1
|
Kumsopar S, Charoenpong C, He S, Bustamante P, Wee B, Wang X, Chinfak N, Kamdee K, Sompongchaiyakul P. Mercury trophic transfer and biomagnification in food webs within a tropical embayment as evidenced by nitrogen and carbon stable isotope analysis. ENVIRONMENTAL RESEARCH 2025; 278:121599. [PMID: 40252794 DOI: 10.1016/j.envres.2025.121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/04/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
Mercury (Hg) contamination in marine ecosystems poses a significant environmental threat due to its high toxicity, persistence in the environment, and tendency to bioaccumulate in organisms and biomagnify in food webs. Understanding how Hg moves through these food webs is essential for assessing its ecological and health impacts. To investigate the trophic dynamics of Hg in Rayong Bay, Gulf of Thailand, we collected marine organisms from the pelagic and benthic food webs during 2022-2023 and analyzed the total mercury content (THg) in plankton (phytoplankton, zooplankton, and fish larvae) and in 81 marine animal species. Furthermore, the stable nitrogen and carbon isotope values (δ15N and δ13C) were measured to establish their trophic levels (TLs) and potential food sources in the food web. Based on these analyses, we calculated the biomagnification factor using TL-adjusted ratios (BMFnorm) and trophic magnification factor (TMF) for the different TLs. BMFnorm values exceeded 1.0 in over 40 % of cases for both the pelagic and benthic food webs, indicating THg biomagnification from prey to predator. Notably, the pelagic food web exhibited a markedly higher TMF value (TMF = 6.68) compared to that of the benthic food web (TMF = 2.06), suggesting stronger Hg biomagnification within the pelagic food web. Our findings also highlight the consumption risk of Hg in some fish species in the Rayong Bay food webs, emphasizing the need for continued monitoring and mitigation strategies to safeguard both human and ecological health.
Collapse
Affiliation(s)
- Suriyapong Kumsopar
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chawalit Charoenpong
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Shaoneng He
- Earth Observatory of Singapore, Nanyang Technological University, Singapore, 639798, Singapore
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, La Rochelle, 17000, France; Institut Universitaire de France (IUF), Paris, 75005, France
| | - Bernie Wee
- Asian School of the Environment, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xianfeng Wang
- Earth Observatory of Singapore, Nanyang Technological University, Singapore, 639798, Singapore; Asian School of the Environment, Nanyang Technological University, Singapore, 639798, Singapore
| | - Narainrit Chinfak
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kiattipong Kamdee
- Thailand Institute of Nuclear Technology, Nakonnayok, 26120, Thailand
| | - Penjai Sompongchaiyakul
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
2
|
Sun C, Yin M, Peng Y, Lin C, Wu Y, Fu F, Lin Y. The characteristic and bio-accessibility evaluation of mercury species in various kinds of seafood collected from Fujian of China for mercury risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136549. [PMID: 39571373 DOI: 10.1016/j.jhazmat.2024.136549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 01/26/2025]
Abstract
Seafood consumption is the major source of total Hg (tHg) and methyl mercury (MeHg) for humans. Lack of broad-representative bio-accessibility of mercury species makes accurate assessment on health risk of seafood's mercury impossible. Herein, the concentrations and in vitro bio-accessibilities of mercury species in 93 seafood samples with 71 different species were extensively investigated. Results indicated that all shellfish and fish samples, and most seaweed samples contained both Hg2+ and MeHg, while some seaweed samples contained only Hg2+. The concentrations of mercury species varied depending on the differences in species/individuals of seafood and sampling regions. MeHg in seafood can be partly de-methylated into Hg2+ during gastrointestinal digestion, which reduced the toxicity of mercury in seafood. The mean demethylation rate of MeHg varied as follows: seaweeds (⁓62.1 %) > shellfishes/shrimps (⁓19.7 %) > fishes (⁓9.2 %). The mean bio-accessibility of Hg2+ and tHg varied as follows: seaweeds (⁓97.7 % and ⁓90.1 %) > shellfishes/shrimps (⁓65.1 % and ⁓67.9 %) ≈ fishes (⁓65.1 % and ⁓66.7 %), while that of MeHg varied as follows: fishes (⁓57.7 %) > shellfishes/shrimps (50.8 %) > seaweeds (⁓11.6 %). The simulated calculation of target hazard quotient (THQ) revealed that the health risk of seafood's mercury may be accurately assessed using tHg, not mercury species, even without considering bio-accessibility. This offers a simple but protective approach for assessing the health risk of seafood's mercury. Results of this study provide the potential broad-representative bio-accessibilities of mercury species existing in various kinds of seafood and novel insights for scientifically assessing the health risk of seafood's mercury and revising the mercury limitation in seafood.
Collapse
Affiliation(s)
- Chaochen Sun
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Miaomiao Yin
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Ying Peng
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Chen Lin
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yongning Wu
- NHC Key Lab of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of China Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - FengFu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| | - Yue Lin
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
3
|
He J, Guo X, Zhang X, Chen QA, Gao K, Han L, Xu C. Delving into South China Sea microplastic pollution: Abundance, composition, and environmental risk. MARINE POLLUTION BULLETIN 2024; 209:117086. [PMID: 39406067 DOI: 10.1016/j.marpolbul.2024.117086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/04/2024] [Accepted: 09/30/2024] [Indexed: 11/28/2024]
Abstract
Understanding marine pollution in the South China Sea is crucial for preserving marine ecosystems and biodiversity. Despite extensive research on pollutants, there is a significant gap in knowledge about microplastics (MPs) in the archipelago region. This study focused on four typical islands, examining MPs in seawater and sediments, their distribution, and environmental risks. Most MPs (>90 %) were smaller than 2.5 mm, with black fiber-shaped polyethylene terephthalate MPs being predominant. MPs in seawater had lower abundance (5-12 items/L) compared to sediment (100-2600 items/kg) but showed richer polymer composition. Pollution load index (PLI) and risk index analysis indicated all regions were contaminated (PLI > 1), with the Zhongsha islands being the most polluted. Correlation analysis highlighted black, fibrous PET-like polymers with large particle sizes (>0.5 mm) as major contributors. This study could help to understand the MPs distribution and pollution in the archipelago region of the South China Sea.
Collapse
Affiliation(s)
- Jiehong He
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyu Guo
- Key Laboratory of Environmental Toxicology of Haikou, Hainan University, Haikou 570228, China
| | - Xuanwei Zhang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Qi-Ang Chen
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Kuo Gao
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Lanfang Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Chao Xu
- Institute of Geography, Humboldt University of Berlin, Rudower Chaussee 16, 12489 Berlin, Germany.
| |
Collapse
|
4
|
Erdemir S, Malkondu S, Oguz M, Kocak A. Monitoring Hg 2+ ions in food and environmental matrices using a novel ratiometric NIR fluorescent sensor via carbonothioate-deprotection reaction. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123859. [PMID: 38537802 DOI: 10.1016/j.envpol.2024.123859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/21/2024]
Abstract
Mercury toxicity and its environmental impact are significant concerns for public health and environmental protection. Therefore, the development of effective, rapid, and reliable detection methods for trace levels of Hg2+ is crucial. Herein, a cyanine dye bearing a carbonothioate group is reported as a potential NIR fluorescent probe for Hg2+ detection. The spectral properties of the free probe have been characterized by the presence and absence of a series of analytes. The addition of Hg2+ leads to significant changes in the fluorescence signal with distinct red coloration compared to other competing analytes, indicating that the probe is highly selective for Hg2+. The fluorescence quantum yield increases from 0.073 to 0.315. The detection limit is 0.10 μM, indicating the high sensitivity of the probe to low Hg2+ levels. The most prominent sensing features of the probe include NIR fluorescence, low cytotoxicity, ratiometric fluorescence response, and fast response compared to most of the currently available fluorescent probes. In addition, the probe can detect Hg2+ in actual samples such as foodstuff, soil, water, and live cells. Bioimaging studies have demonstrated that the present probe is highly efficient in targeting mitochondria and possesses good imaging abilities for detecting Hg2+ in cells. Therefore, these results suggest that it can be proposed as a powerful NIR fluorescent probe for the highly sensitive detection of Hg2+.
Collapse
Affiliation(s)
- Serkan Erdemir
- Selcuk University, Science Faculty, Department of Chemistry, Konya, 42250, Turkey.
| | - Sait Malkondu
- Giresun University, Faculty of Engineering, Department of Environmental Engineering, Giresun, 28200, Turkey
| | - Mehmet Oguz
- Selcuk University, Science Faculty, Department of Chemistry, Konya, 42250, Turkey
| | - Ahmet Kocak
- Selcuk University, Science Faculty, Department of Chemistry, Konya, 42250, Turkey
| |
Collapse
|
5
|
Kung HC, Wu CH, Huang BW, Chang-Chien GP, Mutuku JK, Lin WC. Mercury abatement in the environment: Insights from industrial emissions and fates in the environment. Heliyon 2024; 10:e28253. [PMID: 38571637 PMCID: PMC10987932 DOI: 10.1016/j.heliyon.2024.e28253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024] Open
Abstract
Mercury's neurotoxic effects have prompted the development of advanced control and remediation methods to meet stringent measures for industries with high-mercury feedstocks. Industries with significant Hg emissions, including artisanal and small-scale gold mining (ASGM)-789.2 Mg year-1, coal combustion-564.1 Mg year-1, waste combustion-316.1 Mg year-1, cement production-224.5 Mg year-1, and non-ferrous metals smelting-204.1 Mg year-1, use oxidants and adsorbents capture Hg from waste streams. Oxidizing agents such as O3, Cl2, HCl, CaBr2, CaCl2, and NH4Cl oxidize Hg0 to Hg2+ for easier adsorption. To functionalize adsorbents, carbonaceous ones use S, SO2, and Na2S, metal-based adsorbents use dimercaprol, and polymer-based adsorbents are grafted with acrylonitrile and hydroxylamine hydrochloride. Adsorption capacities span 0.2-85.6 mg g-1 for carbonaceous, 0.5-14.8 mg g-1 for metal-based, and 168.1-1216 mg g-1 for polymer-based adsorbents. Assessing Hg contamination in soils and sediments uses bioindicators and stable isotopes. Remediation approaches include heat treatment, chemical stabilization and immobilization, and phytoremediation techniques when contamination exceeds thresholds. Achieving a substantially Hg-free ecosystem remains a formidable challenge, chiefly due to the ASGM industry, policy gaps, and Hg persistence. Nevertheless, improvements in adsorbent technologies hold potential.
Collapse
Affiliation(s)
- Hsin-Chieh Kung
- Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, 833301, Taiwan
| | - Chien-Hsing Wu
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang-Gung Memorial Hospital, Kaohsiung, 83301, Taiwan
- Center for General Education, Cheng Shiu University, Kaohsiung 833301, Taiwan
| | - Bo-Wun Huang
- Department of Mechanical and Institute of Mechatronic Engineering, Cheng Shiu University, Kaohsiung City, 833301, Taiwan
| | - Guo-Ping Chang-Chien
- Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, 833301, Taiwan
- Super micro mass research and technology center, Cheng Shiu University, Kaohsiung, 833301, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, 833301, Taiwan
| | - Justus Kavita Mutuku
- Institute of Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, 833301, Taiwan
- Super micro mass research and technology center, Cheng Shiu University, Kaohsiung, 833301, Taiwan
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung, 833301, Taiwan
| | - Wan-Ching Lin
- Department of Neuroradiology, E-Da Hospital, I-Shou University, Kaohsiung, 84001, Taiwan
- Department of Neurosurgery, E-Da Hospital/I-Shou University, Kaohsiung, 84001, Taiwan
| |
Collapse
|
6
|
Cai J, Yin B, Wang Y, Pan K, Xiao Y, Wang X. Gut microbiome play a crucial role in geographical and interspecies variations in mercury accumulation by fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169381. [PMID: 38101636 DOI: 10.1016/j.scitotenv.2023.169381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/24/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Mercury (Hg) contamination in fish has raised global concerns for decades. The Hg biotransformation can be manipulated by gut microbiome and it is found to have a substantial impact on the speciation and final fate of Hg in fish. However, the contribution of intestinal microbiota in geographical and interspecies variations in fish Hg levels has not been thoroughly understood. The present study compared the Hg levels in wild marine fish captured from two distinct regions in South China sea. We observed a quite "ironic" phenomenon that MeHg levels in carnivorous fish from a region with minimal human impacts (Xisha Islands, 92 ± 7.2 ng g-1 FW) were much higher than those from a region with severe human impacts (Daya Bay, 19 ± 0.41 ng g-1 FW). Furthermore, the results showed that gut microbiome determined Hg biotransformation and played a crucial role in the variances in fish Hg levels across different geographical locations and species. The intestinal methylators, rather than demethylators, were more significant in affecting Hg biotransformation in fish. The carnivorous species in Xisha Islands exhibited a higher abundance of intestinal methylators, leading to higher MeHg accumulation. Besides, the gut microbiome could be shaped in response to the elevated Hg levels in these fish, which may benefit their adaptation to Hg toxicity and overall health preservation. However, anthropogenic activities (particularly overfishing) in Daya Bay have severely affected the fish population, disrupting the reciprocal relationships between fish and intestinal microbiota and rendering them more susceptible to pathogenic microbes. Overall, this study provided a comprehensive understanding of the role of gut microbiome in Hg bioaccumulation in fish and offered valuable insights into the co-evolutionary dynamics between fish and gut microbiome in the presence of Hg exposure.
