1
|
Gong FH, Liu L, Wang X, Xiang Q, Yi X, Jiang DS. Ferroptosis induced by environmental pollutants and its health implications. Cell Death Discov 2025; 11:20. [PMID: 39856053 PMCID: PMC11759704 DOI: 10.1038/s41420-025-02305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/19/2024] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Environmental pollution represents a significant public health concern, with the potential health risks associated with environmental pollutants receiving considerable attention over an extended period. In recent years, a substantial body of research has been dedicated to this topic. Since the discovery of ferroptosis, an iron-dependent programmed cell death typically characterized by lipid peroxidation, in 2012, there have been significant advances in the study of its role and mechanism in various diseases. A growing number of recent studies have also demonstrated the involvement of ferroptosis in the damage caused to the organism by environmental pollutants, and the molecular mechanisms involved have been partially elucidated. The targeting of ferroptosis has been demonstrated to be an effective means of ameliorating the health damage caused by PM2.5, organic and inorganic pollutants, and ionizing radiation. This review begins by providing a summary of the most recent and important advances in ferroptosis. It then proceeds to offer a critical analysis of the health effects and molecular mechanisms of ferroptosis induced by various environmental pollutants. Furthermore, as is the case with all rapidly evolving research areas, there are numerous unanswered questions and challenges pertaining to environmental pollutant-induced ferroptosis, which we discuss in this review in an attempt to provide some directions and clues for future research in this field.
Collapse
Affiliation(s)
- Fu-Han Gong
- Department of Cardiology, Tongren People's Hospital, Tongren, Guizhou, China
| | - Liyuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xuesheng Wang
- Department of Cardiology, Tongren People's Hospital, Tongren, Guizhou, China
| | - Qi Xiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Yi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Ding-Sheng Jiang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Gorini F, Tonacci A. Ambient Air Pollution and Congenital Heart Disease: Updated Evidence and Future Challenges. Antioxidants (Basel) 2025; 14:48. [PMID: 39857382 PMCID: PMC11761577 DOI: 10.3390/antiox14010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Congenital heart disease (CHD) represents the major cause of infant mortality related to congenital anomalies globally. The etiology of CHD is mostly multifactorial, with environmental determinants, including maternal exposure to ambient air pollutants, assumed to contribute to CHD development. While particulate matter (PM) is responsible for millions of premature deaths every year, overall ambient air pollutants (PM, nitrogen and sulfur dioxide, ozone, and carbon monoxide) are known to increase the risk of adverse pregnancy outcomes. In this literature review, we provide an overview regarding the updated evidence related to the association between maternal exposure to outdoor air pollutants and CHD occurrence, also exploring the underlying biological mechanisms from human and experimental studies. With the exception of PM, for which there is currently moderate evidence of its positive association with overall CHD risk following exposure during the periconception and throughout pregnancy, and for ozone which shows a signal of association with increased risk of pooled CHD and certain CHD subtypes in the periconceptional period, for the other pollutants, the data are inconsistent, and no conclusion can be drawn about their role in CHD onset. Future epidemiological cohort studies in countries with different degree of air pollution and experimental research on animal models are warranted to gain a comprehensive picture of the possible involvement of ambient air pollutants in CHD etiopathogenesis. While on the one hand this information could also be useful for timely intervention to reduce the risk of CHD, on the other hand, it is mandatory to scale up the use of technologies for pollutant monitoring, as well as the use of Artificial Intelligence for data analysis to identify the non-linear relationships that will eventually exist between environmental and clinical variables.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
3
|
Zhen S, Li N, Li Y, Li Q, Zheng L, Yin Z, Dou Y, Wu S, Liu Y, Zhang X, Yang X, Wang Y, Ge W, Gao X, Yang J, Liang F, Hu J, Zhao Y. Maternal exposure to fine particulate matter before and during pregnancy, and the risk of birth defects: A population-based study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117408. [PMID: 39626490 DOI: 10.1016/j.ecoenv.2024.117408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 01/26/2025]
Abstract
Although epidemiological evidence has linked maternal exposure to air pollution with adverse birth outcomes, the association between exposure to fine particulate matter (PM2.5) and the risk of total birth defects in highly polluted developing regions remains limited. The objective of this study was to assess the relationship between maternal exposure to PM2.5 before and during pregnancy and the occurrence of birth defects. This study included 16,080 births with birth defects and 567,483 controls born between 2014 and 2019 in 14 cities in Liaoning Province, China. The assessment of exposure was conducted using satellite-based PM2.5 data at a spatial resolution of 1 km. Participants were classified into four subgroups based on their exposure to PM2.5 before and during pregnancy. The association between maternal exposure to PM2.5, and the risk of birth defects, was estimated using logistic regression models. For each 10 μg/m³ increase in PM2.5, the odds ratios of birth defects were 1.68 (95% CI: 1.65, 1.70) and 2.41 (95% CI: 2.36, 2.45) during the preconception period and pregnancy, respectively. We observed a J-shaped association between maternal PM2.5 exposure during both the preconception period and pregnancy and the risk of total birth defects. Mothers exposed to elevated levels of PM2.5 during both the preconception period and pregnancy exhibited the highest risk of total birth defects (odds ratio: 4.43, 95% CI: 4.17, 4.71). Our findings illustrated that maternal exposure to PM2.5 before and during pregnancy was associated with increased risks of birth defects and underscored the potential health benefits of reducing air pollution exposure during the preconception period and pregnancy.
Collapse
Affiliation(s)
- Shihan Zhen
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Na Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China Medical University, Shenyang 110004, China
| | - Yan Li
- Liaoning Provincial Hospital for Women and Children, Shenyang 110005, China
| | - Qian Li
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lu Zheng
- Research Center of China Medical University Birth Cohort, Shengjing Hospital of China Medical University, Shenyang 110004, China; Health Sciences Institute, China Medical University, Shenyang 110122, China
| | - Zhouxin Yin
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Dou
- Department of Epidemiology, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Shuqi Wu
- Research Center of China Medical University Birth Cohort, Shengjing Hospital of China Medical University, Shenyang 110004, China; Health Sciences Institute, China Medical University, Shenyang 110122, China
| | - Yilin Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China Medical University, Shenyang 110004, China; Research Center of China Medical University Birth Cohort, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiaoyan Zhang
- Research Center of China Medical University Birth Cohort, Shengjing Hospital of China Medical University, Shenyang 110004, China; Health Sciences Institute, China Medical University, Shenyang 110122, China
| | - Xinyue Yang
- Research Center of China Medical University Birth Cohort, Shengjing Hospital of China Medical University, Shenyang 110004, China; Health Sciences Institute, China Medical University, Shenyang 110122, China
| | - Ye Wang
- Research Center of China Medical University Birth Cohort, Shengjing Hospital of China Medical University, Shenyang 110004, China; Health Sciences Institute, China Medical University, Shenyang 110122, China
| | - Wenxiu Ge
- Research Center of China Medical University Birth Cohort, Shengjing Hospital of China Medical University, Shenyang 110004, China; Health Sciences Institute, China Medical University, Shenyang 110122, China
| | - Xiaoyu Gao
- Research Center of China Medical University Birth Cohort, Shengjing Hospital of China Medical University, Shenyang 110004, China; Health Sciences Institute, China Medical University, Shenyang 110122, China
| | - Jing Yang
- Research Center of China Medical University Birth Cohort, Shengjing Hospital of China Medical University, Shenyang 110004, China; Health Sciences Institute, China Medical University, Shenyang 110122, China
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jiajin Hu
- Research Center of China Medical University Birth Cohort, Shengjing Hospital of China Medical University, Shenyang 110004, China; Health Sciences Institute, China Medical University, Shenyang 110122, China.
| | - Ying Zhao
- Liaoning Provincial Hospital for Women and Children, Shenyang 110005, China.
| |
Collapse
|
4
|
Li WY, Chen ZY, Xu WL, Gao YY, Liu Z, Li Q, Dai L. Temporal trends in the prevalence of major birth defects in China: a nationwide population-based study from 2007 to 2021. World J Pediatr 2024; 20:1145-1154. [PMID: 39487910 PMCID: PMC11582329 DOI: 10.1007/s12519-024-00844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/17/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Birth defects constitute a significant public health issue worldwide, yet there is a lack of comprehensive population-based data for the Chinese population. METHODS We analyzed data from the China National Population-based Birth Defects Surveillance System from 2007 to 2021, we calculated the prevalence rates of selected birth defects, stratified by maternal residence, geographic region, maternal age, and infant sex. The Joinpoint regression model was utilized to assess trends and annual percent changes in prevalence. RESULTS From 2007 to 2021, significant downward trends in prevalence were observed for neural tube defects (NTDs), hydrocephalus, cleft lip with or without palate (CL/P), limb reduction defects (LRD), omphalocele, Down syndrome, and tetralogy of Fallot (TOF). Conversely, upward trends were identified for hypospadias, cleft palate (CP), microtia/anotia, polydactyly, syndactyly, ventricular septal defect (VSD), atrial septal defect/patent foramen ovale (ASD/PFO), and patent ductus arteriosus (PDA). Younger mothers exhibited a higher prevalence of hydrocephalus, gastroschisis, CL/P, and polydactyly, while anotia/microtia, Down syndrome, and congenital heart diseases (CHDs) were more common in mothers aged 35 years or older. Significant variations in the prevalence of anencephalus, spina bifida, CL/P, anorectal atresia/stenosis, hypospadias, polydactyly, syndactyly, VSD, ASD/PFO, and PDA were found across different maternal residences and geographic regions. CONCLUSION This study highlights the diverse trends and prevalence patterns of major birth defects, underscoring the necessity for defect-specific public health interventions.
Collapse
Affiliation(s)
- Wen-Yan Li
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhi-Yu Chen
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wen-Li Xu
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu-Yang Gao
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhen Liu
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qi Li
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Li Dai
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, No. 17 Section 3 Renminnanlu, Chengdu, 610041, China.
- The Joint Laboratory for Pulmonary Development and Related Diseases, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Med-X Center for Informatics, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Sinjari B, Santilli M, Di Carlo P, Aruffo E, Caputi S. The Correlation between Oral Health and Air Pollution: A Systematic Review. Dent J (Basel) 2024; 12:215. [PMID: 39057002 PMCID: PMC11275324 DOI: 10.3390/dj12070215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
This systematic review assessed to evaluate the potential correlation between oral health and air pollution. To the best of the authors' knowledge, this is the first systematic review endeavoring to compare air pollution and oral health. A systematic search was performed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) statement and employed the PICO(S) approach (Patient or Population, Intervention, Control or Comparison, Outcome, and Study types). The search was limited to English-language articles, and publications within a 15-year timeframe were included in the electronic search. A comprehensive search was conducted across PubMed, Scopus, Embase, and Web of Science databases, spanning the years 2008 to 2023, resulting in a total of 4983 scientific articles. A final selection of 11 scientific papers was made based on their study type and the specific air pollutants examined. The selected papers analyzed various air pollutants associated with health-related diseases, including Ozone, Nitrogen Dioxide, Nitrogen Monoxide, Carbon Monoxide, sulfur dioxide, and particulate matter. Three out of eleven of the reviewed studies assert a strong correlation between air pollutants and oral diseases, specifically periodontitis. However, the exact biological mechanisms underlying this correlation do not seem to be fully understood, indicating the need for further comprehensive investigation in this regard. Dentists can contribute to the collective effort by educating their patients about the oral health implications of air pollution, thereby supporting initiatives aimed at promoting environmental and health sustainability.
Collapse
Affiliation(s)
- Bruna Sinjari
- Unit of Prostodontics, Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (M.S.); (S.C.)
| | - Manlio Santilli
- Unit of Prostodontics, Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (M.S.); (S.C.)
| | - Piero Di Carlo
- Center of Advanced Studies and Technology (CAST), University of “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (P.D.C.); (E.A.)
| | - Eleonora Aruffo
- Center of Advanced Studies and Technology (CAST), University of “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (P.D.C.); (E.A.)
| | - Sergio Caputi
- Unit of Prostodontics, Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy; (M.S.); (S.C.)
| |
Collapse
|
6
|
Feng Y, Liu X, Zhang X, Zhao X, Chang H, Ouyang F, Yu Z, Gao Z, Zhang H. Global air pollution exposure and congenital anomalies: an updated systematic review and meta-analysis of epidemiological studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2333-2352. [PMID: 37610216 DOI: 10.1080/09603123.2023.2246383] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
A systematic review and meta-analysis was conducted to evaluate recent epidemiological evidence on the association of air pollution with congenital anomalies (CAs). Of 11,014 records, 49 were finally included in this meta-analysis. Per 10 μg/m3 increase in air pollutant, PM10 exposure during the 1st month of pregnancy and at the first trimester (T1) was associated with increased overall CAs. Further, exposure to PM10 was associated with congenital heart disease (OR = 1.055, 95% CI: 1.035, 1.074) and patent ductus arteriosus (OR = 1.094, 95% CI: 1.020, 1.168) at T1, with chromosomal anomalies during the entire pregnancy and with nervous system anomalies when exposure occurred 3 months prior to pregnancy, during the 1st, 2nd months of pregnancy and at T1. Besides, a significant association with overall CAs was observed for a combined exposure of PM10 and SO2 during the 1st month of gestation (OR: 1.101, 95% CI: 1.023, 1.180). A combined exposure of PM10 and CO was also associated with tetralogy of Fallot during 3-8 weeks of gestation (OR: 1.016, 95% CI: 1.005, 1.027). No significant associations were observed between PM2.5, NO2, and O3 exposure and CAs.
