1
|
Zhang H, Feng Y, Yang H, Li Y, Ma Z, Li L, Chen L, Zhao Y, Shan L, Xia Y. The interaction between genetic predicted gut microbiome abundance and particulate matter on the risk of incident asthma in adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117848. [PMID: 39919593 DOI: 10.1016/j.ecoenv.2025.117848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/22/2025] [Accepted: 02/02/2025] [Indexed: 02/09/2025]
Abstract
Air pollution and gut microbial abundance (GMA) are both closely related with asthma incidence. This study aims to explore significant interact on the risk of incident asthma in adult exist between GMA and PM2.5 exposure based on a prospective cohort of UK Biobank. Polygenic score of GMA was calculated using 19 distinct single nucleotide polymorphisms. PM2.5 exposure was predicted using a validated Land Use Regression model. Incident asthma was identified by linking with medical encounters or first occurrence source. Cox proportional hazards regression models were used to evaluate the associations. Hazard ratios (HRs) and 95 % confidence intervals (CIs) were calculated. During an average follow-up of 11.4 years within 390,054 participants, a total of 11,312 asthma cases occurred with an incidence density of 2.54 per 1000 person years. Participants with the highest PM2.5 and GMA exposure were associated with a 13 % (HR = 1.13, 95 % CI: 1.05, 1.22; Pfor trend < 0.001) higher and 16 % (HR = 0.84, 95 %CI: 0.74, 0.94; Pfor trend < 0.01) lower risk of incident asthma, respectively. A significant negative additive interaction between GMA and PM2.5 exposure with the risk of incident asthma in adult was found (Relative Excess Risk due to Interaction = -0.08, 95 % CI, -0.16, -0.002). Participants with very high GMA and lowest PM2.5 exposure level were associated with a 26 % (HR = 0.74, 95 % CI: 0.57, 0.96) lower risk of incident asthma. A higher level of GMA has the potential to alleviate the detrimental effect of PM2.5 exposure on the risk of asthma in adults. Strategies targeting GMA, such as modifying diet and using probiotics supplement may be helpful for preventing asthma derived from PM2.5 exposure.
Collapse
Affiliation(s)
- Hehua Zhang
- Clinical Trials and Translation Center, Shengjing Hospital of China Medical University, Shenyang, China; Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang, China
| | - Yong Feng
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Honghao Yang
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuqian Li
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zheng Ma
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liuxin Li
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhong Zhao
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lishen Shan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Yang Xia
- Liaoning Key Laboratory of Precision Medical Research on Major Chronic Disease, Shenyang, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Data Center, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Zhao H, Zheng X, Lin G, Wang X, Lu H, Xie P, Jia S, Shang Y, Wang Y, Bai P, Zhang X, Tang N, Qi X. Effects of air pollution on the development and progression of digestive diseases: an umbrella review of systematic reviews and meta-analyses. BMC Public Health 2025; 25:183. [PMID: 39819486 PMCID: PMC11740668 DOI: 10.1186/s12889-024-21257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025] Open
Abstract
Air pollution, especially particulate matter (PM), is one of the most common risk factors for global burden of disease. However, its effect on the risk of digestive diseases is unclear. Herein, we attempt to explore this issue by reviewing the existing evidence from published meta-analyses. We conducted a systematic literature search to identify all relevant meta-analyses regarding the association of air pollution with digestive diseases, and summarize their major findings. We assessed the methodological quality and evidence quality of the included meta-analyses using the AMSTAR-2 and GRADE tools, respectively, and the overlap of primary studies was assessed by the GROOVE tool. Nine meta-analyses were included in our analysis, containing 43 primary studies with high overlap. In the included meta-analyses, the methodological quality was from critically low to moderate, and the evidence quality was from very low to moderate. The exposure was primarily PM2.5. Seven, four, and one meta-analysis investigated the effect of air pollution on liver diseases, gastrointestinal diseases, and pancreatic diseases, respectively. PM2.5 exposure was significantly associated with liver dysfunction, chronic liver diseases, liver cancer, and colorectal cancer, but not oesophagus cancer, gastric cancer, or pancreatic cancer. Based on very low to moderate quality evidence from meta-analyses, PM2.5 exposure may contribute to the development of some digestive diseases, especially liver diseases.
Collapse
Affiliation(s)
- Haonan Zhao
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China
- Department of Life Sciences and Biopharmaceutis, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaojie Zheng
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China
- Second Affiliated Hospital of Shenyang Medical College, Shenyang, China
| | - Guo Lin
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China
- Postgraduate College, Dalian Medical University, Dalian, China
| | - Xiaomin Wang
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China
- Postgraduate College, Dalian Medical University, Dalian, China
| | - Huiyuan Lu
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China
- Department of Life Sciences and Biopharmaceutis, Shenyang Pharmaceutical University, Shenyang, China
| | - Pengpeng Xie
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China
- Department of Life Sciences and Biopharmaceutis, Shenyang Pharmaceutical University, Shenyang, China
| | - Siqi Jia
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China
- Department of Life Sciences and Biopharmaceutis, Shenyang Pharmaceutical University, Shenyang, China
| | - Yiyang Shang
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China
- Department of Life Sciences and Biopharmaceutis, Shenyang Pharmaceutical University, Shenyang, China
| | - Yan Wang
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Pengchu Bai
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Xuan Zhang
- National Institute of Occupational Safety and Health, Kanagawa, 214-8585, Japan
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Ning Tang
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, 920-1192, Japan.
- Institute of Medical, Pharmaceutical and Health Science, Kanazawa University, Kanazawa, 920-1192, Japan.
- College of Energy and Power, Shenyang Institute of Engineering, Shenyang, 110136, China.
| | - Xingshun Qi
- Department of Gastroenterology, General Hospital of Northern Theater Command (Teaching Hospital of Shenyang Pharmaceutical University), Shenyang, 110840, China.
- Department of Life Sciences and Biopharmaceutis, Shenyang Pharmaceutical University, Shenyang, China.
- Postgraduate College, Dalian Medical University, Dalian, China.
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
3
|
Xiao Y, Shi Y, Ni Y, Ni M, Yang Y, Zhang X. Gestational diabetes-combined excess weight gain exacerbates gut microbiota dysbiosis in newborns, associated with reduced abundance of Clostridium, Coriobacteriaceae, and Collinsella. Front Cell Infect Microbiol 2024; 14:1496447. [PMID: 39726807 PMCID: PMC11670820 DOI: 10.3389/fcimb.2024.1496447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Background Existing literature indicates that Gestational diabetes mellitus (GDM) and maternal obesity disrupt the normal colonization of the neonatal gut microbiota alone. Still, the combined impact of GDM and excessive gestational weight gain (EGWG) on this process remains under explored. The association between gestational weight gain before/after GDM diagnosis and neonatal gut microbiota characteristics is also unclear.The purpose of this study is to conduct investigation and analysis on the above-mentioned issues, providing a basis for optimizing clinical management plans. Methods This study involved 98 mother-infant pairs categorized into GDM and non-GDM groups. The GDM group was further subdivided based on gestational weight gain (GWG) into normal (GDM+NGWG) and excessive (GDM+EGWG) weight gain groups. Neonatal stool samples were collected within 24 hours post-delivery for gut microbiota profiling through 16S rRNA gene sequencing. Statistical analyses explored correlations between total GWG/BMI gain and those before/after GDM diagnosis (t-GWG/GBG; b-GWG/GBG; a-GWG/GBG) with key bacterial taxa. Results Notable genus-level changes included enrichment of Escherichia and Klebsiella, and depletion of Bacteroides, Bifidobacterium, Coprococcus, Ruminococcus among GDM-Total and GDM+EGWG groups compared to non-GDM. Further,LEfSe analysis identified 30 differential bacteria taxa between GDM-Total and healthy control groups, which increased to 38 between GDM+EGWG and non-GDM groups, highlighting more pronounced microbial shifts associated with EGWG. Clostridium was negatively correlated with t-GWG and newborn birth weight; The Coriobacteriaceae showed a negative correlation with t-GWG, t-GBG, and a-GBG. Additionally,Collinsella exhibited negative correlations with t-GBG and a-GBG. Conclusion This study has identified that the presence of EGWG in GDM mothers further exacerbated neonatal gut microbial perturbations. Total GWG/GBG and those after the diagnosis of GDM were negatively correlated with the abundance of neonatal gut Clostridium, Coriobacteriaceae, and Collinsella. These findings provide new insights for precise prevention and management of GDM.