Collapse
Affiliation(s)
- Jieyi Cai
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Bingxin Yin
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yunhui Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Yayuan Xiao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510300, China; Guangdong Provincial Key Laboratory of Fishery Ecology Environment, Guangzhou 510300, China
| | - Xun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Prabakaran K, Sompongchaiyakul P, Bureekul S, Wang X, Charoenpong C. Heavy metal bioaccumulation and risk assessment in fishery resources from the Gulf of Thailand. MARINE POLLUTION BULLETIN 2024; 198:115864. [PMID: 38096691 DOI: 10.1016/j.marpolbul.2023.115864] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
The muscle tissues of 19 fish species, two crab species, and one shrimp species collected from the Gulf of Thailand (GoT) were analyzed to determine the levels of heavy metals, including Cu, Zn, Fe, Mn, Ni, Pb, Cd, and Hg. The results revealed that the mean concentrations of the heavy metals, in descending order, were Zn > Cu > Fe > Cd > Hg > Mn > Pb > Ni. Among the examined metals, zinc was found to be the most prevalent in fish tissues. Based on the risk assessment indices, the estimated average daily doses (ADD) of the heavy metals were found to be below the provisional tolerable daily intake (PTDI) recommended by the joint Committee of the Food and Agriculture Organization (FAO) and the World Health Organization (WHO) on food contaminants. The results of the target cancer risk analysis revealed no related cancer risk from the consumption of the fishes considered for the study. However, the target hazard quotient (THQ) values exceeded the threshold of 1 (THQ > 1) specifically for mercury in Gymnothorax spp. and Terapon spp. Furthermore, the calculated hazard index (HI) values for fish muscles were all below 1, indicating that there is no significant health risk for humans at the current consumption rates, except in Terapon species for both normal and habitual consumers. Notably, habitual consumers of Gymnothorax species showed the highest HI value (>1), suggesting potential long-term effects on human health when consuming larger quantities of these fishes.
Collapse
Affiliation(s)
- K Prabakaran
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Penjai Sompongchaiyakul
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Sujaree Bureekul
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Xiangfeng Wang
- Asian School of the Environment, Nanyang Technological University, Singapore
| | - Chawalit Charoenpong
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Xu Z, Yang Y, Li J, Yang N, Zhang Q, Qiu G, Lu Q. Home-produced eggs: An important pathway of methylmercury exposure for residents in mercury mining areas, southwest China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115678. [PMID: 37979350 DOI: 10.1016/j.ecoenv.2023.115678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
In light of the documented elevated concentrations of total mercury (Hg) and methylmercury (MeHg) in poultry originating from Hg-contaminated sites, a knowledge gap persists regarding the levels of Hg found in home-produced eggs (HPEs) and the associated dietary exposure risks in regions affected by Hg mining. To address this knowledge gap, a comprehensive investigation was undertaken with the primary objectives of ascertaining the concentrations of THg and MeHg in HPEs and evaluating the potential hazards associated with the consumption of eggs from the Wanshan Hg mining area in Southwest China. The results showed that THg concentrations in HPEs varied within a range of 10.5-809 ng/g (with a geometric mean (GM) of 64.1 ± 2.7 ng/g), whereas MeHg levels spanned from 1.3 to 291 ng/g (GM, 23.1 ± 3.4 ng/g). Remarkably, in half of all eggs, as well as those collected from regions significantly impacted by mining activities, THg concentrations exceeded the permissible maximum allowable value for fresh eggs (50 ng/g). Consumption of these eggs resulted in increased exposure risks associated with THg and MeHg, with GM values ranging from 0.024 to 0.17 µg/kg BW/day and 0.0089-0.066 µg/kg BW/day, respectively. Notably, the most substantial daily dosage was observed among children aged 2-3 years. The study found that consuming HPEs could result in a significant IQ reduction of 34.0 points for the whole mining area in a year. These findings highlight the potential exposure risk, particularly concerning MeHg, stemming from the consumption of local HPEs by residents in mining areas, thereby warranting serious consideration within the framework of Hg exposure risk assessment in mining locales.
Collapse
Affiliation(s)
- Zhidong Xu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Yuhua Yang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Jun Li
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Na Yang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Qinghai Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qinhui Lu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
9
|
Guo YS, Zuo TT, Chen AZ, Wang Z, Jin HY, Wei F, Li P, Ma SC. Progress in quality control, detection techniques, speciation and risk assessment of heavy metals in marine traditional Chinese medicine. Chin Med 2023; 18:73. [PMID: 37328891 DOI: 10.1186/s13020-023-00776-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/25/2023] [Indexed: 06/18/2023] Open
Abstract
Marine traditional Chinese medicines (MTCMs) hold a significant place in the rich cultural heritage in China. It plays an irreplaceable role in addressing human diseases and serves as a crucial pillar for the development of China's marine economy. However, the rapid pace of industrialization has raised concerns about the safety of MTCM, particularly in relation to heavy metal pollution. Heavy metal pollution poses a significant threat to the development of MTCM and human health, necessitating the need for detection analysis and risk assessment of heavy metals in MTCM. In this paper, the current research status, pollution situation, detection and analysis technology, removal technology and risk assessment of heavy metals in MTCM are discussed, and the establishment of a pollution detection database and a comprehensive quality and safety supervision system for MTCM is proposed. These measures aim to enhance understanding of heavy metals and harmful elements in MTCM. It is expected to provide a valuable reference for the control of heavy metals and harmful elements in MTCM, as well as the sustainable development and application of MTCM.
Collapse
Affiliation(s)
- Yuan-Sheng Guo
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China
- China Pharmaceutical University, Nanjing, 211198, China
| | - Tian-Tian Zuo
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China
| | - An-Zhen Chen
- NMPA Key Laboratory for Quality Research and Evaluation of Traditional Marine Chinese Medicine, Qingdao Institute for Food and Drug Control, Qingdao, 266073, China
| | - Zhao Wang
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China
| | - Hong-Yu Jin
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China
| | - Feng Wei
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China
| | - Ping Li
- China Pharmaceutical University, Nanjing, 211198, China
| | - Shuang-Cheng Ma
- National Institutes for Food and Drug Control, No. 31 Huatuo Road, Daxing District, Beijing, 102629, China.
| |
Collapse
|
10
|
Caiati C, Stanca A, Lepera ME. Free Radicals and Obesity-Related Chronic Inflammation Contrasted by Antioxidants: A New Perspective in Coronary Artery Disease. Metabolites 2023; 13:712. [PMID: 37367870 PMCID: PMC10302379 DOI: 10.3390/metabo13060712] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
We are surrounded by factors called free radicals (FR), which attach to the molecules our body is made of, first among them the endothelium. Even though FR are to a certain extent a normal factor, nowadays we face an escalating increase in these biologically aggressive molecules. The escalating formation of FR is linked to the increased usage of man-made chemicals for personal care (toothpaste, shampoo, bubble bath, etc.), domestic laundry and dish-washer detergents, and also an ever wider usage of drugs (both prescription and over the counter), especially if they are to be used long-term (years). In addition, tobacco smoking, processed foods, pesticides, various chronic infectious microbes, nutritional deficiencies, lack of sun exposure, and, finally, with a markedly increasing impact, electromagnetic pollution (a terribly destructive factor), can increase the risk of cancer, as well as endothelial dysfunction, owing to the increased production of FR that they cause. All these factors create endothelial damage, but the organism may be able to repair such damage thanks to the intervention of the immune system supported by antioxidants. However, one other factor can perpetuate the state of inflammation, namely obesity and metabolic syndrome with associated hyperinsulinemia. In this review, the role of FR, with a special emphasis on their origin, and of antioxidants, is explored from the perspective of their role in causing atherosclerosis, in particular at the coronary level.
Collapse
Affiliation(s)
- Carlo Caiati
- Unit of Cardiovascular Diseases, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.S.); (M.E.L.)
| | | | | |
Collapse
|
11
|
Yang S, Li P, Sun K, Wei N, Liu J, Feng X. Mercury isotope compositions in seawater and marine fish revealed the sources and processes of mercury in the food web within differing marine compartments. WATER RESEARCH 2023; 241:120150. [PMID: 37269625 DOI: 10.1016/j.watres.2023.120150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
Anthropogenic activities and climate change have significantly increased mercury (Hg) levels in seawater. However, the processes and sources of Hg in differing marine compartments (e.g. estuary, marine continental shelf (MCS) or pelagic area) have not been well studied, which makes it difficult to understand Hg cycling in marine ecosystems. To address this issue, the total Hg (THg) concentration, methylmercury (MeHg) concentration and stable Hg isotopes were determined in seawater and fish samples collected from differing marine compartments of the South China Sea (SCS). The results showed that the estuarine seawater exhibited substantially higher THg and MeHg concentrations than those in the MCS and pelagic seawater. Significantly negative δ202Hg (-1.63‰ ± 0.42‰) in estuarine seawater compared with that in pelagic seawater (-0.58‰ ± 0.08‰) may suggest watershed input and domestic sewage discharge of Hg in the estuarine compartment. The Δ199Hg value in estuarine fish (0.39‰ ± 0.35‰) was obviously lower than that in MCS (1.10‰ ± 0.54‰) and pelagic fish (1.15‰ ± 0.46‰), which showed that relatively little MeHg photodegradation occurred in the estuarine compartment. The Hg isotope binary mixing model based on Δ200Hg revealed that approximately 74% MeHg in pelagic fish is derived from atmospheric Hg(II) deposition, and over 60% MeHg in MCS fish is derived from sediments. MeHg sources for estuarine fish may be highly complex (e.g. sediment or riverine/atmospheric input) and further investigations are warranted to clarify the contribution of each source. Our study showed that Hg stable isotopes in seawater and marine fish can be used to identify the processes and sources of Hg in different marine compartments. This finding is of great relevance to the development of marine Hg food web models and the management of Hg in fish.