Collapse
Affiliation(s)
- Yang Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xinxin Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoan Zhang
- Clinical Nutrition Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Zhao
- Clinical Nutrition Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Chang
- Clinical Nutrition Department, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fan Ouyang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhan Gao
- Clinical Nutrition Department, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanhuan Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Villeneuve PJ. Long-Term Exposure to Ambient Benzene and Mortality. Am J Respir Crit Care Med 2024; 209:905-906. [PMID: 38301235 PMCID: PMC11531218 DOI: 10.1164/rccm.202401-0005ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 02/01/2024] [Indexed: 02/03/2024] Open
Affiliation(s)
- Paul J Villeneuve
- Department of Neuroscience Carleton University Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Yan R, Ma D, Liu Y, Wang R, Fan L, Yan Q, Chen C, Wang W, Ren Z, Ku T, Ning X, Sang N. Developmental Toxicity of Fine Particulate Matter: Multifaceted Exploration from Epidemiological and Laboratory Perspectives. TOXICS 2024; 12:274. [PMID: 38668497 PMCID: PMC11054511 DOI: 10.3390/toxics12040274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024]
Abstract
Particulate matter of size ≤ 2.5 μm (PM2.5) is a critical environmental threat that considerably contributes to the global disease burden. However, accompanied by the rapid research progress in this field, the existing research on developmental toxicity is still constrained by limited data sources, varying quality, and insufficient in-depth mechanistic analysis. This review includes the currently available epidemiological and laboratory evidence and comprehensively characterizes the adverse effects of PM2.5 on developing individuals in different regions and various pollution sources. In addition, this review explores the effect of PM2.5 exposure to individuals of different ethnicities, genders, and socioeconomic levels on adverse birth outcomes and cardiopulmonary and neurological development. Furthermore, the molecular mechanisms involved in the adverse health effects of PM2.5 primarily encompass transcriptional and translational regulation, oxidative stress, inflammatory response, and epigenetic modulation. The primary findings and novel perspectives regarding the association between public health and PM2.5 were examined, highlighting the need for future studies to explore its sources, composition, and sex-specific effects. Additionally, further research is required to delve deeper into the more intricate underlying mechanisms to effectively prevent or mitigate the harmful effects of air pollution on human health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China; (R.Y.); (D.M.); (Y.L.); (R.W.); (L.F.); (Q.Y.); (C.C.); (W.W.); (Z.R.); (X.N.); (N.S.)
| | | | | |
Collapse
|
9
|
Krakauer KN, Cevallos PC, Amakiri UO, Saldana GM, Lipman KJ, Howell LK, Wan DC, Khosla RK, Nazerali R, Sheckter CC. US air pollution is associated with increased incidence of non-syndromic cleft lip/palate. J Plast Reconstr Aesthet Surg 2024; 88:344-351. [PMID: 38064913 PMCID: PMC11544580 DOI: 10.1016/j.bjps.2023.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 01/02/2024]
Abstract
Maternal cigarette use is associated with the fetal development of orofacial clefts. Air pollution should be investigated for similar causation. We hypothesize that the incidence of non-syndromic cleft lip with or without palate (NSCLP) and non-syndromic cleft palate (NSCP) would be positively correlated with air pollution concentration. METHODS The incidence of NSCLP and NSCP per 1000 live births from 2016 to 2020 was extracted from the Centers for Disease Control and Prevention Vital Statistics Database and merged with national reports on air pollution using the Environmental Protection Agency Air Quality Systems annual data. The most commonly reported pollutants were analyzed including benzene, sulfur dioxide (SO2), particulate matter (PM) 2.5, PM 10, ozone (O3), and carbon monoxide (CO). Multivariable negative binomial and Poisson log-linear regression models evaluated the incidence of NSCLP and NSCP as a function of the pollutants, adjusting for race. All p-values are reported with Bonferroni correction. RESULTS The median NSCLP incidence was 0.22/1000 births, and isolated NSCP incidence was 0.18/1000 births. For NSCLP, SO2 had a coefficient estimate (CE) of 0.60 (95% CI [0.23, 0.98], p < 0.007) and PM 2.5 had a CE of 0.20 (95% CI [0.10, 0.31], p < 0.005). Among isolated NSCP, no pollutants were found to be significantly associated. CONCLUSION SO2 and PM 2.5 were significantly correlated with increased incidence of NSCLP. The American people and perinatal practitioners should be aware of the connection to allow for risk reduction and in utero screening.
Collapse
Affiliation(s)
- Kelsi N Krakauer
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, 300 Pasteur Drive, Palo Alto, CA 94305, USA
| | - Priscila C Cevallos
- Geisel School of Medicine at Dartmouth, 1 Rope Ferry Road, Hanover, NH 03755, USA
| | - Uche O Amakiri
- Icahn School of Medicine at Mt. Sinai, 1 Gustave L. Levy Pl, New York, NY 10029, USA
| | - Golddy M Saldana
- University of California Davis School of Medicine, 4610 X Street, Sacramento, CA 95817, USA
| | - Kelsey J Lipman
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, 300 Pasteur Drive, Palo Alto, CA 94305, USA
| | - Lori K Howell
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Derrick C Wan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, 300 Pasteur Drive, Palo Alto, CA 94305, USA
| | - Rohit K Khosla
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, 300 Pasteur Drive, Palo Alto, CA 94305, USA
| | - Rahim Nazerali
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, 300 Pasteur Drive, Palo Alto, CA 94305, USA
| | - Clifford C Sheckter
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University, 300 Pasteur Drive, Palo Alto, CA 94305, USA.
| |
Collapse
|
10
|
Huang Z, Wu J, Qiu Y, Lin J, Huang W, Ma X, Zhang H, Yang X. Association between gestational exposure and risk of orofacial clefts: a systematic review and meta-analysis. BMC Pregnancy Childbirth 2023; 23:829. [PMID: 38041018 PMCID: PMC10691060 DOI: 10.1186/s12884-023-06104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/02/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND The occurrence of orofacial Clefts (OFCs) is a congenital disease caused by many factors. According to recent studies, air pollution has a strong correlation with the occurrence of OFCs. However, there are still some controversies about the current research results, and there is no relevant research to review the latest results in recent years. OBJECTIVE In this paper, the authors conducted a systematic review and meta-analysis to explore the correlation between ambient air pollution and the occurrence of neonatal OFCs deformity. METHODS We searched Pubmed, Web of science, and Embase databases from the establishment of the database to May 2023. We included observational studies on the relationship between prenatal exposure to fine particulate matter 2.5 (PM2.5), fine particulate matter 10 (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO) and the risk of cleft lip (CL), cleft palate (CP), cleft lip with or without palate (CL/P). the Newcastle-Ottawa quality assessment scale (NOS) was used to evaluate the quality of the literature. Funnel plot and Egger's regression were used to verify the publication bias. Random effect model or fixed effect model was used to estimate the combined relative risk (RR) and 95% confidence interval (95%CI). RESULTS A total of eleven studies were included in this study, including four cohort studies and seven case-control studies, including 22,453 cases of OFCs. Ten studies had low risk of bias and only one study had high risk of bias. Three studies reported that PM2.5 was positively correlated with CL and CP, with a combined RR and 95%CI of 1.287(1.174,1.411) and 1.267 (1.105,1.454). Two studies reported a positive correlation between O3 and CL, with a combined RR and 95%CI of 1.132(1.047,1.225). Two studies reported a positive correlation between PM10 and CL, with a combined RR and 95%CI of 1.108 (1.017,1.206). No association was found between SO2, CO, NO2 exposure during pregnancy and the risk of OFCs. CONCLUSION The results of this study showed that there was a significant statistical correlation between exposure to PM10, PM2.5, O3 and the risk of OFCs in the second month of pregnancy. Exposure assessment, research methods and mechanisms need to be further explored.
Collapse
Affiliation(s)
- ZhiMeng Huang
- Department Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Fujian Province, 361000, China
| | - JinZhun Wu
- Department Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Fujian Province, 361000, China
| | - Yue Qiu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Fujian Province, 361000, China
| | - Jiayan Lin
- Department Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Fujian Province, 361000, China
| | - Wanting Huang
- Department Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Fujian Province, 361000, China
| | - Xiaohui Ma
- Department Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Fujian Province, 361000, China
| | - Huifen Zhang
- Department Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Fujian Province, 361000, China
| | - Xiaoqing Yang
- Department Pediatrics, Women and Children's Hospital, School of Medicine, Xiamen University, Fujian Province, 361000, China.
| |
Collapse
|
11
|
Chang YC, Lin YT, Jung CR, Chen KW, Hwang BF. Maternal exposure to fine particulate matter and congenital heart defects during preconception and pregnancy period: A cohort-based case-control study in the Taiwan maternal and child health database. ENVIRONMENTAL RESEARCH 2023; 231:116154. [PMID: 37187309 DOI: 10.1016/j.envres.2023.116154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/21/2023] [Accepted: 05/13/2023] [Indexed: 05/17/2023]
Abstract
BACKGROUND Few studies have explored the association between maternal exposure to particulate matter with an aerodynamic diameter of ≤2.5 μm (PM2.5) and congenital heart defects occurring before and during pregnancy. We aimed to investigate the association and the critical time windows between the maternal exposure to PM2.5 and congenital heart defects. METHOD We conducted a cohort-based case-control study of 507,960 participants obtained from the Taiwan Maternal and Child Health Database between 2004 and 2015. We applied satellite-based spatiotemporal models with 1-km resolution to calculate the average PM2.5 concentration during preconception and the specific periods of pregnancy. We also performed conditional logistic regression with distributed lag non-linear models (DLNMs) to assess the effects of weekly average PM2.5 on both congenital heart defects and their isolated subtypes, as well as the concentration-response relationships. RESULTS In DLNMs, exposure to PM2.5 (per 10 μg/m3) during weeks 7-12 before conception and weeks 3-9 after conception was associated with congenital heart defects. The strongest association at 12 weeks before conception (odds ratio [OR] = 1.026, 95% confidence intervals [CI]: 1.012-1.040) and 7 weeks after conception (OR = 1.024, 95% CI: 1.012-1.036) for every 10 μg/m3 increase in PM2.5 concentration. In modification analysis, strongest associations were observed for low SES. CONCLUSIONS Our study revealed that exposure to ambient PM2.5 raises the risk of congenital heart defects, particularly among individuals with lower socioeconomic status. Moreover, our findings suggest that preconception exposure to PM2.5 may be a crucial period for the development of congenital heart defects.
Collapse
Affiliation(s)
- Ya-Chu Chang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Yu-Ting Lin
- Big Data Center, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| | - Chau-Ren Jung
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan; Japan Environment and Children's Study Programme Office, Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Ke-Wei Chen
- Division of Cardiovascular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Bing-Fang Hwang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan; Department of Occupational Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
12
|
Michel S, Atmakuri A, von Ehrenstein OS. Prenatal exposure to ambient air pollutants and congenital heart defects: An umbrella review. ENVIRONMENT INTERNATIONAL 2023; 178:108076. [PMID: 37454629 DOI: 10.1016/j.envint.2023.108076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Prenatal exposure to ambient air pollutants has been linked to congenital heart defects (CHD), but findings of existing systematic reviews have been mixed. OBJECTIVE To assess the epidemiological evidence on associations between prenatal exposure to ambient air pollutants and CHD subtypes, based on a systematic overview of reviews ("umbrella review"). METHODS We conducted a systematic search for reviews assessing associations between prenatal exposure to criteria air pollutants and CHD. The risk of bias was evaluated using the Risk of Bias in Systematic Reviews (ROBIS) tool. The certainty of the systematic review findings was graded using the Navigation Guide methodology. RESULTS We identified eleven systematic reviews, including eight with meta-analyses, assessing in total 35 primary studies of prenatal exposure to criteria air pollutants and various CHD subtypes. The certainty of the findings of four meta-analyses indicating an increased risk for coarctation of the aorta associated with nitrogen dioxide exposure was rated as moderate. The certainty of findings indicating positive, inverse, or null associations for other pollutant-subtype combinations was rated as very low to low, based on low precision and high statistical heterogeneity of summary odds ratios (SOR), substantial inconsistencies between review findings, and methodological limitations of the systematic reviews. DISCUSSION The inconsistent findings and high statistical heterogeneity of many SOR of the included systematic reviews may partly be traced to differences in methodological approaches, and the risk of bias across included reviews (e.g., inclusion criteria, systematic search strategies, synthesis methods) and primary studies (e.g., exposure assessment, diagnostic criteria). Adherence to appropriate systematic review guidelines for environmental health research, as well as rigorous evaluation of risk of bias in primary studies, are essential for future risk assessments and policy-making. Still, our findings suggest that prenatal exposure to ambient air pollutants may increase risks for at least some CHD subtypes.
Collapse
Affiliation(s)
- Sophie Michel
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA.
| | - Aishwarya Atmakuri
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Ondine S von Ehrenstein
- Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA; Department of Community Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
13
|
Nirel R, Shoham T, Rotem R, Ahmad WA, Koren G, Kloog I, Golan R, Levine H. Maternal exposure to particulate matter early in pregnancy and congenital anomalies in offspring: Analysis of concentration-response relationships in a population-based cohort with follow-up throughout childhood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163082. [PMID: 37004765 DOI: 10.1016/j.scitotenv.2023.163082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 05/27/2023]
Abstract
Studies have suggested an association between particulate matter (PM) air pollution and certain congenital anomalies (CAs). However, most studies assumed a linear concentration-response relation and were based on anomalies that were ascertained at birth or up to 1 year of age. We investigated associations between exposures to PM during the first trimester of pregnancy and CAs in 9 organ systems using birth and childhood follow-up data from a leading health care provider in Israel. We conducted a retrospective population-based cohort study among 396,334 births, 2004-2015. Daily PM data at a 1 × 1 km spatial grid were obtained from a satellite-derived prediction models and were linked to the mothers' residential addresses at birth. Adjusted odds ratios (ORs) were estimated with logistic regression models using exposure levels as either continuous or categorical variables. We captured 57,638 isolated CAs with estimated prevalence of 96 and 136 anomalies per 1000 births in the first year of life and by age 6 years, respectively. Analysis of continuous PM with diameter < 2.5 μm (PM2.5) indicated a supra-linear relation with anomalies in the circulatory, respiratory, digestive, genital and integument systems (79 % of CAs). The slope of the concentration-response function was positive and steepest for PM2.5 lower than the median concentration (21.5 μg/m3) and had a less steep or negative slope at higher levels. Similar trends were observed for PM2.5 quartiles. For example, for cardiac anomalies, the ORs were 1.09 (95 % confidence interval: 1.02, 1.15), 1.04 (0.98, 1.10) and 1.00 (0.94, 1.07) for births in the second, third and fourth quartiles, respectively, when compared to the first quartile. In sum, this study adds new evidence for adverse effects of air pollution on neonatal health even with low-level air pollution. Information on late diagnosis of children with anomalies is important in evaluating the burden of disease.
Collapse
Affiliation(s)
- Ronit Nirel
- Department of Statistics and Data Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Tomer Shoham
- Department of Statistics and Data Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ran Rotem
- Maccabi Institute of Research and Innovation, Maccabi Healthcare Services, Tel-Aviv, Israel; Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, United States
| | - Wiessam Abu Ahmad
- Braun School of Public Health and Community Medicine, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gideon Koren
- The Dr. Miriam and Sheldon G. Adelson Medical School, Ariel University, Ariel, Israel
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rachel Golan
- Department of Epidemiology, Biostatistics and Community Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hagai Levine
- Braun School of Public Health and Community Medicine, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
14
|
Wang M, Li L, Kang H, Xu H, Huang Q, Li N, Deng Y, Yu P, Liu Z. Maternal environmental, occupational, and urinary metabolite levels of benzene compounds and their association with congenital heart diseases in offspring: a case‒control study in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:66021-66032. [PMID: 37095212 PMCID: PMC10182929 DOI: 10.1007/s11356-023-27015-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
The conclusions about the association of maternal pregnancy environment, occupation, and benzene compounds with fetal CHD are not entirely consistent. Eight hundred seven CHD cases and 1008 controls were included in this study. All occupations were classified and coded against the Occupational Classification Dictionary of the People's Republic of China (2015 version). Logistic regressions were used to explore the correlation among environmental factors, occupation types, and CHDs in offspring. We found that living near public facilities and having exposure to chemical reagents and hazardous substances were significant risk factors for CHDs in offspring. We found that offspring of mothers who worked in agriculture and similar work during pregnancy suffered from CHD. The risk of all CHDs in the offspring of pregnant women working in production manufacturing and related work was significantly higher than that in unemployed pregnant women, the risk was also observed in 4 subtypes of CHDs. We compared the concentrations of the five metabolite (MA, mHA, HA, PGA, and SPMA) levels of benzene compounds in the urine of mothers in case and control groups and found no significant differences. Our study suggests that maternal exposure during pregnancy and certain environmental and occupational conditions are risk factors for CHD in offspring, but did not support an association between concentrations of metabolites of benzene compounds in the urine of pregnant women and CHDs in their offspring.
