1
|
Zahaby Y, Crump D, O'Brien J, Dupuis-Smith R, Dwyer-Samuel F, Laing R, Pilgrim S, Gear G, Pamak C, Saunders M, Denniston M, Mallory ML, Tomy G, Halldorson T, Vitharana N, Xia Z, Francisco O, Provencher JF. Comparison of gene expression and polycyclic aromatic compound profiles in hepatic tissue of black guillemot (Cepphus grylle) collected from an oil spill site and a non-spill site in the Arctic. MARINE POLLUTION BULLETIN 2025; 212:117504. [PMID: 39755062 DOI: 10.1016/j.marpolbul.2024.117504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
Economic development, marine transportation, and oil exploration are all activities that are increasing in the Arctic region, and there is concern regarding increased oil-related contaminants entering this sensitive environment. Polycyclic aromatic compounds (PACs) are the main chemical constituents in oil-related contaminants and have been detected in wildlife species following both acute and chronic exposure. In 2020, an oil spill occurred in Kaikopok Bay near Postville, NL, Canada. In the present study, we evaluate hepatic PAC burdens and gene expression profiles, using a ToxChip PCR array, to determine key biological pathways most affected by exposure to an oil spill in a seabird species, black guillemot (Cepphus grylle). Black guillemots were also collected from a non-spill site at Nain, NL for chemical and gene expression analyses. We found distinct, diesel-related contaminant profiles in hepatic tissue of seabirds collected from the spill site, characterized by the presence of naphthalene congeners. Conversely, alkylated naphthalene congeners were more prevalent at the non-spill site. Although different chemistry profiles were detected between sites, gene expression profiles at the spill site were not as distinct as expected. However, using a regression modeling approach, the expression of certain target genes were good predictors of actual chemical concentrations. Overall, chemistry and gene expression used together can help support environmental monitoring initiatives in vulnerable species and geographic locations.
Collapse
Affiliation(s)
- Yasmeen Zahaby
- Science and Technology Branch, Environment and Climate Change Canada, Ottawa, Ontario K1A 0H3, Canada; Biology Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada
| | - Doug Crump
- Science and Technology Branch, Environment and Climate Change Canada, Ottawa, Ontario K1A 0H3, Canada
| | - Jason O'Brien
- Science and Technology Branch, Environment and Climate Change Canada, Ottawa, Ontario K1A 0H3, Canada
| | - Reyd Dupuis-Smith
- Biology Department, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada
| | | | - Rodd Laing
- Nunatsiavut Government, 25 Ikajuktauvik Rd, Nain, Newfoundland and Labrador, Canada
| | - Samantha Pilgrim
- Nunatsiavut Government, 25 Ikajuktauvik Rd, Nain, Newfoundland and Labrador, Canada
| | - George Gear
- Nunatsiavut Government, 25 Ikajuktauvik Rd, Nain, Newfoundland and Labrador, Canada
| | - Carla Pamak
- Nunatsiavut Government, 25 Ikajuktauvik Rd, Nain, Newfoundland and Labrador, Canada
| | - Michelle Saunders
- Nunatsiavut Government, 25 Ikajuktauvik Rd, Nain, Newfoundland and Labrador, Canada
| | - Mary Denniston
- Nunatsiavut Government, 25 Ikajuktauvik Rd, Nain, Newfoundland and Labrador, Canada
| | - Mark L Mallory
- Biology, Acadia University, 15 University Drive, Wolfville, Nova Scotia, B4P R6, Canada
| | - Gregg Tomy
- The Centre for Oil and Gas Research and Development, University of Manitoba, Parker Building, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Thor Halldorson
- The Centre for Oil and Gas Research and Development, University of Manitoba, Parker Building, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Nipuni Vitharana
- The Centre for Oil and Gas Research and Development, University of Manitoba, Parker Building, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Zhe Xia
- The Centre for Oil and Gas Research and Development, University of Manitoba, Parker Building, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Olga Francisco
- The Centre for Oil and Gas Research and Development, University of Manitoba, Parker Building, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Jennifer F Provencher
- Science and Technology Branch, Environment and Climate Change Canada, Ottawa, Ontario K1A 0H3, Canada.
| |
Collapse
|
2
|
Berrellez-Reyes F, Schiavo B, Gonzalez-Grijalva B, Angulo-Molina A, Meza-Figueroa D. Characterization of soot and crystalline atmospheric ultrafine particles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125314. [PMID: 39547557 DOI: 10.1016/j.envpol.2024.125314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
The extraction and characterization of atmospheric ultrafine particles (UFPs) is critical to understanding environmental health and climate dynamics. This study uses an aqueous extraction method to characterize the size distribution, shape, and composition of atmospheric UFPs. We propose a combined use of techniques rarely implemented in air quality analysis, such as atomic force microscopy (AFM), with more conventional methods, such as Transmission Electron microscopy (TEM) and Dynamic Light Scattering (DLS). DLS results indicate a hydrodynamic diameter range from 117 to 1069 nm and a polydispersity index of 0.3-0.79. The high polydispersity reflects the complexity of UFPs agglomeration processes. AFM identified NPs ranging from 10 to 25 nm; topographic images show soot and crystalline structures. High-resolution TEM analysis measured the interplanar distances of crystalline UFPs, showing the presence of calcium carbonates. TEM-EDS identified soot and crystalline particles with variable composition, from Si-enriched NPs to Ca-F-Cl-Na-Si, carbonates, chlorides, and Zn-Ti-enriched nanosilica. These findings provide valuable insights into the physicochemical properties of atmospheric dust, contributing to our knowledge and the potential implications for human health and the environment.
Collapse
Affiliation(s)
- Francisco Berrellez-Reyes
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico.
| | - Benedetto Schiavo
- Instituto de Geofísica, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Belem Gonzalez-Grijalva
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico
| | - Aracely Angulo-Molina
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico
| | - Diana Meza-Figueroa
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, 83000, Hermosillo, Sonora, Mexico.
| |
Collapse
|
3
|
Udom GJ, Obilor OF, Aziakpono OM, Aturamu A, Ogbonnaya M, Umana IK, Udom NWG, Yemitan OK. Polycyclic aromatic hydrocarbons in a polyherbal drug: human health exposure-associated risk assessment study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025; 35:210-219. [PMID: 38720620 DOI: 10.1080/09603123.2024.2350591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/26/2024] [Indexed: 01/02/2025]
Abstract
PAHs are pervasive pollutants known to bioaccumulate in environmental matrices, plants, and humans. Dr. Iguedo Goko Cleanser® is a polyherbal drug with unsubstantiated claims to treat various diseases in sub-Saharan Africa. PAHs were measured following EPA-16 PAHs guidelines using Gas Chromatography (Agilent-6890N, USA). The drug's exposure-associated public health concerns was determined using suitable mathematical paradigms. PAHs present were acenaphthene (2.74 × 10-2), pyrene (2.7598 × 10-2), and chrysene (5.1277 × 10-2) ppm. Dietary intake of chrysene, acenaphthene and pyrene for adults, and children ranged from 2.466-4.615 × 10-3 and 1.215-2.308 × 10-3 ppm/mg/kg, respectively. B[α]Peq, EDB[α]Peq, and incremental lifetime cancer risk were determined to be 5.6777 × 10-4, 5.109912 × 10-5 and 5.3289 × 10-12, respectively. Our results suggest a high risk of non-carcinogenic adverse health effects, especially on chronic exposure among adolescents and adults, necessitating caution and/or avoidance of its chronic use. Therefore, policy formulation and implementation as regards the safety of plant-based remedies and allied products before their distribution among end-users must be ensured.
Collapse
Affiliation(s)
- Godswill J Udom
- Department of Pharmacology and Toxicology, School of Pharmacy, Kampala International University, Kampala, Uganda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria
| | - Oluchi F Obilor
- Public Health, ManProject Foundation, Port-Harrcourt, Nigeria
| | - Omoirri M Aziakpono
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Federal University Oye-Ekiti, Oye-Ekiti, Nigeria
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Akwa, Nigeria
| | - Ayodeji Aturamu
- Department of Human Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Mba Ogbonnaya
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Akwa, Nigeria
| | - Israel K Umana
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Madonna University, Elele, Nigeria
| | - Nita-Wills G Udom
- Department of Public Health, Faculty of Science and Technology, Cavendish University, Kampala, Uganda
| | - Omoniyi K Yemitan
- Department of Pharmacology, Therapeutics and Toxicology, Lagos State University College of Medicine, Ikeja, Lagos, Nigeria
| |
Collapse
|
4
|
Yao C, Tang J, Mo Y, Zhong G, Geng X, Yi X, Zhang Q, Li J, Ma H, Zhao S, Zhang G. Polycyclic aromatics-derived benzene carboxylic acids (BPCAs) as a fast predictor of the genotoxicity of combustion particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177632. [PMID: 39571819 DOI: 10.1016/j.scitotenv.2024.177632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/04/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024]
Abstract
Polycyclic aromatic compounds (PAC) are common toxics in combustion particles. Numerous studies on health effects of PAC mixtures focused on limited compounds. It's still challenging to quantify complex PAC mixtures in combustion particles. Recently, benzene polycarboxylic acids (BPCAs) method, which involves conversion of PAC mixtures into a few BPCAs, has been used to quantify complex PAC mixtures in particles. In this study, in vitro biossays were used to evaluate the toxicity of extractable organic matter (EOM) in combustion particles. Analysis with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) identified ~1000 molecules, mostly aromatics (84.47 ± 5.32 %), that positively associate with the EOM toxicity (p < 0.05). We further employed BPCAs method to quantify PAC mixtures in the EOM of combustion particles, and observed the toxicity (especially genotoxicity) of EOM linearly increases with the abundance of PAC mixtures (r2: 0.68-0.89, p < 0.05), as it is shown by a data set referring to all source types including biomass burning, coal combustion and vehicle exhaust. The genotoxicity of PAC mixtures in EOM of combustion particles was estimated to be 10-13 times that of benzo[a]pyrene at the same mass concentration. Target analysis of 48 PAC was carried out, but a weaker relationship is found for the toxicity of EOM and the abundance of 48 PAC. Taken together, we suggest PAC-derived BPCAs as a fast predictor of the genotoxicity of combustion particles, which could be promising in routine monitoring of PAC pollution in the air.
Collapse
Affiliation(s)
- Chuxin Yao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiao Tang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Yangzhi Mo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Guangcai Zhong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China.
| | - Xiaofei Geng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Xin Yi
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Qianyu Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Huimin Ma
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Shizhen Zhao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou 510640, China
| |
Collapse
|
5
|
Tian Y, Hu Y, Hou X, Tian F. Impacts and mechanisms of PM 2.5 on bone. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:765-775. [PMID: 37527559 DOI: 10.1515/reveh-2023-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023]
Abstract
Osteoporosis is a metabolic bone disease, which is characterized by a decreased bone mass and deterioration of bone microstructure, resulting in increased bone fragility and a higher risk of fracture. The main pathological process of osteoporosis is the dynamic imbalance between bone absorption and bone formation, which can be caused by various factors such as air pollution. Particulate matter (PM)2.5 refers to the fine particles in the atmosphere, which are small in volume and large in specific surface area. These particles are prone to carrying toxic substances and have negative effects on several extrapulmonary organs, including bones. In this review, we present relevant data from studies, which show that PM2.5 is associated with abnormal bone turnover and osteoporosis. PM2.5 may cause or aggravate bone loss by stimulating an inflammatory response, inducing oxidative damage, reducing estrogen efficiency by competitive binding to estrogen receptors, or endocrine disorder mediated by binding with aromatic hydrocarbon receptors, and affecting the synthesis of vitamin D to reduce calcium absorption. The cellular and molecular mechanisms involved in these processes are also summarized in this review.
Collapse
Affiliation(s)
- Yuqing Tian
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yunpeng Hu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xiaoli Hou
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Faming Tian
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
6
|
Saaristo M, Johnstone CP, Lewis P, Sharp S, Chaston T, Hoak M, Leahy P, Cottam D, Noble L, Leeder J, Taylor MP. Spatial and Temporal Dynamics of Chemical and Microbial Contamination in Nonurban Floodwaters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21411-21422. [PMID: 39582195 PMCID: PMC11636212 DOI: 10.1021/acs.est.4c03875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 11/26/2024]
Abstract
During major flood events, waterborne contaminants are relatively poorly characterized. This is due to logistical difficulties associated with obtaining water samples in potentially dangerous flood conditions. Herein, we report analyses of water samples from a large, flooded landscape in Victoria, Australia, during a major flood event. We collected 83 samples from seven rivers and 18 river locations as far apart as 520 km. The sampling campaign covered a 26-day window, with 3 samples taken weekly from each site. Floodwater samples were analyzed for 778 contaminants and 544 microbial species were identified using eDNA. Our study shows that 85 contaminants were detected in floodwaters. Fungicides, phthalates, plant macronutrients, metal(loid)s and PPCPs were better explained by land uses, whereas herbicides and insecticides were explained by a mixture of land use and water flow data. Potentially pathogenic orders with the highest detection rates were Enterobacterales (82.4%), Mycobacteriales (70.6%) and Legionellales (58.8%). Contaminants and microbial signatures responded to rainfall, water flow and water level, demonstrating increased and varied human and environmental risks of exposure during the sampling window. Our work underlines the importance of rigorous and timely monitoring and provides an evidence-base for decision making during increasingly frequent and intense climate driven flood events.
Collapse
Affiliation(s)
- Minna Saaristo
- Environment
Protection Authority, EPA Science, Macleod, Victoria 3085, Australia
| | | | - Phoebe Lewis
- Environment
Protection Authority, EPA Science, Macleod, Victoria 3085, Australia
| | - Simon Sharp
- Environment
Protection Authority, EPA Science, Macleod, Victoria 3085, Australia
| | - Timothy Chaston
- Environment
Protection Authority, EPA Science, Macleod, Victoria 3085, Australia
| | - Molly Hoak
- Environment
Protection Authority, EPA Science, Macleod, Victoria 3085, Australia
| | - Paul Leahy
- Environment
Protection Authority, EPA Science, Macleod, Victoria 3085, Australia
| | - Darren Cottam
- Environment
Protection Authority, EPA Science, Macleod, Victoria 3085, Australia
| | - Luke Noble
- EnviroDNA, Melbourne, Victoria 3056, Australia
| | - John Leeder
- Leeder
Analytical, Melbourne, Victoria 3078, Australia
| | - Mark Patrick Taylor
- Environment
Protection Authority, EPA Science, Macleod, Victoria 3085, Australia
| |
Collapse
|
7
|
Kiyama R, Wada-Kiyama Y. Estrogenic actions of alkaloids: Structural characteristics and molecular mechanisms. Biochem Pharmacol 2024; 232:116645. [PMID: 39577707 DOI: 10.1016/j.bcp.2024.116645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/29/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
This comprehensive review of estrogenic alkaloids reveals that although the number is small, they exhibit a wide range of structures, biosynthesis pathways, mechanisms of action, and applications. Estrogenic alkaloids belong to different classes, different biosynthetic pathways, different estrogenic actions (estrogenic/synergistic, anti-estrogenic/antagonistic, biphasic, and acting as a selective estrogen receptor modulator or SERM), different receptor-initiated signaling pathways, different ways of modulations of estrogen action, and different applications. The future applications of estrogenic alkaloids, such as those for diagnostics, drug development, and therapeutics, are considered with the help of new databases containing comprehensive descriptions of their relationships and more elaborate artificial intelligence-based prediction technologies. Structure-activity studies reveal the significance of the nitrogen atom for their structural and functional diversity, which may help support their broader applications. Based on the summary of previous reports, estrogenic alkaloids have significant potential for future applications.
