1
|
Boyd A, Martin S, Legge A, Blewett TA. Are UV filters better together? A comparison of the toxicity of individual ultraviolet filters and off-the-shelf sunscreens to Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124953. [PMID: 39277128 DOI: 10.1016/j.envpol.2024.124953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Organic ultraviolet filters (UVFs) are known to contaminate many aquatic ecosystems, with much environmental contamination attributed to the use of UVF-containing skin care products such as sunscreens during aquatic recreation. Most studies addressing the impact of sunscreen contamination have focused on the effects of UVFs under the assumption that they are the primary contaminants of concern from sunscreen pollution; however, the extent to which the toxicity of UVFs is representative of the environmental impacts of the whole sunscreen mixture is unknown. To address this knowledge gap, this study compared the mixture toxicity of five off-the-shelf sunscreen spray products containing the UVFs avobenzone, homosalate, octisalate, octocrylene and oxybenzone to the toxicity of each UVF in isolation to the freshwater invertebrate Daphnia magna. It was found that sunscreen toxicity was not proportional to their total UVF content, as the sunscreen containing the fewest UVFs was approximately equivalent to the sunscreen with the most UVFs, causing ≥90 % mortality and inhibiting all daphnid reproduction over 21 d exposures. Sunscreen toxicity was typically lower than expected when compared to the toxicity of each individual UVF within the mixture, as some sunscreens causing ≤20 % mortality contained octocrylene and/or oxybenzone at concentrations exceeding those which caused 90 % mortality during exposure to the UVF alone. Despite sunscreens causing large impairments in reproduction, growth and metabolism, poor correlations existed between the severity of most sublethal endpoints with respect to the measured UVF content of each sunscreen. Overall, these results indicate that potential antagonistic relationships between sunscreen ingredients can greatly reduce the toxicity of UVFs, creating more uncertainty regarding the level of threat that UVFs pose to the environment as a result of sunscreen contamination.
Collapse
Affiliation(s)
- A Boyd
- University of Alberta, Department of Biological Sciences, Edmonton, T6G 2E9, Canada.
| | - S Martin
- University of Alberta, Department of Biological Sciences, Edmonton, T6G 2E9, Canada
| | - A Legge
- University of Alberta, Department of Biological Sciences, Edmonton, T6G 2E9, Canada
| | - T A Blewett
- University of Alberta, Department of Biological Sciences, Edmonton, T6G 2E9, Canada
| |
Collapse
|
2
|
Ju YR, Su CR, Chen CF, Shih CF, Gu LS. Single and mixture toxicity of benzophenone-3 and its metabolites on Daphnia magna. CHEMOSPHERE 2024; 366:143536. [PMID: 39419330 DOI: 10.1016/j.chemosphere.2024.143536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/01/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Benzophenone-3 (BP-3) is one of the organic ultraviolet (UV) filters widely used in personal care products, resulting in its ubiquitous occurrence in aquatic systems. This study discovered the potential risks of benzophenone-3 and its metabolites (BP-1 and BP-8) in aquatic environments. This study investigated the toxicity of three single BPs and their mixtures' effects on the survival of Daphnia magna. All three BP types were found to have toxic effects on D. magna, with median effective concentration (EC50) values of 22.55 mg/L for BP-1, 1.89 mg/L for BP-3, and 2.36 mg/L for BP-8, after 48 h of exposure. When the three BPs were binary and ternary mixtures, the EC50 values fell within 2.74-32.26 mg/L. Binary and tertiary mixtures of the three BPs indicated no strong synergistic or antagonistic effects. The mixture toxicity predictions using the classical mixture concept of concentration addition and measured toxicity data showed good predictability. The ecological risks of BPs were assessed using the maximum measured environmental concentrations of BPs collected from a river in Taiwan, divided by their respective predicted no-effect concentration (PNEC) values derived from the assessment factor (AF) method. The result showed a low ecological risk for the sum of three BPs. However, BP-3 had the highest potential risk, while BP-1 was the lowest among the three BPs. Therefore, BP-3 should pay attention to long-term environmental monitoring and management. This study provides valuable information for establishing scientifically-based water quality criteria for BPs and evaluating and managing the potential risk of BPs in the aquatic environment.
Collapse
Affiliation(s)
- Yun-Ru Ju
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan.
| | - Chang-Rui Su
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan
| | - Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Cheng-Fu Shih
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan
| | - Li-Siang Gu
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan
| |
Collapse
|
3
|
Seol Y, Markiewicz M, Beil S, Schubert S, Jungmann D, Wasserscheid P, Stolte S. Aquatic toxicity, bioaccumulation potential, and human estrogen/androgen activity of three oxo-Liquid Organic Hydrogen Carrier (oxo-LOHC) systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135102. [PMID: 39003805 DOI: 10.1016/j.jhazmat.2024.135102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
The Liquid Organic Hydrogen Carrier (LOHC) technology offers a technically attractive way for hydrogen storage. If LOHC systems were to fully replace liquid fossil fuels, they would need to be handled at the multi-million tonne scale. To date, LOHC systems on the market based on toluene or benzyltoluene still offer potential for improvements. Thus, it is of great interest to investigate potential LOHCs that promise better performance and environmental/human hazard profiles. In this context, we investigated the acute aquatic toxicity of oxygen-containing LOHC (oxo-LOHC) systems. Toxic Ratio (TR) values of oxo-LOHC compounds classify them baseline toxicants (0.1 < TR < 10). Additionally, the mixture toxicity test conducted with D. magna suggests that the overall toxicity of a benzophenone-based system can be accurately predicted using a concentration addition model. The estimation of bioconcentration factors (BCF) through the use of the membrane-water partition coefficient indicates that oxo-LOHCs are unlikely to be bioaccumulative (BCF < 2000). None of the oxo-LOHC compounds exhibited hormonal disrupting activities at the tested concentration of 2 mg/L in yeast-based reporter gene assays. Therefore, the oxo-LOHC systems seem to pose a low level of hazard and deserve more attention in ongoing studies searching for the best hydrogen storage technologies.
Collapse
Affiliation(s)
- Yohan Seol
- Institute of Water Chemistry, Dresden University of Technology, 01069 Dresden, Germany
| | - Marta Markiewicz
- Institute of Water Chemistry, Dresden University of Technology, 01069 Dresden, Germany
| | - Stephan Beil
- Institute of Water Chemistry, Dresden University of Technology, 01069 Dresden, Germany
| | - Sara Schubert
- Institute of Hydrobiology, Dresden University of Technology, 01069 Dresden, Germany
| | - Dirk Jungmann
- Institute of Hydrobiology, Dresden University of Technology, 01069 Dresden, Germany
| | - Peter Wasserscheid
- Institute of Chemical Reaction Engineering, Friedrich Alexander University of Erlangen Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany; Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nuremberg for Renewable Energy, 91058 Erlangen, Germany; Forschungszentrum Jülich GmbH, Institute for a Sustainable Hydrogen Economy, 52428 Jülich, Germany
| | - Stefan Stolte
- Institute of Water Chemistry, Dresden University of Technology, 01069 Dresden, Germany.
| |
Collapse
|
4
|
Rafeletou A, Niemi JVL, Lagunas-Rangel FA, Liu W, Kudłak B, Schiöth HB. The exposure to UV filters: Prevalence, effects, possible molecular mechanisms of action and interactions within mixtures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:170999. [PMID: 38458461 DOI: 10.1016/j.scitotenv.2024.170999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 03/10/2024]
Abstract
Substances that can absorb sunlight and harmful UV radiation such as organic UV filters are widely used in cosmetics and other personal care products. Since humans use a wide variety of chemicals for multiple purposes it is common for UV filters to co-occur with other substances either in human originating specimens or in the environment. There is increasing interest in understanding such co-occurrence in form of potential synergy, antagonist, or additive effects of biological systems. This review focuses on the collection of data about the simultaneous occurrence of UV filters oxybenzone (OXYB), ethylexyl-methoxycinnamate (EMC) and 4-methylbenzylidene camphor (4-MBC) as well as other classes of chemicals (such as pesticides, bisphenols, and parabens) to understand better any such interactions considering synergy, additive effect and antagonism. Our analysis identified >20 different confirmed synergies in 11 papers involving 16 compounds. We also highlight pathways (such as transcriptional activation of estrogen receptor, promotion of estradiol synthesis, hypothalamic-pituitary-gonadal (HPG) axis, and upregulation of thyroid-hormone synthesis) and proteins (such as Membrane Associated Progesterone Receptor (MAPR), cytochrome P450, and heat shock protein 70 (Hsp70)) that can act as important key nodes for such potential interactions. This article aims to provide insight into the molecular mechanisms on how commonly used UV filters act and may interact with other chemicals.
Collapse
Affiliation(s)
- Alexandra Rafeletou
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Jenni Viivi Linnea Niemi
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Wen Liu
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Błażej Kudłak
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk 80-233, Poland
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
5
|
Amankwah BK, Šauer P, Grabicová K, von der Ohe PC, Ayıkol NS, Kocour Kroupová H. Organic UV filters: Occurrence, risks and (anti-)progestogenic activities in samples from the Czech aquatic environment and their bioaccumulation in fish. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134338. [PMID: 38643577 DOI: 10.1016/j.jhazmat.2024.134338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024]
Abstract
The occurrence, environmental risks and contribution of organic UV filters to detected (anti-)progestogenic activities were examined in samples of wastewater treatment plant influents and effluents, various surface waters and fish from the Czech Republic. Of the 20 targeted UV filters, 15 were detected in the WWTP influent samples, 11 in the effluents, and 13 in the surface water samples. Benzophenone-3, benzophenone-4, and phenyl benzimidazole sulfonic acid (PBSA) were found in all water samples. Octocrylene, UV-327 and 4-methylbenzylidene camphor exceeded the risk quotient of 1 at some sites. In the anti-progestogenic CALUX assay, 10 out of the 20 targeted UV filters were active. Anti-progestogenic activities reaching up to 7.7 ng/L, 3.8 ng/L, and 4.5 ng/L mifepristone equivalents were detected in influents, effluents, and surface waters, respectively. UV filters were responsible for up to 37 % of anti-progestogenic activities in influents. Anti-progestogenic activities were also measured in fish tissues from the control pond and Podroužek (pond with the highest number of detected UV filters) and ranged from 2.2 to 9.5 and 1.9 to 8.6 ng/g dw mifepristone equivalents, respectively. However, only benzophenone was found in fish, but it does not display anti-progestogenic activity and thus could not explain the observed activities.
Collapse
Affiliation(s)
- Beatrice Kyei Amankwah
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic.
| | - Pavel Šauer
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Kateřina Grabicová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| | - Peter C von der Ohe
- UBA - German Environment Agency (Umweltbundesamt), Wörlitzer Platz 1, D-06844 Dessau-Roßlau, Germany
| | - Nurhan Sultan Ayıkol
- Ankara University, Graduate School of Health Science, Department of Veterinary Pharmacology and Toxicology, Turkiye
| | - Hana Kocour Kroupová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, CZ-389 25 Vodňany, Czech Republic
| |
Collapse
|
6
|
Lin YJ, Li HM, Gao YR, Wu PF, Cheng B, Yu CL, Sheng YX, Xu HM. Environmentally relevant concentrations of benzophenones exposure disrupt intestinal homeostasis, impair the intestinal barrier, and induce inflammation in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123948. [PMID: 38614423 DOI: 10.1016/j.envpol.2024.123948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
The aim of this study is to investigate the adverse effects of benzophenones (BPs) on the intestinal tract of mice and the potential mechanism. F1-generation ICR mice were exposed to BPs (benzophenone-1, benzophenone-2, and benzophenone-3) by breastfeeding from birth until weaning, and by drinking water after weaning until maturity. The offspring mice were executed on postnatal day 56, then their distal colons were sampled. AB-PAS staining, HE staining, immunofluorescence, Transmission Electron Microscope, immunohistochemistry, Western Blot and RT-qPCR were used to study the effects of BPs exposure on the colonic tissues of offspring mice. The results showed that colonic microvilli appeared significantly deficient in the high-dose group, and the expression of tight junction markers Zo-1 and Occludin was significantly down-regulated and the number of goblet cells and secretions were reduced in all dose groups, and the expression of secretory cell markers MUC2 and KI67 were decreased, as well as the expression of intestinal stem cell markers Lgr5 and Bmi1, suggesting that BPs exposure caused disruption of intestinal barrier and imbalance in the composition of the intestinal stem cell pool. Besides, the expression of cellular inflammatory factors such as macrophage marker F4/80 and tumor necrosis factor TNF-α was elevated in the colonic tissues of all dose groups, and the inflammatory infiltration was observed, which means the exposure of BPs caused inflammatory effects in the intestinal tract of F1-generation mice. In addition, the contents of Notch/Wnt signaling pathway-related genes, such as Dll-4, Notch1, Hes1, Ctnnb1and Sfrp2 were significantly decreased in each high-dose group (P < 0.05), suggesting that BPs may inhibit the regulation of Notch/Wnt signaling pathway. In conclusion, exposure to BPs was able to imbalance colonic homeostasis, disrupt the intestinal barrier, and trigger inflammation in the offspring mice, which might be realized through interfering with the Notch/Wnt signaling pathway.
Collapse
Affiliation(s)
- Yu-Jia Lin
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Hong-Mei Li
- The Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; School of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yan-Rong Gao
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Ping-Fan Wu
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Bin Cheng
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Chen-Long Yu
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yu-Xin Sheng
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Hai-Ming Xu
- School of Public Health, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; The Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
7
|
Lorigo M, Quintaneiro C, Breitenfeld L, Cairrao E. Effects associated with exposure to the emerging contaminant octyl-methoxycinnamate (a UV-B filter) in the aquatic environment: a review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:55-72. [PMID: 38146151 DOI: 10.1080/10937404.2023.2296897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Given the increasing concern surrounding ultraviolet (UV) radiation-induced skin damage, there has been a rise in demand for UV filters. Currently, UV-filters are considered emerging contaminants. The extensive production and use of UV filters have led to their widespread release into the aquatic environment. Thus, there is growing concern that UV filters may bioaccumulate and exhibit persistent properties within the environment, raising several safety health concerns. Octyl-methoxycinnamate (OMC) is extensively employed as a UV-B filter in the cosmetic industry. While initially designed to mitigate the adverse photobiological effects attributed to UV radiation, the safety of OMC has been questioned with some studies reporting toxic effects on environment. The aim of this review to provide an overview of the scientific information regarding the most widely used organic UV-filter (OMC), and its effects on biodiversity and aquatic environment.