Collapse
Affiliation(s)
- Meixian Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Lu Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Kang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongmei Xu
- Department of Gynaecology and Obstetrics, Leshan People's Hospital, Leshan, 614003, China
| | - Qian Huang
- Department of Gynaecology and Obstetrics, Shehong People's Hospital, Shehong, 629299, China
| | - Nana Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Deng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Yu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, National Office for Maternal and Child Health Surveillance of China, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
15
|
Huang X, Li Z, Zhang T, Zhu J, Wang X, Nie M, Harada K, Zhang J, Zou X. Research progress in human biological monitoring of aromatic hydrocarbon with emphasis on the analytical technology of biomarkers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114917. [PMID: 37094484 DOI: 10.1016/j.ecoenv.2023.114917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Aromatic hydrocarbons are unsaturated compounds containing carbon and hydrogen that form single aromatic ring, or double, triple, or multiple fused rings. This review focuses on the research progress of aromatic hydrocarbons represented by polycyclic aromatic hydrocarbons (including halogenated polycyclic aromatic hydrocarbons), benzene and its derivatives including toluene, ethylbenzene, xylenes (o-, m- and p-), styrene, nitrobenzene, and aniline. Due to the toxicity, widespread coexistence, and persistence of aromatic hydrocarbons in the environment, accurate assessment of exposure to aromatic hydrocarbons is essential to protect human health. The effects of aromatic hydrocarbons on human health are mainly derived from three aspects: different routes of exposure, the duration and relative toxicity of aromatic hydrocarbons, and the concentration of aromatic hydrocarbons which should be below the biological exposure limit. Therefore, this review discusses the primary exposure routes, toxic effects on humans, and key populations, in particular. This review briefly summarizes the different biomarker indicators of main aromatic hydrocarbons in urine, since most aromatic hydrocarbon metabolites are excreted via urine, which is more feasible, convenient, and non-invasive. In this review, the pretreatment and analytical techniques are compiled systematically for the qualitative and quantitative assessments of aromatic hydrocarbons metabolites such as gas chromatography and high-performance liquid chromatography with multiple detectors. This review aims to identify and monitor the co-exposure of aromatic hydrocarbons that provides a basis for the formulation of corresponding health risk control measures and guide the adjustment of the exposure dose of pollutants to the population.
Collapse
Affiliation(s)
- Xinyi Huang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Zhuoya Li
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Tianai Zhang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Jing Zhu
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Xuan Wang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Manqing Nie
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Kouji Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jing Zhang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China.
| | - Xiaoli Zou
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
16
|
Han J, Zhang B, Zhang X, Huang K, Fang V, Xu X. Associations between occurrence of birth defects and hydraulic fracturing activities in Barnett shale region, Texas. Heliyon 2023; 9:e15213. [PMID: 37089285 PMCID: PMC10114229 DOI: 10.1016/j.heliyon.2023.e15213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/20/2023] [Accepted: 03/29/2023] [Indexed: 04/25/2023] Open
Abstract
The impacts of hydraulic fracturing (HF) on birth defects have been suggested by previous studies but remain largely inconclusive. In this study, we assessed whether pregnant women who lived in areas with high HF activities had increased risks of giving birth to offspring with overall or specific birth defects, including atrial septal defect (ASD), ventricular septal defect (VSD), patent ductus arteriosus (PDA), microcephaly (MIC), and hydrocephaly without spina bifida (HSB). All live births between 1999 and 2014 among the residents in the four core counties of Denton, Johnson, Tarrant, and Wise in the Barnett Shale region, Texas, were analyzed. Standardized Morbidity Ratio (SMR) and Poisson regressions were applied for statistical analysis. Compared to the statewide risk, the risks of ASD, VSD, and PDA in four selected counties with high HF activities were significantly higher. The Annual Natural Gas Production from HF was significantly correlated with risks of ASD, PDA, MIC, and total birth defect after adjusting for counties and years. No significant associations of HF activities were found with VSD and HSB. This ecological study suggested that hydraulic fracturing might be associated with the increased risk of some birth defects in the Barnett Shale Region, TX, which warrants further investigations due to the limitation of an ecological study design.
Collapse
Affiliation(s)
- JeongWon Han
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Bangning Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Xiao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Ke Huang
- Department of Statistics, College of Science, Texas A&M University, USA
| | - Vixey Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
| | - Xiaohui Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX 77843, USA
- Corresponding author. Department of Epidemiology & Biostatistics¸ School of Public Health, Texas A&M University, 225 SPH Administration Building | MS 1266 212 Adriance Lab Road College Station, Texas 77843-1266, USA.
| |
Collapse
|
17
|
Yuan X, Liang F, Zhu J, Huang K, Dai L, Li X, Wang Y, Li Q, Lu X, Huang J, Liao L, Liu Y, Gu D, Liu H, Liu F. Maternal Exposure to PM 2.5 and the Risk of Congenital Heart Defects in 1.4 Million Births: A Nationwide Surveillance-Based Study. Circulation 2023; 147:565-574. [PMID: 36780386 PMCID: PMC9988362 DOI: 10.1161/circulationaha.122.061245] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 12/05/2022] [Indexed: 02/15/2023]
Abstract
BACKGROUND Evidence remains limited about the association of maternal exposure to ambient fine particulate matter (airborne particles with an aerodynamic diameter ≤2.5 µm [PM2.5]) with fetal congenital heart defects (CHDs) in highly polluted regions, and few studies have focused on preconception exposure. METHODS Using a nationwide surveillance-based case-control design in China, we examined the association between maternal exposure to PM2.5 during periconception (defined as 3 months before conception until 3 months into pregnancy) and risk of CHD in offspring. The study included 1 434 998 births involving 7335 CHDs from 2014 through 2017 on the basis of the National Population-Based Birth Defects Surveillance System, covering 30 provinces, municipalities, or municipal districts in China. We assigned maternal PM2.5 exposure during the periconception period to each participant using satellite-based PM2.5 concentrations at 1-km spatial resolution. Multilevel logistic regression models were used to calculate the multivariable-adjusted odds ratio and 95% CI for CHDs in offspring associated with maternal PM2.5 exposure, and the exposure-response association was investigated using restricted cubic spline analysis. Subgroup or sensitivity analyses were conducted to identify factors that may modify the association. RESULTS The average maternal exposure to PM2.5 levels across all participants was 56.51 μg/m3 (range, 10.95 to 182.13 μg/m3). For each 10 μg/m³ increase in maternal PM2.5 exposure, the risk of CHDs in offspring was increased by 2% (odds ratio, 1.02 [95% CI, 1.00 to 1.05]), and septal defect was the most influenced subtype (odds ratio, 1.04 [95% CI, 1.01 to 1.08]). The effect of PM2.5 on CHD risk was more pronounced during the preconception period. Mothers <35 years of age, those living in northern China, and those living in low-income areas were more susceptible to PM2.5 exposure than their counterparts (all P<0.05). PM2.5 exposure showed a linear association with total CHDs or specific CHD types. CONCLUSIONS High maternal PM2.5 exposure, especially during the preconception period, increases risk of certain types of CHD in offspring. These findings are useful for CHD prevention and highlight the public health benefits of improving air quality in China and other highly polluted regions.
Collapse
Affiliation(s)
- Xuelian Yuan
- National Office for Maternal and Child Health Surveillance
of China, West China Second University Hospital, Sichuan University, Chengdu,
Sichuan 610041, China
- Key Laboratory of Birth Defects and Related Diseases of
Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan
610041, China
| | - Fengchao Liang
- Shenzhen Key Laboratory of Cardiovascular Health and
Precision Medicine, Southern University of Science and Technology, Shenzhen 518055,
China
- School of Public Health and Emergency Management, Southern
University of Science and Technology, Shenzhen 518055, China
| | - Jun Zhu
- National Office for Maternal and Child Health Surveillance
of China, West China Second University Hospital, Sichuan University, Chengdu,
Sichuan 610041, China
- Key Laboratory of Birth Defects and Related Diseases of
Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan
610041, China
| | - Keyong Huang
- Department of Epidemiology, Fuwai Hospital, National Center
for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese
Academy of Medical Sciences, Beijing 100037, China
| | - Li Dai
- National Office for Maternal and Child Health Surveillance
of China, West China Second University Hospital, Sichuan University, Chengdu,
Sichuan 610041, China
- Key Laboratory of Birth Defects and Related Diseases of
Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan
610041, China
| | - Xiaohong Li
- National Office for Maternal and Child Health Surveillance
of China, West China Second University Hospital, Sichuan University, Chengdu,
Sichuan 610041, China
- Key Laboratory of Birth Defects and Related Diseases of
Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan
610041, China
| | - Yanping Wang
- National Office for Maternal and Child Health Surveillance
of China, West China Second University Hospital, Sichuan University, Chengdu,
Sichuan 610041, China
- Key Laboratory of Birth Defects and Related Diseases of
Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan
610041, China
| | - Qi Li
- National Center for Birth Defects Monitoring of China, West
China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041,
China
| | - Xiangfeng Lu
- Department of Epidemiology, Fuwai Hospital, National Center
for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese
Academy of Medical Sciences, Beijing 100037, China
| | - Jianfeng Huang
- Department of Epidemiology, Fuwai Hospital, National Center
for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese
Academy of Medical Sciences, Beijing 100037, China
| | - Lihui Liao
- Department of Pediatric Neurology Nursing, West China
Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins
School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Dongfeng Gu
- Shenzhen Key Laboratory of Cardiovascular Health and
Precision Medicine, Southern University of Science and Technology, Shenzhen 518055,
China
- School of Public Health and Emergency Management, Southern
University of Science and Technology, Shenzhen 518055, China
- Department of Epidemiology, Fuwai Hospital, National Center
for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese
Academy of Medical Sciences, Beijing 100037, China
- School of Medicine, Southern University of Science and
Technology, Shenzhen 510085, China
| | - Hanmin Liu
- Key Laboratory of Birth Defects and Related Diseases of
Women and Children, Ministry of Education, Sichuan University, Chengdu, Sichuan
610041, China
- Department of Pediatrics, West China Second University
Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Birth Defects Clinical Research Center, West China
Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- National Health Commission Key Laboratory of
Chronobiology, Sichuan University, Chengdu, China
| | - Fangchao Liu
- Department of Epidemiology, Fuwai Hospital, National Center
for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese
Academy of Medical Sciences, Beijing 100037, China
| |
Collapse
|
18
|
Grineski S, Alexander C, Renteria R, Collins TW, Bilder D, VanDerslice J, Bakian A. Trimester-specific ambient PM 2.5 exposures and risk of intellectual disability in Utah. ENVIRONMENTAL RESEARCH 2023; 218:115009. [PMID: 36495968 PMCID: PMC9845186 DOI: 10.1016/j.envres.2022.115009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Prenatal fine particulate matter (PM2.5) exposure is an understudied risk factor for neurodevelopmental outcomes, including intellectual disability (ID). Associations among prenatal exposures and neurodevelopmental outcomes may vary depending on the timing of exposure. Limited numbers of studies examining PM2.5 and neurodevelopmental outcomes have considered exposures occurring during the preconception period. To address these gaps, we conducted a case-control study of children born in Utah between 2002 and 2008 (n = 1032). Cases were identified using methods developed by the Centers for Disease Control and Prevention's Autism and Developmental Disabilities Monitoring Network and matched with controls on birth year, sex, and birth county. We estimated the daily average PM2.5 concentration during a period spanning 12 weeks before the estimated conception date, as well as during each of the three trimesters at the maternal residential address listed on the child's birth certificate. In a multivariable model, the third (OR: 2.119, CI: 1.123-3.998, p = .021) and fourth (OR: 2.631, CI: 1.750-3.956, p < .001) quartiles for preconception average PM2.5 demonstrated significantly increased risk of ID relative to the first quartile. Second quartile preconception exposure was also associated with increased risk, though it did not reach significance (OR: 1.385, CI: 0.979-1.959, p = .07). The fourth quartile of first trimester average PM2.5 was positive and significant (OR: 2.278, CI: 1.522-3.411, p < .001); the third quartile was positive, but not significant (OR: 1.159, CI: 0.870-1.544, p = .312). Quartiles of second and third trimester were not associated with higher risk of ID. These findings from Utah, which were robust to a variety of sensitivity analyses, provide initial evidence that preconception and prenatal PM2.5 exposure may be associated with ID. Future studies are needed across other geographic locations and populations.
Collapse
|
19
|
Sun L, Wu Q, Wang H, Liu J, Shao Y, Xu R, Gong T, Peng X, Zhang B. Maternal exposure to ambient air pollution and risk of congenital heart defects in Suzhou, China. Front Public Health 2023; 10:1017644. [PMID: 36684928 PMCID: PMC9845866 DOI: 10.3389/fpubh.2022.1017644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Background More and more studies have investigated the association between maternal exposure to ambient air pollution during pregnancy and incidence of congenital heart defects (CHDs), but results are controversial. The aim of this study was to investigate whether maternal exposure to air pollutants (PM10, PM2.5, NO2, CO, SO2) are associated with an increased risk of congenital heart defects in Suzhou city, China. Methods Based on the birth defect monitoring system of Suzhou city and the Environmental Health Department of Suzhou CDC, the birth defect monitoring data and concentrations of five air pollutants (PM10, PM2.5, NO2, CO, SO2) in Suzhou city from 2015 to 2019 were obtained. The distribution of demographic characteristics of children with birth defects and exposure to air pollutant concentrations during different pregnancy periods were analyzed, Chi-square test was used to analyze whether there were statistical differences in the distribution of parturient woman age, pregnant weeks, times of pregnancy, as well as fetal sex and birth weight among children with congenital heart defects and other defects. Logistic regression model was further established to calculate the adjusted odds ratios (aORs) and 95% confidence intervals (CI) for the association between exposure to these ambient air pollutants during pregnancy and CHDs. Results A total of 5,213 infants with birth defects were recruited in this study from 2015 to 2019, the top five birth defects in Suzhou were syndactyly, congenital heart disease, ear malformation, cleft lip and palate, and hypospadias, and the proportion of congenital heart disease increased. The level of maternal exposures (mean ± sd) was highest in first trimester amongst pregnant women in Suzhou city. Compared to other birth defects, we observed significant increasing associations between PM2.5 exposure during second and third trimester with risk of CHDs, aORs were 1.228 and 1.236 (95% CI: 1.141-1.322, 1.154-1.324 separately) per a 10 μg/m3 change in PM2.5 concentration. Maternal NO2 exposure was significantly associated with CHDs in first trimester (aOR = 1.318; 95% CI: 1.210-1.435). Conclusions Our study contributes to explore the current state of Suzhou air quality and the association between maternal air pollution exposure and congenital heart defects. Exposure to PM2.5 and NO2 is thought to increase the risk of CHDs, but comprehensive description of these associations will be needed in future studies.