Collapse
Affiliation(s)
- Ryoiti Kiyama
- Dept. of Life Science, Faculty of Life Science, Kyushu Sangyo Univ. 2-3-1 Matsukadai, Higashi-ku, Fukuoka 813-8503, Japan.
| | - Yuko Wada-Kiyama
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| |
Collapse
|
8
|
Cao S, Wan Y, Li Y, Xu S, Xia W. Urinary polycyclic aromatic hydrocarbon metabolites in Chinese pregnant women: Concentrations, variability, predictors, and association with oxidative stress biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175121. [PMID: 39084365 DOI: 10.1016/j.scitotenv.2024.175121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of pervasive contaminants having adverse health effects. Urinary monohydroxylated PAHs (OH-PAHs) are commonly employed as biomarkers to estimate PAH exposure levels in humans. However, little is understood about the variability in OH-PAHs among pregnant women across trimesters and their relationship with oxidative stress biomarkers (OSBs). Based on a prospective birth cohort study conducted in Wuhan, China, we selected 644 women who donated (spot) urine samples across different trimesters and measured the urinary concentrations of eight OH-PAHs and three selected OSBs (8-OHG, 8-OHdG, and HNEMA) to explore the relationship between the OH-PAHs and OSBs. Pregnant women were found to be ubiquitously exposed to the PAHs, with detection rates of the OH-PAHs ranging from 86.3% to 100%. 2-Hydroxynaphthalene (2-OH-Nap) had the highest urinary concentrations among the OH-PAHs during the three trimesters (specific gravity-adjusted median values for the first, second, and third trimesters: 1.86, 2.39, and 2.20 ng/mL, respectively). However, low reproducibility of the OH-PAHs was observed across the three trimesters with intraclass correlation coefficients ranged between 0.02 and 0.22. Most urinary OH-PAHs had the highest concentrations at the first trimester and the lowest at the third trimester. Some OH-PAH concentrations were higher in pregnant women with lower educational level [2-hydroxyphenanthrene (2-OH-Phen) and 3-hydroxyphenanthrene (3-OH-Phen)], those who were overweight [2-OH-Nap, 2/3-hydroxyfluorene (2/3-OH-Fluo), 2-OH-Phen, and 4-hydroxyphenanthrene (4-OH-Phen)], those who were unemployed during pregnancy [1-hydroxynaphthalene, 1/9-hydroxyphenanthrene, and 4-OH-Phen], and the samples donated in summer (most OH-PAHs, except for 2-OH-Nap). In multivariable linear mixed-effects model analyses, every OH-PAH was found to be significantly associated with increased levels of the three OSBs. For example, each interquartile range-fold increase in 2/3-OH-Fluo concentration was associated with the largest increase in 8-OHdG (65.4%) and 8-OHG (49.1%), while each interquartile range-fold increase in 3-OH-Phen concentration was associated with the largest increase in HNEMA (76.3%). Weighted quantile sum regression models, which were used to examine the joint effect of OH-PAH mixture on the OSBs, revealed positive associations between the OH-PAH mixture exposure and the OSBs. Specifically, 2/3-OH-Fluo and 2-OH-Nap were the major contributors in the association with oxidative damage of nucleic acids (8-OHdG and 8-OHG), while hydroxyphenanthrenes and 1-hydroxypyrene were the major contributors in the association with oxidative damage of lipid (HNEMA). Further work is required to examine the potential mediating role of oxidative stress in the relationship of adverse health outcomes with elevated PAH exposure among pregnant women.
Collapse
Affiliation(s)
- Shuting Cao
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Yanjian Wan
- Center for Public Health Laboratory Service, Institute of Environmental Health, Wuhan Centers for Disease Control & Prevention, Wuhan, Hubei 430024, PR China
| | - Yuanyuan Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Shunqing Xu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China
| | - Wei Xia
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan 430030, Hubei, China.
| |
Collapse
|
9
|
Takeda K, Sarata A, Terasaki M, Kubota A, Shimizu K, Kamata R. Assessment of the Aryl Hydrocarbon Receptor-Mediated Effects of Aromatic Sensitizers in Paper Recycling Effluent Employing Zebrafish Embryos and in Silico Docking. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2176-2188. [PMID: 39092783 DOI: 10.1002/etc.5969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Aromatic sensitizers and related substances (SRCs), which are crucial in the paper industry for facilitating color-forming and color-developing chemical reactions, inadvertently contaminate effluents during paper recycling. Owing to their structural resemblance to endocrine-disrupting aromatic organic compounds, concerns have arisen about potential adverse effects on aquatic organisms. We focused on SRC effects via the aryl hydrocarbon receptor (AHR), employing molecular docking simulations and zebrafish (Danio rerio) embryo exposure assessments. Molecular docking revealed heightened binding affinities between certain SRCs in the paper recycling effluents and zebrafish Ahr2 and human AHR, which are pivotal components in the SRC toxicity mechanism. Fertilized zebrafish eggs were exposed to SRCs for up to 96 h post fertilization; among these substances, benzyl 2-naphthyl ether (BNE) caused morphological abnormalities, such as pericardial edema and shortened body length, at relatively low concentrations (1 μM) during embryogenesis. Gene expression of cytochrome P450 1A (cyp1a) and ahr2 was also significantly increased by BNE. Co-exposure to the AHR antagonist CH-223191 only partially mitigated BNE's phenotypic effects, despite the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin being relatively well restored by CH-223191, indicating BNE's AHR-independent toxic mechanisms. Furthermore, some SRCs, including BNE, exhibited in silico binding affinity to the estrogen receptor and upregulation of cyp19a1b gene expression. Therefore, additional insights into the toxicity of SRCs and their mechanisms are essential. The present results provide important information on SRCs and other papermaking chemicals that could help minimize the environmental impact of the paper industry. Environ Toxicol Chem 2024;43:2176-2188. © 2024 SETAC.
Collapse
Affiliation(s)
- Kazuki Takeda
- Laboratory of Toxicology, School of Veterinary Medicine, Kitasato University, Towada-shi, Aomori, Japan
- Department of Computer Science, Tokyo Institute of Technology, Yokohama-shi, Kanagawa, Japan
| | - Aoi Sarata
- Laboratory of Toxicology, School of Veterinary Medicine, Kitasato University, Towada-shi, Aomori, Japan
| | - Masanori Terasaki
- Environmental Chemistry Laboratory, Graduate School of Arts and Sciences, Iwate University, Morioka City, Iwate, Japan
| | - Akira Kubota
- Laboratory of Toxicology, Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Keita Shimizu
- Laboratory of Toxicology, School of Veterinary Medicine, Kitasato University, Towada-shi, Aomori, Japan
| | - Ryo Kamata
- Laboratory of Toxicology, School of Veterinary Medicine, Kitasato University, Towada-shi, Aomori, Japan
| |
Collapse
|
10
|
Fu Q, Yuan X. Relationship between mixed exposure to phenyl hydroxides, polycyclic aromatic hydrocarbons, and phthalates and the risk of arthritis. BMC Public Health 2024; 24:2446. [PMID: 39251954 PMCID: PMC11382499 DOI: 10.1186/s12889-024-19971-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND To determine the relationship between mixed exposure to three types of endocrine-disrupting chemicals (EDCs), namely phenyl hydroxides, polycyclic aromatic hydrocarbons (PAHs), and phthalates (PAEs), and risk of arthritis. METHODS Participants were selected from National Health and Nutrition Examination Survey (NHANES). The relationships between the urinary concentrations of phenyl hydroxides, PAHs, and PAEs and the risk of arthritis were analyzed by generalized linear regression model. The mixed exposure to these EDCs and the risk of arthritis was analyzed by weighted quantile sums (WQSs) and Bayesian kernel machine regression (BKMR) model. RESULTS Our analysis showed that participants with urinary benzophenone-3 and methylparaben concentrations in the highest quartile (Q4) had an increased risk of arthritis compared with those in Q1. For each one-unit increase in the natural logarithm-converted urinary concentrations of 1-hydroxynapthalene and 2-hydroxynapthalene, the risk of arthritis increased by 5% and 8%, respectively. Chemical mixing index coefficients were significantly associated with risk of arthritis in both WQS positive- and negative-constraint models. In the BKMR model, there was a significant positive correlation between mixed exposure and the risk of arthritis. CONCLUSION Mixed exposure to phenyl hydroxides, PAHs, and PAEs increased the risk of arthritis, with exposure to PAHs being the key factor.
Collapse
Affiliation(s)
- Qingsong Fu
- Department of Orthopedics, Ningbo No.2 Hospital, No. 41 Northwest Street, Haishu Distrist, Ningbo, 315000, Zhejiang, China
| | - Xinhua Yuan
- Department of Orthopedics, Ningbo No.2 Hospital, No. 41 Northwest Street, Haishu Distrist, Ningbo, 315000, Zhejiang, China.
| |
Collapse
|
11
|
Zhang L, Li Y, Fu C, Yang L, Li G, Wu Y, Tong H, Tian G, Wang K, Wang J, Ying X, Li Z. Exploration and validation of ceRNA regulatory networks in colorectal cancer based on associations whole transcriptome sequencing. Sci Rep 2024; 14:20446. [PMID: 39227669 PMCID: PMC11372121 DOI: 10.1038/s41598-024-71465-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
Colorectal cancer (CRC) is a wide-spread gastrointestinal cancer that is associated with augmented morbidity and mortality, and we do not yet have a deep understanding of its epidemiology and carcinogenicity. The transcriptome can reveal the complexity and heterogeneity of tumors and uncover new biomarkers or treatment options. In this study, we identified messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), round RNAs (circRNAs), and microRNAs (miRNAs) using whole-transcriptome sequencing and generated competing endogenous RNA (ceRNA) modulatory axes. We conducted whole transcriptome sequencing on 10 CRC and para-cancer (CRCP) samples and discovered 2465 differentially expressed (DE) mRNAs (DEmRNAs), 77 DE miRNAs (DEmiRNAs). 2852 DE lncRNAs (DElncRNAs) and 1477 DE circRNAs (DEcircRNAs). In addition, utilizing co-DE analysis, we generated the ceRNA axis. Subsequently, we employed the ceRNA axis to identify essential genes and corresponding associations with lncRNAs, circRNAs, and miRNAs in CRC. ceRNA regulatory network including mRNA-miRNA-lncRNA and mRNA-miRNA-circRNA. These modulatory axes potentially modulate the positive regulation of smooth muscle contraction, melanosome, plasma membrane, integral plasma membrane component and so on. Finally, the results of RNA sequencing (RNA-SEQ) were combined with the TCGA and GEO databases, and the DEGs strongly correlated with the TCGA-COAD overall survival (OS) as estimated by univariate cox and logarithmic rank analyses were cross-analyzed, and the co-upregulated DEGs were screened. Among the many DEs, KPNA2 was chosen for additional analysis. Using invitro experimentations, western blot, CCK8, EdU and other experiments were performed to verify the results. We found siRNA-based KPNA2 depletion reduces bladder cancer cells' viability, migratory, and proliferative activities, which showed that the DEmRNA profiles were comparable to the sequencing information, confirming that the sequencing data were very reliable. These evidences highlight the ceRNA regulatory mechanisms in CRC and will aid future research into the molecular mechanisms behind colorectal cancer prevention and treatment.
Collapse
Affiliation(s)
- Lulu Zhang
- Medical research center, Shaoxing People's Hospital, No. 568, Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Yulei Li
- Shaoxing People's Hospital, No. 568, Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Chao Fu
- Department of Colorectal and Anal Surgery, Shaoxing People's Hospital, No. 568, Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - LiXia Yang
- Medical research center, Shaoxing People's Hospital, No. 568, Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Gang Li
- Department of Colorectal and Anal Surgery, Shaoxing People's Hospital, No. 568, Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Yiyang Wu
- Department of Colorectal and Anal Surgery, Shaoxing People's Hospital, No. 568, Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Huanjun Tong
- Shaoxing People's Hospital, No. 568, Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Guojiang Tian
- Department of Colorectal and Anal Surgery, Shaoxing People's Hospital, No. 568, Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Kaifang Wang
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau Special Adiministrative Region, China
| | - Jun Wang
- Shaoxing People's Hospital, No. 568, Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Xiaojiang Ying
- Department of Colorectal and Anal Surgery, Shaoxing People's Hospital, No. 568, Zhongxing North Road, Shaoxing, 312000, Zhejiang, China.
| | - Zhenjun Li
- Department of Colorectal and Anal Surgery, Shaoxing People's Hospital, No. 568, Zhongxing North Road, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
12
|
Li A, Chen Y, Du M, Deng K, Cui X, Lin C, Tjakkes GHE, Zhuang X, Hu S. Healthy lifestyles ameliorate an increased risk of periodontitis associated with polycyclic aromatic hydrocarbons. CHEMOSPHERE 2024; 364:143086. [PMID: 39146990 DOI: 10.1016/j.chemosphere.2024.143086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/26/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
The risk of chronic inflammatory diseases has been linked to exposure to polycyclic aromatic hydrocarbons (PAHs). However, limited data are available regarding their impact on periodontitis. This study aims to explore the association between PAHs and periodontitis while also evaluating the potential modifying effects of healthy lifestyles. We included 17,031 participants from the US National Health and Nutrition Examination Survey (NHANES, 2001-2004 and 2009-2014). A meta-analysis-based environment-wide association study (EWAS) was adopted to identify environmental chemicals for the mean probing pocket depth (PPD) and the mean attachment loss (AL). PAHs were further evaluated concerning the cross-sectional association with Mod/Sev periodontitis using multivariable logistic regression models. Moreover, healthy lifestyle scores were estimated to assess their modifying effect on the PAH-periodontitis association. EWAS analysis identified several urinary PAH metabolites as significant risk factors for the mean PPD and AL (false discovery rate <0.05, Q > 0.05). Periodontitis severity was positively associated with eight individual and total PAH concentrations. Stratifying the participants in terms of healthy lifestyle scores did not reveal any association in the healthy group. Moreover, the association weakened in never-smokers and individuals with sufficient physical activity and normal weight. PAH exposure was a risk factor for periodontitis. A healthier lifestyle was observed to offset the risk potentials of PAHs for periodontitis. Smoking cessation, physical activity, and weight loss might be recommended as a healthy lifestyle strategy for ameliorating PAH-related periodontitis.
