26 avenue du Dr. Arnold Netter, 75571 Paris, France
- Infections & Epidemiology Department, Pasteur Institute, 25-28 rue du Dr. Roux, 75724 Paris 15, France
| | - Jean-Pierre Sutra
- Allergy & Environment Team, Biochemistry Department, Armand Trousseau Children Hospital (AP-HP), 26 avenue du Dr. Arnold Netter, 75571 Paris, France
| |
Collapse
|
25
|
Gillespie C, Stabler D, Tallentire E, Goumenaki E, Barnes J. Exposure to environmentally-relevant levels of ozone negatively influence pollen and fruit development. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 206:494-501. [PMID: 26284345 DOI: 10.1016/j.envpol.2015.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/02/2015] [Accepted: 08/04/2015] [Indexed: 06/04/2023]
Abstract
A combination of in vitro and in vivo studies on tomato (Lycopersicon esculentum Mill. cv. Triton) revealed that environmentally-relevant levels of ozone (O3) pollution adversely affected pollen germination, germ tube growth and pollen-stigma interactions - pollen originating from plants raised in charcoal-Purafil(®) filtered air (CFA) exhibited reduced germ tube development on the stigma of plants exposed to environmentally-relevant levels of O3. The O3-induced decline in in vivo pollen viability was reflected in increased numbers of non-fertilized and fertilized non-viable ovules in immature fruit. Negative effects of O3 on fertilization occurred regardless of the timing of exposure, with reductions in ovule viability evident in O3 × CFA and CFA × O3 crossed plants. This suggests O3-induced reductions in fertilization were associated with reduced pollen viability and/or ovule development. Fruit born on trusses independently exposed to 100 nmol mol(-1) O3 (10 h d(-1)) from flowering exhibited a decline in seed number and this was reflected in a marked decline in the weight and size of individual fruit - a clear demonstration of the direct consequence of the effects of the pollutant on reproductive processes. Ozone exposure also resulted in shifts in the starch and ascorbic acid (Vitamin C) content of fruit that were consistent with accelerated ripening. The findings of this study draw attention to the need for greater consideration of, and possibly the adoption of weightings for the direct impacts of O3, and potentially other gaseous pollutants, on reproductive biology during 'risk assessment' exercises.
Collapse
Affiliation(s)
- Colin Gillespie
- Environmental and Molecular Plant Physiology Research Group, School of Biology, Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Daniel Stabler
- Environmental and Molecular Plant Physiology Research Group, School of Biology, Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Eva Tallentire
- Environmental and Molecular Plant Physiology Research Group, School of Biology, Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Eleni Goumenaki
- Environmental and Molecular Plant Physiology Research Group, School of Biology, Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Jeremy Barnes
- Environmental and Molecular Plant Physiology Research Group, School of Biology, Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
26
|
Aloisi I, Cai G, Tumiatti V, Minarini A, Del Duca S. Natural polyamines and synthetic analogs modify the growth and the morphology of Pyrus communis pollen tubes affecting ROS levels and causing cell death. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:92-105. [PMID: 26398794 DOI: 10.1016/j.plantsci.2015.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/05/2015] [Accepted: 07/10/2015] [Indexed: 06/05/2023]
Abstract
Polyamines (PAs) are small molecules necessary for pollen maturation and tube growth. Their role is often controversial, since they may act as pro-survival factors as well as factors promoting Programmed Cell Death (PCD). The aim of the present work was to evaluate the effect of exogenous PAs on the apical growth of pear (Pyrus communis) pollen tube and to understand if PAs and reactive oxygen species (ROS) are interconnected in the process of tip-growth. In the present study besides natural PAs, also aryl-substituted spermine and methoctramine (Met 6-8-6) analogs were tested. Among the natural PAs, Spm showed strongest effects on tube growth. Spm entered through the pollen tube tip, then diffused in the sub-apical region that underwent drastic morphological changes, showing enlarged tip. Analogs were mostly less efficient than natural PAs but BD23, an asymmetric synthetic PAs bearing a pyridine ring, showed similar effects. These effects were related to the ability of PAs to cause the decrease of ROS level in the apical zone, leading to cell death, counteracted by the caspase-3 inhibitor Ac-DEVD-CHO (DEVD). In conclusions, ROS are essential for pollen germination and a strict correlation between ROS regulation and PA concentration is reported. Moreover, an imbalance between ROS and PAs can be detrimental thereby driving pollen toward cell death.