Collapse
Affiliation(s)
- Yunshan Xiao
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen Obstetric Quality Management Center, Xiamen, China
| | - Yuan Shi
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen Obstetric Quality Management Center, Xiamen, China
| | - Yan Ni
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Meilan Ni
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yuxin Yang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xueqin Zhang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen Obstetric Quality Management Center, Xiamen, China
| |
Collapse
|
4
|
Bai Y, Liang X, Xia L, Yu S, Wu F, Li M. Association between air pollutants and four major mental disorders: Evidence from a Mendelian randomization study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116887. [PMID: 39208533 DOI: 10.1016/j.ecoenv.2024.116887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/10/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Existing epidemiological studies have indicated a correlation between air pollutants and the occurrence of mental disorders. However, it is difficult to estimate the causal relationship between the two because of the limitations of traditional epidemiological research. In our study, we aimed to extensively explore the causal relationship between five types of air pollutants and four types of mental disorders. METHODS Based on the IEU OPEN GWAS database, we performed a two-sample MR analysis. The primary analysis method utilized was the inverse variance weighted (IVW) method, supplemented by the MR-Egger method and the weighted median method. Additionally, we conducted sensitivity analyses with the Cochran's Q statistic method, the leave-one-out method, and the MR-Egger intercept. We chose at least 4 GWAS datasets for each of the four psychiatric diseases and conducted a meta-analysis of our results of the MR analysis. RESULTS The meta-analysis's findings demonstrated a causal link between depression and PM2.5 (OR=1.020, 95 %CI: (1.010,1.030), P=0.001). PM10 and schizophrenia are also causally related (OR=1.136, 95 %CI: (1.034,1.248), P=0.008). Nitrogen oxides and bipolar disorder have a causal relationship (OR=1.002, 95 %CI: (1.000,1.003), P=0.022). Nitrogen oxides and schizophrenia have a high causal association (OR=1.439, 95 %CI: (1.183,1.752), P<0.001). CONCLUSION This study observed a causal association between increased concentrations of PM2.5, PM10, and nitrogen oxides and the occurrence of depression, schizophrenia, and bipolar disorder. Our research findings have certain guiding implications for treating and preventing mental disorders.
Collapse
Affiliation(s)
- Yushuai Bai
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050000, China
| | - Xiao Liang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050000, China
| | - Lin Xia
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050000, China
| | - Shuaixin Yu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050000, China
| | - Fugui Wu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050000, China
| | - Man Li
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
5
|
Shao W, Pan B, Li Z, Peng R, Yang W, Xie Y, Han D, Fang X, Li J, Zhu Y, Zhao Z, Kan H, Ying Z, Xu Y. Gut microbiota mediates ambient PM 2.5 exposure-induced abnormal glucose metabolism via short-chain fatty acids. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135096. [PMID: 38996677 PMCID: PMC11342392 DOI: 10.1016/j.jhazmat.2024.135096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
PM2.5 exposure has been found to cause gut dysbiosis and impair glucose homeostasis in human and animals, yet their underlying biological connection remain unclear. In the present study, we aim to investigate the biological significance of gut microbiota in PM2.5-induced glucose metabolic abnormalities. Our results showed that microbiota depletion by antibiotics treatment significantly alleviated PM2.5-induced glucose intolerance and insulin resistance, as indicated by the intraperitoneal glucose tolerance test, glucose-induced insulin secretion, insulin tolerance test, insulin-induced phosphorylation levels of Akt and GSK-3β in insulin sensitive tissues. In addition, faecal microbiota transplantation (FMT) from PM2.5-exposed donor mice successfully remodeled the glucose metabolism abnormalities in recipient mice, while the transplantation of autoclaved faecal materials did not. Faecal microbiota analysis demonstrated that the composition and alpha diversity of the gut bacterial community were altered by PM2.5 exposure and in FMT recipient mice. Furthermore, short-chain fatty acids levels analysis showed that the circulating acetate was significantly decreased in PM2.5-exposed donor and FMT recipient mice, and supplementation of sodium acetate for 3 months successfully improved the glucose metabolism abnormalities induced by PM2.5 exposure. These results indicate that manipulating gut microbiota or its metabolites could be a potential strategy for preventing the adverse health effects of ambient PM2.5.
Collapse
Affiliation(s)
- Wenpu Shao
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Bin Pan
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Zhouzhou Li
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Renzhen Peng
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Wenhui Yang
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Yuanting Xie
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Dongyang Han
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Xinyi Fang
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Jingyu Li
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Yaning Zhu
- Department of Pathology, The Affiliated Huaian NO.1 People's Hospital of Nanjing Medical University, Huaian, China.
| | - Zhuohui Zhao
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| | - Zhekang Ying
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Yanyi Xu
- Department of Environmental Health, School of Public Health, NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Li S, Wang J, Lei D, Peng D, Zong K, Li K, Wu Z, Liu Y, Huang Z. Associations between Ethylene Oxide Exposure and Liver Function in the US Adult Population. TOXICS 2024; 12:551. [PMID: 39195653 PMCID: PMC11358929 DOI: 10.3390/toxics12080551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Ethylene oxide, a reactive epoxy compound, has been widely used in various industries for many years. However, evidence of the combined toxic effects of ethylene oxide exposure on the liver is still lacking. METHODS We analyzed the merged data from the National Health and Nutrition Examination Survey (NHANES) from 2013 to 2016. Ultimately, 4141 adults aged 18 and over were selected as the sample. We used linear regression to explore the association between blood ethylene oxide and LFT indicators. RESULTS The weighted linear regression model showed that HbEO is positively correlated with ALP (β = 2.61, 95% CI 1.97, 3.24, p < 0.0001), GGT (β = 5.75, 95% CI 4.46, 7/05, p < 0.0001), ALT (β = 0.50, 95% CI 0.09, 0.90, p = 0.0158), and AST (β = 0.71, 95% CI 0.44, 0.98, p < 0.0001) and negatively correlated with TBIL (β = -0.30, 95% CI -0.43, -0.16, p < 0.0001). CONCLUSIONS Ethylene oxide exposure is significantly associated with changes in liver function indicators among adults in the United States. Future work should further examine these relationships.
Collapse
Affiliation(s)
- Shanshan Li
- First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China; (S.L.); (D.L.); (D.P.); (K.Z.); (K.L.); (Z.W.)
| | - Jinzhou Wang
- Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China;
| | - Dengliang Lei
- First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China; (S.L.); (D.L.); (D.P.); (K.Z.); (K.L.); (Z.W.)
| | - Dadi Peng
- First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China; (S.L.); (D.L.); (D.P.); (K.Z.); (K.L.); (Z.W.)
| | - Kezhen Zong
- First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China; (S.L.); (D.L.); (D.P.); (K.Z.); (K.L.); (Z.W.)
| | - Kaili Li
- First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China; (S.L.); (D.L.); (D.P.); (K.Z.); (K.L.); (Z.W.)
| | - Zhongjun Wu
- First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China; (S.L.); (D.L.); (D.P.); (K.Z.); (K.L.); (Z.W.)
| | - Yanyao Liu
- First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China; (S.L.); (D.L.); (D.P.); (K.Z.); (K.L.); (Z.W.)
| | - Zuotian Huang
- First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China; (S.L.); (D.L.); (D.P.); (K.Z.); (K.L.); (Z.W.)
| |
Collapse
|
7
|
Tota M, Karska J, Kowalski S, Piątek N, Pszczołowska M, Mazur K, Piotrowski P. Environmental pollution and extreme weather conditions: insights into the effect on mental health. Front Psychiatry 2024; 15:1389051. [PMID: 38863619 PMCID: PMC11165707 DOI: 10.3389/fpsyt.2024.1389051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Environmental pollution exposures, including air, soil, water, light, and noise pollution, are critical issues that may implicate adverse mental health outcomes. Extreme weather conditions, such as hurricanes, floods, wildfires, and droughts, may also cause long-term severe concerns. However, the knowledge about possible psychiatric disorders associated with these exposures is currently not well disseminated. In this review, we aim to summarize the current knowledge on the impact of environmental pollution and extreme weather conditions on mental health, focusing on anxiety spectrum disorders, autism spectrum disorders, schizophrenia, and depression. In air pollution studies, increased concentrations of PM2.5, NO2, and SO2 were the most strongly associated with the exacerbation of anxiety, schizophrenia, and depression symptoms. We provide an overview of the suggested underlying pathomechanisms involved. We highlight that the pathogenesis of environmental pollution-related diseases is multifactorial, including increased oxidative stress, systematic inflammation, disruption of the blood-brain barrier, and epigenetic dysregulation. Light pollution and noise pollution were correlated with an increased risk of neurodegenerative disorders, particularly Alzheimer's disease. Moreover, the impact of soil and water pollution is discussed. Such compounds as crude oil, heavy metals, natural gas, agro-chemicals (pesticides, herbicides, and fertilizers), polycyclic or polynuclear aromatic hydrocarbons (PAH), solvents, lead (Pb), and asbestos were associated with detrimental impact on mental health. Extreme weather conditions were linked to depression and anxiety spectrum disorders, namely PTSD. Several policy recommendations and awareness campaigns should be implemented, advocating for the advancement of high-quality urbanization, the mitigation of environmental pollution, and, consequently, the enhancement of residents' mental health.