Collapse
Affiliation(s)
- An Li
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China; Department of Periodontology, Center for Dentistry and Oral Hygiene, University Medical Center Groningen (UMCG), University of Groningen, Groningen, the Netherlands
| | - Yuntao Chen
- Department of Epidemiology and Public Health, University College London, London, UK
| | - Mi Du
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Ke Deng
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Xin Cui
- School of Clinical Medicine, Weifang Medical University, Weifang, China; Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Geerten-Has E Tjakkes
- Department of Periodontology, Center for Dentistry and Oral Hygiene, University Medical Center Groningen (UMCG), University of Groningen, Groningen, the Netherlands
| | - Xiaodong Zhuang
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Shixian Hu
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Gastroenterology and Hepatology, UMCG, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
13
|
Park S, Siwakoti RC, Ferguson KK, Cathey AL, Hao W, Cantonwine DE, Mukherjee B, McElrath TF, Meeker JD. Associations of urinary polycyclic aromatic hydrocarbon (PAH) metabolites and their mixture with thyroid hormone concentration during pregnancy in the LIFECODES cohort: A repeated measures study. ENVIRONMENTAL RESEARCH 2024; 255:119205. [PMID: 38782334 PMCID: PMC11421857 DOI: 10.1016/j.envres.2024.119205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons (PAHs) are endocrine disruptors resulting from incomplete combustion. Pregnancy represents a particularly vulnerable period to such exposures, given the significant influence of hormone physiology on fetal growth and pregnancy outcomes. Maternal thyroid hormones play crucial roles in fetal development and pregnancy outcomes. However, limited studies have examined gestational PAH exposure and maternal thyroid hormones during pregnancy. METHODS Our study included 439 women enrolled in the LIFECODES birth cohort in Boston, aiming to explore the relationship between urinary PAH metabolites and thyroid hormones throughout pregnancy. Urine samples for PAH metabolite analysis and plasma samples for thyroid hormone were measured up to four visits throughout gestation. Single pollutant analyses employed linear mixed effect models to investigate individual associations between each PAH metabolite and thyroid hormone concentration. Sensitivity analyses were conducted to assess potential susceptibility windows and fetal-sex-specific effects of PAH exposure. Mixture analyses utilized quantile g-computation to evaluate the collective impact of eight PAH metabolites on thyroid hormone concentrations. Additionally, Bayesian kernel machine regression (BKMR) was employed to explore potential non-linear associations and interactions between PAH metabolites. Subject-specific random intercepts were incorporated to address intra-individual correlation of serial measurements over time in both single pollutant and mixture analyses. RESULTS Our findings revealed positive trends in associations between PAH metabolites and thyroid hormones, both individually and collectively as a mixture. Sensitivity analyses indicated that these associations were influenced by the study visit and fetal sex. Mixture analyses suggested non-linear relationships and interactions between different PAH exposures. CONCLUSIONS This comprehensive investigation underscores the critical importance of understanding the impact of PAH exposures on thyroid hormone physiology during pregnancy. The findings highlight the intricate interplay between environmental pollutants and human pregnancy physiology, emphasizing the need for targeted interventions and public health policies to mitigate adverse outcomes associated with prenatal PAH exposure.
Collapse
Affiliation(s)
- Seonyoung Park
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Ram C Siwakoti
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Kelly K Ferguson
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC, USA
| | - Amber L Cathey
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Wei Hao
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - David E Cantonwine
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bhramar Mukherjee
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Thomas F McElrath
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Simon K, Bartsch N, Schneider L, van de Weijgert V, Hutzler C, Luch A, Roloff A. Polycyclic aromatic hydrocarbon skin permeation efficiency in vitro is lower through human than pigskin and decreases with lipophilicity. ENVIRONMENTAL RESEARCH 2024; 255:119118. [PMID: 38763278 DOI: 10.1016/j.envres.2024.119118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAH) are persistent environmental pollutants, which occasionally appear as contaminants in consumer products. Upon dermal contact, transfer of PAH into the stratum corneum (s.c.) and migration through the skin may occur, resulting in this class of highly toxic compounds to become bioavailable. In this study, dermal penetration through human and porcine skin of 24 PAH, comprising broad molar mass (M: 152-302 g/mol) and octanol-water partition coefficient (logP: 3.9-7.3) ranges, was evaluated via Franz diffusion cell in vitro assays. More lipophilic and potentially more toxic PAH had decreased permeation rates through the rather lipophilic s.c. into the more hydrophilic viable (epi-)dermis. Furthermore, human skin was less permeable than pigskin, a commonly used surrogate in skin penetration studies. In particular, the s.c. of human skin retains a greater share of PAH, an effect that is more pronounced for smaller PAH. Additionally, we compared the skin permeation kinetics of different PAH in pigskin. While small PAH (M < 230 g/mol, logP < 6) permeate the skin quickly and are detected in the receptor fluid after 2 h, large PAH (M > 252 g/mol, logP ≥ 6) do not fully permeate the skin up to 48 h. This indicates that highly lipophilic PAH do not become bioavailable as readily as their smaller congeners when transferred to the skin surface. Our data suggest that pigskin could be used as a surrogate for worst case scenario estimates of dermal PAH permeation through human skin.
Collapse
Affiliation(s)
- Konstantin Simon
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195, Berlin, Germany.
| | - Nastasia Bartsch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany; German Federal Office of Consumer Protection and Food Safety, Bundesallee 51, 38116, Braunschweig, Germany
| | - Lidia Schneider
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Valerie van de Weijgert
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany; National Institute for Public Health and the Environment (RIVM), Centre for Safety of Substances and Products, Antonie van Leeuwenhoeklaan 9, 3721, MA Bilthoven, Netherlands
| | - Christoph Hutzler
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195, Berlin, Germany
| | - Alexander Roloff
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
15
|
Guan Z, Weng X, Zhang L, Feng P. Association between polycyclic aromatic hydrocarbon exposure and cognitive performance in older adults: a cross-sectional study from NHANES 2011-2014. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1348-1359. [PMID: 38954438 DOI: 10.1039/d4em00290c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Background: polycyclic aromatic hydrocarbons (PAHs) are classified as neurotoxins, but the relationship between exposure to PAHs and cognition in adults is unclear, and their non-linear and mixed exposure association hasn't been explored. Objective: to evaluate the non-linear and joint association between co-exposure to PAHs and multiple cognitive tests in U.S. older people. Methods: restricted cubic spline (RCS) and Bayesian kernel machine regression (BKMR) were conducted to evaluate the non-linear and mixed exposure association, based on the cross-sectional data from NHANES 2011-2014: 772 participants over 60 years old, 4 cognitive test scores, including the Immediate Recall Test (IRT), Delayed Recall Test (DRT), Animal Fluency Test (AFT), and Digit Symbol Substitution test (DSST), and 5 urinary PAH metabolites. Results: a V-shaped nonlinear relationship was found between 3-hydroxyfluorene (3-FLUO), 2-hydroxyfluorene (2-FLUO), and DRT. Negative trends between mixed PAH exposure and IRT, DRT, and DSST scores were observed. 2-FLUO contributed the most to the negative association of multiple PAHs with IRT and DRT scores and 2-hydroxynaphthalene (2-NAP) played the most important role in the decreasing relationship between mixed PAH exposure and DSST scores. Conclusion: our study suggested that PAH exposure in the U.S. elderly might be related to their poor performances in IRT, DRT and DSST. Further prospective studies are needed to validate the association.
Collapse
Affiliation(s)
- Zerong Guan
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Xueqiong Weng
- JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ligang Zhang
- School of Medicine, Foshan University, Foshan 528225, China
| | - Peiran Feng
- The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Spine and Spinal Cord Reconstruction, The Fifth Affiliated Hospital of Jinan University (Heyuan Shenhe People's Hospital), Jinan University, Heyuan 517000, China
| |
Collapse
|
16
|
Chen J, Zhang Y, Wu R, Li Z, Zhang T, Yang X, Lu M. Inflammatory biomarkers mediate the association between polycyclic aromatic hydrocarbon exposure and dyslipidemia: A national population-based study. CHEMOSPHERE 2024; 362:142626. [PMID: 38908446 DOI: 10.1016/j.chemosphere.2024.142626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
Exploring the association between exposure to polycyclic aromatic hydrocarbons (PAHs) and the risk of dyslipidemia and possible mediating effects is essential for conducting epidemiological health studies on related lipid disorders. Therefore, our study aimed to elucidate the potential association between PAH exposure and dyslipidemia risk and further identify the mediating effects based on blood cell-based inflammatory biomarkers. This cross-sectional study was conducted on 8380 individuals with complete survey data from the National Health and Nutrition Examination Survey (2001-2016). Multiple models (generalized linear regression model, restricted cubic spline model, Bayesian kernel machine regression, weighted quantiles sum regression) were used to assess the relationship between PAH co-exposure and the dyslipidemia risk and further identify potential mediating effects. Among the 8380 subjects, 2886 (34.44 %) had dyslipidemia. After adjusting for the confounding factors, the adjusted OR and 95% CI for dyslipidemia in the highest quartile of subjects were 1.30 (1.11, 1.51), 1. 22 (1.04, 1.43), 1.21 (1.03, 1.42), 1.29 (1.10, 1.52), 1.18 (1.01, 1.37), and 1.04 (0.89, 1.23) for 1-hydroxynaphthalene, 2-hydroxynaphthalene, 3-hydroxyfluorene, 2-hydroxyfluorene (2-FLU), 1-hydroxyphenanthrene, and 1-hydroxypyrene. The Bayesian kernel machine regression model also showed a positive correlation between PAH mixtures and dyslipidemia, and 2-FLU has the highest contribution. Mediation effect analyses showed that white blood cells and neutrophils were statistically significant in the association between PAHs and dyslipidemia. The present study suggests that individual and mixed PAH exposures may increase the risk of dyslipidemia in adults. Inflammatory biomarkers significantly mediated the relationship between PAH exposure and dyslipidemia. Environmental pollutants and their mechanisms should be more intensively monitored and studied.
Collapse
Affiliation(s)
- Jiaqi Chen
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, China; Department of Epidemiology, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Yurong Zhang
- Department of Epidemiology, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ruijie Wu
- Department of Epidemiology, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zilin Li
- Department of Epidemiology, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tongchao Zhang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, China; Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, China; Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Ming Lu
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, China; Department of Epidemiology, School of Public Health, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
17
|
Guo M, Fang Y, Peng M, He C, Chen J, Sun B, Liu C, Zhou Y, Zhang H, Zhao K. Prenatal exposure to polycyclic aromatic hydrocarbons and phthalate acid esters and gestational diabetes mellitus: A prospective cohort study. Int J Hyg Environ Health 2024; 261:114419. [PMID: 38968840 DOI: 10.1016/j.ijheh.2024.114419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons and phthalate acid esters (PAHs & PAEs), known as endocrine disrupting chemicals (EDCs), widely exist in daily life and industrial production. Previous studies have suggested that PAHs & PAEs may modify the intrauterine homeostasis and have adverse effects on fetal development. However, epidemiological evidence on the associations between PAHs & PAEs and gestational diabetes mellitus (GDM) is still limited. OBJECTIVE To investigate the effects of prenatal PAHs &PAEs exposure on the risk of GDM and hyperglycemia in pregnant women. METHODS The study population was a total of 725 pregnant women from a prospective birth cohort study conducted from December 2019 to December 2021. Blood glucose levels were collected by the hospital information system. Urinary PAHs & PAEs concentrations were determined by gas chromatography tandem mass spectrometry. The Poisson regression in a generalized linear model (GLM), multiple linear regression, quantile-based g-computation method (qgcomp), and Bayesian kernel machine regression (BKMR) were applied to explore and verify the individual and overall effects of PAHs & PAEs on glucose homeostasis. Potential confounders were adjusted in all statistical models. RESULTS A total of 179 (24.69%) women were diagnosed with GDM. The Poisson regression suggested that a ln-unit increment of 4-OHPHE (4-hydroxyphenanthrene) (adjusted Risk Ratio (aRR) = 1.13; 1.02-1.26) was associated with the increased GDM risk. Mixed-exposure models showed similar results. We additionally found that MBZP (mono-benzyl phthalate) (aRR = 1.19; 1.02-1.39) was positively related to GDM risk in qgcomp model. Although neither model demonstrated that 2-OHNAP (2-hydroxynaphthalene) and 9-OHFLU (9-hydroxyfluorene) increased the risk of GDM, 2-OHNAP and 9-OHFLU exposure significantly increased blood glucose levels. BKMR model further confirmed that overall effects of PAHs & PAEs were significantly associated with the gestational hyperglycemia and GDM risk. CONCLUSIONS Our study presents that environmental exposure to PAHs & PAEs was positively associated with gestational glucose levels and the risks of developing GDM. In particular, 2-OHNAP, 9-OHFLU, 4-OHPHE and MBZP may serve as important surveillance markers to prevent the development of GDM.
Collapse
Affiliation(s)
- Minghao Guo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yiwei Fang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, PR China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, PR China; State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, PR China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, PR China.
| | - Meilin Peng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Chao He
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Jin Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Borui Sun
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563060, PR China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
18
|
Souza TL, da Luz JZ, Barreto LDS, de Oliveira Ribeiro CA, Neto FF. Structure-based modeling to assess binding and endocrine disrupting potential of polycyclic aromatic hydrocarbons in Daniorerio. Chem Biol Interact 2024; 398:111109. [PMID: 38871163 DOI: 10.1016/j.cbi.2024.111109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Environmental contaminants, such as polycyclic aromatic hydrocarbons (PAHs), have raised concerns regarding their potential endocrine-disrupting effects on aquatic organisms, including fish. In this study, molecular docking and molecular dynamics techniques were employed to evaluate the endocrine-disrupting potential of PAHs in zebrafish, as a model organism. A virtual screening with 72 PAHs revealed a correlation between the number of PAH aromatic rings and their binding affinity to proteins involved in endocrine regulation. Furthermore, PAHs with the highest binding affinities for each protein were identified: cyclopenta[cd]pyrene for AR (-9.7 kcal/mol), benzo(g)chrysene for ERα (-11.5 kcal/mol), dibenzo(a,e)pyrene for SHBG (-8.7 kcal/mol), dibenz(a,h)anthracene for StAR (-11.2 kcal/mol), and 2,3-benzofluorene for TRα (-9.8 kcal/mol). Molecular dynamics simulations confirmed the stability of the protein-ligand complexes formed by the PAHs with the highest binding affinities throughout the simulations. Additionally, the effectiveness of the protocol used in this study was demonstrated by the receiver operating characteristic curve (ROC) analysis, which effectively distinguished decoys from true ligands. Therefore, this research provides valuable insights into the endocrine-disrupting potential of PAHs in fish, highlighting the importance of assessing their impact on aquatic ecosystems.
Collapse
Affiliation(s)
- Tugstênio L Souza
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-980, Curitiba, PR, Brazil.
| | - Jessica Zablocki da Luz
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-980, Curitiba, PR, Brazil
| | - Luiza Dos Santos Barreto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-980, Curitiba, PR, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-980, Curitiba, PR, Brazil
| | - Francisco Filipak Neto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|
19
|
de Souza TL, da Luz JZ, Roque ADA, Opuskevitch I, Ferreira FCADS, Ribeiro CADO, Neto FF. Exploring the endocrine disrupting potential of a complex mixture of PAHs in the estrogen pathway in Oreochromis niloticus hepatocytes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 273:107002. [PMID: 38936242 DOI: 10.1016/j.aquatox.2024.107002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024]
Abstract
This study aimed to investigate the toxicity and endocrine disrupting potential of a complex mixture of polycyclic aromatic hydrocarbons (PAHs) in the estrogen pathway using hepatocytes of Nile tilapia Oreochromis niloticus, the hepatocytes were exposed to various concentrations of the PAH mixture, and multiple endpoints were evaluated to assess their effects on cell viability, gene expression, oxidative stress markers, and efflux activity. The results revealed that the PAH mixture had limited effects on hepatocyte metabolism and cell adhesion, as indicated by the non-significant changes observed in MTT metabolism, neutral red retention, and crystal violet staining. However, significant alterations were observed in the expression of genes related to the estrogen pathway. Specifically, vitellogenin (vtg) exhibited a substantial increase of approximately 120% compared to the control group. Similarly, estrogen receptor 2 (esr2) showed a significant upregulation of approximately 90%. In contrast, no significant differences were observed in the expression of estrogen receptor 1 (esr1) and the G protein-coupled estrogen receptor 1 (gper1). Furthermore, the PAH mixture elicited complex responses in oxidative stress markers. While reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels remained unchanged, the activity of catalase (Cat) was significantly reduced, whereas superoxide dismutase (Sod) activity, glutathione S-transferase (Gst) activity, and non-protein thiols levels were significantly elevated. In addition, the PAH mixture significantly influenced efflux activity, as evidenced by the increased efflux of rhodamine and calcein, indicating alterations in multixenobiotic resistance (MXR)-associated proteins. Overall, these findings, associated with bioinformatic analysis, highlight the potential of the PAH mixture to modulate the estrogen pathway and induce oxidative stress in O. niloticus hepatocytes. Understanding the mechanisms underlying these effects is crucial for assessing the ecological risks of PAH exposure and developing appropriate strategies to mitigate their adverse impacts on aquatic organisms.
