1
|
Terzic S, Ivankovic K, Jambrosic K, Kurtovic B, Ahel M. Bioaccumulation and tissue distribution of pharmaceuticals and their transformation products in fish along the pollution gradients of a wastewater-impacted river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177339. [PMID: 39505042 DOI: 10.1016/j.scitotenv.2024.177339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
A field study on the occurrence and distribution of forty-three pharmaceutically active compounds (PhACs) in water and fish samples from anthropogenically impacted section of the Sava River (Croatia) was performed to estimate the importance of bioaccumulation for the environmental risk assessment of PhACs. The study was performed using a highly specific LC-MS/MS method, tailored to include the most prominent PhACs from different therapeutic categories as well as their major metabolites and/or transformation products (TPs). The results revealed a widespread occurrence of PhAC residues both in water and fish samples with a large spatial variability reflecting the distance from the dominant wastewater discharges. The most prominent PhAC categories in less polluted upstream part of the river were common psychostimulants caffeine and cotinine, therapeutic opioids and cardiovascular drugs, while in the river section affected by the local municipal and industrial wastewater inputs, antibiotic drugs became clearly predominant, especially in fish tissue samples. The apparent bioconcentration factors (BCFs) of investigated PhACs varied over several orders of magnitude, from 0.02 ± 0.01 L kg-1 for O-desmethyl tramadol in fish muscle to 784 ± 260 L kg-1 for terbinafine in fish liver, indicating rather large differences in their bioconcentration potential and affinity to different tissues, with the tissue-specific BCFs increasing in the following order: muscle < gills < gonads < heart < liver < kidneys. The bioconcentration potential of most of the PhACs included in this study was only low to moderate however moderately high BCFs of certain PhACs (e.g. sertraline, terbinafine, loratadine, diazepam and azithromycin) in some tissues should be taken into consideration when assessing their potential environmental risks. Moreover, it was shown that BCFs could be strongly affected by biotransformation in fish. Risk prioritization based on risk quotient (RQ) and ToxPi index, revealed antibiotics, in particular azithromycin, and therapeutic psychoactive substances as the most hazardous pharmaceutical contaminants in the Sava River.
Collapse
Affiliation(s)
- Senka Terzic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia.
| | - Klaudija Ivankovic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Karlo Jambrosic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Bozidar Kurtovic
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| | - Marijan Ahel
- Division for Marine and Environmental Research, Ruder Boskovic Institute, Bijenicka c. 54, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Saaristo M, Sharp S, McKenzie R, Hinwood A. Pharmaceuticals in biota: The impact of wastewater treatment plant effluents on fish in Australia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124695. [PMID: 39122170 DOI: 10.1016/j.envpol.2024.124695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Globally, pharmaceuticals and personal care products (PPCPs) are detected in surface waters receiving wastewater, yet their presence in biota, remain largely understudied. To address this, we conducted a study that measured 46 PPCPs in spot water samples and fish caught up- and downstream from wastewater treatment plants (WWTPs) in Victoria, Australia. We sampled 15 sites located along four waterways following a 3-site design: WWTP-discharge('hotspot'), 'upstream'(∼2 km) and 'downstream'(∼2 km). Spot water and fish were also sampled at reference sites >100 km from WWTP discharge (n = 3). Additionally, spot water samples were taken from WWTP effluent outflows (n = 3). From each locality, we analysed 3-12 fish (n = 131 total). In waterways, passive samplers (POCIS; ∼28d, n = 19 PPCPs) were also deployed. Individual fish (axial muscle) and water were analysed with LC-MS-MS. We found that PPCP concentrations in environmental surface water ranged from<0.02-0.97 μg/L. In WWTP effluent, the range was <0.02-1.4 μg/L. Of the 46 PPCPs analysed, 12 were detected in spot water samples and five in fish. In water, the highest concentration detected was for antidepressant venlafaxine (3 μg/L). The most frequently detected PPCPs: venlafaxine (54.9%), metoprolol (41.2%), propranolol (29.4%), carbamazepine (29.4%), caffeine (17.6%) and sulfamethoxazole (17.6%). Out of 131 fish analysed, 35 fish had detectable levels of PPCPs in the muscle tissue. The highest muscle concentrations were: venlafaxine (150 μg/kg, redfin perch), and sertraline (100 μg/kg, eel). Bioaccumulation factors ranged from 104 to 341L/kg for venlafaxine in redfins, 21-1,260L/kg for carbamazepine in redfins and eels, and 367-3,333L/kg for sertraline in eels. Based on our human health risk calculations for venlafaxine, carbamazepine, sertraline, triclosan, and caffeine, consumption of fish does not pose a significant risk to human health. Despite this, most of the detected PPCPs in surface waters exceeded 10 ng/L trigger value, which has led to further investigations by EPA. Our study highlights the need for using multiple lines of evidence for estimating risks of PPCPs.
Collapse
Affiliation(s)
- Minna Saaristo
- Environment Protection Authority, EPA Science, Victoria, Australia.
| | - Simon Sharp
- Environment Protection Authority, EPA Science, Victoria, Australia
| | - Robert McKenzie
- Environment Protection Authority, EPA Science, Victoria, Australia
| | - Andrea Hinwood
- Environment Protection Authority, EPA Science, Victoria, Australia
| |
Collapse
|
3
|
Mohanthi S, Sutha J, Gayathri M, Ramesh M. Evaluation of the citalopram toxicity on early development of zebrafish: Morphological, physiological and biochemical responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124399. [PMID: 38906410 DOI: 10.1016/j.envpol.2024.124399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Citalopram, an antidepressant drug have been detected in different environmental matrices due to its high consumption. Previous study has proved that citalopram may alter the behaviour of aquatic organisms at environmentally relevant concentrations. However, scientific knowledge is still lacking on the ecotoxicological effects of citalopram on aquatic organisms. For this reason, the present study is aimed to investigate the potential toxicity of citalopram in terms of development, antioxidant, neurotoxicity, apoptosis, lipogenesis, and bone mineralization in embryonic and larval zebrafish (Danio rerio) at environmentally relevant concentrations. We noticed that citalopram exposure at 1 and 10 μg/L concentration delays hatching and heartbeat at 24, 48, 72 and 96 hpf. Exposure to citalopram also significantly increased mortality at 10 μg/L. Abnormal development with yolk sac edema, pericardial edema and scoliosis were also observed after citalopram treatment. In addition, citalopram significantly (P < 0.001) induced superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST) and lipid peroxidation (LPO) levels. A significant decrease in acetylcholine esterase (AChE) activity was also observed in citalopram exposed groups. We found significant dose-and time-dependent increases in apoptosis, lipogenesis, and bone mineralization. In conclusion, the findings of the present study can provide new insights on the ecotoxicity of citalopram in the aquatic environment.