Collapse
Affiliation(s)
- Iris Aloisi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Alma Mater Studiorum-Università di Bologna, Via Irnerio 42, Bologna, Italy
| | - Giampiero Cai
- Dipartimento di Scienze della Vita, Università di Siena, Via Mattioli 4, Siena, Italy
| | - Vincenzo Tumiatti
- Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum-Università di Bologna, Corso d'Augusto 25, Rimini, Italy
| | - Anna Minarini
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum-Università di Bologna, Via Belmeloro 6, Bologna, Italy
| | - Stefano Del Duca
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Alma Mater Studiorum-Università di Bologna, Via Irnerio 42, Bologna, Italy.
| |
Collapse
|
27
|
Ito K, Weinberger KR, Robinson GS, Sheffield PE, Lall R, Mathes R, Ross Z, Kinney PL, Matte TD. The associations between daily spring pollen counts, over-the-counter allergy medication sales, and asthma syndrome emergency department visits in New York City, 2002-2012. Environ Health 2015; 14:71. [PMID: 26310854 PMCID: PMC4549916 DOI: 10.1186/s12940-015-0057-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/16/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Many types of tree pollen trigger seasonal allergic illness, but their population-level impacts on allergy and asthma morbidity are not well established, likely due to the paucity of long records of daily pollen data that allow analysis of multi-day effects. Our objective in this study was therefore to determine the impacts of individual spring tree pollen types on over-the-counter allergy medication sales and asthma emergency department (ED) visits. METHODS Nine clinically-relevant spring tree pollen genera (elm, poplar, maple, birch, beech, ash, sycamore/London planetree, oak, and hickory) measured in Armonk, NY, were analyzed for their associations with over-the-counter allergy medication sales and daily asthma syndrome ED visits from patients' chief complaints or diagnosis codes in New York City during March 1st through June 10th, 2002-2012. Multi-day impacts of pollen on the outcomes (0-3 days and 0-7 days for the medication sales and ED visits, respectively) were estimated using a distributed lag Poisson time-series model adjusting for temporal trends, day-of-week, weather, and air pollution. For asthma syndrome ED visits, age groups were also analyzed. Year-to-year variation in the average peak dates and the 10th-to-90th percentile duration between pollen and the outcomes were also examined with Spearman's rank correlation. RESULTS Mid-spring pollen types (maple, birch, beech, ash, oak, and sycamore/London planetree) showed the strongest significant associations with both outcomes, with cumulative rate ratios up to 2.0 per 0-to-98th percentile pollen increase (e.g., 1.9 [95% CI: 1.7, 2.1] and 1.7 [95% CI: 1.5, 1.9] for the medication sales and ED visits, respectively, for ash). Lagged associations were longer for asthma syndrome ED visits than for the medication sales. Associations were strongest in children (ages 5-17; e.g., a cumulative rate ratio of 2.6 [95% CI: 2.1, 3.1] per 0-to-98th percentile increase in ash). The average peak dates and durations of some of these mid-spring pollen types were also associated with those of the outcomes. CONCLUSIONS Tree pollen peaking in mid-spring exhibit substantive impacts on allergy, and asthma exacerbations, particularly in children. Given the narrow time window of these pollen peak occurrences, public health and clinical approaches to anticipate and reduce allergy/asthma exacerbation should be developed.
Collapse
Affiliation(s)
- Kazuhiko Ito
- New York City Department of Health and Mental Hygiene, Bureau of Environmental Surveillance and Policy, New York, NY, 10013, USA.
| | - Kate R Weinberger
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032-3727, USA.
| | - Guy S Robinson
- Louis Calder Center, Biological Field Station, Fordham University, Armonk, New York, NY, 10504-1104, USA.
