1
|
Li X, Zheng T, Zhang J, Chen H, Xiang C, Sun Y, Dang Y, Ding P, Hu G, Yu Y. Photoaged polystyrene microplastics result in neurotoxicity associated with neurotransmission and neurodevelopment in zebrafish larvae (Danio rerio). ENVIRONMENTAL RESEARCH 2024; 250:118524. [PMID: 38401682 DOI: 10.1016/j.envres.2024.118524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/09/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Microplastics (MPs) are emerging pollutants widely distributed in the environment, inducing toxic effects in various organisms. However, the neurotoxicity and underlying mechanisms of simulated sunlight-aged MPs have rarely been investigated. In this study, zebrafish (Danio rerio) were exposed to environmentally relevant concentrations (0, 0.1, 1, 10, and 100 μg/L) of virgin polystyrene (V-PS) and aged polystyrene (A-PS) for 120 hpf to evaluate the neurotoxicity. The results demonstrated that simulated sunlight irradiation altered the physicochemical properties (morphology, functional groups, and chemical composition) of V-PS. Exposure to A-PS causes greater toxicity on locomotor ability in larval zebrafish than V-PS. Motor neuron development was disrupted by transgenic (hb9-GFP) zebrafish larvae exposed to A-PS, with significant alterations in neurotransmitter levels (ACh, DA, 5-HT, and GABA) and enzyme activity (AChE, ChAT, and ChE). Further investigation found that exposure to A-PS had a significantly impact on the expression of neurotransmission and neurodevelopment-related genes in zebrafish. These findings suggest that A-PS induces neurotoxicity by its effects on neurotransmission and neurodevelopment. This study highlights the neurotoxic effects and mechanisms of simulated sunlight irradiation of MPs, providing new insights for assessing the ecological risks of photoaged MPs in the environment.
Collapse
Affiliation(s)
- Xintong Li
- The Postgraduate Training Base of Jinzhou Medical University (South China Institute of Environmental Sciences, Ministry of Ecology and Environment), Guangzhou, 510655, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Tong Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Jiayi Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Chongdan Xiang
- Department of Public Health Emergency Preparedness and Response, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Yanan Sun
- The Postgraduate Training Base of Jinzhou Medical University (South China Institute of Environmental Sciences, Ministry of Ecology and Environment), Guangzhou, 510655, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Guocheng Hu
- The Postgraduate Training Base of Jinzhou Medical University (South China Institute of Environmental Sciences, Ministry of Ecology and Environment), Guangzhou, 510655, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| |
Collapse
|
2
|
Yin X, Wang L, Mao L. Comparing the Developmental Toxicity Delay and Neurotoxicity of Benzothiazole and Its Derivatives (BTHs) in Juvenile Zebrafish. TOXICS 2024; 12:341. [PMID: 38787120 PMCID: PMC11125584 DOI: 10.3390/toxics12050341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
In this study, a semi-static water exposure method was employed to investigate the early developmental and neurotoxic effects of four benzothiazole substances (BTHs), namely benzothiazole (BTH), 2-mercaptobenzothiazole (MBT), 2-hydroxybenzothiazole (BTON), and 2-aminobenzothiazole (2-ABTH), on zebrafish at an equimolar concentration of 10 μM. The findings revealed that all four BTHs exerted certain impacts on early development in zebrafish. MBT stimulated spontaneous movement in juvenile zebrafish, whereas BTON inhibited such movements. Moreover, all four BTHs hindered the hatching process of zebrafish larvae, with MBT exhibiting the strongest inhibition at 24 h post-fertilization (hpf). Notably, MBT acted as a melanin inhibitor by suppressing melanin production in juvenile zebrafish eyes and weakening phototaxis. Additionally, both BTH and BTON exhibited significantly lower speeds than the control group and other test groups under conditions without bright field stimulation; however, their speeds increased to average levels after percussion stimulation, indicating no significant alteration in motor ability among experimental zebrafish groups. Short-term exposure to these four types of BTHs induced oxidative damage in zebrafish larvae; specifically, BTH-, MBT-, and BTON-exposed groups displayed abnormal expression patterns of genes related to oxidative damage. Exposure to both BTH and MBT led to reduced fluorescence intensity in transgenic zebrafish labeled with central nervous system markers, suggesting inhibition of central nervous system development. Furthermore, real-time quantitative PCR results demonstrated abnormal gene expression associated with neural development. However, no significant changes were observed in 2-ABTH gene expression at this concentration. Overall findings indicate that short-term exposure to BTHs stimulates neurodevelopmental gene expression accompanied by oxidative damage.
Collapse
Affiliation(s)
- Xiaogang Yin
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Lei Wang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China;
| | - Lianshan Mao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China;
| |
Collapse
|
3
|
Luan N, Zuo J, Niu Q, Yan W, Hung TC, Liu H, Wu Q, Wang G, Deng P, Ma X, Qin J, Li G. Probiotic Lactobacillus rhamnosus alleviates the neurotoxicity of microcystin-LR in zebrafish (Danio rerio) through the gut-brain axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168058. [PMID: 37914124 DOI: 10.1016/j.scitotenv.2023.168058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/13/2023] [Accepted: 10/21/2023] [Indexed: 11/03/2023]
Abstract
Microcystin-LR (MCLR) is one of the most toxic cyanobacterial toxins and is harmful to the central nervous system of fish. Probiotic additives can improve neuroendocrine function in fish. Although both MCLR and probiotics aim at the nervous system, whether they interact with each other and the mechanisms remain unexplored. In the present study, 4-month-old zebrafish were exposed to 0, 2.2, and 22 μg/L of MCLR for 28 days with or without the probiotic L. rhamnosus. We found that MCLR exposure could inhibit the swimming speed of zebrafish, while the presence of L. rhamnosus mitigated this abnormality. To elucidate the mechanism of how L. rhamnosus alleviates MCLR-induced neurotoxicity, we examined the bioaccumulation of MCLR, changes in neurotransmitters, immune biochemical indicators, and hormone content of the hypothalamic-pituitary-interrenal (HPI) axis in zebrafish along the gut-brain axis. Our results showed L. rhamnosus could reverse the abnormal swimming behavior and eventually alleviate neurotoxicity in zebrafish by modulating intestinal and brain neural signaling, neuroinflammation, and HPI axis responses. This study provides implications for the application of probiotics in the aquaculture industry.
Collapse
Affiliation(s)
- Ning Luan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Zuo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qianping Niu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Yan
- Institute of Quality Standard and Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Hubei Key Laboratory of Nutritional Quality and Safety of Agro-products, Wuhan 430064, Hubei, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA
| | - Haoling Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Huangshi Key Laboratory of Lake Biodiversity and Environmental Conservation, Hubei Normal University, Huangshi, Hubei Province 435002, China
| | - Guoao Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Deng
- Study and practical demonstratiministryon on regime shifts and optimization of ecosystem after ecological restoration project 'turning fishpond to wetland' in Chenhu Lake, Wuhan Academy of Agricultural Sciences, Wuhan 430056, China
| | - Xufa Ma
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhui Qin
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Bao J, Ren H, Han J, Yang X, Li Y, Jin J. Levels, tissue distribution and isomer stereoselectivity of Dechlorane Plus in humans: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166156. [PMID: 37572901 DOI: 10.1016/j.scitotenv.2023.166156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Exposure of human tissues to Dechlorane Plus (DP) has raised public concern because of the multiple health threats it may pose to humans. Therefore, it is important to summarize the main findings of previous studies on DP in human tissues and to provide potential guidance for future studies. In this paper, DP levels in different populations and human tissues worldwide since 2009 were systematically reviewed. DP levels in human tissues of workers in e-waste dismantling sites in Guangdong Province, China (median 190 ng·g-1 lw in serum) and DP manufacturing plants in Jiangsu Province, China (mean 857 ng·g-1 lw in whole-blood) are the highest reported worldwide. DP levels in tissues of the general population in recent studies are close to those of residents near e-waste dismantling sites, which should be of concern. DP levels in different human tissues were found to be positively correlated with a pattern of blood > breast milk > adipose tissue. The distribution of DP in different human tissues is mainly lipid-driven and may also be influenced by the interaction of DP with proteins such as human serum albumin. Most of the past studies determined the isomer stereoselectivity of DP in human tissues only by comparing the composition of DP in commercial DP products and human tissues, which lacks evidence of mechanism. Recently, a significantly different affinity of DP isomers for proteins was found, which seems to confirm the isomer selectivity of DP in human tissues. We simulated the binding of DP to human serum albumin and DP to thyroid hormone receptor β by molecular docking and found differences in the binding behavior of syn-DP and anti-DP to the selected proteins. Molecular docking seems to be a feasible approach for future studies to predict and reveal the mechanisms of DP behavior and health effects in human tissues.
Collapse
Affiliation(s)
- Junsong Bao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China
| | - Hongmin Ren
- Department of Chemical Engineering, Hebei Petroleum University of Technology, 2 Xueyuanlu Street, Shuangqiao District, Chengde 067000, China
| | - Jiali Han
- College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Xinrui Yang
- Hainan Ecological Environmental Monitoring Center, 98 Baiju Avenue, Haikou 571126, China
| | - Yingxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, 27 Zhongguancun South Street, Haidian District, Beijing 100081, China.
| |
Collapse
|
5
|
Ma DD, Shi WJ, Li SY, Zhang JG, Lu ZJ, Long XB, Liu X, Huang CS, Ying GG. Ephedrine and cocaine cause developmental neurotoxicity and abnormal behavior in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106765. [PMID: 37979497 DOI: 10.1016/j.aquatox.2023.106765] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
Ephedrine (EPH) and cocaine (COC) are illegal stimulant drugs, and have been frequently detected in aquatic environments. EPH and COC have negative effects on the nervous system and cause abnormal behaviors in mammals and fish at high concentrations, but their mechanisms of neurotoxicity remain unclear in larvae fish at low concentrations. To address this issue, zebrafish embryos were exposed to EPH and COC for 14 days post-fertilization (dpf) at 10, 100, and 1000 ng L-1. The bioaccumulation, development, behavior, cell neurotransmitter levels and apoptosis were detected to investigate the developmental neurotoxicity (DNT) of EPH and COC. The results showed that EPH decreased heart rate, while COC increased heart rate. EPH caused cell apoptosis in the brain by AO staining. In addition, behavior analysis indicated that EPH and COC affected spontaneous movement, touch-response, swimming activity and anxiety-like behaviors. EPH and COC altered the levels of the neurotransmitters dopamine (DA) and γ-aminobutyric acid (GABA) with changes of the transcription of genes related to the DA and GABA pathways. These findings indicated that EPH and COC had noticeable DNT in the early stage of zebrafish at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China.
