1
|
Rodríguez-Rasero C, Alexandre-Franco MF, Fernández-González C, Montes-Jiménez V, Cuerda-Correa EM. Valorizing Tea Waste: Green Synthesis of Iron Nanoparticles for Efficient Dye Removal from Water. Antioxidants (Basel) 2024; 13:1059. [PMID: 39334718 PMCID: PMC11429485 DOI: 10.3390/antiox13091059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
This study explores the valorization of tea leaf waste by extracting polyphenols through reflux extraction, subsequently using them to synthesize zero-valent iron nanoparticles (nZVI). The in situ generated nanoparticles, when combined with fixed amounts of hydrogen peroxide, facilitated the removal of various dyes (methylene blue, methyl orange, and orange G) via a hetero-catalytic Fenton process. The iron nanoparticles were thoroughly characterized by gas adsorption of N2 at 77 K, scanning electron microscopy (SEM), Transmission Electron Microscopy (TEM), FT-IR spectroscopy, X-ray diffraction (XRD), and thermal analysis, including thermogravimetric analysis (TG) and temperature-programmed reduction (TPR). A statistical design of experiments and response surface methodology were employed to analyze the influence of polyphenol, Fe(III), and H2O2 concentrations on dye removal efficiency. The results demonstrated that optimizing the operational conditions could achieve 100% dye removal efficiency. This study highlights the potential of nZVI synthesized through eco-friendly methods as a promising solution for water decontamination involving diverse model dyes, thus contributing to sustainable waste management and environmental protection.
Collapse
Affiliation(s)
| | | | | | | | - Eduardo M. Cuerda-Correa
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain; (C.R.-R.); (M.F.A.-F.); (C.F.-G.); (V.M.-J.)
| |
Collapse
|
2
|
Peng W, Lu J, Kuang J, Tang R, Guan F, Xie K, Zhou L, Yuan Y. Enhancement of hydrogenotrophic methanogenesis for methane production by nano zero-valent iron in soils. ENVIRONMENTAL RESEARCH 2024; 247:118232. [PMID: 38262517 DOI: 10.1016/j.envres.2024.118232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Nanoscale zero-valent iron (nZVI) is attracting increasing attention as the most commonly used environmental remediation material. However, given the high surface area and strong reducing capabilities of nZVI, there is a lack of understanding regarding its effects on the complex anaerobic methane production process in flooded soils. To elucidate the mechanism of CH4 production in soil exposed to nZVI, paddy soil was collected and subjected to anaerobic culture under continuous flooding conditions, with various dosages of nZVI applied. The results showed that the introduction of nZVI into anaerobic flooded rice paddy systems promoted microbial utilization of acetate and carbon dioxide as carbon sources for methane production, ultimately leading to increased methane production. Following the introduction of nZVI into the soil, there was a rapid increase in hydrogen levels in the headspace, surpassing that of the control group. The hydrogen levels in both the experimental and control groups were depleted by the 29th day of culture. These findings suggest that nZVI exposure facilitates the enrichment of hydrogenotrophic methanogens, providing them with a favorable environment for growth. Additionally, it affected soil physicochemical properties by increasing pH and electrical conductivity. The metagenomic analysis further indicates that under exposure to nZVI, hydrogenotrophic methanogens, particularly Methanobacteriaceae and Methanocellaceae, were enriched. The relative abundance of genes such as mcrA and mcrB associated with methane production was increased. This study provides important theoretical insights into the response of key microbes, functional genes, and methane production pathways to nZVI during anaerobic methane production in rice paddy soils, offering fundamental insights into the long-term fate and risks associated with the introduction of nZVI into soils.
Collapse
Affiliation(s)
- Weijie Peng
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jinrong Lu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jiajie Kuang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Rong Tang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Fengyi Guan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Kunting Xie
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Lihua Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yong Yuan
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Zhang Y, Wu P, Zhu J, Liao P, Niyuhire E, Fan F, Mao W, Dong L, Zheng R, Li Y. Investigation of the migration of natural organic matter-iron-antimony nano-colloids in acid mine drainage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170666. [PMID: 38316310 DOI: 10.1016/j.scitotenv.2024.170666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
Colloids can potentially affect the efficacy of traditional acid mine drainage (AMD) treatment methods such as precipitation and filtration. However, it is unclear how colloids affect antimony (Sb) migration in AMD, especially when natural organic matter (NOM) is present. To conduct an in-depth investigation on the formation and migration behavior of NOM, iron (Fe), Sb and NOM-Fe-Sb colloids in AMD, experiments were performed under simulated AMD conditions. The results demonstrate significant variations in the formation of NOM-Fe-Sb colloids (1-3-450 nm) as the molar ratio of carbon to iron (C/Fe) increases within acidic conditions (pH = 3). Increasing the C/Fe molar ratio from 0.1 to 1.2 resulted in a decrease in colloid formation but an increase in particulate fraction. The distribution of colloidal Sb, Sb(III), and Fe(III) within the NOM-Fe-Sb colloids decreased from 68 % to 55 %, 72 % to 57 %, and 68 % to 55 %, respectively. Their distribution in the particulate fraction increased from 28 % to 42 %, 21 % to 34 %, and 8 % to 27 %. XRD, FTIR, and SEM-EDS analyses demonstrated that NOM facilitates the formation and crystallization of Fe3O4 and FeSbO4 crystalline phases. The formation of the colloids depended on pH. Our results indicate that NOM-Fe-Sb colloids can form when the pH ≤ 4, and the proportion of colloidal Sb fraction within the NOM-Fe-Sb colloids increased from 9 % to a maximum of 73 %. Column experiments show that the concentration of NOM-Fe-Sb colloids reaches its peak and remains stable at approximately 3.5 pore volumes (PVs), facilitating the migration of Sb in the porous media. At pH ≥ 5, stable NOM-Fe-Sb colloids do not form, and the proportion of colloidal Sb fraction decreases from 7 % to 0 %. This implies that as pH increases, the electrostatic repulsion between colloidal particles weakens, resulting in a reduction in the colloidal fraction and an increase in the particulate fraction. At higher pH values (pH ≥ 5), the repulsive forces between colloidal particles nearly disappear, promoting particle aggregation. The findings of this study provide important scientific evidence for understanding the migration behavior of NOM-Fe-Sb colloids in AMD. As the pH gradually shifts from acidic to near-neutral pH during the remediation process of AMD, these results could be applied to develop new strategies for this purpose.
Collapse
Affiliation(s)
- Yuqin Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Pan Wu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Jian Zhu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China.
| | - Peng Liao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Elias Niyuhire
- Ecole Normale Supérieure, Département des Sciences Naturelles, Centre de Recherche en Sciences et de Perfectionnement Professionnel, Boulevard Mwezi Gisabo, B.P.: 6983 Bujumbura, Burundi
| | - Feifei Fan
- Guizhou Institute of Soil and Fertilizer, Guiyang 550006, China
| | - Wenjian Mao
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Lisha Dong
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Ruyi Zheng
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Yi Li
- Guizhou Institute of Technology, Guiyang 550003, China
| |
Collapse
|
4
|
Ding D, Zhao Y, Chen Y, Xu C, Fan X, Tu Y, Zhao D. Recent advances in bimetallic nanoscale zero-valent iron composite for water decontamination: Synthesis, modification and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120187. [PMID: 38310792 DOI: 10.1016/j.jenvman.2024.120187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/08/2023] [Accepted: 01/20/2024] [Indexed: 02/06/2024]
Abstract
The environmental pollution of water is one of the problems that have plagued human society. The bimetallic nanoscale zero-valent iron (BnZVI) technology has increased wide attention owing to its high performance for water treatment and soil remediation. In recent years, the BnZVI technology based on the development of nZVI has been further developed. The material chemistry, synthesis methods, and immobilization or surface stabilization of bimetals are discussed. Further, the data of BnZVI (Fe/Ni, Fe/Cu, Fe/Pd) articles that have been studied more frequently in the last decade are summarized in terms of the types of contaminants and the number of research literatures on the same contaminants. Five contaminants including trichloroethylene (TCE), Decabromodi-phenyl Ether (BDE209), chromium (Cr(VI)), nitrate and 2,4-dichlorophenol (2,4-DCP) were selected for in-depth discussion on their influencing factors and removal or degradation mechanisms. Herein, comprehensive views towards mechanisms of BnZVI applications including adsorption, hydrodehalogenation and reduction are provided. Particularly, some ambiguous concepts about formation of micro progenitor cell, production of hydrogen radicals (H·) and H2 and the electron transfer are highlighted. Besides, in-depth discussion of selectivity for N2 from nitrates and co-precipitation of chromium are emphasized. The difference of BnZVI is also discussed.
Collapse
Affiliation(s)
- Dahai Ding
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Yuanyuan Zhao
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Yan Chen
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Chaonan Xu
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Xudong Fan
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Yingying Tu
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Donglin Zhao
- Key Laboratory of and Functional Molecule Design and Interface Process, Anhui Jianzhu University, Hefei 230601, PR China.
| |
Collapse
|
5
|
Wang Z, Yang K, Lin D. Adsorption and desorption of polychlorinated biphenyls on biochar colloids with different pyrolysis temperatures: the effect of solution chemistry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27586-x. [PMID: 37184788 DOI: 10.1007/s11356-023-27586-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/08/2023] [Indexed: 05/16/2023]
Abstract
Biochar releases colloidal particles into the environment during applications and aging which can become carriers of pollutants and influence on the environmental risk of pollutants due to the excellent adsorption and migration properties of biochar colloids (BCCs). The adsorption and desorption behaviors of BCCs can be different from their bulk ones due to the colloidal size, which merits specific studies. Herein, the adsorption and desorption of 2,4,4'-trichlorobiphenyl (PCB28) as a representative on BCCs released from bulk biochars prepared from bamboo chips at 300, 500, and 700 C and the effects of solution properties were specifically investigated. Results show that the adsorption was dominated by pore filling and π-π interaction, and thus, BCCs prepared at higher temperature with greater pore volume and aromaticity had higher adsorption of PCB28. Results show that the adsorption was dominated by pore filling and π-π interaction, and thus, BCCs prepared at higher temperature with greater pore volume and aromaticity had higher adsorption of PCB28. The saturation adsorption amounts of PCB28 on BCC300, BCC500, and BCC700 were 21.9, 40.3, and 62.4 mg/g, respectively. It is noteworthy that PCB28 possessed a significant desorption hysteresis from BCCs, with the hysteresis index (Ce = 80 μg/L) increased from 0.380 to 0.661 as the preparation temperature of BCCs rising from 300 to 700 ℃. High concentration of NaCl (100 mmol/L) was unfavorable for the adsorption and desorption. The presence of humic acid or fulvic acid (FA), especially the smaller FA, could inhibit the adsorption and desorption of PCB28 on BCCs due to micropore blocking. In seawater, groundwater, surface water, and soil solution samples, the PCB28 adsorption of BCCs was inhibited to varying degrees in comparison with that in deionized water, and the desorption was noticeably inhibited in the groundwater sample. These findings provide valuable information for the understanding of interactions between BCCs and organic contaminants in natural waters and for the environmental application of biochars as well.