Collapse
Affiliation(s)
- Tugstênio Lima de Souza
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil.
| | - Jessica Zablocki da Luz
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil
| | - Aliciane de Almeida Roque
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil
| | - Iracema Opuskevitch
- Copel GeT-SOS/DNGT - Rua José Izidoro Biazetto, no. 18, Bloco A, CEP 81200-240, Curitiba, PR, Brazil
| | | | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil
| | - Francisco Filipak Neto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP 81.531-980, Curitiba, PR, Brazil.
| |
Collapse
|
20
|
Pannetier P, Morin B, Cabon J, Danion M, Morin T, Clérandeau C, Le Floch S, Cachot J. Water-accommodated fractions of heavy and light oils impact DNA integrity, embryonic development, and immune system of Japanese medaka at early life stages. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50916-50928. [PMID: 39106018 DOI: 10.1007/s11356-024-34604-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous contaminants generally found in complex mixtures. PAHs are known to cause pleiotropic effects on living organisms, including developmental defects, mutagenicity, carcinogenicity and immunotoxicity, and endocrine disruptions. The main goal of this study is to evaluate the toxicity of water-accommodated fractions (WAFs) of oils in two life stages of the Japanese medaka, larvae and juveniles. The deleterious effects of an acute exposure of 48 h to two WAFs from Arabian light crude oil (LO) and refined oil from Erika (HO) were analyzed in both stages. Relevant endpoints, including ethoxy resorufin-O-deethylase (EROD) activity, DNA damage (Comet assay), photomotor response, and sensitivity to nervous necrosis virus (NNV) infection, were investigated. Larvae exposed to both oil WAFs displayed a significant induction of EROD activity, DNA damage, and developmental anomalies, but no behavioral changes. Deleterious effects were significantly increased following exposure to 1 and 10 μg/L of LO WAFs and 10 μg/L of HO WAFs. Larval infection to NNV induced fish mortality and sharply reduced reaction to light stimulation. Co-exposure to WAFs and NNV increased the mortality rate, suggesting an impact of WAFs on fish defense capacities. WAF toxicity on juveniles was only observed following the NNV challenge, with a higher sensitivity to HO WAFs than to LO WAFs. This study highlighted that environmentally realistic exposure to oil WAFs containing different compositions and concentrations of oil generated high adverse effects, especially in the larval stage. This kind of multi-marker approach is particularly relevant to characterize the toxicity fingerprint of environmental mixtures of hydrocarbons and PAHs.
Collapse
Affiliation(s)
- Pauline Pannetier
- UMR CNRS 5805 EPOC, University of Bordeaux, 33400, Talence, France.
- Unit Virology, Immunology and Ecotoxicology of Fish, ANSES, Ploufragan-Plouzané-Niort Laboratory, Technopôle Brest-Iroise, 29280, Plouzané, France.
| | - Bénédicte Morin
- UMR CNRS 5805 EPOC, University of Bordeaux, 33400, Talence, France
| | - Joëlle Cabon
- Unit Virology, Immunology and Ecotoxicology of Fish, ANSES, Ploufragan-Plouzané-Niort Laboratory, Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Morgane Danion
- Unit Virology, Immunology and Ecotoxicology of Fish, ANSES, Ploufragan-Plouzané-Niort Laboratory, Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Thierry Morin
- Unit Virology, Immunology and Ecotoxicology of Fish, ANSES, Ploufragan-Plouzané-Niort Laboratory, Technopôle Brest-Iroise, 29280, Plouzané, France
| | | | - Stéphane Le Floch
- Centre de Documentation, de Recherche Et d'Expérimentations Sur Les Pollutions Accidentelles Des Eaux, CEDRE, 29200, Brest, France
| | - Jérôme Cachot
- UMR CNRS 5805 EPOC, University of Bordeaux, 33400, Talence, France
| |
Collapse
|
21
|
Downham RP, Gannon B, Lozano DCP, Jones HE, Vane CH, Barrow MP. Tracking the history of polycyclic aromatic compounds in London through a River Thames sediment core and ultrahigh resolution mass spectrometry. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134605. [PMID: 38768537 DOI: 10.1016/j.jhazmat.2024.134605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/27/2024] [Accepted: 05/11/2024] [Indexed: 05/22/2024]
Abstract
Polycyclic aromatic compounds (PACs), including polycyclic aromatic hydrocarbons (PAHs) and heteroatom-containing analogues, constitute an important environmental contaminant class. For decades, limited numbers of priority PAHs have been routinely targeted in pollution investigations, however, there is growing awareness for the potential occurrence of thousands of PACs in the environment. In this study, untargeted Fourier transform ion cyclotron resonance mass spectrometry was used for the molecular characterisation of PACs in a sediment core from Chiswick Ait, in the River Thames, London, UK. Using complex mixture analysis approaches, including aromaticity index calculations, the number of molecular PAC components was determined for eight core depths, extending back to the 1930s. A maximum of 1676 molecular compositions representing PACs was detected at the depth corresponding to the 1950s, and a decline in PAC numbers was observed up the core. A case linking the PACs to London's coal consumption history is presented, alongside other possible sources, with some data features indicating pyrogenic origins. The overall core profile trend in PAC components, including compounds with oxygen, sulfur, nitrogen, and chlorine atoms, is shown to broadly correspond to the 16 priority PAH concentration profile trend previously determined for this core. These findings have implications for other industry-impacted environments.
Collapse
Affiliation(s)
- Rory P Downham
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Benedict Gannon
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | | | - Hugh E Jones
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Christopher H Vane
- British Geological Survey, Organic Geochemistry Facility, Keyworth NG12 5GG, UK
| | - Mark P Barrow
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
22
|
Baldwin AK, Corsi SR, Alvarez DA, Villeneuve DL, Ankley GT, Blackwell BR, Mills MA, Lenaker PL, Nott MA. Potential Hazards of Polycyclic Aromatic Hydrocarbons in Great Lakes Tributaries Using Water Column and Porewater Passive Samplers and Sediment Equilibrium Partitioning. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1509-1523. [PMID: 38860662 DOI: 10.1002/etc.5896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 06/12/2024]
Abstract
The potential for polycyclic aromatic hydrocarbon (PAH)-related effects in benthic organisms is commonly estimated from organic carbon-normalized sediment concentrations based on equilibrium partitioning (EqP). Although this approach is useful for screening purposes, it may overestimate PAH bioavailability by orders of magnitude in some sediments, leading to inflated exposure estimates and potentially unnecessary remediation costs. Recently, passive samplers have been shown to provide an accurate assessment of the freely dissolved concentrations of PAHs, and thus their bioavailability and possible biological effects, in sediment porewater and overlying surface water. We used polyethylene passive sampling devices (PEDs) to measure freely dissolved porewater and water column PAH concentrations at 55 Great Lakes (USA/Canada) tributary locations. The potential for PAH-related biological effects using PED concentrations were estimated with multiple approaches by applying EqP, water quality guidelines, and pathway-based biological activity based on in vitro bioassay results from ToxCast. Results based on the PED-based exposure estimates were compared with EqP-derived exposure estimates for concurrently collected sediment samples. The results indicate a potential overestimation of bioavailable PAH concentrations by up to 960-fold using the EqP-based method compared with measurements using PEDs. Even so, PED-based exposure estimates indicate a high potential for PAH-related biological effects at 14 locations. Our findings provide an updated, weight-of-evidence-based site prioritization to help guide possible future monitoring and mitigation efforts. Environ Toxicol Chem 2024;43:1509-1523. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Austin K Baldwin
- Idaho Water Science Center, U.S. Geological Survey, Boise, Idaho
| | - Steven R Corsi
- Upper Midwest Water Science Center, U.S. Geological Survey, Madison, Wisconsin
| | - David A Alvarez
- Columbia Environmental Research Center, U.S. Geological Survey, Columbia, Missouri
| | - Daniel L Villeneuve
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Duluth, Minnesota
| | - Gerald T Ankley
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Duluth, Minnesota
| | - Brett R Blackwell
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Duluth, Minnesota
| | - Marc A Mills
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio
| | - Peter L Lenaker
- Upper Midwest Water Science Center, U.S. Geological Survey, Madison, Wisconsin
| | - Michelle A Nott
- Upper Midwest Water Science Center, U.S. Geological Survey, Madison, Wisconsin
| |
Collapse
|
23
|
Puvvula J, Braun JM, DeFranco EA, Ho SM, Leung YK, Huang S, Zhang X, Vuong AM, Kim SS, Percy Z, Calafat AM, Botelho JC, Chen A. Gestational exposure to environmental chemicals and epigenetic alterations in the placenta and cord blood mononuclear cells. EPIGENETICS COMMUNICATIONS 2024; 4:4. [PMID: 38962689 PMCID: PMC11217138 DOI: 10.1186/s43682-024-00027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/24/2024] [Indexed: 07/05/2024]
Abstract
Background Exposure to environmental chemicals such as phthalates, phenols, and polycyclic aromatic hydrocarbons (PAHs) during pregnancy can increase the risk of adverse newborn outcomes. We explored the associations between maternal exposure to select environmental chemicals and DNA methylation in cord blood mononuclear cells (CBMC) and placental tissue (maternal and fetal sides) to identify potential mechanisms underlying these associations. Method This study included 75 pregnant individuals who planned to give birth at the University of Cincinnati Hospital between 2014 and 2017. Maternal urine samples during the delivery visit were collected and analyzed for 37 biomarkers of phenols (12), phthalates (13), phthalate replacements (4), and PAHs (8). Cord blood and placenta tissue (maternal and fetal sides) were also collected to measure the DNA methylation intensities using the Infinium HumanMethylation450K BeadChip. We used linear regression, adjusting for potential confounders, to assess CpG-specific methylation changes in CBMC (n = 54) and placenta [fetal (n = 67) and maternal (n = 68) sides] associated with gestational chemical exposures (29 of 37 biomarkers measured in this study). To account for multiple testing, we used a false discovery rate q-values < 0.05 and presented results by limiting results with a genomic inflation factor of 1±0.5. Additionally, gene set enrichment analysis was conducted using the Kyoto Encyclopedia of Genes and Genomics pathways. Results Among the 29 chemical biomarkers assessed for differential methylation, maternal concentrations of PAH metabolites (1-hydroxynaphthalene, 2-hydroxyfluorene, 4-hydroxyphenanthrene, 1-hydroxypyrene), monocarboxyisononyl phthalate, mono-3-carboxypropyl phthalate, and bisphenol A were associated with altered methylation in placenta (maternal or fetal side). Among exposure biomarkers associated with epigenetic changes, 1-hydroxynaphthalene, and mono-3-carboxypropyl phthalate were consistently associated with differential CpG methylation in the placenta. Gene enrichment analysis indicated that maternal 1-hydroxynaphthalene was associated with lipid metabolism and cellular processes of the placenta. Additionally, mono-3-carboxypropyl phthalate was associated with organismal systems and genetic information processing of the placenta. Conclusion Among the 29 chemical biomarkers assessed during delivery, 1-hydroxynaphthalene and mono-3-carboxypropyl phthalate were associated with DNA methylation in the placenta. Supplementary Information The online version contains supplementary material available at 10.1186/s43682-024-00027-7.
Collapse
Affiliation(s)
- Jagadeesh Puvvula
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University, Providence, RI USA
| | - Emily A. DeFranco
- Department of Obstetrics and Gynecology, College of Medicine, University of Kentucky, Lexington, KY USA
| | - Shuk-Mei Ho
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Yuet-Kin Leung
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Shouxiong Huang
- Pathogen-Host Interaction Program, Texas Biomedical Research Institute, San Antonio, TX USA
| | - Xiang Zhang
- Department of Environmental & Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH USA
| | - Ann M. Vuong
- Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada Las Vegas, Las Vegas, NV USA
| | - Stephani S. Kim
- Health Research, Battelle Memorial Institute, Columbus, OH USA
| | - Zana Percy
- Department of Environmental & Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH USA
| | - Antonia M. Calafat
- National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Julianne C. Botelho
- National Center for Environmental Health, U.S. Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
24
|
Maciejczyk M, Janoszka B, Szumska M, Pastuszka B, Waligóra S, Damasiewicz-Bodzek A, Nowak A, Tyrpień-Golder K. Polycyclic Aromatic Hydrocarbons (PAHs) in Grilled Marshmallows. Molecules 2024; 29:3119. [PMID: 38999071 PMCID: PMC11243050 DOI: 10.3390/molecules29133119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
The aim of this study was to assess potential health risks among children and adolescents consuming various grilled marshmallows using a survey and to determine polycyclic aromatic hydrocarbons (PAHs) in these food products. PAH analysis in grilled marshmallows included a dilution stage with deionized water and liquid-liquid extraction with cyclohexane and solid-phase extraction (SPE). PAH fractions were initially analyzed via high-performance thin-layer chromatography, and PAH concentrations were determined via gas chromatography with a tandem mass detector using the selective reaction monitoring (SRM) mode. This study on the consumption of grilled marshmallows was conducted among approximately 300 children and adolescents. The preliminary results indicated that "raw" marshmallows did not contain PAHs. However, the obtained data suggested the exposure of young people to carcinogenic PAHs from grilled marshmallows (63.5% of them consumed marshmallows). Carcinogenic benzo(a)pyrene (BaP) was determined in all samples. The profile of PAH concentrations in the extracts isolated from various grilled types of marshmallows was similar (r2 > 0.8000), regardless of the grilling method. Compared to the white sugar confection, higher concentrations of PAHs were determined in multicolored marshmallows. The lack of social awareness about exposure to carcinogenic substances is alarming.