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xin Liu
- Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Chu-Shu Huang
- Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; Anti-Drug Technology Center of Guangdong Province and National Anti-Drug Laboratory Guangdong Regional Center, Guangdong Provincial Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou 510230, China.
| |
Collapse
|
6
|
He XN, Wu P, Jiang WD, Liu Y, Kuang SY, Tang L, Ren HM, Li H, Feng L, Zhou XQ. Aflatoxin B1 exposure induced developmental toxicity and inhibited muscle development in zebrafish embryos and larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163170. [PMID: 37003331 DOI: 10.1016/j.scitotenv.2023.163170] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/02/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
The prevalence of aflatoxin B1 (AFB1), one of the most toxic mycotoxins that contaminates feedstock and food is increasing worldwide. AFB1 can cause various health problems in humans and animals, as well as direct embryotoxicity. However, the direct toxicity of AFB1 on embryonic development, especially foetal foetus muscle development, has not been studied in depth. In the present study, we used zebrafish embryos as a model to study the mechanism of the direct toxicity of AFB1 to the foetus, including muscle development and developmental toxicity. Our results showed that AFB1 caused motor dysfunction in zebrafish embryos. In addition, AFB1 induces abnormalities in muscle tissue architecture, which in turn causes abnormal muscle development in larvae. Further studies found that AFB1 destroyed the antioxidant capacity and tight junction complexes (TJs), causing apoptosis in zebrafish larvae. In summary, AFB1 may induce developmental toxicity and inhibit muscle development through oxidative damage, apoptosis and disruption of TJs in zebrafish larvae. Our results revealed the direct toxicity effects of AFB1 on the development of embryos and larvae, including inhibition of muscle development and triggering neurotoxicity, induction of oxidative damage, apoptosis and disruption of TJs, and fills the gap in the toxicity mechanism of AFB1 on foetal development.
Collapse
Affiliation(s)
- Xiang-Ning He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hua Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China.
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China.
| |
Collapse
|
7
|
Wang B, Wang A, Xu C, Tong Z, Wang Y, Zhuo X, Fu L, Yao W, Wang J, Wu Y. Molecular, morphological and behavioral alterations of zebrafish (Danio rerio) embryos/larvae after clorprenaline hydrochloride exposure. Food Chem Toxicol 2023; 176:113776. [PMID: 37059383 DOI: 10.1016/j.fct.2023.113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/16/2023]
Abstract
Chlorprenaline hydrochloride (CLOR) is a typical representative of β-adrenergic agonists that may be used illegally as a livestock feed additive and may have adverse impacts on the environment. In the present study, zebrafish embryos were exposed to CLOR to investigate its developmental toxicity and neurotoxicity. The results demonstrated that CLOR exposure led to adverse effects on developing zebrafish, such as morphological changes, a high heart rate, and increased body length, resulting in developmental toxicity. Moreover, the up-regulation of activities of superoxide dismutase (SOD) and catalase (CAT) and the enhancement of malondialdehyde (MDA) content illustrated that CLOR exposure activated oxidative stress in exposed zebrafish embryos. Meanwhile, CLOR exposure also caused alterations in locomotive behavior in zebrafish embryos, including an increase in acetylcholinesterase (AChE) activity. Quantitative polymerase chain reaction (QPCR) results showed that the transcription of genes related to the central nervous system (CNS) development, namely, mbp, syn2a, α1-tubulin, gap43, shha, and elavl3, indicated that CLOR exposure could lead to neurotoxicity in zebrafish embryos. These results showed that CLOR exposure could cause developmental neurotoxicity in the early stages of zebrafish development and that CLOR might induce neurotoxicity by altering the expression of neuro-developmental genes, elevating AChE activity, and activating oxidative stress.
Collapse
Affiliation(s)
- Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Anli Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Chengrui Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Zan Tong
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Yijing Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Xiaocong Zhuo
- Office of Criminal Science and Technology, Xiaoshan District Branch of Hangzhou Public Security Bureau, Hangzhou, 311200, China
| | - Lixiang Fu
- Office of Criminal Science and Technology, Xiaoshan District Branch of Hangzhou Public Security Bureau, Hangzhou, 311200, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China.
| |
Collapse
|
8
|
Wu Y, Wang J, Xia Y, Tang K, Xu J, Wang A, Hu S, Wen L, Wang B, Yao W, Wang J. Toxic effects of isofenphos-methyl on zebrafish embryonic development. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114723. [PMID: 36871354 DOI: 10.1016/j.ecoenv.2023.114723] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Isofenphos-methyl (IFP) is widely used as an organophosphorus for controlling underground insects and nematodes. However, excessive use of IFP may pose potential risks to the environment and humans, but little information is available on its sublethal toxicity to aquatic organisms. To address this knowledge gap, the current study exposed zebrafish embryos to 2, 4, and 8 mg/L IFP within 6-96 h past fertilization (hpf) and measured mortality, hatching, developmental abnormalities, oxidative stress, gene expressions, and locomotor activity. The results showed that IFP exposure reduced the rates of heart and survival rate, hatchability, and body length of embryos and induced uninflated swim bladder and developmental malformations. Reduction in locomotive behavior and inhibition of AChE activity indicated that IFP exposure may induce behavioral defects and neurotoxicity in zebrafish larvae. IFP exposure also led to pericardial edema, longer venous sinus-arterial bulb (SV-BA) distance, and apoptosis of the heart cells. Moreover, IFP exposure increased the accumulation of reactive oxygen species (ROS) and the content of malonaldehyde (MDA), also elevated the levels of antioxidant enzymes of superoxide dismutase (SOD) and catalase (CAT), but decreased glutathione (GSH) levels in zebrafish embryos. The relative expressions of heart development-related genes (nkx2.5, nppa, gata4, and tbx2b), apoptosis-related genes (bcl2, p53, bax, and puma), and swim bladder development-related genes (foxA3, anxa5b, mnx1, and has2) were significantly altered by IFP exposure. Collectively, our results indicated that IFP induced developmental toxicity and neurotoxicity to zebrafish embryos and the mechanisms may be relevant to the activation of oxidative stress and reduction of acetylcholinesterase (AChE) content.
Collapse
Affiliation(s)
- Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Jiawen Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Yumei Xia
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Kaiqin Tang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Jincheng Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Anli Wang
- Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Hangzhou 310058, Zhejiang, China
| | - Shundi Hu
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, China
| | - Luhong Wen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, China
| | - Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou 310051, Zhejiang, China.
| |
Collapse
|
9
|
Jiang N, Li X, Wang Q, Baihetiyaer B, Fan X, Li M, Sun H, Yin X, Wang J. Ecological risk assessment of environmentally relevant concentrations of propofol on zebrafish (Danio rerio) at early life stage: Insight into physiological, biochemical, and molecular aspects. CHEMOSPHERE 2023; 316:137846. [PMID: 36646180 DOI: 10.1016/j.chemosphere.2023.137846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/25/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Propofol is an intravenous anesthetic injection extensively used in clinic, which has been proved to be neurotoxic in humans. Improper use and disposal of propofol may lead to its release into the aquatic environment, but the potential ecological risk of propofol to aquatic organisms remains poorly understood. For this study, we comprehensively explored the ecotoxicological effects and potential mechanisms of propofol (0.04, 0.2 and 2 mg L-1) on 120 hpf zebrafish (Danio rerio) embryos from physiological, biochemical, and molecular perspectives. The results showed that propofol has moderate toxicity on zebrafish embryos (96 h LC50 = 4.260 mg L-1), which could significantly reduce the hatchability and delay the development. Propofol can trigger reactive oxygen species (ROS) generation, lipid peroxidation (Malondialdehyde, MDA) and DNA damage (8-hydroxy-2-deoxyguanosine, 8-OHdG). The glutathione peroxidase (GPX) activity of zebrafish embryos in 0.04 and 0.2 mg L-1 propofol treatment group was activated in response to oxidative damage, while activities of superoxide dismutase (SOD), catalase (CAT) and GPX in zebrafish treated with 2 mg L-1 was significant inhibited compared with the control group (p<0.05). Moreover, the expression of antioxidant genes and related pathways was inhibited. Apoptosis was investigated at genes level and histochemistry. Molecular docking confirmed that propofol could change in the secondary structure of acetylcholinesterase (AChE) and competitively inhibited acetylcholine (ACh) binding to AChE, which may disturb the nervous system. These results described toxic response and molecular mechanism in zebrafish embryos, providing multiple aspects about ecological risk assessment of propofol in water environment.
Collapse
Affiliation(s)
- Nan Jiang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China; College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Xianxu Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Qian Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China
| | - Baikerouzi Baihetiyaer
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Xiaoteng Fan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Mingsheng Li
- Department of Anesthesiology, Tai'an City Central Hospital, Tai'an, 271000, PR China
| | - Huimin Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712000, PR China.
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment, Shandong Agricultural University, Tai'an, 271000, PR China.
| |
Collapse
|
10
|
Kung TA, Chen PJ. Exploring specific biomarkers regarding neurobehavioral toxicity of lead dioxide nanoparticles in medaka fish in different water matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159268. [PMID: 36208768 DOI: 10.1016/j.scitotenv.2022.159268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Nano-scale lead dioxide (nPbO2) is an industrial metal oxide nanoparticle that can be also formed as a corrosion by-product from chlorination of Pb-containing plumbing materials. nPbO2 governs release of toxic lead ion in drinking water and receiving organisms; however, its modes of toxic action regarding neurobehavioral toxicity remain unclear. This study evaluated the toxicity mechanism of nPbO2 (10 and 20 mg/L) versus its released Pb(II)aq (100 μg/L) in terms of aqueous chemistry, bioavailability and neurobehavioral toxicity to medaka fish in different water matrices. In very hard water (VHW), dissolved salts enhanced the aggregation and sedimentation of nPbO2, resulting in higher bioavailability and altered locomotion of treated fish than those fish exposed to nPbO2 in soft water with humic acid (SW + HA). Transcriptomic results identified six differentially expressed genes with greater altered expression with nPbO2 than the control or Pb(II)aq exposure. With VHW exposure, nPbO2 caused greater altered expression of genes involved in cell adhesion (nlgn1 and epd), cell cytoskeleton (α1-tubulin), and relevant apoptosis (c-fos, birc5.1-a and casp3), as compared with SW + HA or Pb(II)aq exposure. This study provides novel molecular mechanistic insights into the neurobehavioral nanotoxicity using nPbO2 and medaka fish as surrogates, suggesting nPbO2 promotes neurobehavioral dysfunction, leading to adverse outcomes from gene alteration to the organismal level. The identified biomarkers responded specifically to the nPbO2-induced neurotoxicity in different water matrices can be used for evaluating toxicity risks of small metal oxide particulates on human or aquatic life under environmentally relevant exposures.
Collapse
Affiliation(s)
- Te-An Kung
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan; Institute of Food Safety Management, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Pei-Jen Chen
- Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
11
|
Sun X, Yang Q, Jing M, Jia X, Tian L, Tao J. Environmentally relevant concentrations of organic (benzophenone-3) and inorganic (titanium dioxide nanoparticles) UV filters co-exposure induced neurodevelopmental toxicity in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114343. [PMID: 36508829 DOI: 10.1016/j.ecoenv.2022.114343] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
UV filters, widely used in personal care products, are ubiquitous environmental pollutants detected and pose a significant public health concern. Benzophenone-3 (BP3) and titanium dioxide nanoparticles (nano-TiO2) are the predominant organic and inorganic UV filters in environmental media. However, few studies have explored the combined developmental neurotoxic (DNT) effects and the underlying mechanisms when co-exposed to BP3 and nano-TiO2. In the present study, zebrafish (Danio rerio) embryos were exposed to environmentally relevant concentrations of BP3 (10 μg/L), nano-TiO2 (100 μg/L), and mixtures starting from 6 h post fertilization (hpf), respectively. Developmental indicators and motor behaviors were investigated at various developmental stages. Our results showed that BP3 alone or co-exposed with nano-TiO2 increased spontaneous movement at 24 hpf, co-exposure decreased touch response at 30 hpf and hatching rate at 60 hpf. Consistent with these motor deficits, co-exposure to BP3 and nano-TiO2 inhibited relative axon length of primary motor neuron during the early developmental stages, disturbed the expression of axonal growth-related genes at 30 and 48 hpf, increased cell apoptosis on the head region and mRNA levels of apoptosis-related genes, and also increased reactive oxygen species (ROS) levels in zebrafish, suggesting the functional relevance of structural changes. Taken together, our findings demonstrated that BP3 alone or in combination with nano-TiO2 at environmentally relevant concentrations induced evident neurotoxic effects on the developing embryos in zebrafish.