Collapse
Affiliation(s)
- Maciej Tota
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Julia Karska
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Szymon Kowalski
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Piątek
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | | - Katarzyna Mazur
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Patryk Piotrowski
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
8
|
Feng C, Yang B, Wang Z, Zhang J, Fu Y, Yu B, Dong S, Ma H, Liu H, Zeng H, Reinhardt JD, Yang S. Relationship of long-term exposure to air pollutant mixture with metabolic-associated fatty liver disease and subtypes: A retrospective cohort study of the employed population of Southwest China. ENVIRONMENT INTERNATIONAL 2024; 188:108734. [PMID: 38744043 DOI: 10.1016/j.envint.2024.108734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND While evidence suggests that PM2.5 is associated with overall prevalence of Metabolic (dysfunction)-Associated Fatty Liver Disease (MAFLD), effects of comprehensive air pollutant mixture on MAFLD and its subtypes remain unclear. OBJECTIVE To investigate individual and joint effects of long-term exposure to comprehensive air pollutant mixture on MAFLD and its subtypes. METHODS Data of 27,699 participants of the Chinese Cohort of Working Adults were analyzed. MAFLD and subtypes, including overweight/obesity, lean, and diabetes MAFLD, were diagnosed according to clinical guidelines. Concentrations of NO3-, SO42-, NH4+, organic matter (OM), black carbon (BC), PM2.5, SO2, NO2, O3 and CO were estimated as a weighted average over participants' residential and work addresses for the three years preceding outcome assessment. Logistic regression and weighted quantile sum regression were used to estimate individual and joint effects of air pollutant mixture on presence of MAFLD. RESULTS Overall prevalence of MAFLD was 26.6 % with overweight/obesity, lean, and diabetes MAFLD accounting for 92.0 %, 6.4 %, and 1.6 %, respectively. Exposure to SO42-, NO3-, NH4+, BC, PM2.5, NO2, O3and CO was significantly associated with overall MAFLD, overweight/obesity MAFLD, or lean MAFLD in single pollutant models. Joint effects of air pollutant mixture were observed for overall MAFLD (OR = 1.10 [95 % CI: 1.03, 1.17]), overweight/obesity (1.09 [1.02, 1.15]), and lean MAFLD (1.63 [1.28, 2.07]). Contributions of individual air pollutants to joint effects were dominated by CO in overall and overweight/obesity MAFLD (Weights were 42.31 % and 45.87 %, respectively), while SO42- (36.34 %), SO2 (21.00 %) and BC (12.38 %) were more important in lean MAFLD. Being male, aged above 45 years and smoking increased joint effects of air pollutant mixture on overall MAFLD. CONCLUSIONS Air pollutant mixture was associated with MAFLD, particularly the lean MAFLD subtype. CO played a pivotal role in both overall and overweight/obesity MAFLD, whereas SO42- were associated with lean MAFLD.
Collapse
Affiliation(s)
- Chuanteng Feng
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610200, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Yang
- Department of Health Management Center, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu 610106, China
| | - Zihang Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Jiayi Zhang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yao Fu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Yu
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610200, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Shu Dong
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Hua Ma
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyun Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Honglian Zeng
- Department of Health Management Center, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu 610106, China
| | - Jan D Reinhardt
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu 610200, China; Department of Rehabilitation Medicine, Jiangsu Province Hospital/Nanjing Medical University First Affiliated Hospital, Nanjing 210009, China; Department of Health Sciences and Medicine, University of Lucerne, Lucerne 6002, Switzerland.
| | - Shujuan Yang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Department of Health Management Center, Clinical Medical College & Affiliated Hospital, Chengdu University, Chengdu 610106, China; International Institute of Spatial Lifecourse Health (ISLE), Wuhan University, Wuhan 430079, China.
| |
Collapse
|
9
|
Ma X, Wen G, Zhao Z, Lu L, Li T, Gao N, Han G. Alternations in the human skin, gut and vaginal microbiomes in perimenopausal or postmenopausal Vulvar lichen sclerosus. Sci Rep 2024; 14:8429. [PMID: 38600101 PMCID: PMC11006835 DOI: 10.1038/s41598-024-58983-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
Vulvar lichen sclerosus (VLS) is a chronic and progressive dermatologic condition that can cause physical dysfunction, disfigurement, and impaired quality of life. However, the etiology of VLS remains unknown. The vulvar skin, intestinal and vaginal microbiomes have been postulated to play important roles in the pathogenesis of this disease. The aim of this study was to compare the compositional characteristics of the vulvar skin, vagina, and gut microbiota between perimenopausal or postmenopausal VLS patients and healthy controls. The study involved six perimenopausal or postmenopausal VLS patients which were based on characteristic clinical manifestations and histologic confirmation and five healthy controls. The pruritus severity of each patient was evaluated using the NRS scale, and the dermatology-specific health-related quality of life was assessed using the Skindex-16. Metagenomic sequencing was performed, and the results were analyzed for alpha and beta diversity. LEfSe analysis were used to investigate the microbial alterations in vulvar skin, gut and vagina. KEGG databases were used to analyze differences in functional abundance. The study found significant differences in alpha diversity between the two groups in stool and vaginal samples (P < 0.05). Patients with VLS had a higher abundance of Enterobacter cloacae, Flavobacterium_branchiophilum, Mediterranea_sp._An20, Parabacteroides_johnsoniiand Streptococcus_bovimastitidis on the vulvar skin, while Corynebacterium_sp._zg-913 was less abundant compared to the control group. The relative abundance of Sphingomonas_sp._SCN_67_18, Sphingobium_sp._Ant17, and Pontibacter_sp_BT213 was significantly higher in the gut samples of patients with VLS.Paenibacillus_popilliae,Gemella_asaccharolytica, and Coriobacteriales_bacterium_DNF00809 compared to the control group. Additionally, the vaginal samples of patients with VLS exhibited a significantly lower relative abundance of Bacteroidales_bacterium_43_8, Bacteroides_sp._CAG:20, Blautia_sp._AM28-10, Fibrobacter_sp._UWB16, Lachnospiraceae_bacterium_AM25-39, Holdemania_filiformis, Lachnospiraceae_bacterium_GAM79, and Tolumonas_sp. Additionally, the butyrate-producing bacterium SS3/4 showed a significant difference compared to the controls. The study found a negative relationship between Sphingobium_sp._Ant17 in stool and Skindex-16 (P < 0.05), while Mediterranea_sp._An20 had a positive correlation with Skindex-16 (P < 0.05) in the skin. Additionally, our functional analysis revealed alterations in Aminoacyl_tRNA_biosynthesis, Glutathione_metabolism, the pentose phosphate pathway, and Alanine__aspartate_and_glutamate_metabolism in the VLS patient group. The study suggests that perimenopausal or postmenopausal patients with VLS have a modified microbiome in the vulvar skin, gut, and vagina. This modification is linked to abnormal energy metabolism, increased oxidative stress, and abnormal amino acid metabolism.
Collapse
Affiliation(s)
- Xiaolei Ma
- Department of Dermatology, Peking University International Hospital, Life Park Road No.1 Life Science Park of Zhong Guancun, Chang Ping District, Beijing, People's Republic of China.
| | - Guangdong Wen
- Department of Dermatology, Peking University People's Hospital, Beijing, People's Republic of China
| | - Zheng Zhao
- Department of Dermatology, Peking University International Hospital, Life Park Road No.1 Life Science Park of Zhong Guancun, Chang Ping District, Beijing, People's Republic of China
| | - Lulu Lu
- Department of Dermatology, Peking University International Hospital, Life Park Road No.1 Life Science Park of Zhong Guancun, Chang Ping District, Beijing, People's Republic of China
| | - Tianying Li
- Department of Pathology, Peking University International Hospital, Beijing, People's Republic of China
| | - Na Gao
- Department of Dermatology, Peking University International Hospital, Life Park Road No.1 Life Science Park of Zhong Guancun, Chang Ping District, Beijing, People's Republic of China
| | - Gangwen Han
- Department of Dermatology, Peking University International Hospital, Life Park Road No.1 Life Science Park of Zhong Guancun, Chang Ping District, Beijing, People's Republic of China
| |
Collapse
|
10
|
Lu W, Jiang C, Chen Y, Lu Z, Xu X, Zhu L, Xi H, Ye G, Yan C, Chen J, Zhang J, Zuo L, Huang Q. Altered metabolome and microbiome associated with compromised intestinal barrier induced hepatic lipid metabolic disorder in mice after subacute and subchronic ozone exposure. ENVIRONMENT INTERNATIONAL 2024; 185:108559. [PMID: 38461778 DOI: 10.1016/j.envint.2024.108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/05/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Exposure to ozone has been associated with metabolic disorders in humans, but the underlying mechanism remains unclear. In this study, the role of the gut-liver axis and the potential mechanism behind the metabolic disorder were investigated by histological examination, microbiome and metabolome approaches in mice during the subacute (4-week) and subchronic (12-week) exposure to 0.5 ppm and 2.5 ppm ozone. Ozone exposure resulted in slowed weight gain and reduced hepatic lipid contents in a dose-dependent manner. After exposure to ozone, the number of intestinal goblet cells decreased, while the number of tuft cells increased. Tight junction protein zonula occludens-1 (ZO-1) was significantly downregulated, and the apoptosis of epithelial cells increased with compensatory proliferation, indicating a compromised chemical and physical layer of the intestinal barrier. The hepatic and cecal metabolic profiles were altered, primarily related to lipid metabolism and oxidative stress. The abundance of Muribaculaceae increased dose-dependently in both colon and cecum, and was associated with the decrease of metabolites such as bile acids, betaine, and L-carnitine, which subsequently disrupted the intestinal barrier and lipid metabolism. Overall, this study found that subacute and subchronic exposure to ozone induced metabolic disorder via disturbing the gut-liver axis, especially the intestinal barrier. These findings provide new mechanistic understanding of the health risks associated with environmental ozone exposure and other oxidative stressors.