Collapse
Affiliation(s)
- Sundaram Mohanthi
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Jesudass Sutha
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Murugesh Gayathri
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
4
|
Sims JL, Cole AR, Moran ZS, Mansfield CM, Possamai B, Rojo M, King RS, Matson CW, Brooks BW. The Tissue-Specific Eco-Exposome: Differential Pharmaceutical Bioaccumulation and Disposition in Fish among Trophic Positions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1894-1902. [PMID: 38888274 DOI: 10.1002/etc.5931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/28/2024] [Accepted: 05/12/2024] [Indexed: 06/20/2024]
Abstract
Though bioaccumulation of pharmaceuticals by aquatic organisms continues to receive scientific attention, the internal disposition of these contaminants among different tissue compartments of fish species has been infrequently investigated, particularly among fish at different trophic positions. We tested a human to fish biological read-across hypothesis for contaminant disposition by examining tissue-specific accumulation in three understudied species, longnose gar (Lepisosteus osseus; piscivore), gizzard shad (Dorosoma cepedianum; planktivore/detritivore), and smallmouth buffalo (Ictiobus bubalus; benthivore), from a river influenced by municipal effluent discharge. In addition to surface water, fish plasma, and brain, gill, gonad, liver, and lateral muscle fillet tissues were analyzed via isotope dilution liquid chromatography tandem mass spectrometry. Caffeine and sucralose, two common effluent tracers, were quantitated at low micrograms per liter levels in surface water, while an anticonvulsant, carbamazepine, was observed at levels up to 37 ng/L. The selective serotonin reuptake inhibitors (SSRIs) fluoxetine and sertraline and primary metabolites were detected in at least one tissue of all three species at low micrograms per kilogram concentrations. Within each species, brain and liver of select fish contained the highest levels of SSRIs compared to plasma and other tissues, which is generally consistent with human tissue disposition patterns. However, we observed differential accumulation among specific tissue types and species. For example, mean levels of sertraline in brain and liver tissues were 13.4 µg/kg and 1.5 µg/kg in gizzard shad and 1.3 µg/kg and 7.3 µg/kg in longnose gar, respectively. In contrast, smallmouth buffalo did not consistently accumulate SSRIs to detectable levels. Tissue-specific eco-exposome efforts are necessary to understand mechanisms associated with such marked bioaccumulation and internal dispositional differences among freshwater fish species occupying different trophic positions. Environ Toxicol Chem 2024;43:1894-1902. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Jaylen L Sims
- Department of Environmental Science, Baylor University, Waco, Texas, USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Alexander R Cole
- Department of Environmental Science, Baylor University, Waco, Texas, USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Zachary S Moran
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
- Department of Biology, Baylor University, Waco, Texas, USA
| | - Charles M Mansfield
- Department of Environmental Science, Baylor University, Waco, Texas, USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Bianca Possamai
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
- Department of Biology, Baylor University, Waco, Texas, USA
| | - Macarena Rojo
- Department of Environmental Science, Baylor University, Waco, Texas, USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Ryan S King
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
- Department of Biology, Baylor University, Waco, Texas, USA
| | - Cole W Matson
- Department of Environmental Science, Baylor University, Waco, Texas, USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, Texas, USA
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| |
Collapse
|
5
|
Grabicová K, Duchet C, Švecová H, Randák T, Boukal DS, Grabic R. The effect of warming and seasonality on bioaccumulation of selected pharmaceuticals in freshwater invertebrates. WATER RESEARCH 2024; 254:121360. [PMID: 38422695 DOI: 10.1016/j.watres.2024.121360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/26/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Multiple human-induced environmental stressors significantly threaten global biodiversity and ecosystem functioning. Climate warming and chemical pollution are two widespread stressors whose impact on freshwaters is likely to increase. However, little is known about the combined effects of warming on the bioaccumulation of environmentally relevant mixtures of emerging contaminants, such as pharmaceutically active compounds (PhACs) in freshwater biota. This study investigated the bioaccumulation of a mixture of 15 selected PhACs at environmentally relevant concentrations in common freshwater macroinvertebrate taxa, exposed to ambient temperatures and warming (+4 °C) during the warm and cold seasons in two outdoor mesocosm experiments. Nine PhACs (carbamazepine, cetirizine, clarithromycin, clindamycin, fexofenadine, telmisartan, trimethoprim, valsartan and venlafaxine) were dissipated faster in the warm season experiment than in the cold season experiment, while lamotrigine showed the opposite trend. The most bioaccumulated PhACs in macroinvertebrates were tramadol, carbamazepine, telmisartan, venlafaxine, citalopram and cetirizine. The bioaccumulation was taxon, season and temperature dependent, but differences could not be fully explained by the different water stability of the PhACs and their partitioning between water and leaf litter. The highest water-based bioaccumulation factors were found in Asellus and Planorbarius. Moreover, the bioaccumulation of some PhACs increased with warming in Planorbarius, suggesting that it could be used as a sentinel taxon in environmental studies of the effects of climate warming on PhAC bioaccumulation.
Collapse
Affiliation(s)
- Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic.
| | - Claire Duchet
- University of South Bohemia, Faculty of Science, Department of Ecosystem Biology, Branišovská 1645/31a, 370 05 České Budějovice, Czech Republic; Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Helena Švecová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - David S Boukal
- University of South Bohemia, Faculty of Science, Department of Ecosystem Biology, Branišovská 1645/31a, 370 05 České Budějovice, Czech Republic; Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| |
Collapse
|
6
|
Alzola-Andres M, Cerveny D, Domingo-Echaburu S, Lekube X, Ruiz-Sancho L, Brodin T, Orive G, Lertxundi U. Pharmaceutical residues in stranded dolphins in the Bay of Biscay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168570. [PMID: 37979850 DOI: 10.1016/j.scitotenv.2023.168570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
There is a growing concern about the presence of pharmaceuticals on the aquatic environment, while the marine environment has been much less investigated than in freshwater. Marine mammals are suitable sentinel species of the marine environment because they often feed at high trophic levels, have unique fat stores and long lifespan. Some small delphinids in particular serve as excellent sentinel species for contamination in the marine environment worldwide. To the best of our knowledge, no pharmaceuticals have been detected or reported in dolphins so far. In the present study, muscle, liver and blubber samples from three common dolphins (Delphinus delphis) and seven striped dolphins (Stenella coeruleoalba) stranded along the Basque Coast (northern Spain) were collected. A total of 95 pharmaceuticals based on detectability and predicted ability to bioaccumulate in fish were included in the liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. At least one pharmaceutical was found in 70 % of the individuals. Only three of the 95 monitored pharmaceuticals were detected in dolphin's tissues. Very low concentrations (<1 ng/g) of orphenadrine and pizotifen were found in liver and promethazine in blubber. Herein, the gap in the knowledge regarding the study organisms and marine environments with respect to pharmaceutical pollution, which demands further research to understand if pharmaceuticals are a threat for these apex predators, is highlighted and discussed.
Collapse
Affiliation(s)
| | - Daniel Cerveny
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, Vodnany, Czech Republic
| | - Saioa Domingo-Echaburu
- Osakidetza Basque Health Service, Debagoiena Integrated Health Organisation, Pharmacy Service, Nafarroa Hiribidea 16, 20500 Arrasate, Gipuzkoa, Spain
| | - Xabier Lekube
- Biscay Bay Environmental Biospecimen Bank (BBEBB), Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza 47, 48620 Plentzia, Basque Country, Spain; CBET+ Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, Research Centre for Experimental Marine Biology and Biotechnology PIE, University of the Basque Country UPV/EHU, Sarriena z/g, Leioa, Basque Country, Spain
| | - Leire Ruiz-Sancho
- AMBAR Elkartea Organisation, Ondarreta Ibilbidea z/g, 48620 Plentzia, Bizkaia, Spain
| | - Tomas Brodin
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| | - Unax Lertxundi
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, Vitoria-Gasteiz, Spain.
| |
Collapse
|
7
|
Giebułtowicz J, Grabicová K, Brooks BW, Grabic R. Influence of time-dependent sampling on the plasma metabolome and exposome of fish collected from an effluent-dependent pond. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167446. [PMID: 37778561 DOI: 10.1016/j.scitotenv.2023.167446] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Metabolomics is increasingly recognized as a useful approach to characterize environmental pollution gradients. While the performance of analytical procedures must be validated and documented, many studies only briefly describe sampling and sample storage. Here we advance our recent study on the influences of sampling delay and holding media on contaminants of emerging concern in fish plasma by targeted analysis. We specifically examined the metabolome and exposome of common carp under three conditions: plasma sampled immediately after field collection (t = 0 h) and then after 3 h (t = 3 h) or 20 h (t = 20 h) of holding fish in lab water. Plasma samples were analyzed using reversed-phase and HILIC chromatography with mass spectrometric detection. 6143 of the 12,904 compounds (after clustering features) varied among the groups. We observed different metabolite variation patterns depending on the sample collection time. We also identified several xenobiotics (2-Ethylhexyl sulfate, 6-Chloro-5-methyl-1H-benzotriazole) at concentrations generally found at the highest levels in plasma sampled immediately after field collection (t = 0 h). Both the metabolome and the exposome changed rapidly in fish plasma with a time lag, which indicates that obtaining relevant results is complicated by fish-holding conditions. We further identified that non-lethal, relatively low-volume blood sample collection was sufficient with this species, which presents ethical and practical advantages.
Collapse
Affiliation(s)
- Joanna Giebułtowicz
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic; Medical University of Warsaw, Faculty of Pharmacy, Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Banacha, PL-02-097 Warsaw, Poland.