Collapse
Affiliation(s)
- Zhongmiao Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
SefidSiahbandi M, Moradi O, Akbari-Adergani B, Aberoomand Azar P, Sabar Tehrani M. The effect of Fe-Zn mole ratio (2:1) bimetallic nanoparticles supported by hydroxyethyl cellulose/graphene oxide for high-efficiency removal of doxycycline. ENVIRONMENTAL RESEARCH 2023; 218:114925. [PMID: 36462691 DOI: 10.1016/j.envres.2022.114925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/28/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
In this research, Hydroxyethyl cellulose - graphene oxide HEC-GO and HEC-GO/Fe-Zn mole ratio (2:1) nanocomposite as adsorbents were fabricated by crosslinking ethylene glycol dimethacrylate (EGDMA) to study the thermodynamic, kinetic and isotherm of doxycycline antibiotic adsorption. The morphology and structure of the adsorbents were analyzed by Fourier transform infrared spectroscopy (FT-IR), Field Emission Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (FE-SEM- EDX), and Transmission electron microscopy (TEM). The adsorption behavior of doxycycline (DOX) was studied with different parameters including doxycycline concentration, pH, the dose of adsorbent (HEC-GO and HEC-GO/Fe-Zn, mole ratio (2:1)), contact time, and temperature. The optimal conditions for the removal of DOX are pH = 3.0, contact time 100 min, and 20 min for HEC-GO and HEC-GO/Fe-Zn mole ratio (2:1). The removal percentage for HEC-GO and HEC-GO/Fe-Zn mole ratio (2:1) was 97% and 95.5%, respectively. Equilibrium adsorption isotherms such as the Langmuir, Freundlich, and Temkin models were analyzed according to the experimental data. Also, four adsorption kinetics were investigated for removing DOX. The Langmuir isotherm and pseudo-second-order kinetic models provided the best fit for experimental data for HEC-GO and HEC-GO/Fe-Zn mole ratio (2:1). Thermodynamic data showed that negative values of Gibbs free energy (ΔG°) and the negative value of enthalpy (ΔH°) of the adsorption process for adsorbents. It means that DOX removal was a spontaneous and exothermic reaction.
Collapse
Affiliation(s)
- Minoo SefidSiahbandi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Omid Moradi
- Department of Chemistry, Faculty of Science, Shahr -e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Behrouz Akbari-Adergani
- Water Safety Research Center, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Parviz Aberoomand Azar
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Sabar Tehrani
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Song C, Sun S, Wang J, Gao Y, Yu G, Li Y, Liu Z, Zhang W, Zhou L. Applying fulvic acid for sediment metals remediation: Mechanism, factors, and prospect. Front Microbiol 2023; 13:1084097. [PMID: 36699598 PMCID: PMC9868176 DOI: 10.3389/fmicb.2022.1084097] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Fulvic acid (FA) has been shown to play a decisive role in controlling the environmental geochemical behavior of metals. As a green and natural microbial metabolite, FA is widely used in environmental remediation because of its good adsorption complexation and redox ability. This paper introduces the reaction mechanism and properties of FA with metals, and reviews the progress of research on the remediation of metal pollutant by FA through physicochemical remediation and bioremediation. FA can control the biotoxicity and migration ability of some metals, such as Pb, Cr, Hg, Cd, and As, through adsorption complexation and redox reactions. The concentration, molecular weight, and source are the main factors that determine the remediation ability of FA. In addition, the ambient pH, temperature, metal ion concentrations, and competing components in sediment environments have significant effects on the extent and rate of a reaction between metals and FA during the remediation process. Finally, we summarize the challenges that this promising environmental remediation tool may face. The research directions of FA in the field of metals ecological remediation are also prospected. This review can provide new ideas and directions for the research of remediation of metals contaminants in sediments.
Collapse
Affiliation(s)
- Chuxuan Song
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Shiquan Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China.,Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, China
| | - Jinting Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Guanlong Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Yifu Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Zhengqian Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| | - Lean Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha, China
| |
Collapse
|
8
|
Wu M, Bi E, Li B. Cotransport of nano-hydroxyapatite and different Cd(II) forms influenced by fulvic acid and montmorillonite colloids. WATER RESEARCH 2022; 218:118511. [PMID: 35512536 DOI: 10.1016/j.watres.2022.118511] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/09/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
Soil colloids can affect the cotransport of nanoparticles and pollutants. In this study, the influencing mechanisms of organic fulvic acid (FA) and inorganic montmorillonite colloid (MONT) on the cotransport of nHAP and Cd(II) were investigated. Column experiments combined with Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, attachment efficiency calculation and two-site kinetic retention model were applied to study the mechanisms. Results showed that the co-existence of FA or MONT made the transport of nHAP improved by 58-75% and 33-59%, respectively. Both of them could improve the stability of nHAP particles and enhance electrostatic repulsion between nHAP particles and sand. Retention of nHAP in the sand was mainly caused by secondary energy minimum and physical straining. The co-existence of FA or MONT changed the amount of adsorbed species of Cd(II) and decreased the retardation effect of nHAP on Cd(II) transport. With increasing FA concentration, soluble FA·Cd and suspended nHAP·FA·Cd complexes in the system increased. Transport of soluble Cd(II) and total Cd(II) were strengthened due to the concentration effect of FA and the improved stability of nHAP particles. With increasing MONT concentration, the amount of soluble Cd(II) decreased, but that of colloidal Cd(II) (nHAP·Cd and MONT·Cd) increased. Due to the stronger effect of colloidal Cd(II) change than that of the soluble Cd(II) change, the transport of total Cd(II) was improved by 34-57%. The findings of this study can help to understand the fate of nanoparticles and Cd(II) in natural water and soil.
Collapse
Affiliation(s)
- Mengmeng Wu
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources and Environmental Engineering, and MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China; China National Environmental Monitoring Centre, Beijing 100012, PR China
| | - Erping Bi
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources and Environmental Engineering, and MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Binghua Li
- Department of Water Resources, Beijing Water Science and Technology Institute, Beijing 100048, PR China
| |
Collapse
|
9
|
Deng P, Wang G, Li C, Dou S, Yuan W. Removal of estrogen pollutants using biochar-pellet-supported nanoscale zero-valent iron. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:3259-3270. [PMID: 35704409 DOI: 10.2166/wst.2022.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoscale zero-valent iron-supported biochar pellets (nZVI)-(BP) were synthesized via liquid-phase reduction and applied to estrogen removal, including estrone (E1), 17β-estradiol (E2), and estriol (E3). The performance of nZVI-BP, with respect to its characterization, removal kinetics, and isotherms, was investigated. The results showed that the adsorption equilibrium was reached within 10 min of exposure. The adsorption capacity of estrogen decreased with increasing solute pH and nZVI-BP dosage. The adsorptivity increased with increasing initial estrogen concentration. The estrogen behavior followed a pseudo-second-order kinetic model. The adsorption data of different initial estrogen concentrations fitted to Freundlich adsorption isotherms. In addition, a preliminary discussion of the adsorption mechanism of nZVI-BP for estrogens was provided.
Collapse
Affiliation(s)
- Peiyuan Deng
- Biological Species Resource Research Key Laboratory, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Guangzhou Wang
- Yellow River Institute of Hydraulic Research, YRCC, Zhengzhou 450003, China E-mail:
| | - Changkan Li
- Biological Species Resource Research Key Laboratory, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Shentang Dou
- Yellow River Institute of Hydraulic Research, YRCC, Zhengzhou 450003, China E-mail:
| | - Wei Yuan
- North China University of Water Resources and Electric Power, Zhengzhou 450046, China
| |
Collapse
|
10
|
Hou J, Li Y, Ci H, Miao L, You G, Wu J, Xu Y. Influence of aggregation and sedimentation behavior of bare and modified zero-valent-iron nanoparticles on the Cr(VI) removal under various groundwater chemistry conditions. CHEMOSPHERE 2022; 296:133905. [PMID: 35149009 DOI: 10.1016/j.chemosphere.2022.133905] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/30/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Aggregation behaviors of bare, and sodium polyacrylate (PAA) and starch modified zero-valent-iron nanoparticles (nZVI), as well as their effects on the Cr (VI) removal were investigated by simulating the groundwater. Results showed that increased concentration of PAA (1-6 wt%) and starch (0.1-0.6 wt%) alleviated the aggregation of modified nZVI (abbreviated as P-nZVI and S-nZVI), while there was an optimum dosage of 4 wt% PAA and 0.3 wt% starch for the Cr (VI) removal, respectively. Moreover, as one of the fundamental water chemistry parameters, Ca2+ (0, 5, and 10 mg L-1) greatly promoted the aggregation of modified nZVI, and decreased the Cr (VI) removal efficiency by them via forming bidentate bridging structure (between Ca2+ and PAA) or complexes (between Ca2+ and starch). Additionally, fulvic acid (FA) (0, 2, 5, and 10 mg L-1) decreased the Cr (VI) removal by P-nZVI because of the significantly improved electronic repulsion. However, FA enhanced the aggregation of S-nZVI, but diminished its performance on Cr (VI) removal due to the bridging effect between FA and starch. The present study was of great importance in predicting the migration of nZVI and contaminants removal under complex geological conditions in groundwater.