Collapse
Affiliation(s)
- Shaochen Yang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Kaifeng Sun
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Nan Wei
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Jinling Liu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
12
|
Wang B, Yang S, Li P, Qin C, Wang C, Ali MU, Yin R, Maurice L, Point D, Sonke JE, Zhang L, Feng X. Trace mercury migration and human exposure in typical mercury-emission areas by compound-specific stable isotope analysis. ENVIRONMENT INTERNATIONAL 2023; 174:107891. [PMID: 36963155 DOI: 10.1016/j.envint.2023.107891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic mercury (Hg) emissions have increased significantly since the Industrial Revolution, resulting in severe health impacts to humans. The consumptions of fish and rice were primary human methylmercury (MeHg) exposure pathways in Asia. However, the lifecycle from anthropogenic Hg emissions to human MeHg exposure is not fully understood. In this study, a recently developed approach, termed MeHg Compound-Specific Isotope Analysis (CSIA), was employed to track lifecycle of Hg in four typical Hg-emission areas. Distinct Δ199Hg of MeHg and inorganic Hg (IHg) were observed among rice, fish and hair. The Δ199Hg of MeHg averaged at 0.07 ± 0.15 ‰, 0.80 ± 0.55 ‰ and 0.43 ± 0.29 ‰ in rice, fish and hair, respectively, while those of IHg averaged at - 0.08 ± 0.24 ‰, 0.85 ± 0.43 ‰ and - 0.28 ± 0.68 ‰. In paddy ecosystem, Δ199Hg of MeHg in rice showed slightly positive shifts (∼0.2 ‰) from those of IHg, and comparable Δ199Hg of IHg between rice grain and raw/processed materials (coal, Hg ore, gold ore and sphalerite) were observed. Simultaneously, it was proved that IHg in fish muscle was partially derived from in vivo demethylation of MeHg. By a binary model, we estimated the relative contributions of rice consumption to human MeHg exposure to be 84 ± 14 %, 58 ± 26 %, 52 ± 20 % and 34 ± 15 % on average in Hg mining area, gold mining area, zinc smelting area and coal-fired power plant area, respectively, and positive shifts of δ202HgMeHg from fish/rice to human hair occurred during human metabolic processes. Therefore, the CSIA approach can be an effective tool for tracking Hg biogeochemical cycle and human exposure, from which new scientific knowledge can be generated to support Hg pollution control policies and to protect human health.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Health Management Center, the Affiliated Hospital of Guizhou Medical University, Guiyang 550009, China
| | - Shaochen Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Chongyang Qin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Chuan Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Muhammad Ubaid Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Laurence Maurice
- Observatory Midi-Pyrénées, Geosciences Environment Toulouse Laboratory, Research Institute for the Development (IRD), University of Toulouse and CNRS, 31400, Toulouse, France
| | - David Point
- Observatory Midi-Pyrénées, Geosciences Environment Toulouse Laboratory, Research Institute for the Development (IRD), University of Toulouse and CNRS, 31400, Toulouse, France
| | - Jeroen E Sonke
- Observatory Midi-Pyrénées, Geosciences Environment Toulouse Laboratory, Research Institute for the Development (IRD), University of Toulouse and CNRS, 31400, Toulouse, France
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto M3H 5T4, Canada
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
13
|
Yuan CS, Chiang KC, Yen PH, Ceng JH, Lee CE, Du IC, Soong KY, Jeng MS. Long-range transport of atmospheric speciated mercury from the eastern waters of Taiwan Island to northern South China Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120899. [PMID: 36565910 DOI: 10.1016/j.envpol.2022.120899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
This study explored the temporospatial distribution, gas-particle partition, and pollution sources of atmospheric speciated mercury (ASM) from the eastern offshore waters of the Taiwan Island (TI) to the northern South China Sea (SCS). Both gaseous and particulate mercury were simultaneously sampled at three remote sites in four seasons. The average concentrations of gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and particulate bound mercury (PBM) were 2.05 ± 0.45 ng/m3, 19.17 ± 5.39 pg/m3, and 0.11 ± 0.06 ng/m3, respectively. The concentrations of GEM and PBM in the cold seasons were higher than those in the warm seasons, but those of GOM had an opposite trend. In terms of gas-solid partition, ASM was apportioned as 91.3-97.3% of GEM and 2.7-8.7% of GOM and PBM. The average concentrations of GEM, GOM, and PBM at the Green Island (GI) were 2.21 ± 0.47 ng/m3, 22.31 ± 5.35 pg/m3, and 0.12 ± 0.06 ng/m3; those at the Kenting Peninsula (KT) were 2.11 ± 0.43 ng/m3, 20.57 ± 4.38 pg/m3, and 0.11 ± 0.06 ng/m3; and those at the Dongsha Islands (DS) were 1.84 ± 0.40 ng/m3, 15.19 ± 3.58 pg/m3, and 0.08 ± 0.05 ng/m3, respectively. Overall, the spatial distribution of ASM concentrations showed the order as: GI > KT > DS. Air masses blown mainly from the West Pacific Ocean (WPO) and SCS in summer showed the lowest ASM concentrations. Oppositely, high ASM concentrations were commonly observed in spring and winter when polluted air masses were blown by Asian Northeastern Monsoons (ANMs). The transport routes of polluted air masses were originated mainly from North China, Central China, Northeast China, Korea and Japan, and mostly passed through the urban and industrial regions in the northeastern Asian countries.
Collapse
Affiliation(s)
- Chung-Shin Yuan
- Institute of Environmental Engineering, National Sun Yat-sen University, Taiwan, ROC; Aerosol Science Research Center, National Sun Yat-sen University, Taiwan, ROC.
| | - Kuan-Chen Chiang
- Institute of Environmental Engineering, National Sun Yat-sen University, Taiwan, ROC
| | - Po-Hsuan Yen
- Institute of Environmental Engineering, National Sun Yat-sen University, Taiwan, ROC
| | - Jun-Hao Ceng
- Institute of Environmental Engineering, National Sun Yat-sen University, Taiwan, ROC
| | - Cheng-En Lee
- Institute of Environmental Engineering, National Sun Yat-sen University, Taiwan, ROC
| | - I-Chieh Du
- Institute of Environmental Engineering, National Sun Yat-sen University, Taiwan, ROC
| | - Ker-Yea Soong
- Institute of Marine Biology, National Sun Yat-sen University, Taiwan, ROC
| | - Ming-Shiou Jeng
- Biodiversity Research Center, Academia Sinica, Nangang, Taipei City, Taiwan, ROC; Green Island Marine Research Station, Biodiversity Research Center, Academia. Sinica, Green Island, Taitung County, Taiwan, ROC
| |
Collapse
|
14
|
Yang S, Sun K, Liu J, Wei N, Zhao X. Comparison of Pollution Levels, Biomagnification Capacity, and Risk Assessments of Heavy Metals in Nearshore and Offshore Regions of the South China Sea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912248. [PMID: 36231549 PMCID: PMC9565928 DOI: 10.3390/ijerph191912248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/05/2023]
Abstract
Seawater and fish were collected from nearshore (Pearl River Estuarine, PRE) and offshore (middle of the South China Sea, MSCS) regions of the South China Sea (SCS) to determine the heavy metals (HMs) pollution status and biomagnification characteristics. Results show that Cu in PRE seawater was moderately contaminated. Overall pollution risk of seawater were PRE (3.32) > MSCS (0.56), whereas that of fish was MSCS (0.88) > PRE (0.42). δ13C and δ15N exhibited distinguished characteristics for PRE and MSCS fish, indicating the diverse energy sources, nitrogen sources, and food web structures of nearshore and offshore regions. Cu was biomagnified whereas Pb and Ni were biodiluted in offshore fish. Hg presented significant biomagnification in both of nearshore and offshore fish. Finally, the target hazard quotient of Hg (1.41) in MSCS fish exceeded the standard limit, which was posed by high Hg concentration and consumption rate of offshore fish.
Collapse
Affiliation(s)
- Shaochen Yang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Kaifeng Sun
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Jinling Liu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Nan Wei
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
| | - Xing Zhao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510655, China
- College of Earth Sciences, Hebei GEO University, Shijiazhuang 050031, China
| |
Collapse
|
15
|
Qu P, Pang M, Wang P, Ma X, Zhang Z, Wang Z, Gong Y. Bioaccumulation of mercury along continuous fauna trophic levels in the Yellow River Estuary and adjacent sea indicated by nitrogen stable isotopes. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128631. [PMID: 35306412 DOI: 10.1016/j.jhazmat.2022.128631] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/14/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Mercury (Hg), and its organic forms, are some of the most hazardous elements, with strong toxicity, persistence, and biological accumulation in marine organisms. Hg accumulation in continuous trophic levels (TL) in marine food chains remains unclear. In this study, individual invertebrate and fish samples collected from the Yellow River Estuary adjacent sea were grouped into continuous TL ranges, and the bioaccumulations of total Hg (THg) and methylmercury (MeHg) were analyzed. The trophic magnification factor in invertebrates and fish was 1.40 and 1.72 for THg, and 2.56 and 2.17 for MeHg, indicating that both THg and MeHg were significantly biomagnified with increasing TL in both invertebrates and fish through trophic transfer. To evaluate the health risk of seafood consumption, the target hazard quotient (THQ) was calculated. Increasing THQ values indicated that the health risks of invertebrate and fish consumption in humans, especially children, were both elevated with increasing TL. THQ values > 1 indicated that consumption of invertebrates at a TL above 4.0 and fish above 4.5 may pose a relatively higher risk for children. Therefore, the consumption of both individual invertebrates and fish at high trophic positions may present greater health risk, especially in young children.
Collapse
Affiliation(s)
- Pei Qu
- Observation and Research Station of Bohai Eco-Corridor & Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, No. 6, Xianxialing Road, Qingdao, China; Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 168, Wenhaizhong Road, Jimo District, Qingdao City, Shandong, China
| | - Min Pang
- Observation and Research Station of Bohai Eco-Corridor & Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, No. 6, Xianxialing Road, Qingdao, China; Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 168, Wenhaizhong Road, Jimo District, Qingdao City, Shandong, China.
| | - Penggong Wang
- China Certification & Inspection Group Shandong Testing Co., LTD., Jiaozhou District, Qingdao City, Shandong, China
| | - Xuli Ma
- China Certification & Inspection Group Shandong Co., LTD., Shinan District, Qingdao City, Shandong, China
| | - Zhaohui Zhang
- Observation and Research Station of Bohai Eco-Corridor & Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, No. 6, Xianxialing Road, Qingdao, China; Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 168, Wenhaizhong Road, Jimo District, Qingdao City, Shandong, China
| | - Zongling Wang
- Observation and Research Station of Bohai Eco-Corridor & Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources of the People's Republic of China, No. 6, Xianxialing Road, Qingdao, China; Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 168, Wenhaizhong Road, Jimo District, Qingdao City, Shandong, China
| | - Yuchen Gong
- The Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao City, Shandong, China
| |
Collapse
|
16
|
Feng X, Li P, Fu X, Wang X, Zhang H, Lin CJ. Mercury pollution in China: implications on the implementation of the Minamata Convention. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:634-648. [PMID: 35485580 DOI: 10.1039/d2em00039c] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) is a toxic metal released into the environment through human activities and natural processes. Human activities have profoundly increased the amount of Hg in the atmosphere and altered its global cycling since the Industrial Revolution. Gaseous elemental Hg is the predominant form of Hg in the atmosphere, which can undergo long-range transport and atmospheric deposition into the aquatic systems. Hg deposition elevates the methylmercury (MeHg) level in fish through bioaccumulation and biomagnification, which poses a serious human health risk. Acute poisoning of MeHg can result in Minamata disease, while low-level long-term exposure in pregnant women can reduce the intelligence quotient of infants. After five sessions of intergovernmental negotiation, the Minamata Convention on mercury entered into force in August 2017 to protect human health and the environment from Hg pollution. Currently China contributes the largest quantity of Hg production, consumption, and emission globally. However, the status of Hg pollution in the environment in China and its associated health risk remains relatively unknown, which hinders the development of implementation plans of the Minamata Convention. In this paper, we provide a comprehensive review on the atmospheric release of Hg, distribution of air Hg concentration, human exposure to MeHg and health impacts caused by Hg pollution in China. Ongoing improvement of air pollution control measures is expected to further decrease anthropogenic Hg emissions in China. Air Hg concentrations in China are higher than the background values in the Northern Hemisphere, with spatial distribution largely influenced by anthropogenic emissions. Long-term observations of GEM in China show a decline in recent years. The net Hg transport outflow from China in 2013 is estimated to be 511 t year-1, and ∼60% of such outflow is caused by natural surface Hg emissions. Hg concentrations in fish and rice in China are relatively low and therefore the associated risks of human Hg exposure are low. Future research needs and recommendations for the implementation of the Minamata Convention are also discussed in this paper.
Collapse
Affiliation(s)
- Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, USA
| |
Collapse
|
17
|
Ritonga IR, Bureekul S, Ubonyaem T, Chanrachkij I, Sompongchaiyakul P. Mercury content and consumption risk of 8 species threadfin bream (Nemipterus spp.) caught along the Gulf of Thailand. MARINE POLLUTION BULLETIN 2022; 175:113363. [PMID: 35151078 DOI: 10.1016/j.marpolbul.2022.113363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Total mercury (T-Hg) was examined in 8 threadfin bream species (Nemipterus spp.) caught in the Gulf of Thailand (GoT). The T-Hg contents ranged from 11.3 to 374 μg kg-1 wet weight, with the lowest in Nemipterus peronii and the highest in Nemipterus nemurus and Nemipterus tambuloides. Accumulation of T-Hg in fish tissue was found to be related to fish size, trophic levels, feeding habits and habitat. Threadfin bream caught in the upper GoT exhibited significantly (p < 0.05) lower T-Hg than those in the middle and lower parts of GoT, which possibly due to local mercury sources e.g., internal anthropogenic activities in the GoT and external from terrestrial input via river discharge. The estimated daily intakes were ranged from 0.03 to 0.07 μg kg-1 bodyweight day-1. All threadfin breams in the GoT have HQ <1. To prevent the associated potential risk, the maximum safe daily consumption is recommended at 95.3 g day-1.