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Bryan W Brooks
- Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| |
Collapse
|
8
|
Kilinc B, Akagunduz D, Ozdemir M, Kul A, Catal T. Hydrogen production using cocaine metabolite in microbial electrolysis cells. 3 Biotech 2023; 13:382. [PMID: 37920191 PMCID: PMC10618128 DOI: 10.1007/s13205-023-03805-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023] Open
Abstract
In this study, the effects of cocaine metabolite, benzoylecgonine, commonly found in wastewater on hydrogen production were investigated using microbial electrolysis cells. Benzoylecgonine dissolved in synthetic urine and human urine containing benzoylecgonine were inoculated to evaluate hydrogen production performance in microbial electrolysis cells. Microbial electrolysis cells were inoculated with synthetic urine and human urine containing the cocaine metabolite benzoylecgonine for hydrogen gas production performance. Gas production was observed and measured daily by gas chromatography. GC-MS was used to analyze the compounds found in human urine before and after operation in microbial electrolysis cells. The metabolite's pH values and optical density in microbial electrolysis cells were analyzed spectrophotometrically. Hydrogen gas was successfully produced in microbial electrolysis cells (~ 5.5 mL) at the end of the 24th day in the presence of benzoylecgonine in synthetic urine. Human urine containing benzoylecgonine also generated hydrogen in microbial electrolysis cells. In conclusion, microbial electrolysis cells can be used to remove cocaine metabolites from contaminated wastewater generating hydrogen gas. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03805-7.
Collapse
Affiliation(s)
- Burak Kilinc
- Istanbul Protein Research-Application and Inovation Center (PROMER), Uskudar University, 34662 Uskudar, Istanbul Turkey
| | - Dilan Akagunduz
- Istanbul Protein Research-Application and Inovation Center (PROMER), Uskudar University, 34662 Uskudar, Istanbul Turkey
| | - Murat Ozdemir
- Personalized Medicine Application and Research Center (KIMER), Uskudar University, 34662 Uskudar, Istanbul Turkey
| | - Aykut Kul
- Department of Analytical Chemistry, Istanbul University, 34116 Fatih, Istanbul Turkey
| | - Tunc Catal
- Istanbul Protein Research-Application and Inovation Center (PROMER), Uskudar University, 34662 Uskudar, Istanbul Turkey
- Department of Molecular Biology and Genetics, Uskudar University, 34662 Uskudar, Istanbul Turkey
| |
Collapse
|
9
|
Al-Hazmi HE, Mohammadi A, Hejna A, Majtacz J, Esmaeili A, Habibzadeh S, Saeb MR, Badawi M, Lima EC, Mąkinia J. Wastewater reuse in agriculture: Prospects and challenges. ENVIRONMENTAL RESEARCH 2023; 236:116711. [PMID: 37487927 DOI: 10.1016/j.envres.2023.116711] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Sustainable water recycling and wastewater reuse are urgent nowadays considering water scarcity and increased water consumption through human activities. In 2015, United Nations Sustainable Development Goal 6 (UN SDG6) highlighted the necessity of recycling wastewater to guarantee water availability for individuals. Currently, wastewater irrigation (WWI) of crops and agricultural land appears essential. The present work overviews the quality of treated wastewater in terms of soil microbial activities, and discusses challenges and benefits of WWI in line with wastewater reuse in agriculture and aquaculture irrigation. Combined conventional-advanced wastewater treatment processes are specifically deliberated, considering the harmful impacts on human health arising from WWI originating from reuse of contaminated water (salts, organic pollutants, toxic metals, and microbial pathogens i.e., viruses and bacteria). The comprehensive literature survey revealed that, in addition to the increased levels of pathogen and microbial threats to human wellbeing, poorly-treated wastewater results in plant and soil contamination with toxic organic/inorganic chemicals, and microbial pathogens. The impact of long-term emerging pollutants like plastic nanoparticles should also be established in further studies, with the development of standardized analytical techniques for such hazardous chemicals. Likewise, the reliable, long-term and extensive judgment on heavy metals threat to human beings's health should be explored in future investigations.
Collapse
Affiliation(s)
- Hussein E Al-Hazmi
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Ali Mohammadi
- Department of Engineering and Chemical Sciences, Karlstad University, 65188, Karlstad, Sweden.
| | - Aleksander Hejna
- Institute of Materials Technology, Poznan University of Technology, Poznań, Poland
| | - Joanna Majtacz
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Amin Esmaeili
- Department of Chemical Engineering, School of Engineering Technology and Industrial Trades, University of Doha for Science and Technology (UDST), 24449, Arab League St, Doha, Qatar
| | - Sajjad Habibzadeh
- Surface Reaction and Advanced Energy Materials Laboratory, Chemical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, G. Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine, Nancy, France
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Jacek Mąkinia
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233, Gdańsk, Poland
| |
Collapse
|
10
|
Huang J, Zhang S, Tan M, Shen J, Zhao H, Wu D. Occurrence, removal, and risk assessment of emerging contaminants in aquatic products processing sewage treatment plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117772-117784. [PMID: 37874520 DOI: 10.1007/s11356-023-30458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Emerging contaminants (ECs) in aquatic environments have attracted attention due to their wide distribution and potential ecotoxicities. Sewage treatment plants (STPs) are proven to be the major source of ECs in the aquatic environment, while there remains insufficient understanding of the removal and risk assessment of ECs in STPs. Here, we clarified the degradation and risk impact of 13 ECs in two aquatic product processing sewage treatment plants (APPSTPs) along the southeast coast of China. The concentrations of ECs followed the order: endocrine-disrupting chemicals (1877.85-15,398.02 ng/L in influent, 3.37-44.47 ng/L in effluent) > > sulfonamide antibiotics (SAs, 75.14-906.19 ng/L in influent, 1.14-15.33 ng/L in effluent) > pharmaceutical and personal care products (PPCPs, 44.47-589.93 ng/L in influent, 2.54-34.16 ng/L in effluent) ≈ fluoroquinolone antibiotic (54.76-434.83 ng/L in influent, 10.75-32.82 ng/L in effluent) > other antibiotics (16.21-51.96 ng/L in influent, 0.68-6.17 ng/L in effluent). Moreover, the concentrations of PPCPs (decreased by 55.33-87.65% in peak fishing season) and antibiotics (increased by 44.99% in peak fishing season) were affected by fishing activities. In particular, the sequencing batch reactor (SBR) process had a better removal effect than the anaerobic-anoxic-oxic (A2/O) process on the treatment of some contaminants (e.g., norfloxacin and nonylphenol). Risk evaluations of ECs demonstrated that nonylphenol and SAs were at high- and low-risk states, respectively. Overall, our results provide important information for the degradation treatment of ECs, which is essential for pollutant management policy formulation.
Collapse
Affiliation(s)
- Jialu Huang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Shuchi Zhang
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Mengyu Tan
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Jie Shen
- Huzhou Municipal Ecology and Environment Bureau, Zhejiang Province, Huzhou, 313000, China
| | - Haiyan Zhao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Donglei Wu
- College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China.
- Department of Environmental Engineering, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Husain Khan A, Abdul Aziz H, Palaniandy P, Naushad M, Cevik E, Zahmatkesh S. Pharmaceutical residues in the ecosystem: Antibiotic resistance, health impacts, and removal techniques. CHEMOSPHERE 2023; 339:139647. [PMID: 37516325 DOI: 10.1016/j.chemosphere.2023.139647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
Hospital wastewater has emerged as a major category of environmental pollutants over the past two decades, but its prevalence in freshwater is less well documented than other types of contaminants. Due to compound complexity and improper operations, conventional treatment is unable to remove pharmaceuticals from hospital wastewater. Advanced treatment technologies may eliminate pharmaceuticals, but there are still concerns about cost and energy use. There should be a legal and regulatory framework in place to control the flow of hospital wastewater. Here, we review the latest scientific knowledge regarding effective pharmaceutical cleanup strategies and treatment procedures to achieve that goal. Successful treatment techniques are also highlighted, such as pre-treatment or on-site facilities that control hospital wastewater where it is used in hospitals. Due to the prioritization, the regulatory agencies will be able to assess and monitor the concentration of pharmaceutical residues in groundwater, surface water, and drinking water. Based on the data obtained, the conventional WWTPs remove 10-60% of pharmaceutical residues. However, most PhACs are eliminated during the secondary or advanced therapy stages, and an overall elimination rate higher than 90% can be achieved. This review also highlights and compares the suitability of currently used treatment technologies and identifies the merits and demerits of each technology to upgrade the system to tackle future challenges. For this reason, pharmaceutical compound rankings in regulatory agencies should be the subject of prospective studies.