Collapse
Affiliation(s)
- Wenjia Lu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chonggui Jiang
- Innovation and Entrepreneurship Laboratory for college students, Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yajie Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zhonghua Lu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xueli Xu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liting Zhu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotong Xi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Guozhu Ye
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Changzhou Yan
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jie Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Li Zuo
- Innovation and Entrepreneurship Laboratory for college students, Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
| | - Qiansheng Huang
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; National Basic Science Data Center, Beijing 100190, China.
| |
Collapse
|
11
|
Yang M, Massad K, Kimchi ET, Staveley-O’Carroll KF, Li G. Gut microbiota and metabolite interface-mediated hepatic inflammation. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00037. [PMID: 38283696 PMCID: PMC10810350 DOI: 10.1097/in9.0000000000000037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024]
Abstract
Immunologic and metabolic signals regulated by gut microbiota and relevant metabolites mediate bidirectional interaction between the gut and liver. Gut microbiota dysbiosis, due to diet, lifestyle, bile acids, and genetic and environmental factors, can advance the progression of chronic liver disease. Commensal gut bacteria have both pro- and anti-inflammatory effects depending on their species and relative abundance in the intestine. Components and metabolites derived from gut microbiota-diet interaction can regulate hepatic innate and adaptive immune cells, as well as liver parenchymal cells, significantly impacting liver inflammation. In this mini review, recent findings of specific bacterial species and metabolites with functions in regulating liver inflammation are first reviewed. In addition, socioeconomic and environmental factors, hormones, and genetics that shape the profile of gut microbiota and microbial metabolites and components with the function of priming or dampening liver inflammation are discussed. Finally, current clinical trials evaluating the factors that manipulate gut microbiota to treat liver inflammation and chronic liver disease are reviewed. Overall, the discussion of microbial and metabolic mediators contributing to liver inflammation will help direct our future studies on liver disease.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
| | - Katina Massad
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
| | - Eric T. Kimchi
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO, USA
- Harry S. Truman Memorial VA Hospital, Columbia, MO, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
12
|
Yang H, Shi P, Li M, Kong L, Liu S, Jiang L, Yang J, Xu B, Yang T, Xi S, Liu W. Mendelian-randomization study reveals causal relationships between nitrogen dioxide and gut microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115660. [PMID: 37948942 DOI: 10.1016/j.ecoenv.2023.115660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Exposure to nitrogen dioxide might potentially change the makeup and operation of gut microbes. Nitrogen dioxide data was procured from the IEU Open GWAS (N = 456 380). Subsequently, a two-sample Mendelian randomization study was executed, utilizing summary statistics of gut microbiota sourced from the most expansive available genome-wide association study meta-analysis, conducted by the MiBioGen consortium (N = 13 266). The causal relationship between nitrogen dioxide and gut microbiota was determined using inverse variance weighted, maximum likelihood, MR-Egger, Weighted Median, Weighted Model, Mendelian randomization pleiotropy residual sum and outlier, and constrained maximum likelihood and model averaging and Bayesian information criterion. The level of heterogeneity of instrumental variables was quantified by utilizing Cochran's Q statistic. The colocalization analysis was used to examine whether nitrogen dioxide and the identified gut microbiota shared casual variants. Inverse variance weighted estimate suggested that nitrogen dioxide was causally associated with Akkermansia (β = -1.088, 95% CI: -1.909 to -0.267, P = 0.009). In addition, nitrogen dioxide presented a potential association with Bacteroides (β = -0.938, 95% CI: -1.592 to -0.284, P = 0.005), Barnesiella (β = -0.797, 95% CI: -1.538 to -0.055, P = 0.035), Coprococcus 3 (β = 1.108, 95% CI: 0.048-2.167, P = 0.040), Eubacterium hallii group (E. hallii) (β = 0.776, 95% CI: 0.090-1.463, P = 0.027), Holdemania (β = -1.354, 95% CI: -2.336 to -0.372, P = 0.007), Howardella (β = 1.698, 95% CI: 0.257-3.139, P = 0.021), Olsenella (β = 1.599, 95% CI: 0.151-3.048, P = 0.030) and Sellimonas (β = -1.647, 95% CI: -3.209 to -0.086, P = 0.039). No significant heterogeneity of instrumental variables or horizontal pleiotropy was found. The associations of nitrogen dioxide with Akkermansia (PH4 = 0.836) and E. hallii (PH4 = 0.816) were supported by colocalization analysis. This two-sample Mendelian randomization study found that increased exposure to nitrogen dioxide had the potential to impact the human gut microbiota.
Collapse
Affiliation(s)
- Huajie Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Peng Shi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Mingzheng Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Lingxu Kong
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Shuailing Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Liujiangshan Jiang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jing Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Bin Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Tianyao Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Shuhua Xi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Wei Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
13
|
Luo X, You X. Genetic predisposition of the gastrointestinal microbiome and primary biliary cholangitis: a bi-directional, two-sample Mendelian randomization analysis. Front Endocrinol (Lausanne) 2023; 14:1225742. [PMID: 37900141 PMCID: PMC10602727 DOI: 10.3389/fendo.2023.1225742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Background The gut-liver axis indicates a close relationship between the gastrointestinal microbiome (GM) and primary biliary cholangitis (PBC). However, the causality of this relationship remains unknown. This study investigates the causal relationship between the GM and PBC using a bidirectional, two-sample Mendelian randomization (MR) analysis. Methods Genome-wide association data for GM and PBC were obtained from public databases. The inverse-variance weighted method was the primary method used for MR analysis. Sensitivity analyses were conducted to assess the stability of the MR results. A reverse MR analysis was performed to investigate the possibility of reverse causality. Results Three bacterial taxa were found to be causally related to PBC. Class Coriobacteriia (odds ratio (OR) = 2.18, 95% confidence interval (CI): 1.295-3.661, P< 0.05) and order Coriobacteriales (OR = 2.18, 95% CI: 1.295-3.661, P<0.05) were associated with a higher risk of PBC. Class Deltaproteobacteria (OR = 0.52, 95% CI: 0.362-0.742, P< 0.05) had a protective effect on PBC. There was no evidence of reverse causality between PBC and the identified bacterial taxa. Conclusion Previously unrecognized taxa that may be involved in the pathogenesis of PBC were identified in this study, confirming the causality between the GM and PBC. These results provide novel microbial targets for the prevention and treatment of PBC.
Collapse
Affiliation(s)
- Xin Luo
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| | - Xin You
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology & Clinical Immunology, Ministry of Education, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Beijing, China
| |
Collapse
|
14
|
Tao J, Yan J, Su H, Huang C, Tong S, Ho HC, Xia Q, Zhu C, Zheng H, Hossain MZ, Cheng J. Impacts of PM 2.5 before and after COVID-19 outbreak on emergency mental disorders: A population-based quasi-experimental and case-crossover study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122175. [PMID: 37437758 DOI: 10.1016/j.envpol.2023.122175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/04/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
The ongoing COVID-19 pandemic is a great challenge to mental health, but fine particulate matter (PM2.5), an increasingly reported risk factor for mental disorders, has been greatly alleviated during the pandemic in many countries. It remains unknown whether COVID-19 outbreak can affect the association between PM2.5 exposure and the risk of mental disorders. This study aimed to investigate the associations of total and cause-specific mental disorders with PM2.5 exposure before and after the COVID-19 outbreak in China. Data on daily emergency department visits (EDVs) and hospitalizations of mental disorders from 2016 to 2021 were obtained from Anhui Mental Health Center for Hefei city. An interrupted time series analysis was used to quantify the impact of COVID-19 outbreak on EDVs and hospitalizations of mental disorders. A time-stratified case-crossover analysis was employed to evaluate the association of mental disorders with PM2.5 exposure before and after the COVID-19 outbreak, especially in the three months following the COVID-19 outbreak. After COVID-19 outbreak, there was an immediate and significant decrease in total mental disorders, including a reduction of 15% (95% CI: 3%-26%) in EDVs and 44% (95% CI: 36%-51%) in hospitalizations. PM2.5 exposure was associated with increased risk of EDVs and hospitalizations for total and cause-specific mental disorders (schizophrenia, schizotypal and delusional disorders; neurotic, stress-related, and somatoform disorders) before COVID-19 outbreak, but this PM2.5-related risk elevation significantly decreased after COVID-19 outbreak, with greater risk reduction at the first month after the outbreak. However, young people (0-45 years) were still vulnerable to PM2.5 exposure after the COVID-19 outbreak. This study first reveals that the risk of PM2.5-related emergency mental disorders decreased after the COVID-19 outbreak in China. The low concentration of PM2.5 might benefit mental health and greater efforts are required to mitigate air pollution in the post-COVID-19 era.