Collapse
Affiliation(s)
- Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yan Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Hanlin Ci
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Yi Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, PR China.
| |
Collapse
|
11
|
Liu Y, Wang Y, Wu T, Xu J, Lin D. Synergistic Effect of Soil Organic Matter and Nanoscale Zero-Valent Iron on Biodechlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4915-4925. [PMID: 35389637 DOI: 10.1021/acs.est.1c05986] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoscale zero-valent iron (nZVI) provides a promising solution for organochlorine (OC)-contaminated soil remediation. However, the interactions among nZVI, soil organic matter (SOM), and indigenous dechlorinating bacteria are intricate, which may result in unascertained effects on the reductive degradation of OCs and merits specific investigation. Herein, we isolated an indigenous dehalogenation bacterium (Burkholderia ambifaria strain L3) from a paddy soil and further investigated the biodechlorination of pentachlorophenol (PCP) with individual and a combination of SOM and nZVI. In comparison with individual-strain L3 treatment, the cotreatment with nZVI or SOM increased the removal efficiency of PCP from 34.4 to 44.3-54.2% after 15 day cultivation. More importantly, a synergistic effect of SOM and nZVI was observed on the PCP removal by strain L3, and the PCP removal efficiency reached up to 75.3-84.5%. Other than the biodegradation through ortho- and meta-substitution under the individual application of SOM or nZVI, PCP was further biodegraded to 2,4,6-trichlorophenol (TCP) through para-substitution by the isolated bacteria with the cotreatment of SOM and nZVI. The main roles of the nZVI-SOM cotreatment in the biodegradation included the SOM-facilitated microbial proliferation, the nZVI-promoted microbial transformation of SOM, and the induced higher electron transport capacity of redox Fe-PCP biocycling. These findings provide a novel insight into the action of nZVI in environmental remediations.
Collapse
Affiliation(s)
- Yangzhi Liu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- The Institute of Environment, Resources, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanlong Wang
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Ting Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jiang Xu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Daohui Lin
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| |
Collapse
|
12
|
Qiu S, Wu Z, Chen Z, Abbew AW, Li J, Ge S. Microalgal Activity and Nutrient Uptake from Wastewater Enhanced by Nanoscale Zerovalent Iron: Performance and Molecular Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:585-594. [PMID: 34933554 DOI: 10.1021/acs.est.1c05503] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Microalgae-based bioremediation presents an alternative to traditional biological wastewater treatment. However, its efficiency is still challenging due to low microalgal activities and growth rate in wastewater. Iron plays an important role in microbial metabolism and is effective to stimulate microbial growth. In this study, a novel approach was proposed to simultaneously promote microalgal activity and nutrient uptake from wastewater using nanoscale zerovalent iron (nZVI), and the underlying molecular mechanism was explored. Compared to the control, 0.05 mg/L of nZVI significantly enhanced biomass production by 113.3% as well as NH4+-N and PO43--P uptake rates by 32.2% and 75.0%, respectively. These observations were attributed to the enhanced metabolic pathways and intracellular regulations. Specifically, nZVI alleviated the cellular oxidative stress via decreased peroxisome biogenesis as indicated by reduced reactive oxygen species, enzymes, and genes involved. nZVI promoted ammonium assimilation, phosphate metabolism, carbon fixation, and energy generation. Moreover, nZVI regulated the biosynthesis and conversions of intracellular biocomposition, leading to increased carotenoid, carbohydrate, and lipid productions and decreased protein and fatty acid yields. The above metabolisms were supported by the regulations of differentially expressed genes involved. This study provided an nZVI-based approach and molecular mechanism for enhancing microalgal activities and nutrient uptake from wastewater.
Collapse
Affiliation(s)
- Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhengshuai Wu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Abdul-Wahab Abbew
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Jinxiang Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| |
Collapse
|
13
|
Peng Y, Mu Y, Chen A, Shao J, Peng L, Zeng Q, Luo S. Multiple roles of extracellular polymeric substance in nitrobenzene reduction by nano-sized zero-valent iron in water and their mechanism. ENVIRONMENTAL TECHNOLOGY 2022; 43:21-33. [PMID: 32431242 DOI: 10.1080/09593330.2020.1772376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Extracellular polymeric substance (EPS) is secreted by many organisms and makes up a significant constituent of natural organic matter in the environment. However, nothing is known about EPS's role in the reduction of pollutants by nano-sized zero-valent iron (NZVI). This research showed that the degradation kinetics of nitrobenzene (NB) by NZVI with EPS (0.0272 ± 0.006 min-1) were 2.27 times lower than that without EPS (0.0618 ± 0.006 min-1) in the first cycle, mainly due to competition for reactive sites on the NZVI surface and the complexation of EPS with Fe(II) and Fe(III). In the second and third cycle, the degradation kinetics of NB by NZVI alone decreased obviously, while those in the presence of EPS were preserved or accelerated. Comparative studies with a quinine model compound indicated that EPS did not function as the electron shuttle to transmit electrons effectively. X-ray photoelectron spectroscopy, scanning electron microscopy and X-ray diffraction results suggested that EPS could prevent the oxidation of NZVI and even expose more effective sites on the NZVI surface, thus leading to the preservation or enhancement of NZVI reactivity in the second and third NB degradation cycles. Moreover, we found that EPS also provided colloidal stability to NZVI particles, either by steric mechanisms or electrostatic repulsion. These results indicate that EPS can play an important role in the prolongation of NZVI reactivity during standing application.
Collapse
Affiliation(s)
- Yuanming Peng
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
| | - Yunsong Mu
- School of Environment & Natural Resources, Renmin University of China, People's Republic of China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
| | - Jihai Shao
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
| | - Liang Peng
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
| | - Qingru Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
| | - Si Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha, People's Republic of China
| |
Collapse
|
14
|
Shanableh A, Bhattacharjee S, Alani S, Darwish N, Abdallah M, Mousa M, Semreen M. Assessment of sulfamethoxazole removal by nanoscale zerovalent iron. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143307. [PMID: 33189375 DOI: 10.1016/j.scitotenv.2020.143307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Removal of pharmaceutical compounds, such as sulfamethoxazole (SMX) from the aquatic environments, is critical in order to mitigate their adverse environmental and human health effects. In this study, the effectiveness of nanoscale zerovalent iron (nZVI) particles for the removal of SMX was investigated under varying conditions of initial solution pH (3, 5, 7 and 11) and nZVI to SMX mass ratios (1:1, 5:1, 10:1, 13:1, 25:1). Batch kinetic studies, which were well represented using both pseudo-first-order and pseudo-second-order kinetic models (R2 > 0.98), showed that both solution pH and mass ratios strongly influenced SMX removal. At a fixed mass ratio of 10:1, removal efficiencies were higher in acidic conditions (83% to 91%) compared to neutral (29%) and alkaline (6%) conditions. A similar trend was observed for removal rates and removal amounts. For mass ratios between 1:1 and 10:1, an optimum pH existed (pH 5) wherein highest removal efficiencies were attained. Increasing the mass ratio above 10:1 resulted in virtually complete removal efficiencies at pH 3 and 5, and 70% at pH 7. Analysis of SMX speciation and zeta potential of nZVI particles provided insights into the role of pH on the efficiencies, rates and extents of SMX removal. Total organic carbon analysis and mass spectrometry measurements of SMX solution before and after exposure to nZVI particles suggested the transformation of SMX via redox reactions, which are likely the dominant process compared to adsorption. Five transformation products were observed at m/z 156 (TP1), 192 (TP2), 256 (TP3), 294 (TP4) and 296 (TP5). TP1, TP2 and TP3 were further identified using ion fragment analysis. Overall, results from this study indicate a strong potential for SMX removal by nZVI particles, and could be useful towards identifying reaction conditions for optimum SMX transformation.
Collapse
Affiliation(s)
- Abdallah Shanableh
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates; Department of Civil and Environmental Engineering, University of Sharjah, Sharjah, United Arab Emirates.
| | - Sourjya Bhattacharjee
- Department of Civil and Environmental Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Sama Alani
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates; Department of Civil and Environmental Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Noora Darwish
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohamed Abdallah
- Department of Civil and Environmental Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Muath Mousa
- Research Institute of Sciences and Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad Semreen
- Department of Medicinal Chemistry, University of Sharjah, Sharjah, United Arab Emirates; Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
15
|
Geng J, Yang X, Huo X, Chen J, Lei S, Li H, Lang Y, Liu Q. Effects of controlled-release urea combined with fulvic acid on soil inorganic nitrogen, leaf senescence and yield of cotton. Sci Rep 2020; 10:17135. [PMID: 33051569 PMCID: PMC7555488 DOI: 10.1038/s41598-020-74218-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022] Open
Abstract
A split-plot field experiment was conducted in 2018–2019 to study the effects of nitrogen fertilizer types and fulvic acid (FA) rates on soil nitrogen and cotton growth. The nitrogen fertilizers included controlled-release urea (CRU) and urea, which were applied combined with three FA rates (90, 180 and 270 kg ha-1). The main plot was the nitrogen fertilizer type, and the subplot was the FA rate. The results showed that the lint yield of the FA180 treatment was 5.2–8.6% higher than the FA90 and FA270 treatments. Moreover, moderate FA application markedly improved the cotton leaf SPAD value (chlorophyll relative value), photosynthesis and chlorophyll fluorescence parameters compared with low and high FA rates. Replacing urea with CRU significantly increased the soil inorganic nitrogen and nitrogen use efficiency and also improved cotton fiber quality parameters. Meanwhile, the boll weight and seed yield of the CRU treatments were 1.5–8.4% and 3.3–19.1% higher, respectively, than the urea treatments. The interaction between nitrogen type and FA rate had a positive effect on cotton growth. Thus, the application of CRU combined with 180 kg ha-1 FA on cotton can not only improve the fiber quality and delay leaf senescence but also increase the yield and economic benefit.