Collapse
Affiliation(s)
- Afzal Husain Khan
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Pulau Pinang, Malaysia.
| | - Hamidi Abdul Aziz
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Pulau Pinang, Malaysia; Solid Waste Management Cluster, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia.
| | - Puganeshwary Palaniandy
- School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Pulau Pinang, Malaysia
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Emre Cevik
- Bioenergy Research Unit, Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, 1982, PO Box:1982, Dammam, 31441, Saudi Arabia
| | - Sasan Zahmatkesh
- Tecnologico de Monterrey, Escuela de Ingenieríay Ciencias, Puebla, Mexico.
| |
Collapse
|
12
|
Manjarrés-López DP, Peña-Herrera JM, Benejam L, Montemurro N, Pérez S. Assessment of wastewater-borne pharmaceuticals in tissues and body fluids from riverine fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121374. [PMID: 36858105 DOI: 10.1016/j.envpol.2023.121374] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Riverine fish in densely populated areas is constantly exposed to wastewater-borne contaminants from effluent discharges. These can enter the organism through the skin, gills or by ingestion. Whereas most studies assessing the contaminant burden in exposed fish have focused either on muscle or a limited set of tissues. Here we set out to generate a more comprehensive overview of the distribution of pollutants across tissues by analyzing a panel of matrices including liver, kidney, skin, brain, muscle, heart, plasma and bile. To achieve a broad analyte coverage with a minimal bias towards a specific contaminant class, sample extracts from four fish species were analyzed by High-Performance Liquid Chromatography (HPLC) - high-resolution mass spectrometry (HRMS) for the presence of 600 wastewater-borne pharmaceutically active compounds (PhACs) with known environmental relevance in river water through a suspect-screening analysis. A total of 30 compounds were detected by suspect screening in at least one of the analyzed tissues with a clear prevalence of antidepressants. Of these, 15 were detected at confidence level 2.a (Schymanski scale), and 15 were detected at confidence level 1 following confirmation with authentic standards, which furthermore enabled their quantification. The detected PhACs confirmed with level 1 of confidence included acridone, acetaminophen, caffeine, clarithromycin, codeine, diazepam, diltiazem, fluoxetine, ketoprofen, loratadine, metoprolol, sertraline, sotalol, trimethoprim, and venlafaxine. Among these substances, sertraline stood out as it displayed the highest detection frequency. The values of tissue partition coefficients for sertraline in the liver, kidney, brain and muscle were correlated with its physicochemical properties. Based on inter-matrix comparison of detection frequencies, liver, kidney, skin and heart should be included in the biomonitoring studies of PhACs in riverine fish.
Collapse
Affiliation(s)
| | | | - L Benejam
- Aquatic Ecology Group, University of Vic - Central University of Catalonia, c/de la Laura. 13, 08500, Vic, Barcelona, Spain
| | - N Montemurro
- ONHEALTH, IDAEA-CSIC, c/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - S Pérez
- ONHEALTH, IDAEA-CSIC, c/Jordi Girona 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
13
|
Pravdová M, Kolářová J, Grabicová K, Janáč M, Randák T, Ondračková M. Response of Parasite Community Composition to Aquatic Pollution in Common Carp ( Cyprinus carpio L.): A Semi-Experimental Study. Animals (Basel) 2023; 13:ani13091464. [PMID: 37174501 PMCID: PMC10177495 DOI: 10.3390/ani13091464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
The response of parasite communities to aquatic contamination has been shown to vary with both type of pollutant and parasite lifestyle. In this semi-experimental study, we examined uptake of pharmaceutical compounds in common carp (Cyprinus carpio L.) restocked from a control pond to a treatment pond fed with organic pollution from a sewage treatment plant and assessed changes in parasite community composition and fish biometric parameters. The parasite community of restocked fish changed over the six-month exposure period, and the composition of pharmaceutical compounds in the liver and brain was almost the same as that in fish living in the treatment pond their whole life. While fish size and weight were significantly higher in both treatment groups compared to the control, condition indices, including condition factor, hepatosomatic index, and splenosomatic index, were significantly higher in control fish. Parasite diversity and species richness decreased at the polluted site, alongside a significant increase in the abundance of a single parasite species, Gyrodactylus sprostonae. Oviparous monogeneans of the Dactylogyridae and Diplozoidae families and parasitic crustaceans responded to pollution with a significant decrease in abundance, the reduction in numbers most likely related to the sensitivity of their free-living stages to pollution.
Collapse
Affiliation(s)
- Markéta Pravdová
- Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 603 00 Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Jitka Kolářová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Kateřina Grabicová
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Michal Janáč
- Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 603 00 Brno, Czech Republic
| | - Tomáš Randák
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Markéta Ondračková
- Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 603 00 Brno, Czech Republic
| |
Collapse
|
14
|
Žabka D, Vojs Staňová A, Horáková I, Butor Škulcová A, Grabic R, Špalková V, Gál M, Mackuľak T. Bioaccumulation as a method of removing psychoactive compounds from wastewater using aquatic plants. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1223:123717. [PMID: 37148853 DOI: 10.1016/j.jchromb.2023.123717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 03/24/2023] [Accepted: 04/08/2023] [Indexed: 05/08/2023]
Abstract
Since WWTPs are not able to eliminate all psychoactive pharmaceuticals, these compounds become a part of the aquatic ecosystem. Our results indicate that compounds such as codeine or citalopram are eliminated with low efficiency (<38%), and compounds such as venlafaxine, oxazepam, or tramadol even with almost no efficiency. Lower elimination efficiency may be caused by the accumulation of these compounds in the wastewater treatment process. This study is focused on the possibility to remove problematic psychoactive compounds using aquatic plants. HPLC-MS analysis of the leaf extract obtained from studied plants showed that the amount of accumulated methamphetamine was highest in Pistia stratiotes and lower in the leaves of Limnophila sessiliflora and Cabomba caroliniana. However, tramadol and venlafaxine were accumulated considerably only in Cabomba caroliniana. Our study demonstrates that especially these three compounds - tramadol, venlafaxine, and methamphetamine, are accumulated in aquatic plants and can be removed from the aquatic environment. In our study was also observed that helophytic aquatic plants show a higher ability to remove psychoactive compounds from wastewater. Iris pseudacorus showed the best results in selected pharmaceuticals removal with no bioaccumulation effect in leaves or roots.
Collapse
Affiliation(s)
- D Žabka
- Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovak Republic.
| | - A Vojs Staňová
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, SK-842 15 Bratislava, Slovak Republic; University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25 Vodnany, Czech Republic
| | - I Horáková
- Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovak Republic
| | - A Butor Škulcová
- Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovak Republic
| | - R Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, CZ-389 25 Vodnany, Czech Republic
| | - V Špalková
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovak Republic; Department of Zoology and Fisheries, Czech University of Life Sciences, Prague, Czech Republic
| | - M Gál
- Department of Inorganic Technology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovak Republic
| | - T Mackuľak
- Department of Environmental Engineering, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovak Republic
| |
Collapse
|
15
|
Wronski AR, Brooks BW. Global occurrence and aquatic hazards of antipsychotics in sewage influents, effluent discharges and surface waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121042. [PMID: 36646406 DOI: 10.1016/j.envpol.2023.121042] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/09/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Despite increasing reports of pharmaceuticals in surface waters, aquatic hazard information remains limited for many contaminants, particularly for sublethal, chronic responses plausibly linked to molecular initiation events that are largely conserved across vertebrates. Here, we critically examined available refereed information on the occurrence of 67 antipsychotics in wastewater effluent and surface waters. Because the majority of sewage remains untreated around the world, we also examined occurrence in sewage influents. When sufficient information was available, we developed probabilistic environmental exposure distributions (EEDs) for each compound in each matrix by geographic region. We then performed probabilistic environmental hazard assessments (PEHAs) using therapeutic hazard values (THVs) of each compound, due to limited sublethal aquatic toxicology information for this class of pharmaceuticals. From these PEHAs, we determined predicted exceedances of the respective THVs for each chemical among matrices and regions, noting that THV values of antipsychotic contaminants are typically lower than other classes of human pharmaceuticals. Diverse exceedances were observed, and these aquatic hazards varied by compound, matrix and geographic region. In wastewater effluent discharges and surface waters, sulpiride was the most detected antipsychotic; however, percent exceedances of the THV were minimal (0.6%) for this medication. In contrast, we observed elevated aquatic hazards for chlorpromazine (30.5%), aripiprazole (37.5%), and perphenazine (68.7%) in effluent discharges, and for chlorprothixene (35.4%) and flupentixol (98.8%) in surface waters. Elevated aquatic hazards for relatively understudied antipsychotics were identified, which highlight important data gaps for future environmental chemistry and toxicology research.