Collapse
Affiliation(s)
- Xiaowei Sun
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Qinyuan Yang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Min Jing
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Xinrui Jia
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Linxuan Tian
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Junyan Tao
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
12
|
Zhu B, Lei L, Fu K, Zhao S, Hua J, Yang L, Han J, Li R, Zhou B. Neurotoxicity of tetrabromobisphenol A and SiO2 nanoparticle co-exposure in zebrafish and barrier function of the embryonic chorion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157364. [PMID: 35843329 DOI: 10.1016/j.scitotenv.2022.157364] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/27/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Silicon dioxide nanoparticles (n-SiO2) absorb tetrabromobisphenol A (TBBPA) and modify its bioavailability and toxicity in the aquatic phase; embryonic chorion is an efficient barrier against nanoparticles (e.g., SiO2) and influences their toxicity. However, few studies have investigated developmental neurotoxicity in fish after co-exposure to TBBPA and n-SiO2, especially considering the barrier function of the chorion. In the present study, zebrafish embryos were exposed to TBBPA (50, 100, and 200 μg/L) alone or in combination with n-SiO2 (25 mg/L) until 24 or 120 h post fertilization (hpf), in the presence and absence of the chorion. The results confirmed that TBBPA exposure alone significantly downregulated the expression of neurodevelopment marker genes (mbp, alpha-tubulin, shha, and gfap), altered acetylcholinesterase activity and acetylcholine content, and affected locomotor behavior at different developmental stages. Moreover, the results indicated that n-SiO2 promoted TBBPA-induced neurotoxic effects in zebrafish larvae at 120 hpf, including further repression of the transcription of CNS-related genes, disruption of the cholinergic system, and decrease in the average swimming speed under dark/light stimulation. However, scanning electron microscopy/energy dispersive spectroscopy analysis revealed that at 24 hpf, the embryonic chorion efficiently blocked n-SiO2 and consequently decreased the bioaccumulation of TBBPA and TBBPA-induced neurotoxicity in dechorionated zebrafish embryos. Taken together, the results demonstrate that n-SiO2 affected the bioavailability and neurodevelopmental toxicity of TBBPA, and their combined toxicity to zebrafish embryos was mitigated by embryonic chorion, which will facilitate risk assessment on n-SiO2 and TBBPA and improve understanding the function of the fish embryonic chorion.
Collapse
Affiliation(s)
- Biran Zhu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Kaiyu Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Songlin Zhao
- Institute of Nano-Science and Nano-Technology, College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
| | - Jianghuan Hua
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Rui Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
13
|
Hua J, Wang X, Zhu J, Wang Q, Zhang W, Lei L, Zhu B, Han J, Yang L, Zhou B. Decabromodiphenyl ethane induced hyperactivity in developing zebrafish at environmentally relevant concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114044. [PMID: 36055044 DOI: 10.1016/j.ecoenv.2022.114044] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/11/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Decabromodiphenyl ethane (DBDPE), a widely used novel brominated flame retardant, is gaining concerns due to rapidly increased contents in various environmental and biota samples. In the present study, zebrafish (Danio rerio) embryos were exposed to 2.91, 9.71, 29.14 and 97.12 μg/L of DBDPE until 120 h post-fertilization (hpf) to investigate the potential developmental neurotoxicity and underlying mechanisms. Chemical analysis revealed concentration-dependently increased body burdens of DBDPE in zebrafish larvae, with bioaccumulation factors (BCFs) ranging from 414 to 726. Embryonic exposure to DBDPE caused hyperactivity without affecting the development of secondary motoneuron axons and muscle fibers. However, further results implicated that DBDPE may affect the locomotor regulatory network via different mechanisms at lower and higher concentrations. On the one hand, embryonic exposure to 2.91 μg/L DBDPE transiently promoted spontaneous coiling contractions, but showed no effects on touch-response and swimming activity in zebrafish larvae. The whole-body contents of neurotransmitters were significantly decreased. Significant decreased protein abundances of α1-TUBULIN and SYN2a and molecular docking results pointed out possible interactions of DBDPE with these two proteins. However, these changes may be unconcerned with the transient hyperactivity, and the exact molecular mechanisms need further investigation. On the other hand, 29.14 and 97.12 μg/L DBDPE exposure caused longer-lasting effects in promoting spontaneous coiling contractions, and also touch-response and swimming activity. At the same time, increased ACh contents (without changes of other neurotransmitters) and ChAT activity and inhibited transcription of nAChRs were observed at higher concentrations. Molecular docking indicated direct interaction of DBDPE with ChAT. The results suggested that DBDPE induced hyperactivity at higher concentrations was probably involved with disrupted cholinergic system, with ChAT as a potential target. Given that the body burden of DBDPE in lower concentration group was comparable with those detected in wild fish, the current results may provide useful information for ecological risk assessment.
Collapse
Affiliation(s)
- Jianghuan Hua
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xiulin Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaping Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Qiangwei Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biran Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
14
|
Zhang Y, Gao Q, Liu SS, Tang L, Li XG, Sun H. Hormetic dose-response of halogenated organic pollutants on Microcystis aeruginosa: Joint toxic action and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154581. [PMID: 35304143 DOI: 10.1016/j.scitotenv.2022.154581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Quinolones (QNs), dechloranes (DECs), and chlorinated paraffins (CPs) are three kinds of new halogenated organic pollutants (HOPs), which originate from the use of flame retardants, lubricants and pesticides. Since QNs, DECs, and CPs are frequently detected in waters and sediments, it is necessary to investigate the toxic effects of these HOPs with dwelling phytoplankton, especially for cyanobacteria, to explore their potential hormetic effects and contributions to algal blooms. In the present study, we investigate single and joint toxicity of QNs, DECs and CPs on Microcystis aeruginosa (M. aeruginosa), a cyanobacterium that is frequently implicated with algal blooms. The results indicate single QNs and DECs induce marked hormetic effects on the proliferation of M. aeruginosa but CPs do not. The stimulatory effect of hormesis is linked with accelerated replication of DNA, which is considered to stem from the moderate rise in intracellular reactive oxygen species (ROS). Joint toxicity tests reveal that both QNs & CPs mixtures and DECs & CPs mixtures show hormetic effects on M. aeruginosa, but QNs & DECs mixtures show no hormetic effect. QNs & DECs mixtures exhibit synergistic toxic actions, which may be caused by a sharp rise in intracellular ROS simultaneously produced by the agents. Joint toxic actions of both QNs & CPs, and DECs & CPs shift from addition to antagonism as concentration increases, and this shift may mainly depend on the influence of CPs on cell membrane hydrophobicity of M. aeruginosa. This study provides data and toxic mechanisms for the hormetic phenomenon of single and joint HOPs on M. aeruginosa. The hormetic effects of HOPs may benefit the proliferation of M. aeruginosa in the aquatic environment, aggravating the formation of algal blooms. This study also reflects the important role of hormesis in environmental risk assessment of pollutants.
Collapse
Affiliation(s)
- Yueheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qing Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shu-Shen Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xin-Gui Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Haoyu Sun
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
15
|
Li JFT, Li XH, Wan YY, Li YY, Qin ZF. Comparison of Dechlorane Plus Concentrations in Sequential Blood Samples of Pregnant Women in Taizhou, China. Molecules 2022; 27:molecules27072242. [PMID: 35408641 PMCID: PMC9000586 DOI: 10.3390/molecules27072242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
To develop an appropriate sampling strategy to assess the intrauterine exposure to dechlorane plus (DP), we investigated DP levels in sequential maternal blood samples collected in three trimesters of pregnancy, respectively, from women living in Taizhou. The median concentration of DPs (sum of syn-DP and anti-DP) in all samples was 30.5 pg g−1 wet-weight and 5.01 ng g−1 lipid-adjusted weight, respectively. The trimester-related DP concentrations were consistently strongly correlated (p < 0.01), indicating that a single measurement of DP levels could represent intrauterine exposure without sampling from the same female repeatedly; however, the wet-weight levels significantly increased across trimesters (p < 0.05), while the lipid-adjusted levels did not significantly vary. Notably, whether lipid-adjusted weight or wet-weight levels, the variation extent of DP across trimesters was found to be less than 41%, and those for other persistent organic pollutants (POPs) reported in the literature were also limited to 100%. The limitation in variation extents indicated that, regardless of the time of blood collection during pregnancy and how the levels were expressed, a single measurement could be extended to screen for exposure risk if necessary. Our study provides different strategies for sampling the maternal blood to serve the requirement for assessment of in utero exposure to DP.
Collapse
Affiliation(s)
- Ji-Fang-Tong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; (J.-F.-T.L.); (Y.-Y.W.); (Y.-Y.L.); (Z.-F.Q.)
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Xing-Hong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; (J.-F.-T.L.); (Y.-Y.W.); (Y.-Y.L.); (Z.-F.Q.)
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
- Correspondence: ; Tel.: +86-10-6291-9177; Fax: +86-10-6292-3563
| | - Yao-Yuan Wan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; (J.-F.-T.L.); (Y.-Y.W.); (Y.-Y.L.); (Z.-F.Q.)
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; (J.-F.-T.L.); (Y.-Y.W.); (Y.-Y.L.); (Z.-F.Q.)
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; (J.-F.-T.L.); (Y.-Y.W.); (Y.-Y.L.); (Z.-F.Q.)
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
16
|
Li B, Chen J, Du Q, Wang B, Qu Y, Chang Z. Response to "Letter to the Editor" In response to the questions mentioned in the letter, our reply is as follows. CHEMOSPHERE 2022; 291:133022. [PMID: 34848230 DOI: 10.1016/j.chemosphere.2021.133022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Baohua Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China; College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Qiyan Du
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Beibei Wang
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Ying Qu
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
17
|
Zhu J, Zhao L, Guo L. Dechloranes exhibit binding potency and activity to thyroid hormone receptors. J Environ Sci (China) 2022; 112:16-24. [PMID: 34955199 DOI: 10.1016/j.jes.2021.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 06/14/2023]
Abstract
Dechloranes are a group of halogenated flame retardants with a basic bicyclo[2.2.1]heptene, including Dechlorane Plus (DP), Dechlorane 602 (Dec 602), Dechlorane 603 (Dec 603) and Dechlorane 604 (Dec 604). A few epidemiological investigations and animal experiments have shown that DP exhibited thyroid-interfering effects. In the present study, we investigated whether DP and three other dechloranes could interfere the thyroid function through thyroid hormone receptors (TRs, TRα and TRβ) signaling pathways. The binding affinities of the four dechloranes to the two TRs were determined by fluorescence competitive binding assay. It was found that all the four dechloranes could bind with the two TRs. The relative potency (RP) values ranged from nd (not detectable) to 0.0667. Between the two TRs, dechloranes were more inclined to bind with TRβ, which implies that the thyroid interference effect of dechloranes may have selectivity in different tissues and organs. TRs-mediated luciferase reporter gene assay and T-screen assay showed that all the four dechloranes exhibited antagonistic activity to TRs in the cells. Taken together, our results demonstrated that dechloranes might interfere with thyroid function by binding with TRs and acting as TR antagonists. The health risk of highly exposed human populations should be of serious concern because of the high hazard quotient calculated from our cell assay results.