Collapse
Affiliation(s)
- Margarida Lorigo
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Carla Quintaneiro
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Luiza Breitenfeld
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
8
|
Sun J, Rene ER, Tao D, Lu Y, Jin Q, Lam JCH, Leung KMY, He Y. Degradation of organic UV filters in the water environment: A concise review on the mechanism, toxicity, and technologies. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132822. [PMID: 37898090 DOI: 10.1016/j.jhazmat.2023.132822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/15/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Organic ultraviolet filters (OUVFs) have been used globally for the past 20 years. Given that OUVFs can be quickly released from sunscreens applied on human skins, they have been frequently detected in aquatic environments and organisms. Some byproducts of OUVFs might be more recalcitrant and toxic than their parent compounds. To further assess the toxicity and potential risk of OUVFs' byproducts, it is necessary to determine the fate of OUVFs and identify their transformation products. This review summarizes and analyzes pertinent literature and reports in the field of OUVFs research. These published research works majorly focus on the degradation mechanisms of OUVFs in aquatic environments, their intermediates/byproducts, and chlorination reaction. Photodegradation (direct photolysis, self-sensitive photolysis and indirect photolysis) and biodegradation are the main transformation pathways of OUVFs through natural degradation. To remove residual OUVFs' pollutants from aqueous environments, novel physicochemical and biological approaches have been developed in recent years. Advanced oxidation, ultrasound, and bio-based technologies have been proven to eliminate OUVFs from wastewaters. In addition, the disinfection mechanism and the byproducts (DBPs) of various OUVFs in swimming pools are discussed in this review. Besides, knowledge gaps and future research directions in this field of study are also mentioned.
Collapse
Affiliation(s)
- Jiaji Sun
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, P. O. Box 3015, 2611AX Delft, the Netherlands
| | - Danyang Tao
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yichun Lu
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Qianqian Jin
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jason Chun-Ho Lam
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuhe He
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 511458 Guangzhou, China.
| |
Collapse
|
9
|
Moreira ALP, Souza JACR, de Souza JF, Mamede JPM, Farias D, Luchiari AC. Long-term effects of embryonic exposure to benzophenone-3 on neurotoxicity and behavior of adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168403. [PMID: 37939945 DOI: 10.1016/j.scitotenv.2023.168403] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Benzophenone-3 (BP-3) is the most widely used ultraviolet filter (UV filter) in industries to avoid UV radiation damage. BP-3 is added to most sunscreens to protect the skin, hair, and lips from sun rays. It results in continuous discharge into aquatic environments, leading to aquatic biota and human's continuous exposure. Consequences of BP-3 exposure on the physiology and behavior of aquatic animals, mainly zebrafish, have been investigated, including their neurotoxic effects. However, little is known about its consequences in long-term developmental endpoints. This study aimed to investigate the long-term effects of embryonic BP-3 exposure on biomarkers of neurotoxicity in zebrafish. For this, we exposed embryos to 5, 10, and 20 μg∙L-1 BP-3 concentration and let fish grow to adulthood (5mpf). We evaluated anxiety-like behavior, social preference, aggressiveness, and enzymatic activity of the antioxidant defenses system and neurotoxic biomarkers (Glutathione S-transferase -GST, catalase -CAT, and acetylcholinesterase -AChE) in adult zebrafish. Enzymatic activities were also investigated in larvae immediately after BP-3 exposure. Animals early exposed to BP-3 presented anxiety-like behaviors and decreased social preference, but aggressiveness was not altered. In general, exposure to BP-3 leads to altered enzymatic activity, which persists into adulthood. GST activity increased in embryos and adults, while CAT activity decreased in both life stages. AChE activity enhanced only at the larval stage (96 hpf). The long-term behavioral and biochemical effects of BP-3 highlight the need for abolishing or restricting the compound from personal care products, which are continually disposed into the environment and threaten the biota and human health.
Collapse
Affiliation(s)
- Ana Luisa Pires Moreira
- FishLab, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Brazil.
| | - Juliana Alves Costa Ribeiro Souza
- Laboratory for Risk Assessment of Novel Technologies - LabRisk, Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Jéssica Ferreira de Souza
- FishLab, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Brazil
| | - João Paulo Medeiros Mamede
- FishLab, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Brazil
| | - Davi Farias
- Laboratory for Risk Assessment of Novel Technologies - LabRisk, Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Ana Carolina Luchiari
- FishLab, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Brazil
| |
Collapse
|
10
|
Nasri E, de la Vega ACS, Martí CB, Ben Mansour H, Diaz-Cruz MS. Pharmaceuticals and personal care products in Tunisian hospital wastewater: occurrence and environmental risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2716-2731. [PMID: 38063970 PMCID: PMC10791778 DOI: 10.1007/s11356-023-31220-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Despite concerns about the potential risk associated with the environmental occurrence of pharmaceuticals and personal care products (PPCPs), few studies address the emissions of hospitals to aquatic compartments. We examined within a 3-month sampling period the occurrence and environmental risk of PPCPs in seven Tunisian hospital wastewaters. From personal care products, UV filters, main metabolites, and benzotriazoles were quantified, with benzophenone 3 (oxybenzone, BP3) and benzotriazole (BZT) the most frequently found (71%) at median concentrations in the range 2.43 ± 0.87 ngL-1-64.05 ± 6.82 ngL-1 for BP3 and 51.67 ± 1.67 ngL-1-254 ± 9.9 ngL-1 for BZT. High concentrations were also found for 4-hydroxybenzophenone (4HB) (221 ± 6.22 ngL-1), one of the main metabolites of BP3. The antibiotics ofloxacin and trimethoprim, the anti-inflammatory acetaminophen, the antiepileptic carbamazepine, and the stimulant caffeine were present in all the wastewaters. The highest median concentration corresponded to acetaminophen, with 1240 ± 94 mgL-1 in Tunis Hospital, followed by ofloxacin with 78850 ± 39 μgL-1 in Sousse Hospital. For ecotoxicity assessment, acute toxicity was observed for Daphnia magna and Vibrio fischeri. The toxicity data were used in a hazard quotient (HQ) approach to evaluate the risk posed by the target PPCPs to aquatic organisms. The calculated HQs revealed that marbofloxacin (234 for V. fischeri), enrofloxacin (121 for D. magna), and BZT (82.2 for D. magna and 83.7 for V. fischeri) posed the highest risk, concluding that potential risk exists toward aquatic microorganisms. This study constitutes the first monitoring of UV filters in Tunisian hospital effluents and provides occurrence and toxicity data of PPCPs for reference in further surveys in the country.
Collapse
Affiliation(s)
- Emna Nasri
- Research Unit of Analysis and Process Applied to the Environmental e APAE Higher Institute of Applied Sciences and Technology Mahdia, University of Monastir, Monastir, Tunisia
- Laboratory of Biotechnology and Bio-Monitoring of the Environment and Oasis Ecosystems, Department of Life Sciences, Faculty of Sciences of Gafsa, Sidi Ahmed Zarroug University Campus, 2112, Gafsa, Tunisia
| | - Ana Cristina Soler de la Vega
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain
| | - Carlos Barata Martí
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to the Environmental e APAE Higher Institute of Applied Sciences and Technology Mahdia, University of Monastir, Monastir, Tunisia
| | - Maria Silvia Diaz-Cruz
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, E-08034, Barcelona, Spain.
| |
Collapse
|
11
|
Wang B, Jin Y, Li J, Yang F, Lu H, Zhou J, Liu S, Shen Z, Yu X, Yuan T. Exploring environmental obesogenous effects of organic ultraviolet filters on children from a case-control study. CHEMOSPHERE 2023; 341:139883. [PMID: 37672813 DOI: 10.1016/j.chemosphere.2023.139883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/29/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
It has been globally recognized that obesity has become a major public health concern, especially childhood obesity. There is limited information, however, regarding the exposure risk of organic ultraviolet (UV) filters, a kind of emerging contaminant, on childhood obesity. This study would be made on 284 obese and 220 non-obese Chinese children with eight organic UV filters at urinary levels. The eight organic UV filters, including 2-Ethylhexyl 4-aminobenzoate (PABA-E), octisalate (EHS), homosalate (HMS), 2-Ethylhexyl-p-methoxycinnamate (EHMC), benzophenone-3 (BP-3), amiloxate (IAMC), octocrylene (OC) and 4-Methylbenzylidene camphor (4-MBC) were identified in urine samples with detection rates ranged from 35.32% to 100%, among which PABA-E, HMS, IAMC and OC were firstly detected in children' s urine. And the urinary UV filters concentration was associated with genders, living sites, guardian education levels, household income, and dietary factors. Urinary EHMC concentrations and childhood obesity were positively associated for girls [Adjusted OR = 2.642 (95% CI: 1.019, 6.853)], while OC concentrations and childhood obesity were negatively associated for girls [Adjusted OR = 0.022 (95% CI: 0.001, 0.817)]. The results suggest that EHMC exposure may be an environmental obesogen for girls. Moreover, two statistical models were used separately to evaluate the impact of UV filter mixtures on childhood obesity, including the Bayesian kernel machine regression (BKMR) model and the quantile g-computation (qgcomp) model. The negative association between UV filter mixtures and childhood obesity was proposed from both BKMR and qgcomp models. Further experimental and epidemiological studies are called upon to discern the individual and mixture impacts of organic UV filters on childhood obesity.
Collapse
Affiliation(s)
- Beili Wang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yihui Jin
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juan Li
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Fan Yang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hong Lu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinyang Zhou
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shijian Liu
- Department of Clinical Epidemiology and Biostatistics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhemin Shen
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodan Yu
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Tao Yuan
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
12
|
Mozas-Blanco S, Rodríguez-Gil JL, Kalman J, Quintana G, Díaz-Cruz MS, Rico A, López-Heras I, Martínez-Morcillo S, Motas M, Lertxundi U, Orive G, Santos O, Valcárcel Y. Occurrence and ecological risk assessment of organic UV filters in coastal waters of the Iberian Peninsula. MARINE POLLUTION BULLETIN 2023; 196:115644. [PMID: 37922592 DOI: 10.1016/j.marpolbul.2023.115644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
This study aimed to assess the presence of 21 UVFs and metabolites in coastal regions of the Iberian Peninsula, to evaluate their environmental risk, and identify possible influential factors affecting their measured concentrations. Sampling was carried out in spring and summer to assess possible seasonal variations. UVFs were detected in 43 of the 46 sampling sites. Only 5 were found above LOD: BP4, OC, BP3 and metabolites BP1 and BP8. Samples collected in Mar Menor had the greatest variety of compounds per sample and the highest cumulative concentrations. The risk was characterized using Risk Quotients (RQ). BP1 showed a Low environmental Risk in 2 sites while for OC the RQ indicated a Moderate Risk in 22 points. The variables that contribute most to the variation are population density, sampling season, whether it was an open bay or not, and level of urbanization. The presence of WWTPs had a lower influence.
Collapse
Affiliation(s)
- Sandra Mozas-Blanco
- Research Group on Human and Environmental Risk (RISAMA), Rey Juan Carlos University, 28933 Móstoles, Madrid, Spain; Department of Medical Specialties and Public Health, 28922 Alcorcón, Madrid, Spain
| | - José Luis Rodríguez-Gil
- Research Group on Human and Environmental Risk (RISAMA), Rey Juan Carlos University, 28933 Móstoles, Madrid, Spain; IISD - Experimental Lakes Area, Winnipeg, MB R3B 0T4, Canada; Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2M6, Canada.
| | - Judit Kalman
- Research Group on Human and Environmental Risk (RISAMA), Rey Juan Carlos University, 28933 Móstoles, Madrid, Spain; Department of Medical Specialties and Public Health, 28922 Alcorcón, Madrid, Spain
| | - Gerard Quintana
- Institute of Environmental Assessment and Water Research, Severo Ochoa Excellence Center, Spanish National Research Council (IDAEA-CSIC). Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M Silvia Díaz-Cruz
- Institute of Environmental Assessment and Water Research, Severo Ochoa Excellence Center, Spanish National Research Council (IDAEA-CSIC). Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, c/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
| | - Isabel López-Heras
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805 Alcalá de Henares, Madrid, Spain
| | - Salomé Martínez-Morcillo
- Toxicology Unit, Veterinary School, University of Extremadura, Avda. de la Universidad s/n, 10003 Caceres, Spain
| | - Miguel Motas
- Department of Toxicology, Regional Campus of International Excellence "Campus Mare Nostrum", Faculty of Veterinary, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain.
| | - Unax Lertxundi
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba Mental Health Network, Araba Psychiatric Hospital, Pharmacy Service, 01006 Vitoria-Gasteiz, Alava, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academy, 20 College Road, Discovery Tower, Singapore, Singapore
| | - Osvaldo Santos
- Environmental Health Institute, Faculty of Medicine, University of Lisbon, Portugal
| | - Yolanda Valcárcel
- Research Group on Human and Environmental Risk (RISAMA), Rey Juan Carlos University, 28933 Móstoles, Madrid, Spain; Department of Medical Specialties and Public Health, 28922 Alcorcón, Madrid, Spain
| |
Collapse
|
13
|
Hain E, He K, Batista-Andrade JA, Feerick A, Tarnowski M, Timm A, Blaney L. Geospatial and co-occurrence analysis of antibiotics, hormones, and UV filters in the Chesapeake Bay (USA) to confirm inputs from wastewater treatment plants, septic systems, and animal feeding operations. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132405. [PMID: 37651932 DOI: 10.1016/j.jhazmat.2023.132405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Previous studies have reported select contaminants of emerging concern (CECs) in limited areas of the Chesapeake Bay (USA), but no comprehensive efforts have been conducted. In this work, 43 antibiotics, 9 hormones, 11 UV filters, and sucralose, were measured in matched water, sediment, and oyster samples from 58 sites. The highest sucralose concentration was 3051 ng L-1 in a subwatershed with 4.43 million liters of wastewater effluent per day (MLD) and 4385 septic systems. Although antibiotic occurrence was generally low in subwatersheds located in less populated areas, 102 ng L-1 ciprofloxacin was detected downstream of 0.58 MLD wastewater effluent and 10 animal feeding operations. Hormones were not regularly detected in water (2%) or oysters (37%), but the high detection frequencies in sediment (74%) were associated with septic systems. UV filters were ubiquitously detected in oysters, and octisalate exhibited the highest concentration (423 ng g-1). Oyster-phase oxybenzone and aqueous-phase sucralose concentrations were significantly correlated to wastewater effluent and septic systems, respectively. Toxicity outcomes were predicted for homosalate and octisalate throughout the Bay, and antimicrobial resistance concerns were noted for the Chester River. The geospatial and co-occurrence relationships constitute crucial advances to understanding CEC occurrence in the Chesapeake Bay and elsewhere.