Collapse
Affiliation(s)
- Adam R Wronski
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, USA.
| |
Collapse
|
16
|
Gómez-Regalado MDC, Martín J, Santos JL, Aparicio I, Alonso E, Zafra-Gómez A. Bioaccumulation/bioconcentration of pharmaceutical active compounds in aquatic organisms: Assessment and factors database. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160638. [PMID: 36473663 DOI: 10.1016/j.scitotenv.2022.160638] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
There is increasing evidence that the presence of certain pharmaceuticals in the environment leads to biota exposure and constitute a potential risk for ecosystems. Bioaccumulation is an essential focus of risk assessment to evaluate at what degree emerging contaminants are a hazard both to the environment and the individuals that inhabit it. The main goals of the present review are 1) to summarize and describe the research and factors that should be taken into account in the evaluation of bioaccumulation of pharmaceuticals in aquatic organisms; and 2) to provide a database and a critical review of the bioaccumulation/bioconcentration factors (BAF or BCF) of these compounds in organisms of different trophic levels. Most studies fall into one of two categories: laboratory-scale absorption and purification tests or field studies and, to a lesser extent, large-scale, semi-natural system tests. Although in the last 5 years there has been considerable progress in this field, especially in species of fish and molluscs, research is still limited on other aquatic species like crustaceans or algae. This revision includes >230 bioconcentration factors (BCF) and >530 bioaccumulation factors (BAF), determined for 113 pharmaceuticals. The most commonly studied is the antidepressant group, followed by diclofenac and carbamazepine. There is currently no reported accumulation data on certain compounds, such as anti-cancer drugs. BCFs are highly influenced by experimental factors (notably the exposure level, time or temperature). Field BAFs are superior to laboratory BCFs, highlighting the importance of field studies for reliable assessments and in true environmental conditions. BAF data appears to be organ, species and compound-specific. The potential impact on food web transfer is also considered. Among different aquatic species, lower trophic levels and benthic organisms exhibit relatively higher uptake of these compounds.
Collapse
Affiliation(s)
| | - Julia Martín
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África 7, E-41011 Seville, Spain.
| | - Juan Luis Santos
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África 7, E-41011 Seville, Spain
| | - Irene Aparicio
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África 7, E-41011 Seville, Spain
| | - Esteban Alonso
- Department of Analytical Chemistry, Escuela Politécnica Superior, University of Seville, C/ Virgen de África 7, E-41011 Seville, Spain
| | - Alberto Zafra-Gómez
- Department of Analytical Chemistry, University of Granada, Sciences Faculty, E-18071 Granada, Spain; Instituto de Investigación Biosanitaria, Ibs.Granada, E-18016 Granada, Spain.
| |
Collapse
|
17
|
Cui J, Zhang Y, Liu L, Zhang Q, Xu S, Guo MY. Polystyrene microplastics induced inflammation with activating the TLR2 signal by excessive accumulation of ROS in hepatopancreas of carp (Cyprinus carpio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114539. [PMID: 36640574 DOI: 10.1016/j.ecoenv.2023.114539] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Polystyrene microplastics (PS-MPs) affect the immune defense function on carp (Cyprinus carpio). The PS-MPs model of carp was established by feeding with PS-MPs particle size of 8 µm and concentration of 1000 ng/L water. Hepatopancreas function test revealed the activities of AKP, ALT, AST and LDH abnormal increase. PS-MPs induced tissue damage and lead to abnormal hepatopancreas function. The PS-MPs also induced a oxidative stress with the antioxidant enzymes SOD, CAT, GSH-PX, and T-AOC activities decreasing and reactive oxygen species (ROS) excessive accumulation. PS-MPs activated the Toll like receptor-2 (TLR2) signaling pathway. The mRNA and protein expressions of TLR2, Myeloid differentiation primary response 88 (MyD88), tumor necrosis factor receptor-associated factor 6 (TRAF6), NF-κB p65, Tumor necrosis factor (TNF-α), Interleukin-1β (IL-1β), Inducible Nitric Oxide Synthase (iNOS), and cycooxygenase 2(COX2) was revealed increased in both hepatopancreas and hepatocytes with the qPCR and Western blotting analysis mode. ELISA showed the expressions of TNF-α, IL-1β, iNOS, and COX2 inflammatory molecule were increased in both hepatopancreas and hepatocytes. The results showed that PS-MPs caused a serious injure in the hepatopancreas and brought serious effects on the inflammatory response of carp. The present study displayed the harm caused by PS-MPs in freshwater fish, and provided some suggestions and references for toxicological studies of microplastics in freshwater environment.
Collapse
Affiliation(s)
- Jie Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yanhe Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Lin Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Qirui Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Meng-Yao Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, People's Republic of China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, People's Republic of China.
| |
Collapse
|
18
|
Grabicová K, Randák T, Cerveny D, Turek J, Kolářová J, Brooks BW, Grabic R. Influence of time-dependent sampling on fish plasma levels of select pharmaceuticals and per- and polyfluoroalkyl substances (PFASs). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120338. [PMID: 36209932 DOI: 10.1016/j.envpol.2022.120338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/08/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Determining pharmaceutical levels in fish plasma represents an increasingly valuable approach for environmental assessments of pharmaceuticals. These fish plasma observations are compared to human therapeutic plasma doses because of the high evolutionary conservation of many drug targets among vertebrates. In the present study, we initially identified highly variable information regarding plasma sampling practices in the literature and then tested the hypothesis that fish plasma levels of selected pharmaceuticals and per- and polyfluoroalkyl substances (PFASs) would not change with time to process samples from the field. After common carp were placed in a wastewater-fed pond for one month, we immediately sampled fish plasma nonlethally in the field or after transferring fish to clean water and held them under these conditions for either 3 or 20 h. We then quantitated pharmaceuticals in water, and pharmaceuticals and PFASs in plasma by LC-MSMS. Whereas plasma levels of most pharmaceuticals decreased even after 3 h that fish spent in clean water, plasma concentrations of the PFASs examined here remained stable over 20 h. Collectively, our examination of these time-dependent sampling approaches and associated findings highlight the importance of appropriate and consistent sampling for bioaccumulation studies, biomonitoring activities, and aquaculture product safety evaluations.
Collapse
Affiliation(s)
- Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic.