Collapse
Affiliation(s)
- Jibiao Geng
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, State Key Laboratory of Nutrition Resources Integrated Utilization, College of Agriculture and Forestry Science/Resources and Environment, Linyi University, Linyi, 276000, Shandong, China
| | - Xiuyi Yang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, State Key Laboratory of Nutrition Resources Integrated Utilization, College of Agriculture and Forestry Science/Resources and Environment, Linyi University, Linyi, 276000, Shandong, China.
| | - Xianqi Huo
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, State Key Laboratory of Nutrition Resources Integrated Utilization, College of Agriculture and Forestry Science/Resources and Environment, Linyi University, Linyi, 276000, Shandong, China
| | - Jianqiu Chen
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, State Key Laboratory of Nutrition Resources Integrated Utilization, College of Agriculture and Forestry Science/Resources and Environment, Linyi University, Linyi, 276000, Shandong, China.,Kingenta Ecological Engineering Group Co., Ltd, Linshu, 276700, Shandong, China
| | - Shutong Lei
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, State Key Laboratory of Nutrition Resources Integrated Utilization, College of Agriculture and Forestry Science/Resources and Environment, Linyi University, Linyi, 276000, Shandong, China
| | - Hui Li
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, State Key Laboratory of Nutrition Resources Integrated Utilization, College of Agriculture and Forestry Science/Resources and Environment, Linyi University, Linyi, 276000, Shandong, China
| | - Ying Lang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, State Key Laboratory of Nutrition Resources Integrated Utilization, College of Agriculture and Forestry Science/Resources and Environment, Linyi University, Linyi, 276000, Shandong, China
| | - Qianjin Liu
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, State Key Laboratory of Nutrition Resources Integrated Utilization, College of Agriculture and Forestry Science/Resources and Environment, Linyi University, Linyi, 276000, Shandong, China
| |
Collapse
|
16
|
|
17
|
Zhang ZG, Wu QT, Shang E, Wang X, Wang K, Zhao J, Duan J, Liu Y, Li Y. Aggregation kinetics and mechanisms of silver nanoparticles in simulated pollution water under UV light irradiation. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:840-849. [PMID: 31730245 DOI: 10.1002/wer.1276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/25/2019] [Accepted: 11/10/2019] [Indexed: 05/25/2023]
Abstract
This paper investigated the effect mechanism of complex components (fulvic acid [FA], sodium dodecylbenzene sulfonate [SDBS], and sodium nitrate [NaNO3 ]) on the aggregation kinetics of polyvinylpyrrolidone-modified silver nanoparticles (PVP-AgNPs) under UV irradiation. The results showed that FA and NaNO3 alone did not cause aggregation due to the high steric hindrance and/or electrostatic repulsive forces. In high concentration of SDBS solution (20-50 mM), the stability of PVP-AgNPs was reduced by adsorbing SDBS on nanoparticle surface and replacing their PVP coatings. A mixed system of two pollutants had a synergistic effect on PVP-AgNPs aggregation. In the mixed system of SDBS and FA, the interaction of SDBS and PVP-AgNPs dominated the aggregation of PVP-AgNPs. NaNO3 significantly improved the aggregation rate of PVP-AgNPs in SDBS solution due to the charge neutralization effect of electrolyte. In 20 mg/L FA solution, the aggregation rate increased slightly with increasing NaNO3 concentration from 50 to 200 mM due to the charge neutralization effect, while the hydrodynamic diameters of PVP-AgNPs increased linearly and rapidly to micrometer size because the spatial conformation of adsorbed FA became compact in high-salinity solution. The calculation results of eDLVO theory were basically consistent with most of the experimental results. PRACTITIONER POINTS: PVP-AgNPs was uniformly dispersed in NaNO3 or FA solution under UV irradiation. PVP-AgNPs formed aggregates in SDBS solutions under UV irradiation. A system with two mixed pollutants had a synergistic effect on promoting aggregation of PVP-AgNPs. eDLVO theory could explain the aggregation results in different chemical conditions except in NaNO3 solution.
Collapse
Affiliation(s)
- Zhi-Guo Zhang
- College of Natural Resource and Environment, South China Agricultural University, Guangzhou, China
| | - Qi-Tang Wu
- College of Natural Resource and Environment, South China Agricultural University, Guangzhou, China
| | - Enxiang Shang
- College of Science and Technology, Hebei Agricultural University, Huanghua, China
| | - Xinjie Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Kaixuan Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Jian Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Jiajun Duan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Yuan Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Yang Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| |
Collapse
|
18
|
Fang Y, Wen J, Zhang H, Wang Q, Hu X. Enhancing Cr(VI) reduction and immobilization by magnetic core-shell structured NZVI@MOF derivative hybrids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114021. [PMID: 32000028 DOI: 10.1016/j.envpol.2020.114021] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/08/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Hexavalent chromium (Cr(VI)) has significantly threatened the environmental health because of its distinct toxicity. A novel magnetic core-shell structured NZVI@ZD composite was designed for simultaneous adsorption and reduction of Cr(VI). NZVI@ZD was synthesized by carbonization of the as-prepared core-shell structure NZVI@zeolitic imidazole framework-67 (ZIF-67). After carbonization, the original ZIF-67 shell shape was preserved well with marginal parts developing to graphitized carbon. Both cobalt (Co) and NZVI nanoparticles were finely dispersed in the porous ZIF-67 derivative (ZD). NZVI@ZD exhibited excellent removal performance for Cr(VI), owing to its high specific surface area and large pore size favorable for Cr(VI) adsorption and diffusion. The maximum adsorption capacity of NZVI@ZD for Cr(VI) was surprisingly as high as 226.5 mg g-1, surpassing the pristine ZIF-67 (29.35 mg g-1) and NZVI@ZIF-67 (36.53 mg g-1). Zeta potential and X-ray photoelectron spectroscopy (XPS) spectra revealed that electrostatic attraction, reduction and precipitation might be involved in the Cr(VI) removal process by NZVI@ZD, resulting in the conversion of the adsorbed Cr(VI) to Cr(III) of lower toxicity and an eventual immobilization on the NZVI@ZD. The magnetic core-shell structured NZVI@ZD possessed superior adsorptive reactivity for Cr(VI) to most other traditional or newly reported materials, thus should be deemed highly efficient for Cr(VI)-contaminated wastewater treatment.
Collapse
Affiliation(s)
- Ying Fang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jia Wen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Haibo Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qian Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xiaohong Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
19
|
The Influence of Pluronic F-127 Modification on Nano Zero-Valent Iron (NZVI): Sedimentation and Reactivity with 2,4-Dichlorophenol in Water Using Response Surface Methodology. Catalysts 2020. [DOI: 10.3390/catal10040412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nano zero-valent iron (NZVI) is widely used for reducing chlorinated organic pollutants in water. However, the stability of the particles will affect the removal rate of the contaminant. In order to enhance the stability of nano zero-valent iron (NZVI), the particles were modified with F-127 as an environmentally friendly organic stabilizer. The study investigated the effect of the F-127 mass ratio on the colloidal stability of NZVI. Results show that the sedimentation behavior of F-NZVI varied at different mass ratios. A biphasic model was used to describe the two time-dependent settling processes (rapid sedimentation followed by slower settling), and the settling rates were calculated. The surface morphology of the synthesized F-NZVI was observed with a scanning electron microscope (SEM), and the functional groups of the samples were analyzed with Fourier Transform Infrared Spectroscopy (FTIR). Results show that the F-127 was successfully coated on the surface of the NZVI, and that significantly improved the stability of NZVI. Finally, in order to optimize the removal rate of 2,4-dichlorophenol (2,4-DCP) by F-NZVI, three variables were tested: the initial concentration 2,4-DCP, the pH, and the F-NZVI dosage. These were evaluated with a Box-Behnken Design (BBD) of response surface methodology (RSM). The experiments were designed by Design Expert software, and the regression model of fitting quadratic model was established. The following optimum removal conditions were determined: pH = 5, 3.5 g·L−1 F-NZVI for 22.5 mg·L−1 of 2,4-DCP.
Collapse
|
20
|
Xia Q, Huo M, Hao P, Zheng J, An Y. Transport of nano zerovalent iron (nZVI) coupling with Alcaligenes sp. strain in porous media. RSC Adv 2020; 10:24265-24272. [PMID: 35516200 PMCID: PMC9055124 DOI: 10.1039/d0ra02004d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/18/2020] [Indexed: 12/02/2022] Open
Abstract
Coupling nano zerovalent iron (nZVI) particles with anaerobic bacteria is a potentially powerful approach for remediating polluted groundwater. However, little is known about the transport of these mixed systems in porous media, which could potentially affect the system's activity and half-life in aqueous environments. This study assessed the transport and stability of nZVI coupled with Alcaligenes sp. TB by column experiments and sedimentation tests. The results showed that combined bio-nZVI systems experienced significantly higher transport and lower sedimentation rates than stand-alone nZVI. The transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images showed that Alcaligenes sp. TB reduced aggregation of nZVI to some extent, though slight toxicity to bacteria was observed. The results of ζ-potential measurements demonstrated that the presence of bacteria increased the electrostatic force between the particles. Voltammetry, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) analysis confirmed that the bio-nZVI system undergoes different redox processes. The presence of bacteria favored the formation of FeOOH not Fe2O3 or Fe3O4, resulting in weaker surface magnetic properties. Coupling nano zerovalent iron (nZVI) particles with anaerobic bacteria experienced significantly higher transport and lower sedimentation rates than stand-alone nZVI.![]()
Collapse
Affiliation(s)
- Qing Xia
- Innovative Team of Monitoring and Precaution for Cropland Environment
- Agro-Environmental Protection Institute
- Tianjin
- China
| | - Mingzhu Huo
- Innovative Team of Monitoring and Precaution for Cropland Environment
- Agro-Environmental Protection Institute
- Tianjin
- China
| | - Peitong Hao
- Innovative Team of Monitoring and Precaution for Cropland Environment
- Agro-Environmental Protection Institute
- Tianjin
- China
| | - Junhao Zheng
- Innovative Team of Monitoring and Precaution for Cropland Environment
- Agro-Environmental Protection Institute
- Tianjin
- China
| | - Yi An
- Innovative Team of Monitoring and Precaution for Cropland Environment
- Agro-Environmental Protection Institute
- Tianjin
- China
| |
Collapse
|
21
|
A comparative study on the activation of persulfate by bare and surface-stabilized nanoscale zero-valent iron for the removal of sulfamethazine. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115869] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Wu Y, Dong H, Tang L, Li L, Wang Y, Ning Q, Wang B, Zeng G. Influence of humic acid and its different molecular weight fractions on sedimentation of nanoscale zero-valent iron. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:2786-2796. [PMID: 31834581 DOI: 10.1007/s11356-019-07140-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
The effects of humic acid (HA) and its different molecular weight (MW) fractions on the sedimentation of nanoscale zero-valent iron (NZVI) in the absence and presence of cations (i.e., Na+/Mg2+/Ca2+) were investigated. Ultrafiltration (UF) was used as the method of fractionation to obtain four different MW fractions (separated by ultrafiltration membranes of 10 kDa, 50 kDa, and 100 kDa). Differing sedimentation behavior was observed for NZVI with different MW fractions of HA. Generally, the degree of settling of NZVI particles in the presence of high MW fractions of HA was lower than that of low MW fractions of HA and that without HA. The results were mainly attributed to the steric stabilization provided by the high MW fractions of HA. The presence of Na+/Mg2+/Ca2+ alone had insignificant influence on the settling of NZVI, but both Mg2+ and Ca2+ exerted an obvious influence on the settling of NZVI in the co-presence of HA. The settling behavior of NZVI was further examined in the co-presence of different MW fractions of HA and Ca2+. The co-presence of low MW HA fractions and Ca2+ led to a lower settling of NZVI. This might be due to the formation of a layer of HA-Ca2+ complex on the particle surface, providing stronger steric stabilization. Nevertheless, in the co-presence of high MW HA fractions and Ca2+, the settling of NZVI was initially reduced but accelerated with time, which might be due to the gradual aggregation of NZVI with time resulted from the bridging effect of HA-Ca2+ complex.