Collapse
Affiliation(s)
- Irwan Ramadhan Ritonga
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sujaree Bureekul
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management, Hazardous Program, Chulalongkorn University Research Building, Bangkok 10330, Thailand.
| | - Tanakorn Ubonyaem
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Isara Chanrachkij
- Southeast Asian Fisheries Development Center, Training Department, Samut Prakan 10290, Thailand
| | - Penjai Sompongchaiyakul
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Hazardous Substance Management, Hazardous Program, Chulalongkorn University Research Building, Bangkok 10330, Thailand
| |
Collapse
|
18
|
Xie J, Tao L, Wu Q, Li T, Yang C, Lin T, Liu B, Li G, Chen D. Mercury and selenium in squids from the Pacific Ocean and Indian Ocean: The distribution and human health implications. MARINE POLLUTION BULLETIN 2021; 173:112926. [PMID: 34536705 DOI: 10.1016/j.marpolbul.2021.112926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Squids are globally distributed. Hg-contaminated squids may have high risks on humans. With abundant Se (antagonistic effect on Hg), the risks can be reduced. We collected squids around the world (Northwest Pacific Ocean, Southeast Pacific Ocean and Indian Ocean). Concentrations of Hg and Se were region-based and tissue-based. The higher content of Se were, the lower relative Hg levels were. The correlation between Se:Hg and Se was the strongest in the digestive gland. The values of Se:Hg and THQ all confirm that the health risk was lower in samples with higher concentrations of Se. Despite the risk assessment by Se:Hg, BRV and THQ analysis showed no risk when consumed in moderation, the maximum daily intake is provided based on Monte Carlo simulation. In future, when evaluating the risks cause by Hg exposure and providing the recommended daily amount, it may need to concurrent consideration of Se levels.
Collapse
Affiliation(s)
- Jingqian Xie
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; Skate Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment and Resources, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ling Tao
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Qiang Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Tiejun Li
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan, 316021, China
| | - Chenghu Yang
- Zhejiang Marine Fisheries Research Institute, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resource of Zhejiang Province, Zhoushan, 316021, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Bilin Liu
- College of Marine Science, Shanghai Ocean University, Shanghai 201306, China; The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai 201306, China
| | - Gang Li
- College of Marine Science, Shanghai Ocean University, Shanghai 201306, China; The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai 201306, China.
| | - Duofu Chen
- College of Marine Science, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
19
|
Simukoko CK, Mwakalapa EB, Bwalya P, Muzandu K, Berg V, Mutoloki S, Polder A, Lyche JL. Assessment of heavy metals in wild and farmed tilapia ( Oreochromis niloticus) on Lake Kariba, Zambia: implications for human and fish health. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 39:74-91. [PMID: 34702139 DOI: 10.1080/19440049.2021.1975830] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of this study was to assess the levels of heavy metals in both wild and farmed tilapia on Lake Kariba in Zambia and to evaluate the impact of intensive fish farming on wild tilapia. Three sites for wild fish (2 distant and 1 proximal to fish farms) and two fish farms were selected. One hundred fish (52 from distant sites; 20 near fish farms; 28 farmed fish) were sampled and muscle tissues excised for analysis of heavy metals (Mg, Fe, Zn, Al, Cu, Se, Co, Mo, As, Cr, V, Ni, Hg, Pb, Li, Cd, and Ag) by acid (HNO3) digestion and ICP-MS. All metals were found to be below the maximum limits (MLs) set by WHO/EU. Essential metals were higher in farmed tilapia, whereas non-essential metals were higher in wild tilapia. Significantly higher levels of essential metals were found in wild fish near the fish farms than those distant from the farms. Estimated weekly intake (EWI) for all metals were less than the provisional tolerable weekly intakes (PTWI). Target hazard quotients (THQ) and Hazard Indices (HI) were <1, indicating no health risks from a lifetime of fish consumption. Selenium Health Benefit Value (HBVSe) was positive for all locations, indicating protective effects of selenium against mercury in fish. Total cancer risk (CR) due to As, Cr, Cd, Ni and Pb was less than 1 × 10-4, indicating less than 1 in 10,000 carcinogenic risk from a lifetime consumption of tilapia from Lake Kariba. Hg levels (0.021 mg/kg) in wild tilapia at site 1 were higher than the Environmental quality standard (EQS = 0.020 mg/kg) set by EU, indicating possible risk of adverse effects to fish. Except for Hg, levels of metals in fish were safe for human consumption and had no adverse effects on fish.
Collapse
Affiliation(s)
- Chalumba Kachusi Simukoko
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway.,Department, Biomedical Sciences, University, University of Zambia, Lusaka, Zambia
| | | | - Patricia Bwalya
- Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, Norwegian University of Life Sciences, Oslo, Norway
| | - Kaampwe Muzandu
- Department, Biomedical Sciences, University, University of Zambia, Lusaka, Zambia
| | - Vidar Berg
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Stephen Mutoloki
- Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, Norwegian University of Life Sciences, Oslo, Norway
| | - Anuschka Polder
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jan Ludvig Lyche
- Department of Paraclinical Sciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
20
|
Wang B, Chen M, Ding L, Zhao Y, Man Y, Feng L, Li P, Zhang L, Feng X. Fish, rice, and human hair mercury concentrations and health risks in typical Hg-contaminated areas and fish-rich areas, China. ENVIRONMENT INTERNATIONAL 2021; 154:106561. [PMID: 33895437 DOI: 10.1016/j.envint.2021.106561] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/13/2021] [Accepted: 04/04/2021] [Indexed: 05/24/2023]
Abstract
Human exposure to methylmercury (MeHg) from consuming contaminated fish has been a major concern for decades. Besides, human MeHg exposure through rice consumption has been recently found to be important in some Asian countries. China is the largest country on mercury (Hg) production, consumption, and anthropogenic emission. However, the health risks of human Hg exposure are not fully understood. A total of 624 fish, 299 rice, and 994 human hair samples were collected from typical Hg-contaminated areas and major fish-rich areas to assess the health risks from human Hg exposure in China. Fish and rice samples showed relatively low Hg levels, except the rice in the Wanshan Hg mining area (WMMA). Human hair total Hg (THg) and MeHg concentrations were significantly elevated in WMMA, Zhoushan (ZS), Xiamen (XM), Qingdao (QD), and zinc smelting area (ZSA), and 85% of hair samples in WMMA, 62% in ZS, 40% in XM, 26% in QD, and 17% in ZSA had THg concentrations exceeding the limit set by the USEPA (1 μg/g). Rice consumption was the main pathway (>85%) for human MeHg exposure in the studied Hg-contaminated areas. Meanwhile, fish was the primary human MeHg exposure source (>85%) in coastal cities. Therefore, soil remediation in typical Hg-contaminated areas and scientific guidance for fish consumption in coastal provinces are urgently needed to reduce the health risks from human Hg exposure in China.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Chen
- School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Li Ding
- School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Yuhang Zhao
- School of Resource and Environment, Guizhou University, Guiyang 550025, China
| | - Yi Man
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Feng
- School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto M3H 5T4, Canada
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| |
Collapse
|
21
|
Zhao Y, Zhou C, Guo X, Hu G, Li G, Zhuang Y, Cao H, Li L, Xing C, Zhang C, Yang F, Liu P. Exposed to Mercury-Induced Oxidative Stress, Changes of Intestinal Microflora, and Association between them in Mice. Biol Trace Elem Res 2021; 199:1900-1907. [PMID: 32734533 DOI: 10.1007/s12011-020-02300-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023]
Abstract
Twelve Kunming mice were randomly divided into two groups (n = 6), and administered with distilled water containing 0 mg/L and 160 mg/L HgCl2 respectively, with an experimental period of 3 days. Our results showed that mercury exposure significantly reduced weight gain in mice (P < 0.01). Through pathological observation of cecum tissues, significant pathological changes were observed in cecum tissues of mice exposed to mercury. Furthermore, mercury exposure not only significantly increased malondialdehyde (MDA) content in mice (P < 0.01) but also significantly decreased superoxide dismutase (SOD) activity (P < 0.01) and glutathione peroxidase (GSH) level in mice (P < 0.01). Furthermore, high-throughput sequencing analysis showed that at the genus level some microbial populations including Clostridiales, Lactobacillus, Treponema, Oscillospira, and Desulfovibrio were significantly increased whereas some microbial populations including S24-7, Acinetobacter, and Staphylococcus were significantly decreased. Moreover, correlation analysis indicated that microorganisms were not correlated with biomarkers of oxidative stress. In summary, mercury exposure reduced the growth performance of mice, resulting in gut microbiota alterations, and led to oxidative stress by increasing the concentration of malondialdehyde (MDA) and decreasing the concentration of superoxide dismutase (SOD) and glutathione peroxidase (GSH).
Collapse
Affiliation(s)
- Yulan Zhao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Changming Zhou
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Lin Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Chonghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
22
|
An Y, Hong S, Kim Y, Kim M, Choi B, Won EJ, Shin KH. Trophic transfer of persistent toxic substances through a coastal food web in Ulsan Bay, South Korea: Application of compound-specific isotope analysis of nitrogen in amino acids. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115160. [PMID: 32682185 DOI: 10.1016/j.envpol.2020.115160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Trophic magnification factor (TMF) of persistent toxic substances (PTSs: Hg, PCBs, PAHs, and styrene oligomers (SOs)) in a coastal food web (12 fish and four invertebrates) was determined in Ulsan Bay, South Korea. The nitrogen stable isotope ratios (δ15N) of amino acids [δ15NGlu-Phe based on glutamic acid (δ15NGlu) and phenylalanine (δ15NPhe)] were used to estimate the trophic position (TPGlu-Phe) of organisms. The TPGlu-Phe of organisms ranged from 1.64 to 3.69, which was lower than TP estimated by δ15N of bulk particulate organic matter (TPBulk: 2.46-4.21). Mercury and CB 138, 153, 187, and 180 were biomagnified through the whole food web (TMF > 1), while other PTSs, such as PAHs and SOs were not (biodilution of SOs firstly reported). In particular, the trophic transfer of PTSs was pronounced in the resident fish (e.g., rock bream, sea perch, Korean rockfish). Of note, CB 99, 101, 118, and 183 were additionally found to be biomagnifying PTSs in these species. Thus, fish residency appears to represent an important factor in determining the TMF of PTSs in the coastal environment. Overall, δ15NGlu-Phe provided accurate TPs of organisms and could be applied to determine the trophic transfer of PTSs in coastal food webs.
Collapse
Affiliation(s)
- Yoonyoung An
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Youngnam Kim
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Mungi Kim
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Bohyung Choi
- Department of Marine Sciences & Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Eun-Ji Won
- Department of Marine Sciences & Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Kyung-Hoon Shin
- Department of Marine Sciences & Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
23
|
Zhang H, Guo C, Feng H, Shen Y, Wang Y, Zeng T, Song S. Total mercury, methylmercury, and selenium in aquatic products from coastal cities of China: Distribution characteristics and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140034. [PMID: 32758950 DOI: 10.1016/j.scitotenv.2020.140034] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
This study analyzed total mercury (THg), methylmercury (MeHg) and selenium (Se) in 114 aquatic product samples (representing 39 species) from eight coastal cities of China. The THg and MeHg levels in different parts of the same sample species were in the order of muscle ≥ skin/shell > roe, whereas Se levels were much higher in roe. Concentrations of THg, MeHg, and Se in the muscles were between 2.27-154, 0.36-135, and 57.8-1.20 × 103 ng g-1 wet weight (ww), respectively. Although significant differences in analyte concentrations were not observed among cities, they existed among three species; marine fish, freshwater fish, and shellfish. Shellfish had generally lower Hg content (mean: 20.2 ng g-1 ww THg, 6.71 ng g-1 ww MeHg, and 30.9% MeHg/THg ratio); however it had higher Se content (528 ng g-1 ww) than the other types of fish (mean: 33.3 ng g-1 ww THg, 28.2 ng g-1 ww MeHg, and 79.2% MeHg/THg ratio, 257 ng g-1 ww Se). In addition to species, the individual growth and HgSe interaction influenced Hg distribution. Evident correlations were observed between several individual body features and Hg content, and between Se and THg concentrations (p < 0.05). The greater correlation coefficient between two elements for fish indicated stronger HgSe antagonism through HgSe compound formation in fish. Relatively low THg daily intakes (mean 0.013-0.080 μg kg-1 day-1) and MeHg daily intakes (0.006-0.065 μg kg-1 day-1) along with Se:Hg molar ratios >1 and positive HBVSe values suggest that aquatic products from these sites will not pose immediate health problems to consumers. Fish was the dominating contributor for MeHg intake whereas shellfish was the dominating contributor for Se intake. To safeguard against mercury exposure, residents in these areas can appropriately increase shellfish intake (especially bivalves), rather than exclusively consuming marine fish.