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Daniel Cerveny
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jan Turek
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Jitka Kolářová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Bryan W Brooks
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic; Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| |
Collapse
|
19
|
Magnuson JT, Longenecker-Wright Z, Havranek I, Monticelli G, Brekken HK, Kallenborn R, Schlenk D, Sydnes MO, Pampanin DM. Bioaccumulation potential of the tricyclic antidepressant amitriptyline in a marine Polychaete, Nereis virens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158193. [PMID: 35995163 DOI: 10.1016/j.scitotenv.2022.158193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
The continual discharge of pharmaceuticals from wastewater treatment plants (WWTPs) into the marine environment, even at concentrations as low as ng/L, can exceed levels that induce sublethal effects to aquatic organisms. Amitriptyline, a tricyclic antidepressant, is the most prescribed antidepressant in Norway, though the presence, potential for transport, and uptake by aquatic biota have not been assessed. To better understand the release and bioaccumulative capacity of amitriptyline, laboratory exposure studies were carried out with field-collected sediments. Influent and effluent composite samples from the WWTP of Stavanger (the 4th largest city in Norway) were taken, and sediment samples were collected in three sites in the proximity of this WWTP discharge at sea (WWTP discharge (IVAR), Boknafjord, and Kvitsøy (reference)). Polychaetes (Nereis virens) were exposed to field-collected sediments, as well as to Kvitsøy sediment spiked with 3 and 30 μg/g amitriptyline for 28 days. The WWTP influent and effluent samples had concentrations of amitriptyline of 4.93 ± 1.40 and 6.24 ± 1.39 ng/L, respectively. Sediment samples collected from IVAR, Boknafjord, and Kvitsøy had concentrations of 6.5 ± 3.9, 15.6 ± 12.7, and 12.7 ± 8.0 ng/g, respectively. Concentrations of amitriptyline were below the limit of detection in polychaetes exposed to sediment collected from Kvitsøy and IVAR, and 5.2 ± 2.8 ng/g in those exposed to Boknafjord sediment. Sediment spiked with 3 and 30 μg/g amitriptyline had measured values of 423.83 ± 33.1 and 763.2 ± 180.5 ng/g, respectively. Concentrations in worms exposed to the amended sediments were 9.5 ± 0.2 and 56.6 ± 2.2 ng/g, respectively. This is the first known study to detect measurable concentrations of amitriptyline in WWTP discharge in Norway and accumulation in polychaetes treated with field-collected sediments, suggesting that amitriptyline has the potential for trophic transfer in marine systems.
Collapse
Affiliation(s)
- Jason T Magnuson
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway.
| | - Zoe Longenecker-Wright
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Ivo Havranek
- Faculty of Chemistry, Biotechnology & Food Sciences, Norwegian University of Life Sciences, Ås 1433, Norway
| | - Giovanna Monticelli
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Hans Kristian Brekken
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Roland Kallenborn
- Faculty of Chemistry, Biotechnology & Food Sciences, Norwegian University of Life Sciences, Ås 1433, Norway
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Magne O Sydnes
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Daniela M Pampanin
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger 4036, Norway
| |
Collapse
|
20
|
Chaves MDJS, Kulzer J, Pujol de Lima PDR, Barbosa SC, Primel EG. Updated knowledge, partitioning and ecological risk of pharmaceuticals and personal care products in global aquatic environments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1982-2008. [PMID: 36124562 DOI: 10.1039/d2em00132b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the last few decades, the occurrence of pharmaceuticals and personal care products (PPCPs) in aquatic environments has generated increasing public concern. In this review, data on the presence of PPCPs in environmental compartments from the past few years (2014-2022) are summarized by carrying out a critical survey of the partitioning among water, sediment, and aquatic organisms. From the available articles on PPCP occurrence in the environment, in Web of Science and Scopus databases, 185 articles were evaluated. Diclofenac, carbamazepine, caffeine, ibuprofen, ciprofloxacin, and sulfamethoxazole were reported to occur in 85% of the studies in at least one of the mentioned matrices. Risk assessment showed a moderate to high environmental risk for these compounds worldwide. Moreover, bioconcentration factors showed that sulfamethoxazole and trimethoprim can bioaccumulate in aquatic organisms, while ciprofloxacin and triclosan present bioaccumulation potential. Regarding spatial distribution, the Asian and European continents presented most studies on the occurrence and effects of PPCPs on the environment, while Africa and Asia are the most contaminated continents. In addition, the impact of COVID-19 on environmental contamination by PPCPs is discussed.
Collapse
Affiliation(s)
- Marisa de Jesus Silva Chaves
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| | - Jonatas Kulzer
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| | - Paula da Rosa Pujol de Lima
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| | - Sergiane Caldas Barbosa
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| | - Ednei Gilberto Primel
- Chemistry and Food School, Laboratório de Análise de Compostos Orgânicos e Metais (LACOM), Federal University of Rio Grande, Av Itália, km 8, Rio Grande, Rio Grande do Sul, RS 96201-900, Brazil.
| |
Collapse
|
21
|
Guan W, Li K, Li K. Bacterial communities in co-cultured fish intestines and rice field soil irrigated with aquaculture wastewater. AMB Express 2022; 12:132. [PMID: 36272009 DOI: 10.1186/s13568-022-01475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/09/2022] [Indexed: 11/10/2022] Open
Abstract
In some regions, integrated rice-fish farms have been developed to balance the needs of aquaculture wastewater discharge and rice field irrigation. In this type of aqua-agriculture system, soil is irrigated with aquaculture wastewater, and intestinal bacteria in cultured fish species likely impact soil bacteria through irrigation. However, little is known about the relationship between soil bacteria and intestinal bacteria in some carp species commonly co-cultured in some Asian regions. Therefore, we co-cultured five carp species in aquaculture ponds and used the aquaculture wastewater to irrigate rice fields for over 5 years, and then compared carp intestinal bacterial communities with rice field soil bacterial communities. The results from analysis of similarity and SourceTracker analysis showed that a low similarity (R = 0.7908, P = 0.001) and contribution (an average of 9.9% of bacterial genera) of intestinal bacteria to soil bacterial communities although 77.5% of soil bacterial genera were shared by intestinal bacteria. Our results also indicated that intestinal bacteria in the numerically dominant fish species in the co-culture system do not necessarily impact soil bacteria more significantly than those of less abundant carp species, and that intestinal bacterial communities in one single fish species may impact certain soil bacterial phyla more significantly than others. Our results provide a better understanding of the impact of aquaculture wastewater on rice fields and will be helpful for the development of this type of aqua-agriculture system.
Collapse
Affiliation(s)
- Weibing Guan
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Kui Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| | - Kejun Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
22
|
Grabicová K, Vojs Staňová A, Švecová H, Nováková P, Kodeš V, Leontovyčová D, Brooks BW, Grabic R. Invertebrates differentially bioaccumulate pharmaceuticals: Implications for routine biomonitoring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119715. [PMID: 35809709 DOI: 10.1016/j.envpol.2022.119715] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/10/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Surface water quality monitoring programs have been developed to examine traditional contaminants, such as persistent organic pollutants (POPs). However, urbanization, which is increasing around the world, is increasing discharge of treated wastewater and raw sewage in many regions. Pharmaceuticals and their metabolites represent typical markers of such trajectories in urbanization. We selected an ongoing monitoring program, which was designed for routine surveillance of nonionizable POPs in different aquatic matrices, to examine the occurrence of 67 pharmaceuticals and their metabolites in water and multiple bioindicator matrices: benthic invertebrates, juvenile fish, and adult fish (plasma and muscle tissue) from ten river systems with varying levels of watershed development. In addition, we placed zebra mussels and passive samplers in situ for a fixed period. A statistically significant relationship between pharmaceutical levels in passive samplers and biota was found for caged zebra mussels and benthic invertebrates, while only a few pharmaceuticals were identified in fish matrices. Invertebrates, which have received relatively limited study for pharmaceutical bioaccumulation, accumulated more pharmaceuticals than fish, up to thirty different substances. The highest concentration was observed for sertraline in zebra mussels and telmisartan in benthic invertebrates (83 and 31 ng/g ww, respectively). Our results across diverse study systems indicate that ongoing surface water quality monitoring programs, which were originally designed for traditional organic pollutants, need to be revised to account for bioaccumulation dynamics of pharmaceuticals and other ionizable contaminants. Aquatic monitoring programs routinely examine accumulation of nonionizable organic pollutants; however, we identified that these efforts need to be revised to account for bioaccumulation of ionizable contaminants, which reached higher levels in invertebrates than in fish.