Collapse
Affiliation(s)
- Yanan Wu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China.
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China.
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China.
| | - Long Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Yaoyao Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Qin Ning
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Bin Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, Hunan, China
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, Hunan, China
| |
Collapse
|
23
|
Zhang H, Wen J, Fang Y, Zhang S, Zeng G. Influence of fulvic acid on Pb(II) removal from water using a post-synthetically modified MIL-100(Fe). J Colloid Interface Sci 2019; 551:155-163. [DOI: 10.1016/j.jcis.2019.05.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/04/2019] [Accepted: 05/04/2019] [Indexed: 10/26/2022]
|
24
|
Yao B, Liu Y, Zou D. Removal of chloramphenicol in aqueous solutions by modified humic acid loaded with nanoscale zero-valent iron particles. CHEMOSPHERE 2019; 226:298-306. [PMID: 30933739 DOI: 10.1016/j.chemosphere.2019.03.098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/27/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
As a natural organic carbon skeleton, humic acid (HA) was loaded with nanoscale zero-valent iron (nZVI) Particles to remove chloramphenicol (CAP) from aqueous solution. The pore morphology and structure, the type, the distribution and valence state of element, and the class of functional groups on the surface of the material were shown by SEM/EDS, XPS, BET and FTIR. When the load ratio of nZVI on HA was 1:30, the iron content in the material was minimized, the specific gravity of the economic material-HA was increased, and the removal efficiency of CAP was 80.0% or higher. In addition, the mass ratio of nZVI on HA, the dosage of nZVI/HA-30, the initial pH and CAP concentration of the solution, these four general factors, played an important role in the efficiency and equilibrium time of the CAP removal. The removal efficiency of CAP by nZVI/HA-30 was 84.2% when the dosage was 1.0 g (100 mL)-1, the initial concentration of CAP was 30 mg L-1 and the pH was 3. The reaction pathway and removal mechanism of ZVI/HA-30 were studied by the concentration of total and ferrous iron ions in the solution, UV-Vis and MS. The CAP was continuously denitrified and dechlorinated, decomposed into easily degradable substances by nZVI particles supported on HA, which was consistent with the first-order kinetic model within 5 min. This newly synthesized material was economical and efficient, easy to store, effectively prevented agglomeration and passivation of nZVI, and had a good application prospect for removing contaminants from water.
Collapse
Affiliation(s)
- Bing Yao
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, PR China
| | - Yuzhi Liu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, PR China
| | - Donglei Zou
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
25
|
Wu M, Bi E. Stability of Artificial Nano-Hydroxyapatite in the Presence of Natural Colloids: Influence of Steric Forces and Chargeability. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:1100-1108. [PMID: 31589698 DOI: 10.2134/jeq2018.10.0371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The stability of nano-hydroxyapatite (nHAP) affects its fate in the environment. Few studies have compared the influence of colloids with different properties on the stability of nHAP. Fulvic acid, montmorillonite, and goethite were chosen as representative colloids. An ultraviolet-visible spectrophotometer and NanoBrook 90Plus phase analysis light scattering (PALS) were used to determine absorbance, zeta potential, and hydrodynamic diameter. Results showed that addition of fulvic acids could make nHAP more stable through electrostatic and steric effects, whereas montmorillonite affected the stability mainly by electrostatic effects. Goethite could adsorb onto nHAP particles and form goethite-nHAP heteroaggregates at pH < pH (i.e., pH at point of zero charge), and its addition enhanced the electrostatic repulsion forces at pH > pH. Since fulvic acid has additional steric effects, its stability enhancement was greater than that of montmorillonite and goethite. Montmorillonite colloids were stronger than goethite colloids for enhancing the stability of nHAP, because montmorillonite had a higher absolute surface potential. The order in which organic and inorganic colloids were added affects the degree of stability of nHAP. Energy barriers calculated by extended Derjaguin-Landau-Verwey-Overbeek were in good agreement with the experimental results and implied that the nHAP particles were in the stage of reaction-limited aggregation at pH 7 ± 0.1 and pH 9 ± 0.1. Our findings are important for understanding the cotransport of nanoparticles and colloids.
Collapse
|
26
|
Effects of Ca 2+ and fulvic acids on atrazine degradation by nano-TiO 2: Performances and mechanisms. Sci Rep 2019; 9:8880. [PMID: 31222038 PMCID: PMC6586927 DOI: 10.1038/s41598-019-45086-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/13/2019] [Indexed: 11/08/2022] Open
Abstract
In this study, the adsorption and UV photocatalytic degradation of atrazine using nano-TiO2 particles were studied systematically, and the colloidal stability of nano-TiO2 particles in solution was also investigated to reveal the removal mechanism. Experiments which contained the first 6.0 hours darkness and 4.0 hours UV illumination later were conducted at different concentrations of Ca2+ and/or fulvic acids (FA) at pH = 7.0. Results showed that the adsorption rate of atrazine onto nano-TiO2 particles decreased with the increase of Ca2+ and/or FA concentrations, which could be explained well by the colloidal stability of nanoparticles. When the solution contained Ca2+ or Ca2+-FA, the nanoparticles were aggregated together leading to the decrease of the contact surface area. Besides, there existed competitive adsorption between FA and atrazine on the particle surface. During photocatalytic degradation, the increase of Ca2+ and/or FA concentration accelerated the aggregation of nano-TiO2 particles and that reduced the degradation efficiency of atrazine. The particle sizes by SEM were in accordance with the aggregation degree of nanoparticles in the solutions. Sedimentation experiments of nano-TiO2 particles displayed that the fastest sedimentation was happened in the CaCl2 and FA coexistent system and followed by CaCl2 alone, and the results well demonstrated the photodegradation efficiency trends of atrazine by nano-TiO2 particles under the different sedimentation conditions.
Collapse
|
27
|
Murtaza B, Shah NS, Sayed M, Khan JA, Imran M, Shahid M, Khan ZUH, Ghani A, Murtaza G, Muhammad N, Khalid MS, Niazi NK. Synergistic effects of bismuth coupling on the reactivity and reusability of zerovalent iron nanoparticles for the removal of cadmium from aqueous solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:333-341. [PMID: 30878939 DOI: 10.1016/j.scitotenv.2019.03.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 05/15/2023]
Abstract
Removal of cadmium (Cd2+), a highly toxic heavy metal, from aqueous solutions was investigated using nano zerovalent iron (Fe0). Cadmium was efficiently removed by Fe0, although reactivity and reusability of Fe0 was significantly promoted by coupling with bismuth (Bi). At a reaction time of 20 min, 85% and 96% Cd2+ was removed by Fe0 and Bi/Fe0, respectively, at first cycle using [Cd2+]0 = 10 mg/L and [Fe0]0 = [Bi/Fe0]0 = 1.0 g/L. However, Cd2+ removal efficiency was reduced to 12% and 80% at sixth cycle by Fe0 and Bi/Fe0, respectively. The X-Ray diffraction and energy dispersive X-Ray spectroscopy analysis proved successful formation of Fe0 by the chemical reduction method and also confirmed coupling of Bi with Fe0 to form bimetallic Bi/Fe0. The oxidation of Fe0 and Bi/Fe0 yielded electron that played significant role in the conversion of toxic Cd2+ into non-toxic Cd0. The reactivity of electron with Cd2+ was calculated to be 4.3 × 109 M-1 s-1. The pH of solution showed pronounced effects on the reactivity of both Fe0 and Bi/Fe0. Removal of Cd2+ by both Fe0 and Bi/Fe0 followed pseudo-first-order kinetic model. The conversion of Cd2+ into non-toxic Cd0 proved Fe0 and Bi/Fe0 to be highly efficient and rewarding in detoxification of Cd2+ and other toxic metals in aqueous environments.
Collapse
Affiliation(s)
- Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Noor S Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan.
| | - Murtaza Sayed
- Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Javed Ali Khan
- Radiation Chemistry Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar 25120, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Zia Ul Haq Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Ayesha Ghani
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Ghulam Murtaza
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Nawshad Muhammad
- Interdisciplinary Research Centre for Biomedical Material, COMSATS University Islamabad, Lahore Campus, 54000, Pakistan
| | - Muhammad Shafique Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, 61100, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; School of Civil Engineering and Surveying, University of Southern Queensland, Toowoomba 4350, Queensland, Australia.
| |
Collapse
|
28
|
Zhang M, Dong Y, Gao S, Cai P, Dong J. Effective stabilization and distribution of emulsified nanoscale zero-valent iron by xanthan for enhanced nitrobenzene removal. CHEMOSPHERE 2019; 223:375-382. [PMID: 30784744 DOI: 10.1016/j.chemosphere.2019.02.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
The reactivity and delivery of remediants and treatment of organic contaminants in heterogeneous aquifer are particularly challenging issues for injection-based remedial treatments. Our objective was to enhance the reactivity and delivery of nanoscale zero-valent iron (nZVI) and improve the sweeping efficiency of nZVI into low permeable zones (LPZs) to reduce nitrobenzene (NB). This was accomplished by conducting batch and transport experiments that quantified NB degradation by different modified nZVI and the ability of emulsified nZVI (EZVI) or xanthan carried EZVI (XG-EZVI) to penetrate and cover a lens. By incorporating the xanthan and emulsified oil with nZVI, it possessed higher stability and stronger reactivity to reduce NB. Results showed that the stability of EZVI was improved by xanthan, and there were no adverse effects on NB removal in use of XG-EZVI at limited xanthan addition of ≦100 mg L-1. By the injection of XG-EZVI in 2D-tank experiments, the degradation of NB was 8 times that of EZVI added, while NB adsorption on media was only 1/50 of initial NB. 1205 mg of NB totally entered into the tank, the quality of aniline in effluent was approximately 90.0 mg in addition of XG-EZVI at 40 h, but not detected in presence of EZVI. The greater NB reduction by XG-EZVI resulted from higher sweeping efficiency in LPZ. These observations support the couple use of xanthan and emulsified oil for modifying nZVI as a means of achieving greater stability and reactivity and enhancing nZVI delivery into LPZs for the treatment of NB.