Collapse
Affiliation(s)
- Ethan Hain
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Ke He
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Jahir A Batista-Andrade
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Anna Feerick
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA
| | - Mitchell Tarnowski
- Maryland Department of Natural Resources, 580 Taylor Ave, B-2, Annapolis, MD 21401, USA
| | - Anne Timm
- USDA Forest Service, Northern Research Station, 5523 Research Park Drive, Suite 350, Baltimore, MD 21228, USA
| | - Lee Blaney
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Engineering 314, Baltimore, MD 21250, USA.
| |
Collapse
|
14
|
Marcin S, Aleksander A. Acute toxicity assessment of nine organic UV filters using a set of biotests. Toxicol Res 2023; 39:649-667. [PMID: 37779587 PMCID: PMC10541396 DOI: 10.1007/s43188-023-00192-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/19/2023] [Accepted: 05/17/2023] [Indexed: 10/03/2023] Open
Abstract
UV filters in environmental compartments are a source of concern related to their ecotoxicological effects. However, little is known about UV filters' toxicity, particularly those released into the environment as mixtures. Acute toxicity of nine organic UV filters benzophenone-1, benzophenone-2, benzophenone-3, 4-methoxy benzylidene camphor, octocrylene, ethylhexyl methoxycinnamate, 2-ethylhexyl salicylate, homosalate, and butyl methoxydibenzoylmethane was determined. UV filter solutions were tested as single, binary, and ternary mixtures of various compositions. Single solutions were tested using a set of bio tests, including tests on saline crustaceans (Artemia franciscana), freshwater crustaceans (Daphnia magna), marine bacteria (Aliivibrio fischeri), and freshwater plants (Lemna minor). The tests represent different stages of the trophic chain, and hence their overall results could be used to risk assessment concerning various water reservoirs. The toxicity of binary and ternary mixtures was analyzed using the standardized Microtox® method. Generally, organic UV filters were classified as acutely toxic. Octocrylene was the most toxic for Arthemia franciscana (LC50 = 0.55 mg L-1) and Daphnia magna (EC50 = 2.66-3.67 mg L-1). The most toxic against freshwater plants were homosalate (IC50 = 1.46 mg L-1) and octocrylene (IC50 = 1.95 mg L-1). Ethylhexyl methoxycinnamate (EC50 = 1.38-2.16 mg L-1) was the most toxic for marine bacteria. The least toxic for crustaceans and plants were benzophenone-1 (EC50 = 6.15-46.78 mg L-1) and benzophenone-2 (EC50 = 14.15-54.30 mg L-1), while 4-methoxy benzylidene camphor was the least toxic for marine bacteria (EC50 = 12.97-15.44 mg L-1). Individual species differ in their sensitivity to the tested organic UV filters. An assessment of the toxicity of mixtures indicates high and acute toxicity to marine bacteria after exposition to a binary mixture of benzophenone-2 with octocrylene, 2-ethylhexyl salicylate, or homosalate. The toxicity of mixtures was lower than single solutions predicting antagonistic interaction between chemicals. Graphical abstract
Collapse
Affiliation(s)
- Stec Marcin
- Environmental Chemistry Research Unit, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, 22a Arciszewskiego Str., 76-200 Słupsk, Poland
| | - Astel Aleksander
- Environmental Chemistry Research Unit, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, 22a Arciszewskiego Str., 76-200 Słupsk, Poland
| |
Collapse
|
15
|
Pawlowski S, Luetjens LH, Preibisch A, Acker S, Petersen-Thiery M. Cosmetic UV filters in the environment-state of the art in EU regulations, science and possible knowledge gaps. Int J Cosmet Sci 2023; 45 Suppl 1:52-66. [PMID: 37799077 DOI: 10.1111/ics.12898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/26/2023] [Accepted: 06/30/2023] [Indexed: 10/07/2023]
Abstract
OBJECTIVE The aim of this work was to review the principals of environmental hazard and risk assessment (ERA) of cosmetic UV filters registered under EU REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals). Furthermore, effects as obtained from non-standardized testing methods and organisms from scientific literature were compared against the predicted no effect concentrations (PNECs) as derived based on standardized test methods for the various environmental compartments under REACH. METHODS The REACH dossiers at the ECHA webpage were screened for available information related to basic physico-chemical data (i.e. water solubility, octanol-water partitioning coefficient), PNECs and associated data (data basis, assessment factors (AFs)). Scientific literature was screened for available ecotoxicity data and the adverse effect levels were compared against the derived PNECs under REACH. Current approaches for environmental risk assessments of UV filters were evaluated for its applicability for a direct release scenario. RESULTS Under REACH, PNECs were derived for all hazardous UV filters. Although, PNECs were often derived for various environmental compartments (i.e. freshwater, marine water, sediment, soil), results from literature focused on aquatic data. Effects as observed within scientific literature matches in principle with the hazardous profile of the UV filters. Effects levels both on the acute and the chronic toxicity as retrieved from the non-standardized test organisms (literature) were above the derived PNECs under REACH. Currently, ERAs performed for cosmetic UV filters under REACH are solely tonnage driven and thus do not fully capture the use in sunscreens and associated leisure activities. CONCLUSION Existing EU REACH regulation is considered as sufficient to evaluate the environmental safety of UV filters used in sunscreens. To cover the direct release of UV filters due to various leisure activities into the aquatic freshwater and marine environment, an additional application-based ERA is considered necessary.
Collapse
Affiliation(s)
- Sascha Pawlowski
- Regulatory Ecotoxicology Chemicals, BASF SE, Ludwigshafen, Germany
| | | | - Alina Preibisch
- Regulatory Toxicology & Ecotoxicology, BASF Services Europe GmbH, Berlin, Germany
| | - Stephanie Acker
- Technical Service/Global Technical Center S.C., BASF Grenzach GmbH, Grenzach-Wyhlen, Germany
| | - Mechtild Petersen-Thiery
- Product Stewardship & EHS Data Management, BASF Personal Care and Nutrition GmbH, Monheim, Germany
| |
Collapse
|
16
|
Peinado FM, Olivas-Martínez A, Iribarne-Durán LM, Ubiña A, León J, Vela-Soria F, Fernández-Parra J, Fernández MF, Olea N, Freire C, Ocón-Hernández O, Artacho-Cordón F. Cell cycle, apoptosis, cell differentiation, and lipid metabolism gene expression in endometriotic tissue and exposure to parabens and benzophenones. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163014. [PMID: 37003176 DOI: 10.1016/j.scitotenv.2023.163014] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/15/2023] [Accepted: 03/19/2023] [Indexed: 05/17/2023]
Abstract
AIM To describe the expression profile in endometriotic tissue of genes involved in four signaling pathways related to the development and progression of endometriosis (cell cycle, apoptosis, cell differentiation and lipid metabolism) and to explore its relationship with the women exposure to chemicals with hormonal activity released from cosmetics and personal care products (PCPs). METHODS This cross-sectional study, encompassed within the EndEA study, comprised a subsample of 33 women with endometriosis. Expression levels of 13 genes (BMI1, CCNB1, CDK1, BAX, BCL2L1, FOXO3, SPP1, HOXA10, PDGFRA, SOX2, APOE, PLCG1 and PLCG2) in endometriotic tissue and urinary concentrations of 4 paraben (PB) and 3 benzophenone (BP) congeners were quantified. Bivariate linear and logistic regression analyses were performed to explore the associations between exposure and gene expression levels. RESULTS A total of 8 out 13 genes (61.5 %) were expressed in >75 % of the samples. Exposure to congeners of PBs and/or BPs was associated with the overexpression of CDK1 gene (whose protein drives cells through G2 phase and mitosis), HOXA10 and PDGFRA genes (whose proteins favor pluripotent cell differentiation to endometrial cells), and APOE (whose protein regulates the transport and metabolism of cholesterol, triglycerides and phospholipids in multiple tissues) and PLCG2 genes (whose protein creates 1D-myo-inositol 1,4,5-trisphosphate and diacylglycerol, two important second messengers). CONCLUSIONS Our findings suggest that women exposure to cosmetic and PCP-released chemicals might be associated with the promotion of cell cycle and cell differentiation as well as with lipid metabolism disruption in endometriotic tissue, three crucial signaling pathways in the development and progression of endometriosis. However, further studies should be accomplished to confirm these preliminary data.
Collapse
Affiliation(s)
- F M Peinado
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain; University of Granada, Centre for Biomedical Research, E-18016 Granada, Spain; Radiology and Physical Medicine Department, University of Granada, E-18016 Granada, Spain.
| | - A Olivas-Martínez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain; University of Granada, Centre for Biomedical Research, E-18016 Granada, Spain; Radiology and Physical Medicine Department, University of Granada, E-18016 Granada, Spain
| | - L M Iribarne-Durán
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain
| | - A Ubiña
- General surgery, San Cecilio University Hospital, E-18016 Granada, Spain
| | - J León
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain; Digestive Medicine Unit, 'San Cecilio' University Hospital, E-18012 Granada, Spain; CIBER Hepatic and Digestive Diseases (CIBEREHD), E-28029 Madrid, Spain
| | - F Vela-Soria
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain
| | - J Fernández-Parra
- Gynaecology and Obstetrics Unit, 'Virgen de las Nieves' University Hospital, E-18014 Granada, Spain
| | - M F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain; CIBER Epidemiology and Public Health (CIBERESP), E-28029 Madrid, Spain; Radiology and Physical Medicine Department, University of Granada, E-18016 Granada, Spain
| | - N Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain; CIBER Epidemiology and Public Health (CIBERESP), E-28029 Madrid, Spain; Radiology and Physical Medicine Department, University of Granada, E-18016 Granada, Spain; Nuclear Medicine Unit, 'San Cecilio' University Hospital, E-18016 Granada, Spain
| | - C Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain; CIBER Epidemiology and Public Health (CIBERESP), E-28029 Madrid, Spain
| | - O Ocón-Hernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain; Gynaecology and Obstetrics Unit, 'San Cecilio' University Hospital, E-18016 Granada, Spain
| | - F Artacho-Cordón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain; CIBER Epidemiology and Public Health (CIBERESP), E-28029 Madrid, Spain; Radiology and Physical Medicine Department, University of Granada, E-18016 Granada, Spain.
| |
Collapse
|
17
|
Costa DA, Oliveira-Filho EC. Effects of Commercial Sunscreens on Survival, Reproduction and Embryonic Development of the Aquatic Snail Biomphalaria glabrata (SAY, 1818). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:2. [PMID: 37338674 DOI: 10.1007/s00128-023-03756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023]
Abstract
Over the past few years, there has been a significant increase in the use of sunscreens. Consequently, the occurrence in aquatic environments of ultraviolet filters has also increased. The present study aims to evaluate the toxicity of two commercial sunscreens to the aquatic snail Biomphalaria glabrata. Acute assays were performed with adult snails exposed to solutions of the two products in synthetic soft water. Reproduction and development assays were carried out, involving individual adult and egg masses exposure to assess fertility and embryonic development. Sunscreen A showed a LC50-96 h of 6.8 g/L and reduction in number of eggs and egg masses per individual in the concentration of 0.3 g/L. Sunscreen B presented higher malformation rates in 0.4 g/L with 63% of malformed embryos. Results indicate that the formulation used in sunscreens is an important factor in aquatic toxicity and needs to be evaluated before the final product is commercialized.
Collapse
Affiliation(s)
- Danilo Aparecido Costa
- Universidade de Brasilia, Campus de Planaltina (FUP) Planaltina, Distrito Federal, 73, 345-010, Brasilia, Brazil
| | - Eduardo Cyrino Oliveira-Filho
- Embrapa Cerrados (Empresa Brasileira de Pesquisa Agropecuária), Rodovia BR-020, km 18, Distrito Federal, 73310-970, Planaltina, Brazil.
| |
Collapse
|
18
|
Sovierzoski JCF, Severino MA, Ribas E, Gomes MF, Rocha Martins LR, Ramsdorf WA. Biomarkers activity in Oreochromis niloticus under sub-chronic exposure to a UV filters ternary mixture. CHEMOSPHERE 2023; 331:138756. [PMID: 37146775 DOI: 10.1016/j.chemosphere.2023.138756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/07/2023]
Abstract
The behavior of organic UV filters in aquatic ecosystems and living organisms raises concern. For the first time, biochemical biomarkers were evaluated in the liver and brain of juvenile Oreochromis niloticus exposed to 0.001 and 0.5 mg L-1 of a benzophenone-3 (BP-3), octyl methoxycinnamate (EHMC), and octocrylene (OC) mixture for 29 days. Before the exposure, the stability of these UV filters was investigated using liquid chromatography. The experiment with aeration in the aquarium showed a high percentage of concentration reduction (%) after 24 h: 62 ± 2 for BP-3, 96 ± 6 for EHMC, and 88 ± 2 for OC versus 5 ± 4 for BP-3, 8 ± 7 for EHMC, and 2 ± 3 for OC when without aeration. These results defined the bioassay protocol. The stability of the filters concentrations after being stored in PET flasks and subjected to freezing and thawing cycles was also verified. In PET bottles, the BP-3, EHMC, and OC presented concentration reductions of 8 ± 1, 28 ± 7 and 25 ± 5 respectively, after 96 h storage and four freezing cycles. In falcon tubes the concentration reductions observed were 47 ± 2 for BP-3, >95 ± 1 for EHMC and 86 ± 2 for OC after 48 h and two cycles. The 29 days of sub-chronic exposure indicated the occurrence of oxidative stress through the enhanced lipid peroxidation (LPO) levels for the groups exposed to both bioassay concentrations. The catalase (CAT), glutathione-S-transferase (GST), and acetylcholinesterase (AChE) activities did not show significant alterations. The genetic adverse effects were analyzed in erythrocytes of fish exposed to 0.001 mg L-1 of the mixture by comet and micronucleus biomarkers and no significant damage was observed.