Collapse
Affiliation(s)
| | - Qianlan Wu
- Suzhou Maternal and Child Healthcare Center, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ma Z, Li W, Yang J, Qiao Y, Cao X, Ge H, Wang Y, Liu H, Tang N, Yang X, Leng J. Early prenatal exposure to air pollutants and congenital heart disease: a nested case-control study. Environ Health Prev Med 2023; 28:4. [PMID: 36642530 PMCID: PMC9845069 DOI: 10.1265/ehpm.22-00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Congenital heart disease (CHD) is one of the most common congenital malformations in humans. Inconsistent results emerged in the existed studies on associations between air pollution and congenital heart disease. The purpose of this study was to evaluate the association of gestational exposure to air pollutants with congenital heart disease, and to explore the critical exposure windows for congenital heart disease. METHODS The nested case-control study collected birth records and the following health data in Tianjin Women and Children's Health Center, China. All of the cases of congenital heart disease from 2013 to 2015 were selected matching five healthy controls for each case. Inverse distance weighting was used to estimate individual exposure based on daily air pollution data. Furthermore, the conditional logistic regression with distributed lag non-linear model was performed to identify the association between gestational exposure to air pollution and congenital heart disease. RESULTS A total of 8,748 mother-infant pairs were entered into the analysis, of which 1,458 infants suffered from congenital heart disease. For each 10 µg/m3 increase of gestational exposure to PM2.5, the ORs (95% confidence interval, 95%CI) ranged from 1.008 (1.001-1.016) to 1.013 (1.001-1.024) during the 1st-2nd gestation weeks. Similar weak but increased risks of congenital heart disease were associated with O3 exposure during the 1st week and SO2 exposure during 6th-7th weeks in the first trimester, while no significant findings for other air pollutants. CONCLUSIONS This study highlighted that gestational exposure to PM2.5, O3, and SO2 had lag effects on congenital heart disease. Our results support potential benefits for pregnancy women to the mitigation of air pollution exposure in the early stage, especially when a critical exposure time window of air pollutants may precede heart development.
Collapse
Affiliation(s)
- Zhao Ma
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China,Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Weiqin Li
- Tianjin Women and Children’s Health Center, Tianjin, China
| | - Jicui Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China,Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Yijuan Qiao
- Tianjin Women and Children’s Health Center, Tianjin, China
| | - Xue Cao
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China,Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Han Ge
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China,Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Yue Wang
- Tianjin Women and Children’s Health Center, Tianjin, China
| | - Hongyan Liu
- Tianjin Women and Children’s Health Center, Tianjin, China
| | - Naijun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China,Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China,Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, China,Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, China
| | - Junhong Leng
- Tianjin Women and Children’s Health Center, Tianjin, China
| |
Collapse
|
21
|
The Risk of Orofacial Cleft Lip/Palate Due to Maternal Ambient Air Pollution Exposure: A Call for Further Research in South Africa. Ann Glob Health 2023; 89:6. [PMID: 36743286 PMCID: PMC9881443 DOI: 10.5334/aogh.4007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/29/2022] [Indexed: 01/28/2023] Open
Abstract
Background Despite being underreported, orofacial cleft lip/palate (CLP) remains in the top five of South Africa's most common congenital disorders. Maternal air pollution exposure has been associated with CLP in neonates. South Africa has high air pollution levels due to domestic burning practices, coal-fired power plants, mining, industry, and traffic pollution, among other sources. We investigated air pollutant levels in geographic locations of CLP cases. Methods In a retrospective case series study (2006-2020) from a combined dataset by a Gauteng surgeon and South African Operation Smile, the maternal address at pregnancy was obtained for 2,515 CLP cases. Data from the South African Air Quality Information System was used to calculate annual averages of particulate matter (PM) concentrations of particles < 10 µm (PM10) and < 2.5 µm (PM2.5). Correlation analysis determined the relationship between average PM2.5/PM10 concentrations and CLP birth prevalence. Hotspot analysis was done using the Average Nearest Neighbor tool in ArcGIS. Results Correlation analysis showed an increasing trend of CLP birth prevalence to PM10 (CC = 0.61, 95% CI = 0.38-0.77, p < 0.001) and PM2.5 (CC = 0.63, 95% CI = 0.42-0.77, p < 0.001). Hot spot analysis revealed that areas with higher concentrations of PM10 and PM2.5 had a higher proclivity for maternal residence (z-score = -68.2, p < 0.001). CLP birth prevalence hotspot clusters were identified in district municipalities in the provinces of Gauteng, Limpopo, North-West, Mpumalanga, and Free State. KwaZulu-Natal and Eastern Cape had lower PM10 and PM2.5 concentrations and were cold spot clusters. Conclusions Maternal exposure to air pollution is known to impact the fetal environment and increase CLP risk. We discovered enough evidence of an effect to warrant further investigation. We advocate for a concerted effort by the government, physicians, researchers, non-government organizations working with CLP patients, and others to collect quality data on all maternal information and pollutant levels in all provinces of South Africa. Collaboration and data sharing for additional research will help us better understand the impact of air pollution on CLP in South Africa.
Collapse
|
22
|
Simmons W, Lin S, Luben TJ, Sheridan SC, Langlois PH, Shaw GM, Reefhuis J, Romitti PA, Feldkamp ML, Nembhard WN, Desrosiers TA, Browne ML, Stingone JA. Modeling complex effects of exposure to particulate matter and extreme heat during pregnancy on congenital heart defects: A U.S. population-based case-control study in the National Birth Defects Prevention Study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152150. [PMID: 34864029 PMCID: PMC8758551 DOI: 10.1016/j.scitotenv.2021.152150] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND/OBJECTIVE Research suggests gestational exposure to particulate matter ≤2.5 μm (PM2.5) and extreme heat may independently increase risk of birth defects. We investigated whether duration of gestational extreme heat exposure modifies associations between PM2.5 exposure and specific congenital heart defects (CHDs). We also explored nonlinear exposure-outcome relationships. METHODS We identified CHD case children (n = 2824) and non-malformed live-birth control children (n = 4033) from pregnancies ending between 1999 and 2007 in the National Birth Defects Prevention Study, a U.S. population-based multicenter case-control study. We assigned mothers 6-week averages of PM2.5 exposure during the cardiac critical period (postconceptional weeks 3-8) using the closest monitor within 50 km of maternal residence. We assigned a count of extreme heat days (EHDs, days above the 90th percentile of daily maximum temperature for year, season, and weather station) during this period using the closest weather station. Using generalized additive models, we explored logit-nonlinear exposure-outcome relationships, concluding logistic models were reasonable. We estimated joint effects of PM2.5 and EHDs on six CHDs using logistic regression models adjusted for mean dewpoint and maternal age, education, and race/ethnicity. We assessed multiplicative and additive effect modification. RESULTS Conditional on the highest observed EHD count (15) and at least one critical period day during spring/summer, each 5 μg/m3 increase in average PM2.5 exposure was significantly associated with perimembranous ventricular septal defects (VSDpm; OR: 1.54 [95% CI: 1.01, 2.41]). High EHD counts (8+) in the same population were positively, but non-significantly, associated with both overall septal defects and VSDpm. Null or inverse associations were observed for lower EHD counts. Multiplicative and additive effect modification estimates were consistently positive in all septal models. CONCLUSIONS Results provide limited evidence that duration of extreme heat exposure modifies the PM2.5-septal defects relationship. Future research with enhanced exposure assessment and modeling techniques could clarify these relationships.
Collapse
Affiliation(s)
- Will Simmons
- Department of Epidemiology, Columbia University, 722 West 168(th) Street, NY, New York 10032, USA
| | - Shao Lin
- Department of Epidemiology and Biostatistics, University at Albany, 1 University Place, Rensselaer, NY 12144, USA; Department of Environmental Health Sciences, University at Albany, 1 University Place, Rensselaer, NY, 12144, USA
| | - Thomas J Luben
- Office of Research and Development, U.S. Environmental Protection Agency, 109 T.W. Alexander Drive, RTP, NC 27711, USA
| | - Scott C Sheridan
- Department of Geography, Kent State University, 325 S. Lincoln Street, Kent, OH 44242, USA
| | - Peter H Langlois
- Department of Epidemiology, Human Genetics, and Environmental Science, University of Texas School of Public Health, 1616 Guadalupe Street, Austin, TX 78701, USA
| | - Gary M Shaw
- Stanford School of Medicine, 453 Quarry Road, Stanford, CA 94305, USA
| | - Jennita Reefhuis
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA
| | - Paul A Romitti
- Department of Epidemiology, The University of Iowa, 145 N. Riverside Drive, Iowa City, IA 52242, USA
| | - Marcia L Feldkamp
- Department of Pediatrics, University of Utah School of Medicine, 295 Chipeta Way, Salt Lake City, UT 84108, USA
| | - Wendy N Nembhard
- Departments of Pediatrics and Epidemiology, University of Arkansas for Medical Sciences, 4301 W Markham Street, Little Rock, AR 72205, USA
| | - Tania A Desrosiers
- Department of Epidemiology, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC 27599, USA
| | - Marilyn L Browne
- Department of Epidemiology and Biostatistics, University at Albany, 1 University Place, Rensselaer, NY 12144, USA; Birth Defects Registry, New York State Department of Health, Corning Tower, Empire State Plaza, Albany, NY 12237, USA
| | - Jeanette A Stingone
- Department of Epidemiology, Columbia University, 722 West 168(th) Street, NY, New York 10032, USA.
| |
Collapse
|
23
|
Relationship Between Environmental Air Quality and Congenital Heart Defects. Nurs Res 2022; 71:266-274. [PMID: 35759718 PMCID: PMC9245123 DOI: 10.1097/nnr.0000000000000590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Congenital heart defects (CHDs) affect 40,000 U.S. infants annually. One fourth of these infants have a critical CHD, requiring intervention within the first year of life for survival. Over 80% of CHDs have an unknown etiology. Fine particulate matter ≤2.5 (PM2.5) and ozone (O3) may be air pollutants associated with CHD. OBJECTIVES The purpose of this study was to explore relationships between first-trimester maternal exposure to air pollutants PM2.5 and O3 and a critical CHD diagnosis. METHODS A retrospective cohort study with nested case controls was conducted using data from January 1, 2014, to December 31, 2016, and consisted of 199 infants with a diagnosed critical CHD and 550 controls. Air pollution data were obtained from the U.S. Environmental Protection Agency air monitors. Geographic information system software was used to geocode monitoring stations and infant residential locations. Data analysis included frequencies, chi-square, independent t-test analysis, and binary logistic regression for two time periods: the entire first trimester (Weeks 1-12) and the critical exposure window (Weeks 3-8 gestation). RESULTS Critical CHD odds were not significantly increased by exposure during the first trimester. However, weekly analyses revealed CHD odds were higher in Weeks 5 and 8 as PM2.5 increased and decreased in Week 11 with increased O3 exposure. DISCUSSION Our study shows no evidence to support the overall association between air pollutants PM2.5 and O3 and a critical CHD diagnosis. However, analyses by week suggested vulnerability in certain weeks of gestation and warrant additional surveillance and study.
Collapse
|
24
|
Zhu J, Zhao X, Yang M, Zheng B, Sun C, Zou X, Liu Z, Harada KH. Levels of urinary metabolites of benzene compounds, trichloroethylene, and polycyclic aromatic hydrocarbons and their correlations with socioeconomic, demographic, dietary factors among pregnant women in six cities of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6278-6293. [PMID: 34453244 DOI: 10.1007/s11356-021-16030-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Maternal exposure to benzene and related compounds, trichloroethylene, and polycyclic aromatic hydrocarbons has been suggested as risk factors for reproductive and developmental problem. In different countries and groups, there are differences in socioeconomic circumstances, consumer products, dietary habits, lifestyles, and so on, resulting in different exposure risks from these chemicals. This study investigated the correlation between their metabolite concentrations and socioeconomic, demographic, and dietary factors to explore the possible exposure source of the concerned pollutants in pregnant women. We conducted biological monitoring to assess the exposure of these chemicals using urine samples from 590 to 639 pregnant women during 2nd or 3rd trimester of pregnancy in six cities of China. Socioeconomic and demographic characteristics and dietary habits were collected from questionnaires. The detection rate was over 74% of the urine samples for all metabolites. Compared with the Fourth National Report on Human Exposure to Environmental Chemical concentrations for females (FNRHEEC, the US Centers for Disease Control and Prevention), the metabolite concentrations of benzene compounds and trichloroethylene, excluding MA reported here, were higher. Principal component analysis results showed that SBMA and MHA could be proxy of the principal sources of metabolites for benzene compounds. The concentrations of SBMA and MA were higher in Fuzhou and Wuhan, respectively. The concentration of DCVMA was higher in Shenzhen, Xi'an, and Nanning, and the concentration of PGA was higher in Fuzhou, Wuhan, and Xi'an. Also, the 1-OHPG concentration in Wuhan is higher than that in Fuzhou and Shenzhen. Unhealthy dietary habits, using cosmetics and indoor exposure, contacting chemical solvent during pregnancy were associated with increased benzene compounds, trichloroethylene, and PAH exposure. There were significant positive associations between 1-OHPG level and maternal BMI, low education status, and cooking without a range hood. Pregnant women in China may be at a greater risk of exposure to most of the target compounds than US females, and their exposure levels varied in different regions. Some adverse environmental and behavioral factors may increase the exposure of environmental toxins, which can urge people to take measures to reduce the health risk to pregnant women during pregnancy.