Collapse
Affiliation(s)
- Junwen Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Junwei Yan
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China; Anhui Mental Health Center, Hefei, China; Hefei Fourth People's Hospital, Hefei, China; Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Hong Su
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Shilu Tong
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei, China; Centre of Global Health, School of Public Health, Nanjing Medical University, Nanjing, China; School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Hung Chak Ho
- Department of Public and International Affairs, City University of Hong Kong, Hong Kong, China
| | - Qingrong Xia
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China; Anhui Mental Health Center, Hefei, China; Hefei Fourth People's Hospital, Hefei, China; Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Cuizhen Zhu
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, China; Anhui Mental Health Center, Hefei, China; Hefei Fourth People's Hospital, Hefei, China; Anhui Clinical Research Center for Mental Disorders, Hefei, China
| | - Hao Zheng
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Mohammad Zahid Hossain
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Jian Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China.
| |
Collapse
|
15
|
Wei N, Wang S, Li X, Pan R, Yi W, Song J, Liu L, Liu J, Yuan J, Song R, Cheng J, Su H. The association between greenery type and gut microbiome in schizophrenia: did all greenspaces play the equivalent role? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100006-100017. [PMID: 37624502 DOI: 10.1007/s11356-023-29419-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
In recent years, attention has been focused on the benefit of greenspace on mental health, and it is suggested this link may vary with the type of greenspace. More and more studies have emphasized the influence of the gut microbiome on schizophrenia (SCZ). However, the effects of greenspaces on the gut microbiota in SCZ and the effect of different types of greenspaces on the gut microbiota remain unclear. We aim to examine if there were variations in the effects of various greenspace types on the gut microbiome in SCZ. Besides, we sink to explore important taxonomic compositions associated with different greenspace types. We recruited 243 objects with schizophrenia from Anhui Mental Health Center and collected fecal samples for 16Sr RNA gene sequencing. Three types of greenery coverage were calculated with different circular buffers (800, 1500, and 3000 m) corresponding to individual addresses. The association between greenspace and microbiome composition was analyzed with permutational analysis of variance (PERMANOVA). We conducted the linear regression to capture specific gut microbiome taxa associated with greenery coverage. Tree coverage was consistently associated with microbial composition in both 1500 m (R2 = 0.007, P = 0.030) and 3000 m (R2 = 0.007, P = 0.039). In contrast, there was no association with grass cover in any of the buffer zones. In the regression analysis, higher tree coverage was significantly correlated with the relative abundance of several taxa. Among them, tree coverage was positively associated with increased Bifidobacterium longum (β = 1.069, P = 0.004), which was the dominant composition in the gut microbiota. The relationship between greenspace and gut microbiome in SCZ differed by the type of greenspace. Besides, "tree coverage" may present a dominant effect on the important taxonomic composition. Our findings might provide instructive evidence for the design of urban greenspace to optimize health and well-being in SCZ as well as the whole people.
Collapse
Affiliation(s)
- Ning Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, 230032, Anhui, China
| | - Shusi Wang
- Hefei Stomatological Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xuanxuan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, 230032, Anhui, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, 230032, Anhui, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, 230032, Anhui, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, 230032, Anhui, China
| | - Li Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, 230032, Anhui, China
| | - Jintao Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, 230032, Anhui, China
| | - Jiajun Yuan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, 230032, Anhui, China
| | - Rong Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, 230032, Anhui, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, 230032, Anhui, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
- Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, 230032, Anhui, China.
| |
Collapse
|
16
|
Ding L, Teng R, Zhu Y, Liu F, Wu L, Qin L, Wu X, Liu T. Electroacupuncture treatment ameliorates metabolic disorders in obese ZDF rats by regulating liver energy metabolism and gut microbiota. Front Endocrinol (Lausanne) 2023; 14:1207574. [PMID: 37441502 PMCID: PMC10335763 DOI: 10.3389/fendo.2023.1207574] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Metabolic disorders represent a major therapeutic challenge to public health worldwide due to their dramatically increasing prevalence. Acupuncture is widely used as adjuvant therapy for multiple metabolic diseases. However, detailed biological interpretation of the acupuncture stimulations is still limited. The gut and the liver are intrinsically connected and related to metabolic function. Microbial metabolites might affect the gut-liver axis through multiple mechanisms. Liver metabolomics and 16S rRNA sequencing were used to explore the specific mechanism of electroacupuncture in treating ZDF rats in this study. Electroacupuncture effectively improved glycolipid metabolism disorders of the ZDF rats. Histopathology confirmed that electroacupuncture improved diffuse hepatic steatosis and hepatocyte vacuolation, and promoted glycogen accumulation in the liver. The treatment significantly improved microbial diversity and richness and upregulated beneficial bacteria that maintain intestinal epithelial homeostasis and decreased bacteria with detrimental metabolic features on host metabolism. Liver metabolomics showed that the main effects of electroacupuncture include reducing the carbon flow and intermediate products in the TCA cycle, regulating the metabolism of various amino acids, and inhibiting hepatic glucose output and de novo lipogenesis. The gut-liver axis correlation analysis showed a strong correlation between the liver metabolites and the gut microbiota, especially allantoin and Adlercreutzia. Electroacupuncture treatment can improve abnormal energy metabolism by reducing oxidative stress, ectopic fat deposition, and altering metabolic fluxes. Our results will help us to further understand the specific mechanism of electroacupuncture in the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Lei Ding
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Rufeng Teng
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yifei Zhu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fengming Liu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Lili Wu
- Key Laboratory of Health Cultivation of the Ministry of Education, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lingling Qin
- Department of Science and Technology, Beijing University of Chinese Medicine, Beijing, China
| | - Xi Wu
- Department of Education, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tonghua Liu
- Key Laboratory of Health Cultivation of the Ministry of Education, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Van Pee T, Nawrot TS, van Leeuwen R, Hogervorst J. Ambient particulate air pollution and the intestinal microbiome; a systematic review of epidemiological, in vivo and, in vitro studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162769. [PMID: 36907413 DOI: 10.1016/j.scitotenv.2023.162769] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 05/13/2023]
Abstract
A healthy indigenous intestinal microbiome is indispensable for intra- and extra-intestinal human health. Since well-established factors such as diet and antibiotic use only explain 16 % of the inter-individual variation in gut microbiome composition, recent studies have focused on the association between ambient particulate air pollution and the intestinal microbiome. We systematically summarize and discuss all evidence concerning the effect of particulate air pollution on intestinal bacterial diversity indices, specific bacterial taxa, and potential underlying intestinal mechanisms. To this end, all possibly relevant publications published between February 1982 and January 2023 were screened, and eventually, 48 articles were included. The vast majority (n = 35) of these studies were animal studies. The exposure periods investigated in the human epidemiological studies (n = 12) ranged from infancy through elderly. This systematic review found that intestinal microbiome diversity indices were generally negatively associated with particulate air pollution in epidemiological studies, with an increase in taxa belonging to Bacteroidetes (two studies), Deferribacterota (one study), and Proteobacteria (four studies), a decrease in taxa belonging to Verrucomicrobiota (one study), and no consensus for taxa belonging to Actinobacteria (six studies) and Firmicutes (seven studies). There was no unequivocal effect of ambient particulate air pollution exposure on bacterial indices and taxa in animal studies. Only one study in humans examined a possible underlying mechanism; yet, the included in vitro and animal studies depicted higher gut damage, inflammation, oxidative stress, and permeability in exposed versus unexposed animals. Overall, the population-based studies showed a dose-related continuum of short- and long-term ambient particulate air pollution exposure on lower gut diversity and shifts in taxa over the entire life course.