Collapse
Affiliation(s)
- Julia Caroline Freire Sovierzoski
- Graduate Program in Environmental Science and Technology, Federal University of Technology, Address Dep. Heitor Alencar Furtado, 5000, 81280-340, Curitiba, PR, Brazil
| | - Marcos Antonio Severino
- Undergraduate Course of Technology in Environmental Processes, Federal University of Technology, Address Dep. Heitor Alencar Furtado, 5000, 81280-340, Curitiba, PR, Brazil
| | - Eberton Ribas
- Graduate Program in Environmental Science and Technology, Federal University of Technology, Address Dep. Heitor Alencar Furtado, 5000, 81280-340, Curitiba, PR, Brazil
| | - Monike Felipe Gomes
- Graduate Program in Sciences - Biochemistry, Federal University of Paraná, Address XV de Novembro, 1299, 80060-000, Curitiba, PR, Brazil
| | - Lucia Regina Rocha Martins
- Program in Urban Environmental Sustainability, Federal University of Technology, Address Dep. Heitor Alencar Furtado, 5000, 81280-340, Curitiba, PR, Brazil
| | - Wanessa Algarte Ramsdorf
- Program in Urban Environmental Sustainability, Federal University of Technology, Address Dep. Heitor Alencar Furtado, 5000, 81280-340, Curitiba, PR, Brazil.
| |
Collapse
|
19
|
Peinado FM, Iribarne-Durán LM, Artacho-Cordón F. Human Exposure to Bisphenols, Parabens, and Benzophenones, and Its Relationship with the Inflammatory Response: A Systematic Review. Int J Mol Sci 2023; 24:ijms24087325. [PMID: 37108488 PMCID: PMC10139086 DOI: 10.3390/ijms24087325] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Bisphenols, parabens (PBs), and benzophenones (BPs) are widely used environmental chemicals that have been linked to several adverse health effects due to their endocrine disrupting properties. However, the cellular pathways through which these chemicals lead to adverse outcomes in humans are still unclear, suggesting some evidence that inflammation might play a key role. Thus, the aim of this study was to summarize the current evidence on the relationship between human exposure to these chemicals and levels of inflammatory biomarkers. A systematic review of peer-reviewed original research studies published up to February 2023 was conducted using the MEDLINE, Web of Science, and Scopus databases. A total of 20 articles met the inclusion/exclusion criteria. Most of the reviewed studies reported significant associations between any of the selected chemicals (mainly bisphenol A) and some pro-inflammatory biomarkers (including C-reactive protein and interleukin 6, among others). Taken together, this systematic review has identified consistent positive associations between human exposure to some chemicals and levels of pro-inflammatory biomarkers, with very few studies exploring the associations between PBs and/or BPs and inflammation. Therefore, a larger number of studies are required to get a better understanding on the mechanisms of action underlying bisphenols, PBs, and BPs and the critical role that inflammation could play.
Collapse
Affiliation(s)
| | | | - Francisco Artacho-Cordón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Radiology and Physical Medicine Department, University of Granada, 18016 Granada, Spain
| |
Collapse
|
20
|
Occurrence, effects, and ecological risks of chemicals in sanitizers and disinfectants: A review. ENVIRONMENTAL CHEMISTRY AND ECOTOXICOLOGY 2023; 5:62-78. [PMCID: PMC9911856 DOI: 10.1016/j.enceco.2023.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 10/15/2023]
Abstract
In response to the novel coronavirus referred to as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) – a virus that causes COVID-19 disease has led to wide use of sanitizers and disinfectants. This, in turn, triggered concerns on their potential deleterious effects to human health and the environment due to numerous chemicals incorporated in both product categories. Here, the current state of science regarding the occurrence and ecological effects of different classes of chemicals in these products (e.g., ultraviolent filters, fragrances, etc.) are summarized in different natural (e.g., rivers) and engineered (e.g., wastewater treatment plants) systems. Data collected in the literature suggests chemicals incorporated in sanitizers and disinfectants are present in the environment, and a large portion are toxic to fish, algae, and daphnia. Using the risk quotient approach based on occurrence data, we found eight chemicals that posed the highest risk to aquatic organisms in freshwater systems were benzalkonium chloride, 4-chloro-m-cresol, sodium ortho phenyl phenate, hydrogen peroxide, 1, 2-propanediol, 4-Methyl-benzilidine-camphor, ethylhexyl methoxy cinnamate, and octocrylene. Considering limited occurrence and effects information for most chemicals, further studies on environmental monitoring and potential consequences of long-term exposure in aquatic ecosystems are recommended.
Collapse
|
21
|
Burns EE, Roush KS, Csiszar SA, Davies IA. Freshwater Environmental Risk Assessment of Down-the-Drain Octinoxate Emissions in the United States. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:3116-3124. [PMID: 36148933 PMCID: PMC9828718 DOI: 10.1002/etc.5488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/15/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Organic ultraviolet (UV) filters are used in a variety of cosmetic and personal care products (CPCPs), including sunscreens, due to their ability to absorb solar radiation. These UV filters can be washed down the drain through bathing, cleansing, or the laundering of clothing, therefore UV filters can enter the freshwater environment via wastewater treatment plant effluent, and so a freshwater risk assessment is necessary to establish the environmentally safe use of these important CPCP ingredients. In the present study, an environmental safety assessment for a UV filter of regulatory concern, octinoxate, was conducted. An established risk assessment framework designed specifically for CPCPs released to the freshwater environment in the United States was used for the assessment. A distribution of predicted environmental concentrations (PECs) representative of conditions across the region was calculated using the spatially resolved probabilistic exposure model iSTREEM. A review of available hazard data was conducted to derive a predicted no-effect concentration (PNEC). The safety assessment was conducted by comparing the PEC distribution to the PNEC. A substantial margin of safety was found between the 90th percentile PEC, which is representative of the reasonable worst-case environmental exposure, and the PNEC. Owing to this finding of negligible risk, further refinement of the risk assessment through the generation of experimental data or refinement of conservative assumptions is not prioritized. These results are critical for demonstrating the environmental safety of UV filters in the US freshwater environment and will help guide future work. Environ Toxicol Chem 2022;41:3116-3124. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Emily E. Burns
- Personal Care Products CouncilWashingtonDistrict of ColumbiaUSA
| | | | | | - Iain A. Davies
- Personal Care Products CouncilWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
22
|
Downs CA, Diaz-Cruz MS, White WT, Rice M, Jim L, Punihaole C, Dant M, Gautam K, Woodley CM, Walsh KO, Perry J, Downs EM, Bishop L, Garg A, King K, Paltin T, McKinley EB, Beers AI, Anbumani S, Bagshaw J. Beach showers as sources of contamination for sunscreen pollution in marine protected areas and areas of intensive beach tourism in Hawaii, USA. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129546. [PMID: 35941056 DOI: 10.1016/j.jhazmat.2022.129546] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
In 2019, sands in nearby runoff streams from public beach showers were sampled on three islands in the State of Hawaii and tested for over 18 different petrochemical UV filters. Beach sands that are directly in the plume discharge of beach showers on three of the islands of Hawaii (Maui, Oahu, Hawai'i) were found to be contaminated with a wide array of petrochemical-based UV-filters that are found in sunscreens. Sands from beach showers across all three islands had a mean concentration of 5619 ng/g of oxybenzone with the highest concentration of 34,518 ng/g of oxybenzone at a beach shower in the Waikiki area of Honolulu. Octocrylene was detected at a majority of the beach shower locations, with a mean concentration of 296.3 ng/g across 13 sampling sites with the highest concentration of 1075 ng/g at the beach shower in Waikiki. Avobenzone, octinoxate, 4-methylbenzylidene camphor and benzophenone-2 were detected, as well as breakdown products of oxybenzone, including benzophenone-1, 2,2'-dihydroxy-4-methoxybenzophenone, and 4-hydroxybenzophenone. Dioxybenzone (DHMB) presented the highest concentration in water (75.4 ng/mL), whereas octocrylene was detected in all water samples. Some of these same target analytes were detected in water samples on coral reefs that are adjacent to the beach showers. Risk assessments for both sand and water samples at a majority of the sampling sites had a Risk Quotient > 1, indicating that these chemicals could pose a serious threat to beach zones and coral reef habitats. There are almost a dozen mitigation options that could be employed to quickly reduce contaminant loads associated with discharges from these beach showers, like those currently being employed (post-study sampling and analysis) in the State of Hawaii, including banning the use of sunscreens using petrochemical-based UV filters or educating tourists before they arrive on the beach.
Collapse
Affiliation(s)
- C A Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, VA 24533, USA.
| | - M Silvia Diaz-Cruz
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center, Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, Barcelona 08034, Spain
| | | | - Marc Rice
- Hawai'i Preparatory Academy, 65-1692 Kohala Mountain Road, Kamuela, HI 96743, USA
| | - Laura Jim
- Hawai'i Preparatory Academy, 65-1692 Kohala Mountain Road, Kamuela, HI 96743, USA
| | - Cindi Punihaole
- Kahalu`u Bay Education Center, The Kohala Center, P.O. Box 437462, Kamuela, HI 967, USA
| | - Mendy Dant
- Fair Wind Cruises, Kailua Kona, HI 96740, USA
| | - Krishna Gautam
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Cheryl M Woodley
- US National Oceanic & Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Coral Disease & Health Program, Hollings Marine Laboratory, 331 Ft. Johnson Rd., Charleston, SC 29412, USA
| | - Kahelelani O Walsh
- Hawai'i Preparatory Academy, 65-1692 Kohala Mountain Road, Kamuela, HI 96743, USA
| | - Jenna Perry
- Hawai'i Preparatory Academy, 65-1692 Kohala Mountain Road, Kamuela, HI 96743, USA
| | - Evelyn M Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, VA 24533, USA
| | - Lisa Bishop
- Friends of Hanauma Bay, P.O. Box 25761, Honolulu, HI 96825-07610, USA
| | - Achal Garg
- Chemists Without Borders, Sacramento, CA 95835, USA
| | - Kelly King
- Maui County Council, 200 S. High St., Wailuku, HI 96793, USA
| | - Tamara Paltin
- Maui County Council, 200 S. High St., Wailuku, HI 96793, USA
| | | | - Axel I Beers
- Maui County Council, 200 S. High St., Wailuku, HI 96793, USA
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jeff Bagshaw
- Hawaii Division of Forestry and Wildlife, 685 Haleakala Hwy, Kahului, HI 96732, USA
| |
Collapse
|
23
|
Iribarne-Durán LM, Serrano L, Peinado FM, Peña-Caballero M, Hurtado JA, Vela-Soria F, Fernández MF, Freire C, Artacho-Cordón F, Olea N. Biomonitoring bisphenols, parabens, and benzophenones in breast milk from a human milk bank in Southern Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154737. [PMID: 35337871 DOI: 10.1016/j.scitotenv.2022.154737] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Human breast milk is considered the optimal source of nutrition for infants. Milk from breast milk banks offers an alternative to infant formulas for vulnerable hospitalized neonates most likely to benefit from exclusive human milk feeding. However, breast milk can also be a source of exposure to environmental contaminants, including endocrine-disrupting chemicals (EDCs). AIM To evaluate concentrations of phenolic EDCs, including bisphenols, parabens (PBs), and benzophenones (BPs), in samples from a human milk bank in Granada, Southern Spain and to explore sociodemographic, reproductive, and lifestyle factors related to their concentrations in the milk. METHODS Concentrations of three bisphenols [bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS)], four PBs [methyl- (MeP), ethyl- (EtP), propyl- (n-PrP), and butyl-paraben (n-BuP)], and six BPs [BP-1, BP-2, BP-3, BP-6, BP-8, and 4-hydroxy-BP] were determined in milk samples from 83 donors. Information on potential explanatory variables was gathered using the milk bank donor form and an ad hoc questionnaire. Multiple linear and logistic regression models were fitted. RESULTS Detectable concentrations were found of at least one of the analyzed compounds in all donor breast milk samples and at least five compounds in one-fifth of them. The most frequently detected compounds were MeP (90.5%), BP-3 (75.0%), EtP (51.2%), n-PrP (46.4%), and BPA (41.7%). Median concentrations ranged between <0.10 ng/mL (n-PrP, n-BuP, BP-1) and 0.59 ng/mL (BP-3). No sample contained detectable concentrations of BPF, BPS, or most BPs (BP-2, BP-6, BP-8, and 4- hydroxy-BP). Breast milk phenol concentrations were associated with parity, the utilization of deodorants, mouthwash, skin care products, and cosmetics, and the intake of nutritional supplements. CONCLUSIONS Results reveal the widespread presence of BPA, PBs, and BP-3 in donor breast milk samples, highlighting the need for preventive measures to enhance the benefits of breast milk from milk banks and from breastfeeding women in general.
Collapse
Affiliation(s)
- L M Iribarne-Durán
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain
| | - L Serrano
- Neonatal Intensive Care Unit, Virgen de las Nieves University Hospital, E-18012 Granada, Spain
| | - F M Peinado
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain
| | - M Peña-Caballero
- Neonatal Intensive Care Unit, Virgen de las Nieves University Hospital, E-18012 Granada, Spain
| | - J A Hurtado
- Neonatal Intensive Care Unit, Virgen de las Nieves University Hospital, E-18012 Granada, Spain
| | - F Vela-Soria
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain
| | - M F Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), E-28029 Madrid, Spain; Department of Radiology and Physical Medicine, University of Granada, E-18016 Granada, Spain
| | - C Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), E-28029 Madrid, Spain.
| | - F Artacho-Cordón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), E-28029 Madrid, Spain; Department of Radiology and Physical Medicine, University of Granada, E-18016 Granada, Spain.
| | - N Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), E-18012 Granada, Spain; CIBER de Epidemiología y Salud Pública (CIBERESP), E-28029 Madrid, Spain; Department of Radiology and Physical Medicine, University of Granada, E-18016 Granada, Spain; Nuclear Medicine Unit, San Cecilio University Hospital, E-18016 Granada, Spain
| |
Collapse
|
24
|
Huang F. Research Progress of Nanomaterial Mechanics for Targeted Treatment of Muscle Strains in Sports Rehabilitation Training. Appl Bionics Biomech 2022; 2022:8931131. [PMID: 35465182 PMCID: PMC9023226 DOI: 10.1155/2022/8931131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
More and more people are beginning to recognize the important role of intelligent rehabilitation training equipment in rehabilitation treatment and continue to carry out related researches. The use of intelligent robot technology for rehabilitation treatment has been rapidly developed, and it has achieved rapid progress on a global scale. Especially in some developed countries, this field has also received corresponding attention in some developed cities in China in recent years. Mesoporous nanomaterials have unique physical, chemical, and biological properties. Mesoporous nanomaterials can be combined with chemotherapy drugs to minimize the harm caused by chemotherapy drugs to the human body and improve the therapeutic effect. As a result, the cure rate has been improved, and it has shown deep potential in breast cancer chemotherapy. Fifty breast cancer patients were selected as the research objects and randomly divided into a control group and an experimental group, each with 25 cases. The control group was treated with conventional chemotherapeutics, and the experimental group was treated with molecular targeted therapy to compare the treatment effects of the two groups. Studies have shown that the recurrence rate and the occurrence probability of complications in the experimental group are significantly lower than those in the control group. Molecular targeted therapy for breast cancer has obvious effects, which reduces the recurrence rate of complications or diseases, and is less toxic.