Collapse
Affiliation(s)
- Jing Zhu
- Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- College of Electronics and Information Engineering, Sichuan University, Chengdu, China
| | - Xuan Zhao
- Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Mi Yang
- Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Bo Zheng
- Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chengjun Sun
- Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xiaoli Zou
- Sanitary Technology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
| | - Zhen Liu
- National Center for Birth Defect Monitoring, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
25
|
Wang Y, Yu Z, Fan Z, Fang Y, He L, Peng M, Chen Y, Hu Z, Zhao K, Zhang H, Liu C. Cardiac developmental toxicity and transcriptome analyses of zebrafish (Danio rerio) embryos exposed to Mancozeb. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112798. [PMID: 34592528 DOI: 10.1016/j.ecoenv.2021.112798] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Mancozeb (MZ), an antibacterial pesticide, has been linked to reproductive toxicity, neurotoxicity, and endocrine disruption. However, whether MZ has cardiactoxicity is unclear. In this study, the cardiotoxic effects of exposure to environment-related MZ concentrations ranging from 1.88 μM to 7.52 μM were evaluated at the larval stage of zebrafish. Transcriptome sequencing predicted the mechanism of MZ-induced cardiac developmental toxicity in zebrafish by enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO). Consistent with morphological changes, the osm, pfkfb3, foxh1, stc1, and nrarpb genes may effect normal development of zebrafish heart by activating NOTCH signaling pathways, resulting in pericardial edema, myocardial fibrosis, and congestion in the heart area. Moreover, differential gene expression analysis indicated that cyp-related genes (cyp1c2 and cyp3c3) were significantly upregulated after MZ treatment, which may be related to apoptosis of myocardial cells. These results were verified by real-time quantitative RT-qPCR and acridine orange staining. Our findings suggest that MZ-mediated cardiotoxic development of zebrafish larvae may be related to the activation of Notch and apoptosis-related signaling pathways.
Collapse
Affiliation(s)
- Yongfeng Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Zhiquan Yu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Zunpan Fan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Yiwei Fang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Liting He
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Meili Peng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Yuanyao Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Zhiyong Hu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430030, PR China.
| |
Collapse
|
26
|
Maternal air pollution exposure and neonatal congenital heart disease: A multi-city cross-sectional study in eastern China. Int J Hyg Environ Health 2021; 240:113898. [PMID: 34875582 DOI: 10.1016/j.ijheh.2021.113898] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To examine the association between air pollution and neonatal congenital heart disease (CHD), and evaluate the cumulative burden of CHD attributed to above certain level for ambient air pollution exposure. METHODS We identified newborns who were diagnosed as CHD by echocardiography in Network Platform for Congenital Heart Disease (NPCHD) from January 2019 to December 2020 in 11 cities eastern China. The exposure lag response relationship between air pollutants (PM2.5, PM10, SO2, NO2, CO, and O3) concentration and CHDs was calculated by the distributed lag nonlinear model (DLNM). We further calculated the cumulative risk ratios (CRRs) of each air pollutant above reference concentrations on CHDs. RESULTS A total of 5904 CHDs from 983, 523 newborns were enrolled in this study. A 10 μg/m3 increase in PM2.5, PM10, SO2, NO2, CO and O3 exposure was associated with an increased risk of higher CHD incident RR = 1.025, 95% CI: 1.016-1.038 for PM2.5 in the third trimester, RR = 1.001, 95% CI: 1.000-1.002 for PM10 in the third trimester, 1.020, 95%CI: 1.004-1.036 for NO2 in the third trimester, RR = 1.001, 95%CI: 1.000-1.002 for O3 in the first trimester, all P value < 0.05). Cumulative effect curves of PM2.5, PM10, SO2, NO2, CO, and O3 were observed as sub-linear with a maximum of 1.876 (95%CI:1.220-2.886), 1.973 (95%CI:1.477,2.637), 2.169 (95%CI:1.347-3.493), 2.902 (95%CI:1.859-4.530), 1.398 (95%CI:1.080-1.809), 2.691 (95%CI:1.705-4.248), respectively. Significant associations were observed for air pollutants and CHDs in cities with higher average education years and babies concepted in cold season. CONCLUSIONS Our findings could provide growing evidence regarding the adverse health effects of air pollution on CHD, thereby strengthening the hypothesis that air pollutants have harmful impacts on cardiac development. Further studies are needed to verify the associations.
Collapse
|
27
|
Zhang L, Ou C, Magana-Arachchi D, Vithanage M, Vanka KS, Palanisami T, Masakorala K, Wijesekara H, Yan Y, Bolan N, Kirkham MB. Indoor Particulate Matter in Urban Households: Sources, Pathways, Characteristics, Health Effects, and Exposure Mitigation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11055. [PMID: 34769574 PMCID: PMC8582694 DOI: 10.3390/ijerph182111055] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023]
Abstract
Particulate matter (PM) is a complex mixture of solid particles and liquid droplets suspended in the air with varying size, shape, and chemical composition which intensifies significant concern due to severe health effects. Based on the well-established human health effects of outdoor PM, health-based standards for outdoor air have been promoted (e.g., the National Ambient Air Quality Standards formulated by the U.S.). Due to the exchange of indoor and outdoor air, the chemical composition of indoor particulate matter is related to the sources and components of outdoor PM. However, PM in the indoor environment has the potential to exceed outdoor PM levels. Indoor PM includes particles of outdoor origin that drift indoors and particles that originate from indoor activities, which include cooking, fireplaces, smoking, fuel combustion for heating, human activities, and burning incense. Indoor PM can be enriched with inorganic and organic contaminants, including toxic heavy metals and carcinogenic volatile organic compounds. As a potential health hazard, indoor exposure to PM has received increased attention in recent years because people spend most of their time indoors. In addition, as the quantity, quality, and scope of the research have expanded, it is necessary to conduct a systematic review of indoor PM. This review discusses the sources, pathways, characteristics, health effects, and exposure mitigation of indoor PM. Practical solutions and steps to reduce exposure to indoor PM are also discussed.
Collapse
Affiliation(s)
- Ling Zhang
- Nantong Key Laboratory of Intelligent and New Energy Materials, Nantong University, Nantong 226019, China;
- School of Health, Jiangsu Food & Pharmaceutical Science College, Huai’an 223003, China
| | - Changjin Ou
- Nantong Key Laboratory of Intelligent and New Energy Materials, Nantong University, Nantong 226019, China;
| | - Dhammika Magana-Arachchi
- Molecular Microbiology and Human Diseases Project, National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka; (D.M.-A.); (M.V.)
| | - Meththika Vithanage
- Molecular Microbiology and Human Diseases Project, National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka; (D.M.-A.); (M.V.)
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Kanth Swaroop Vanka
- Priority Research Centre for Healthy Lungs, Faculty of Health and Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Thava Palanisami
- Global Innovative Centre for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Kanaji Masakorala
- Department of Botany, Faculty of Science, University of Ruhuna, Matara 80000, Sri Lanka;
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya 70140, Sri Lanka;
| | - Yubo Yan
- Jiangsu Engineering Laboratory for Environment Functional Materials, Huaiyin Normal University, Huai’an 223300, China
| | - Nanthi Bolan
- School of Agriculture and Environment, Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia;
| | - M. B. Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
28
|
Jiang W, Xie W, Ni B, Zhou H, Liu Z, Li X. First trimester exposure to ambient gaseous air pollutants and risk of orofacial clefts: a case-control study in Changsha, China. BMC Oral Health 2021; 21:530. [PMID: 34654409 PMCID: PMC8518237 DOI: 10.1186/s12903-021-01876-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Background A growing body of studies have investigated the association between air pollution exposure during early pregnancy and the risk of orofacial clefts, but these studies put more emphasis on particulate matter and reported inconsistent results, while research on the independent effects of gaseous air pollutants on orofacial clefts has been quite inadequate, especially in China. Methods A case–control study was conducted in Changsha, China from 2015 to 2018. A total of 446 cases and 4460 controls were included in the study. Daily concentrations of CO, NO2, SO2, O3, PM2.5 and PM10 during the first trimester of pregnancy were assigned to each subject using the nearest monitoring station method. Multivariate logistic regression models were applied to evaluate the associations of monthly average exposure to gaseous air pollutants with orofacial clefts and its subtypes before and after adjusting for particulate matter. Variance inflation factors (VIFs) were used to determine if the effects of gaseous air pollutants could be independent of particulate matter. Results Increase in CO, NO2 and SO2 significantly increased the risk of cleft lip with or without cleft palate (CL/P) in all months during the first trimester of pregnancy, with aORs ranging from 1.39 to 1.48, from 1.35 to 1.61 and from 1.22 to 1.35, respectively. The risk of cleft palate only (CPO) increased with increasing NO2 exposure levels in the first trimester of pregnancy, with aORs ranging from 1.60 to 1.66. These effects sustained and even exacerbated after adjusting for particulate matter. No significant effect of O3 was observed. Conclusions Our study suggested that maternal exposure to CO, NO2, and SO2 during the first trimester of pregnancy might contribute to the development of orofacial clefts, and the associations were potentially independent of particulate matter. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01876-7.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya Road, Kaifu District, Changsha, 410078, China
| | - Wanqin Xie
- Maternal and Child Health Care Hospital of Hunan Province, Changsha, China
| | - Bin Ni
- Maternal and Child Health Care Hospital of Hunan Province, Changsha, China
| | - Haiyan Zhou
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya Road, Kaifu District, Changsha, 410078, China
| | - Zhiyu Liu
- Maternal and Child Health Care Hospital of Hunan Province, Changsha, China.
| | - Xingli Li
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Xiangya Road, Kaifu District, Changsha, 410078, China.
| |
Collapse
|
29
|
Yu G, Chen Y, Tang J, Lin Z, Zheng F, Zheng C, Zhou J, Su Q, Wu S, Li H. Meta-analyses of maternal exposure to atmospheric particulate matter and risk of congenital anomalies in offspring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55869-55887. [PMID: 34491504 DOI: 10.1007/s11356-021-16200-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Congenital anomalies are the main causes of infant death and disability. Previous studies have suggested that maternal exposure to particulate matter is related to congenital malformation. However, the conclusions of this study remain controversial. Hence, meta-analyses were performed to assess the relationship between maternal exposure to particulate matter and the risk of congenital anomalies. The Medline, Embase, and Web of Science databases were systemically searched from inception until August 2020 to find articles related to birth defects and particulate matter. The pooled risk estimated for the combination of pollution outcomes was calculated for each study by performing fixed effects or random effects models. The existence of heterogeneity and publication bias in relevant studies was also examined. Thirty studies were included in the analysis. A statistically increased summary risk valuation was found. PM10 exposure was associated with an increased risk of congenital heart disease, neural tube defects, and cleft lip with or without cleft palate (OR per 10 μg/m3 = 1.05, 95% CI, 1.03-1.07; OR per 10 μg/m3 = 1.04, 95% CI, 1.01-1.06; OR per 10 μg/m3 = 1.03, 95% CI, 1.01-1.06). Maternal exposure to particulate matter might be associated with an increased risk of congenital anomalies. Our results indicate the dangers of particulate matter exposure on fetal development and the importance of protection against exposure to such particles during pregnancy. The schematic representation of the association between maternal exposure to PM2.5/PM10 and congenital anomalies in offspring, and geographic distribution of the included reports in the meta-analyses.
Collapse
Affiliation(s)
- Guangxia Yu
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yao Chen
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Jianping Tang
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Zhifeng Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Fuli Zheng
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Chunyan Zheng
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Jinfu Zhou
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Qianqian Su
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Siying Wu
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China.
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
| | - Huangyuan Li
- Fujian Key Lab of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou, China.
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, 350122, China.
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
30
|
Yang BY, Qu Y, Guo Y, Markevych I, Heinrich J, Bloom MS, Bai Z, Knibbs LC, Li S, Chen G, Jalaludin B, Morawska L, Gao M, Han B, Yu Y, Liu XX, Ou Y, Mai J, Gao X, Wu Y, Nie Z, Zeng XW, Hu LW, Shen X, Zhou Y, Lin S, Liu X, Dong GH. Maternal exposure to ambient air pollution and congenital heart defects in China. ENVIRONMENT INTERNATIONAL 2021; 153:106548. [PMID: 33838617 DOI: 10.1016/j.envint.2021.106548] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 05/21/2023]
Abstract
BACKGROUND Evidence of maternal exposure to ambient air pollution on congenital heart defects (CHD) has been mixed and are still relatively limited in developing countries. We aimed to investigate the association between maternal exposure to air pollution and CHD in China. METHOD This longitudinal, population-based, case-control study consecutively recruited fetuses with CHD and healthy volunteers from 21 cities, Southern China, between January 2006 and December 2016. Residential address at delivery was linked to random forests models to estimate maternal exposure to particulate matter with an aerodynamic diameter of ≤ 1 µm (PM1), ≤2.5 µm, and ≤10 µm as well as nitrogen dioxides, in three trimesters. The CHD cases were evaluated by obstetrician, pediatrician, or cardiologist, and confirmed by cardia ultrasound. The CHD subtypes were coded using the International Classification Diseases. Adjusted logistic regression models were used to assess the associations between air pollutants and CHD and its subtypes. RESULTS A total of 7055 isolated CHD and 6423 controls were included in the current analysis. Maternal air pollution exposures were consistently higher among cases than those among controls. Logistic regression analyses showed that maternal exposure to all air pollutants during the first trimester was associated with an increased odds of CHD (e.g., an interquartile range [13.3 µg/m3] increase in PM1 was associated with 1.09-fold ([95% confidence interval, 1.01-1.18]) greater odds of CHD). No significant associations were observed for maternal air pollution exposures during the second trimester and the third trimester. The pattern of the associations between air pollutants and different CHD subtypes was mixed. CONCLUSIONS Maternal exposure to greater levels of air pollutants during the pregnancy, especially the first trimester, is associated with higher odds of CHD in offspring. Further longitudinal well-designed studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yanji Qu
- Department of Epidemiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Iana Markevych
- Institute of Psychology, Jagiellonian University, Poland
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstraße 1, 80336 Munich, Germany; Comprehensive Pneumology Center Munich, German Center for Lung Research, Ziemssenstraße 1, 80336 Munich, Germany
| | - Michael S Bloom
- Departments of Environmental Health Sciences and Epidemiology and Biostatics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Luke C Knibbs
- School of Public Health, The University of Queensland, Herston, Queensland 4006, Australia
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Bin Jalaludin
- Centre for Air Quality and Health Research and Evaluation, Glebe, NSW 2037, Australia; Population Health, South Western Sydney Local Health District, Liverpool, NSW 2170, Australia; Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; School of Public Health and Community Medicine, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, Queensland 4001, Australia
| | - Meng Gao
- Department of Geography, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, China
| | - Xiao-Xuan Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yanqiu Ou
- Department of Epidemiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, China
| | - Jinzhuang Mai
- Department of Epidemiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, China
| | - Xiangmin Gao
- Department of Epidemiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, China
| | - Yong Wu
- Department of Epidemiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, China
| | - Zhiqiang Nie
- Department of Epidemiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xubo Shen
- School of Public Health, Zunyi Medical University, Zunyi 563060, China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi 563060, China
| | - Shao Lin
- Departments of Environmental Health Sciences and Epidemiology and Biostatics, University at Albany, State University of New York, Rensselaer, NY 12144, USA.
| | - Xiaoqing Liu
- Department of Epidemiology, Guangdong Cardiovascular Institute, Guangdong General Hospital, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
31
|
Willis MD, Hill EL, Boslett A, Kile ML, Carozza SE, Hystad P. Associations between Residential Proximity to Oil and Gas Drilling and Term Birth Weight and Small-for-Gestational-Age Infants in Texas: A Difference-in-Differences Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:77002. [PMID: 34287013 PMCID: PMC8293911 DOI: 10.1289/ehp7678] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND Oil and natural gas extraction may produce environmental pollution at levels that affect reproductive health of nearby populations. Available studies have primarily focused on unconventional gas drilling and have not accounted for local population changes that can coincide with drilling activity. OBJECTIVE Our study sought to examine associations between residential proximity to oil and gas drilling and adverse term birth outcomes using a difference-in-differences study design. METHODS We created a retrospective population-based term birth cohort in Texas between 1996 and 2009 composed of mother-infant dyads (n=2,598,025) living <10km from an oil or gas site. We implemented a difference-in-differences approach to estimate associations between drilling activities and infant health: term birth weight and term small for gestational age (SGA). Using linear and logistic regression, we modeled interactions between births before (unexposed) or during (exposed) drilling activity and residential proximity near (0-1, 1-2, or 2-3km) or far (3-10km) from an active or future drilling site, adjusting for individual- and neighborhood-level characteristics. RESULTS The adjusted mean difference in term birth weight for mothers living 0-1 vs. 3-10km from a current or future drilling site was -7.3g [95% confidence interval (CI): -11.6, -3.0] for births during active vs. future drilling. The corresponding adjusted odds ratio for SGA was 1.02 (95% CI: 0.98, 1.06). Negative associations with term birth weight were observed for the 1-2 and 2-3km near groups, and no consistent differences were identified by type of drilling activity. Larger, though imprecise, adverse associations were found for infants born to Hispanic women, women with the lowest educational attainment, and women living in cities. CONCLUSIONS Residing near oil and gas drilling sites during pregnancy was associated with a small reduction in term birth weight but not SGA, with some evidence of environmental injustices. Additional work is needed to investigate specific drilling-related exposures that might explain these associations. https://doi.org/10.1289/EHP7678.