Collapse
Affiliation(s)
- Thessa Van Pee
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; Department of Public Health and Primary Care, Leuven University, Herestraat 49-box 706, 3000 Leuven, Belgium.
| | - Romy van Leeuwen
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Janneke Hogervorst
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| |
Collapse
|
18
|
Wirsching J, Nagel G, Tsai MY, de Hoogh K, Jaensch A, Anwander B, Sokhi RS, Ulmer H, Zitt E, Concin H, Brunekreef B, Hoek G, Weinmayr G. Exposure to ambient air pollution and elevated blood levels of gamma-glutamyl transferase in a large Austrian cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163658. [PMID: 37100134 DOI: 10.1016/j.scitotenv.2023.163658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/07/2023]
Abstract
Gamma glutamyl transferase (GGT) is related to oxidative stress and an indicator for liver damage. We investigated the association between air pollution and GGT in a large Austrian cohort (N = 116,109) to better understand how air pollution affects human health. Data come from voluntary prevention visits that were routinely collected within the Vorarlberg Health Monitoring and Prevention Program (VHM&PP). Recruitment was ongoing from 1985 to 2005. Blood was drawn and GGT measured centralized in two laboratories. Land use regression models were applied to estimate individuals' exposure at their home address for particulate matter (PM) with a diameter of <2.5 μm (PM2.5), <10 μm (PM10), fraction between 10 μm and 2.5 μm (PMcoarse), as well as PM2.5 absorbance (PM2.5abs), NO2, NOx and eight components of PM. Linear regression models, adjusting for relevant individual and community-level confounders were calculated. The study population was 56 % female with a mean age of 42 years and mean GGT was 19.0 units. Individual PM2.5 and NO2 exposures were essentially below European limit values of 25 and 40 μg/m3, respectively, with means of 13.58 μg/m3 for PM2.5 and 19.93 μg/m3 for NO2. Positive associations were observed for PM2.5, PM10, PM2.5abs, NO2, NOx, and Cu, K, S in PM2.5 and PM10 fractions and Zn mainly in PM2.5 fraction. The strongest association per interquartile range observed was an increase of serum GGT concentration by 1.40 % (95 %-CI: 0.85 %; 1.95 %) per 45.7 ng/m3 S in PM2.5. Associations were robust to adjustments for other biomarkers, in two-pollutant models and the subset with a stable residential history. We found that long-term exposure to air pollution (PM2.5, PM10, PM2.5abs, NO2, NOx) as well as certain elements, were positively associated with baseline GGT levels. The elements associated suggest a role of traffic emissions, long range transport and wood burning.
Collapse
Affiliation(s)
- Jan Wirsching
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany; Agency for Preventive and Social Medicine, Bregenz (aks), Austria
| | - Ming-Yi Tsai
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Andrea Jaensch
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Bernhard Anwander
- Institut für Umwelt und Lebensmittelsicherheit des Landes Vorarlberg, Bregenz, Austria
| | - Ranjeet S Sokhi
- Centre for Atmospheric and Climate Physics Research (CACP), School of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield, UK
| | - Hanno Ulmer
- Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Innsbruck, Austria
| | - Emanuel Zitt
- Agency for Preventive and Social Medicine, Bregenz (aks), Austria; Department of Internal Medicine 3, LKH Feldkirch, Feldkirch, Austria
| | - Hans Concin
- Agency for Preventive and Social Medicine, Bregenz (aks), Austria
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany.
| |
Collapse
|
19
|
Li S, Guo B, Dong K, Huang S, Wu J, Zhou H, Wu K, Han X, Liang X, Pei X, Zuo H, Lin H, Zhao X. Association of long-term exposure to ambient PM 2.5 and its constituents with gut microbiota: Evidence from a China cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163577. [PMID: 37084912 DOI: 10.1016/j.scitotenv.2023.163577] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Accumulating animal experiments and epidemiological studies have found that exposure to fine particulate matter (PM2.5) is associated with altered gut microbiota (GM). However, it is unclear what kind of role the PM2.5 constituents play in the PM2.5-GM association. Therefore, this study aimed to investigate the association of long-term exposure to PM2.5 and its constituents (PMcons) with GM. This study included 1583 participants from a cohort in Southwest China. Satellite remote sensing and chemical transport modelling were used to determine the yearly average concentrations of PMcons. GM data were derived from 16 s sequencing based on stool samples. Generalized propensity score weighting regression and Bayesian Kernel Machine Regression (BKMR) were used to estimate the individual and joint association of exposure to PMcons with the Shannon index. The weighted correlation analysis was used to estimate the association of PMcons with the composition of GM. The result showed that an interquartile range increase of 3-year average black carbon (BC), ammonium, nitrate, organic matter (OM), sulfate, and soil particles (SOIL) were negatively associated with Shannon index with mean difference (95 % confidence interval) being -0.144 (-0.208, -0.080), -0.141 (-0.205, -0.078), -0.126 (-0.184, -0.068), -0.117 (-0.172, -0.062), -0.153 (-0.221, -0.085), and - 0.153 (-0.222, -0.085). BKMR indicated joint exposure to PMcons was associated with decreased Shannon index, and BC had the largest posterior inclusion probability (0.578). Weighted correlation analyses indicated PMcons were associated with decreased Bacteroidetes (r = -0.204, P < 0.001 for PM2.5) and increased Proteobacteria (r = 0.273, P < 0.001 for PM2.5). These results revealed that long-term exposure to PMcons was associated with GM. BC was the most important constituent in the association, indicating that the source of BC should be controlled to mitigate the negative effects of PM2.5 on GM.
Collapse
Affiliation(s)
- Sicheng Li
- Department of Epidemiology and Health Statistics, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bing Guo
- Department of Epidemiology and Health Statistics, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ke Dong
- Department of Public Health Laboratory Sciences, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shourui Huang
- Department of Epidemiology and Health Statistics, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jialong Wu
- Department of Epidemiology and Health Statistics, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hanwen Zhou
- Department of Epidemiology and Health Statistics, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kunpeng Wu
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Xinyu Han
- Department of Epidemiology and Health Statistics, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xian Liang
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Xiaofang Pei
- Department of Public Health Laboratory Sciences, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haojiang Zuo
- Department of Public Health Laboratory Sciences, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Xing Zhao
- Department of Epidemiology and Health Statistics, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
20
|
Zhu L, Li D, Yang X. Gut metabolomics and 16S rRNA sequencing analysis of the effects of arecoline on non-alcoholic fatty liver disease in rats. Front Pharmacol 2023; 14:1132026. [PMID: 37050898 PMCID: PMC10083296 DOI: 10.3389/fphar.2023.1132026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction: Non-alcoholic fatty liver disease (NAFLD) has gradually become the primary cause of fatty liver disease. Betel nuts have been used to treat gastrointestinal diseases.Methods: In the present study, we analyzed the pathology, serology, gut flora, and metabolites in a rat model of NAFLD, with and without betel nut alkaloid treatment, using an integrated approach involving pathology, serological testing, 16S rRNA gene sequencing, and ultra-performance liquid chromatography-mass spectrometry metabolomics.Results: Two rats were used for model validation. Thirty SD rats were included and divided into the normal group (C group), NAFLD model group (M group), low-dose group, medium-dose group (T group), and high-dose group with intraperitoneal injection of arecoline. The expression of blood lipids was significantly downregulated at all three arecoline concentrations (p < 0.05). Alpha-diversity analysis of the intestinal flora showed significant differences among the three groups, with a significant reduction in population diversity in the M group and a recovery of population diversity after arecoline treatment. At the phylum level, the relative abundance of Firmicutes was significantly higher in the T group and Proteobacteria in the M group. The KEGG metabolic pathways included polyketide sugar unit biosynthesis and hypertrophic cardiomyopathy. Thirty-three significantly different metabolites were identified among the groups. Significantly different metabolites between groups T and M included indolepyruvate, 2-deoxystreptamine, sakuranetin, glycyl-leucine, and riboflavin. The KEGG metabolic pathway suggested a potential role for arachidonic acid metabolism, serotonergic synapses, neuroactive ligand-receptor interactions, tyrosine metabolism, and regiomelanin. Vitamin digestion and absorption, as well as regulation of lipolysis in adipocytes, were the main metabolic pathways that distinguished the T vs. M groups. PGE2 is involved in several metabolic pathways. Correlation analysis showed that 29 bacterial species were significantly associated with PGE2 levels in the M and T groups. Vagococcus, Lawsonia, Christensenella, unidentified Erysipelotrichaceae, unidentified Coriobacteriaceae, and five other bacterial groups are unique in the PGE2 metabolic pathway regulated by arecoline.Discussion: Arecoline has lipid-lowering effects and may exert therapeutic effects in NAFLD through intestinal metabolites and intestinal flora, as well as through the Butyricicoccus/Christensenella/Coriobacteriaceae-COX2/PGE2 pathway. Thus, arecoline may represent a potential drug or target for NAFLD treatment.