Collapse
Affiliation(s)
- Fengping Huang
- Department of Basic Courses, Shandong University of Science and Technology, Jinan, 250031 Shandong, China
| |
Collapse
|
25
|
Słoczyńska K, Popiół J, Gunia-Krzyżak A, Koczurkiewicz-Adamczyk P, Żmudzki P, Pękala E. Evaluation of Two Novel Hydantoin Derivatives Using Reconstructed Human Skin Model EpiskinTM: Perspectives for Application as Potential Sunscreen Agents. Molecules 2022; 27:molecules27061850. [PMID: 35335215 PMCID: PMC8949075 DOI: 10.3390/molecules27061850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/28/2022] Open
Abstract
This study aimed to assess two novel 5-arylideneimidazolidine-2,4-dione (hydantoin) derivatives (JH3 and JH10) demonstrating photoprotective activity using the reconstructed human skin model EpiskinTM. The skin permeability, irritation, and phototoxicity of the compounds was evaluated in vitro. Moreover, the in vitro genotoxicity and human metabolism of both compounds was studied. For skin permeation and irritation experiments, the test compounds were incorporated into a formulation. It was shown that JH3 and JH10 display no skin irritation and no phototoxicity. Both compounds did not markedly enhance the frequency of micronuclei in CHO-K1 cells in the micronucleus assay. Preliminary in vitro studies with liver microsomes demonstrated that hydrolysis appears to constitute their important metabolic pathway. EpiskinTM permeability experiments showed that JH3 permeability was lower than or close to currently used UV filters, whereas JH10 had the potential to permeate the skin. Therefore, a restriction of this compound permeability should be obtained by choosing the right vehicle or by optimizing it, which should be addressed in future studies.
Collapse
Affiliation(s)
- Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (P.K.-A.); (E.P.)
- Correspondence: ; Tel.: +48-126-205-577
| | - Justyna Popiół
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (P.K.-A.); (E.P.)
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (P.K.-A.); (E.P.)
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (J.P.); (P.K.-A.); (E.P.)
| |
Collapse
|
26
|
Downs CA, Bishop E, Diaz-Cruz MS, Haghshenas SA, Stien D, Rodrigues AMS, Woodley CM, Sunyer-Caldú A, Doust SN, Espero W, Ward G, Farhangmehr A, Tabatabaee Samimi SM, Risk MJ, Lebaron P, DiNardo JC. Oxybenzone contamination from sunscreen pollution and its ecological threat to Hanauma Bay, Oahu, Hawaii, U.S.A. CHEMOSPHERE 2022; 291:132880. [PMID: 34780745 DOI: 10.1016/j.chemosphere.2021.132880] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 05/20/2023]
Abstract
Hanauma Bay is a 101-acre bay created by the partial collapse of a volcanic cone and once supported a vibrant coral reef system. It is the most popular swimming area in the Hawaiian Islands and has been reported to have averaged between 2.8 and 3.5 million visitors a year between the 1980s and the 2010s, with visitors averaging between 3000-4000 a day and peaking around 10,000-13,000 per day. Concentrations of oxybenzone and other common UV filters were measured in subsurface water samples and in sands from the beach-shower areas in Hanauma Bay. Results demonstrate that beach showers also can be a source of sunscreen environmental contamination. Hydrodynamic modeling indicates that oxybenzone contamination within Hanauma Bay's waters could be retained between 14 and 50 h from a single release event period. Focusing on only oxybenzone, two different Hazard and Risk Assessment analyses were conducted to determine the danger of oxybenzone to Hanauma Bay's coral reef system. Results indicate that oxybenzone contamination poses a significant threat to the wildlife of Hanauma Bay. To recover Hanauma Bay's natural resources to a healthy condition and to satisfactorily conserve its coral reef and sea grass habitats, effective tourism management policies need to be implemented that mitigate the threat of sunscreen pollution.
Collapse
Affiliation(s)
- C A Downs
- Haereticus Environmental Laboratory, P.O. Box 92, Clifford, VA, 2453, USA; Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, 66650, Banyuls-sur-mer, France.
| | - Elizabeth Bishop
- Friends of Hanauma Bay, P.O. Box 25761, Honolulu, HI, 96825-07610, USA
| | - M Silvia Diaz-Cruz
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center. Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | | | - Didier Stien
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, 66650, Banyuls-sur-mer, France
| | - Alice M S Rodrigues
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, 66650, Banyuls-sur-mer, France
| | - Cheryl M Woodley
- U.S. National Oceanic & Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Coral Disease & Health Program, Hollings Marine Laboratory, 331 Ft. Johnson Rd. Charleston, SC, 29412, USA
| | - Adrià Sunyer-Caldú
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Severo Ochoa Excellence Center. Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | | | - William Espero
- Hawaii State Senate, Senate District 19, Hawaii State Capitol, 415 S. Beretania St. Honolulu, HI, 96813, USA
| | - Gene Ward
- Hawaii State Legislature, House District 17, Hawaii State Capitol, 415 S. Beretania St. Honolulu, HI, 96813, USA
| | | | | | - Michael J Risk
- Department of Earth Sciences, McMaster University, Hamilton, Ontario, L8S 4M1, Canada
| | - Philippe Lebaron
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, USR3579, Observatoire Océanologique, 66650, Banyuls-sur-mer, France
| | | |
Collapse
|
27
|
Emerging Contaminants in Seafront Zones. Environmental Impact and Analytical Approaches. SEPARATIONS 2021. [DOI: 10.3390/separations8070095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Some chemical substances have the potential to enter the coastal and marine environment and cause adverse effects on ecosystems, biodiversity and human health. For a large majority of them, their fate and effects are poorly understood as well as their use still unregulated. Finding effective and sustainable strategies for the identification of these emerging and/or anthropogenic contaminants that might cause polluting effects in marine environments to mitigate their adverse effects, is of utmost importance and a great challenge for managers, regulators and researchers. In this review we will evaluate the impact of emerging contaminants (ECs) on marine coastal zones namely in their ecosystems and biodiversity, highlighting the potential risks of organic pollutants, pharmaceuticals and personal care products. Emerging microextraction techniques and high-resolution analytical platforms used in isolation, identification and quantification of ECs will be also reviewed.
Collapse
|
28
|
Huang Y, Law JCF, Lam TK, Leung KSY. Risks of organic UV filters: a review of environmental and human health concern studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142486. [PMID: 33038838 DOI: 10.1016/j.scitotenv.2020.142486] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/31/2020] [Accepted: 09/16/2020] [Indexed: 05/28/2023]
Abstract
Organic UV filters are compounds that absorb UV irradiation by their highly conjugated structure. With the developing consciousness over the last century of the skin damage UV radiation can cause, the demand for organic UV filters has risen, for use not only in sunscreens, but also in other personal care products. The massive production and usage of these organic UV filters has resulted in extensive release into the aquatic environment, and thereby making an important group of emerging contaminants. Considering the widespread occurrence of organic UV filters in not only ambient water, but also sediment, soil and even indoor dust, their threats towards the health of living organisms have been a subject of active investigation. In this review article, we present an overall review of existing knowledge on the risks of organic UV filters from the aspects of both environmental and human health impacts. As for the environment, some organic UV filters are proven to bioaccumulate in various kinds of aquatic organisms, and further to have adverse effects on different kinds of animal models. Toxicological studies including in vivo and in vitro studies are important and effective means to ascertain the effects and mechanisms of organic UV filters on both the ecosystem and humans. Subsequent concerns arise that these compounds will affect human health in the long term. This review concludes by suggesting future lines of research based on the remaining knowledge gaps.
Collapse
Affiliation(s)
- Yanran Huang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Japhet Cheuk-Fung Law
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Tsz-Ki Lam
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China.
| |
Collapse
|
29
|
Trinh TX, Kim J. Status Quo in Data Availability and Predictive Models of Nano-Mixture Toxicity. NANOMATERIALS 2021; 11:nano11010124. [PMID: 33430414 PMCID: PMC7826902 DOI: 10.3390/nano11010124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
Co-exposure of nanomaterials and chemicals can cause mixture toxicity effects to living organisms. Predictive models might help to reduce the intensive laboratory experiments required for determining the toxicity of the mixtures. Previously, concentration addition (CA), independent action (IA), and quantitative structure–activity relationship (QSAR)-based models were successfully applied to mixtures of organic chemicals. However, there were few studies concerning predictive models for toxicity of nano-mixtures before June 2020. Previous reviews provided comprehensive knowledge of computational models and mechanisms for chemical mixture toxicity. There is a gap in the reviewing of datasets and predictive models, which might cause obstacles in the toxicity assessment of nano-mixtures by using in silico approach. In this review, we collected 183 studies of nano-mixture toxicity and curated data to investigate the current data and model availability and gap and to derive research challenges to facilitate further experimental studies for data gap filling and the development of predictive models.
Collapse
Affiliation(s)
- Tung X. Trinh
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea;
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Jongwoon Kim
- Chemical Safety Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea;
- Correspondence: ; Tel.: +82-(0)42-860-7482
| |
Collapse
|
30
|
Prakash V, Anbumani S. A Systematic Review on Occurrence and Ecotoxicity of Organic UV Filters in Aquatic Organisms. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 257:121-161. [PMID: 34554327 DOI: 10.1007/398_2021_68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The growing production of cosmetic products such as organic UV filters (OUVFs) in recent years has raised concern regarding their safety to human and environmental health. The inability of wastewater treatment plants in removing these chemical entities and their high octanol-water partition coefficient values tend to result in the persistence of OUVFs in several environmental matrices, leading these to be categorized as "emerging environmental contaminants" because of their unknown risk. Besides aquatic ecosystem contamination, the application of sludge disposal equally threatens terrestrial biota. Besides, the available reviews focusing on levels of OUVFs in aqueous systems (freshwater and marine), instrumental analysis from various samples, and specific toxicity effects, compiled information on the ecotoxicity of OUVFs is currently lacking. Hence, the present manuscript systematically reviews the ecotoxicity of OUVFs in freshwater and marine organisms occupying lower to higher trophic levels, including the underlying mechanisms of action and current knowledge gaps. The available scientific evidence suggests that OUVFs are a prime candidate for environmental concern due to their potential toxic effects. To the best of our knowledge, this is the first document detailing the toxicological effects of OUVFs in aquatic organisms.
Collapse
Affiliation(s)
- Ved Prakash
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
31
|
Boyd A, Stewart CB, Philibert DA, How ZT, El-Din MG, Tierney KB, Blewett TA. A burning issue: The effect of organic ultraviolet filter exposure on the behaviour and physiology of Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141707. [PMID: 33182172 DOI: 10.1016/j.scitotenv.2020.141707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Ultraviolet (UV) filters are compounds utilized in many manufacturing processes and personal care products such as sunscreen to protect against UV-radiation. These highly lipophilic compounds are emerging contaminants of concern in aquatic environments due to their previously observed potential to bioaccumulate and exert toxic effects in marine ecosystems. Currently, research into the toxic effects of UV filter contamination of freshwater ecosystems is lacking, thus the present study sought to model the effects of acute and chronic developmental exposures to UV filters avobenzone, oxybenzone and octocrylene as well as a mixture of these substances in the freshwater invertebrate, Daphnia magna, at environmentally realistic concentrations. Median 48-hour effect and lethal concentrations were determined to be in the low mg/L range, with the exception of octocrylene causing 50% immobilization near environmental concentrations. 48-hour acute developmental exposures proved to behaviourally impair daphnid phototactic response; however, recovery was observed following a 19-day post-exposure period. Although no physiological disruptions were detected in acutely exposed daphnids, delayed mortality was observed up to seven days post-exposure at 200 μg/L of avobenzone and octocrylene. 21-day chronic exposure to 7.5 μg/L octocrylene yielded complete mortality within 7 days, while sublethal chronic exposure to avobenzone increased Daphnia reproductive output and decreased metabolic rate. 2 μg/L oxybenzone induced a 25% increase in metabolic rate of adult daphnids, and otherwise caused no toxic effects at this dose. These data indicate that UV filters can exert toxic effects in freshwater invertebrates, therefore further study is required. It is clear that the most well-studied UV filter, oxybenzone, may not be the most toxic to Daphnia, as both avobenzone and octocrylene induced behavioural and physiological disruption at environmentally realistic concentrations.
Collapse
Affiliation(s)
- Aaron Boyd
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada.
| | - Connor B Stewart
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada
| | - Danielle A Philibert
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada; Huntsman Marine Science Centre, St. Andrews E5B 2L7, Canada
| | - Zuo Tong How
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, AB T6G 1H, Canada
| | - Mohamed Gamal El-Din
- University of Alberta, Department of Civil and Environmental Engineering, Edmonton, AB T6G 1H, Canada
| | - Keith B Tierney
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada
| | - Tamzin A Blewett
- University of Alberta, Department of Biological Sciences, Edmonton T6G 2E9, Canada
| |
Collapse
|
32
|
Mao F, He Y, Gin KYH. Antioxidant responses in cyanobacterium Microcystis aeruginosa caused by two commonly used UV filters, benzophenone-1 and benzophenone-3, at environmentally relevant concentrations. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122587. [PMID: 32335379 DOI: 10.1016/j.jhazmat.2020.122587] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Benzophenone-type ultraviolet filters (BPs) have recently been recognized as emerging organic contaminants. In the present study, the cyanobacterium Microcystis aeruginosa was exposed to environmentally relevant levels (0.01-1000 μg L-1) of benzophenone-1 (BP-1) and benzophenone-3 (BP-3) for seven days. A battery of tested endpoints associated with photosynthetic pigments and oxidative stress was employed for a better understanding of the mode of action. The tested cyanobacterium could uptake the two BPs (27.4-54.9%) from culture media. The two BPs were able to inhibit the production of chlorophyll a (chl-a) and promote the accumulation of carotenoids, leading to unaffected chl-a autofluorescence. Slightly increased malondialdehyde (MDA) contents suggested that BP-1 and BP-3 caused moderate oxidative stress. BP-1 stimulated the activities of superoxide dismutase (SOD), glutathione reductase (GR) and glutathione S-transferase (GST) in M. aeruginosa while BP-3 increased the activities of SOD, GST, and glutathione (GSH), showing a concentration- and time-dependent relationship. The activities of other biomarkers, such as catalase (CAT) and glutathione peroxidase (GPx) fluctuated depending on exposure time and concentration. The overall results suggested that the two BPs can trigger moderate oxidative stress in M. aeruginosa and the tested cyanobacterium was capable of alleviating stress by different mechanisms.