Collapse
Affiliation(s)
- Mary D Willis
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
- Department of Epidemiology, School of Public Health, Boston University, Boston, Massachusetts, USA
| | - Elaine L Hill
- Department of Public Health Sciences, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Andrew Boslett
- Department of Public Health Sciences, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
- Rochester Data Science Consortium, Rochester, New York, USA
| | - Molly L Kile
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Susan E Carozza
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Perry Hystad
- School of Biological and Population Health Sciences, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
32
|
Zhang H, Zhang X, Wang Q, Xu Y, Feng Y, Yu Z, Huang C. Ambient air pollution and stillbirth: An updated systematic review and meta-analysis of epidemiological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 278:116752. [PMID: 33689950 DOI: 10.1016/j.envpol.2021.116752] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 05/22/2023]
Abstract
Stillbirth has a great impact on contemporary and future generations. Increasing evidence show that ambient air pollution exposure is associated with stillbirth. However, previous studies showed inconsistent findings. To clarify the effect of maternal air pollution exposure on stillbirth, we searched for studies examining the associations between air pollutants, including particulate matter (diameter ≤ 2.5 μm [PM2.5] and ≤10 μm [PM10]) and gaseous pollutants (sulfur dioxide [SO2], nitrogen dioxide [NO2], carbon monoxide [CO] and ozone [O3]), and stillbirth published in PubMed, Web of Science, Embase and Cochrane Library until December 11, 2020. The pooled effect estimates and 95% confidence intervals (CI) were calculated, and the heterogeneity was evaluated using Cochran's Q test and I2 statistic. Publication bias was assessed using funnel plots and Egger's tests. Of 7546 records, 15 eligible studies were included in this review. Results of long-term exposure showed that maternal third trimester PM2.5 and CO exposure (per 10 μg/m3 increment) increased the odds of stillbirth, with estimated odds ratios (ORs) of 1.094 (95% CI: 1.008-1.180) and 1.0009 (95% CI: 1.0001-1.0017), respectively. Entire pregnancy exposure to PM2.5 was also associated with stillbirth (OR: 1.103, 95% CI: 1.074-1.131). A 10 μg/m3 increment in O3 in the first trimester was associated with stillbirth, and the estimated OR was 1.028 (95% CI: 1.001-1.055). Short-term exposure (on lag day 4) to O3 was also associated with stillbirth (OR: 1.002, 95% CI: 1.001-1.004). PM10, SO2 and NO2 exposure had no significant effects on the incidence of stillbirth. Additional well-designed cohort studies and investigations regarding potential biological mechanisms are warranted to elaborate the suggestive association that may help improve intergenerational inequality.
Collapse
Affiliation(s)
- Huanhuan Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, China; Shanghai Typhoon Institute, China Meteorological Administration, Shanghai, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China
| | - Xiaoan Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiong Wang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuanzhi Xu
- Department of Clinical Medicine, Medical School of Zhengzhou University, Zhengzhou, China
| | - Yang Feng
- School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zengli Yu
- School of Public Health, Zhengzhou University, Zhengzhou, China.
| | - Cunrui Huang
- School of Public Health, Zhengzhou University, Zhengzhou, China; Shanghai Typhoon Institute, China Meteorological Administration, Shanghai, China; Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, China; School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Ma Z, Cao X, Chang Y, Li W, Chen X, Tang NJ. Association between gestational exposure and risk of congenital heart disease: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2021; 197:111014. [PMID: 33716027 DOI: 10.1016/j.envres.2021.111014] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 05/21/2023]
Abstract
Congenital heart disease (CHD) is the most common congenital anomaly and one of the leading causes of newborn death. Few studies analyze multiple ambient air pollutants and different congenital heart disease subtypes at the same time. We conducted a meta-analysis to explore the association between gestational air pollution exposure and CHD subtypes. We searched PubMed, Embase, Web of Science from inception till July 31, 2020. Newcastle Ottawa Scale (NOS) was used to evaluate the quality of the literature. Funnel plots and Egger's regression were used to estimate publication bias. Heterogeneity was evaluated by the chi-square test and the coefficient of inconsistency I2 in this study. Finally, we performed a subgroup analysis to find reasons for heterogeneity. In the preliminary analysis, the result shows that the association between air pollutants and congenital heart disease was not statistically significant, except for CO and SO2. There is a positive association between air pollutants and ventricular septal defect (VSD) in our subtype analysis, the OR (95%CI) for PM10, PM2.5, and O3 was 1.057(1.005-1.109), 1.208(1.080-1.337), and 1.205(1.101-1.310), respectively. In addition, we also observed a negative association between SO2 and atrial septal defect (ASD) (OR: 0.817, 95%CI: 0.743-0.890) in subgroup analysis. The source of heterogeneity in our study mainly included study area and exposure time. These findings have implications for researchers to further study the relationship between air pollution and congenital heart disease.
Collapse
Affiliation(s)
- Zhao Ma
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, No. 22 Meteorological Station Road, Heping District, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Xue Cao
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, No. 22 Meteorological Station Road, Heping District, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China
| | - Ying Chang
- Tianjin Central Hospital of Gynecology Obstetrics/Maternity Hospital of Nankai University, No.156 Sanma Road, Nankai District, Tianjin, 300100, China; Prenatal Diagnosis Center / Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, China
| | - Wen Li
- Tianjin Central Hospital of Gynecology Obstetrics/Maternity Hospital of Nankai University, No.156 Sanma Road, Nankai District, Tianjin, 300100, China; Prenatal Diagnosis Center / Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, China
| | - Xu Chen
- Tianjin Central Hospital of Gynecology Obstetrics/Maternity Hospital of Nankai University, No.156 Sanma Road, Nankai District, Tianjin, 300100, China; Prenatal Diagnosis Center / Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, 300100, China.
| | - Nai Jun Tang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, No. 22 Meteorological Station Road, Heping District, Tianjin, 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin, 300070, China; Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin, 300070, China.
| |
Collapse
|
34
|
Tang IW, Langlois PH, Vieira VM. Birth defects and unconventional natural gas developments in Texas, 1999-2011. ENVIRONMENTAL RESEARCH 2021; 194:110511. [PMID: 33245885 DOI: 10.1016/j.envres.2020.110511] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 06/11/2023]
Abstract
Unconventional natural gas developments (UNGD) may release air and water pollutants into the environment, potentially increasing the risk of birth defects. We conducted a case-control study evaluating 52,955 cases with birth defects and 642,399 controls born between 1999 and 2011 to investigate the relationship between UNGD exposure and the risk of gastroschisis, congenital heart defects (CHD), neural tube defects (NTDs), and orofacial clefts in Texas. We calculated UNGD densities (number of UNGDs per area) within 1, 3, and 7.5 km of maternal address at birth and categorized exposure by density tertiles. For CHD subtypes with large case numbers, we also performed time-stratified analyses to examine temporal trends. We calculated adjusted odds ratios (aOR) and 95% confidence intervals (CI) for the association with UNGD exposure, accounting for maternal characteristics and neighborhood factors. We also included a bivariable smooth of geocoded maternal location in an additive model to account for unmeasured spatially varying risk factors. Positive associations were observed between the highest tertile of UNGD density within 1 km of maternal address and risk of anencephaly (aOR: 2.44, 95% CI: 1.55, 3.86), spina bifida (aOR: 2.09, 95% CI: 1.47, 2.99), gastroschisis among older mothers (aOR: 3.19, 95% CI: 1.77, 5.73), aortic valve stenosis (aOR: 1.90, 95% CI: 1.33, 2.71), hypoplastic left heart syndrome (aOR: 2.00, 95% CI: 1.39, 2.86), and pulmonary valve atresia or stenosis (aOR: 1.36, 95% CI: 1.10, 1.66). For CHD subtypes, results did not differ substantially by distance from maternal address or when residual confounding was considered, except for atrial septal defects. We did not observe associations with orofacial clefts. Our results suggest that UNGDs were associated with some CHDs and possibly NTDs. In addition, we identified temporal trends and observed presence of spatial residual confounding for some CHDs.
Collapse
Affiliation(s)
- Ian W Tang
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, USA.
| | - Peter H Langlois
- Division of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas School of Public Health Austin Regional Campus, Austin, TX, USA
| | - Verónica M Vieira
- Department of Environmental and Occupational Health, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, Irvine, USA
| |
Collapse
|
35
|
Zhang Q, Sun S, Sui X, Ding L, Yang M, Li C, Zhang C, Zhang X, Hao J, Xu Y, Lin S, Ding R, Cao J. Associations between weekly air pollution exposure and congenital heart disease. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143821. [PMID: 33248761 DOI: 10.1016/j.scitotenv.2020.143821] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The topic of congenital heart diseases (CHDs) has attracted more and more attentions. Accumulating evidence suggests that exposure to air pollutants during pregnancy is associated with CHDs, yet the results are inconsistent and study about weekly exposure is few. Our study evaluated the association between weekly air pollution and CHDs in Hefei, China. MATERIALS AND METHODS Daily CHDs admission data were obtained from eight hospitals in Hefei from October 2015 to September 2017. Meteorological data and air quality were collected from China Meteorological Data Network. Distributed lag nonlinear model (DLNM) considering both the lag effect of exposure factors and the nonlinear relationship of exposure-reaction was used to assess the effect of weekly air pollutants exposure on CHDs admission. RESULTS During the study period, totally 47,046 cases of perinatal infants were recruited, and the incidence of CHDs was 9.71 per thousand. The findings showed PM2.5, PM10, SO2 and NO2 significantly increased the risk of CHDs. Each 10 μg/m3 increase in PM2.5 during gestational weeks 20-26 increased the risk of CHDs. The susceptibility windows of PM10 (weeks 0-2 and weeks 25-29 of pregnancy), SO2 (weeks 8-16 and weeks 29-38) and NO2 (week 40), while the strongest effects of these 4 pollutants on CHDs were observed in week 22 (RR = 1.034, 95% CI: 1.007-1.062), week 0 (RR = 1.081, 95% CI: 1.02-1.146), week 37 (RR = 1.528, 95% CI: 1.085-2.153) and week 40 (RR = 1.171, 95% CI: 1.006-1.364), respectively. CONCLUSIONS Air pollutants (SO2, NO2, PM10, and PM2.5) exposure could increase the risk of CHDs, while the most crucial susceptibility windows for the exposure were mainly in the second and third trimesters. Boys seemed to be more sensitive to air pollution. Our study contributes to the knowledge of the association between maternal exposure to air pollution and CHDs, but the associations need to be verified by further studies.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Shu Sun
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Xinmiao Sui
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Liu Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Mei Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Changlian Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Chao Zhang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
| | - Xiujun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
| | - Jiahu Hao
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
| | - Yuechen Xu
- Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Shilei Lin
- Department of Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Rui Ding
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Jiyu Cao
- Department of Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
36
|
Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Cheng S, Delling FN, Elkind MSV, Evenson KR, Ferguson JF, Gupta DK, Khan SS, Kissela BM, Knutson KL, Lee CD, Lewis TT, Liu J, Loop MS, Lutsey PL, Ma J, Mackey J, Martin SS, Matchar DB, Mussolino ME, Navaneethan SD, Perak AM, Roth GA, Samad Z, Satou GM, Schroeder EB, Shah SH, Shay CM, Stokes A, VanWagner LB, Wang NY, Tsao CW. Heart Disease and Stroke Statistics-2021 Update: A Report From the American Heart Association. Circulation 2021; 143:e254-e743. [PMID: 33501848 DOI: 10.1161/cir.0000000000000950] [Citation(s) in RCA: 3360] [Impact Index Per Article: 840.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2021 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population, an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, the global burden of cardiovascular disease, and further evidence-based approaches to changing behaviors related to cardiovascular disease. RESULTS Each of the 27 chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policy makers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
37
|
Lee KS, Lim YH, Choi YJ, Kim S, Bae HJ, Han C, Lee YA, Hong YC. Prenatal exposure to traffic-related air pollution and risk of congenital diseases in South Korea. ENVIRONMENTAL RESEARCH 2020; 191:110060. [PMID: 32805245 DOI: 10.1016/j.envres.2020.110060] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/02/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Previous studies have suggested links between exposure to ambient air pollutants and increased risk of congenital heart defects. However, few studies have investigated the association between other congenital diseases and traffic-related air pollution. In this study, we assessed the relationship between prenatal exposure to fine particulate matter (PM2.5) and nitrogen dioxide (NO2) with congenital diseases in South Korea. METHODS Patients with one or more congenital diseases and a control group of patients with non-infective gastroenteritis and colitis with a case:control ratio of 1:3 were obtained from the National Health Insurance Service data for 2008-2013 in South Korea. We estimated the associations of PM2.5 and NO2 exposures with congenital diseases using generalized estimation equations after controlling for covariates. RESULTS Maternal PM2.5 exposure during the first and second trimester showed positive associations with overall congenital diseases, with changes of 14.7% (95% confidence intervals (CI), 9.3%, 20.3%) and 16.2% (95% CI, 11.0%, 21.7%), respectively, per 11.1 μg/m3 and 10.2 μg/m3 increase of PM2.5 interquartile range (IQR). Similarly, NO2 exposure during the first and second trimester was associated with increased numbers of overall congenital anomalies, with 8.2% (95% CI, 4.2%, 12.3%) and 15.6% (95% CI, 9.3%, 22.2%) more cases, respectively, per 10.6 ppb increase of NO2. We found that maternal PM2.5 exposure during the first and second trimesters of pregnancy was significantly associated with increased risk of specific congenital diseases, including subtypes affecting the circulatory, genitourinary, and musculoskeletal system. However, no significant associations were observed during the third trimester. Maternal NO2 exposure across the entire pregnancy was associated with malformations of the musculoskeletal system. CONCLUSIONS Our study identified significant links between in utero exposure to PM2.5 and NO2 and certain congenital diseases, and suggests that stricter controls on PM2.5 and NO2 concentrations are required.