Collapse
Affiliation(s)
- Lingping Zhu
- Department of General Practice, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Duo Li
- Department of General Practice, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
| | - Xuefeng Yang
- Department of General Practice, Hengyang Medical School, The Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
- Hunan Provincial Clinical Research Center for Metabolic Associated Fatty Liver Disease, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- *Correspondence: Xuefeng Yang,
| |
Collapse
|
21
|
Nita IB, Ilie OD, Ciobica A, Hritcu LD, Dobrin I, Doroftei B, Dobrin R. Reviewing the Potential Therapeutic Approaches Targeting the Modulation of Gastrointestinal Microflora in Schizophrenia. Int J Mol Sci 2022; 23:ijms232416129. [PMID: 36555774 PMCID: PMC9784651 DOI: 10.3390/ijms232416129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Schizophrenia (SCZ) is a severe brain disorder characterized by an intriguing clinical panel that has begun to gain interest due to its particular phenotype. Having considered the role of gut microflora in psychiatry, the latest discoveries might offer further insight into the underlying mechanisms. Thus, we aimed to offer an updated overview of the therapeutic potential of microorganism-derived supplements alongside dedicated protocols that target the re-establishment of the host's eubiosis. Based on combinations of specific keywords, we performed searches in four databases (PubMed/Medline, ISI Web of Knowledge, Scopus, and ScienceDirect) for the established interval (2018-2022) and identified twenty two eligible cases, restricted only to human patients' experiences. Up until the writing of this manuscript, it has been revealed that the administration of specific lactic acid bacteria strains (Lactobacillus and Bifidobacterium), or those combined with vitamin D and selenium, maintain the integrity of the gut flora, preventing antagonistic effects including inflammation, antipsychotic-related body weight gain (olanzapine) and other metabolic dysfunctionalities. However, there are multiple antipsychotics that exert a potent effect upon gut flora, influencing a plethora of pathways and creating a dysbalance ratio between beneficial and opportunistic pathogens. Risperidone, amisulpride, and clozapine are just a few examples, but the current literature is unfortunately inconsistent and reported data is contradictory, which is why we support additional studies in this context. Moreover, we further argue the utility of studying how distinct controlled substances influence microbial communities, considering that ketamine is proved to alleviate depressive-like behavior as opposed to amphetamine and phencyclidine, which are known substances to trigger SCZ-like symptoms in experimental models. Probiotics may be regarded as the most consequential vehicle through which the gut flora can be successfully influenced, in adequate doses exerting a beneficial role as an alternative approach to alleviate SCZ symptoms.
Collapse
Affiliation(s)
- Ilinca-Bianca Nita
- Department of Medicine III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania
| | - Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
| | - Luminita-Diana Hritcu
- Internal Medicine Clinic, Faculty of Veterinary Medicine, University of Life Sciences “Ion Ionescu de la Brad”, Mihail Sadoveanu Street, no 3, 700490 Iasi, Romania
- Correspondence: (L.-D.H.); (B.D.)
| | - Irina Dobrin
- Department of Medicine III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania
- Institute of Psychiatry “Socola”, Bucium Street, no 36, 700282 Iasi, Romania
| | - Bogdan Doroftei
- Department of Medicine VIII, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania
- Correspondence: (L.-D.H.); (B.D.)
| | - Romeo Dobrin
- Department of Medicine III, Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania
- Institute of Psychiatry “Socola”, Bucium Street, no 36, 700282 Iasi, Romania
| |
Collapse
|
22
|
Li R, Zhan W, Ren J, Gao X, Huang X, Ma Y. Associations between organophosphate esters concentrations and markers of liver function in US adolescents aged 12-19 years: A mixture analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120255. [PMID: 36155224 DOI: 10.1016/j.envpol.2022.120255] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/31/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Liver disease has become a growing health burden, and little is known about the impairment of liver function caused by exposure to organophosphate esters (OPEs) in adolescents aged 12-19 years in the United States. To investigate the relationship between urinary metabolites of OPEs including diphenyl phosphate (DPHP), bis(1,3-dichloro-2-propyl) phosphate (BDCPP), bis(1-chloroethyl) phosphate (BCPP), bis(2-chloroethyl) phosphate (BCEP), and dibutyl phosphate (DBUP) and liver function in US adolescents aged 12-19 years. Liver function tests (LFTs) include aspartate aminotransferase (AST), albumin (ALB), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), total bilirubin (TBIL), total protein (TP), and AST/ALT. Meanwhile, potential confounding and interaction effects were assessed. The study sample included 592 adolescents aged 12-19 from two consecutive NHANES cycles (2011-2012, 2013-2014). A composite statistical strategy combining traditional linear regression with advanced multi-pollutant models quantile based g-computation (QGC) and eXtreme Gradient Boosting (XGBoost) regression was used to analyze the joint effects of multiple OPEs on liver function indicators, and to describe the interaction between different OPEs in detail. 592 adolescent participants were 15 (14-17) years old, with similar numbers of males and females (304 vs. 288). The analysis results showed that (1) in the linear regression model, individual DPHP, BCEP exposure and ALP changes, BCEP and AST/ALT changes were positively associated. DPHP, BDCPP were negatively associated with TP changes. (2) The combined effects of various OPEs on ALB, ALT, ALP, GGT, TBIL, TP, and AST/ALT were statistically significant. (3) There is no potential interaction between different OPEs. Several OPEs and their combinations are closely related to the 8 LFT indicators. In addition, data suggest that exposure to OPEs in adolescents may be associated with liver damage. Due to limited evidence in the literature and potential limitations of the current study, our findings require more studies to confirm.
Collapse
Affiliation(s)
- Ruiqiang Li
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Wenqiang Zhan
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Xian Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Xin Huang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China.
| |
Collapse
|
23
|
Liu J, Yu W, Pan R, He Y, Wu Y, Yan S, Yi W, Li X, Song R, Yuan J, Liu L, Wei N, Jin X, Li Y, Liang Y, Sun X, Mei L, Song J, Cheng J, Su H. Association between sequential extreme precipitation-heatwaves events and hospitalizations for schizophrenia: The damage amplification effects of sequential extremes. ENVIRONMENTAL RESEARCH 2022; 214:114143. [PMID: 35998693 DOI: 10.1016/j.envres.2022.114143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES In the context of frequent global extreme weather events, there are few studies on the effects of sequential extreme precipitation (EP) and heatwaves (HW) events on schizophrenia. We aimed to quantify the effects of the events on hospitalizations for schizophrenia and compare them with EP and HW alone to explore the amplification effect of successive extremes on health loss. METHODS A time-series Poisson regression model combined with a distributed lag non-linear model was applied to estimate the association between sequential EP and HW events (EP-HW) and schizophrenia hospitalizations. The effects of EP-HW with different intervals and intensities on the admission of schizophrenia were compared. In addition, we calculated the mean attributable fraction (AF) and attributable numbers (AN) per exposure of extreme events to reflect the amplification effect of sequential extreme events on health hazards compared with individual extreme events. RESULTS EP-HW increased the risk of hospitalization for schizophrenia, with significant effects lasting from lag0 (RR and 95% CI: 1.150 (1.041-1.271)) to lag11 (1.046 (1.000-1.094)). Significant associations were found in the subgroups of male, female, married people, and those aged≥ 40 years old. Shorter-interval (0-3days) or higher-intensity EP-HW (both precipitation ≥ P97.5 and mean temperature ≥ P97.5) had a longer lag effect compared to EP-HW with longer intervals or lower intensity. We found that the mean AF and AN caused by each exposure to EP-HW (AF: 0.074% (0.015%-0.123%); AN: 4.284 (0.862-7.118)) were higher than those induced by each exposure to HW occurring alone (AF:0.032% (0.004%-0.058%); AN:1.845 (0.220-3.329)). CONCLUSIONS Sequential extreme precipitation-heatwaves events significantly increase the risk of hospitalizations for schizophrenia, with greater impact and disease burden than independently occurring extremes. The impact of consecutive extremes is supposed to be considered in local sector early warning systems for comprehensive public health decision-making.