Collapse
Affiliation(s)
- Feijian Mao
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore 117411, Singapore
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Yew-Hoong Gin
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore 117411, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, E1A 07-03, Singapore 117576, Singapore.
| |
Collapse
|
33
|
Nataraj B, Maharajan K, Hemalatha D, Rangasamy B, Arul N, Ramesh M. Comparative toxicity of UV-filter Octyl methoxycinnamate and its photoproducts on zebrafish development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:134546. [PMID: 31839308 DOI: 10.1016/j.scitotenv.2019.134546] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
In the present study, we explored the adverse effects of Octyl methoxycinnamate (OMC), and its photoproducts, namely 2-ethylhexanol (2-EH) and 4-methoxybenzaldehyde (4-MBA) on the developmental stages of zebrafish using various biomarkers such as developmental toxicity, oxidative stress, antioxidant response, neurotoxicity and histopathological changes. The 96 h effective concentrations (EC50) of OMC, 2-EH and 4-MBA were found to be 64.0, 34.0 and 3.5 µg/mL, respectively in the embryo toxicity test. Embryos exposed to the EC50 of OMC, 2-EH and 4-MBA showed time-dependent increases in the malformation, heart rate and hatching delay. The lipid peroxidation (LPO) level was significantly (p < 0.05) increased and both induction and inhibition of SOD, CAT, GPx and GST activities were observed in the zebrafish embryos exposed to OMC, 2-EH and 4-MBA. GSH activity was significantly (p < 0.05) decreased in the highest exposure groups, when compared with the control. AChE activity was increased in lower concentrations of OMC, 2-EH and 4-MBA exposed embryos whereas, the activity was found to be decreased in highest concentration. Moreover, the histopathological studies showed severe damage to the muscle fibers and yolk sac regions of the larvae with 4-MBA treatment. The photoproduct 4-MBA has the highest toxic effect, followed by 2-EH and OMC. Our results provide useful insights into the impacts of OMC and its photoproducts on zebrafish development.
Collapse
Affiliation(s)
- Bojan Nataraj
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India
| | - Kannan Maharajan
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India; DRDO-BU Center for Life Sciences, Bharathiar University, Coimbatore, India
| | - Devan Hemalatha
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India; PG and Research Department of Zoology, PSG College of Arts and Science, Coimbatore, 641014, India
| | - Basuvannan Rangasamy
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India
| | - Narayanasamy Arul
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
34
|
Valhondo C, Martínez-Landa L, Carrera J, Díaz-Cruz SM, Amalfitano S, Levantesi C. Six artificial recharge pilot replicates to gain insight into water quality enhancement processes. CHEMOSPHERE 2020; 240:124826. [PMID: 31561164 DOI: 10.1016/j.chemosphere.2019.124826] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/26/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
The processes that control water quality improvement during artificial recharge (filtering, degradation, and adsorption) can be enhanced by adding a reactive barrier containing different types of sorption sites and promoting diverse redox states along the flow path, which increases the range of pollutants degraded. While this option looks attractive for renaturazing reclaimed water, three issues have to be analyzed prior to broad scale application: (1) a fair comparison between the system with and without reactive barrier; (2) the role of plants in prevention of clogging and addition of organic carbon; and (3) the removal of pathogens. Here, we describe a pilot installation built to address these issues within a waste water treatment plant that feeds on water reclaimed from the secondary outflow. The installation consists of six systems of recharge basin and aquifer with some variations in the design of the reactive barrier and the heterogeneity of the aquifer. We report preliminary results after one year of operation. We find that (1) the systems are efficient in obtaining a broad range of redox conditions (at least iron and manganese reducing), (2) contaminants of emerging concern are significantly removed (around 80% removal, but very sensitive to the compound), (3) pathogen indicators (E. coli and Enterococci) drop by some 3-5 log units, and (4) the recharge systems maintained infiltration capacity after one year of operation (only the system without plants and the one without reactive barrier displayed some clogging). Overall, the reactive barrier enhances somewhat the performance of the system, but the gain is not dramatic, which suggests that barrier composition needs to be improved.
Collapse
Affiliation(s)
- Cristina Valhondo
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Jordi Girona, Barcelona, 08034, Spain; Hydrogeology Group (UPC-CSIC), Associate Unit, Jordi Girona, Barcelona, 08034, Spain.
| | - Lurdes Martínez-Landa
- Hydrogeology Group (UPC-CSIC), Associate Unit, Jordi Girona, Barcelona, 08034, Spain; Department of Civil and Environmental Engineering, Universitat Politecnica de Catalunya (UPC), Jordi Girona 1-3, Barcelona, 08034, Spain
| | - Jesús Carrera
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Jordi Girona, Barcelona, 08034, Spain; Hydrogeology Group (UPC-CSIC), Associate Unit, Jordi Girona, Barcelona, 08034, Spain
| | - Silvia M Díaz-Cruz
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Jordi Girona, Barcelona, 08034, Spain
| | - Stefano Amalfitano
- Water Research Institute, National Research Council, Via Salaria Km 29, Roma, 10-00015, Italy
| | - Caterina Levantesi
- Water Research Institute, National Research Council, Via Salaria Km 29, Roma, 10-00015, Italy
| |
Collapse
|
35
|
Soler de la Vega AC, Molins-Delgado D, Barceló D, Díaz-Cruz MS. Nanosized titanium dioxide UV filter increases mixture toxicity when combined with parabens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109565. [PMID: 31514078 DOI: 10.1016/j.ecoenv.2019.109565] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 05/06/2023]
Abstract
To address the concern about the environmental impact of engineered nanoparticles frequently used in the recently marketed personal care and hygiene products (PCPs), we conducted a toxicity assessment and determined the EC50 values of the nanosized inorganic UV filter TiO2 (nano-TiO2), as well as those of the organic UV filter oxybenzone (BP3) and three parabens (methyl, propyl, and benzylparaben) present in most PCPs formulation. The bioassays were carried out through standardized toxicity bioassays on two environmentally relevant aquatic species i.e. Daphnia magna and Phaeodactylum tricornutum. For nano-TiO2 48 h EC50 on D. magna was 3.09 mgL-1 and for parabens ranged from 32.52 to 1.35 mgL-1. The two most toxic compounds on D. magna, nano-TiO2 and benzylparaben (BzP), were further tested with the algae. For nano-TiO2 72 h EC50 value was 2.27 mgL-1 and for BzP it was 10.61 mgL-1. In addition, D. magna was exposed to selected binary mixtures of the target compounds i.e. nano-TiO2+BP3, nano-TiO2+BzP and BP3+BzP On the endpoint of 48 h, a synergistic action was observed for nano-TiO2+BP3 and nano-TiO2+BzP, but an antagonistic effect occurred in the mixture BP3+BzP. These findings suggest that nano-TiO2 can increase the toxicity of the mixture when combined with other compounds.
Collapse
Affiliation(s)
- Ana C Soler de la Vega
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research of the Spanish Council for Scientific Research (IDAEA-CSIC), Jordi Girona 18-26, 08034. Barcelona, Spain
| | - Daniel Molins-Delgado
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research of the Spanish Council for Scientific Research (IDAEA-CSIC), Jordi Girona 18-26, 08034. Barcelona, Spain
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research of the Spanish Council for Scientific Research (IDAEA-CSIC), Jordi Girona 18-26, 08034. Barcelona, Spain
| | - M Silvia Díaz-Cruz
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research of the Spanish Council for Scientific Research (IDAEA-CSIC), Jordi Girona 18-26, 08034. Barcelona, Spain.
| |
Collapse
|
36
|
Aminot Y, Sayfritz SJ, Thomas KV, Godinho L, Botteon E, Ferrari F, Boti V, Albanis T, Köck-Schulmeyer M, Diaz-Cruz MS, Farré M, Barceló D, Marques A, Readman JW. Environmental risks associated with contaminants of legacy and emerging concern at European aquaculture areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1301-1310. [PMID: 31252127 DOI: 10.1016/j.envpol.2019.05.133] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/17/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
The contamination of marine ecosystems by contaminants of emerging concern such as personal care products or per- and polyfluoroalkyl substances is of increasing concern. This work assessed the concentrations of selected contaminants of emerging concern in water and sediment of European aquaculture areas, to evaluate their co-variation with legacy contaminants (polycyclic aromatic hydrocarbons) and faecal biomarkers, and estimate the risks associated with their occurrence. The 9 study sites were selected in 7 European countries to be representative of the aquaculture activities of their region: 4 sites in the Atlantic Ocean and 5 in the Mediterranean Sea. Musks, UV filters, preservatives, per- and polyfluoroalkyl substances and polycyclic aromatic hydrocarbons were detected in at least one of the sites with regional differences. While personal care products appear to be the main component of the water contamination, polycyclic aromatic hydrocarbons were mostly found in sediments. As expected, generally higher levels of personal care products were found in sewage impacted sites, urbanised coasts and estuaries. The risk assessment for water and sediment revealed a potential risk for the local aquatic environment from contaminants of both legacy and emerging concern, with a significant contribution of the UV filter octocrylene. Despite marginal contributions of per- and polyfluoroalkyl substances to the total concentrations, PFOS (perfluorooctane sulfonate) aqueous concentrations combined to its low ecotoxicity thresholds produced significant hazard quotients indicating a potential risk to the ecosystems.
Collapse
Affiliation(s)
- Yann Aminot
- Biogeochemistry Research Centre, University of Plymouth, Plymouth, United Kingdom; IFREMER LBCO, Rue de l'Ile d'Yeu, BP 21105, 44311, Nantes, Cedex 3, France.
| | - Stephen J Sayfritz
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway
| | - Kevin V Thomas
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, 0349, Oslo, Norway; QAEHS, Queensland Alliance for Environmental Health Science, The University of Queensland, Brisbane, Australia
| | - Lia Godinho
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida de Brasília, 1449-006, Lisbon, Portugal
| | - Elena Botteon
- Aeiforia Srl, Località Faggiola 12-16, 29027, Gariga, Podenzano, PC, Italy; Di.S.T.A.S., Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Federico Ferrari
- Aeiforia Srl, Località Faggiola 12-16, 29027, Gariga, Podenzano, PC, Italy
| | - Vasiliki Boti
- Department of Chemistry, University of Ioannina, Panepistimioupolis, 45110, Ioannina, Greece
| | - Triantafyllos Albanis
- Department of Chemistry, University of Ioannina, Panepistimioupolis, 45110, Ioannina, Greece
| | - Marianne Köck-Schulmeyer
- Institute of Environmental Assessment and Water Research, Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona, 18, 08034, Barcelona, Spain
| | - M Silvia Diaz-Cruz
- Institute of Environmental Assessment and Water Research, Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona, 18, 08034, Barcelona, Spain
| | - Marinella Farré
- Institute of Environmental Assessment and Water Research, Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona, 18, 08034, Barcelona, Spain
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research, Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona, 18, 08034, Barcelona, Spain
| | - António Marques
- Division of Aquaculture and Upgrading (DivAV), Portuguese Institute for the Sea and Atmosphere (IPMA, I.P.), Avenida de Brasília, 1449-006, Lisbon, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
| | - James W Readman
- Biogeochemistry Research Centre, University of Plymouth, Plymouth, United Kingdom; Plymouth Marine Laboratory, Prospect Place, the Hoe, Plymouth, PL1 3DH, United Kingdom
| |
Collapse
|
37
|
Jurado A, Walther M, Díaz-Cruz MS. Occurrence, fate and environmental risk assessment of the organic microcontaminants included in the Watch Lists set by EU Decisions 2015/495 and 2018/840 in the groundwater of Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 663:285-296. [PMID: 30711595 DOI: 10.1016/j.scitotenv.2019.01.270] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/06/2019] [Accepted: 01/20/2019] [Indexed: 05/22/2023]
Abstract
This paper aims to review the existing occurrence data in Spanish groundwater (GW) for the emerging organic contaminants (EOCs) defined in the surface water Watch Lists of Decisions 2015/495/EU and 2018/840/EU since these contaminants are likely to reach GW bodies because surface waters show close interaction with GW. These two lists include 20 substances: 9 pesticides (5 neonicotinoids, 2 carbamates, 1 oxadiazole and 1 semicarbazone), 6 pharmaceuticals (diclofenac and 5 antibiotics), 3 estrogens, 1 UV filter (2-ethylhexyl-4-methoxycinnamate, EHMC) and 1 antioxidant (2,6-di-tert-butyl-4-methylphenol, BHT). Most of these substances are usually detected at low ng/L concentration range or not detected in the GW bodies of Spain. However, eventually they are reported at concentrations>100ng/L (e.g., imidacloprid, methiocarb, diclofenac, macrolide antibiotics, ciprofloxacin, EHMC and BHT). Consequently, it is required to set up drinking water standards, and/or GW threshold quality values because GW is a valuable water resource worldwide. Overall, GW is less contaminated than other water bodies, such as rivers, suggesting that aquifers possess a natural attenuation capacity and/or are less vulnerable than rivers to contamination. Nevertheless, the natural hydrogeochemical processes that control the fate and transformation of these substances during infiltration and in the aquifer have been barely investigated so far. The concentrations of the target EOCs are used to calculate hazard quotients (HQs) in the Spanish GW bodies as an estimation of their ecotoxicity and in order to compare somehow their chemical quality with respect to those of surface water. Due to the limited ecotoxicity data for most EOCs, HQs can only be calculated for few substances. The results pointed out the risk posed by the anti-inflammatory diclofenac towards Ceriodaphnia dubia (HQ=21) and the medium risk associated to the antibiotic erythromycin for Brachionus calyciflorus (HQ=0.46).