Collapse
Affiliation(s)
- Mengyue Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Yang Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Song Gao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Peiyao Cai
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Jun Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, 130021, China.
| |
Collapse
|
29
|
Yi Y, Wu J, Tu G, Zhao D, Fang Z, Tsang PE. The humic acid influenced the behavior and reactivity of Ni/Fe nanoparticles in the removal of deca-brominated diphenyl ether from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10136-10147. [PMID: 30747323 DOI: 10.1007/s11356-019-04403-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
The removal of contaminants by iron-based nanomaterials was inevitably affected by the natural organic matter (NOM), which is one of the most abundant material on earth and exists in natural waters. This study was performed to investigate the main influence of humic acid (HA, representing NOM) on the behavior and reactivity of Ni/Fe nanoparticles in the removal of deca-brominated diphenyl ether (BDE209). Generally, the inhibitory effect of HA on the removal of BDE209 by Ni/Fe showed greater significance with an increase of HA concentration. The zeta potential and sedimentation experiments showed that the HA enhanced the dispersion and stabilization of Ni/Fe particles; however, the removal of BDE209 was found to be inhibited. Moreover, the corrosion capacity of the Ni/Fe nanoparticles showed a positive correlation with the effect of HA on the reactivity of Ni/Fe nanoparticles. Meanwhile, typical quinone compounds in HA had an adverse effect on the removal of BDE209. Additionally, the competitive adsorption experiments and characterization illustrated that the adsorption of HA by Ni/Fe nanoparticles was superior to BDE209. Overall, it was proposed that the corrosion of Ni/Fe was reduced as the contact between the nanoparticles and H2O was hindered due to the surface of Ni/Fe was occupied by the adsorbed HA, and thus inhibited the reactivity of Ni/Fe nanoparticles in the removal of BDE209.
Collapse
Affiliation(s)
- Yunqiang Yi
- School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China
- Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China
| | - Juan Wu
- School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China
- Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China
| | - Guoquan Tu
- School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China
- Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China
| | - Dongye Zhao
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Zhanqiang Fang
- School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China.
- Guangdong Technology Research Center for Ecological Management and Remediation of Water System, Guangzhou, 510006, China.
| | - Pokeung Eric Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, 00852, China
| |
Collapse
|
30
|
Li Z, Hadioui M, Wilkinson KJ. Conditions affecting the release of thorium and uranium from the tailings of a niobium mine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:206-215. [PMID: 30677665 DOI: 10.1016/j.envpol.2018.12.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/15/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Determinations of the mobility of metals from tailings is a critical part of any assessment of the environmental impacts of mining activities. The leaching of thorium and uranium from the tailings of different processing stages of a niobium mine was investigated for several pH, ionic strengths and concentrations of natural organic matter (NOM). The pH of the leaching solution did not have a noticeable impact on the extraction of Th, however, for pH values below 4, increased U mobilization was observed. Similarly, only a small fraction of Th (0.05%, ≤15 μg kg-1) and U (1.22%, ≤6 μg kg-1) were mobilized from the tailings in the presence of environmentally relevant concentrations of Ca, Mg or Na. However, in the presence of 10 mg L-1 of fulvic acid, much higher concentrations of ca. 700 μg kg-1 of Th and 35 μg kg-1 of U could be extracted from the tailings. Generally, colloidal forms of Th and dissolved forms of U were mobilized from the tailings, however, in the presence of the fulvic acid, both dissolved and colloidal forms of the two actinides were observed. Single Particle ICP-MS was used to confirm the presence of Th (and U) containing colloids where significant numbers (up to 107 mL-1) of Th and U containing colloids were found, even in 0.2 μm filtered extracts. Although mass equivalent diameters in the range of 6-13 nm Th and 6-9 nm for U could be estimated (based upon the presence of an oxyhydroxide), most of the colloidal mass was attributed to larger (>200 nm) heterocomposite particles.
Collapse
Affiliation(s)
- Zhizhong Li
- Biophysical Environmental Chemistry Group, Department of Chemistry, University of Montreal, C.P. 6128 Succursale Centre-ville, Montreal, H3C 3J7, Canada
| | - Madjid Hadioui
- Biophysical Environmental Chemistry Group, Department of Chemistry, University of Montreal, C.P. 6128 Succursale Centre-ville, Montreal, H3C 3J7, Canada
| | - Kevin J Wilkinson
- Biophysical Environmental Chemistry Group, Department of Chemistry, University of Montreal, C.P. 6128 Succursale Centre-ville, Montreal, H3C 3J7, Canada.
| |
Collapse
|
31
|
Yang W, Bradford SA, Wang Y, Sharma P, Shang J, Li B. Transport of biochar colloids in saturated porous media in the presence of humic substances or proteins. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:855-863. [PMID: 30623842 DOI: 10.1016/j.envpol.2018.12.075] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/03/2018] [Accepted: 12/23/2018] [Indexed: 05/20/2023]
Abstract
Application of biochar in the field has received considerable attention in recent years, but there is still little known about the fate and transport of biochar colloids (BCs) in the subsurface. Natural organic matter (NOM), which mainly consists of humic substance (HS) and proteins, is ubiquitous in the natural environment and its dissolved fraction is active and mobile. In this study, the transport of BCs in saturated porous media has been examined in the presence of two HS (humic and fulvic acids) and two proteins. Bull serum albumin (BSA) and Cytochrome c (Cyt) were selected to present the negatively and positively charged protein, respectively. At low and high salt concentration and different pH conditions, the transport of BCs was strongly promoted by HS. HS significantly increased the mobility of BCs in porous media under both low and high salt conditions due to the enhanced electrostatic repulsion and modification of surface roughness and charge heterogeneity. While BC mobility in porous media was suppressed by both BSA and Cyt in the low salt solution, the presence of BSA largely promoted and Cyt slightly enhanced the transport of BCs in high salt solutions. BSA and Cyt adsorption onto BC surface decreased the negative charge of BC and resulted in a less repulsive interaction in low salt solutions. In high salt solutions, the adsorbed BSA layers disaggregated BCs and reduced the strength of the interaction between BC and the sand. Adsorbed Cyt on BCs caused more attractive patches between BC and sand surface, and greater retention than BSA.
Collapse
Affiliation(s)
- Wen Yang
- College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant-Soil Interactions, The Ministry of Education, Key Laboratory of Arable Land Conservation in North China, The Ministry of Agriculture, Beijing, 100193, China
| | - Scott A Bradford
- US Salinity Laboratory, USDA, ARS, Riverside, CA, 92507, United States
| | - Yang Wang
- College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant-Soil Interactions, The Ministry of Education, Key Laboratory of Arable Land Conservation in North China, The Ministry of Agriculture, Beijing, 100193, China
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar, India
| | - Jianying Shang
- College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant-Soil Interactions, The Ministry of Education, Key Laboratory of Arable Land Conservation in North China, The Ministry of Agriculture, Beijing, 100193, China.
| | - Baoguo Li
- College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant-Soil Interactions, The Ministry of Education, Key Laboratory of Arable Land Conservation in North China, The Ministry of Agriculture, Beijing, 100193, China
| |
Collapse
|
32
|
Shih YJ, Hsia KF, Chen CW, Chen CF, Dong CD. Characteristics of trichloroethene (TCE) dechlorination in seawater over a granulated zero-valent iron. CHEMOSPHERE 2019; 216:40-47. [PMID: 30359915 DOI: 10.1016/j.chemosphere.2018.10.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/06/2018] [Accepted: 10/10/2018] [Indexed: 06/08/2023]
Abstract
The accumulation of halogenated organic contaminants in estuaries near harbor areas has been receiving increasing attention. This work demonstrates the reductive treatment of trichloroethene (TCE) within seawater and freshwater using a polymeric surfactant (polyvinyl alcohol-co-vinyl acetate-coitaconic acid) modified nanoscale zero-valent iron (GnZVI). Experimental parameters included the ratio of seawater to freshwater, reaction pH, dosage of GnZVI and initial TCE concentration. It was found that the rate of TCE reduction decreased with increasing weight ratio of seawater to freshwater (ka = 0.075 min-1 in freshwater and 0.01 min-1 in seawater); however, the rate substantially improved by increasing the dosage of GnZVI. A consecutive reaction model of adsorption/desorption and reductive dechlorination was established to assess the chemical kinetics of TCE and the intermediates over the GnZVI. The experimental results suggested that both the amount of free sites on the reductant and reactivity of iron to TCE dominated the degradation efficiency. Desorption was a rate-limiting step for the intermediates that evolved (DCE, VC and ethene) in the bulk solution. Under conditions: GnZVI = 5 g/L, reaction pH around 8 and initial TCE = 10 mg/L, the removal efficiency attained 95%, while the decline in the removal rate of TCE from the seawater could be simply improved by increasing GnZVI dosage (10 g/L). As a role of electron donor for water and TCE, ZVI might passivate with contact time, leading to formation of the main crystalline phase magnetite (Fe3O4) by the coprecipitation of oxidized iron (Fe(II)/Fe(III)) over the surfaces of ZVI particles.