Collapse
Affiliation(s)
- Haiyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chenqi Guo
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Hongru Feng
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yanting Shen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yaotian Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Tao Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
24
|
Wang S, Dong D, Li P, Hua X, Zheng N, Sun S, Hou S, An Q, Li P, Li Y, Song X, Li X. Mercury concentration and fatty acid composition in muscle tissue of marine fish species harvested from Liaodong Gulf: An intelligence quotient and coronary heart disease risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138586. [PMID: 32481211 DOI: 10.1016/j.scitotenv.2020.138586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Marine fish species are an important source of biologically valuable proteins, fats, fat-soluble vitamins, and n-3 polyunsaturated fatty acids, but they are also susceptible to pollutants. Mercury is liable to bioamplify in the aquatic food chain, and the health risks posed by methylmercury (MeHg) could undermine the benefits of eating fish, so risk-benefit assessments are needed for those fish species regularly consumed. The purpose of this study was to analyze the concentrations of mercury and characteristics of fatty acids in marine fish harvested from Liaodong Gulf, China, so as to better understand the risk-benefit effects of marine fish consumption. We found that the ratio of MeHg to total Hg (THg) was normally distributed. The concentrations of THg and MeHg in marine fish muscles (14 species, a total of 239) ranged from 0.920 to 0.288 μg/g and 0.050 to 0.192 μg/g, respectively. There were no significant interannual differences in the muscles' concentrations of MeHg and THg, or of their fatty acids (p > 0.05). The proportion of total saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) varied significantly among different marine fish-feeding habits (predacious, omnivorous, benthivorous and planktivorous), but the differences between polyunsaturated fatty acids (PUFAs) were not significant, which may be due to the undistinguished fatty acids (p < 0.05). The risk-benefit assessment using the intelligence quotient (IQ) scoring model revealed that all the studied marine fish had positive effects on child IQ under different consumption scenarios. Additionally, the integrated risk-benefit analysis for adult cardiovascular health showed that all the studied marine fish, but especially Ditrema temmincki Bleeker, are capable of reducing the relative cardiovascular risk posed by the MeHg in the fish. We conclude the positive effects of eating common marine fish from the Liaodong Gulf far outweigh their negative ones.
Collapse
Affiliation(s)
- Sujing Wang
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Xiuyi Hua
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China; Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China.
| | - Siyu Sun
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Shengnan Hou
- Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, China; Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Qirui An
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Pengyang Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| | - Yunyang Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Xue Song
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Xiaoqian Li
- Key Laboratory of Groundwater Resources and Environment of the Ministry of Education, College of Environment and Resources, Jilin University, China
| |
Collapse
|
25
|
Wang X, Wang WX. Determination of the Low Hg Accumulation in Rabbitfish ( Siganus canaliculatus) by Various Elimination Pathways: Simulation by a Physiologically Based Pharmacokinetic Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7440-7449. [PMID: 32408739 DOI: 10.1021/acs.est.0c00772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) in fish poses a great threat to human health. Consumption of low-Hg-level fish species (e.g., rabbitfish, Siganus canaliculatus) could be one possible solution to balance the nutrient benefits and Hg exposure. However, the underlying mechanisms for the low Hg accumulation in rabbitfish remain unclear. This study quantitatively described the disposition of inorganic Hg(II) and methylmercury (MeHg) in rabbitfish under different exposure routes by constructing a physiologically based pharmacokinetic (PBPK) model. The results strongly suggested that effective elimination (estimated rate constant of 0.060, 0.065, and 0.020 d-1 for waterborne Hg(II)-, dietary Hg(II)-, and MeHg-exposed fish, respectively) was the main reason for the low Hg accumulation in rabbitfish. By quantifying the possible pathways for Hg elimination, our study revealed that biliary coupled with fecal excretion played an important role in the elimination of dietary Hg. Although the biliary excretion rate for MeHg was remarkable (6.8 ± 2.2 d-1) and the excreted amount per day could reach up to 790 ng, most of the MeHg in the bile was reabsorbed by the intestine and transferred back to the liver through enterohepatic circulation, leading to a prolonged retention time in the fish body. Moreover, branchial excretion dominated the Hg(II) elimination following aqueous exposure, suggesting a flexible alteration on elimination pathways against different exposure scenarios. The present study provided important understanding of the unique strategies adopted by rabbitfish to maintain the low Hg levels.
Collapse
Affiliation(s)
- Xun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
26
|
Jing M, Lin D, Wu P, Kainz MJ, Bishop K, Yan H, Wang R, Wang Q, Li Q. Effect of aquaculture on mercury and polyunsaturated fatty acids in fishes from reservoirs in Southwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113543. [PMID: 31753634 DOI: 10.1016/j.envpol.2019.113543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/16/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Aquaculture can affect the polyunsaturated fatty acids (PUFA) and mercury (Hg) in fish by altering their diet. Here, planktivorous (silver carp and bighead carp), omnivorous and carnivorous fish with different dietary strategies were selected from two reservoirs, one with on-going aquaculture (WJD) and another without aquaculture (HF) in Southwest China. We compared the total mercury (THg), methylmercury (MeHg) contents and PUFA profiles of fish and their potential diets in these two reservoirs. THg and MeHg contents in omnivorous and carnivorous fish were lower from the WJD Reservoir, which is related to the lower THg and MeHg contents in the artificial fish food. THg and MeHg contents in silver carp from the WJD Reservoir were lower than those from the HF Reservoir, while they were similar in bighead carps from the two reservoirs. The Hg variation in planktivorous fish were inconsistent with that in plankton. THg contents in phyto- and zooplankton from the HF Reservoir were higher than those from the WJD Reservoir, yet their MeHg contents were similar. Artificial fish food which contained higher total PUFA eicosapentaenoic (EPA; 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), significantly increased the total PUFA and EPA + DHA contents in carnivorous fish, but had less effect on that in omnivorous fish from the WJD Reservoir. Eutrophication caused by aquaculture reduced total PUFA and EPA + DHA contents of plankton in WJD, yet did not reduce those in planktivorous fish. The impacts of aquaculture on Hg and PUFA accumulated in fish were varied among different fish species, and the mechanism needs further exploration.
Collapse
Affiliation(s)
- Min Jing
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dan Lin
- School of Public Health, Guizhou Medical University, Guiyang 550025, PR China
| | - Pianpian Wu
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Sweden
| | - Martin J Kainz
- WasserCluster - Biologische Station Lunz, Inter-University Center for Aquatic Ecosystem Research, Lunz am See, Austria
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Sweden
| | - Haiyu Yan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China.
| | - Rui Wang
- College of Environmental Science and Engineering, Tong ji University, Shanghai 20092, PR China
| | - Qing Wang
- Institute of Hydrobiology, Jinan University, Guangzhou 510000, PR China
| | - Qiuhua Li
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province Guizhou Normal University, Guiyang, 550000, PR China
| |
Collapse
|
27
|
Liao W, Wang G, Zhao W, Zhang M, Wu Y, Liu X, Li K. Change in mercury speciation in seafood after cooking and gastrointestinal digestion. JOURNAL OF HAZARDOUS MATERIALS 2019; 375:130-137. [PMID: 31054530 DOI: 10.1016/j.jhazmat.2019.03.093] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 02/19/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Mercury (Hg) is readily bioaccumulated in seafood, a common ingredient in indigenous cuisines throughout the world. This study investigates Hg speciation in cooked seafood after gastric and intestinal digestion. The results showed that the removal of Hg by washing was negligible. Additionally, the results of our calculations regarding the mass balance of Hg concentration indicated that cooking reduced Hg mainly by means of volatilization and that Hg2+ was more readily reduced than MeHg. Moreover, cooking lowered the bioaccessibility of Hg in seafood: the reduced percent of bioaccessible Hg2+ after cooking ranged from 2 to 35% (on average, 16%). The corresponding numbers were slightly lower compared with those for MeHg (on average, 19%). Furthermore, there might be a chemical transformation of Hg during in vitro gastrointestinal digestion. The results of in vivo tests in laboratory mice suggested that methylation of Hg mainly took place in the gastric tract, whereas demethylation of Hg occurred primarily during intestinal digestion. These findings indicate that the bioaccessibility of Hg2+ and MeHg was not only related to their initial concentrations in the food samples, but also that further studies on the mechanisms of Hg demethylation and methylation during gastrointestinal digestion are essential for more realistic risk assessments.
Collapse
Affiliation(s)
- Wen Liao
- National Key Laboratroty of Water Environment Simulation and Polltion Control, South China Institute of Environment Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510665, China; Guangdong Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510655, China; Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guang Wang
- National Key Laboratroty of Water Environment Simulation and Polltion Control, South China Institute of Environment Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510665, China; Guangdong Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510655, China.
| | - Wenbo Zhao
- National Key Laboratroty of Water Environment Simulation and Polltion Control, South China Institute of Environment Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510665, China; Guangdong Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510655, China
| | - Meng Zhang
- National Key Laboratroty of Water Environment Simulation and Polltion Control, South China Institute of Environment Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510665, China; Guangdong Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510655, China; College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Ye Wu
- National Key Laboratroty of Water Environment Simulation and Polltion Control, South China Institute of Environment Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510665, China; Guangdong Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510655, China
| | - Xiaowei Liu
- National Key Laboratroty of Water Environment Simulation and Polltion Control, South China Institute of Environment Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510665, China; Guangdong Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510655, China
| | - Kaiming Li
- National Key Laboratroty of Water Environment Simulation and Polltion Control, South China Institute of Environment Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510665, China; Guangdong Key Laboratory of Water and Air Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510655, China
| |
Collapse
|
28
|
Chen L, Li Y. A Review on the Distribution and Cycling of Mercury in the Pacific Ocean. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:665-671. [PMID: 30725129 DOI: 10.1007/s00128-019-02560-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
With the rapid development of economy in surrounding land, the Pacific Ocean is facing a number of serious environmental challenges, including mercury (Hg) pollution. Over the past several decades, a number of studies have been conducted on investigating the cycling of Hg in this ecosystem. This review summarizes recent studies on the distribution of Hg species in the water, sediment, and biota and the important processes controlling Hg cycling in the Pacific Ocean. Although a lot of studies have been conducted in this system, more efforts should be made on Hg speciation and cycling in the Pacific Ocean, especially some areas that have rarely studied so far. There is a need to measure the rates of important biogeochemical processes in this ecosystem. Application of multiple methods expected to give a better estimation of the sources and sinks of Hg species in the Pacific Ocean in future studies.
Collapse
Affiliation(s)
- Lufeng Chen
- Institute of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
29
|
Yan H, Li Q, Yuan Z, Jin S, Jing M. Research Progress of Mercury Bioaccumulation in the Aquatic Food Chain, China: A Review. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:612-620. [PMID: 31101929 DOI: 10.1007/s00128-019-02629-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
Research on mercury (Hg) in aquatic ecosystems in China has focused mainly on fish, with little research on the base of the food chain and Hg bioaccumulation mechanisms. This paper summarizes research progress pertaining to the characteristics, current status, and trends of Hg accumulation in the aquatic food chain in China, analyzes the effects of human activities on the transmission and accumulation of Hg in aquatic food chains, and assesses their risks to human and ecosystem health. A comparison of fish samples in China between 2000 and 2018 indicates that their total Hg content remains at relatively safe levels. However, because current information is generally insufficient to confirm how anthropogenic activities affect transformation and bioaccumulation in the aqueous environment, Hg isotope studies should be a focus of research on aquatic food webs. Additionally, more attention should be paid to Hg transport and bioaccumulation in the basic food chain by focusing on multi-contaminant joint exposure studies and establishing Hg bio-transport models.