- Department of Natural Sciences, Fordham College at Lincoln Center, 113 West 60th Street, New York, NY, 10023, USA.
| | - Perry E Sheffield
- Departments of Pediatrics and Preventive Medicine, Mount Sinai School of Medicine, 1 Gustave L. Levy Pl., Box 1512, New York, NY, 10029, USA.
| | - Ramona Lall
- New York City Department of Health and Mental Hygiene, Bureau of Communicable Disease, Queens, NY, 11101, USA.
| | - Robert Mathes
- New York City Department of Health and Mental Hygiene, Bureau of Communicable Disease, Queens, NY, 11101, USA.
| | - Zev Ross
- ZevRoss Spatial Analysis, Ithaca, NY, 14850, USA.
| | - Patrick L Kinney
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, 10032-3727, USA.
| | - Thomas D Matte
- New York City Department of Health and Mental Hygiene, Bureau of Environmental Surveillance and Policy, New York, NY, 10013, USA.
| |
Collapse
|
28
|
Fluorescent Analysis for Bioindication of Ozone on Unicellular Models. J Fluoresc 2015; 25:595-601. [DOI: 10.1007/s10895-015-1540-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/23/2015] [Indexed: 12/23/2022]
|
29
|
Yeamans RL, Roulston TH, Carr DE. Pollen quality for pollinators tracks pollen quality for plants inMimulus guttatus. Ecosphere 2014. [DOI: 10.1890/es14-00099.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Ribeiro H, Duque L, Sousa R, Cruz A, Gomes C, da Silva JE, Abreu I. Changes in the IgE-reacting protein profiles of Acer negundo, Platanus x acerifolia and Quercus robur pollen in response to ozone treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2014; 24:515-27. [PMID: 24382092 DOI: 10.1080/09603123.2013.865716] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This study aims to investigate the effects of O3 in protein content and immunoglobulin E (IgE)-binding profiles of Acer negundo, Platanus x acerifolia and Quercus robur pollen. Pollen was exposed to O3 in an environmental chamber, at half, equal and four times the limit value for the human health protection in Europe. Pollen total soluble protein was determined with Coomassie Protein Assay Reagent, and the antigenic and allergenic properties were investigated by SDS-PAGE and immunological techniques using patients' sera. O3 exposure affected total soluble protein content and some protein species within the SDS-PAGE protein profiles. Most of the sera revealed increased IgE reactivity to proteins of A. negundo and Q. robur pollen exposed to the pollutant compared with the non-exposed one, while the opposite was observed in P. x acerifolia pollen. So, the modifications seem to be species dependent, but do not necessarily imply that increase allergenicity would occur in atopic individuals.
Collapse
Affiliation(s)
- Helena Ribeiro
- a Geology Centre of University of Porto , Porto , Portugal
| | | | | | | | | | | | | |
Collapse
|
31
|
Chen BS, Hsiao YL, Yen JH. Effect of octylphenol on physiologic features during growth in Arabidopsis thaliana. CHEMOSPHERE 2013; 93:2264-2268. [PMID: 24007619 DOI: 10.1016/j.chemosphere.2013.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 07/30/2013] [Accepted: 08/01/2013] [Indexed: 06/02/2023]
Abstract
Alkylphenol ethoxylates are widely used as detergents, emulsifiers, solubilizers, wetting agents and dispersants. Octylphenol (OP) ethoxylates, one of alkylphenol ethoxylates, represent 15-20% of the market, and their metabolic residues may be discharged to surface waters, sediments and soils as a persistent and ubiquitous pollutant. We tested the response of Arabidopsis thaliana to different concentrations of OP. OP affected the germination percentage and mean germination period. 10d treatment with OP, especially high concentration (10 and 50 mg L(-1)), decreased shoot and root biomass and root length of 30 d-old A. thaliana. Content of chlorophyll was decreased but that of proline was increased in leaves with OP treatment. OP caused oxidative stress in leaves; malondialdehyde content was increased, and the activities of ascorbate peroxidase, catalase and superoxide dismutase were induced. OP affects the physiologic and morphologic features of A. thaliana during growth. Because plants might be exposed to OP for a long time in the surroundings, more attention needs to be paid to the effect of OP on plants.