Collapse
Affiliation(s)
- Jianqiao Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixia Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianghong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
18
|
Tao Y, Li Z, Yang Y, Jiao Y, Qu J, Wang Y, Zhang Y. Effects of common environmental endocrine-disrupting chemicals on zebrafish behavior. WATER RESEARCH 2022; 208:117826. [PMID: 34785404 DOI: 10.1016/j.watres.2021.117826] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Environmental endocrine-disrupting chemicals (EDCs), a type of exogenous organic pollutants, are ubiquitous in natural aquatic environments. Therefor, this review focused on the use of the zebrafish as a model to explore the effect of different EDCs on behavior, as well as the molecular mechanisms that drive these effects. Furthermore, our study summarizes the current knowledge on the neuromodulatory effects of different EDCs in zebrafish. This study also reviews the current state of zebrafish behavior research, in addition to the potential mechanisms of single and mixed pollutant-driven behavioral dysregulation at the molecular level, as well as the applications of zebrafish behavior experiments for neuroscience research. This review broadens our understanding of the influence of EDCs on zebrafish behavior and provides guidance for future research.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
19
|
Fan B, Dai L, Liu C, Sun Q, Yu L. Nano-TiO 2 aggravates bioaccumulation and developmental neurotoxicity of triphenyl phosphate in zebrafish larvae. CHEMOSPHERE 2022; 287:132161. [PMID: 34562708 DOI: 10.1016/j.chemosphere.2021.132161] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
This study explored the combined effects of titanium dioxide nanoparticles (nano-TiO2) and triphenyl phosphate (TPhP) on the neurodevelopment of zebrafish larvae as well as the underlying mechanisms. With this regard, zebrafish embryos were exposed to nano-TiO2 of 100 μg·L-1, TPhP of 0, 8, 24, 72, and 144 μg·L-1, or their combinations until 120 h post-fertilization (hpf). Results indicated 100 μg·L-1 nano-TiO2 alone to be nontoxic to zebrafish larvae. However, obvious developmental toxicity manifested as inhibition of surviving rate, heart rate and body length as well as increased malformation was observed in the higher concentrations of TPhP (72 and 144 μg·L-1) alone and the co-exposure groups. Additionally, results suggested that nano-TiO2 significantly enhanced the bioaccumulation of TPhP in zebtafish larvae, and thus aggravated the abnormities of spontaneous movement and swimming behavior in zebrafish larvae induced by TPhP. Nano-TiO2 also exacerbated the TPhP-induced inhibition of the axonal growth on the secondary motor neuron, and aggravated the TPhP-induced decrease on expressions of neuron-specific green fluorescent protein (GFP) and neuronal marker genes (ngn1 and elavl3). Further, the content of neurotransmitter serotonin was not altered by TPhP alone exposure, but was decreased significantly in the co-exposure group of 144 μg·L-1 TPhP and nano-TiO2. Our data indicated that nano-TiO2 might aggravate the neuron abnormities and serotonin system dysfunction by enhancing the TPhP accumulation, leading to exacerbated abnormal locomotors in zebrafish larvae.
Collapse
Affiliation(s)
- Boya Fan
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lili Dai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China
| | - Qian Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, China.
| |
Collapse
|
20
|
Sun Q, Guo W, Wang P, Chang Z, Xia X, Du Q. Toxicity of 2-methyl-4-chlorophenoxy acetic acid alone and in combination with cyhalofop-butyl to Cyprinus carpio embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103697. [PMID: 34216793 DOI: 10.1016/j.etap.2021.103697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Herbicides may pose considerable danger to non-target aquatic organisms and further threaten human health. The present investigation was aimed to assess the effects of 2-methyl-4-chlorophenoxy acetic acid (MCPA-Na) on Cyprinus carpio embryos. Embryos were exposed to six concentrations of MCPA-Na (0, 52, 54, 56, 58 and 60 mg/L) for 96 h. A series of symptoms were observed in developmental embryos during MCPA-Na exposure, including increased death, hatching inhibited and morphological deformities. Further, MCPA-Na exposure leading to a series of morphological changes (pericardial edema, tail deformation, and spine deformation) in embryos, which were consistent with modifications in the associated genes. In this work, we also investigated the joint toxicity of herbicides (MCPA-Na and cyhalofop-butyl) commonly used in paddy fields on carp embryos, using the 96 h-LC50 of herbicides (59.784 mg/L MCPA-Na and 1.472 mg/L cyhalofop-butyl) and confirmed that a synergistic effect existing in the binary mixtures.
Collapse
Affiliation(s)
- Qingyu Sun
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Wanwan Guo
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Peijin Wang
- College of Basic Medical, Sanquan College of Xinxiang Medical University, Xinxiang, Henan 453007, People's Republic of China.
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Xiaohua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| | - Qiyan Du
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China.
| |
Collapse
|
21
|
Wu Q, Li G, Huo T, Du X, Yang Q, Hung TC, Yan W. Mechanisms of parental co-exposure to polystyrene nanoplastics and microcystin-LR aggravated hatching inhibition of zebrafish offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145766. [PMID: 33610984 DOI: 10.1016/j.scitotenv.2021.145766] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/31/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
The combined toxicity effects of microcystins-LR (MCLR) and polystyrene nanoplastics (PSNPs) on the hatching of F1 zebrafish (Danio rerio) embryos were investigated in this study due to the increasing concerns of both plastic pollution and eutrophication in aquatic environments. Three-month-old zebrafish were used to explore the molecular mechanisms underlying the combined effect of MCLR (0, 0.9, 4.5, and 22.5 μg/L) on egg hatching in the existence of PSNPs (100 μg/L). The results demonstrated the existence of PSNPs further increased the accumulation of MCLR in F1 embryos. The hatching rates of F1 embryos were inhibited after exposure to 22.5 μg/L MCLR, and the presence of PSNPs aggravated the hatching inhibition induced by MCLR. The decrease of hatching enzyme activity and the abnormality of spontaneous movement were observed. We examined the altered expression levels of the genes associated with the hatching enzyme (tox16, foxp1, ctslb, xpb1, klf4, cap1, bmp4, cd63, He1.2, zhe1, and prl), cholinergic system (ache and chrnα7), and muscle development (Wnt, MyoD, Myf5, Myogenin, and MRF4). The results suggested the existence of PSNPs exacerbated the hatching inhibition of F1 embryos through decreasing the activity of enzyme, interfering with the cholinergic system, and affecting the muscle development.
Collapse
Affiliation(s)
- Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei province 435002, China; Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Tangbin Huo
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150010, China
| | - Xue Du
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150010, China
| | - Qing Yang
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydro-ecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA
| | - Wei Yan
- Institute of Quality Standard & Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Wuhan 430064, Hubei, China.
| |
Collapse
|
22
|
Developmental toxicity of dimethachlor during zebrafish embryogenesis mediated by apoptosis and oxidative stress. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2021. [DOI: 10.12750/jarb.36.1.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
23
|
Chen X, Guo W, Lei L, Guo Y, Yang L, Han J, Zhou B. Bioconcentration and developmental neurotoxicity of novel brominated flame retardants, hexabromobenzene and pentabromobenzene in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115895. [PMID: 33120153 DOI: 10.1016/j.envpol.2020.115895] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/23/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
The flame retardants hexabromobenzene (HBB) and pentabromobenzene (PBB) have been extensively used and become ubiquitous pollutants in the aquatic environment and biota, but their potential toxic effects on wildlife remained unknown. In this study, by using zebrafish (Danio rerio) as a model, the bioconcentration and developmental neurotoxicity were investigated. Zebrafish embryos were exposed to HBB and PBB (0, 30, 100 and 300 μg/L) from 2 until 144 h post-fertilization (hpf). Chemical analysis showed bioconcentrations of both chemicals, while HBB is readily metabolized to PBB in zebrafish larvae. Embryonic exposure to both chemicals did not cause developmental toxicity, but induced locomotor behavioral anomalies in larvae. Molecular docking results indicated that both chemicals could bind to zebrafish acetylcholinesterase (AChE). Furthermore, HBB and PBB significantly inhibited AChE activities, accompanied by increased contents of acetylcholine and decreased choline in larvae. Downregulation of the genes associated with central nervous system (CNS) development (e.g., mbp, α1-tubulin, gfap, shha) as well as the corresponding proteins (e.g., Mbp, α1-Tubulin) was observed, but gap-43 was upregulated at both gene and protein levels. Together, our results indicate that both HBB and PBB exhibit developmental neurotoxicity by affecting various parameters related to CNS development and indications for future toxicological research and risk assessment of the novel brominated flame retardants.
Collapse
Affiliation(s)
- Xiangping Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wei Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongyong Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
24
|
Gyimah E, Xu H, Dong X, Qiu X, Zhang Z, Bu Y, Akoto O. Developmental neurotoxicity of low concentrations of bisphenol A and S exposure in zebrafish. CHEMOSPHERE 2021; 262:128045. [PMID: 33182117 DOI: 10.1016/j.chemosphere.2020.128045] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
The vulnerability to environmental insults is heightened at early stages of development. However, the neurotoxic potential of bisphenol A (BPA) and bisphenol S (BPS) at developmental windows remains unclear. To investigate the mechanisms mediating the developmental neurotoxicity, zebrafish embryos were treated with 0.01, 0.03, 0.01, 0.3, 1 μM BPA/BPS. Also, we used Tg(HuC:GFP) zebrafish to investigate whether BPA/BPS could induce neuron development. The reduction in body length, and increased heart rate were significant in 0.3 and 1 μM BPA/BPS groups. The green fluorescence protein (GFP) intensity increased at 72 hpf and 120 hpf in Tg(HuC:GFP) larvae which was consistent with the increased mRNA expression of elval3 following BPS treatments, an indication of the plausible effect of BPS on embryonic neuron development. Additionally, BPA/BPS treatments elicited hyperactivity and reduced static time in zebrafish larvae, suggesting behavioral alterations. Moreover, qRT-PCR results showed that BPA and BPS could interfere with the normal expression of development-related genes vegfa, wnt8a, and mstn1 at the developmental stages. The expression of neurodevelopment-related genes (ngn1, elavl3, gfap, α1-tubulin, mbp, and gap43) were significantly upregulated in BPA and BPS treatments, except for the remarkable downregulation of mbp and gfap elicited by BPA at 48 (0.03 μM) and 120 hpf (0.3 μM) respectively; ngn1 at 48 hpf for 0.1 μM BPS. Overall, our results highlighted that embryonic exposure to low concentrations of BPA/BPS could be deleterious to the central nervous system development and elicit behavioral abnormalities in zebrafish at developmental stages.