Collapse
Affiliation(s)
- Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic.
| | - Andrea Vojs Staňová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic; Comenius University in Bratislava, Faculty of Natural Sciences, Department of Analytical Chemistry, Ilkovičova 6, SK-842 15, Bratislava, Slovak Republic
| | - Helena Švecová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Petra Nováková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Vít Kodeš
- Czech Hydrometeorological Institute, Section of Water Quality, Na Šabatce 17, CZ-143 06, Prague 4, Czech Republic
| | - Drahomíra Leontovyčová
- Czech Hydrometeorological Institute, Section of Water Quality, Na Šabatce 17, CZ-143 06, Prague 4, Czech Republic
| | - Bryan W Brooks
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic; Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX, 76798, USA
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| |
Collapse
|
23
|
Koubová A, Van Nguyen T, Grabicová K, Burkina V, Aydin FG, Grabic R, Nováková P, Švecová H, Lepič P, Fedorova G, Randák T, Žlábek V. Metabolome adaptation and oxidative stress response of common carp (Cyprinus carpio) to altered water pollution levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119117. [PMID: 35276249 DOI: 10.1016/j.envpol.2022.119117] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/15/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Treated wastewater ponds (TWPs) serve as recipients and passive tertiary treatment mediators for recycled water. These nutrient-rich habitats are increasingly utilised in aquaculture, nevertheless multiple loads of various contaminants with adverse effects on aquatic fauna, including fish, have been recorded. In the present study, we investigated the effects of fish transfer in response to altered levels of pollution on liver metabolic profiles and tissue-specific oxidative stress biomarkers during short- and long-term exposure. In a field experiment, common carp (Cyprinus carpio) originating in severely polluted TWP were restocked after one year to a reference pond with a background pollutant concentration typical of the regional river. In contrast, fish that originated in the reference pond were restocked to TWP. Fish were sampled 0, 7, 14, 60, and 180 days after restocking and fish liver, kidney, intestine, and gill tissues were subjected to biomarker analysis. Pharmaceutically active compounds (PhACs) and metabolic profiles were determined in fish liver using liquid chromatography high-resolution mass spectrometry (LC-HRMS). Fish transferred from reference to polluted pond increased the antioxidant response and absorbed PhACs into metabolism within seven days. Fish liver metabolic profiles were shifted rapidly, but after 180 days to a lesser extent than profiles in fish already adapted in polluted water. Restocked fish from polluted to reference pond eliminated PhACs during the short phase within 14 days, and the highest antioxidant response accompanied the depuration process. Numerous elevated metabolic compounds persisted in such exposed fish for at least 60 days. The period of two weeks was suggested as sufficient for PhACs depuration, but more than two months after restocking is needed for fish to stabilise their metabolism. This study contributed to determining the safe handling with marketed fish commonly restocked to wastewaters and clarified that water pollution irreversibly altered fish metabolic profile.
Collapse
Affiliation(s)
- Anna Koubová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic.
| | - Tuyen Van Nguyen
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Viktoriia Burkina
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Farah Gönül Aydin
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic; Ankara University, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Diskapi, 06110, Altindag, Ankara, Turkey
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Petra Nováková
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Helena Švecová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Pavel Lepič
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Ganna Fedorova
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| | - Vladimír Žlábek
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25, Vodňany, Czech Republic
| |
Collapse
|
24
|
Development of a USE/d-SPE and targeted DIA-Orbitrap-MS acquisition methodology for the analysis of wastewater-derived organic pollutants in fish tissues and body fluids. MethodsX 2022; 9:101705. [PMID: 35518922 PMCID: PMC9062737 DOI: 10.1016/j.mex.2022.101705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Pharmaceuticals (PhACs) are partially removed during wastewater treatment and end up in the receiving waters. As a result, aquatic biota is continuously exposed to a wide range of potentially hazardous contaminants such as PhACs. Therefore, fish could be a good bio indicator to give a direct measure of the occurrence of PhACs in the aquatic environment. In this study, a robust analytical method has been optimized and validated for the determination of 81 organic compounds, mainly PhACs, in seven wild fish tissue types (liver, muscle, pancreas, kidney, skin, heart, and brain) and two body fluids (plasma and bile). Solid samples extraction was performed combining a procedure based on bead beating tissue homogenization plus ultrasound extraction followed by dispersive solid-phase extraction (dSPE) clean-up using zirconia and C18 sorbents for solid matrices, whereas bile and plasma were diluted. The key aspects of this method are: • The method facilitated the simultaneous extraction of 81 PhACs of a wide range of polarity (logP from -4.9 to 5.6) in tissues with variable lipid content. • The validation was performed using Cyprinus carpio at 20 ng g−1 and 200 ng g−1 for solid tissues, 50 ng mL−1 and 500 ng mL−1 for plasma, and 100 ng mL−1 and 1000 ng mL−1 for bile. Analyte detection was performed in LC-HRMS Q-Exactive Orbitrap system with full scan and targeted data-independent acquisition (DIA) mode for high-confidence and sensitive quantitation in either (+) or (-) ESI mode. • The majority of compounds presented recoveries between 40% and 70% and relative standard deviations (RSD) below 30%.
Collapse
|
25
|
Kovacs ED, Silaghi-Dumitrescu L, Roman C, Tian D. Structural and Metabolic Profiling of Lycopersicon esculentum Rhizosphere Microbiota Artificially Exposed at Commonly Used Non-Steroidal Anti-Inflammatory Drugs. Microorganisms 2022; 10:microorganisms10020254. [PMID: 35208709 PMCID: PMC8878439 DOI: 10.3390/microorganisms10020254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 12/10/2022] Open
Abstract
In this study, the effect of common non-steroidal anti-inflammatory drugs on Lycopersicon esculentum rhizosphere microbiota was monitored. The experiments were performed with artificially contaminated soil with ibuprofen (0.5 mg·kg−1), ketoprofen (0.2 mg·kg−1) and diclofenac (0.7 mg·kg−1). The results evidenced that the rhizosphere microbiota abundance decreased especially under exposure to diclofenac (187–201 nmol·g−1 dry weight soil) and ibuprofen (166–183 nmol·g−1 dry weight soil) if compared with control (185–240 nmol·g−1 dry weight soil), while the fungal/bacteria ratio changed significantly with exposure to diclofenac (<27%) and ketoprofen (<18%). Compared with control samples, the average amount of the ratio of Gram-negative/Gram-positive bacteria was higher in rhizosphere soil contaminated with ibuprofen (>25%) and lower in the case of diclofenac (<46%) contamination. Carbon source consumption increased with the time of assay in case of the control samples (23%) and those contaminated with diclofenac (8%). This suggests that rhizosphere microbiota under contamination with diclofenac consume a higher amount of carbon, but they do not consume a larger variety of its sources. In the case of contamination with ibuprofen and ketoprofen, the consumption of carbon source presents a decreasing tendency after day 30 of the assay. Rhizosphere microbiota emitting volatile organic compounds were also monitored. Volatile compounds belonging to alcohol, aromatic compounds, ketone, terpene, organic acids, aldehyde, sulphur compounds, esters, alkane, nitrogen compounds, alkene and furans were detected in rhizosphere soil samples. Among these, terpene, ketone, alcohol, aromatic compounds, organic acids and alkane were the most abundant compound classes (>75%), but their percentage changed with exposure to diclofenac, ketoprofen and ibuprofen. Such changes in abundance, structure and the metabolic activity of Lycopersicon esculentum rhizosphere microbiota under exposure to common non-steroidal anti-inflammatory drugs suggest that there is a probability to also change the ecosystem services provided by rhizosphere microbiota.