Collapse
Affiliation(s)
- Yu-Jen Shih
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Kuo-Feng Hsia
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan.
| |
Collapse
|
33
|
Yang R, Li Z, Huang M, Luo N, Wen J, Zeng G. Characteristics of fulvic acid during coprecipitation and adsorption to iron oxides‑copper aqueous system. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.11.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Wang H, Zhao X, Han X, Tang Z, Song F, Zhang S, Zhu Y, Guo W, He Z, Guo Q, Wu F, Meng X, Giesy JP. Colloidal stability of Fe 3O 4 magnetic nanoparticles differentially impacted by dissolved organic matter and cations in synthetic and naturally-occurred environmental waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:912-921. [PMID: 29920469 DOI: 10.1016/j.envpol.2018.06.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/16/2018] [Accepted: 06/09/2018] [Indexed: 06/08/2023]
Abstract
Better understanding of the colloidal behaviors of nanomaterials impacted by aquatic chemistry parameters is needed for appropriate evaluation of the environmental risks posed by nanomaterials in natural waters. In the study, the colloidal stability of Fe3O4 magnetic nanoparticles (Fe-MNPs) was evaluated over a range of chemistry characteristics [e.g., pH, dissolved organic matter (DOM), salt types, cationic strength] in six synthetic water samples. The findings from the synthetic water samples were further examined with eight "real world" environmental water samples. Our results demonstrated that DOM fraction, humic acid (HA), promoted suspension of Fe-MNPs more by hydrophobic interactions in addition to ligand exchange and electrostatic effects compared with fulvic acid (FA). Capability of cations to increase aggregation of Fe-MNPs were in the order of Ca2+ > Mg2+ >> Na+ because of their different degrees of bridging complexation with DOM molecules on particle surfaces. As a key parameter for indicating Fe-MNPs colloidal stability, Zeta (ζ) potentials of Fe-MNPs in these waters samples were well correlated to (R2 = 0.880, P < 0.001) the contents, types and adsorption forms of DOM and cations. However, several other factors could also affect the hydrodynamic diameter (HDD) of Fe-MNPs in the "real world" environmental waters. It assumed that ampholytic-DOM molecules such as amino acid- and protein-like molecules caused great aggregation of Fe-MNPs. These findings would be helpful for better understanding and evaluating the colloidal behaviors of nanomaterials when they released into natural water environment, thus could shed light on developing relevant pollution control strategies.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xuejiao Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhi Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shaoyang Zhang
- College of Geoscience and Surveying Engineering, China University Mining and Technology, Beijing 100083, China
| | - Yuanrong Zhu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenjing Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhongqi He
- USDA-ARS Southern Regional Research Center, 1100 Robert E Lee Blvd, New Orleans, LA 70124, USA
| | - Qingwei Guo
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoguang Meng
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - John P Giesy
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Department of Biomedical and Veterinary Biosciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
35
|
Dong J, Dong Y, Wen C, Gao S, Ren L, Bao Q. A 2D tank test on remediation of nitrobenzene-contaminated aquifer using in-situ reactive zone with emulsified nanoscale zero-valent iron. CHEMOSPHERE 2018; 206:766-776. [PMID: 29793069 DOI: 10.1016/j.chemosphere.2018.05.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 05/07/2018] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
Nitrobenzene (NB) is one of the most challenging pollutants for groundwater remediation due to its great harm and recalcitrance. Emulsified nanoscale zero-valent iron (EZVI) is considered as a promising agent for in-situ remediation of contaminated groundwater for its high reactivity, good durability and low cost. In this paper, 2D tank experiment was conducted to evaluate the effectiveness of enhanced remediation of NB-contaminated groundwater with EZVI. 9 L of EZVI solution was injected into aquifer to establish in-situ reactive zone (IRZ) before 40 d of NB contamination. Results indicate that injection of EZVI leads to 90% reduction of total NB, which is mainly converted to aniline (AN). NB concentration decreases along the flow path in the tank. Fe2+ is generated from Fe0 oxidation. Significant acetate and bicarbonate are released due to emulsified oil decomposition during the whole operation time. Groundwater pH maintains in neutral value (6.6-8.2) owing to the balance between organic acids and OH- released after iron oxidation. Drastic decrease of ORP and DO indicates the transformation from oxidizing to reducing condition, leading to the reduction of oxidative species (e.g. sulfate, nitrate) in subsurface. Calculation of reducing equivalents suggests that microbial breakdown of emulsified oil provides more electrons than Fe0 oxidation does to the system. Both biotic and abiotic processes are involved in the enhanced degradation of NB.
Collapse
Affiliation(s)
- Jun Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Yang Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Chunyu Wen
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Song Gao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Liming Ren
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | - Qiburi Bao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
36
|
Badmus KO, Coetsee-Hugo E, Swart H, Petrik L. Synthesis and characterisation of stable and efficient nano zero valent iron. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:23667-23684. [PMID: 29748806 DOI: 10.1007/s11356-018-2119-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
Nano zero valent iron (nZVI) is an excellent adsorbent/reductant with wide applicability in remediation of persistent contaminants in soil, water and groundwater aquifers. There are concerns about its environmental fate, agglomeration, toxicity and stability in the air. Several modification methods have applied chistosan, green tea, carboxyl methyl cellulose and other coating substances to ensure production of nZVI with excellent air stability and effectiveness. The synthesis of a novel green nZVI (gNZVI) with Harpephyllum caffrum leaf extracts was successfully executed in the current study. Production of gNZVI involved the simultaneous addition of an optimum amount of the NaBH4 and H. caffrum extract to FeCl3 in an inert environment (Nitrogen). The solution was stirred for 30 min, washed with dilute ethanol (50%) and freeze dried. This procedure offered the best option for the synthesis of gNZVI in terms of nontoxic and inexpensive choice of stabiliser/reductant. Systematic characterisations using TGA, TEM, SEM, XRD, FT-IR and XPS confirmed the synthesis of crystalline, stable, reactive, well-dispersed and predominantly 50 nm diameter sized gNZVI compared to the conventionally synthesised nZVI which is 65 nm. The activity testing using Orange II sodium salt (OR2) confirmed the effectiveness of the synthesised gNZVI as an excellent Fenton catalyst with 65% degradation of 20 ppm OR2 dye in 1 h reaction time.
Collapse
Affiliation(s)
- Kassim O Badmus
- Environmental and Nanoscience, Chemistry Department, Faculty of Natural Science, University of the Western Cape, Cape Town, South Africa.
| | - Elizabeth Coetsee-Hugo
- Department of Physics, Faculty of Natural and Agricultural Science, University of Free State, Bloemfontein, Republic of South Africa
| | - Hendrik Swart
- Department of Physics, Faculty of Natural and Agricultural Science, University of Free State, Bloemfontein, Republic of South Africa
| | - Leslie Petrik
- Environmental and Nanoscience, Chemistry Department, Faculty of Natural Science, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
37
|
Wu S, Vosátka M, Vogel-Mikus K, Kavčič A, Kelemen M, Šepec L, Pelicon P, Skála R, Valero Powter AR, Teodoro M, Michálková Z, Komárek M. Nano Zero-Valent Iron Mediated Metal(loid) Uptake and Translocation by Arbuscular Mycorrhizal Symbioses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:7640-7651. [PMID: 29894629 DOI: 10.1021/acs.est.7b05516] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nano zero-valent iron (nZVI) has great potential in the remediation of metal(loid)-contaminated soils, but its efficiency in metal(loid) stabilization in the plant-microbe continuum is unclear. This study investigated nZVI-mediated metal(loid) behavior in the arbuscular mycorrhizal (AM) fungal-maize ( Zea mays L.) plant association. Plants with AM fungal inoculation were grown in metal(loid)- (mainly Zn and Pb) contaminated soils (Litavka River, Czech Republic) amended with/without 0.5% (w/w) nZVI. The results showed that nZVI decreased plant metal(loid) uptake but inhibited AM development and its function in metal(loid) stabilization in the rhizosphere. AM fungal inoculation alleviated the physiological stresses caused by nZVI and restrained nZVI efficiency in reducing plant metal(loid) uptake. Micro proton-induced X-ray emission (μ-PIXE) analysis revealed the sequestration of Zn (possibly through binding to thiols) by fungal structures in the roots and the precipitation of Pb and Cu in the mycorrhizal root rhizodermis (possibly by Fe compounds originated from nZVI). XRD analyses further indicated that Pb/Fe mineral transformations in the rhizosphere were influenced by AM and nZVI treatments. The study revealed the counteractive effects of AM and nZVI on plant metal(loid) uptake and uncovered details of metal(loid) behavior in the AM fungal-root-nZVI system, calling into question about nZVI implementation in mycorrhizospheric systems.
Collapse
Affiliation(s)
- Songlin Wu
- Department of Environmental Geosciences, Faculty of Environmental Sciences , Czech University of Life Sciences Prague , Kamýcká 129 , 165 00 Prague-Suchdol , Czech Republic
| | - Miroslav Vosátka
- Department of Mycorrhizal Symbioses, Institute of Botany , Czech Academy of Sciences , 272 53 Pruhonice , Czech Republic
| | - Katarina Vogel-Mikus
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , SI-1000 Ljubljana , Slovenia
- Jozef Stefan Institute , Jamova 39 , SI-1000 Ljubljana , Slovenia
| | - Anja Kavčič
- Department of Biology, Biotechnical Faculty , University of Ljubljana , Jamnikarjeva 101 , SI-1000 Ljubljana , Slovenia
| | - Mitja Kelemen
- Jozef Stefan Institute , Jamova 39 , SI-1000 Ljubljana , Slovenia
| | - Luka Šepec
- Jozef Stefan Institute , Jamova 39 , SI-1000 Ljubljana , Slovenia
| | - Primož Pelicon
- Jozef Stefan Institute , Jamova 39 , SI-1000 Ljubljana , Slovenia
| | - Roman Skála
- Institute of Geology of the Czech Academy of Sciences , Rozvojová 269 , CZ-165 00 Prague 6 , Czech Republic
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science , Charles University in Prague , Albertov 6 , CZ-128 43 Prague 2 , Czech Republic
| | - Antonio Roberto Valero Powter
- Department of Environmental Geosciences, Faculty of Environmental Sciences , Czech University of Life Sciences Prague , Kamýcká 129 , 165 00 Prague-Suchdol , Czech Republic
| | - Manuel Teodoro
- Department of Environmental Geosciences, Faculty of Environmental Sciences , Czech University of Life Sciences Prague , Kamýcká 129 , 165 00 Prague-Suchdol , Czech Republic
| | - Zuzana Michálková
- Department of Environmental Geosciences, Faculty of Environmental Sciences , Czech University of Life Sciences Prague , Kamýcká 129 , 165 00 Prague-Suchdol , Czech Republic
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences , Czech University of Life Sciences Prague , Kamýcká 129 , 165 00 Prague-Suchdol , Czech Republic
| |
Collapse
|
38
|
Zhu Y, Jin Y, Chang K, Chen Z, Li X, Wu X, Jin C, Ye F, Shen R, Dong W, Asiri AM, Marwani HM, Sheng G. Use of molybdenum disulfide nanosheets embellished nanoiron for effective capture of chromium (VI) ions from aqueous solution. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.03.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Yang R, Li Z, Huang B, Luo N, Huang M, Wen J, Zhang Q, Zhai X, Zeng G. Effects of Fe(III)-fulvic acid on Cu removal via adsorption versus coprecipitation. CHEMOSPHERE 2018; 197:291-298. [PMID: 29353679 DOI: 10.1016/j.chemosphere.2018.01.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/17/2017] [Accepted: 01/11/2018] [Indexed: 05/27/2023]
Abstract
This study compared the sorption and extractability of Cu following adsorption (SOR) and coprecipitation(CPT). The effect of solution pH, Fe: organic carbon (OC) ratios and fulvic acid (FA) on the combined removal of Cu was investigated in the batch tests using Fe(III) precipitates as a sorbent. Transmission electron microscope (TEM) images demonstrated that the coexisting FA reduced the particle size of ferrihydrites as expected. Generally, more Cu was eliminated in coprecipitation compared with adsorption and the dissolved Cu left in solutions decreased as the pH increased, most of dissolved Cu was trapped at pH 6 and above. Meanwhile, the inhibition or promotion of Cu removal really depended on the different Fe: OC ratios. The addition of FA led to a further decrease of Cu concentrations in CPT systems with Fe/OC ratio of 1:3, however, Cu removal was hindered in the presence of FA in SOR systems. In the case of extraction experiments, the addition of l-malic acid (MA), oxalic acid (OA) and citric acid (CA) resulted in lower extractability of coprecipitated Cu than adsorption samples. The gaps in extractions were seemed to be a consequence of tight Cu binding in CPT products, and the more feasible desorption of Cu from the surface of SOR samples. Based on the results of Cu adsorption and coprecipitation, coprecipitation of Cu with ferrihydrites was the more effective Cu sequestration mechanism in the removal of Cu. These results are helpful to understand the complicated interactions among Fe(III), FA and Cu (II) in the natural environment.