Collapse
Affiliation(s)
- Eric Gyimah
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hai Xu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China
| | - Xing Dong
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhen Zhang
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center, Suzhou, 215009, China
| | - Yuanqing Bu
- Nanjing Institute of Environmental Science, Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environment, Nanjing, 210042, China.
| | - Osei Akoto
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
25
|
Ding X, Sun W, Dai L, Liu C, Sun Q, Wang J, Zhang P, Li K, Yu L. Parental exposure to environmental concentrations of tris(1,3-dichloro-2-propyl)phosphate induces abnormal DNA methylation and behavioral changes in F1 zebrafish larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115305. [PMID: 32841905 DOI: 10.1016/j.envpol.2020.115305] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/05/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) has been demonstrated to be transferred from parental animals to their offspring. However, whether parental exposure to environmental concentrations of TDCIPP show neurodevelopmental toxicity in the F1 generation and the possible underlying mechanism remain unclear. Therefore, in this study, zebrafish embryos were exposed to environmental concentrations of TDCIPP (3, 30 and 300 ng L-1) for 120 days. The effects of exposure on motor behaviors, neurotransmitter levels, DNA methylation, and gene expression of F1 larvae were investigated. Parental exposure left TDCIPP residues in F1 eggs as well as reduced body length of F1 larvae. Moreover, parental exposure significantly reduced swimming activity in F1 5 dpf larvae, although it did not significantly alter serotonin, dopamine, 3,4-dihydroxyphenylacetic acid, γ-aminobutyrate, and acetylcholine levels. Genes encoding DNA methylation transferases (dnmt3aa and dnmt1) were downregulated in F1 larvae. Reduced representation bisulfite sequencing analysis revealed 446 differentially methylated regions and enriched neuronal cell body Gene Ontology term in F1 generation. Correlation analysis between the expression of genes related to neural cell body and swimming speed indicated that solute carrier family 1 member 2b (slc1a2b) downregulation might be responsible for the inhibition of motor behaviors. Furthermore, bisulfite amplicon sequencing analysis confirmed hypermethylation of the promoter region of slc1a2b in F1 larvae following parental exposure to 300 ng L-1 TDCIPP, which might have led to significant downregulation of gene expression and, in turn, influenced the motor behaviors. These results indicate that parental exposure to environmental concentrations of TDCIPP alters DNA methylation, downregulates gene expressions and, thus inducing developmental neurotoxicity, in F1 larvae.
Collapse
Affiliation(s)
- Xisheng Ding
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lili Dai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, China
| | - Qian Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, China
| | - Panwei Zhang
- China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Kun Li
- China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, China.
| |
Collapse
|
26
|
Li B, Chen J, Wang S, Qi P, Chang X, Chang Z. Effects of dechlorane plus on intestinal barrier function and intestinal microbiota of Cyprinus carpio L. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111124. [PMID: 32805504 DOI: 10.1016/j.ecoenv.2020.111124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/25/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Dechlorane Plus (DP) is a typical polychlorinated flame retardant that has been emerged in chemical products. Due to its accumulation and amplification effect, the toxicity of DP has become a widespread environmental safety issue. However, whether DP can affect the intestinal tract of teleost fish remains largely unclear. To understand its effects on the intestinal barrier, morphological characteristics and intestinal microbiome of common carp, different concentrations (30, 60 and 120 μg/L) of DP were exposed to common carps for 4 weeks. The results indicated that DP evidently shortened the intestinal folds and damaged the intestinal epithelium layer. In addition, the mRNA expression levels of occludin, claudin-2 and zonula occludens-1 (ZO-1) were significantly decreased with increasing DP concentrations. Furthermore, the relative abundance of some microbiota species were also changed significantly. Our study first demonstrated that DP could cause damage to the intestinal epithelium and destroy the intestinal barrier and increase the relative abundance of pathogenic bacteria, thereby increasing the probability of contact between intestinal epithelium and pathogenic bacteria, which in turn lead to an increased susceptibility to various diseases and poor health. In summary, our findings reveal that chronic DP exposure can have a harmful effect on the intestinal flora balance and is potentially linked to human disease.
Collapse
Affiliation(s)
- Baohua Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China; College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Songyun Wang
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Pengju Qi
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Xulu Chang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
27
|
Pan HY, Li JFT, Li XH, Yang YL, Qin ZF, Li JB, Li YY. Transfer of dechlorane plus between human breast milk and adipose tissue and comparison with legacy lipophilic compounds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115096. [PMID: 32806402 DOI: 10.1016/j.envpol.2020.115096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
In this study, levels of dechlorane plus (DP) in breast milk and matched adipose tissue samples were measured from 54 women living in Wenling, China. Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) were measured simultaneously for comparison. The levels of ∑DPs/∑PBDEs varied from less than one to several dozens of ng g-1 lipid weight (lw) in matrices and the levels of ∑PCBs varied between several to hundreds of ng g-1 lw. In the same matrix, ∑DPs and ∑PCBs/∑PBDEs showed a significant relationship (p < 0.05), indicating that they shared common sources. Accordingly, there was a strong association of lipid-adjusted concentrations of individual compounds (BDE-209 excluded) between matrices (p < 0.001), suggesting that breast milk could be a proxy for adipose tissue in human bioburden monitoring of these compounds. The predicted lipid-adjusted milk/adipose ratios varied from 0.62 to 1.5 but showed significant differences (p<0.001) between compounds, suggesting a compound-specific transfer between milk lipids and adipose tissue lipids. Specifically, the milk/adipose ratios for syn-DP and anti-DP (-1.40 and 1.3, respectively) were significantly higher than those of CB congeners and hexa/hepta-BDE congeners (p < 0.05). In addition, unlike PCBs/PBDEs (excluding BDE-209), DP's hydrophobicity might not be responsible for its preferable distribution in milk lipids. Instead, the interaction with nonlipid factors played a key role. The fraction of anti-DP between the two kinds of matrices was not significantly different, suggesting that the biochemical transfer processes may not be efficient enough to distinguish DP isomers. Nevertheless, the congener patterns of PCBs/PBDEs gave a clue about the compound-specific transfer between milk and adipose tissue. To our knowledge, this is the first to report the relationships of DP between adipose tissue and breast milk. These results could provide useful and in-depth information on biomonitoring of DP and facilitate the understanding of the accumulation and excretion potentials of DP and its distribution-related mechanism in humans.
Collapse
Affiliation(s)
- Hai-Yan Pan
- Taizhou Vocational & Technical College, Taizhou, 318000, China
| | - Ji-Fang-Tong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, PR China
| | - Xing-Hong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, PR China.
| | - You-Lin Yang
- The First People's Hospital of Wenling, 333 Chuang'annan Road, Chengxi Street, Taizhou, 317500, Zhejiang Province, PR China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, PR China
| | - Jin-Bo Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, PR China
| | - Yuan-Yuan Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing, 100085, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, PR China
| |
Collapse
|
28
|
Tao J, Bai C, Chen Y, Zhou H, Liu Y, Shi Q, Pan W, Dong H, Li L, Xu H, Tanguay R, Huang C, Dong Q. Environmental relevant concentrations of benzophenone-3 induced developmental neurotoxicity in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137686. [PMID: 32169642 DOI: 10.1016/j.scitotenv.2020.137686] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/04/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Benzophenone-3 (BP3 or oxybenzone) is an organic UV filter that has been widely used in personal care products. Its frequent detection in the environment and humans as well as its structural similarity to estradiol have prompted most research focus on its endocrine effect. However, these effects are usually associated with concentrations 10-100 fold higher than its environmental relevant concentrations. Few studies explore its adverse effects at environmental relevant concentrations. In the present study, we evaluated the developmental neurotoxic (DNT) effects of low concentration BP3 exposure during a sensitive developmental window in zebrafish. Our findings revealed that BP3 exposure at 10 μg/L (0.04 μM) during 6-24 h post fertilization (hpf) led to various DNT effects such as increased spontaneous movement at 21 and 24 hpf, decreased touch response at 27 hpf, heightened hyperactivity in locomotor response at 5 day post fertilization (dpf), decreased shoaling behavior at 11 dpf and decreased mirror attacks at 12 dpf. These effects were accompanied with decreased axonal growth at 27 hpf, decreased cell proliferation and increased cell apoptosis in the head region of larval zebrafish immediately after BP3 exposure at 24 hpf, and increased expression of retinoid X receptor gene rxrgb at 5 dpf. Interestingly, rxrgb knockdown through morpholino injection largely restored most of BP3-induced DNT effects, axonal growth delay, cell proliferation and cell apoptosis, suggesting that BP3-induced DNT effects are likely mediated through the Rxrgb receptor. In considering with recent findings on the endocrine effects of BP3, we conclude that BP3 at environmental relevant concentrations has limited estrogenic effect, but is neurotoxic to developing embryos in zebrafish.
Collapse
Affiliation(s)
- Junyan Tao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Chenglian Bai
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuanhong Chen
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Huanhuan Zhou
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Yahui Liu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Qingyu Shi
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenhao Pan
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Haojia Dong
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Luyi Li
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Hui Xu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, China
| | - Robyn Tanguay
- Sinnhuber Aquatic Research Laboratory, Department of Environmental & Molecular Toxicology, Oregon State University, 1007 Agriculture & Life Sciences Building, Corvallis, OR 97331, United States of America
| | - Changjiang Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China.
| | - Qiaoxiang Dong
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, China; The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
29
|
Li B, Chen J, Du Q, Wang B, Qu Y, Chang Z. Toxic effects of dechlorane plus on the common carp (Cyprinus carpio) embryonic development. CHEMOSPHERE 2020; 249:126481. [PMID: 32209501 DOI: 10.1016/j.chemosphere.2020.126481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
Dechlorane Plus (DP) is a widely used chlorinated flame retardant, which has been extensively detected in the environment. Although DP content in the surface water is low, it can pose a continuous exposure risk to aquatic organisms due to its strong bioaccumulation. Considering that the related studies on the toxicity mechanism of DP exposure are limited, the effect of DP on carp embryo development was evaluated. In the present work, carp embryos were exposed to different concentrations (0, 30, 60, and 120 μg/L) of DP at 3 h post-fertilization (hpf). The expression levels of neural and skeletal development-associated genes, such as sox2, sox19a, Mef2c and BMP4, were detected with quantitative PCR, and the changes in different developmental toxicity endpoints were observed. Our results demonstrated that the expression levels of sox2, sox19a, Mef2c and BMP4 were significantly altered and several developmental abnormalities were found in DP-exposed carp embryos, such as DNA damage, increased mortality rate, delayed hatching time, reduced hatching rate, decreased body length, and increased morphological deformities. In addition, the activities of reactive oxygen species and malondialdehyde were remarkably higher in 60 and 120 μg/L DP exposure groups than in control group. These results suggest that DP can exhibit a unique modes of action, which lead to aberration occurrence in the early development stage of common carps, which may be related to some gene damage and oxidative stress. Besides, the parameters evaluated here can be used as tools to access the environmental risk for biota and humans exposed to DP.