Collapse
Affiliation(s)
- Haiyu Yan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Qiuhua Li
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, 550001, China.
| | - Zhenhui Yuan
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, 550001, China
| | - Shuang Jin
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, 550001, China
- International Joint Research Centre for Aquatic Ecology, Guizhou Normal University, Guiyang, 550001, China
| | - Min Jing
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
30
|
Liu M, Kakade A, Liu P, Wang P, Tang Y, Li X. Hg 2+-binding peptide decreases mercury ion accumulation in fish through a cell surface display system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:540-547. [PMID: 31096383 DOI: 10.1016/j.scitotenv.2018.12.406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/26/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Mercury is a potentially toxic trace metal that poses threats to aquatic life and to humans. In this study, a mercury-binding peptide was displayed on the surface of Escherichia coli cells using an N-terminal region ice nucleation protein anchor. The surface-engineered E. coli facilitated selective adsorption of mercury ions (Hg2+) from a solution containing various metal ions. The Hg2+ adsorption capacity of the surface-engineered cell was four-fold higher than that of the original E. coli cells. Approximately 95% of Hg2+ was removed from solution by these whole-cell sorbents. The transformed strains were fed to Carassius auratus, so that the bacteria could colonize fish intestine. Engineered bacteria-fed C. auratus showed significantly less (51.1%) accumulation of total mercury when compared with the group that had not been fed engineered bacteria. The surface-engineered E. coli effectively protected fish against the toxicity of Hg2+ in aquatic environments by adsorbing more Hg2+. Furthermore, the surface-engineered E. coli mitigated microbial diversity changes in the intestine caused by Hg2+ exposure, thereby protecting the intestinal microbial community. This strategy is a novel approach for controlling Hg2+ contamination in fish.
Collapse
Affiliation(s)
- Minrui Liu
- Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Apurva Kakade
- Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Pu Liu
- Department of Development Biology Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Peng Wang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yu Tang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiangkai Li
- Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
31
|
Li W, Wang WX. Inter-species differences of total mercury and methylmercury in farmed fish in Southern China: Does feed matter? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1857-1866. [PMID: 30317173 DOI: 10.1016/j.scitotenv.2018.10.095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/07/2018] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Abstract
China is now the largest producer of marine farmed fish and there is a considerable concern of seafood safety due to potential mercury contamination. We analyzed both the total mercury (THg) and methylmercury (MeHg) concentrations in nine species of commercial fish from two marine-cage farms in Southern China. 13C and 15N stable isotopes were concurrently analyzed to identify the artificial feed sources and the trophic levels of farmed fish. Mercury concentrations of all species were much lower than the human health screening values and safety limits established by different countries. Mercury levels in artificial pellets were the main determinants of Hg accumulation in fish between two sites, while somatic growth dilution and size also played an important role. Among the different fish tissues, muscle was a major reservoir for Hg and contained the highest ratio of MeHg/THg, and liver was the second important organ for Hg accumulation in most fish species. Intestine was a critical organ for Hg biotransformation with its %MeHg differing greatly among different fish species. δ15N analysis could not be used to determine the trophic levels in culturing systems where artificial practices were involved. Based on the δ13C signatures, five species of fish were identified to solely feed on the artificial pellets, yet the Hg bioaccumulation differed significantly among these species. We therefore concluded that Hg bioaccumulation in different fish species may be dependent on their internal Hg biotransformation as well as their biokinetics.
Collapse
Affiliation(s)
- Wanze Li
- Marine Environmental Laboratory, HKUST Shenzhen Research Institute, Shenzhen 518057, China; Department of Ocean Science, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
| | - Wen-Xiong Wang
- Marine Environmental Laboratory, HKUST Shenzhen Research Institute, Shenzhen 518057, China; Department of Ocean Science, Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong.
| |
Collapse
|
32
|
Chen SW, Chen ZH, Wang P, Huang R, Huo WL, Huang WX, Yang XF, Peng JW. Health Risk Assessment for Local Residents from the South China Sea Based on Mercury Concentrations in Marine Fish. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 101:398-402. [PMID: 29971607 DOI: 10.1007/s00128-018-2388-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
The offshore area of the South China Sea is an important fishing ground in China. We used a food frequency questionnaire to determine marine fish consumption by local residents, and we detected mercury concentrations in commonly consumed marine fish species. In total, 127.9 g/day of the marine fish consumed was identified in 178 local residents. THg and MeHg concentrations in 209 samples of 22 fish species ranged from 11.3 to 215.0 µg/kg wt and 2.0 to 160.0 µg/kg wt, respectively. The mean MeHg exposure from marine fish to local residents was 0.099 µg/kg bw, accounting for 43.0% of the provisional tolerated weekly intake (PTWI) (1.6 µg/kg bw/week), suggesting a low health risk. However, a potentially high health risk (202.2% of PTWI) was identified in those with 97.5% MeHg exposure.
Collapse
Affiliation(s)
- Shao-Wei Chen
- Department of Health Risk Assessment Research Center, Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, No. 160 Qunxian Road, Panyu District, Guangzhou, 511430, China
| | - Zi-Hui Chen
- Department of Health Risk Assessment Research Center, Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, No. 160 Qunxian Road, Panyu District, Guangzhou, 511430, China
| | - Ping Wang
- Department of Health Risk Assessment Research Center, Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, No. 160 Qunxian Road, Panyu District, Guangzhou, 511430, China
| | - Rui Huang
- Department of Health Risk Assessment Research Center, Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, No. 160 Qunxian Road, Panyu District, Guangzhou, 511430, China
| | - Wei-Lun Huo
- Department of Health Risk Assessment Research Center, Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, No. 160 Qunxian Road, Panyu District, Guangzhou, 511430, China
| | - Wei-Xiong Huang
- Guangdong Provincial Center for Disease Control and Prevention, No. 160 Qunxian Road, Panyu District, Guangzhou, 511430, China
| | - Xing-Fen Yang
- Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou, 510515, Guangdong, China
| | - Jie-Wen Peng
- Department of Health Risk Assessment Research Center, Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, No. 160 Qunxian Road, Panyu District, Guangzhou, 511430, China.
| |
Collapse
|
33
|
Anual ZF, Maher W, Krikowa F, Hakim L, Ahmad NI, Foster S. Mercury and risk assessment from consumption of crustaceans, cephalopods and fish from West Peninsular Malaysia. Microchem J 2018. [DOI: 10.1016/j.microc.2018.04.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
34
|
Wang X, Wu L, Sun J, Wei Y, Zhou Y, Rao Z, Yuan L, Liu X. Mercury Concentrations and Se:Hg Molar Ratios in Flyingfish (Exocoetus volitans) and Squid (Uroteuthis chinensis). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 101:42-48. [PMID: 29881941 DOI: 10.1007/s00128-018-2369-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/25/2018] [Indexed: 06/08/2023]
Abstract
We measured total mercury (Hg) and selenium (Se) concentrations as well as stable nitrogen (N) isotopic composition in flyingfish and squid muscle tissues from the eastern Indian Ocean and western South China Sea. The results showed that the mean Hg concentration in squid muscle from the western South China Sea was lower than that in the eastern Indian Ocean. The Hg concentrations in flyingfish and squid muscle samples were positively correlated with organism size (length and weight) and δ15N in all the study areas. Furthermore, we found a negative correlation between Se and Hg in molar content of flyingfish and squid muscle from the western South China Sea. The Se:Hg molar ratio was significantly negative correlated with fish weight and δ15N, suggesting that the Se:Hg molar ratio decreases with the increase of fish size and trophic level in the food web.
Collapse
Affiliation(s)
- Xueying Wang
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Libin Wu
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Jing Sun
- School of Earth Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Yangyang Wei
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Yongli Zhou
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Zixuan Rao
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Anhui Province Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Linxi Yuan
- Jiangsu Bio-Engineering Research Centre for Selenium, Suzhou, Jiangsu, People's Republic of China
| | - Xiaodong Liu
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China.
- Anhui Province Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
35
|
Liu CB, Hua XB, Liu HW, Yu B, Mao YX, Wang DY, Yin YG, Hu LG, Shi JB, Jiang GB. Tracing aquatic bioavailable Hg in three different regions of China using fish Hg isotopes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 150:327-334. [PMID: 29304475 DOI: 10.1016/j.ecoenv.2017.12.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/21/2017] [Accepted: 12/24/2017] [Indexed: 06/07/2023]
Abstract
To trace the most concerned bioavailable mercury (Hg) in aquatic environment, fish samples were collected from three typical regions in China, including 3 rivers and 1 lake in the Tibetan Plateau (TP, a high altitude background region with strong solar radiation), the Three Gorges Reservoir (TGR, the largest artificial freshwater reservoir in China), and the Chinese Bohai Sea (CBS, a heavily human-impacted semi-enclosed sea). The Hg isotopic compositions in fish muscles were analyzed. The results showed that anthropogenic emissions were the main sources of Hg in fish from TGR and CBS because of the observed negative δ202Hg and positive Δ199Hg in these two regions (TGR, δ202Hg: - 0.72 to - 0.29‰, Δ199Hg: 0.15 - 0.52‰; CBS, δ202Hg: - 2.09 to - 0.86‰, Δ199Hg: 0.07 - 0.52‰). The relatively higher δ202Hg and Δ199Hg (δ202Hg: - 0.37 - 0.08‰, Δ199Hg: 0.50 - 1.89‰) in fish from TP suggested the insignificant disturbance from local anthropogenic activities. The larger slopes of Δ199Hg/Δ201Hg in fish from TGR (1.29 ± 0.14, 1SD) and TP (1.25 ± 0.06, 1SD) indicated methylmercury (MeHg) was produced and photo-reduced in the water column before incorporation into the fish. In contrast, the photoreduction of Hg2+ was the main process in CBS (slope of Δ199Hg/Δ201Hg: 1.06 ± 0.06, 1SD). According to the fingerprint data of Hg isotopes, the most important source for aquatic bioavailable Hg in TP should be the long-range transported Hg, contrasting to the anthropogenic originated MeHg from surface sediments and runoffs in TGR and inorganic Hg from continental inputs in CBS. Therefore, the isotopic signatures of Hg in fish can provide novel clues in tracing sources and behaviors of bioavailable Hg in aquatic systems, which are critical for further understanding the biogeochemical cycling of Hg.
Collapse
Affiliation(s)
- Cheng-Bin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiu-Bing Hua
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Hong-Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ben Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu-Xiang Mao
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Ding-Yong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yong-Guang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Li-Gang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jian-Bo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Gui-Bin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
36
|
Kuppu R, Manoharan S, Uthandakalaipandian R. A study on the impact of water quality on the murrel fish Channa striata and Channa punctata from three major Southern Tamilnadu rivers, India. RSC Adv 2018; 8:11375-11387. [PMID: 35542791 PMCID: PMC9079147 DOI: 10.1039/c7ra13583a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/06/2018] [Indexed: 11/21/2022] Open
Abstract
Rivers are one of the natural fresh water resources that satisfy the domestic, agricultural and industrial needs of people. The Cauvery, Vaigai and Thamirabarani are the three major rivers flowing through the Southern Tamil Nadu region of India. In this study, the Water Quality Index (WQI) and heavy metal concentrations of river water during the pre- and post-monsoon periods in 2015 were recorded and the impact of heavy metal accumulation in two important murrel fish species, Channa striata and Channa punctata, was analysed using micronuclei and histology assays. The results revealed that the WQI was greater than 50 in most sites, indicating poor water quality for the sustainability of living organisms. The Heavy metal Pollution Index (HPI) was critical with values >100 in a few sites along the Cauvery and the Vaigai. The bioaccumulation of heavy metals was higher in the C. punctata than in the C. striata in most instances. Cd, Cu and Pb showed higher bioaccumulation in the pre-monsoon samples whereas As, Cr and Zn exhibited higher bioaccumulation during the post monsoon period. The Ni bioconcentration was consistent in both of the periods. The accumulation of heavy metals in the fish organs was as follows: gills > liver > kidney > muscle. The muscles exhibited Hazard Quotient (HQ) values 0.05-3.3 × 10-6 times lower than the Reference Dose (RfD) level, indicating no significant health risk from the intake of these metals through the consumption of their muscle tissues. The MN% was 0.19-0.22% in the C. striata, 0.15-0.25% in the C. punctata from heavily polluted sites and less polluted sites showed 0.05% and 0.07% MN in the C. striata and C. punctata, respectively. The MN% in the pre-monsoon samples was higher than that of the post-monsoon samples and the C. punctata had a higher MN% than the C. striata. The gills of the fish with high bioaccumulation showed severe lamellar fusion, hyperplasia, hypertrophy and epithelial lifting, their liver hepatocytes showed necrosis of the parenchymal cells and vacuolation, their Kidney tubules were dilated and vacuolated glomeruli with no Bowman's space were observed. Their muscles had normal myotomes with equally spaced muscle bundles. The C. punctata showed more severe histopathological changes than the C. striata. Thus, the present study defines a warning alarm for the proper remediation steps to be taken to safeguard the natural water resources as well as the aquatic ecosystem.