Collapse
Affiliation(s)
- Ren Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Zhongwu Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Bin Huang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environment Science &Technology, Guangzhou, 510650, PR China
| | - Ninglin Luo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Mei Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jiajun Wen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Qiu Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Xiuqing Zhai
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
40
|
Removal of tetracycline by Fe/Ni bimetallic nanoparticles in aqueous solution. J Colloid Interface Sci 2018; 513:117-125. [DOI: 10.1016/j.jcis.2017.11.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 02/05/2023]
|
41
|
Dong H, Zhang C, Hou K, Cheng Y, Deng J, Jiang Z, Tang L, Zeng G. Removal of trichloroethylene by biochar supported nanoscale zero-valent iron in aqueous solution. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.07.033] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Hu B, Chen G, Jin C, Hu J, Huang C, Sheng J, Sheng G, Ma J, Huang Y. Macroscopic and spectroscopic studies of the enhanced scavenging of Cr(VI) and Se(VI) from water by titanate nanotube anchored nanoscale zero-valent iron. JOURNAL OF HAZARDOUS MATERIALS 2017; 336:214-221. [PMID: 28494309 DOI: 10.1016/j.jhazmat.2017.04.069] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/07/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
Herein, a promising titanate nanotubes (TNT) anchored nanoscale zero-valent iron (NZVI) nanocomposite (NZVI/TNT) was synthesized, characterized and used for the enhanced scavenging of Cr(VI) and Se(VI) from water. The structural identification indicated that NZVI was uniformly loaded on TNT, thereby, the oxidation and aggregation of NZVI was significantly minimized. The macroscopic experimental results indicated that NZVI/TNT exhibited higher efficiency as well as rate on Cr(VI) and Se(VI) scavenging resulted from the good synergistic effect between adsorption and reduction. Besides, TNT can weaken the inhibitory effect of co-existing humic acid (HA) and fulvic acid (FA) on the scavenging of Cr(VI) and Se(VI) by NZVI, since TNT showed strong adsorption for HA and FA that inhibit potential reactivity. XPS analysis suggested that surface-bound Fe(II) played a critical role in Cr(VI) and Se(VI) scavenging. XANES analysis demonstrated that TNT acted as a promoter for the almost complete transformation of Cr(VI) into Cr(III), and Se(VI) into Se(0)/Se(-II) in NZVI system. EXAFS analysis indicated that TNT acted as a scavenger for insoluble products, and thus more reactive sites can be used for Cr(VI) and Se(VI) reduction. The excellent performance of NZVI/TNT provide a potential material for purification and detoxification of Cr(VI) and Se(VI) from wastewater.
Collapse
Affiliation(s)
- Baowei Hu
- College of Chemistry and Chemical Engineering or College of Life Science, Shaoxing University, Zhejiang, 312000, PR China
| | - Guohe Chen
- College of Chemistry and Chemical Engineering or College of Life Science, Shaoxing University, Zhejiang, 312000, PR China
| | - Chengan Jin
- College of Chemistry and Chemical Engineering or College of Life Science, Shaoxing University, Zhejiang, 312000, PR China
| | - Jun Hu
- School of Electronic Engineering, Dongguan University of Technology, Guangdong 523808, PR China
| | - Chengcai Huang
- College of Chemistry and Chemical Engineering or College of Life Science, Shaoxing University, Zhejiang, 312000, PR China
| | - Jiang Sheng
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Guodong Sheng
- College of Chemistry and Chemical Engineering or College of Life Science, Shaoxing University, Zhejiang, 312000, PR China; School of Chemistry and Environment, North China Electric Power University, Beijing 102206, PR China; Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, PR China.
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, PR China
| | - Yuying Huang
- Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, PR China
| |
Collapse
|
43
|
Xie Y, Dong H, Zeng G, Tang L, Jiang Z, Zhang C, Deng J, Zhang L, Zhang Y. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review. JOURNAL OF HAZARDOUS MATERIALS 2017; 321:390-407. [PMID: 27669380 DOI: 10.1016/j.jhazmat.2016.09.028] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/26/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
Nanoscale zero-valent iron (NZVI) particles, applied for in-situ subsurface remediation, are inevitable to interact with various microbes in the remediation sites directly or indirectly. This review summarizes their interactions, including the effects of NZVI on microbial activity and growth, the synergistic effect of NZVI and microbes on the contaminant removal, and the effects of microbes on the aging of NZVI. NZVI could exert either inhibitive or stimulative effects on the growth of microbes. The mechanisms of NZVI cytotoxicity (i.e., the inhibitive effect) include physical damage and biochemical destruction. The stimulative effects of NZVI on certain bacteria are associated with the creation of appropriate living environment, either through providing electron donor (e.g., H2) or carbon sources (e.g., the engineered organic surface modifiers), or through eliminating the noxious substances that can cause bactericidal consequence. As a result of the positive interaction, the combination of NZVI and some microbes shows synergistic effect on contaminant removal. Additionally, the aged NZVI can be utilized by some iron-reducing bacteria, resulting in the transformation of Fe(III) to Fe(II), which can further contribute to the contaminant reduction. However, the Fe(III)-reduction process can probably induce environmental risks, such as environmental methylation and remobilization of the previously entrapped heavy metals.
Collapse
Affiliation(s)
- Yankai Xie
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Haoran Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Zhao Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Cong Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Junmin Deng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Lihua Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
44
|
Chekli L, Brunetti G, Marzouk ER, Maoz-Shen A, Smith E, Naidu R, Shon HK, Lombi E, Donner E. Evaluating the mobility of polymer-stabilised zero-valent iron nanoparticles and their potential to co-transport contaminants in intact soil cores. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:636-645. [PMID: 27357483 DOI: 10.1016/j.envpol.2016.06.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/12/2016] [Accepted: 06/14/2016] [Indexed: 06/06/2023]
Abstract
The use of zero-valent iron nanoparticles (nZVI) has been advocated for the remediation of both soils and groundwater. A key parameter affecting nZVI remediation efficacy is the mobility of the particles as this influences the reaction zone where remediation can occur. However, by engineering nZVI particles with increased stability and mobility we may also inadvertently facilitate nZVI-mediated contaminant transport away from the zone of treatment. Previous nZVI mobility studies have often been limited to model systems as the presence of background Fe makes detection and tracking of nZVI in real systems difficult. We overcame this problem by synthesising Fe-59 radiolabelled nZVI. This enabled us to detect and quantify the leaching of nZVI-derived Fe-59 in intact soil cores, including a soil contaminated by Chromated-Copper-Arsenate. Mobility of a commercially available nZVI was also tested. The results showed limited mobility of both nanomaterials; <1% of the injected mass was eluted from the columns and most of the radiolabelled nZVI remained in the surface soil layers (the primary treatment zone in this contaminated soil). Nevertheless, the observed breakthrough of contaminants and nZVI occurred simultaneously, indicating that although the quantity transported was low in this case, nZVI does have the potential to co-transport contaminants. These results show that direct injection of nZVI into the surface layers of contaminated soils may be a viable remediation option for soils such as this one, in which the mobility of nZVI below the injection/remediation zone was very limited. This Fe-59 experimental approach can be further extended to test nZVI transport in a wider range of contaminated soil types and textures and using different application methods and rates. The resulting database could then be used to develop and validate modelling of nZVI-facilitated contaminant transport on an individual soil basis suitable for site specific risk assessment prior to nZVI remediation.
Collapse
Affiliation(s)
- L Chekli
- School of Civil and Environmental Engineering, University of Technology, Sydney, Post Box 129, Broadway, NSW 2007, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia
| | - G Brunetti
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia; Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, SA 5095, Australia
| | - E R Marzouk
- Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, SA 5095, Australia; Division of Soil and Water Sciences, Faculty of Environmental Agricultural Sciences, Suez Canal University, North Sinai 45516, Egypt
| | - A Maoz-Shen
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia; Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, SA 5095, Australia
| | - E Smith
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia; Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, SA 5095, Australia
| | - R Naidu
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia; Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, University of Newcastle, Callaghan, NSW 2308, Australia
| | - H K Shon
- School of Civil and Environmental Engineering, University of Technology, Sydney, Post Box 129, Broadway, NSW 2007, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia
| | - E Lombi
- Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, SA 5095, Australia
| | - E Donner
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, Callaghan, NSW 2308, Australia; Future Industries Institute, University of South Australia, Building X, Mawson Lakes Campus, SA 5095, Australia.
| |
Collapse
|
45
|
Dong H, Zeng Y, Zeng G, Huang D, Liang J, Zhao F, He Q, Xie Y, Wu Y. EDDS-assisted reduction of Cr(VI) by nanoscale zero-valent iron. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.03.055] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|