Collapse
Affiliation(s)
- Emoke Dalma Kovacs
- Research Institute for Analytical Instrumentation, INCDO-INOE 2000, 400293 Cluj-Napoca, Romania;
- Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400028 Cluj-Napoca, Romania;
- Correspondence:
| | | | - Cecilia Roman
- Research Institute for Analytical Instrumentation, INCDO-INOE 2000, 400293 Cluj-Napoca, Romania;
| | - Di Tian
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, College of Forestry, Beijing Forestry University, Beijing 100083, China;
| |
Collapse
|
26
|
Fedorova G, Grabic R, Grabicová K, Turek J, Van Nguyen T, Randak T, Brooks BW, Zlabek V. Water reuse for aquaculture: Comparative removal efficacy and aquatic hazard reduction of pharmaceuticals by a pond treatment system during a one year study. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126712. [PMID: 34388919 DOI: 10.1016/j.jhazmat.2021.126712] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Aquaculture is increasing at the global scale, and beneficial reuse of wastewater is becoming crucial in some regions. Here we selected a unique tertiary treatment system for study over a one-year period. This experimental ecosystem-based approach to effluent management included a treated wastewater pond (TWP), which receives 100% effluent from a wastewater treatment plant, and an aquaculture pond (AP) that receives treated water from the TWP for fish production. We examined the fate of a wide range of pharmaceutically active compounds (PhACs) in this TWP-AP system and a control pond fed by river water using traditional grab sampling and passive samplers. We then employed probabilistic approaches to examine exposure hazards. Telmisartan, carbamazepine, diclofenac and venlafaxine, exceeded ecotoxicological predicted no effect concentrations in influent wastewater to the TWP, but these water quality hazards were consistently reduced following treatment in the TWP-AP system. In addition, both grab and passive sampling approaches resulted in similar occurrence patterns of studied compounds, which highlights the potential of POCIS use for water monitoring. Based on the approach taken here, the TWP-AP system appears useful as a tertiary treatment step to reduce PhACs and decrease ecotoxicological and antibiotic resistance water quality hazards prior to beneficial reuse in aquaculture.
Collapse
Affiliation(s)
- Ganna Fedorova
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Water, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic.
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Water, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Water, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Jan Turek
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Water, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Tuyen Van Nguyen
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Water, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Tomas Randak
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Water, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Bryan W Brooks
- Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - Vladimir Zlabek
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Water, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| |
Collapse
|
27
|
Gould SL, Winter MJ, Norton WHJ, Tyler CR. The potential for adverse effects in fish exposed to antidepressants in the aquatic environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16299-16312. [PMID: 34856105 DOI: 10.1021/acs.est.1c04724] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Antidepressants are one of the most commonly prescribed pharmaceutical classes for the treatment of psychiatric conditions. They act via modulation of brain monoaminergic signaling systems (predominantly serotonergic, adrenergic, dopaminergic) that show a high degree of structural conservation across diverse animal phyla. A reasonable assumption, therefore, is that exposed fish and other aquatic wildlife may be affected by antidepressants released into the natural environment. Indeed, there are substantial data reported for exposure effects in fish, albeit most are reported for exposure concentrations exceeding those occurring in natural environments. From a critical analysis of the available evidence for effects in fish, risk quotients (RQs) were derived from laboratory-based studies for a selection of antidepressants most commonly detected in the aquatic environment. We conclude that the likelihood for effects in fish on standard measured end points used in risk assessment (i.e., excluding effects on behavior) is low for levels of exposure occurring in the natural environment. Nevertheless, some effects on behavior have been reported for environmentally relevant exposures, and antidepressants can bioaccumulate in fish tissues. Limitations in the datasets used to calculate RQs revealed important gaps in which future research should be directed to more accurately assess the risks posed by antidepressants to fish. Developing greater certainty surrounding risk of antidepressants to fish requires more attention directed toward effects on behaviors relating to individual fitness, the employment of environmentally realistic exposure levels, on chronic exposure scenarios, and on mixtures analyses, especially given the wide range of similarly acting compounds released into the environment.
Collapse
Affiliation(s)
- Sophie L Gould
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, U.K
| | - Matthew J Winter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, U.K
| | - William H J Norton
- Department of Genetics and Genome Biology, College of Life Sciences, University of Leicester, University Rd, Leicester, LE1 7RH, U.K
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, U.K
| |
Collapse
|
28
|
Hubená P, Horký P, Grabic R, Grabicová K, Douda K, Slavík O, Randák T. Prescribed aggression of fishes: Pharmaceuticals modify aggression in environmentally relevant concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112944. [PMID: 34715502 DOI: 10.1016/j.ecoenv.2021.112944] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Traces of psychoactive substances have been found in freshwaters globally. Fish are chronically exposed to pollution at low concentrations. The changes of aggressive behaviour of chub (Squalius cephalus) were determined under the exposure to four psychoactive compounds (sertraline, citalopram, tramadol, methamphetamine) at environmentally relevant concentrations of 1 μg/L for 42 days. We tested whether (A) the behavioural effect of compounds varies within a single species; (B) there is a correlation between the individual brain concentration of the tested pollutants and fish aggression using the novel analysis of pollutants in brain; and (C) there is detectable threshold to effective pollutant concentration in brain. Behaviour and pollutant concentrations in brain were determined repeatedly (1st, 7th, 21st, 42nd and 56th days), including a two-week-long depuration period. The effect of particular compounds varied. Citalopram and methamphetamine generally increased the fish aggression, while no such effect was found after exposure to tramadol or sertraline. The longitudinal analysis showed an aggression increase after depuration, indicating the presence of withdrawal effects in methamphetamine- and tramadol-exposed fish. The analysis of pollutant concentration in brain revealed a positive linear relationship of citalopram concentration and aggression, while no such effect was detected for other compounds and/or their metabolites. Structural break analyses detected concentration thresholds of citalopram (1 and 3 ng/g) and sertraline (1000 ng/g) in brain tissue, from which a significant effect on behaviour was manifested. While the effect of sertraline was not detected using traditional approaches, there was a reduction in aggression after considering its threshold concentration in the brain. Our results suggest that pursuing the concentration threshold of psychoactive compounds can help to reduce false negative results and provide more realistic predictions on behavioural outcomes in freshwater environments, especially in the case of compounds with bioaccumulation potential such as sertraline.
Collapse
Affiliation(s)
- Pavla Hubená
- Czech University of Life Sciences Prague, Department of Zoology and Fisheries, Kamýcká 129, 165 00 Praha 6 - Suchdol, Czech Republic.
| | - Pavel Horký
- Czech University of Life Sciences Prague, Department of Zoology and Fisheries, Kamýcká 129, 165 00 Praha 6 - Suchdol, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 398 25 Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 398 25 Vodňany, Czech Republic
| | - Karel Douda
- Czech University of Life Sciences Prague, Department of Zoology and Fisheries, Kamýcká 129, 165 00 Praha 6 - Suchdol, Czech Republic
| | - Ondřej Slavík
- Czech University of Life Sciences Prague, Department of Zoology and Fisheries, Kamýcká 129, 165 00 Praha 6 - Suchdol, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 398 25 Vodňany, Czech Republic
| |
Collapse
|
29
|
Santos MES, Horký P, Grabicová K, Hubená P, Slavík O, Grabic R, Douda K, Randák T. Traces of tramadol in water impact behaviour in a native European fish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111999. [PMID: 33550078 DOI: 10.1016/j.ecoenv.2021.111999] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Tramadol is a widely used analgesic with additional antidepressant and anxiolytic effects. This compound has been reported in continental waters reaching concentrations of µg/L as a consequence of its inefficient removal in sewage treatment plants and increasing use over time. In this study, European chubs (Squalius cephalus) were exposed to 1 µg/L of tramadol in water for 42 days with a subsequent 14 days of depuration. Our results revealed that chubs exposed to this analgesic underwent changes in their behaviour as compared to the control group. The behavioural outcome was also influenced by the individual concentration of tramadol in brain tissue. In particular, experimental fish presented anxiolytic-like effects, characterized by less bold and less social individuals. Exposed animals were less frequently out of the shelter and moved a shorter distance, indicating that they explored the new environment less during the boldness test. In the novel object recognition experiment, although they distinguished the new item, they examined it less and displayed a reduced activity. Shoal cohesion was disrupted as observed in an increased distance between individuals. After the depuration phase, this alteration remained whereas the boldness effect disappeared. Moreover, the degree of behavioural changes was correlated with the concentration of the substance in brain. According to our findings, chronic presence of tramadol in the environment can impact the fitness of exposed aquatic fauna by altering evolutionary crucial behaviours.
Collapse
Affiliation(s)
- Maria Eugenia Sancho Santos
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic.
| | - Pavel Horký
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Pavla Hubená
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Ondřej Slavík
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Roman Grabic
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Karel Douda
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague 6, Czech Republic
| | - Tomáš Randák
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| |
Collapse
|