Collapse
Affiliation(s)
- Jintao Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Wenping Yu
- Department of Geriatrics, Shandong Daizhuang Hospital, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Yangyang He
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Yudong Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Shuangshuang Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Xuanxuan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Rong Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Jiajun Yuan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Li Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Ning Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Xiaoyu Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Yuxuan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Yunfeng Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Xiaoni Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Lu Mei
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, 230032, China; Anhui Province Key Laboratory of Major Autoimmune Disease, China.
| |
Collapse
|
24
|
Du Z, Hu J, Lin L, Liang Q, Sun M, Sun Z, Duan J. Melatonin alleviates PM 2.5 -induced glucose metabolism disorder and lipidome alteration by regulating endoplasmic reticulum stress. J Pineal Res 2022; 73:e12823. [PMID: 35986482 DOI: 10.1111/jpi.12823] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/26/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022]
Abstract
Exposure to fine particulate matter (PM2.5 ) was associated with an increased incidence of liver metabolic disease. Melatonin has been shown to prevent liver glucolipid metabolism disorders. However, whether melatonin could rescue PM2.5 -induced liver metabolic abnormalities remains uncertain. This study was to evaluate the mitigating effect of melatonin on PM2.5 -accelerated hepatic glucose metabolism imbalance in vivo and in vitro. Schiff periodic acid shiff staining and other results showed that PM2.5 led to a decrease in hepatic glycogen reserve and an increase in glucose content, which was effectively alleviated by melatonin. Targeted lipidomics is used to identify lipid biomarkers associated with this process, including glycerolipids, glycerophospholipids, and sphingolipids. In addition, gene microarray and quantitative polymerase chain reaction analysis of ApoE-/- mice liver suggested that PM2.5 activated the miR-200a-3p and inhibited DNAJB9, and the targeting relationship was verified by luciferase reports for the first time. Further investigation demonstrated that DNAJB9 might motivate endoplasmic reticulum (ER) stress by regulating Ca2+ homeostasis, thus altering the protein expression of GSK3B, FOXO1, and PCK2. Meanwhile, melatonin effectively inhibited miR-200a-3p and glucose metabolism disorder. Knockout of miR-200a-3p in L02 cells revealed that miR-200a-3p is indispensable in the damage of PM2.5 and the therapeutic effect of melatonin. In summary, melatonin alleviated PM2.5 -induced liver metabolic dysregulation by regulating ER stress via miR-200a-3p/DNAJB9 signaling pathway. Our data provide a prospective targeted therapy for air pollution-related liver metabolism disorders.
Collapse
Affiliation(s)
- Zhou Du
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Junjie Hu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Qingqing Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
25
|
Filardo S, Di Pietro M, Protano C, Antonucci A, Vitali M, Sessa R. Impact of Air Pollution on the Composition and Diversity of Human Gut Microbiota in General and Vulnerable Populations: A Systematic Review. TOXICS 2022; 10:toxics10100579. [PMID: 36287859 PMCID: PMC9607944 DOI: 10.3390/toxics10100579] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 06/04/2023]
Abstract
Recently, growing attention has focused on the impact of air pollution on gut microbiota as a possible mechanism by which air pollutant exposure increased the risk for chronic diseases, as evidenced by in vivo studies demonstrating important exposure-induced alterations in the diversity and relative abundance of gut bacterial taxa. This systematic review provides updated state-of-art findings of studies examining the impact of air pollution on the human gut microbiota. Databases PubMed, Scopus, and Web of Science were searched with the following strategy: "air poll*" AND "gut micro*" OR "intestinal micro*"; moreover, a total of 10 studies were included. Overall, there is the evidence that short-term and long-term exposure to air pollutants have the potential to alter the composition and diversity of gut microbiota; some studies also correlated air pollution exposure to adverse health effects (impaired fasting glucose, adverse pregnancy outcomes, and asthma attacks) via alterations in the composition and/or function of the gut microbiota. However, the evidence on this topic is still scarce, and large cohort studies are needed globally.
Collapse
|
26
|
The mediating role of the gut microbiome in the association between ambient air pollution and autistic traits. Int J Hyg Environ Health 2022; 246:114047. [DOI: 10.1016/j.ijheh.2022.114047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
|
27
|
Du Z, Lin L, Li Y, Sun M, Liang Q, Sun Z, Duan J. Combined exposure to PM 2.5 and high-fat diet facilitates the hepatic lipid metabolism disorders via ROS/miR-155/PPARγ pathway. Free Radic Biol Med 2022; 190:16-27. [PMID: 35940515 DOI: 10.1016/j.freeradbiomed.2022.07.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 12/18/2022]
Abstract
Environmental fine particulate matter (PM2.5), which has attracted worldwide attention, is associated with the progression of metabolic-associated fatty liver disease (MAFLD). However, it is unclear whether dietary habit exacerbate liver damage caused by PM2.5. The current study aimed to investigate the combined negative effects of PM2.5 and high-fat diet (HFD) on liver lipid metabolism in C57BL/6J mice. Histopathological and Oil-Red O staining analysis illustrated that PM2.5 exposure resulted in increased liver fat content in HFD-fed C57BL/6J mice, but not in standard chow diet (STD)-fed mice. And there was a synergistic effect between PM2.5 and HFD on hepatic lipotoxicity. The increased ROS levels and augmented oxidative damage were evaluated in liver tissue of mice treated with PM2.5 and HFD together. In addition, excessive ROS production could activate the miR-155/peroxisome proliferator-activated receptor gamma (PPARγ) pathway, including up-regulation of lipid accumulation-related protein expressions of recombinant liver X receptor alpha (LXRα), sterol regulatory element binding protein-1 (SREBP-1), stearoyl-CoA desaturase-1 (SCD1), fatty acid synthase (FAS) and acetyl-CoA carboxylase 1 (ACC1).The use of miR-155 inhibitors demonstrated the indispensable role of miR-155 in the activation of lipid-regulated proteins by PM2.5 and palmitic acid (PA). Collectively, altering high-fat dietary habits could protect against MAFLD motivated by air pollution, and miR-155 might be an effective preventive and therapeutic target for this process.
Collapse
Affiliation(s)
- Zhou Du
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Qingqing Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China.
| |
Collapse
|
28
|
Li S, Ma Y, Ye S, Guo R, Su Y, Du Q, Yin S, Xiao F. Ambient NO 2 exposure induced cardiotoxicity associated with gut microbiome dysregulation and glycerophospholipid metabolism disruption. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113583. [PMID: 35561545 DOI: 10.1016/j.ecoenv.2022.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
An average daily increase of 10 μg/m3 in NO2 concentrations could lead to an increased mortality in cardiovascular, cerebrovascular of 1.89%, 2.07%, but the mechanism by which NO2 contributes to cardiotoxicity is rarely reported. In order to assess the cardiotoxicity of NO2 inhalation (5 ppm), we firstly investigate the change of gut microbiota, serum metabonomics and cardiac proteome. Non-targeted LC-MS/MS metabonomics showed that NO2 stress could perturb the glycerophospholipid metabolism in the serum, which might destabilize the bilayer configuration of cardiac lipid membranes. Furthermore, we observed that NO2 inhalation caused augmented intercellular gap and inflammatory infiltration in the heart. Although 16 S rRNA gene amplification sequencing demonstrated that NO2 exposure did not influence the intestinal microbial abundance and diversity, but glycerophospholipid metabolism disruption might be finally reflected in gut microbiom dysregulation, such as Sphingomonas, Koribacter, Actinomarina and Bradyrhizobium Turicibacter, Rothia, Globicatella and Aerococcus. Proteome mining revealed that differentially expressed genes (DEGs) in the heart after NO2 stress were involved in necroptosis, mitophagy and ferroptosis. We further revealed that NO2 increased the number of cardiac mitochondria with depletion of cristae by regulating the expression of Mfn2 and Hsp70. This study indicating Mfn2-meidcated imbalanced mitochondrial dynamics as a potential mechanism after NO2-induced heart injury and suggesting microbiome dysregulation/glycerophospholipid metabolism exerts critical roles in cardiotoxicity caused by NO2.
Collapse
Affiliation(s)
- Siwen Li
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China.
| | - Yu Ma
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Shuzi Ye
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Rong Guo
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Ying Su
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Qiaoyun Du
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Siyu Yin
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China
| | - Fang Xiao
- Xiangya School of Public Health, Central South University, Changsha 410078, PR China.
| |
Collapse
|
29
|
Ermakov EA, Melamud MM, Buneva VN, Ivanova SA. Immune System Abnormalities in Schizophrenia: An Integrative View and Translational Perspectives. Front Psychiatry 2022; 13:880568. [PMID: 35546942 PMCID: PMC9082498 DOI: 10.3389/fpsyt.2022.880568] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
The immune system is generally known to be the primary defense mechanism against pathogens. Any pathological conditions are reflected in anomalies in the immune system parameters. Increasing evidence suggests the involvement of immune dysregulation and neuroinflammation in the pathogenesis of schizophrenia. In this systematic review, we summarized the available evidence of abnormalities in the immune system in schizophrenia. We analyzed impairments in all immune system components and assessed the level of bias in the available evidence. It has been shown that schizophrenia is associated with abnormalities in all immune system components: from innate to adaptive immunity and from humoral to cellular immunity. Abnormalities in the immune organs have also been observed in schizophrenia. Evidence of increased C-reactive protein, dysregulation of cytokines and chemokines, elevated levels of neutrophils and autoantibodies, and microbiota dysregulation in schizophrenia have the lowest risk of bias. Peripheral immune abnormalities contribute to neuroinflammation, which is associated with cognitive and neuroanatomical alterations and contributes to the pathogenesis of schizophrenia. However, signs of severe inflammation are observed in only about 1/3 of patients with schizophrenia. Immunological parameters may help identify subgroups of individuals with signs of inflammation who well respond to anti-inflammatory therapy. Our integrative approach also identified gaps in knowledge about immune abnormalities in schizophrenia, and new horizons for the research are proposed.
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Mark M. Melamud
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Valentina N. Buneva
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Svetlana A. Ivanova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|