Collapse
Affiliation(s)
- Baohua Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China; College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Qiyan Du
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Beibei Wang
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Ying Qu
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
30
|
Zhang J, Chen L, Zhu Y, Zhang Y. Study on the molecular interactions of hydroxylated polycyclic aromatic hydrocarbons with catalase using multi-spectral methods combined with molecular docking. Food Chem 2020; 309:125743. [DOI: 10.1016/j.foodchem.2019.125743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 09/11/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
|
31
|
Yin JF, Li JFT, Li XH, Yang YL, Qin ZF. Bioaccumulation and transfer characteristics of dechlorane plus in human adipose tissue and blood stream and the underlying mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134391. [PMID: 31627044 DOI: 10.1016/j.scitotenv.2019.134391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
In this study, bioaccumulation and transfer characteristics of dechlorane plus (DP) were examined between human adipose tissue and matched maternal serum, and the possible transfer mechanism between tissues was further discussed. The median level of total DP was 971 pg g-1 wet weight (ww) and 1.22 ng g-1 lipid weight (lw) in adipose tissue, respectively, and was 34.7 pg g-1 ww and 3.98 ng g-1 lw for serum, respectively. DP wet levels' positive association with fat contents of five types of human tissues indicated that DP distribution might be related to lipid-driven mechanism. However, the lipid-adjusted adipose-serum partitioning ratios were estimated to be 0.35 for syn-DP and 0.35 for anti-DP, accordingly, which implied that the DP distribution between serum and adipose tissues, was not only regulated by the tissue lipid contents. Both the internal mono-dechlorination of anti-DP, and stereo-selective behavior of DP isomers were not found in DP transfer from blood to adipose tissue. The marginal positive relationship was observed between serum levels and apolipoprotein A concentrations (p = 0.095 for total DP and 0.045 for syn-DP), and neither association was found between serum levels and thyroid hormone concentrations (THs). To our best knowledge, this is the first report about the accumulation relationship of DP between human adipose tissue and blood stream with the corresponding distribution-related mechanism.
Collapse
Affiliation(s)
- Jun-Fa Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Ji-Fang-Tong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, PR China
| | - Xing-Hong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, PR China.
| | - You-Lin Yang
- The First People's Hospital of Wenling, 333 Chuang'annan Road, Chengxi Street, Taizhou 317500, Zhejiang Province, PR China
| | - Zhan-Fen Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center of Eco-Environmental Sciences, Chinese Academy of Sciences, PO Box 2871, 18 Shuangqing Road, Haidian District, Beijing 100085, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, PR China
| |
Collapse
|
32
|
Li B, Qi P, Qu Y, Wang B, Chen J, Chang Z. Effects of dechlorane plus on oxidative stress, inflammatory response, and cell apoptosis in Cyprinus carpio. Drug Chem Toxicol 2019; 45:378-386. [PMID: 31826665 DOI: 10.1080/01480545.2019.1701001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The levels of the chlorinated organic compound Dechlorane Plus (DP) are increasing in aquatic ecosystems. To investigate the adverse effects of DP on aquatic animals, common carp (Cyprinus carpio) were subjected to three different DP concentrations (30 μg L-1, 60 μg L-1, and 120 μg L-1) for 1 d, 15 d, and 30 d. Histology and the hepatic and cerebral expression levels of several key antioxidant, detoxification, and apoptotic factors were then examined. Histopathological inspections showed that the liver and brain were severely damaged in carp exposed to 60 μg L-1 and 120 μg L-1 DP. Relative to the controls, the superoxide dismutase and glutathione activity levels and the malondialdehyde content were also changed in livers and brains exposed to DP. Besides, significant alterations in the expression levels of the inflammatory cytokines IL-1β, IL-6, and IL-10 were observed in the livers of carp subjected to DP. Relative to the control, the brains of DP-exposed carp presented with significantly upregulated IL-1β and IL-6 in carp treated with 120 μg L-1 DP for 30 d. The transcription levels of hepatic cyp2b4, cyp1b1, and cyp3a138 were all increased compared with the untreated at all DP exposure concentrations. The aforementioned results suggest that DP exposure perturbs fish metabolism and causes liver injury by inhibiting antioxidant enzyme activity, increasing lipid peroxidation, promoting inflammation, and inducing cell apoptosis. This information and the analytical methodology used to acquire it may form the basis for future ecological risk assessments on DP and related xenobiotics in aquatic animals.
Collapse
Affiliation(s)
- Baohua Li
- College of Life Science, Henan Normal University, Xinxiang, PR China.,College of Fisheries, Henan Normal University, Xinxiang, PR China
| | - Pengju Qi
- College of Life Science, Henan Normal University, Xinxiang, PR China
| | - Ying Qu
- College of Life Science, Henan Normal University, Xinxiang, PR China
| | - Beibei Wang
- College of Life Science, Henan Normal University, Xinxiang, PR China
| | - Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang, PR China
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, PR China
| |
Collapse
|
33
|
Chen X, Chen Y, Huang C, Dong Q, Roper C, Tanguay RL, Zhu Y, Zhang Y. Neurodevelopmental toxicity assessments of alkyl phenanthrene and Dechlorane Plus co-exposure in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:762-769. [PMID: 31154201 DOI: 10.1016/j.ecoenv.2019.05.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/18/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
Alkyl phenanthrene (A-Phen) and Dechlorane Plus (DP) are ubiquitous environmental pollutants that widely co-exist in the environment. It has been established that both A-Phen and DP elicit neurotoxicity, but the potential interactive toxicity of these contaminants is not well-known. To determine whether a mixture of A-Phen and DP would exhibit interactive effects on neurodevelopment, we co-exposed 3-methylphenanthrene (3-MP), a representative of A-Phen, with DP. Our results illustrated that exposure to 5 or 20 μg/L 3-MP alone or in combination with 60 μg/L DP caused neurobehavioral anomalies in zebrafish. In accordance with the behavioral deficits, 3-MP alone or co-exposed with DP significantly decreased axonal growth of secondary motoneurons, altered intracellular Ca2+ homeostasis and induced cell apoptosis in the muscle of zebrafish. Additionally, 3-MP alone or co-exposed with DP significantly increased reactive oxygen species (ROS) and the mRNA levels of apoptosis-related genes. These findings indicate that 3-MP alone or co-exposed with DP induces neurobehavioral deficits through the combined effects on neuronal connectivity and muscle function. Chemical analysis revealed significant increases in 3-MP and DP bioaccumulation in zebrafish co-exposed with 3-MP and DP. Elevated bioaccumulation resulting from mixture exposure may represent a significant contribution of the synergistic effects observed in combined chemical exposure.
Collapse
Affiliation(s)
- Xiangping Chen
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yuanhong Chen
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Changjiang Huang
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Qiaoxiang Dong
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou, 325035, PR China; The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Courtney Roper
- Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory and the Environmental Health Sciences Center, Oregon State University, Corvallis, OR, 97333, USA
| | - Rorbet L Tanguay
- Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory and the Environmental Health Sciences Center, Oregon State University, Corvallis, OR, 97333, USA
| | - Yaxian Zhu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment and Ecology, Xiamen University, Xiamen, 361102, PR China.
| |
Collapse
|
34
|
Wang C, Yang L, Hu Y, Zhu J, Xia R, Yu Y, Shen J, Zhang Z, Wang SL. Isoliquiritigenin as an antioxidant phytochemical ameliorates the developmental anomalies of zebrafish induced by 2,2',4,4'-tetrabromodiphenyl ether. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:390-398. [PMID: 30802654 DOI: 10.1016/j.scitotenv.2019.02.272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/16/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
2,2',4,4'-Tetrabromodiphenyl ether (BDE47) is the most abundant PBDE congeners in biological samples. It has strong tendencies to bioaccumulate and potentially endangers development of mammals through oxidative stress. Isoliquiritigenin (ISL), an emerging natural chalcone-type flavonoid, possesses various biological and pharmacological properties, including antioxidant, anti-allergic, anti-inflammatory, anti-tumor and estrogenic activities. The purpose of the study is to explore the antioxidant effect of ISL on the amelioration of developmental anomalies induced by BDE47. Zebrafish (Danio rerio) embryos were exposed to BDE47 (1 and 10 μM) and/or ISL (4 μM) for 4 to 120 hours post fertilization (hpf), and the morphology, development, behavior, oxidative stress status and related genes expression were assessed. The results showed that BDE47 contributed to dose-dependent growth retardation and deformities, including delayed hatching, spinal curvature, reduced body length, increased death rate, aberrant behaviors and impaired dark-adapted vision, which were significantly mitigated by ISL. Besides, ISL ameliorated excessive ROS accumulation, and exaggerated the expressions of apoptosis-related genes p53, Bcl-2, caspase 3 and caspase 9 induced by BDE47, suggesting that ISL protected zebrafish from the developmental toxicity of BDE47 by inactivation of programmed apoptosis and activation of antioxidant signaling pathways. Taken together, developing ISL as a dietary supplement might be a promising preventive strategy for the amelioration of developmental toxicity induced by environmental pollutants.
Collapse
Affiliation(s)
- Chao Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Lu Yang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Yuhuan Hu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Jiansheng Zhu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Rong Xia
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Yongquan Yu
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Jiemiao Shen
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Zhan Zhang
- Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Shou-Lin Wang
- State Key Lab of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; Key Lab of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China.
| |
Collapse
|
35
|
Jia HH, Wang XT, Cheng HX, Zhou Y, Fu R. Pine needles as biomonitors of polybrominated diphenyl ethers and emerging flame retardants in the atmosphere of Shanghai, China: occurrence, spatial distributions, and possible sources. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:12171-12180. [PMID: 30830665 DOI: 10.1007/s11356-019-04558-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
In this study, pine needles were used as biomonitors to investigate the levels, spatial distributions, and possible sources of polybrominated diphenyl ethers (PBDEs) and four emerging halogenated flame retardants (HFRs) in the atmosphere of Shanghai, China. The four emerging HFRs were hexabromocyclododecane (HBCD), decabromodiphenylethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), and dechlorane plus (DP), with the first 3 HFRs being non-polybrominated diphenyl ether brominated flame retardants (non-PBDE BFRs). The total concentrations ranged from 3.71 to 4020 ng g-1 dry weight (dw) for 52 PBDE congeners (Σ52BDEs), < MDL (method detection limit) to 15.2 ng g-1 dw for three non-PBDE BFRs (Σ3non-PBDE BFRs), and 0.815 to 1090 pg g-1 dw for two DP isomers (ΣDP), respectively. High levels of PBDEs, three non-PBDE BFRs, and DP were found in pine needles from suburbs and Pudong, which was a consequence of industrial activities. The fraction of anti-DP isomer (fanti) in pine needles ranged from 0.515 to 0.939 with a mean value of 0.721, and most of the fanti values were consistent with those of technical DP formulations. Principal component analysis-multiple linear regression (PCA-MLR) model identified four sources of PBDEs in pine needles with the quantified contributions: degradation of technical PBDE formulations (49.5%), technical deca-BDE (6.9%), technical penta-BDE (25.1%), and technical octa-BDE (18.5%). These findings are expected to help understand the pollution level, fate, and possible sources of HFRs in the atmosphere of Shanghai and provide a basis for air pollution control and management in Shanghai.
Collapse
Affiliation(s)
- Hao-Hao Jia
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, China
| | - Xue-Tong Wang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, China.
| | - Hang-Xin Cheng
- Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang, 065000, China.
- Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geoscience, Langfang, 065000, China.
| | - Ying Zhou
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, China
| | - Rui Fu
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
- Key Laboratory of Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
36
|
Pannetier P, Morin B, Clérandeau C, Lacroix C, Cabon J, Cachot J, Danion M. Comparative biomarker responses in Japanese medaka (Oryzias latipes) exposed to benzo[a]pyrene and challenged with betanodavirus at three different life stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:964-976. [PMID: 30380501 DOI: 10.1016/j.scitotenv.2018.10.256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
It is now well documented that several contaminants can modulate the fish immune system, leading to disrupted host resistance against pathogens and increased incidence of disease. Since fish are usually co-exposed to chemicals and pathogens in the natural environment, analysis of the immunotoxic effects of pollutants is particularly relevant. The authorities in the European Union have recommended the development of toxicity assays on cell cultures and embryos, as an alternative to testing in vertebrates. This is why in our study, a fish immune challenge assay was developed for the early life stages of Japanese medaka to evaluate and compare the relevance of new biomarkers. Fish were exposed to benzo[a]pyrene (BaP), a model pollutant, for 8days at the embryonic stage, or for 48h at the larvae and juvenile stages, and fish were infected with betanodavirus by bath-challenge of 106TCID50/mL. Biometric changes and induction of malformations were observed after embryonic exposure. DNA damage and induction of EROD activity were recorded at the end of all chemical exposures. Viral infection increased the mortality rate significantly and disturbed the behavior of fish after light stimulation. While BaP exposure increased swimming speed, betanodavirus infection slowed swimming activity. In larvae co-exposed to BaP and the virus, the viral titer in the whole body was higher than in fish infected only with the virus. This study highlighted the sensitivity and usefulness of the immune challenge assay on the early life stages of Japanese medaka to evaluate the toxic effects of pollutants.
Collapse
Affiliation(s)
- Pauline Pannetier
- Bordeaux University, EPOC Laboratory, UMR 5805, F-33400 Talence, France
| | - Bénédicte Morin
- Bordeaux University, EPOC Laboratory, UMR 5805, F-33400 Talence, France
| | | | - Camille Lacroix
- Centre of Documentation, Research and Experimentation on Accidental Water Pollution (CEDRE), 715 Rue Alain Colas, 29200 Brest, France
| | - Joëlle Cabon
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Jérôme Cachot
- Bordeaux University, EPOC Laboratory, UMR 5805, F-33400 Talence, France
| | - Morgane Danion
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
37
|
Wu JP, Chen XY, Si-Kang W, Sun Y, Feng WL, Tao L, Luo XJ, Mai BX. Dechlorane Plus flame retardant in a contaminated frog species: Biomagnification and isomer-specific transfer from females to their eggs. CHEMOSPHERE 2018; 211:218-225. [PMID: 30077101 DOI: 10.1016/j.chemosphere.2018.07.146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/21/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
While flame retardant Dechlorane Plus (DP) and its dechlorinated analogs have been frequently detected in wildlife, knowledge is limited on their bioaccumulation and maternal transfer in amphibians. In the present study, the occurrence of syn- and anti-DP isomers and a DP dechlorinated compound, anti-Cl11-DP, were investigated in frogs and insects collected from the paddy field of a highly contaminated site. The concentrations of ∑DP (the sum concentrations of syn- and anti-DP) in the frog muscle, liver, and eggs were 141 ± 24.7, 454 ± 73.9, and 184 ± 31.1 ng/g lipid weight, respectively; with significantly higher levels in the males than females. The syn-, anti- and anti-Cl11-DP were all detectable in the frog eggs, demonstrating their maternal transfer in female frogs. The concentration ratios between eggs and liver pairs were 0.49 ± 0.01, 0.35 ± 0.01, and 0.53 ± 0.06 for syn-DP, anti-DP, and anti-Cl11-DP, respectively. The values of fanti (the concentration of anti-DP relative to the sum concentration of DP) differed significantly between frog tissues (0.33-0.79) and insects (0.71-0.74), indicating isomer-specific bioaccumulation of DP in the frogs. The concentration ratios of the frogs to the insects were greater than 1 for all the DP-related compounds, suggesting a possibility of biomagnification of these chemicals in the frogs.
Collapse
Affiliation(s)
- Jiang-Ping Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241003, China; College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241003, China.
| | - Xiao-Yun Chen
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241003, China; College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241003, China
| | - Wu Si-Kang
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241003, China; College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241003, China
| | - Yang Sun
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241003, China
| | - Wen-Lu Feng
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241003, China
| | - Lin Tao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiao-Jun Luo
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
38
|
Guo X, Zhang S, Lu S, Zheng B, Xie P, Chen J, Li G, Liu C, Wu Q, Cheng H, Sang N. Perfluorododecanoic acid exposure induced developmental neurotoxicity in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:1018-1026. [PMID: 30029309 DOI: 10.1016/j.envpol.2018.06.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Perfluorododecanoic acid (PFDoA), an artificial perfluorochemical, has been widely distributed in different ambient media and has been reported to have the potential to cause developmental neurotoxicity. However, the specific mechanism is largely unknown. In the current study, zebrafish embryos were treated with 0, 0.24, 1.2, and 6 mg/L PFDoA for 120 h. Exposure to PFDoA causes serious decreases in hatching delay, body length, as well as decreased locomotor speed in zebrafish larvae. Additionally, the acetylcholine (ACh) content as well as acetylcholinesterase (AChE) activity were determined to be significantly downregulated in PFDoA treatment groups. The level of dopamine was upregulated significantly after treating with 1.2 and 6 mg/L of PFDoA. Gene expressions related to the nervous system development were also analyzed, with the exception of the gene mesencephalic astrocyte-derived neurotrophic factor (manf), which is upregulated in the 6 mg/L treatment group. All other genes were significantly downregulated in larvae in the PFDoA group in different degrees. In general, the results demonstrated that PFDoA exposure could result in the disruption of the cholinergic system, dopaminergic signaling, and the central nervous system.
Collapse
Affiliation(s)
- Xiaochun Guo
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Shengnan Zhang
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environment and Resource, Shanxi University, Taiyuan, 030006, China
| | - Shaoyong Lu
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Binghui Zheng
- State Environmental Protection Scientific Observation and Research Station for Lake Dongtinghu (SEPSORSLD), National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ping Xie
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jun Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qin Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Houcheng Cheng
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| | - Nan Sang
- College of Environment and Resource, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
39
|
Chen X, Zhu Y, Huang Q, Liu J, Liu B, Zhang Y. Distributions, influencing factors, and risk assessment of Dechlorane Plus and related compounds in surficial water and sediment from the Jiulong River Estuary, Southeast China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:30292-30300. [PMID: 30159835 DOI: 10.1007/s11356-018-2874-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
Dechloranes, a type of additive polychlorinated flame retardant, which include Dechlorane (Dec) Plus (DP), Dec 602, Dec 603, and Dec 604, were detected in surficial water and sediment from the Jiulong River Estuary (JRE). The total concentration of dechloranes in the water and sediments ranged from 1.4 to 4.1 ng/L and 9.3 to 36.2 ng/g dry weight, respectively. The distribution patterns of dechloranes in the water and sediments were both dominated by DP. The average values of the anti-DP fractional abundances (fanti) in the water and sediment samples both were fell in the range of commercial DP mixtures. The relationships of DP in the water with suspended particulate matter (SPM), total organic carbon (TOC), and tides indicated that the combined actions of these environmental factors influenced the distribution of DP in the JRE. The deleterious risk associated with exposure to dechloranes via the water for adults was very low, suggesting that exposure of the local population of dechloranes via water is relatively safe in the JRE.
Collapse
Affiliation(s)
- Xiangping Chen
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian Province, People's Republic of China
| | - Yaxian Zhu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Qi Huang
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian Province, People's Republic of China
| | - Jun Liu
- Wenzhou Entry Exit Inspection and Quarantine Bureau, Wenzhou, 325027, People's Republic of China
| | - Bin Liu
- Wenzhou Entry Exit Inspection and Quarantine Bureau, Wenzhou, 325027, People's Republic of China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science of China (Xiamen University), College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian Province, People's Republic of China.
| |
Collapse
|
40
|
Jin MQ, Zhang D, Zhang Y, Zhou SS, Lu XT, Zhao HT. Neurological responses of embryo-larval zebrafish to short-term sediment exposure to decabromodiphenylethane. J Zhejiang Univ Sci B 2018; 19:400-408. [PMID: 29732751 DOI: 10.1631/jzus.b1800033] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Decabromodiphenylethane (DBDPE) has been widely used as an alternative flame retardant due to the restriction or phase-out of traditional polybrominated diphenyl ethers (PBDEs), and is of increasing concern regarding its ubiquity, persistence, and potential adverse effects. In the present study, the toxicological effects of DBDPE were evaluated using zebrafish as an in vivo model. Upon being exposed to DBDPE-polluted sediments for a short term, it was found that the mortality and malformation of zebrafish (including edema, bent notochord, and bent tail) were not affected even at the highest concentration tested (1000.0 µg/kg dry sediment). Regarding behavioral responses, it was found that zebrafish larvae of 48 hours post fertilization (hpf) in all groups escaped successfully with a touch to the dorsal fin. However, when exposed to the highest DBDPE concentration, the larvae of 120 hpf exhibited significantly smaller distances as compared to the control. Moreover, the results of the acetylcholinesterase (AChE) activity, the expression levels of two important nerve-related genes, and the cell apoptosis all indicated that DBDPE posed low neurotoxicity in embryo-larval zebrafish. The results in this study shed some light on the potential risks of DBDPE in the real environment and highlight the application of the sediment exposure route in the future.
Collapse
Affiliation(s)
- Mei-Qing Jin
- College of Materials Science and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Dong Zhang
- College of Materials Science and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Ying Zhang
- Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Science, East China Normal University, Shanghai 200062, China
| | - Shan-Shan Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xian-Ting Lu
- College of Materials Science and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hong-Ting Zhao
- College of Materials Science and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
41
|
Danion M, Le Floch S, Cabon J, Louboutin L, Morin T. Transchem project - Part II: Transgenerational effects of long-term exposure to pendimethalin at environmental concentrations on the early development and viral pathogen susceptibility of rainbow trout (Oncorhynchus mykiss). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 202:126-135. [PMID: 30025381 DOI: 10.1016/j.aquatox.2018.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
In the Transchem project, rainbow trout genitors were exposed to environmental concentrations of pendimethalin over a period of 18 months and two new first generations of offspring, F1_2013 and F1_2014, were obtained. We investigated the impact of direct chemical exposure on juveniles as well as the potential cumulative transgenerational and direct effects on the larval development and on the pathogen susceptibility of offspring. Depending on the chemical treatment or not of the adults, their offspring were distributed in the tanks of our experimental system, in two batches i.e. juveniles from the control genitors (G-) and others from the contaminated ones (G+), and then, half of the tanks were exposed daily to pendimethalin (Off+) while the others were used as controls (Off-). Viral challenges were performed on the offspring, before and after three months of direct chemical exposure, with strains of infectious hematopoietic necrosis virus (IHNV), viral haemorrhagic septicemia virus (VHSV) and sleeping disease alphavirus (SDV). Direct and transgenerational macroscopic effects were observed on offspring, with a percentage of abnormalities in offspring derived from the genitors exposed to pendimethalin (G+) significantly higher compared to those from the genitors from non-exposed group (G-). Before the direct chemical exposure, similar kinetics of mortality was observed between the offspring from the contaminated or control genitors after VHSV infection. With IHNV, the G+ group died in a slightly larger proportion compared to the G- group and seroconversion was greater for the G- group. For the SDV challenge, the mortality was delayed for the G+ offspring compared to the G- and seroconversion reached 65% in the G+ group compared to 45% in the G-, with similar antibody titres. After three months of direct chemical exposure, kinetics of mortality induced by IHNV infection were similar for all groups studied. Infection with SDV resulted in a cumulative mortality of 40% for the G- groups (Off- and Off+), significantly higher than those observed from the contaminated genitors G+. Proportion of seropositivity for SDV varied from 24 to 47% depending on the group, with very low quantities of secreted antibodies. Lastly, the direct exposure of offspring could impact the capacity of fish to adapt their haematological parameters to environmental and physiological changes, and underlines the potential toxic effects on the next generations.