Collapse
Affiliation(s)
- Anna Jurado
- Institute for Groundwater Management, Technische Universität Dresden, Dresden, Germany.
| | - Marc Walther
- Institute for Groundwater Management, Technische Universität Dresden, Dresden, Germany; Department of Environmental Informatics, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - M Silvia Díaz-Cruz
- Department of Environmental Chemistry, Institute of Environmental Assessment & Water Research (IDAEA), CSIC, Barcelona, Spain
| |
Collapse
|
38
|
Shi ZQ, Liu YS, Xiong Q, Cai WW, Ying GG. Occurrence, toxicity and transformation of six typical benzotriazoles in the environment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 661:407-421. [PMID: 30677686 DOI: 10.1016/j.scitotenv.2019.01.138] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/08/2019] [Accepted: 01/12/2019] [Indexed: 05/28/2023]
Abstract
Benzotriazoles (BTs) are a group of heterocyclic compounds which have been widely applied in industrial activities and domestic life mainly as corrosive inhibitors. BTs have been ubiquitously detected in receiving environments and cause potential toxicity to non-target organisms. This paper reviews the occurrence and fate of six selected benzotriazole compounds in different environmental and biological matrices, as well as the transformation and toxicity. Due to their high hydrophilicity and insufficient removal in wastewater treatment plants (WWTPs), these compounds were widely detected in aquatic environments with concentrations mainly from tens ng/L to tens μg/L. Considerable residual levels of BTs in plant, fish, air, tap water and human urine have implied the potential risks to various organsims. The reported acute toxicity of BTs are generally low (EC50 in mg/L level). Some observed sublethal effects including endocrine disrupting effects, hepatotoxicity and neurotoxicity, as well as the ability to promote the development of endometrial carcinoma still raise a concern. BTs are found often more recalcitrant to biodegradation compared to photolysis and ozonation. Environmental factors including pH, temperature, irradiation wavelength, redox condition as well as components of matrix are proved crucial to the removal of BTs. Further studies are needed to explore the precise environment fate and toxicity mechanism of BTs, and develop advanced treatment technologies to reduce the potential ecological risks of BTs.
Collapse
Affiliation(s)
- Zhou-Qi Shi
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - You-Sheng Liu
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Qian Xiong
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Wen Cai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Guo Ying
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
39
|
Pico Y, Belenguer V, Corcellas C, Diaz-Cruz MS, Eljarrat E, Farré M, Gago-Ferrero P, Huerta B, Navarro-Ortega A, Petrovic M, Rodríguez-Mozaz S, Sabater L, Santín G, Barcelo D. Contaminants of emerging concern in freshwater fish from four Spanish Rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:1186-1198. [PMID: 31096332 DOI: 10.1016/j.scitotenv.2018.12.366] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 12/03/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
This study investigated the occurrence of 135 contaminants of emerging concern (CECs) - pharmaceuticals, pesticides, a set of endocrine disrupting compounds (EDCs) (parabens, bisphenols, hormones, triazoles, organophosphorus flame retardants and triclosan), UV-filters, perfluoroalkyl substances (PFASs) and halogenated flame retardants (HFRs) - in 59 fish samples, collected in 2010 in 4 Spanish Rivers (Guadalquivir, Júcar, Ebro and Llobregat). Of the 135 CECs, 76 including 8 pharmaceuticals, 25 pesticides, 10 EDCs, 5 UV-filters, 15 PFASs and 13 HFRs were detected. Pharmaceuticals were the less frequently found and at lower concentrations. Pesticides, EDCs, UV-filters, PFASs and HFRs were detected more frequently (>50% of the samples). The maximum concentrations were 15 ng/g dry weight (dw) for pharmaceuticals (diclofenac), 840 ng/g dw for pesticides (chlorpyrifos), 224 ng/g dw for EDCs (bisphenol A), 242 ng/g dw for UV-filters (EHMC), 1738 ng/g dw for PFASs (PFHxA) and 64 ng/g dw for HFRs (Dec 602). The contaminants detected in fish are commonly detected also in sediments. In light of current knowledge, the risk assessment revealed that there was no risk for humans related to the exposure to CECs via freshwater fish consumption. However, results provide detailed information on the mixtures of CECs accumulated that would be very useful to identify their effects on aquatic biota.
Collapse
Affiliation(s)
- Y Pico
- Food and Environmental Safety Research Group, Desertification Research Centre (CIDE) Joint Centre University of Valencia-CSIC-Generalitat Valencian, Moncada-Náquera Road, Km 4.5, 46113 Moncada, Valencia, Spain.
| | - V Belenguer
- Food and Environmental Safety Research Group, Desertification Research Centre (CIDE) Joint Centre University of Valencia-CSIC-Generalitat Valencian, Moncada-Náquera Road, Km 4.5, 46113 Moncada, Valencia, Spain
| | - C Corcellas
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M S Diaz-Cruz
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - E Eljarrat
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M Farré
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - P Gago-Ferrero
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - B Huerta
- Catalan Institute for Water Research (ICRA), C/ Emili Grahit, 101, Edifici H2O, Parc Científic i Tecnològic de la Universitat de Girona, 17003 Girona, Spain
| | - A Navarro-Ortega
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M Petrovic
- Catalan Institute for Water Research (ICRA), C/ Emili Grahit, 101, Edifici H2O, Parc Científic i Tecnològic de la Universitat de Girona, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Lluis Company 25, 08010 Barcelona, Spain
| | - S Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), C/ Emili Grahit, 101, Edifici H2O, Parc Científic i Tecnològic de la Universitat de Girona, 17003 Girona, Spain
| | - L Sabater
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - G Santín
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - D Barcelo
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), C/ Emili Grahit, 101, Edifici H2O, Parc Científic i Tecnològic de la Universitat de Girona, 17003 Girona, Spain
| |
Collapse
|
40
|
Huang Y, Luo L, Ma XY, Wang XC. Effect of elevated benzophenone-4 (BP4) concentration on Chlorella vulgaris growth and cellular metabolisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32549-32561. [PMID: 30238265 DOI: 10.1007/s11356-018-3171-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
Benzophenone-4 (BP4), as the raw material of common sunscreen products, usually shows strong eco-toxicity and endocrine-disrupting activity in aquatic animals. However, the potential adverse effect of BP4 on aquatic vegetation is still unclear. In order to evaluate the inhibitory effect of BP4 on phytoplankton, wild and acclimated Chlorella vulgaris was used as representative aquatic plant cells and experimental studies were conducted on the characteristics of its growth and cellular metabolisms upon exposure to elevated BP4 concentrations (1, 5, 10, 20, 50, and 100 mg L-1). C. vulgaris basically appeared low sensitivity to BP4 exposure because the 96-h EC50 was measured as 65.16 mg L-1 for its wild type. The 96-h EC50 of the acclimated type, which was pre-exposed to 10 mg L-1 of BP4 and transferred twice, was 140.76 mg L-1. By cellular response tests regarding non-enzymatic antioxidants carotenoid content, malondialdehyde (MDA), enzyme antioxidant superoxide dismutase (SOD) activity, and the photosynthetic efficiency, it was clarified that increasing exposure concentration elevated the hindrance to cellular metabolism. However, the rate of BP4 utilization as substrates for C. vulgaris growth showed a trend of decreasing with increasing BP4 concentration. The higher 96-h EC50 value of the acclimated C. vulgaris to BP4 inhibition than the wild C. vulgaris showed the enhanced tolerance capability; however, the continuous stress response of acclimated type should be taken into account when using microalgae species for toxicity assessment.
Collapse
Affiliation(s)
- Yue Huang
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China
- Engineering Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China
| | - Li Luo
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China
- Engineering Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China
| | - Xiaoyan Y Ma
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China
- Engineering Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China
| | - Xiaochang C Wang
- International Science and Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China.
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China.
- Engineering Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China.
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13,Yanta Road, Xi'an, 710055, China.
| |
Collapse
|
41
|
Naasz S, Altenburger R, Kühnel D. Environmental mixtures of nanomaterials and chemicals: The Trojan-horse phenomenon and its relevance for ecotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1170-1181. [PMID: 29710572 DOI: 10.1016/j.scitotenv.2018.04.180] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
The usage of engineered nanomaterials (NM) offers many novel products and applications with advanced features, but at the same time raises concerns with regard to potential adverse biological effects. Upon release and emission, NM may interact with chemicals in the environment, potentially leading to a co-exposure of organisms and the occurrence of mixture effects. A prominent idea is that NM may act as carriers of chemicals, facilitating and enhancing the entry of substances into cells or organisms, subsequently leading to an increased toxicity. In the literature, the term 'Trojan-horse effect' describes this hypothesis. The relevance of this mechanism for organisms is, however, unclear as yet. Here, a review has been performed to provide a more systematic picture on existing evidence. It includes 151 experimental studies investigating the exposure of various NM and chemical mixtures in ecotoxicological in vitro and in vivo model systems. The papers retrieved comprised studies investigating (i) uptake, (ii) toxicity and (iii) investigations considering both, changes in substance uptake and toxicity upon joint exposure of a chemical with an NM. A closer inspection of the studies demonstrated that the existing evidence for interference of NM-chemical mixture exposure with uptake and toxicity points into different directions compared to the original Trojan-horse hypothesis. We could discriminate at least 7 different categories to capture the evidence ranging from no changes in uptake and toxicity to an increase in uptake and toxicity upon mixture exposure. Concluding recommendations for the consideration of relevant processes are given, including a proposal for a nomenclature to describe NM-chemical mixture interactions in consistent terms.
Collapse
Affiliation(s)
- Steffi Naasz
- Helmholtz Centre for Environmental Research - UFZ, Department Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Rolf Altenburger
- Helmholtz Centre for Environmental Research - UFZ, Department Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Dana Kühnel
- Helmholtz Centre for Environmental Research - UFZ, Department Bioanalytical Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany.
| |
Collapse
|
42
|
Pahigian JM, Zuo Y. Occurrence, endocrine-related bioeffects and fate of bisphenol A chemical degradation intermediates and impurities: A review. CHEMOSPHERE 2018; 207:469-480. [PMID: 29807346 DOI: 10.1016/j.chemosphere.2018.05.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 05/16/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
In recent decades, increasing attention has been directed toward the effects of bisphenol A (BPA) as an environmental pollutant, primarily due to its demonstrated endocrine-disruptive effects. A growing body of evidence indicates that many BPA derivatives also exhibit endocrine activity and other adverse biological properties. A review of the published literature was performed to identify BPA degradation intermediates resulting from chemical degradation processes of BPA, as well as BPA's associated co-pollutants. Products of biological metabolism were not included in this study. Seventy-nine chemicals were identified. Of these chemicals, a subset - those containing two 6-membered aromatic rings connected by a central ring-linking carbon - was identified, and a further literature review was conducted to identify demonstrated biological effects associated with the chemicals in this subset. The objectives of this review were to assess the potential risks to human and environmental health associated with BPA derivatives, characterize our current understanding of BPA's degradation intermediates and co-pollutants, and aid in the identification of compounds of interest that have received insufficient scrutiny.
Collapse
Affiliation(s)
- Jamie M Pahigian
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth and University of Massachusetts Graduate School of Marine Sciences and Technology, 285 Old Westport Road, North Dartmouth, MA 02747, USA
| | - Yuegang Zuo
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth and University of Massachusetts Graduate School of Marine Sciences and Technology, 285 Old Westport Road, North Dartmouth, MA 02747, USA.
| |
Collapse
|
43
|
Li AJ, Law JCF, Chow CH, Huang Y, Li K, Leung KSY. Joint Effects of Multiple UV Filters on Zebrafish Embryo Development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9460-9467. [PMID: 30066570 DOI: 10.1021/acs.est.8b02418] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The widespread use of UV filters has resulted in significant amounts of these chemicals appearing not only in the environment but also in organisms. This study first assessed the levels of nine UV filters in waters along the coast of Shenzhen, China, in tapwater, and in a nearby reservoir. UV filters were found to be high, in both winter and summer at most locations. Then, using zebrafish as a model, the influence of a UV filter mixture after dietary and aqueous exposure was assessed. After exposing artemia to three dominant UV filters at two levels and then feeding these artemia to zebrafish adults, concentrations in both were up to 4 times higher when exposed to the mixtures than when exposed to only a single UV filter. A short-term 25-day dietary exposure to the zebrafish adults did not appear to significantly influence early life stage development of the second generation; however, relatively long exposure over 47 days had significant adverse effects on embryo development. Aqueous exposure of fish embryos to mixtures of the three UV filters demonstrated a general trend of decreased heart/hatching rate as doses increased, coupled with significant changes in activities of catalase and malate dehydrogenase.
Collapse
Affiliation(s)
- Adela Jing Li
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong Special Administrative Region
- Key Laboratory of Tropical Agro-environment, Ministry of Agriculture of China , South China Agricultural University , Guangzhou , Guangdong 510642 , China
| | - Japhet Cheuk-Fung Law
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong Special Administrative Region
| | - Chi-Hang Chow
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong Special Administrative Region
| | - Yanran Huang
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong Special Administrative Region
| | - Kaibin Li
- Key Laboratory of Tropical and Subtropical Fish Breeding and Cultivation, Pearl River Fisheries Research Institute , Chinese Academy of Fishery Sciences , Guangzhou , Guangdong 510380 , China
| | - Kelvin Sze-Yin Leung
- Department of Chemistry , Hong Kong Baptist University , Kowloon Tong , Hong Kong Special Administrative Region
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park , Shenzhen , Guangdong 518057 , China
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, Guangdong Key Laboratory of Environmental Pollution and Health , Jinan University , Guangzhou , Guangdong 510632 , China
| |
Collapse
|
44
|
Gago-Ferrero P, Krettek A, Fischer S, Wiberg K, Ahrens L. Suspect Screening and Regulatory Databases: A Powerful Combination To Identify Emerging Micropollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6881-6894. [PMID: 29782800 DOI: 10.1021/acs.est.7b06598] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This study demonstrates that regulatory databases combined with the latest advances in high resolution mass spectrometry (HRMS) can be efficiently used to prioritize and identify new, potentially hazardous pollutants being discharged into the aquatic environment. Of the approximately 23000 chemicals registered in the database of the National Swedish Product Register, 160 potential organic micropollutants were prioritized through quantitative knowledge of market availability, quantity used, extent of use on the market, and predicted compartment-specific environmental exposure during usage. Advanced liquid chromatography (LC)-HRMS-based suspect screening strategies were used to search for the selected compounds in 24 h composite samples collected from the effluent of three major wastewater treatment plants (WWTPs) in Sweden. In total, 36 tentative identifications were successfully achieved, mostly for substances not previously considered by environmental scientists. Of these substances, 23 were further confirmed with reference standards, showing the efficiency of combining a systematic prioritization strategy based on a regulatory database and a suspect-screening approach. These findings show that close collaboration between scientists and regulatory authorities is a promising way forward for enhancing identification rates of emerging pollutants and expanding knowledge on the occurrence of potentially hazardous substances in the environment.