Collapse
Affiliation(s)
- Maciej Maciejczyk
- Department of Chemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Katowice, Poland
| | - Beata Janoszka
- Department of Chemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Katowice, Poland
- Research and Implementation Center Silesia LabMed, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Magdalena Szumska
- Department of Chemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Katowice, Poland
- Research and Implementation Center Silesia LabMed, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Beata Pastuszka
- Research and Implementation Center Silesia LabMed, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Sławomir Waligóra
- Department of Chemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Katowice, Poland
| | - Aleksandra Damasiewicz-Bodzek
- Department of Chemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Katowice, Poland
- Research and Implementation Center Silesia LabMed, Medical University of Silesia, Medyków 18, 40-752 Katowice, Poland
| | - Agnieszka Nowak
- Department of Chemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Katowice, Poland
| | - Krystyna Tyrpień-Golder
- Department of Chemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Jordana 19, 41-808 Katowice, Poland
| |
Collapse
|
25
|
Brown JA, Ish JL, Chang CJ, Bookwalter DB, O’Brien KM, Jones RR, Kaufman JD, Sandler DP, White AJ. Outdoor air pollution exposure and uterine cancer incidence in the Sister Study. J Natl Cancer Inst 2024; 116:948-956. [PMID: 38346713 PMCID: PMC11160506 DOI: 10.1093/jnci/djae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/26/2024] [Accepted: 02/07/2024] [Indexed: 03/16/2024] Open
Abstract
BACKGROUND Outdoor air pollution is a ubiquitous exposure that includes endocrine-disrupting and carcinogenic compounds that may contribute to the risk of hormone-sensitive outcomes such as uterine cancer. However, there is limited evidence about the relationship between outdoor air pollution and uterine cancer incidence. METHODS We investigated the associations of residential exposure to particulate matter less than 2.5 µm in aerodynamic diameter (PM2.5) and nitrogen dioxide (NO2) with uterine cancer among 33 417 Sister Study participants with an intact uterus at baseline (2003-2009). Annual average air pollutant concentrations were estimated at participants' geocoded primary residential addresses using validated spatiotemporal models. Cox proportional hazards models were used to estimate hazard ratios and 95% confidence intervals for the association between time-varying 12-month PM2.5 (µg/m3) and NO2 (parts per billion; ppb) averages and uterine cancer incidence. RESULTS Over a median follow-up period of 9.8 years, 319 incident uterine cancer cases were identified. A 5-ppb increase in NO2 was associated with a 23% higher incidence of uterine cancer (hazard ratio = 1.23, 95% confidence interval = 1.04 to 1.46), especially among participants living in urban areas (hazard ratio = 1.53, 95% confidence interval = 1.13 to 2.07), but PM2.5 was not associated with increased uterine cancer incidence. CONCLUSION In this large US cohort, NO2, a marker of vehicular traffic exposure, was associated with a higher incidence of uterine cancer. These findings expand the scope of health effects associated with air pollution, supporting the need for policy and other interventions designed to reduce air pollutant exposure.
Collapse
Affiliation(s)
- Jordyn A Brown
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer L Ish
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Che-Jung Chang
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Katie M O’Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Rena R Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Joel D Kaufman
- Departments of Environmental & Occupational Health Sciences, Medicine, and Epidemiology, University of Washington, Seattle, WA, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Alexandra J White
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
26
|
Le Du-Carrée J, Palacios CK, Rotander A, Larsson M, Alijagic A, Kotlyar O, Engwall M, Sjöberg V, Keiter SH, Almeda R. Cocktail effects of tire wear particles leachates on diverse biological models: A multilevel analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134401. [PMID: 38678714 DOI: 10.1016/j.jhazmat.2024.134401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Tire wear particles (TWP) stand out as a major contributor to microplastic pollution, yet their environmental impact remains inadequately understood. This study delves into the cocktail effects of TWP leachates, employing molecular, cellular, and organismal assessments on diverse biological models. Extracted in artificial seawater and analyzed for metals and organic compounds, TWP leachates revealed the presence of polyaromatic hydrocarbons and 4-tert-octylphenol. Exposure to TWP leachates (1.5 to 1000 mg peq L-1) inhibited algae growth and induced zebrafish embryotoxicity, pigment alterations, and behavioral changes. Cell painting uncovered pro-apoptotic changes, while mechanism-specific gene-reporter assays highlighted endocrine-disrupting potential, particularly antiandrogenic effects. Although heavy metals like zinc have been suggested as major players in TWP leachate toxicity, this study emphasizes water-leachable organic compounds as the primary causative agents of observed acute toxicity. The findings underscore the need to reduce TWP pollution in aquatic systems and enhance regulations governing highly toxic tire additives.
Collapse
Affiliation(s)
- Jessy Le Du-Carrée
- University of Las Palmas de Gran Canaria: Las Palmas de Gran Canaria, Spain.
| | - Clara Kempkens Palacios
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Anna Rotander
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Maria Larsson
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden; Faculty of Medicine and Health, School of Medical Sciences, Örebro University, SE-701 82 Örebro, Sweden
| | - Oleksandr Kotlyar
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden; Centre for Applied Autonomous Sensor Systems (AASS), Mobile Robotics and Olfaction Lab (MRO), Örebro University, SE-701 82 Örebro, Sweden
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Viktor Sjöberg
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Center (MTM), Biology, Örebro University, SE-701 82 Örebro, Sweden
| | - Rodrigo Almeda
- University of Las Palmas de Gran Canaria: Las Palmas de Gran Canaria, Spain
| |
Collapse
|
27
|
Zhang S, Luo W, Zhao F, Huang L, Qin R, Yan X, Tang B, Luo X, Mai B, Yu Y, Zheng J. Melanin-mediated accumulation of polycyclic aromatic hydrocarbons in human hair: Insights from biomonitoring and cell exposure studies. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134112. [PMID: 38537572 DOI: 10.1016/j.jhazmat.2024.134112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/02/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
While human hair is widely used to monitor micro-organic contaminants (MOCs), their incorporation mechanisms are poorly understood. Melanin, known to facilitate the accumulation of drugs in hair, hasn't been studied in the field of MOCs. Here, polycyclic aromatic hydrocarbons (PAHs), a class of priority MOCs, were investigated through hair biomonitoring as well as cell exposure experiments. PAH concentrations and melanin contents were measured in black and white hairs from the same individual. The results showed that five dominant PAHs (phenanthrene, fluoranthene, pyrene, benzo[a]anthracene and chrysene) in black hair (0.66 ng/g - 35.1 ng/g) were significantly higher than those in white hair (0.52 ng/g - 29.6 ng/g). Melanin contents in black hair (14.9 - 48.9 ng/g) were markedly higher than in white hair (0.35 - 2.15 ng/g) and were correlated to PAH concentrations, hinting melanin-mediated accumulation of PAHs in hair. The in vitro experiment using murine melanoma cells demonstrates that PAH levels in cells were affected by melanin, suggesting the affinity of melanin to PAHs. Both biomonitoring and cell exposure experiment implicate the pivotal role of melanin in PAH accumulation in hair. Therefore, to ensure the accuracy of hair biomonitoring for MOCs, attention must be paid to the melanin content uniformity.
Collapse
Affiliation(s)
- Shiyi Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China
| | - Weikeng Luo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
| | - Fang Zhao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China; School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Lulu Huang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China; School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Ruixin Qin
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China; State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Xiao Yan
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China
| | - Bin Tang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
| |
Collapse
|
28
|
Elavsky S, Burda M, Cipryan L, Kutáč P, Bužga M, Jandackova V, Chow SM, Jandacka D. Physical activity and menopausal symptoms: evaluating the contribution of obesity, fitness, and ambient air pollution status. Menopause 2024; 31:310-319. [PMID: 38377450 PMCID: PMC10959689 DOI: 10.1097/gme.0000000000002319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
OBJECTIVE The menopausal transition is accompanied by transient symptoms that have been linked to subclinical cardiovascular disease (CVD); CVD has also been linked to air pollution. Physical activity (PA) reduces CVD, improves body composition, and can reduce menopausal symptoms. The purpose of this study was to assess the links between PA and menopausal symptoms and whether obesity, fitness, and air pollution status play a role in this relationship. METHODS Women (40-60 y; N = 243; mean [SD] age, 47.8 [5.6] y) from areas with high versus low air pollution enrolled in the Healthy Aging in Industrial Environment Program 4 prospective cohort study completed psychological, cardiorespiratory fitness, body composition, and menopausal status screening followed by a 14-day prospective assessment of menopausal symptoms (Menopause Rating Scale) using a mobile application. Daily PA was assessed objectively across 14 days via Fitbit Charge 3 monitor. General linear mixed models were conducted and controlled for age, menopausal status, day in the study, wear time, and neuroticism. RESULTS Peri/postmenopausal women ( β = 0.43, P < 0.001) and those residing in a high-air-pollution environment ( β = 0.45, P < 0.05) reported more somatovegetative symptoms. Hot flashes alone were associated with peri/postmenopausal status ( β = 0.45, P < 0.001), and for women residing in a high-air-pollution environment, lower reporting of hot flashes was observed on days when a woman was more physically active than usual ( β = -0.15, P < 0.001). No associations were found for cardiorespiratory fitness and visceral fat with any of the symptoms. CONCLUSIONS PA may enhance resilience to hot flashes, especially when residing in high-air-pollution environments where we also observed higher reporting of somatovegetative menopausal symptoms.
Collapse
Affiliation(s)
- Steriani Elavsky
- Department of Human Movement Studies, Faculty of Education, University of Ostrava, Czech Republic
| | - Michal Burda
- Institute for Research and Applications of Fuzzy Modeling, University of Ostrava, Czech Republic IT4Innovations
| | - Lukáš Cipryan
- Department of Human Movement Studies, Faculty of Education, University of Ostrava, Czech Republic
| | - Petr Kutáč
- Department of Human Movement Studies, Faculty of Education, University of Ostrava, Czech Republic
| | - Marek Bužga
- Department of Physiology and Pathophysiology, Faculty of Medicine, University of Ostrava, Czech Republic
| | - Vera Jandackova
- Department of Human Movement Studies, Faculty of Education, University of Ostrava, Czech Republic
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Czech Republic
| | - Sy-Miin Chow
- Department of Human Development and Family Studies, College of Health and Human Development, Penn State University, USA
| | - Daniel Jandacka
- Department of Human Movement Studies, Faculty of Education, University of Ostrava, Czech Republic
| |
Collapse
|
29
|
Xiong X, Zhang S, Liao X, Du J, Zheng W, Hu S, Wei Q, Yang L. An umbrella review of the evidence associating occupational carcinogens and cancer risk at 19 anatomical sites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123531. [PMID: 38341059 DOI: 10.1016/j.envpol.2024.123531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/23/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Occupational exposure to carcinogens of increasing cancer risk have been extensively suggested. A robust assessment of these evidence is needed to guide public policy and health care. We aimed to classify the strength of evidence for associations of 13 occupational carcinogens (OCs) and risk of cancers. We searched PubMed and Web of Science up to November 2022 to identify potentially relevant studies. We graded the evidence into convincing, highly suggestive, suggestive, weak, or not significant according to a standardized classification based on: random-effects p value, number of cancer cases, 95% confidence interval of largest study, heterogeneity between studies, 95% prediction interval, small study effect, excess significance bias and sensitivity analyses with credibility ceilings. The quality of meta-analysis was evaluated by AMSTAR 2. Forty-eight articles yielded 79 meta-analyses were included in current umbrella review. Evidence of associations were convincing (class I) or highly suggeastive (class II) for asbestos exposure and increasing risk of lung cancer among smokers (RR = 8.79, 95%CI: 5.81-13.25 for cohort studies and OR = 8.68, 95%CI: 5.68-13.24 for case-control studies), asbestos exposure and increasing risk of mesothelioma (RR = 4.61, 95%CI: 2.57-8.26), and formaldehyde exposure and increasing risk of sinonasal cancer (RR = 1.68, 95%CI: 1.38-2.05). Fifteen associations were supported by suggestive evidence (class III). In summary, the current umbrella review found strong associations between: asbestos exposure and increasing risk of lung cancer among smokers; asbestos exposure and increasing risk of mesothelioma; and formaldehyde exposure and higher risk of sinonasal cancer. Other associations might be genuine, but substantial uncertainty remains.
Collapse
Affiliation(s)
- Xingyu Xiong
- Department of Urology, Center of Biomedical Big Data and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shiyu Zhang
- Department of Urology, Center of Biomedical Big Data and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinyang Liao
- Department of Urology, Center of Biomedical Big Data and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiajia Du
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Weitao Zheng
- Department of Urology, Center of Biomedical Big Data and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Siping Hu
- Department of Urology, Center of Biomedical Big Data and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Wei
- Department of Urology, Center of Biomedical Big Data and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu Yang
- Department of Urology, Center of Biomedical Big Data and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
30
|
Lv C, Li D, Zhang Z, Han Y, Li Y, Song H, Cheng Q, Yang S, Lu Y, Zhao F. Association between urinary polycyclic aromatic hydrocarbons and unexplained recurrent spontaneous abortion from a case-control study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116093. [PMID: 38364758 DOI: 10.1016/j.ecoenv.2024.116093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have been reported to be associated with adverse pregnancy outcomes. However, there is limited knowledge regarding the effects of single or mixed PAHs exposure on unexplained recurrent spontaneous abortion (URSA). This study aimed to investigate the association between monohydroxylated polycyclic aromatic hydrocarbons (OH-PAHs) and URSA in a case-control study. The results showed that 1-NAP, 2-NAP, 9-FLU, and 1-PYR were detected in 100% of the subjects among measured all sixteen OH-PAHs. Compared with those in the lowest quartiles, participants in the highest quartiles of 3-BAA were associated with a higher risk of URSA (OR (95%CI) = 3.56(1.28-9.85)). With each one-unit increase of ln-transformed 3-BAA, the odds of URSA increased by 41% (OR (95%CI) = 1.41(1.05-1.89)). Other OH-PAHs showed negative or non-significant associations with URSA. Weighted quantile sum (WQS) regression, Bayesian kernel machine regression (BKMR), and quantile-based g-computation (qgcomp) analyses consistently identified 3-BAA as the major contributor to the mixture effect of OH-PAHs on URSA. Our findings suggest that exposure to 3-BAA may be a potential risk factor for URSA. However, further prospective studies are needed to validate our findings in the future.
Collapse
Affiliation(s)
- Chunxian Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Dandan Li
- Fengtai District Center for Disease Control and Prevention, Beijing 100071, China
| | - Zheng Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yingying Han
- Fengtai District Center for Disease Control and Prevention, Beijing 100071, China
| | - Yawei Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Haocan Song
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qianxi Cheng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Siyu Yang
- Institute of Public Health, Henan Provincial Center for Disease Control and Prevention, Zhengzhou, Henan 450016, China
| | - Yifu Lu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China.
| |
Collapse
|
31
|
Shen Z, Zhang F, Guan X, Liu Z, Zong Y, Zhang D, Wang R, Xue Q, Ma W, Zhuge R, Guo L, Yin F. Associations of pyrethroid exposure with bone mineral density and osteopenia in adults. J Bone Miner Metab 2024; 42:242-252. [PMID: 38498197 DOI: 10.1007/s00774-024-01499-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/15/2024] [Indexed: 03/20/2024]
Abstract
INTRODUCTION This study was to investigate the correlations between pyrethroid exposure and bone mineral density (BMD) and osteopenia. MATERIALS AND METHODS This cross-sectional study included 1389 participants over 50 years of age drawn from the 2007-2010 and 2013-2014 National Health and Nutrition Examination Survey (NHANES). Three pyrethroid metabolites, 3-phenoxybenzoic acid (3-PBA), trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-cyclopropane-1-carboxylic acid (trans-DCCA), and 4-fluoro-3-phenoxybenzoic acid (4-F-3PBA) were used as indicators of pyrethroid exposure. Low BMD was defined as T-score < - 1.0, including osteopenia. Weighted multivariable linear regression analysis or logistic regression analysis was utilized to evaluate the correlation between pyrethroid exposure and BMD and low BMD. Bayesian kernel machine regression (BKMR) model was utilized to analyze the correlation between pyrethroids mixed exposure and low BMD. RESULTS There were 648 (48.41%) patients with low BMD. In individual pyrethroid metabolite analysis, both tertile 2 and tertile 3 of trans-DCCA were negatively related to total femur, femur neck, and total spine BMD [coefficient (β) = - 0.041 to - 0.028; all P < 0.05]. Both tertile 2 and tertile 3 of 4-F-3PBA were negatively related to total femur BMD (P < 0.05). Only tertile 2 [odds ratio (OR) = 1.63; 95% CI = 1.07, 2.48] and tertile 3 (OR = 1.65; 95% CI = 1.10, 2.50) of trans-DCCA was correlated with an increased risk of low BMD. The BKMR analysis indicated that there was a positive tendency between mixed pyrethroids exposure and low BMD. CONCLUSION In conclusion, pyrethroids exposure was negatively correlated with BMD levels, and the associations of pyrethroids with BMD and low BMD varied by specific pyrethroids, pyrethroid concentrations, and bone sites.