Collapse
Affiliation(s)
- Kyung-Shin Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, 1014, Denmark; Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, 03080, South Korea.
| | - Yoon-Jung Choi
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| | - Soontae Kim
- Department of Environmental and Safety Engineering, Ajou University, Suwon, 16499, South Korea.
| | - Hyun Joo Bae
- Korea Environment Institute, Sejong, 30147, South Korea.
| | - Changwoo Han
- Department of Preventive Medicine and Public Health Chungnam National University College of Medicine, Daejeon, 35015, South Korea.
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University Children's Hospital, Seoul, 03080, South Korea.
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, South Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul, 03080, South Korea; Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, 03080, South Korea.
| |
Collapse
|
38
|
Lastivka IV, Pishak VP, Ryznychuk МО, Khmara ТV. Risk factor analysis for congenital heart defects in children. REGULATORY MECHANISMS IN BIOSYSTEMS 2020. [DOI: 10.15421/022080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Congenital heart defects (CHDs) are the most common malformations, occurring in almost 1.0 in 100 births. We investigated an association between risk factors and CHDs, because epidemiological studies have reported conflicting results regarding risk factors and CHDs recently. The study of CHD frequency was conducted in Chernivtsi region (Northern Bukovina) on the basis of the medical genetic center. A retrospective method of research by studying registration genetic maps was used to analyze risk factors. 91 cards of infants suffering from CHD (47 boys and 44 girls) aged 0–1 living in the territory of Northern Bukovina were selected. In order to identify risk factors, 133 cards of healthy infants (77 boys and 56 girls) were used. The analysis of risk factors revealed that the female gender of a child is a risk factor for CHD development. The analysis of the ordinal number of pregnancy revealed that the second and the third pregnancies are probable risk factors for the development of this pathology. It was found in our study that folic acid intake during the first trimester prevented CHD development (OR 2.33). The study revealed that among stressful risk factors are: unplanned pregnancy (OR 3.13); out-of-wedlock pregnancy and stress during pregnancy. Maternal CHD increased the CHD development in offspring approximately by two times. Some factors, such as a woman doing hard physical work during pregnancy, having sedentary work during pregnancy, the mother being a housewife or having an incomplete secondary education (OR 3.61), the mother’s secondary education, the father’s incomplete secondary education (OR 18.62), the father serving in the army (OR 2.15) or being a student at the time of woman’s pregnancy (OR 2.97) were significant for CHD development in the fetal stage. A young age of the father (up to 43 years) was also considered as one of the risk factors. This article is expected to provide timely information on risk factors for CHD development to a wide range of medical staff, including pediatric and adult cardiologists, pediatricians, thoracic surgeons, obstetricians, gynecologists, medical geneticists, genetic counselors and other relevant clinicians.
Collapse
|
39
|
Hall KC, Robinson JC. Association between maternal exposure to pollutant particulate matter 2.5 and congenital heart defects: a systematic review. ACTA ACUST UNITED AC 2020; 17:1695-1716. [PMID: 31021973 DOI: 10.11124/jbisrir-2017-003881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE The objective of this review was to determine if there was an association between maternal exposure to pollutant particulate matter 2.5 during the first trimester of pregnancy and congenital heart defects within the first year of life. INTRODUCTION The environment is recognized as an important determinant of health for both the individual and population. Air pollution specifically is a major environmental risk factor impacting health with links to asthma, heart disease, obesity, and fetal developmental complications. Of the commonly monitored air pollutants, particulate matter 2.5 has associations with health, especially among vulnerable populations such as children and pregnant women. A congenital heart defect is a fetal complication that impacts 34.3 million infants globally, with more than 80% of the diagnoses having an unknown etiology. Although environmental risk factors such as air pollution are thought to be a risk factor in the diagnosis of a congenital heart defect, epidemiologic research evidence is limited. INCLUSION CRITERIA This review considered studies that evaluated maternal exposure to the air pollutant particulate matter 2.5 during the first trimester (weeks 1-12) of fetal development. The primary outcome was a diagnosis of a congenital heart defect in an infant within the first year of life. METHODS A three-step search strategy was utilized in this review and included 11 databases and two websites. Studies published from January 2002 to September 2018 were eligible for inclusion. Only papers published in English were included. Eligible studies underwent critical appraisal by two independent reviewers using standardized critical appraisal instruments from JBI. Quantitative data were extracted from the included studies independently by two reviewers. Odds ratios (ORs) and 95% confidence intervals (CIs) were extracted for the individual outcome measures, specifically atrial septal defect, ventricular septal defect, and tetralogy of fallot, respectively. The defects were identified and pooled, where possible, in statistical meta-analysis. Where statistical pooling was not possible, findings were reported narratively. RESULTS Five studies were identified that met the inclusion criteria, including three cohort and two case-control designs. Each individual study identified at least one statistically significant increase or inverse association between particulate matter 2.5 and a congenital heart defect. An increased risk was identified with more than seven isolated and two groupings of congenital heart defects. An inverse risk was identified with two isolated and one grouping of congenital heart defects. Meta-analysis results were: atrial septal defect, OR = 0.65 (95% CI, 0.37 to 1.15); ventricular septal defect, OR = 1.02 (95% CI, 075 to 1.37); and tetralogy of fallot, OR = 1.16 (95% CI, 0.78 to 1.73), indicating no statistically significant findings. CONCLUSION There was no significant evidence to support an association between air pollutant particulate matter 2.5 and a congenital heart defect in the first year of life. However, few studies met the rigorous inclusion criteria, and the studies that did had high heterogeneity, making it difficult to complete a meta-analysis with such a limited number of articles. Further research is needed to standardize the outcomes and pollutant monitoring methods, and provide comparable analysis results so that future synthesis of the literature can be conducted.
Collapse
Affiliation(s)
- Katie C Hall
- School of Nursing, University of Mississippi Medical Center, Jackson, USA.,Mississippi Centre for Evidence Based Practice: a Joanna Briggs Institute Centre of Excellence
| | - Jennifer C Robinson
- School of Nursing, University of Mississippi Medical Center, Jackson, USA.,Mississippi Centre for Evidence Based Practice: a Joanna Briggs Institute Centre of Excellence
| |
Collapse
|
40
|
Prenatal Fine Particulate Matter (PM 2.5) Exposure and Pregnancy Outcomes-Analysis of Term Pregnancies in Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17165820. [PMID: 32796752 PMCID: PMC7459454 DOI: 10.3390/ijerph17165820] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 02/03/2023]
Abstract
Air pollution is currently one of the greatest threats to global health. Polish cities are among the most heavily polluted in Europe. Due to air pollution 43,100 people die prematurely in Poland every year. However, these data do not take into account the health consequences of air pollution for unborn children. Thus, the aim of this study was to evaluate the effects of the fine particulate matter air pollution (less than 2.5 μm in diameter) on pregnancy outcomes. An analysis of pregnant women and their children was made using a questionnaire survey from a nationwide study conducted in 2017. Questionnaires from 1095 pregnant women and data from their medical records were collected. An analysis of air pollution in Poland was conducted using the air quality database maintained by the Chief Inspectorate for Environmental Protection in Poland. A higher concentration of PM2.5 was associated with a decrease in birth weight and a higher risk of low birthweight (i.e., <2500 g). We also observed lower APGAR scores. Thus, all possible efforts to reduce air pollution are critically needed.
Collapse
|
41
|
Hu CY, Huang K, Fang Y, Yang XJ, Ding K, Jiang W, Hua XG, Huang DY, Jiang ZX, Zhang XJ. Maternal air pollution exposure and congenital heart defects in offspring: A systematic review and meta-analysis. CHEMOSPHERE 2020; 253:126668. [PMID: 32278917 DOI: 10.1016/j.chemosphere.2020.126668] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Congenital heart defects (CHDs) has a multifactorial causation with a strong genetic component and many environmental triggers. Emerging body of empirical studies suggest that air pollution is an important contributor to the development of CHDs, however, there still remains some controversy over the current evidence, and to the authors' knowledge, no studies have reviewed the most recent evidence. OBJECTIVES We performed a systematic review and meta-analysis of epidemiological literature to investigate the relationship between maternal air pollution exposure and CHDs risk in offspring. The presence of heterogeneity and publication bias across available studies were also examined. METHODS An extensive literature search of epidemiological studies pertaining to air pollution and CHDs, published in English language, until August 1, 2019 was conducted. Summary risk estimates of pollution-outcome combinations were calculated for i) risk per specific increment of concentration and ii) risk at high versus low exposure level in each study using fixed-effect model or random-effects model. RESULTS A total of 26 studies were finally included. In the meta-analyses, high versus low carbon monoxide (CO) exposure was associated with an increased risk of tetralogy of Fallot [odds ratio (OR) = 1.21, 95% confidence interval (CI): 1.04-1.41], yet particulate matter ≤ 5 μm (PM2.5) exposure was marginally associated with it. Increased risk of atrial septal defects (ASDs) was found for each 10 μg/m3 and 10 ppb increment in particulate matter ≤ 10 μm (PM10) and ozone (O3) exposure, respectively (OR = 1.04, 95% CI: 1.00-1.09; OR = 1.09, 95% CI: 1.02-1.17). Categorical nitrogen dioxide (NO2) exposure was associated with an increased risk of coarctation of the aorta (OR for high versus low = 1.14, 95% CI: 1.02-1.26). Analyses for other combinations yielded none statistically significant associations. Sensitive analyses showed similar findings. CONCLUSIONS The summary effect estimates from this study suggest statistically significant associations between increased risk of specific CHDs subtypes and PM2.5, PM10, NO2, CO, and O3 exposures. Further studies, especially conducted in developing countries, with improvements in exposure assessing, outcome harmonizing, and mechanistic understanding are needed to elaborate the suggestive associations.
Collapse
Affiliation(s)
- Cheng-Yang Hu
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81# Meishan Road, Hefei, 230032, China; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81# Meishan Road, Hefei, 230032, China
| | - Kai Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81# Meishan Road, Hefei, 230032, China
| | - Yuan Fang
- Department of Public health, Erasmus MC University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, the Netherlands
| | - Xiao-Jing Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81# Meishan Road, Hefei, 230032, China
| | - Kun Ding
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81# Meishan Road, Hefei, 230032, China
| | - Wen Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81# Meishan Road, Hefei, 230032, China
| | - Xiao-Guo Hua
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81# Meishan Road, Hefei, 230032, China
| | - Da-Yan Huang
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital Affiliated to Anhui Medical University, 15# Yimin Road, Hefei, 230001, China
| | - Zheng-Xuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, 678# Furong Road, Hefei, 230601, China.
| | - Xiu-Jun Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81# Meishan Road, Hefei, 230032, China.
| |
Collapse
|
42
|
Ren F, Huang Y, Tao Y, Ji C, Aniagu S, Jiang Y, Chen T. Resveratrol protects against PM2.5-induced heart defects in zebrafish embryos as an antioxidant rather than as an AHR antagonist. Toxicol Appl Pharmacol 2020; 398:115029. [PMID: 32376357 DOI: 10.1016/j.taap.2020.115029] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 01/11/2023]
Abstract
Resveratrol (RSV), a natural polyphenolic compound commonly found in food, has antioxidant and aryl hydrocarbon receptor (AHR) antagonist effects. We have recently demonstrated that AHR mediated reactive oxygen species (ROS) generation contributes to the cardiac developmental toxicity of ambient fine particle matter (PM2.5). Thus, we hypothesized that RSV protects against the cardiac developmental toxicity of PM2.5 by inhibiting ROS generation and AHR activity. To test this concept, we exposed zebrafish embryos to extractable organic matter (EOM) from PM2.5 in the presence or absence of RSV. We found that RSV significantly counteracted EOM-induced cardiac malformations in zebrafish embryos. The EOM-induced ROS production, DNA damage and apoptosis in the heart of zebrafish embryos were also counteracted by RSV supplementation. Furthermore, RSV attenuated EOM-induced changes in the expression of genes involved in cardiac development (nkx2.5, sox9b, axin2), oxidative stress (nrf2a, nrf2b, gstp1, gstp2, sod1, sod2, cat) and apoptosis (p53, bax). However, RSV did not suppress EOM-induced AHR activity. In conclusion, our data indicates that RSV protects against the PM2.5-induced heart malformations by inhibiting oxidative stress rather than through AHR antagonism.
Collapse
Affiliation(s)
- Fei Ren
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Yujie Huang
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Yizhou Tao
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Cheng Ji
- Medical College of Soochow University, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin, TX, USA
| | - Yan Jiang
- Medical College of Soochow University, Suzhou, China.
| | - Tao Chen
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
43
|
Janitz AE, Dao HD, Campbell JE, Stoner JA, Peck JD. Distribution of congenital anomalies by race/ethnicity and geospatial location in Oklahoma, 1997-2009. Birth Defects Res 2020; 112:262-269. [PMID: 31820848 PMCID: PMC7057226 DOI: 10.1002/bdr2.1631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Congenital anomalies were the leading cause of infant mortality, responsible for 23 and 21% of deaths in Oklahoma and the USA, respectively, in 2016. We aimed to determine the prevalence by race/ethnicity and spatial distribution of congenital anomalies to identify geographic and racial/ethnic disparities, particularly among American Indian/Alaska Natives (AI/AN). METHODS We evaluated the prevalence of anomalies by type and race/ethnicity among 648,074 live births in Oklahoma from 1997 to 2009. Prevalence proportion ratios (PPRs) and 95% confidence intervals (CIs) were calculated using Poisson regression. We used Moran's I and Getis-Ord Gi* to evaluate spatial clustering for neural tube defects, critical congenital heart defects (CCHDs), and oral clefts among births whose residence geocoded to the ZIP code or finer level. RESULTS Overall prevalence of anomalies among live births was 3.9%. Non-Hispanic (NH) African American (PPR: 0.87, 95% CI: 0.83, 0.91), Asian/Pacific Islander (PPR: 0.70, 95% CI: 0.63, 0.78), and Hispanic (PPR: 0.87, 95% CI: 0.83, 0.91) children had a lower prevalence of anomalies compared to NH whites. The prevalence in NH AI/AN children was similar to NH whites (PPR: 1.01, 95% CI: 0.97, 1.05). However, differences in specific types of anomalies were observed by race/ethnicity. We observed no spatial autocorrelation for CCHD and oral clefts. Neural tube defects demonstrated spatial autocorrelation (p < .0001). Local hot spots varied by anomaly. DISCUSSION The prevalence of anomalies by race/ethnicity and geography differed by race/ethnicity and region, though this varied by anomaly. Additional research is needed to identify behavioral or environmental factors to target for prevention.