Collapse
Affiliation(s)
- Raghavan Kuppu
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University Madurai - 625021 Tamil Nadu India +91-9489014892
| | - Shobana Manoharan
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University Madurai - 625021 Tamil Nadu India +91-9489014892
| | - Ramesh Uthandakalaipandian
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University Madurai - 625021 Tamil Nadu India +91-9489014892
| |
Collapse
|
37
|
Liu Y, Liu G, Yuan Z, Liu H, Lam PKS. Heavy metals (As, Hg and V) and stable isotope ratios (δ 13C and δ 15N) in fish from Yellow River Estuary, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:462-471. [PMID: 28918278 DOI: 10.1016/j.scitotenv.2017.09.088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/08/2017] [Accepted: 09/09/2017] [Indexed: 05/25/2023]
Abstract
The Yellow River Estuary is a significant fishery, but at present there are few studies about the concentrations of arsenic (As), mercury (Hg) and vanadium (V) in fish from this area, which might cause potential health risk to fish consumers. The aim of this study was to research on the accumulation and potential sources of heavy metals in the fish of the Yellow River Estuary. Arsenic, Hg, V and stable isotope ratios (δ15N and δ13C) in 11 species of 129 fish were analyzed. Results showed that the concentrations of As and Hg were all lower than the guideline levels established by international organizations and legal limits by several countries. The mean concentrations of V in samples in this study were significantly higher than the results of previous studies on other regions. Arsenic, Hg and V significantly differed across species (P<0.05), which might be due to the different foraging habitats and dietary habits of the studied fish. Values of δ15N and δ13C in fish from the study area ranged from 5.1‰ to 14.6‰ and from -27.6‰ to -14.5‰, indicating a wide range of trophic positions and energy sources. There was evidence of bioaccumulation of Hg, which could be explained by the positive correlation between Hg concentrations and δ15N in fish. Through estimation of daily intake of inorganic As (iAs), Hg and V via fish consumption, the heavy metal contamination level of fish samples fell in an acceptable range, indicating no potentially hazardous for human health.
Collapse
Affiliation(s)
- Yuan Liu
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an 710075, China; State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region, PR China
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an 710075, China.
| | - Zijiao Yuan
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Houqi Liu
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou 215100, China
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Hong Kong Special Administrative Region, PR China
| |
Collapse
|
38
|
Ren M, Wang Y, Ding S, Yang L, Sun Q, Zhang L. Development of a new diffusive gradient in the thin film (DGT) method for the simultaneous measurement of CH3Hg+ and Hg2+. NEW J CHEM 2018. [DOI: 10.1039/c8nj00211h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This technique has a high DGT capacity, wide tolerance of pH and ionic strength and good performance as an in situ monitoring tool.
Collapse
Affiliation(s)
- Mingyi Ren
- School of Resources and Environment
- University of Jinan
- Jinan 250022
- China
- State Key Laboratory of Lake Science and Environment
| | - Yan Wang
- State Key Laboratory of Lake Science and Environment
- Nanjing Institute of Geography and Limnology
- Chinese Academy of Sciences
- Nanjing 210008
- China
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment
- Nanjing Institute of Geography and Limnology
- Chinese Academy of Sciences
- Nanjing 210008
- China
| | - Liyuan Yang
- School of Resources and Environment
- University of Jinan
- Jinan 250022
- China
| | - Qin Sun
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes
- Ministry of Education
- College of Environment
- Hohai University
- Nanjing 210098
| | - Liping Zhang
- Nanjing Easysensor Environmental Technology Co., Ltd
- Nanjing 210018
- China
| |
Collapse
|
39
|
Liu Y, Liu G, Yuan Z, Liu H, Lam PKS. Presence of arsenic, mercury and vanadium in aquatic organisms of Laizhou Bay and their potential health risk. MARINE POLLUTION BULLETIN 2017; 125:334-340. [PMID: 28967412 DOI: 10.1016/j.marpolbul.2017.09.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/14/2017] [Accepted: 09/21/2017] [Indexed: 06/07/2023]
Abstract
This study aims at describing and interpreting concentrations of arsenic (As), mercury (Hg) and vanadium (V) in seven species of fish, three species of shellfish, one species of crab and two species of shrimp from the typical estuary-bay ecosystem. Arsenic, Hg and V differed among species, and the highest As, Hg and V were observed in shellfish. The stable nitrogen (δ15N) and carbon (δ13C) isotopes were determined to investigate the trophic interactions between fluctuating environment and aquatic species. Arsenic concentrations in samples were found negatively correlated with δ15N, implying biodilution effect of As through the food web, while Hg concentrations in samples were positively correlated with δ15N, indicating their biomagnification effect. The estimated daily intake values of Hg and V in this study were all below the oral reference dose. However, elevated As intakes of some aquatic organisms suggested a potential risk for frequent consumers.
Collapse
Affiliation(s)
- Yuan Liu
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an 710075, China; State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an 710075, China.
| | - Zijiao Yuan
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Houqi Liu
- CAS Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China; Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou 215123, China
| | - Paul K S Lam
- State Key Laboratory in Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
40
|
Tong Y, Wang M, Bu X, Guo X, Lin Y, Lin H, Li J, Zhang W, Wang X. Mercury concentrations in China's coastal waters and implications for fish consumption by vulnerable populations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:396-405. [PMID: 28818815 DOI: 10.1016/j.envpol.2017.08.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
We assessed mercury (Hg) pollution in China's coastal waters, including the Bohai Sea, the Yellow Sea, the East China Sea and the South China Sea, based on a nationwide dataset from 301 sampling sites. A methylmercury (MeHg) intake model for humans based on the marine food chain and human fish consumption was established to determine the linkage between water pollutants and the pollutant intake by humans. The predicted MeHg concentration in fish from the Bohai Sea was the highest among the four seas included in the study. The MeHg intake through dietary ingestion was dominant for the fish and was considerably higher than the MeHg intake through water respiration. The predicted MeHg concentrations in human blood in the coastal regions of China ranged from 1.37 to 2.77 μg/L for pregnant woman and from 0.43 to 1.00 μg/L for infants, respectively, based on different diet sources. The carnivorous fish consumption advisory for pregnant women was estimated to be 288-654 g per week to maintain MeHg concentrations in human blood at levels below the threshold level (4.4 μg/L established by the US Environmental Protection Agency). With a 50% increase in Hg concentrations in water in the Bohai Sea, the bioaccumulated MeHg concentration (4.5 μg/L) in the fish consumers will be higher than the threshold level. This study demonstrates the importance in controlling Hg pollution in China's coastal waters. An official recommendation guideline for the fish consumption rate and its sources will be necessary for vulnerable populations in China.
Collapse
Affiliation(s)
- Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Mengzhu Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaoge Bu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xin Guo
- Tianjin Environmental Sanitation Engineering Design Institute, Tianjin, 300201, China
| | - Yan Lin
- Norwegian Institute for Water Research, Oslo, 0349, Norway
| | - Huiming Lin
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Jing Li
- College of Urban and Environment Science, Tianjin Normal University, Tianjin, 300387, China
| | - Wei Zhang
- School of Environment and Natural Resources, Renmin University of China, Beijing, 100872, China
| | - Xuejun Wang
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
41
|
Abeysinghe KS, Qiu G, Goodale E, Anderson CWN, Bishop K, Evers DC, Goodale MW, Hintelmann H, Liu S, Mammides C, Quan RC, Wang J, Wu P, Xu XH, Yang XD, Feng X. Mercury flow through an Asian rice-based food web. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:219-228. [PMID: 28599206 DOI: 10.1016/j.envpol.2017.05.067] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 06/07/2023]
Abstract
Mercury (Hg) is a globally-distributed pollutant, toxic to humans and animals. Emissions are particularly high in Asia, and the source of exposure for humans there may also be different from other regions, including rice as well as fish consumption, particularly in contaminated areas. Yet the threats Asian wildlife face in rice-based ecosystems are as yet unclear. We sought to understand how Hg flows through rice-based food webs in historic mining and non-mining regions of Guizhou, China. We measured total Hg (THg) and methylmercury (MeHg) in soil, rice, 38 animal species (27 for MeHg) spanning multiple trophic levels, and examined the relationship between stable isotopes and Hg concentrations. Our results confirm biomagnification of THg/MeHg, with a high trophic magnification slope. Invertivorous songbirds had concentrations of THg in their feathers that were 15x and 3x the concentration reported to significantly impair reproduction, at mining and non-mining sites, respectively. High concentrations in specialist rice consumers and in granivorous birds, the later as high as in piscivorous birds, suggest rice is a primary source of exposure. Spiders had the highest THg concentrations among invertebrates and may represent a vector through which Hg is passed to vertebrates, especially songbirds. Our findings suggest there could be significant population level health effects and consequent biodiversity loss in sensitive ecosystems, like agricultural wetlands, across Asia, and invertivorous songbirds would be good subjects for further studies investigating this possibility.
Collapse
Affiliation(s)
- Kasun S Abeysinghe
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China; Guangxi Key Laboratory of Forest Ecology and Conservation (under state evaluation status), College of Forestry, Guangxi University, Nanning, Guangxi 530005, China; Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Eben Goodale
- Guangxi Key Laboratory of Forest Ecology and Conservation (under state evaluation status), College of Forestry, Guangxi University, Nanning, Guangxi 530005, China.
| | - Christopher W N Anderson
- Soil and Earth Sciences, Institute of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Kevin Bishop
- Department of Earth Sciences, Uppsala University, Villavägen, Uppsala 16, 752 36, Sweden; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelmsväg 9, Uppsala, SE 75007, Sweden
| | - David C Evers
- Biodiversity Research Institute, 276 Canco Road, Portland, ME 04103, United States
| | - Morgan W Goodale
- Biodiversity Research Institute, 276 Canco Road, Portland, ME 04103, United States
| | - Holger Hintelmann
- Trent University, Chemistry Department, 1600 West Bank Drive, Peterborough, Ontario K9J 7B8, Canada
| | - Shengjie Liu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China; Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Christos Mammides
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Rui-Chang Quan
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Jin Wang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China; Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Pianpian Wu
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Lennart Hjelmsväg 9, Uppsala, SE 75007, Sweden
| | - Xiao-Hang Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Dong Yang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
42
|
Jeevanaraj P, Hashim Z, Elias SM, Aris AZ. Mercury accumulation in marine fish most favoured by Malaysian women, the predictors and the potential health risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:23714-23729. [PMID: 27619374 DOI: 10.1007/s11356-016-7402-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
We identified marine fish species most preferred by women at reproductive age in Selangor, Malaysia, mercury concentrations in the fish muscles, factors predicting mercury accumulation and the potential health risk. Nineteen most preferred marine fish species were purchased (n = 175) from selected fisherman's and wholesale market. Length, weight, habitat, feeding habit and trophic level were recognised. Edible muscles were filleted, dried at 80 °C, ground on an agate mortar and digested in Multiwave 3000 using HNO3 and H2O2. Total mercury was quantified using VP90 cold vapour system with N2 carrier gas. Certified reference material DORM-4 was used to validate the results. Fish species were classified as demersal (7) and pelagic (12) or predators (11), zoo benthos (6) and planktivorous (2). Length, weight and trophic level ranged from 10.5 to 75.0 cm, 0.01 to 2.50 kg and 2.5 to 4.5, respectively. Geometric mean of total mercury ranged from 0.21 to 0.50 mg/kg; maximum in golden snapper (0.90 mg/kg). Only 9 % of the samples exceeded the JECFA recommendation. Multiple linear regression found demersal, high trophic (≥4.0) and heavier fishes to accumulate more mercury in muscles (R 2 = 27.3 %), controlling for all other factors. About 47 % of the fish samples contributed to mercury intake above the provisional tolerable level (45 μg/day). While only a small portion exceeded the JECFA fish Hg guideline, the concentration reported may be alarming for heavy consumers. Attention should be given in risk management to avoid demersal and high trophic fish, predominantly heavier ones.