Collapse
Affiliation(s)
- Zhubin Shen
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China.
| | - Fengyi Zhang
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China
| | - Xiaoqing Guan
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China
| | - Zhiming Liu
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yuan Zong
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China
| | - Ding Zhang
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China
| | - Rui Wang
- Department of Toxicology, School of Public, Health of Jilin University, Changchun, 130021, China
| | - Qian Xue
- Department of Toxicology, School of Public, Health of Jilin University, Changchun, 130021, China
| | - Wenxuan Ma
- Department of Toxicology, School of Public, Health of Jilin University, Changchun, 130021, China
| | - Ruijian Zhuge
- Department of Toxicology, School of Public, Health of Jilin University, Changchun, 130021, China
| | - Li Guo
- Department of Toxicology, School of Public, Health of Jilin University, Changchun, 130021, China
| | - Fei Yin
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, China.
| |
Collapse
|
32
|
Liao D, Xiong S, An S, Tao L, Dai L, Tian Y, Chen W, He C, Xu P, Wu N, Liu X, Zhang H, Hu Z, Deng M, Liu Y, Li Q, Shang X, Shen X, Zhou Y. Association of urinary polycyclic aromatic hydrocarbon metabolites with gestational diabetes mellitus and gestational hypertension among pregnant women in Southwest China: A cross-sectional study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123206. [PMID: 38145636 DOI: 10.1016/j.envpol.2023.123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
The association of polycyclic aromatic hydrocarbons (PAHs) with gestational diabetes mellitus (GDM) and gestational hypertension during pregnancy has not yet been established. To investigate the association between PAH exposure and GDM and gestational hypertension, we conducted a cross-sectional study of 4206 pregnant women from the Zunyi birth cohort in southwestern China. Gas chromatography/mass spectrometry was used to detect the urinary levels of 10 monohydroxylated PAHs (OH-PAHs). GDM and gestational hypertension were diagnosed and the relevant information was documented by specialist obstetricians and gynecologists. Logistic regression and restricted cubic spline regression were employed to investigate their single and nonlinear associations. Stratified analyses of pregnancy and body mass index data were conducted to determine their moderating effects on the abovementioned associations. Compared with the first quartile of urinary ∑OH-PAHs, the third or fourth quartile in all study participants was associated with an increased risk of GDM (quartile 3: odds ratio [OR] = 1.35, 95% confidence interval [CI]: 1.03-1.77) and gestational hypertension (quartile 3: OR = 1.88, 95% CI: 1.26-2.81; quartile 4: OR = 1.58, 95% CI: 1.04-2.39), respectively. Nonlinear associations of 1-OH-PYR with GDM (cutoff level: 0.02 μg/g creatinine [Cr]) and 1-OH-PHE with gestational hypertension (cutoff level: 0.06 μg/g Cr) were also observed. In pregnant women with overweight or obesity, 1-OH-PHE and 3-OH-PHE were more strongly associated with gestational hypertension. Our results indicate that exposure to PAH during pregnancy may significantly increase the maternal risks of GDM and gestational hypertension; however, this finding still needs to be confirmed through larger-scale prospective studies and biological evidence.
Collapse
Affiliation(s)
- Dengqing Liao
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Shimin Xiong
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Songlin An
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Lin Tao
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Lulu Dai
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Yingkuan Tian
- Medical Department, Xingyi People's Hospital, Xingyi, 562400, China
| | - Wei Chen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Caidie He
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Pei Xu
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Nian Wu
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Xiang Liu
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Haonan Zhang
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Zhongmei Hu
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China; Reproductive Centre, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Mingyu Deng
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China; Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Yijun Liu
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Quan Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Xuejun Shang
- Department of Andrology, School of Medicine, Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Xubo Shen
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, 563000, China; Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, China.
| |
Collapse
|
33
|
Li B, Wang J, Zhao Y, Zou Y, Cao H, Jin H, Tao X, Mu M. Vitamin D3 reverses immune tolerance and enhances the cytotoxicity of effector T cells in coal pneumoconiosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115972. [PMID: 38218105 DOI: 10.1016/j.ecoenv.2024.115972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Coal worker's pneumoconiosis (CWP) is a common occupational disease that coal miners are highly susceptible due to long-term exposure to coal dust particles (CDP). CWP can induce the accumulation of immune cells surrounding the bronchioles and alveoli in the lungs, resulting in pulmonary fibrosis and compromised immune function. Using single-cell RNA sequencing (scRNA-Seq), our previous studies disclose that CDP exposure triggers heterogeneity of transcriptional profiles in mouse pneumoconiosis, while Vitamin D3 (VitD3) supplementation reduces CDP-induced cytotoxicity; however, the mechanism by which how VitD3 regulates immune status in coal pneumoconiosis remains unclear. In this study, we elucidated the heterogeneity of pulmonary lymphocytes in mice exposed to CDP and demonstrated the therapeutic efficacy of VitD3 using scRNA-Seq dataset. The validation of key lymphocyte markers and their functional molecules was performed using immunofluorescence. The results demonstrated that VitD3 increased the number of naive T cells by modulating CD4 + T cell differentiation and decreased the number of Treg cells in CDP-exposed mice, thereby enhancing the cytotoxic activity of CD8 + effector T cells. These effects markedly alleviated lung fibrosis and symptoms. Taken together, the mechanism by which VitD3 regulates the functions of lymphocytes in CWP provides a new perspective for further research on the prevention and treatment of CWP.
Collapse
Affiliation(s)
- Bing Li
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and Technology, Huainan 232000, China; School of Public Health, Anhui University of Science and Technology, HeFei 230041, China; Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan 232000, China; Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, Huainan 232000, China
| | - Jianhua Wang
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and Technology, Huainan 232000, China; School of Public Health, Anhui University of Science and Technology, HeFei 230041, China; Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan 232000, China; Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, Huainan 232000, China; Cancer Institute, Shanghai Urological Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China.
| | - Yehong Zhao
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and Technology, Huainan 232000, China; School of Public Health, Anhui University of Science and Technology, HeFei 230041, China; Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan 232000, China; Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, Huainan 232000, China
| | - Yuanjie Zou
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and Technology, Huainan 232000, China; School of Public Health, Anhui University of Science and Technology, HeFei 230041, China; Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan 232000, China; Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, Huainan 232000, China
| | - Hangbing Cao
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and Technology, Huainan 232000, China; School of Public Health, Anhui University of Science and Technology, HeFei 230041, China; Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan 232000, China; Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, Huainan 232000, China
| | - Haibo Jin
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and Technology, Huainan 232000, China; School of Public Health, Anhui University of Science and Technology, HeFei 230041, China; Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan 232000, China; Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, Huainan 232000, China
| | - Xinrong Tao
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and Technology, Huainan 232000, China; School of Public Health, Anhui University of Science and Technology, HeFei 230041, China; Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan 232000, China; Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, Huainan 232000, China.
| | - Min Mu
- Joint Research Center for Occupational Medicine and Health of IHM, Anhui University of Science and Technology, Huainan 232000, China; School of Public Health, Anhui University of Science and Technology, HeFei 230041, China; Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, Huainan 232000, China; Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, Huainan 232000, China.
| |
Collapse
|
34
|
Chormey DS, Zaman BT, Kustanto TB, Erarpat Bodur S, Bodur S, Er EÖ, Bakırdere S. Deep eutectic solvents for the determination of endocrine disrupting chemicals. Talanta 2024; 268:125340. [PMID: 37948953 DOI: 10.1016/j.talanta.2023.125340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
The harmful effects of endocrine disrupting chemicals (EDCs) to humans and other organisms in the environment have been well established over the years, and more studies are ongoing to classify other chemicals that have the potential to alter or disrupt the regular function of the endocrine system. In addition to toxicological studies, analytical detection systems are progressively being improved to facilitate accurate determination of EDCs in biological, environmental and food samples. Recent microextraction methods have focused on the use of green chemicals that are safe for analytical applications, and present very low or no toxicity upon disposal. Deep eutectic solvents (DESs) have emerged as one of the viable alternatives to the conventional hazardous solvents, and their unique properties make them very useful in different applications. Notably, the use of renewable sources to prepare DESs leads to highly biodegradable products that mitigate negative ecological impacts. This review presents an overview of both organic and inorganic EDCs and their ramifications on human health. It also presents the fundamental principles of liquid phase and solid phase microextraction methods, and gives a comprehensive account of the use of DESs for the determination of EDCs in various samples.
Collapse
Affiliation(s)
- Dotse Selali Chormey
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Turkiye.
| | - Buse Tuğba Zaman
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye
| | - Tülay Borahan Kustanto
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Turkiye
| | - Sezin Erarpat Bodur
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye
| | - Süleyman Bodur
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; İstinye University, Faculty of Pharmacy, Department of Analytical Chemistry, 34010, İstanbul, Turkiye; İstinye University, Scientific and Technological Research Application and Research Center, 34010, İstanbul, Turkiye
| | - Elif Özturk Er
- İstanbul Technical University, Department of Chemical Engineering, 34469, İstanbul, Turkiye
| | - Sezgin Bakırdere
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, 06670, Ankara, Turkiye.
| |
Collapse
|
35
|
Jiang M, Zhao H. Joint association of heavy metals and polycyclic aromatic hydrocarbons exposure with depression in adults. ENVIRONMENTAL RESEARCH 2024; 242:117807. [PMID: 38043898 DOI: 10.1016/j.envres.2023.117807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) represent significant components of environmental pollution, typically occurring as mixtures, raising concerns about their potential impact on human health. However, the combined effect of HMs and PAHs exposure on depression has not been explored. METHODS Leveraging National Health and Nutrition Examination Survey (NHANES) data spanning 2005 to 2016, we employ survey-weighted multiple logistic regression models to probe the interrelation between HMs, PAHs, and depression. This exploration is complemented by age and gender-stratified analyses, as well as a determination of the dose-response linkage via restricted cubic spline regression. Furthermore, the combined impact of HMs and PAHs on depression was evaluated through a range of statistical methodologies. RESULTS The study encompasses 7732 adults. Our findings unveil notable associations, indicating the significant influence of cadmium (Cd), lead (Pb), and all six PAHs metabolites on depression. Moreover, mixed exposure to HMs and PAHs emerges as a substantial contributor to an augmented depression risk, with Cd, Pb, 1-hydroxynaphthalene (1-NAP), 2-hydroxyfluorene (2-FLU), and 1-hydroxypyrene (1-PYR) likely driving this positive relationship. Intriguingly, subgroup analyses highlight greater prominence of these connections among individuals aged 20-59 and among women. Furthermore, the results tentatively suggest a potential interplay between Cd and 2-NAP in relation to depression. CONCLUSION This study posits that exposure to both individual and combined HMs and PAHs may be associated with an elevated risk of depression. Further prospective investigations are warranted to substantiate these findings.
Collapse
Affiliation(s)
- Miaomiao Jiang
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Pharmacy, Anhui Public Health Clinical Center, Hefei, Anhui, China
| | - Hui Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
36
|
Cheng Y, Zhang Z, Ma X, Wang X, Chen L, Luo Y, Cao X, Yu S, Wang X, Cao Y, Zhao X. The association between polycyclic aromatic hydrocarbons exposure and neuropsychiatric manifestations in perimenopausal women: A cross-sectional study. J Affect Disord 2024; 344:554-562. [PMID: 37848092 DOI: 10.1016/j.jad.2023.10.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Increasing evidence shows that polycyclic aromatic hydrocarbons (PAHs) exposure may adversely affect human health. However, the links between combined exposure to PAHs and neuropsychiatric manifestations in perimenopausal women remain unclear. METHODS To explore these relationships further, we used the data from the National Health and Nutrition Examination Surveys (NHANES) of the 2005-2012 cycles. After filtering, five hundred forty-seven perimenopausal women aged 45-55 years were included in our analysis. Eight PAHs metabolites were measured to represent PAHs exposure in the body. In our study, depression, sleep disorders, and frequent mental distress (FMD) were used to describe the neuropsychiatric manifestations. Because of the bivariate correlations among PAHs compounds, principal component analysis (PCA) was conducted to achieve the dimension reduction process of PAHs compounds. To figure out if there is a relationship between urinary PAH metabolites and outcomes, multiple logistic regression, restricted cubic splines (RCS), and the Bayesian kernel machine regression (BKMR) were used. RESULTS The findings showed that urinary PAHs concentrations in a certain range were related to neuropsychiatric manifestations. In detail, the results of logistic regressions, RCS, and BKMR all indicated that urinary PAHs were positively correlated with depression. In addition, the results of principal components regression and RCS showed associations between urinary PAHs and the risk of FMD or sleep disorders, respectively. CONCLUSIONS Exposure to PAHs was linked to neuropsychiatric manifestations in perimenopausal women, but more pertinent researches are required to understand the connections fully.
Collapse
Affiliation(s)
- Yulan Cheng
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Ziyang Zhang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xiao Ma
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China; Nantong Fourth People's Hospital, Nantong, China
| | - Xuehai Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Lin Chen
- Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong University, Nantong 226006, China
| | - Yonghua Luo
- Nantong Fourth People's Hospital, Nantong, China
| | - Xia Cao
- Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong University, Nantong 226006, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xiangdong Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| | - Yali Cao
- Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong University, Nantong 226006, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China.
| |
Collapse
|
37
|
Yan H, Tang W, Wang L, Huang S, Lin H, Gu L, He C, Dai Y, Yang L, Pengcuo C, Qin Z, Meng Q, Guo B, Zhao X. Ambient PM2.5 Components Are Associated With Bone Strength: Evidence From a China Multi-Ethnic Study. J Clin Endocrinol Metab 2023; 109:197-207. [PMID: 37467163 DOI: 10.1210/clinem/dgad425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
CONTEXT The relationship between the components of particulate matter with an aerodynamic diameter of 2.5 or less (PM2.5) and bone strength remains unclear. OBJECTIVE Based on a large-scale epidemiologic survey, we investigated the individual and combined associations of PM2.5 and its components with bone strength. METHODS A total of 65 906 individuals aged 30 to 79 years were derived from the China Multi-Ethnic Cohort Annual average concentrations of PM2.5 and its components were estimated using satellite remote sensing and chemical transport models. Bone strength was expressed by the calcaneus quantitative ultrasound index (QUI) measured by quantitative ultrasound. The logistic regression model and weighted quantile sum method were used to estimate the associations of single and joint exposure to PM2.5 and its components with QUI, respectively. RESULTS Our analysis shows that per-SD increase (μg/m3) in 3-year average concentrations of PM2.5 (mean difference [MD] -7.38; 95% CI, -8.35 to -6.41), black carbon (-7.91; -8.90 to -6.92), ammonium (-8.35; -9.37 to -7.34), nitrate (-8.73; -9.80 to -7.66), organic matter (-4.70; -5.77 to -3.64), and soil particles (-5.12; -6.10 to -4.15) were negatively associated with QUI. In addition, these associations were more pronounced in men, and people older than 65 years with a history of smoking and chronic alcohol consumption. CONCLUSION We found that long-term exposure to PM2.5 and its components may lead to reduced bone strength, suggesting that PM2.5 and its components may potentially increase the risk of osteoporosis and even fracture. Nitrate may be responsible for increasing its risk to a greater extent.