Collapse
Affiliation(s)
- Morgane Danion
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280 Plouzané, France; European University of Brittany, France.
| | - Stéphane Le Floch
- Centre of Documentation, Research and Experimentation on Accidental Water Pollution (CEDRE), 715 Rue Alain Colas, 29200 Brest, France
| | - Joelle Cabon
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280 Plouzané, France; European University of Brittany, France
| | - Lénaïg Louboutin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280 Plouzané, France; European University of Brittany, France
| | - Thierry Morin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280 Plouzané, France; European University of Brittany, France
| |
Collapse
|
42
|
Lian BW, Wu Q, Zhang SY, Li YM, Zhao XH, Mei WJ, Wang BG. Tissue regeneration promotion effects of phenanthroimidazole derivatives through pro-inflammatory pathway activation. FISH & SHELLFISH IMMUNOLOGY 2018; 80:582-591. [PMID: 29920383 DOI: 10.1016/j.fsi.2018.06.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/10/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
A chemotherapeutic drug exerts favorable antitumor activity and simultaneously exhibits expectable inhibition on wound healing process. Phenanthroimidazole derivatives possess potent anticancer activity. However, only a few studies focused on the discovery of its potential effects on promoting tissue regeneration. In this study, four novel phenanthroimidazole derivatives were synthesized and characterized, and they exhibited evident inhibition on different tumor cells; compound 3 is the most active one. Moreover, 3 can promote wound healing of zebrafish in a dose-dependent manner. Further study demonstrated that 3 promoted the recruitment of inflammatory cells, formation of angiogenesis, and generation of reactive oxygen species and also influenced the motor behavior of zebrafish. Results indicated that 3 can accelerate the occurrence of pro-inflammation, angiogenesis, oxidative stress, and innervation, which play key roles in the facilitation of wound healing. Therefore, 3 can act as a bifunctional drug in inhibiting tumor and promoting tissue regeneration.
Collapse
Affiliation(s)
- Bo-Wen Lian
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, Guangdong Province, PR China
| | - Qiong Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong Province, PR China.
| | - Shuang-Yan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong Province, PR China
| | - Yu-Mei Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong Province, PR China
| | - Xuan-Hao Zhao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong Province, PR China
| | - Wen-Jie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong Province, PR China; Guangdong Province Engineering Technology Centre for Molecular Probe and Biomedicine Imaging, Guangzhou, 510006, Guangdong Province, PR China.
| | - Bao-Guo Wang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, Guangdong Province, PR China; Guangdong Province Engineering Technology Centre for Molecular Probe and Biomedicine Imaging, Guangzhou, 510006, Guangdong Province, PR China.
| |
Collapse
|
43
|
Jiang F, Liu J, Zeng X, Yu L, Liu C, Wang J. Tris (2-butoxyethyl) phosphate affects motor behavior and axonal growth in zebrafish (Danio rerio) larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 198:215-223. [PMID: 29558706 DOI: 10.1016/j.aquatox.2018.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 06/08/2023]
Abstract
Tris (2-butoxyethyl) phosphate (TBOEP) is an environmental contaminant that poses serious risks to aquatic organisms and their associated ecosystem. Recently, the reproductive and developmental toxicology of TBOEP has been reported. However, fewer studies have assessed the neurotoxic effects in zebrafish (Danio rerio) larvae. In this study, zebrafish embryos were subjected to waterborne exposure of TBOEP at 0, 50, 500, 1500 and 2500 μg/L from 2 to 144-h post-fertilization (hpf). Behavioral measurements showed that TBOEP exposure reduced embryonic spontaneous movement and decreased swimming speed of larvae in response to dark stimulation. In accordance with these motor effects, TBOEP treatment reduced neuron-specific GFP expression in transgenic Tg (HuC-GFP) zebrafish larvae and inhibited the growth of secondary motoneurons, as well as decreased expression of marker genes related to central nervous system development in TBOEP treated group. Furthermore, increased concentrations of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as reduction of SOD activity were detected in TBOEP exposure group. The present results showed that the alteration in motor neuron and oxidative stress could together lead to the motor behavior alterations induced by TBOEP.
Collapse
Affiliation(s)
- Fan Jiang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jue Liu
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Xinyue Zeng
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
44
|
Zacs D, Ikkere LE, Bartkevics V. Emerging brominated flame retardants and dechlorane-related compounds in European eels (Anguilla anguilla) from Latvian lakes. CHEMOSPHERE 2018; 197:680-690. [PMID: 29407832 DOI: 10.1016/j.chemosphere.2018.01.105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 06/07/2023]
Abstract
Fifteen halogenated flame retardants (HFRs) including seven emerging brominated flame retardants (EBFRs) and eight dechlorane-related compounds (DRCs) were analyzed in eels (Anguilla anguilla) sampled from five Latvian lakes. Out of the seven EBFRs, hexabromocyclododecane (HBCD) and decabromodiphenyl ethane (DBDPE) were found in eels in quantifiable concentrations, up to 6.58 and 33.0 ng g-1 lipid weight (l.w.), respectively. The mean total concentration of DRCs (∑DRC) in the samples was 0.62 ng g-1 l.w. and the geographical distribution of DRC contamination was nearly uniform among the selected lakes. Dechlorane 602 (Dec 602) was the predominant component, whereas the composition of mixture containing syn- and anti-Dechlorane Plus (DP) stereoisomers showed a pronounced enrichment of the anti-DP isomer and was close to the composition of OxyChem® DP commercial product. The determined concentrations of HFRs were lower than in other studies of aquatic biota from Europe and Asia, and the obtained results reflect the acceptable environmental status of Latvian lakes with regard to the total content of HBCD (∑HBCD), considering the environmental quality standards (EQS) stated in the Directive 2013/39/EU. The highest ∑HBCD levels were observed in eels from lakes corresponding to the industrialization of those areas, while the results of principal component analysis (PCA) showed that the concentration of HBCD depended on the particular sampling lake, reflecting non-uniform contamination of the Latvian environment with this EBFR.
Collapse
Affiliation(s)
- D Zacs
- Institute of Food Safety, Animal Health and Environment, BIOR, Lejupes iela 3, Riga, LV-1076, Latvia.
| | - L E Ikkere
- Institute of Food Safety, Animal Health and Environment, BIOR, Lejupes iela 3, Riga, LV-1076, Latvia
| | - V Bartkevics
- Institute of Food Safety, Animal Health and Environment, BIOR, Lejupes iela 3, Riga, LV-1076, Latvia; University of Latvia, Department of Chemistry, Jelgavas iela 1, Riga, LV-1004, Latvia
| |
Collapse
|
45
|
Zhang Y, Li S, Li J, Han L, He Q, Wang R, Wang X, Liu K. Developmental toxicity induced by PM2.5 through endoplasmic reticulum stress and autophagy pathway in zebrafish embryos. CHEMOSPHERE 2018; 197:611-621. [PMID: 29407824 DOI: 10.1016/j.chemosphere.2018.01.092] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 06/07/2023]
Abstract
The aims of this study were to investigate the mechanism underlying the developmental toxicity of fine particulate matter (PM2.5) and provide a more thorough understanding of the toxicity of PM2.5 in an ecological environment. Zebrafish embryos at 4 h post-fertilization were exposed to PM2.5 at doses of 200, 300, 400, 500, 600 and 800 μg/mL for 120 h. The mortality, hatching rate, morphology score, body length, locomotor capacity, histological changes, antioxidant defense system, leukocyte migration, inflammation-related gene mRNA expression, endoplasmic reticulum stress (ERS) and autophagy were evaluated to study PM2.5-induced developmental toxicity and its underlying mechanisms. PM2.5 exposure significantly increased the mortality and malformations and reduced the hatching rate and body length of the zebrafish. PM2.5 significantly reduced the locomotor capacity of zebrafish larvae, increased the levels of ROS and disturbed the antioxidant defense system in zebrafish larvae. In addition, a histological examination showed that the heart, liver, intestines and muscle of the PM2.5-treated zebrafish exhibited abnormal changes and a significant increase in cellular autophagic accumulation. RT-PCR showed that the expression of genes related to inflammation (tgfβ and cox2), ERS (hspa5, chop, ire1, xbp1s, and atf6) and autophagy (lc3, beclin1 and atg3) pathways was significantly increased in the PM2.5-treated zebrafish, indicating that PM2.5 induced inflammation and promoted ERS and autophagy responses via the activation of the IRE1-XBP1 and ATF6 pathways. Together, our data indicate that PM2.5 induced a dose- and time-dependent increase in developmental toxicity to zebrafish embryos. Additionally, ERS and autophagy may play important roles in PM2.5-induced developmental toxicity.
Collapse
Affiliation(s)
- Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, PR China.
| | - Saiyu Li
- Shandong Analysis and Test Center, 19 Keyuan Road, Lixia District, Jinan, 250014, Shandong Province, PR China
| | - Juanjuan Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, PR China; Shanxi Medical University, 56 Xinjiannan Road, Yingze District, Taiyuan, 030001, Shanxi Province, PR China
| | - Liwen Han
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, PR China
| | - Qiuxia He
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, PR China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, PR China
| | - Ximin Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan, 250103, Shandong Province, PR China.
| |
Collapse
|
46
|
Cheng R, Jia Y, Dai L, Liu C, Wang J, Li G, Yu L. Tris(1,3-dichloro-2-propyl) phosphate disrupts axonal growth, cholinergic system and motor behavior in early life zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:7-15. [PMID: 28898785 DOI: 10.1016/j.aquatox.2017.09.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/30/2017] [Accepted: 09/02/2017] [Indexed: 06/07/2023]
Abstract
Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) could have neurotoxic effects and alter motor behaviors in zebrafish (Danio rerio) larvae, however, the underlying mechanisms are still unknown. In this study, zebrafish embryos were subjected to waterborne exposure of TDCIPP at 100, 300, 600, 900μg/L from 2 to 120-h post-fertilization (hpf). Behavioral measurements indicate that TDCIPP exposure significantly elevated spontaneous movement, and altered swimming behavior response of larvae to both light and dark stimulation. Interestingly, in accordance with these motor effects, TDCIPP significantly decreased expression of the neuron-specific GFP in transgenic (HuC-GFP) zebrafish larvae as well as decreased expression of the neural marker genes elavl3 and ngn1, inhibited the axonal growth of the secondary motoneurons and altered the expressions of axon-related genes (α1-tubulin, shha and netrin2) in zebrafish larvae. Furthermore, TDCIPP exposure at 900μg/L significantly increased the activity of acetylcholinesterase (AChE) enzyme, and decreased the total acetylcholine (ACh) concentration. Our data indicate that the alteration in motor neuron and inhibition of cholinergic system could together lead to the TDCIPP induced motor behavior alterations in zebrafish larvae.
Collapse
Affiliation(s)
- Rui Cheng
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yali Jia
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Lili Dai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, China
| | - Chunsheng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan Changde 415000, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, China
| | - Jianghua Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Liqin Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|