Collapse
Affiliation(s)
- Bing-Sheng Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
32
|
Sapiña M, Jimenez-Relinque E, Castellote M. Controlling the levels of airborne pollen: can heterogeneous photocatalysis help? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:11711-11716. [PMID: 24063577 DOI: 10.1021/es402467x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Airborne pollen is a worldwide problem because is a very important allergenic agent; it can be altered only by certain microorganisms and by some oxidizers, such as reactive oxygen species (ROS). On the other hand, heterogeneous photocatalysis (HPC) arose as a promising technology for reducing the level of contaminants in the air, based on their degradation by the production of ROS. In this paper, study of the feasibility of HPC to diminish the counts of pollen is undertaken. The research has been carried out at different levels, from solutions to mortar specimens with the evidence that HPC is able to reduce the amount of pollen grains. This is a major breakthrough that opens the door to a whole field of research, already full of gaps, whose implications could be quite controversial.
Collapse
Affiliation(s)
- M Sapiña
- Institute of Construction Science "Eduardo Torroja" IETcc., CSICC/Serrano Galvache , 4 Madrid, 28033 Spain
| | | | | |
Collapse
|
33
|
Kanter U, Heller W, Durner J, Winkler JB, Engel M, Behrendt H, Holzinger A, Braun P, Hauser M, Ferreira F, Mayer K, Pfeifer M, Ernst D. Molecular and immunological characterization of ragweed (Ambrosia artemisiifolia L.) pollen after exposure of the plants to elevated ozone over a whole growing season. PLoS One 2013; 8:e61518. [PMID: 23637846 PMCID: PMC3630196 DOI: 10.1371/journal.pone.0061518] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 03/11/2013] [Indexed: 11/25/2022] Open
Abstract
Climate change and air pollution, including ozone is known to affect plants and might also influence the ragweed pollen, known to carry strong allergens. We compared the transcriptome of ragweed pollen produced under ambient and elevated ozone by 454-sequencing. An enzyme-linked immunosorbent assay (ELISA) was carried out for the major ragweed allergen Amb a 1. Pollen surface was examined by scanning electron microscopy and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and phenolics were analysed by high-performance liquid chromatography. Elevated ozone had no influence on the pollen size, shape, surface structure or amount of phenolics. ATR-FTIR indicated increased pectin-like material in the exine. Transcriptomic analyses showed changes in expressed-sequence tags (ESTs), including allergens. However, ELISA indicated no significantly increased amounts of Amb a 1 under elevated ozone concentrations. The data highlight a direct influence of ozone on the exine components and transcript level of allergens. As the total protein amount of Amb a 1 was not altered, a direct correlation to an increased risk to human health could not be derived. Additional, the 454-sequencing contributes to the identification of stress-related transcripts in mature pollen that could be grouped into distinct gene ontology terms.
Collapse
Affiliation(s)
- Ulrike Kanter
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Speranza A, Scoccianti V. New insights into an old story: pollen ROS also play a role in hay fever. PLANT SIGNALING & BEHAVIOR 2012; 7:994-998. [PMID: 22827950 PMCID: PMC3474702 DOI: 10.4161/psb.20674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Reactive oxygen species (ROS) can exhibit negative and benign traits. In plants, ROS levels increase markedly during periods of environmental stress, and defense against pathogen attack. ROS form naturally as a by-product of normal oxygen metabolism, and evenly play an essential role in cell growth. The short ROS lifespan makes them ideal molecules to act in cell signaling, a role they share in both plants and animals. A particular plant organism, the pollen grain, may closely interact with human mucosa and an allergic inflammatory response often results. Pollen grain ROS represent a first, crucial signal which primes and magnifies a cascade of events in the allergic response.
Collapse
Affiliation(s)
- Anna Speranza
- Dipartimento di Biologia Evoluzionistica Sperimentale, Alma Mater Studiorum, Università di Bologna, Bologna, Italy.
| | | |
Collapse
|