Collapse
Affiliation(s)
- Hongyu Yan
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wenge Tang
- Chongqing Center for Disease Control and Prevention, Chongqing 400042, China
| | - Lele Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shourui Huang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Lingxi Gu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Congyuan He
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yingxue Dai
- Infectious Disease Control Department, Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan 610041, China
| | - La Yang
- Plateau Health Science Research Center, Medical School, Tibet University, Lhasa, Tibet 850000, China
| | - Ciren Pengcuo
- Tibet Center for Disease Control and Prevention, Lhasa, Tibet 850002, China
| | - Zixiu Qin
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Qiong Meng
- Department of Epidemiology and Health Statistics, School of Public Health, Kunming Medical University, Kunming, Yunnan 650550, China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
38
|
Mussalo L, Avesani S, Shahbaz MA, Závodná T, Saveleva L, Järvinen A, Lampinen R, Belaya I, Krejčík Z, Ivanova M, Hakkarainen H, Kalapudas J, Penttilä E, Löppönen H, Koivisto AM, Malm T, Topinka J, Giugno R, Aakko-Saksa P, Chew S, Rönkkö T, Jalava P, Kanninen KM. Emissions from modern engines induce distinct effects in human olfactory mucosa cells, depending on fuel and aftertreatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167038. [PMID: 37709087 DOI: 10.1016/j.scitotenv.2023.167038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Ultrafine particles (UFP) with a diameter of ≤0.1 μm, are contributors to ambient air pollution and derived mainly from traffic emissions, yet their health effects remain poorly characterized. The olfactory mucosa (OM) is located at the rooftop of the nasal cavity and directly exposed to both the environment and the brain. Mounting evidence suggests that pollutant particles affect the brain through the olfactory tract, however, the exact cellular mechanisms of how the OM responds to air pollutants remain poorly known. Here we show that the responses of primary human OM cells are altered upon exposure to UFPs and that different fuels and engines elicit different adverse effects. We used UFPs collected from exhausts of a heavy-duty-engine run with renewable diesel (A0) and fossil diesel (A20), and from a modern diesel vehicle run with renewable diesel (Euro6) and compared their health effects on the OM cells by assessing cellular processes on the functional and transcriptomic levels. Quantification revealed all samples as UFPs with the majority of particles being ≤0.1 μm by an aerodynamic diameter. Exposure to A0 and A20 induced substantial alterations in processes associated with inflammatory response, xenobiotic metabolism, olfactory signaling, and epithelial integrity. Euro6 caused only negligible changes, demonstrating the efficacy of aftertreatment devices. Furthermore, when compared to A20, A0 elicited less pronounced effects on OM cells, suggesting renewable diesel induces less adverse effects in OM cells. Prior studies and these results suggest that PAHs may disturb the inflammatory process and xenobiotic metabolism in the OM and that UFPs might mediate harmful effects on the brain through the olfactory route. This study provides important information on the adverse effects of UFPs in a human-based in vitro model, therefore providing new insight to form the basis for mitigation and preventive actions against the possible toxicological impairments caused by UFP exposure.
Collapse
Affiliation(s)
- Laura Mussalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Simone Avesani
- Department of Computer Science, University of Verona, 37134 Verona, Italy
| | - Muhammad Ali Shahbaz
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Táňa Závodná
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Liudmila Saveleva
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Anssi Järvinen
- VTT Technical Research Centre of Finland, VTT, 02044 Espoo, Finland
| | - Riikka Lampinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Irina Belaya
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Zdeněk Krejčík
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Mariia Ivanova
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Henri Hakkarainen
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Juho Kalapudas
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210 Kuopio, Finland
| | - Elina Penttilä
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
| | - Heikki Löppönen
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, 70210 Kuopio, Finland
| | - Anne M Koivisto
- Department of Neurology, Neuro Centre, Kuopio University Hospital, 70210 Kuopio, Finland; Brain Research Unit, Department of Neurology, School of Medicine, University of Eastern Finland, 70210 Kuopio, Finland; Department of Neurology and Geriatrics, Helsinki University Hospital and Neurosciences, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Tarja Malm
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, 37134 Verona, Italy
| | | | - Sweelin Chew
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Topi Rönkkö
- Aerosol Physics Laboratory, Physics Unit, Tampere University, 33014 Tampere, Finland
| | - Pasi Jalava
- Inhalation Toxicology Laboratory, Department of Environmental and Biological Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Katja M Kanninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland.
| |
Collapse
|
39
|
Zhang X, Li Z. Co-PBK: a computational biomonitoring tool for assessing chronic internal exposure to chemicals and metabolites. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:2167-2180. [PMID: 37982278 DOI: 10.1039/d3em00396e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Toxic chemicals are released into the environment through diverse human activities. An increasing number of chronic diseases are associated with ambient pollution, thus posing a threat to people. Given the high consumption of resources for human biomonitoring, this study proposed coupled physiologically-based kinetic (co-PBK) modeling matrices as a biomonitoring tool for simplifying chronic internal exposure estimates of environmental chemicals and their metabolites using naphthalene (NAP) and its metabolites (i.e., 1-OHN and 2-OHN) as simulation examples. According to the simulation of the steady-state mass among various organs/tissues via the co-PBK modeling matrices, fat had the highest potential bioaccumulation of NAP and its metabolites. With respect to body fluids, 1-OHN and 2-OHN tended to bioaccumulate more in the bile than in the urine. According to the sensitivity analysis, the calculated sensitivity factors for the first-order kinetics-based rate constants imply that due to the biotransformation process, target organs/tissues (e.g., liver and kidneys) would be continuously exposed to more NAP metabolites under chronic exposure. Meanwhile, 1-OHN may be more stably transported to the urine than 2-OHN for further human biomonitoring during long-term internal exposure. According to the case study of simulating population chronic exposure to NAP in Shenzhen, the co-PBK modeling estimated the population exposure to NAP with an intake rate of 8.77 × 10-2 mg d-1 and the aggregated urinary concentration of NAP metabolites of 2.60 μg L-1. Furthermore, the accuracy of the urinary levels between the real-world data and the values simulated by the co-PBK modeling was assessed and the root-mean-square error of c1-OHN,urine was found to be lower than that of c2-OHN,urine.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
40
|
Singha NA, Neihsial R, Kipgen L, Lyngdoh WJ, Nongdhar J, Chettri B, Singh P, Singh AK. Taxonomic and Predictive Functional Profile of Hydrocarbonoclastic Bacterial Consortia Developed at Three Different Temperatures. Curr Microbiol 2023; 81:22. [PMID: 38017305 DOI: 10.1007/s00284-023-03529-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/19/2023] [Indexed: 11/30/2023]
Abstract
Microbial community exhibit shift in composition in response to temperature variation. We report crude oil-degrading activity and high-throughput 16S rRNA gene sequencing (metagenome) profiles of four bacterial consortia enriched at three different temperatures in crude oil-amended Bushnell-Hass Medium from an oily sludge sediment. The consortia were referred to as O (4 ± 2 ℃ in 3% w/v crude oil), A (25 ± 2 ℃ in 1% w/v crude oil), H (25 ± 2 ℃ in 3% w/v crude oil), and X (45 ± 2 ℃ in 3% w/v crude oil). The hydrocarbon-degrading activity was highest for consortium A and H and lowest for consortium O. The metagenome profile revealed the predominance of Proteobacteria (62.12-1.25%) in each consortium, followed by Bacteroidota (18.94-37.77%) in the consortium O, A, and H. Contrarily, consortium X comprised 7.38% Actinomycetota, which was essentially low (< 0.09%) in other consortia, and only 0.41% Bacteroidota. The PICRUSt-based functional analysis predicted major functions associated with the metabolism and 5060 common KEGG Orthology (KOs). A total of 296 KOs were predicted exclusively in consortium X. Additionally, 247 KOs were predicted from xenobiotic biodegradation pathways. This study found that temperature had a stronger influence on the composition and function of the bacterial community than crude oil concentration.
Collapse
Affiliation(s)
- Ningombam A Singha
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Roselin Neihsial
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Lhinglamkim Kipgen
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Waniabha J Lyngdoh
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Jopthiaw Nongdhar
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Bobby Chettri
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Prabhakar Singh
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India.
| | - Arvind K Singh
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| |
Collapse
|
41
|
Lara S, Villanueva F, Cabañas B, Sagrario S, Aranda I, Soriano JA, Martin P. Determination of policyclic aromatic compounds, (PAH, nitro-PAH and oxy-PAH) in soot collected from a diesel engine operating with different fuels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165755. [PMID: 37499818 DOI: 10.1016/j.scitotenv.2023.165755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/29/2023] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
A qualitative and quantitative analysis of polycyclic aromatic compounds (PACs; polycyclic aromatic hydrocarbons (PAHs), oxygenated and nitrated polycyclic aromatic hydrocarbons (OPAHs and NPAHs)) present in the soluble organic fraction (SOF) of different soot samples has been carried out to determine the effect of soot-generation conditions on their composition and health effects. The soot samples were generated using a diesel engine bench powered by diesel (DS) and biodiesel (BS) fuels under different combustion conditions. To optimize the procedure, a surrogate soot (Printex-U) and a certified reference material (SRM1650b) were also tested. Different extraction methods were used to extract the PAHs, OPAHs and NPAHs, and the Soxhlet technique using pyridine:acetic acid 1 % was found to be the most suitable procedure to extract the highest concentration (ng mg-1) and more types of PAHs and OPAHs from the soot. The results show that the PACs identified, and their concentrations, depend on the formation and collection conditions. The predominant compounds in all soot samples studied were fluorene (Flo), phenanthrene (Phe), fluoranthene (Fla), pyrene (Pyr), 9-fluorenone (9Flo) and 9,10-anthraquinone (9,10Anq). As such, the presence of these PACs in the atmosphere of urban and rural areas can mainly be attributed to the emissions from diesel vehicles. The percentage of OPAHs with respect to total PACs was highest in the soot generated from a biofuel. These oxidized compounds favor regeneration of the diesel particulate filter (DPF). The results also indicate that the carcinogenicity of the soot depends on the combustion conditions and type of fuel.
Collapse
Affiliation(s)
- S Lara
- Universidad de Castilla-La Mancha, Instituto de Investigación en Combustión y Contaminación Atmosférica, Camino de Moledores s/n, 13071 Ciudad Real, Spain
| | - F Villanueva
- Universidad de Castilla-La Mancha, Instituto de Investigación en Combustión y Contaminación Atmosférica, Camino de Moledores s/n, 13071 Ciudad Real, Spain; Parque Científico y Tecnológico de Castilla-La Mancha, Paseo de la Innovación 1, 02006 Albacete, Spain
| | - B Cabañas
- Universidad de Castilla-La Mancha, Instituto de Investigación en Combustión y Contaminación Atmosférica, Camino de Moledores s/n, 13071 Ciudad Real, Spain; Universidad de Castilla-La Mancha, Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - S Sagrario
- Universidad de Castilla-La Mancha, Instituto de Investigación en Combustión y Contaminación Atmosférica, Camino de Moledores s/n, 13071 Ciudad Real, Spain; Universidad de Castilla-La Mancha, Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela s/n, 13071 Ciudad Real, Spain
| | - I Aranda
- Universidad de Castilla-La Mancha, Instituto de Investigación en Combustión y Contaminación Atmosférica, Camino de Moledores s/n, 13071 Ciudad Real, Spain
| | - J A Soriano
- Universidad de Castilla-La Mancha, Campus de Excelencia Internacional en Energía y Medioambiente, Instituto de Investigación Aplicada a la Industria Aeronáutica INAIA, Escuela de Ingeniería Industrial y Aeroespacial de Toledo. Real Fábrica de Armas, Edif. Sabatini, Av. Carlos III s/n, 45071, Toledo, Spain
| | - P Martin
- Universidad de Castilla-La Mancha, Instituto de Investigación en Combustión y Contaminación Atmosférica, Camino de Moledores s/n, 13071 Ciudad Real, Spain.
| |
Collapse
|
42
|
Lin F, Wang H, Wang X, Fang Y. Association between exposure to multiple polyaromatic hydrocarbons and periodontitis: findings from a cross-sectional study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112611-112624. [PMID: 37837582 DOI: 10.1007/s11356-023-29421-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/17/2023] [Indexed: 10/16/2023]
Abstract
The impact of environmental pollutant exposure on periodontitis has raised significant concerns. But the association between exposure to multiple polyaromatic hydrocarbons (PAHs) and periodontitis still remained unclear. Our study investigated the association of exposure to multiple PAHs with periodontitis. A total of 1880 participants from the National Health and Nutrition Examination Survey (NHANES) were included in this study. Urinary samples of the participants exposed to six PAHs, namely, 1-hydroxynaphthalene (1-OHN), 2-hydroxynaphthalene (2-OHN), 3-hydroxyfluorene (3-OHF), 2-hydroxyfluorene (2-OHF), 1-hydroxyphenanthrene (1-OHPhe), and 1-hydroxypyrene (1-OHPyr), were investigated. Multiple logistic regression, restricted cubic spline, and Bayesian kernel machine regression (BKMR) models were employed to identify the association between PAH exposures and periodontitis. The dose-response analysis exhibited a gradual increase in the periodontitis risk with an increase in multiple PAHs. After adjustment for several potential confounders, the odds ratio of the highest quartile (Quartile 4) was 1.648 (95% confidence interval (CI) 1.108-2.456, P = 0.014, P-t = 0.017) for 2-OHN, 2.046 (95%CI 1.352-3.104, P < 0.001, P-t = 0.005) for 3-OHF, 1.996 (95% CI 1.310-3.046, P = 0.001, P-t = 0.003) for 2-OHF, 1.789 (95% CI 1.230-2.604, P = 0.002, P-t = 0.003) for 1-OHPhe, and 1.494 (95% CI 1.025-2.181, P = 0.037, P-t = 0.021) for 1-OHPyr compared with that of the lowest quartile (Quartile 1). BKMR illustrated that the overall effect of the PAH mixture was positively related to periodontitis. Mediation analysis identified blood neutrophils as a partial mediator of 3-OHF and 2-OHF. Exposure to multiple PAHs was positively associated with periodontitis in US adults, and blood neutrophils mediate the effects of 3-OHF and 2-OHF therein.
Collapse
Affiliation(s)
- Fei Lin
- Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, 35001, China
| | | | - Xuefei Wang
- Fujian Medical University, Fuzhou, 35001, China
| | - Yihong Fang
- Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, 35001, China.
| |
Collapse
|
43
|
Rojas GA, Saavedra N, Morales C, Saavedra K, Lanas F, Salazar LA. Modulation of the Cardiovascular Effects of Polycyclic Aromatic Hydrocarbons: Physical Exercise as a Protective Strategy. TOXICS 2023; 11:844. [PMID: 37888695 PMCID: PMC10610936 DOI: 10.3390/toxics11100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) present in air pollution increases cardiovascular risk. On the contrary, physical exercise is a widely used therapeutic approach to mitigate cardiovascular risk, but its efficacy in an environment of air pollution, particularly with PAHs, remains unclear. This study investigates the effects of exercise on inflammation, endothelial dysfunction, and REDOX imbalance due to PAH exposure using a mouse model. Twenty male BALB/c mice were subjected to a mixture of PAHs (phenanthrene, fluoranthene, pyrene) in conjunction with aerobic exercise. The investigation evaluated serum levels of inflammatory cytokines, gene expression linked to inflammatory markers, endothelial dysfunction, and REDOX imbalance in aortic tissues. Furthermore, the study evaluated the expression of the ICAM-1 and VCAM-1 proteins. Exercise led to notable changes in serum inflammatory cytokines, as well as the modulation of genes associated with endothelial dysfunction and REDOX imbalance in aortic tissue. In turn, exercise produced a modulation in the protein expression of ICAM-1 and VCAM-1. The findings implicate the potential of exercise to counter PAH-induced damage, as demonstrated by changes in markers. In conclusion, exercise could mitigate the adverse effects related to exposure to PAHs present in air pollution, as evidenced by changes in inflammatory markers, endothelial dysfunction, and REDOX imbalance.