Collapse
Affiliation(s)
- Amanda E Janitz
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Hanh Dung Dao
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Janis E Campbell
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Julie A Stoner
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jennifer D Peck
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
44
|
Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Shay CM, Spartano NL, Stokes A, Tirschwell DL, VanWagner LB, Tsao CW. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation 2020; 141:e139-e596. [PMID: 31992061 DOI: 10.1161/cir.0000000000000757] [Citation(s) in RCA: 5213] [Impact Index Per Article: 1042.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports on the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2020 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population, metrics to assess and monitor healthy diets, an enhanced focus on social determinants of health, a focus on the global burden of cardiovascular disease, and further evidence-based approaches to changing behaviors, implementation strategies, and implications of the American Heart Association's 2020 Impact Goals. RESULTS Each of the 26 chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policy makers, media professionals, clinicians, healthcare administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
45
|
Wu J, Xiao X, Li Y, Yang F, Yang S, Sun L, Ma R, Wang MC. Personal exposure to fine particulate matter (PM 2.5) of pregnant women during three trimesters in rural Yunnan of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113055. [PMID: 31744686 DOI: 10.1016/j.envpol.2019.113055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 05/03/2023]
Abstract
Little is known about fine particulate matter (PM2.5) exposure among pregnant women in rural China. This study aims to characterize exposure to PM2.5 among pregnant women in rural China, and investigate potential risk factors of personal exposure to PM2.5. The data were obtained from a birth cohort study that enrolled 606 pregnant women in Xuanwei, a county known for its high rates of lung cancer. The personal exposure to PM2.5 was measured using small portable particulate monitors during each trimester of pregnancy. Participants were interviewed using structured questionnaires that sought information on risk factors of PM2.5 exposure. The daily exposure to PM2.5 among the pregnant women ranged from 19.68 to 97.08 μg/m3 (median = 26.08). Exposure to PM2.5 was higher in winter and autumn than other seasons (p < 0.05); higher during the day than during the night (p < 0.001); and greater during cooking hours than during the rest of the day (p < 0.001). Using a mixed effects model, domestic solid fuel for cooking (β = 1.75, p < 0.001), winter and autumn (β = 2.96, p < 0.001), cooking ≥ once per day (β = 1.58, p < 0.05), heating with coal (β = 1.69, p < 0.001), secondhand smoke exposure (β = 1.59, p < 0.001) and township 1(β = 2.39, p < 0.001) were identified as risk factors for personal exposure to PM2.5 of pregnant women throughout pregnancy. Indirect effects of season and township factors on personal PM2.5 exposure were mediated by heating, cooking and domestic fuel using. In conclusion, PM2.5 levels in Xuanwei exceeded WHO guidelines. Seasonal and township factors and individual behaviors like domestic solid fuel using for cooking, heating with coal and secondhand smoke exposure are associated with higher personal PM2.5 exposure among pregnant women in rural China.
Collapse
Affiliation(s)
- Jie Wu
- Department of Pediatrics, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan province, China
| | - Xia Xiao
- Department of Women and Child Health, School of Public Health, Kunming Medical University, Kunming, Yunnan province, China
| | - Yan Li
- Department of Women and Child Health, School of Public Health, Kunming Medical University, Kunming, Yunnan province, China.
| | - Fan Yang
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Siwei Yang
- Department of Women and Child Health, School of Public Health, Kunming Medical University, Kunming, Yunnan province, China
| | - Lin Sun
- Qujing City Hospital of Traditional Chinese Medicine, Qujing, Yunnan province, China
| | - Rui Ma
- Department of Women and Child Health, School of Public Health, Kunming Medical University, Kunming, Yunnan province, China
| | - May C Wang
- Department of Community Health Sciences, UCLA Fielding School of Public Health, Los Angeles, CA, United States
| |
Collapse
|
46
|
Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, O'Flaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, VanWagner LB, Wilkins JT, Wong SS, Virani SS. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation 2019; 139:e56-e528. [PMID: 30700139 DOI: 10.1161/cir.0000000000000659] [Citation(s) in RCA: 5616] [Impact Index Per Article: 936.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Stingone JA, Luben TJ, Sheridan SC, Langlois PH, Shaw GM, Reefhuis J, Romitti PA, Feldkamp ML, Nembhard WN, Browne ML, Lin S. Associations between fine particulate matter, extreme heat events, and congenital heart defects. Environ Epidemiol 2019; 3:e071. [PMID: 32091506 PMCID: PMC7004451 DOI: 10.1097/ee9.0000000000000071] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/09/2019] [Indexed: 12/16/2022] Open
Abstract
Previous research reports associations between air pollution measured during pregnancy and the occurrence of congenital heart defects (CHDs) in offspring. The objective of this research was to assess if exposure to extreme heat events (EHEs) during pregnancy may modify this association. METHODS The study population consisted of 4,033 controls and 2,632 cases with dates of delivery between 1999 and 2007 who participated in the National Birth Defects Prevention Study, a multi-site case-control study in the United States. Daily data from the closest stationary fine particulate matter (PM2.5) monitor within 50 km from the maternal residence were averaged across weeks 3-8 post-conception. EHEs were defined as maximum ambient temperature in the upper 95th percentile for at least 2 consecutive days or the upper 90th percentile for 3 consecutive days. Logistic regression models were adjusted for maternal age, ethnicity, education, and average humidity. Relative excess risks due to interaction (RERI) were calculated. RESULTS Compared with women with low PM2.5 exposure and no exposure to an EHE, the odds of a ventricular septal defect in offspring associated with high PM2.5 exposure was elevated only among women who experienced an EHE (odds ratio [OR] 2.14 95% confidence interval [CI] 1.19, 3.38 vs. OR 0.97 95% CI 0.49, 1.95; RERI 0.82 95% CI -0.39, 2.17). The majority of observed associations and interactions for other heart defects were null and/or inconclusive due to lack of precision. CONCLUSIONS This study provides limited evidence that EHEs may modify the association between prenatal exposure to PM2.5 and CHD occurrence.
Collapse
Affiliation(s)
| | - Thomas J. Luben
- Office of Research and Development, U.S. Environmental Protection Agency, RTP, North Carolina
| | | | | | - Gary M. Shaw
- Stanford School of Medicine, Stanford, California
| | - Jennita Reefhuis
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Paul A. Romitti
- Department of Epidemiology, The University of Iowa, Iowa City, Iowa
| | | | - Wendy N. Nembhard
- Departments of Pediatrics and Epidemiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Marilyn L. Browne
- Department of Epidemiology and Biostatistics, University at Albany, Rensselaer, New York
- New York State Department of Health, Albany, New York
| | - Shao Lin
- Department of Epidemiology, Columbia University, New York, New York
- Department of Environmental Health Sciences, University at Albany, Rensselaer, New York
| |
Collapse
|
48
|
Shang L, Huang L, Yang W, Qi C, Yang L, Xin J, Wang S, Li D, Wang B, Zeng L, Chung MC. Maternal exposure to PM 2.5 may increase the risk of congenital hypothyroidism in the offspring: a national database based study in China. BMC Public Health 2019; 19:1412. [PMID: 31739791 PMCID: PMC6862828 DOI: 10.1186/s12889-019-7790-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/16/2019] [Indexed: 12/05/2022] Open
Abstract
Background Maternal exposure to air pollution is related to fetal dysplasia. However, the association between maternal exposure to air pollution and the risk of congenital hypothyroidism (CH) in the offspring is largely unknown. Methods We conducted a national database based study in China to explore the association between these two parameters. The incidence of CH was collected from October 1, 2014 to October 1, 2015 from the Chinese Maternal and Child Health Surveillance Network. Considering that total period of pregnancy and consequently the total period of particle exposure is approximately 10 months, average exposure levels of PM2.5, PM10 and Air Quality Index (AQI) were collected from January 1, 2014 to January 1, 2015. Generalized additive model was used to evaluate the association between air pollution and the incidence of CH, and constructing receiver operating characteristic (ROC) curve was used to calculate the cut-off value. Results The overall incidence of CH was 4.31 per 10,000 screened newborns in China from October 1, 2014 to October 1, 2015. For every increase of 1 μg/m3 in the PM2.5 exposure during gestation could increase the risk of CH (adjusted OR = 1.016 per 1 μg/m3 change, 95% CI, 1.001–1.031). But no significant associations were found with regard to PM10 (adjusted OR = 1.009, 95% CI, 0.996–1.018) or AQI (adjusted OR = 1.012, 95% CI,0.998–1.026) and the risk of CH in the offspring. The cut-off value of prenatal PM2.5 exposure for predicting the risk of CH in the offspring was 61.165 μg/m3. Conclusions The present study suggested that maternal exposure to PM2.5 may exhibit a positive association with increased risk of CH in the offspring. We also proposed a cut-off value of PM2.5 exposure that might determine reduction in the risk of CH in the offspring in highly polluted areas.
Collapse
Affiliation(s)
- Li Shang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road. Xi'an, Shaanxi Province, 710061, Xian, People's Republic of China.,School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Liyan Huang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road. Xi'an, Shaanxi Province, 710061, Xian, People's Republic of China.,School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Wenfang Yang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road. Xi'an, Shaanxi Province, 710061, Xian, People's Republic of China. .,Department of Public Health and Community Medicine, Tufts University School of Medicine, Massachusetts Boston, USA.
| | - Cuifang Qi
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road. Xi'an, Shaanxi Province, 710061, Xian, People's Republic of China
| | - Liren Yang
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road. Xi'an, Shaanxi Province, 710061, Xian, People's Republic of China.,School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Juan Xin
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road. Xi'an, Shaanxi Province, 710061, Xian, People's Republic of China.,School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Shanshan Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Danyang Li
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road. Xi'an, Shaanxi Province, 710061, Xian, People's Republic of China.,Department of Women's and Children's Health, Karolinska Institute, Solna, Stockholm, Sweden
| | - Baozhu Wang
- Northwest Women's and Children's Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Lingxia Zeng
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Mei Chun Chung
- Department of Obstetrics and Gynecology, Maternal & Child Health Center, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road. Xi'an, Shaanxi Province, 710061, Xian, People's Republic of China.,Department of Public Health and Community Medicine, Tufts University School of Medicine, Massachusetts Boston, USA
| |
Collapse
|
49
|
McKenzie LM, Allshouse W, Daniels S. Congenital heart defects and intensity of oil and gas well site activities in early pregnancy. ENVIRONMENT INTERNATIONAL 2019; 132:104949. [PMID: 31327466 DOI: 10.1016/j.envint.2019.104949] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Preliminary studies suggest that offspring to mothers living near oil and natural gas (O&G) well sites are at higher risk of congenital heart defects (CHDs). OBJECTIVES Our objective was to address the limitations of previous studies in a new and more robust evaluation of the relationship between maternal proximity to O&G well site activities and births with CHDs. METHODS We employed a nested case-control study of 3324 infants born in Colorado between 2005 and 2011. 187, 179, 132, and 38 singleton births with an aortic artery and valve (AAVD), pulmonary artery and valve (PAVD), conotruncal (CTD), or tricuspid valve (TVD) defect, respectively, were frequency matched 1:5 to controls on sex, maternal smoking, and race and ethnicity yielding 2860 controls. We estimated monthly intensities of O&G activity at maternal residences from three months prior to conception through the second gestational month with our intensity adjusted inverse distance weighted model. We used logistic regression models adjusted for O&G facilities other than wells, intensity of air pollution sources not associated with O&G activities, maternal age and socioeconomic status index, and infant sex and parity, to evaluate associations between CHDs and O&G activity intensity groups (low, medium, and high). RESULTS Overall, CHDs were 1.4 (1.0, 2.0) and 1.7 (1.1, 2.6) times more likely than controls in the medium and high intensity groups, respectively, compared to the low intensity group. PAVDs were 1.7 (0.93, 3.0) and 2.5 (1.1, 5.3) times more likely in the medium and high intensity groups for mothers with an address found in the second gestational month. In rural areas, AAVDs, CTDs, and TVDs were 1.8 (0.97, 3.3) and 2.6 (1.1, 6.1); 2.1 (0.96, 4.5) and 4.0 (1.4, 12); and 3.4 (0.95, 12) and 4.6 (0.81, 26) times more likely than controls in the medium and high intensity groups. CONCLUSIONS This study provides further evidence of a positive association between maternal proximity to O&G well site activities and several types of CHDs, particularly in rural areas.
Collapse
Affiliation(s)
- Lisa M McKenzie
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, Aurora, CO, USA.
| | - William Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Campus, Aurora, CO, USA
| | - Stephen Daniels
- Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Anschutz Campus, Aurora, CO, USA
| |
Collapse
|
50
|
Nabizadeh R, Yousefian F, Moghadam VK, Hadei M. Characteristics of cohort studies of long-term exposure to PM 2.5: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:30755-30771. [PMID: 31494855 DOI: 10.1007/s11356-019-06382-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
This study systematically reviewed all the cohort studies investigating the relationship between long-term exposure to PM2.5 and any health outcome until February 2018. We searched ISI Web of Knowledge, Pubmed, and Scopus databases for peer-reviewed journal research articles published in English. We only extracted the results of the single-pollutant main analysis of each study, excluding the effect modifications and sensitivity analyses. Out of the initial 9523 articles, 203 articles were ultimately included for analysis. Based on the different characteristics of studies such as study design, outcome, exposure assessment method, and statistical model, we calculated the number and relative frequency of analyses with statistically significant and insignificant results. Most of the studies were prospective (84.8%), assessed both genders (66.5%), and focused on a specific age range (86.8%). Most of the articles (78.1%) had used modeling techniques for exposure assessment of cohorts' participants. Among the total of 317 health outcomes, the most investigated outcomes include mortality due to cardiovascular disease (6.19%), all causes (5.48%), lung cancer (4.00%), ischemic heart disease (3.50%), and non-accidental causes (3.50%). The percentage of analyses with statistically significant results were higher among studies that used prospective design, mortality as the outcome, fixed stations as exposure assessment method, hazard ratio as risk measure, and no covariate adjustment. We can somehow conclude that the choice of right characteristics for cohort studies can make a difference in their results.
Collapse
Affiliation(s)
- Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Yousefian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Kazemi Moghadam
- Department of Environmental Health Engineering, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mostafa Hadei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|