Collapse
Affiliation(s)
- Pravina Jeevanaraj
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Science, University Putra Malaysia, Serdang, Malaysia.
| | - Zailina Hashim
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Science, University Putra Malaysia, Serdang, Malaysia.
| | - Saliza Mohd Elias
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Science, University Putra Malaysia, Serdang, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environmental Science, Faculty of Environmental Studies, University Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
43
|
Hong C, Yu X, Liu J, Cheng Y, Rothenberg SE. Low-level methylmercury exposure through rice ingestion in a cohort of pregnant mothers in rural China. ENVIRONMENTAL RESEARCH 2016; 150:519-527. [PMID: 27423706 PMCID: PMC5003649 DOI: 10.1016/j.envres.2016.06.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/26/2016] [Accepted: 06/25/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Rice ingestion is an important dietary exposure pathway for methylmercury. There are few studies concerning prenatal methylmercury exposure through rice ingestion, yet the health risks are greatest to the developing fetus, and thus should be investigated. OBJECTIVES Our main objective was to quantify dietary methylmercury intake through rice and fish/shellfish ingestion among pregnant mothers living in southern China, where rice was a staple food and mercury contamination was considered minimal. METHODS A total of 398 mothers were recruited at parturition, who donated scalp hair and blood samples. Total mercury and/or methylmercury concentrations were measured in biomarkers, in rice samples from each participant's home, and in fish tissue purchased from local markets. Additional fish/shellfish mercury concentrations were obtained from a literature search. Dietary methylmercury intake during the third trimester was equivalent to the ingestion rate for rice (or fish/shellfish)×the respective methylmercury concentration. RESULTS Dietary methylmercury intake from both rice and fish/shellfish ingestion averaged 1.2±1.8µg/day (median=0.79µg/day, range=0-22µg/day), including on average 71% from rice ingestion (median: 87%, range: 0-100%), and 29% from fish/shellfish consumption (median 13%, range: 0-100%). Median concentrations of hair total mercury, hair methylmercury, and blood total mercury were 0.40µg/g (range: 0.08-1.7µg/g), 0.28µg/g (range: 0.01-1.4µg/g), and 1.2µg/L (range: 0.29-8.6µg/L), respectively, and all three biomarkers were positively correlated with dietary methylmercury intake through rice ingestion (Spearman's rho=0.18-0.21, p≤0.0005), although the correlations were weak. In contrast, biomarkers were not correlated with fish/shellfish methylmercury intake (Spearman's rho=0.04-0.08, p=0.11-0.46). CONCLUSIONS Among pregnant mothers living in rural inland China, rice ingestion contributed to prenatal methylmercury exposure, more so than fish/shellfish ingestion.
Collapse
Affiliation(s)
- Chuan Hong
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA
| | - Xiaodan Yu
- MOE-Shanghai Key Lab of Children's Environmental Health, XinHua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jihong Liu
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
| | - Yue Cheng
- Department of Public Health, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Sarah E Rothenberg
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
44
|
Liu JL, Xu XR, Ding ZH, Peng JX, Jin MH, Wang YS, Hong YG, Yue WZ. Heavy metals in wild marine fish from South China Sea: levels, tissue- and species-specific accumulation and potential risk to humans. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:1583-92. [PMID: 25822200 DOI: 10.1007/s10646-015-1451-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2015] [Indexed: 05/25/2023]
Abstract
Heavy metal pollution in marine fish has become an important worldwide concern, not only because of the threat to fish in general, but also due to human health risks associated with fish consumption. To investigate the occurrence of heavy metals in marine fish species from the South China Sea, 14 fish species were collected along the coastline of Hainan China during the spring of 2012 and examined for species- and tissue-specific accumulation. The median concentrations of Cd, Cr, Cu, Zn, Pb and As in muscle tissue of the examined fish species were not detectable (ND), 2.02, 0.24, 2.64, 0.025, and 1.13 mg kg(-1) wet weight, respectively. Levels of Cu, Zn, Cd and Cr were found to be higher in the liver and gills than in muscle, while Pb was preferentially accumulated in the gills. Differing from other heavy metals, As did not exhibit tissue-specific accumulation. Inter-species differences of heavy metal accumulation were attributed to the different habitat and diet characteristics of marine fish. Human dietary exposure assessment suggested that the amounts of both Cr and As in marine wild fish collected from the sites around Hainan, China were not compliant with the safety standard of less than 79.2 g d(-1) for wild marine fish set by the Joint FAO/WHO Expert Committee on Food Additives. Further research to identify the explicit sources of Cr and As in marine fish from South China Sea should be established.
Collapse
Affiliation(s)
- Jin-Ling Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| | - Zhen-Hua Ding
- College of the Environment & Ecology, Xiamen University, Xiamen, 361005, China
| | - Jia-Xi Peng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming-Hua Jin
- College of the Environment & Ecology, Xiamen University, Xiamen, 361005, China
| | - You-Shao Wang
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, CAS, Guangzhou, 510301, China
| | - Yi-Guo Hong
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, CAS, Guangzhou, 510301, China
| | - Wei-Zhong Yue
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, CAS, Guangzhou, 510301, China
| |
Collapse
|
45
|
Gu YG, Lin Q, Wang XH, Du FY, Yu ZL, Huang HH. Heavy metal concentrations in wild fishes captured from the South China Sea and associated health risks. MARINE POLLUTION BULLETIN 2015; 96:508-512. [PMID: 25913793 DOI: 10.1016/j.marpolbul.2015.04.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/30/2015] [Accepted: 04/11/2015] [Indexed: 06/04/2023]
Abstract
Heavy metal concentrations were measured in 29 marine wild fish species from the South China Sea. Concentrations (wet weight) were 0.51-115.81 ng/g (Cd), 0.54-27.31 ng/g (Pb), 0.02-1.26 μg/g (Cr), 8.32-57.48 ng/g (Ni), 0.12-1.13 μg/g (Cu), 2.34-6.88 μg/g (Zn), 2.51-22.99 μg/g (Fe), and 0.04-0.81 μg/g (Mn), respectively. Iron concentrations in all and Mn in some fish species were higher than the acceptable daily upper limit, suggesting human consumption of these wild fish species may pose a health risk. Human health risk assessment, however, indicated no significant adverse health effects with consumption.
Collapse
Affiliation(s)
- Yang-Guang Gu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, Guangdong Province, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou 510300, China
| | - Qin Lin
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, Guangdong Province, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou 510300, China.
| | - Xue-Hui Wang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, Guangdong Province, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou 510300, China
| | - Fei-Yan Du
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, Guangdong Province, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou 510300, China
| | - Zi-Ling Yu
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, Guangdong Province, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou 510300, China
| | - Hong-Hui Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, Guangdong Province, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, Guangzhou 510300, China
| |
Collapse
|
46
|
Sun H, Wang M, Wang J, Tian M, Wang H, Sun Z, Huang P. Development of magnetic separation and quantum dots labeled immunoassay for the detection of mercury in biological samples. J Trace Elem Med Biol 2015; 30:37-42. [PMID: 25744508 DOI: 10.1016/j.jtemb.2015.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 12/14/2014] [Accepted: 01/14/2015] [Indexed: 10/24/2022]
Abstract
A rapid and sensitive immunoassays of mercury (Hg) in biological samples was developed using quantum dots (QDs) and magnetic beads (MBs) as fluorescent and separated probes, respectively. A monoclonal antibody (mAb) that recognizes an Hg detection antigen (BSA-DTPA-Hg) complex was produced by the injection of BALB/c mice with an Hg immunizing antigen (KLH-DTPA-Hg). Then the ascites monoclonal antibodies were purified. The Hg monoclonal antibody (Hg-mAb) is conjugated with MBs to separate Hg from biological samples, and the other antibody, which is associated with QDs, is used to detect the fluorescence. The Hg in biological samples can be quantified using the relationship between the QDs fluorescence intensity and the concentration of Hg in biological samples following magnetic separation. In this method, the detection linear range is 1-1000ng/mL, and the minimum detection limit is 1ng/mL. The standard addition recovery rate was 94.70-101.18%. The relative standard deviation values were 2.76-7.56%. Furthermore, the Hg concentration can be detected in less than 30min, the significant interference of other heavy metals can be avoided, and the simultaneous testing of 96 samples can be performed. These results indicate that the method could be used for rapid monitoring Hg in the body.
Collapse
Affiliation(s)
- Hubo Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, China
| | - Mengmeng Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, China
| | - Jilong Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, China
| | - Mi Tian
- Medical Experiment and Test Center, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, China
| | - Hui Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, China
| | - Peili Huang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You An Men, Beijing 100069, China.
| |
Collapse
|
47
|
Ahmad NI, Noh MFM, Mahiyuddin WRW, Jaafar H, Ishak I, Azmi WNFW, Veloo Y, Hairi MH. Mercury levels of marine fish commonly consumed in Peninsular Malaysia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3672-86. [PMID: 25256581 PMCID: PMC4334092 DOI: 10.1007/s11356-014-3538-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/28/2014] [Indexed: 05/27/2023]
Abstract
This study was conducted to determine the concentration of total mercury in the edible portion of 46 species of marine fish (n = 297) collected from selected major fish landing ports and wholesale markets throughout Peninsular Malaysia. Samples were collected in June to December 2009. Prior to analysis, the fish samples were processed which consisted of drying at 65 °C until a constant weight was attained; then, it was grounded and digested by a microwave digestion system. The analytical determination was carried out by using a mercury analysis system. Total mercury concentration among fish species was examined. The results showed that mercury concentrations were found significantly higher (p < 0.001) in demersal fish (the range was from 0.173 to 2.537 mg/kg in dried weight) compared to pelagic fish (which ranged from 0.055 to 2.137 mg/kg in dried weight). The mercury concentrations were also higher in carnivorous fish especially in the species with more predatory feeding habits. Besides, the family group of Latidae (0.537 ± 0.267 mg/kg in dried weight), Dasyatidae (0.492 ± 0.740 mg/kg in dried weight), and Lutjanidae (0.465 ± 0.566 mg/kg in dried weight) showed significantly (p < 0.001) higher mercury levels compared to other groups. Fish collected from Port Klang (0.563 ± 0.509 mg/kg in dry weight), Kuala Besar (0.521 ± 0.415 mg/kg in dry weight), and Pandan (0.380 ± 0.481 mg/kg in dry weight) were significantly higher (p = 0.014) in mercury concentrations when compared to fish from other sampling locations. Total mercury levels were significantly higher (p < 0.002) in bigger fish (body length >20 cm) and were positively related with fish size (length and weight) in all fish samples. Despite the results, the level of mercury in marine fish did not exceed the permitted levels of Malaysian and JECFA guideline values at 0.5 mg/kg methylmercury in fish.
Collapse
Affiliation(s)
- Nurul Izzah Ahmad
- Institute for Medical Research, Jalan Pahang, 50588, Kuala Lumpur, Malaysia,
| | | | | | | | | | | | | | | |
Collapse
|
48
|
LIU G, REN H, GUAN Y, DAI R, CHAI C. Development of a Mercury Detection Kit Based on Melamine-functionalized Gold Nanoparticles. ANAL SCI 2015; 31:113-8. [DOI: 10.2116/analsci.31.113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Guoyan LIU
- School of Agriculture & Biology, Shanghai Jiaotong University
| | - Huipeng REN
- School of Agriculture & Biology, Shanghai Jiaotong University
| | - Yuyu GUAN
- School of Agriculture & Biology, Shanghai Jiaotong University
| | - Ronghua DAI
- School of Agriculture & Biology, Shanghai Jiaotong University
| | - Chunyan CHAI
- School of Agriculture & Biology, Shanghai Jiaotong University
| |
Collapse
|
49
|
Liu JL, Xu XR, Yu S, Cheng H, Peng JX, Hong YG, Feng XB. Mercury contamination in fish and human hair from Hainan Island, South China Sea: Implication for human exposure. ENVIRONMENTAL RESEARCH 2014; 135:42-47. [PMID: 25262073 DOI: 10.1016/j.envres.2014.08.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/08/2014] [Accepted: 08/10/2014] [Indexed: 06/03/2023]
Abstract
Hair has long been recognized as a good biomarker for human exposure to Hg. The mercury concentrations in 14 species of marine fish and hair samples from 177 coastal residents in Hainan, South China Sea were investigated to assess the status of mercury exposure associated with marine fish consumption. Concentrations of total Hg (THg) and methylmercury (MeHg) in the fish muscles were 0.094 ± 0.008 and 0.066 ± 0.006 μg/gww, respectively, which were far below the limit considered safe for consumption (0.5 μg/g). The average THg concentrations in hair of adults (1.02 ± 0.92 μg/g) were lower than the provisional tolerable weekly intake (PTWI) level of 2.2 μg/g. However, 23.7% of children had a hair THg level exceeding the RfD level of 1μg/g, indicating a great risk of Hg exposure to children via fish consumption. The concentration of THg in hair was significantly correlated with fish consumption but not with gender-specific fish intake. With higher fish consumption frequency, the fishermen had significantly elevated hair Hg levels compared to the students and the other general public, who had similar hair THg levels but different fish consumption patterns, indicating the existence of other sources of Hg exposure to the residents of Hainan Island.
Collapse
Affiliation(s)
- Jin-Ling Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiang-Rong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Shen Yu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hefa Cheng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jia-Xi Peng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Guo Hong
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xin-Bin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| |
Collapse
|