Collapse
Affiliation(s)
- Pablo Gago-Ferrero
- Department of Aquatic Sciences and Assessment , Swedish University of Agricultural Sciences (SLU) , Box 7050, SE-75007 Uppsala , Sweden
| | - Agnes Krettek
- Department of Aquatic Sciences and Assessment , Swedish University of Agricultural Sciences (SLU) , Box 7050, SE-75007 Uppsala , Sweden
- Institute of Soil Science and Land Evaluation, Soil Chemistry and Pedology , University of Hohenheim , Emil-Wolff-Straße 27 , 70599 Stuttgart , Germany
| | - Stellan Fischer
- The Swedish Chemicals Agency (KemI) , SE-172 67 Stockholm , Sweden
| | - Karin Wiberg
- Department of Aquatic Sciences and Assessment , Swedish University of Agricultural Sciences (SLU) , Box 7050, SE-75007 Uppsala , Sweden
| | - Lutz Ahrens
- Department of Aquatic Sciences and Assessment , Swedish University of Agricultural Sciences (SLU) , Box 7050, SE-75007 Uppsala , Sweden
| |
Collapse
|
45
|
Molins-Delgado D, Olmo-Campos MDM, Valeta-Juan G, Pleguezuelos-Hernández V, Barceló D, Díaz-Cruz MS. Determination of UV filters in human breast milk using turbulent flow chromatography and babies' daily intake estimation. ENVIRONMENTAL RESEARCH 2018; 161:532-539. [PMID: 29232646 DOI: 10.1016/j.envres.2017.11.033] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/14/2017] [Accepted: 11/20/2017] [Indexed: 05/24/2023]
Abstract
UV filters (UV-Fs) are a group of hormonally active chemical compounds used to protect against the deleterious effects of UVA and UVB solar radiation, which are currently present in most consumer goods (personal care products, plastics, fabrics, paints, etc). Last years the concern about these emerging contaminants has been on the rise, and increasing efforts are being taken in order to properly asses the hazard that the exposure to these compounds in the early stages of life may pose. In this study, a new method for the analysis of 11 UV-Fs residues in human breast milk samples has been developed. The method is based on turbulent flow chromatography coupled to liquid chromatography-tandem mass spectrometry (TFC-HPLC-MS/MS). The validated method was successfully applied to 79 human breast milk samples from mothers in Barcelona (Spain). Twenty-four per cent of the samples contained UV-Fs, with major contributors being oxybenzone (benzophenone 3, BP3), its metabolite 4,4'-dihydroxybenzophenone (4DHB), and UV320 showing maximum concentrations of 779.9, 73.3, and 523.6ngg-1 milk, respectively. Additionally, the plastic containers of the milks were also analysed, revealing high concentrations of BP3 and 4DHB, up to 10.6µgg-1 plastic. The calculated mean ΣUV-Fs were useful to estimate the daily intake (EDI) by babies, which were 69.1µg d-1kg-1 body weight.
Collapse
Affiliation(s)
- Daniel Molins-Delgado
- Institute of Environmental Assessment and Water Research (IDÆA), Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - María Del Mar Olmo-Campos
- Institute of Environmental Assessment and Water Research (IDÆA), Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Gemma Valeta-Juan
- Banc de Llet Materna. Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat 116, 08005 Barcelona, Spain
| | - Vanessa Pleguezuelos-Hernández
- Banc de Llet Materna. Banc de Sang i Teixits, Edifici Dr. Frederic Duran i Jordà, Passeig Taulat 116, 08005 Barcelona, Spain
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research (IDÆA), Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, C/Emili Grahit, 101 Edifici H2O, 17003 Girona, Spain
| | - M Silvia Díaz-Cruz
- Institute of Environmental Assessment and Water Research (IDÆA), Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
46
|
Mao F, He Y, Gin KYH. Evaluating the Joint Toxicity of Two Benzophenone-Type UV Filters on the Green Alga Chlamydomonas reinhardtii with Response Surface Methodology. TOXICS 2018; 6:toxics6010008. [PMID: 29320457 PMCID: PMC5874781 DOI: 10.3390/toxics6010008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/23/2022]
Abstract
The widespread occurrence of benzophenone-type ultraviolet (UV) filter has raised the public concerns over the ecotoxicological effects of these chemicals. The present study assessed the joint toxicity of two representative benzophenones, benzophenone-1 (BP-1) and benzophenone-3 (BP-3), on the green alga Chlamydomonas reinhardtii using response surface methodologies (RSM). Specific growth rate and photosynthetic pigments were used as endpoints to evaluate the toxic effects. Generally, exposure to the combined BP-1 and BP-3 negatively affected cell growth and pigments production, with higher inhibitions at higher exposure concentrations. The simultaneous reduction in growth rate and pigments contents indicated that BP-1 and BP-3 regulated the growth of the tested alga by affecting the photosynthesis process. Results also showed that second order polynomial regression models fitted well with experimental results for all endpoints. The obtained regression models further indicated that the effects of the combination stemmed significantly from the linear concentration of BP-1 and BP-3. The overall results demonstrated that RSM could be a useful tool in ecotoxicological studies.
Collapse
Affiliation(s)
- Feijian Mao
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, E1A 07-03, Singapore 117576, Singapore.
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Karina Yew-Hoong Gin
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, E1A 07-03, Singapore 117576, Singapore.
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, #02-01, Singapore 117411, Singapore.
| |
Collapse
|
47
|
Molins-Delgado D, Távora J, Silvia Díaz-Cruz M, Barceló D. UV filters and benzotriazoles in urban aquatic ecosystems: The footprint of daily use products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:975-986. [PMID: 28582743 DOI: 10.1016/j.scitotenv.2017.05.176] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
The increased use of beauty and other daily use products, in particular those containing UV filters (UV-Fs) and benzotriazoles, results in their introduction in significant amounts into the aquatic environment. In this study, we aim to assess the occurrence and impact of UV-Fs and benzotriazoles in aquatic ecosystems in the metropolitan area of Barcelona, Spain. River water samples from the Llobregat and Besòs Rivers were analysed together with sediment, suspended particulate matter, and wastewater samples from 6 wastewater treatment plants (WWTPs) along their basins. The analysis of 6 UV-Fs and 2 benzotriazoles in water samples was performed using an automatized on-line solid phase extraction coupled to liquid chromatography tandem mass spectrometry (SPE-HPLC-MS/MS) method. The analysis of the target compounds in the suspended solids and in the sediments was performed by HPLC-MS/MS. The analysis of the water samples showed the ubiquitous presence of UV-Fs. Benzotriazole (BZT; partition coefficient octanol-water Log Kow=1.23) and methylbenzotriazole (MeBZT; Log Kow=1.89) had the highest levels in both river water and wastewater. Removal rates in the selected WWTPs were highly variable (4-100%). Concentrations of lipophilic UV-Fs (Log Kow 4.95-7.53) in suspended particulate matter from wastewaters were high (up to 1,031,868.2ngg-1dry weight (dw)), whereas in sediment the concentrations were always below 300ng g-1 dw. The risk assessment expressed in terms of hazard quotients (HQs) revealed that most UV-Fs were not likely to produce adverse ecotoxicological effects against the living organisms assayed in river waters and influent wastewaters at the concentrations observed. However, HQs above 1 were obtained for BZT and MeBZT in effluent wastewaters discharged to the river.
Collapse
Affiliation(s)
- Daniel Molins-Delgado
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - João Távora
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M Silvia Díaz-Cruz
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council of Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona. C/ Emili Grahit, 101 Edifici H2O, 17003 Girona, Spain
| |
Collapse
|
48
|
Molins-Delgado D, Máñez M, Andreu A, Hiraldo F, Eljarrat E, Barceló D, Díaz-Cruz MS. A Potential New Threat to Wild Life: Presence of UV Filters in Bird Eggs from a Preserved Area. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10983-10990. [PMID: 28870065 DOI: 10.1021/acs.est.7b03300] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The present study uses bird eggs of seven wild species as a biomonitoring tool for sunscreens occurrence. Seven UV filters (UV-Fs), including 3 hydroxy-metabolites of oxybenzone (benzophenone 3, BP3) were characterized in unhatched eggs from Doñana Natural Space (Spain). High frequency of detection was observed for all UV-Fs, ranging from 95% to 100%. The oxybenzone metabolite 4-hydroxybenzophenone (4HB) was ubiquitous at concentrations in the range 12.0-3348 ng g-1 dry weight (dw). The parent compound, oxybenzone, was also present in all samples at lower concentrations (16.9-49.3 ng g-1 dw). Due to the three BP3's metabolites, benzophenone 1 (BP1), 4HB, and 4,4'-dihydroxybenzophenone (4DHB) presence in unhatched eggs, it can be inferred that parent compounds are absorbed into the bird through the upper gut and the OH-derivatives formed are transferred by the mother to the egg before the lying. White stork (Ciconia ciconia) and western marsh harrier (Circus aeruginosus) were the most contaminated species, with mean total UV-Fs concentrations of 834 and 985 ng g-1 dw, respectively. Results evidenced that biomagnification process across the bird species studied cannot be ruled out.
Collapse
Affiliation(s)
- Daniel Molins-Delgado
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research (IDÆA), Spanish Council of Scientific Research (CSIC) , C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Manuel Máñez
- Natural Processes Monitoring Team, Doñana Biological Station (EBD-CSIC) , C/Américo Vespucio s/n, 41092 Seville, Spain
| | - Ana Andreu
- Natural Processes Monitoring Team, Doñana Biological Station (EBD-CSIC) , C/Américo Vespucio s/n, 41092 Seville, Spain
| | - Fernando Hiraldo
- Department of Applied Biology, Doñana Biological Station (EBD-CSIC) , Sevilla, Spain
| | - Ethel Eljarrat
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research (IDÆA), Spanish Council of Scientific Research (CSIC) , C/Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Damià Barceló
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research (IDÆA), Spanish Council of Scientific Research (CSIC) , C/Jordi Girona 18-26, 08034, Barcelona, Spain
- Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona. C/Emili Grahit , 101 Edifici H2O, 17003 Girona, Spain
| | - M Silvia Díaz-Cruz
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research (IDÆA), Spanish Council of Scientific Research (CSIC) , C/Jordi Girona 18-26, 08034, Barcelona, Spain
| |
Collapse
|
49
|
Montes-Grajales D, Fennix-Agudelo M, Miranda-Castro W. Occurrence of personal care products as emerging chemicals of concern in water resources: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:601-614. [PMID: 28399499 DOI: 10.1016/j.scitotenv.2017.03.286] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/26/2017] [Accepted: 03/31/2017] [Indexed: 05/27/2023]
Abstract
Personal care products (PCPs) are a diverse group of common household substances used for health, beauty and cleaning purposes. These include disinfectants, fragrances, insect repellents, preservatives and UV filters, among others. Some of them are considered chemicals of emerging concern due to their presence and negative impact on aquatic ecosystems, specially related to endocrine disruption and reproductive disorders. The entry of those chemicals to water bodies occurs mainly through the sewage effluents from wastewater treatment plants due to their incomplete or inefficient removal. The purpose of this review was to collect and analyze data about the incidence and concentrations of PCPs reported as emerging pollutants in different water matrices, including wastewater influents and effluents. Our database is composed of 141 articles with information about 72 PCPs recorded as emerging pollutants in 30 countries, in concentrations ranging from 0.029ng/L to 7.811×106ng/L. Fragrances, antiseptics and sunscreens were the most reported groups. As expected, the largest number of PCPs documented as emerging pollutants were found in wastewater treatment plant effluents with a total of 64 compounds, compared to 43 in surface water and 23 in groundwater, which evidence the anthropological contribution of PCPs to water bodies. These molecules were found in all the continents, however, there is a lack of information regarding the presence of emerging pollutants from PCPs in developing countries. Therefore, we suggest further efforts in assessing the occurrence and concentrations of these chemicals in those areas.
Collapse
Affiliation(s)
- Diana Montes-Grajales
- Grupo de Investigación en Estudios Químicos y Biológicos, School of Basic Sciences, Universidad Tecnológica de Bolívar, Cartagena 130010, Colombia; Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 565-A, Mexico.
| | - Mary Fennix-Agudelo
- Grupo de Investigación en Estudios Químicos y Biológicos, School of Basic Sciences, Universidad Tecnológica de Bolívar, Cartagena 130010, Colombia
| | - Wendy Miranda-Castro
- Grupo de Investigación en Estudios Químicos y Biológicos, School of Basic Sciences, Universidad Tecnológica de Bolívar, Cartagena 130010, Colombia
| |
Collapse
|
50
|
Zhang Q, Ma X, Dzakpasu M, Wang XC. Evaluation of ecotoxicological effects of benzophenone UV filters: Luminescent bacteria toxicity, genotoxicity and hormonal activity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:338-347. [PMID: 28437725 DOI: 10.1016/j.ecoenv.2017.04.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/08/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
The widespread use of organic ultraviolet (UV) filters in personal care products raises concerns about their potentially hazardous effects on human and ecosystem health. In this study, the toxicities of four commonly used benzophenones (BPs) UV filters including benzophenone (BP), 2-Hydroxybenzophenone (2HB), 2-Hydroxy-4-methoxybenzophenone (BP3), and 2-Hydroxy-4-methoxybenzophenone-5-sulfonicacid (BP4) in water were assayed in vitro using Vibrio fischeri, SOS/umu assay, and yeast estrogen screen (YES) assay, as well as in vivo using zebrafish larvae. The results showed that the luminescent bacteria toxicity, expressed as logEC50, increased with the lipophilicity (logKow) of BPs UV filters. Especially, since 2HB, BP3 and BP4 had different substituent groups, namely -OH, -OCH3 and -SO3H, respectively, these substituent functional groups had a major contribution to the lipophilicity and acute toxicity of these BPs. Similar tendency was observed for the genotoxicity, expressed as the value of induction ratio=1.5. Moreover, all the target BPs UV filters showed estrogenic activity, but no significant influences of lipophilicity on the estrogenicity were observed, with BP3 having the weakest estrogenic efficiency in vitro. Although BP3 displayed no noticeable adverse effects in any in vitro assays, multiple hormonal activities were observed in zebrafish larvae including estrogenicity, anti-estrogenicity and anti-androgenicity by regulating the expression of target genes. The results indicated potential hazardous effects of BPs UV filters and the importance of the combination of toxicological evaluation methods including in vitro and in vivo assays.
Collapse
Affiliation(s)
- Qiuya Zhang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an 710055, PR China; Key Lab of Environmental Engineering, Shaanxi Province, Xi'an 710055, PR China
| | - Xiaoyan Ma
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an 710055, PR China; Key Lab of Environmental Engineering, Shaanxi Province, Xi'an 710055, PR China
| | - Mawuli Dzakpasu
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an 710055, PR China; Key Lab of Environmental Engineering, Shaanxi Province, Xi'an 710055, PR China
| | - Xiaochang C Wang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Engineering Technology Research Center for Wastewater Treatment and Reuse, Xi'an 710055, PR China; Key Lab of Environmental Engineering, Shaanxi Province, Xi'an 710055, PR China.
| |
Collapse
|