Collapse
Affiliation(s)
- Gabriel A. Rojas
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
- PhD Program in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco 4811230, Chile
- Escuela Kinesiología, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Nicolás Saavedra
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
| | - Cristian Morales
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
- PhD Program in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco 4811230, Chile
- Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Temuco 4811230, Chile
| | - Kathleen Saavedra
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
| | - Fernando Lanas
- Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Luis A. Salazar
- Center of Molecular Biology & Pharmacogenetics, Department of Basic Sciences, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile or (G.A.R.); (N.S.); (C.M.); (K.S.)
| |
Collapse
|
44
|
Miret NV, Pontillo CA, Buján S, Chiappini FA, Randi AS. Mechanisms of breast cancer progression induced by environment-polluting aryl hydrocarbon receptor agonists. Biochem Pharmacol 2023; 216:115773. [PMID: 37659737 DOI: 10.1016/j.bcp.2023.115773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Breast cancer is the most common invasive malignancy among women worldwide and constitutes a complex and heterogeneous disease. Interest has recently grown in the role of the aryl hydrocarbon receptor (AhR) in breast cancer and the contribution of environment-polluting AhR agonists. Here, we present a literature review addressing AhR ligands, including pesticides hexachlorobenzene and chlorpyrifos, polycyclic aromatic hydrocarbons, polychlorinated dibenzo-p-dioxins and dibenzofurans, polychlorinated biphenyls, parabens, and phthalates. The objectives of this review are a) to summarize recent original experimental, preclinical, and clinical studies on the biological mechanisms of AhR agonists which interfere with the regulation of breast endocrine functions, and b) to examine the biological effects of AhR ligands and their impact on breast cancer development and progression. We discuss biological mechanisms of action in cell viability, cell cycle, proliferation, epigenetic changes, epithelial to mesenchymal transition, and cell migration and invasion. In addition, we examine the effects of AhR ligands on angiogenic processes, metastasis, chemoresistance, and stem cell renewal. We conclude that exposure to AhR agonists stimulates pathways that promote breast cancer development and may contribute to tumor progression. Given the massive use of industrial and agricultural chemicals, ongoing evaluation of their effects in laboratory assays and preclinical studies in breast cancer at environmentally relevant doses is deemed essential. Likewise, awareness should be raised in the population regarding the most harmful toxicants to eradicate or minimize their use.
Collapse
Affiliation(s)
- Noelia V Miret
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físico-Matemática, Laboratorio de Radioisótopos, Junín 954, 1er subsuelo (CP1113), Buenos Aires, Argentina.
| | - Carolina A Pontillo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Sol Buján
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Florencia A Chiappini
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina
| | - Andrea S Randi
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, Paraguay 2155, Piso 5, (CP 1121), Buenos Aires, Argentina.
| |
Collapse
|
45
|
Chen S, Li S, Li H, Du M, Ben S, Zheng R, Zhang Z, Wang M. Effect of polycyclic aromatic hydrocarbons on cancer risk causally mediated via vitamin D levels. ENVIRONMENTAL TOXICOLOGY 2023; 38:2111-2120. [PMID: 37209380 DOI: 10.1002/tox.23835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/18/2023] [Accepted: 05/07/2023] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) widely exist in environmental substrates and are closely related to individual circulating vitamin D levels and tumorigenesis. Therefore, we proposed to evaluate the relationship between PAH exposure, vitamin D, and the risks for 14 cancer types via a causal inference framework underlying the mediation analysis. We evaluated seven urine monohydroxylated PAH (OH-PAH) and serum vitamin D concentrations of 3306 participants from the National Health and Nutrition Examination Survey between the 2013 and 2016 survey cycles and measured PAH concentrations in 150 subjects from the Nanjing cohort. We observed a significant negative dose-response relationship between increased OH-PAH levels and vitamin D deficiency. Each unit increase in ∑OH-PAHs could lead to a decrease in vitamin D levels (βadj = -0.98, Padj = 2.05 × 10-4 ). Body mass index could have interaction effects with ∑OH-PAHs and affect vitamin D levels. Coexposure to naphthalene and fluorene metabolites mutually affected vitamin D levels. Notably, vitamin D could causally mediate the relationship between OH-PAHs and nine types of cancer (e.g., colorectal cancer, liver cancers, etc.). This study first emphasizes the causal cascade of individual OH-PAHs, vitamin D, and cancer risk, providing insights into prevention via the environment.
Collapse
Affiliation(s)
- Silu Chen
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuwei Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Huiqin Li
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mulong Du
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shuai Ben
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Rui Zheng
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhengdong Zhang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|
46
|
Dai Y, Xu X, Huo X, Faas MM. Effects of polycyclic aromatic hydrocarbons (PAHs) on pregnancy, placenta, and placental trophoblasts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115314. [PMID: 37536008 DOI: 10.1016/j.ecoenv.2023.115314] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of persistent organic pollutants that are carcinogenic, mutagenic, endocrine-toxic, and immunotoxic. PAHs can be found in maternal and fetal blood and in the placenta during pregnancy. They may thus affect placental and fetal development. Therefore, the exposure levels and toxic effects of PAHs in the placenta deserve further study and discussion. This review aims to summarize current knowledge on the effects of PAHs and their metabolites on pregnancy and birth outcomes and on placental trophoblast cells. A growing number of epidemiological studies detected PAH-DNA adducts as well as the 16 high-priority PAHs in the human placenta and showed that placental PAH exposure is associated with adverse fetal outcomes. Trophoblasts are important cells in the placenta and are involved in placental development and function. In vitro studies have shown that exposure to either PAH mixtures, benzo(a)pyrene (BaP) or BaP metabolite benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) affected trophoblast cell viability, differentiation, migration, and invasion through various signaling pathways. Furthermore, similar effects of BPDE on trophoblast cells could also be observed in BaP-treated mouse models and were related to miscarriage. Although the current data show that PAHs may affect placental trophoblast cells and pregnancy outcomes, further studies (population studies, in vitro studies, and animal studies) are necessary to show the specific effects of different PAHs on placental trophoblasts and pregnancy outcomes.
Collapse
Affiliation(s)
- Yifeng Dai
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China.
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Rd, Shantou 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Marijke M Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands; Department of Obstetrics and Gynecology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| |
Collapse
|
47
|
Smotherman C, Sprague B, Datta S, Braithwaite D, Qin H, Yaghjyan L. Association of air pollution with postmenopausal breast cancer risk in UK Biobank. Breast Cancer Res 2023; 25:83. [PMID: 37443054 PMCID: PMC10339564 DOI: 10.1186/s13058-023-01681-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND We investigated the association of several air pollution measures with postmenopausal breast cancer (BCa) risk. METHODS This study included 155,235 postmenopausal women (of which 6146 with BCa) from UK Biobank. Cancer diagnoses were ascertained through the linkage to the UK National Health Service Central Registers. Annual exposure averages were available from 2005, 2006, 2007, and 2010 for NO2, from 2007 and 2010 for PM10, and from 2010 for PM2.5, NOX, PM2.5-10 and PM2.5 absorbance. Information on BCa risk factors was collected at baseline. Cox proportional hazards regression was used to evaluate the associations of year-specific and cumulative average exposures with BCa risk, overall and with 2-year exposure lag, while adjusting for BCa risk factors. RESULTS PM10 in 2007 and cumulative average PM10 were positively associated with BCa risk (2007 PM10: Hazard ratio [HR] per 10 µg/m3 = 1.18, 95% CI 1.08, 1.29; cumulative average PM10: HR per 10 µg/m3 = 1.99, 95% CI 1.75, 2.27). Compared to women with low exposure, women with higher 2007 PM10 and cumulative average PM10 had greater BCa risk (4th vs. 1st quartile HR = 1.15, 95% CI 1.07, 1.24, p-trend = 0.001 and HR = 1.35, 95% CI 1.25, 1.44, p-trend < 0.0001, respectively). No significant associations were found for any other exposure measures. In the analysis with 2-year exposure lag, both 2007 PM 10 and cumulative average PM10 were positively associated with BCa risk (4th vs. 1st quartile HR = 1.19, 95% CI 1.10, 1.28 and HR = 1.29, 95% CI 1.19, 1.39, respectively). CONCLUSION Our findings suggest a positive association of 2007 PM10 and cumulative average PM10 with postmenopausal BCa risk.
Collapse
Affiliation(s)
- Carmen Smotherman
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA.
| | - Brian Sprague
- Department of Surgery, University of Vermont, Burlington, VT, USA
| | - Susmita Datta
- Department of Biostatistics, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Dejana Braithwaite
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA
| | - Huaizhen Qin
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA
| | - Lusine Yaghjyan
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, 2004 Mowry Road, Gainesville, FL, 32610, USA
| |
Collapse
|
48
|
Di D, Zhang R, Zhou H, Wei M, Cui Y, Zhang J, Yuan T, Liu Q, Zhou T, Liu J, Wang Q. Exposure to phenols, chlorophenol pesticides, phthalate and PAHs and mortality risk: A prospective study based on 6 rounds of NHANES. CHEMOSPHERE 2023; 329:138650. [PMID: 37037349 DOI: 10.1016/j.chemosphere.2023.138650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023]
Abstract
OBJECTIVES Human exposure to various endocrine disrupting chemicals (EDCs) is widespread and long-lasting. The primary objective of this study was to prospectively evaluate the association of combined exposure of phenols, chlorophenol pesticides, phthalate and polycyclic aromatic hydrocarbons (PAHs) and mortality risk in a representative US population. METHODS The data on urinary levels of phenols, chlorophenol pesticides, phthalates, and PAH metabolites, were collected from participants aged ≥20 years in six rounds of the National Health and Nutrition Examination Survey (NHANES) (2003-2014). NHANES-linked death records up to December 31, 2015 were used to ascertain mortality status and cause of death. Cox proportional hazards and competing risk models were mainly used for chemical and mortality risk association analysis. The weighted quantile sum (WQS) regression and the least absolute shrinkage and selection operator regression were employed to estimate the association between EDC co-exposure and mortality risk. RESULTS High levels of mono-n-butyl phthalate, monobenzyl phthalate, and 1-napthol were significantly associated with increased risk of all cause, cardiovascular disease (CVD) and cancer mortality among all participants. WQS index was associated with the risks of all-cause (hazard ratio [HR] = 1.389, 95%CI: 1.155-1.669) and CVD mortality (HR = 1.925, 95%CI: 1.152-3.216). High co-exposure scores were associated with elevated all-cause (HR = 2.842, 95% CI: 1.2.094-3.858), CVD (HR = 1.855, 95% CI: 1.525-2.255), and cancer mortality risks (HR = 2.961, 95% CI: 1.468-5.972). The results of subgroup analysis, competing risk model, and sensitivity analysis were generally consistent with the findings from the main analyses, indicating the robustness of our findings. CONCLUSIONS This study provided the first epidemiological evidence that co-exposure to EDC at fairly low levels contributed to elevated mortality risk among US adults. The underlying mechanisms for the effects of EDC co-exposure on human health are worthy of future exploration.
Collapse
Affiliation(s)
- Dongsheng Di
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruyi Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haolong Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Muhong Wei
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan Cui
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianli Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tingting Yuan
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Liu
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tingting Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Junan Liu
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
49
|
Di D, Zhang R, Zhou H, Wei M, Cui Y, Zhang J, Yuan T, Liu Q, Zhou T, Wang Q. Joint effects of phenol, chlorophenol pesticide, phthalate, and polycyclic aromatic hydrocarbon on bone mineral density: comparison of four statistical models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80001-80013. [PMID: 37289393 DOI: 10.1007/s11356-023-28065-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Exposure to phenols, phthalates, pesticides, and polycyclic aromatic hydrocarbons (PAHs) can harm the skeleton. However, data about the joint effects of these chemicals' mixture on bone health are limited. The final analysis involved 6766 participants aged over 20 years recruited from the National Health and Nutrition Examination Survey. Generalized linear regression, weighted quantile sum (WQS) regression, Bayesian kernel machine regression (BKMR), and quantile g-computation (qgcomp) were performed to investigate the association of the urinary levels of chemicals (three phenols, two chlorophenol pesticides, nine phthalates, and six polycyclic aromatic hydrocarbon [PAH] metabolites) with bone mineral density (BMD) measurements and osteoporosis (OP) risk. Generalized linear regression identified that benzophenone-3, 2,4-dichlorophenol, mono-n-butyl phthalate, 1-napthol, 3-fluorene, 2-fluorene, and 1-phenanthrene were significantly associated with lower BMD and increased OP risk. The WQS index was negatively associated with total femur, femoral neck, and lumbar spine vertebra 1 (L1) BMD among all the participants, with corresponding β (95% confidence interval) values of -0.028 g/cm2 (-0.040, -0.017), -0.015 g/cm2 (-0.025, -0.004), and -0.018 g/cm2 (-0.033, -0.003). In the BKMR analysis, the overall effect of the mixture was significantly associated with femoral neck BMD among males and OP risk among females. The qgcomp model found a significant association between co-exposure and L1 BMD among all the participants and among males. Our study presents compelling epidemiological evidence that co-exposure to phenols, chlorophenol pesticides, phthalates, and PAHs is associated with reduced BMD and elevated OP risk. It provides epidemiologic evidence for the detrimental effects of these chemicals on bone health.
Collapse
Affiliation(s)
- Dongsheng Di
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ruyi Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Haolong Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Muhong Wei
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuan Cui
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jianli Zhang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tingting Yuan
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Liu
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tingting Zhou
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Wang
- MOE Key Lab of Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
50
|
Liu C, Liu Q, Song S, Li W, Feng Y, Cong X, Ji Y, Li P. The association between internal polycyclic aromatic hydrocarbons exposure and risk of Obesity-A systematic review with meta-analysis. CHEMOSPHERE 2023; 329:138669. [PMID: 37059208 DOI: 10.1016/j.chemosphere.2023.138669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Exposure to polycyclic aromatic hydrocarbons (PAHs) is emerging as a risk factor for obesity, but with conflicting findings. The aim of this systematic review is to investigate and summarize the current evidence towards the associations between PAHs exposure and risk of obesity. We conducted a systematic search of online databases, including PubMed, Embase, Cochrane Library, and Web of Science up to April 28, 2022. Eight cross-sectional studies with data from 68,454 participants were included. The present study illustrated that there was a significant positive association between naphthalene (NAP), phenanthrene (PHEN), and total OH-PAH metabolites and risk of obesity, the pooled OR (95% CI) was estimated at 1.43 (1.07, 1.90), 1.54 (1.18, 2.02), and 2.29 (1.32, 3.99), respectively. However, there was no significant association between fluorene (FLUO) and1-hydroxypyrene (1-OHP) metabolite and risk of obesity. Subgroup analyses showed that associations between PAHs exposure and risk of obesity were more apparent in children, female, smokers and developing regions.
Collapse
Affiliation(s)
- Chunyu Liu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Qisijing Liu
- Research Institute of Public Health, Nankai University, Tianjin, 300071, China
| | - Shanjun Song
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China; Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin, 300384, China; National Institute of Metrology, Beijing, 100029, China.
| | - Weixia Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yuanyuan Feng
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xiangru Cong
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yaqin Ji
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, China; Tianjin Key Laboratory of Hazardous Waste Safety Disposal and Recycling Technology, Tianjin, 300384, China.
| |
Collapse
|