1
|
Shahpoury P, Lelieveld S, Srivastava D, Baccarini A, Mastin J, Berkemeier T, Celo V, Dabek-Zlotorzynska E, Harner T, Lammel G, Nenes A. Seasonal Changes in the Oxidative Potential of Urban Air Pollutants: The Influence of Emission Sources and Proton- and Ligand-Mediated Dissolution of Transition Metals. ACS ES&T AIR 2024; 1:1262-1275. [PMID: 39417159 PMCID: PMC11474821 DOI: 10.1021/acsestair.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024]
Abstract
The inhalation of fine particulate matter (PM2.5) is a major contributor to adverse health effects from air pollution worldwide. An important toxicity pathway is thought to follow oxidative stress from the formation of exogenous reactive oxygen species (ROS) in the body, a proxy of which is oxidative potential (OP). As redox-active transition metals and organic species are important drivers of OP in urban environments, we investigate how seasonal changes in emission sources, aerosol chemical composition, acidity, and metal dissolution influence OP dynamics. Using a kinetic model of the lung redox chemistry, we predicted ROS (O2 •-, H2O2, •OH) formation with input parameters comprising the ambient concentrations of PM2.5, water-soluble Fe and Cu, secondary organic matter, nitrogen dioxide, and ozone across two years and two urban sites in Canada. Particulate species were the largest contributors to ROS production. Soluble Fe and Cu had their highest and lowest values in summer and winter, and changes in Fe solubility were closely linked to seasonal variations in chemical aging, the acidity of aerosol, and organic ligand levels. The results indicate three conditions that influence OP across various seasons: (a) low aerosol pH and high organic ligand levels leading to the highest OP in summer, (b) opposite trends leading to the lowest OP in winter, and (c) intermediate conditions corresponding to moderate OP in spring and fall. This study highlights how atmospheric chemical aging modifies the oxidative burden of urban air pollutants, resulting in a seasonal cycle with a potential effect on population health.
Collapse
Affiliation(s)
- Pourya Shahpoury
- Environmental
and Life Sciences, Trent University, Peterborough K9L0G2, Canada
| | - Steven Lelieveld
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Deepchandra Srivastava
- Division
of Environmental Health and Risk Management, School of Geography,
Earth & Environmental Sciences, University
of Birmingham, Edgbaston, Birmingham B152TT, United Kingdom
| | - Andrea Baccarini
- Laboratory
of Atmospheric Processes and their Impacts, School of Architecture,
Civil and Environmental Engineering, École
Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Jacob Mastin
- Air
Quality Processes Research Section, Environment
and Climate Change Canada, Toronto M3H5T4, Canada
| | - Thomas Berkemeier
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Valbona Celo
- Analysis
and Air Quality Section, Environment and
Climate Change Canada, Ottawa K1V1C7, Canada
| | - Ewa Dabek-Zlotorzynska
- Analysis
and Air Quality Section, Environment and
Climate Change Canada, Ottawa K1V1C7, Canada
| | - Tom Harner
- Air
Quality Processes Research Section, Environment
and Climate Change Canada, Toronto M3H5T4, Canada
| | - Gerhard Lammel
- Multiphase
Chemistry Department, Max Planck Institute
for Chemistry, Mainz 55128, Germany
| | - Athanasios Nenes
- Laboratory
of Atmospheric Processes and their Impacts, School of Architecture,
Civil and Environmental Engineering, École
Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Institute
of Chemical Engineering Sciences, Foundation for Research and Technology
Hellas, Patras GR-26504, Greece
| |
Collapse
|
2
|
Borlaza-Lacoste L, Mardoñez V, Marsal A, Hough I, Dinh VNT, Dominutti P, Jaffrezo JL, Alastuey A, Besombes JL, Močnik G, Moreno I, Velarde F, Gardon J, Cornejo A, Andrade M, Laj P, Uzu G. Oxidative potential of particulate matter and its association to respiratory health endpoints in high-altitude cities in Bolivia. ENVIRONMENTAL RESEARCH 2024; 255:119179. [PMID: 38768882 DOI: 10.1016/j.envres.2024.119179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
Exposure to particulate matter (PM) pollution is a significant health risk, driving the search for innovative metrics that more accurately reflect the potential harm to human health. Among these, oxidative potential (OP) has emerged as a promising health-based metric, yet its application and relevance across different environments remain to be further explored. This study, set in two high-altitude Bolivian cities, aims to identify the most significant sources of PM-induced oxidation in the lungs and assess the utility of OP in assessing PM health impacts. Utilizing two distinct assays, OPDTT and OPDCFH, we measured the OP of PM samples, while also examining the associations between PM mass, OP, and black carbon (BC) concentrations with hospital visits for acute respiratory infections (ARI) and pneumonia over a range of exposure lags (0-2 weeks) using a Poisson regression model adjusted for meteorological conditions. The analysis also leveraged Positive Matrix Factorization (PMF) to link these health outcomes to specific PM sources, building on a prior source apportionment study utilizing the same dataset. Our findings highlight anthropogenic combustion, particularly from traffic and biomass burning, as the primary contributors to OP in these urban sites. Significant correlations were observed between both OPDTT and PM2.5 concentration exposure and ARI hospital visits, alongside a notable association with pneumonia cases and OPDTT levels. Furthermore, PMF analysis demonstrated a clear link between traffic-related pollution and increased hospital admissions for respiratory issues, affirming the health impact of these sources. These results underscore the potential of OPDTT as a valuable metric for assessing the health risks associated with acute PM exposure, showcasing its broader application in environmental health studies.
Collapse
Affiliation(s)
- Lucille Borlaza-Lacoste
- Institute des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Valeria Mardoñez
- Institute des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France; Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Anouk Marsal
- Institute des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Ian Hough
- Institute des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Vy Ngoc Thuy Dinh
- Institute des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Pamela Dominutti
- Institute des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Jean-Luc Jaffrezo
- Institute des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France
| | - Andrés Alastuey
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - Jean-Luc Besombes
- Université Savoie Mont Blanc, CNRS, EDYTEM (UMR 5204), Chambéry, 73000, France
| | - Griša Močnik
- Center for Atmospheric Research, University of Nova Gorica, 5270, Ajdovščina, Slovenia; Haze Instruments d.o.o., 1000, Ljubljana, Slovenia; Department of Condensed Matter Physics, Jozef Stefan Institute, 1000, Ljubljana, Slovenia
| | - Isabel Moreno
- Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Fernando Velarde
- Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Jacques Gardon
- Hydrosciences Montpellier, Université de Montpellier, IRD, CNRS, Montpellier, France
| | - Alex Cornejo
- Viceministerio de Promoción, Vigilancia Epidemiológica y Medicina Tradicional (VPVEyMT), La Paz, Bolivia
| | - Marcos Andrade
- Laboratorio de Física de la Atmósfera, Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz, Bolivia; Department of Atmospheric and Oceanic Science, University of Maryland, College Park, MD, USA
| | - Paolo Laj
- Institute des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France; Institute for Atmospheric and Earth System Research (INAR), and Department of Physics, University of Helsinki, 00014, Helsinki, Finland
| | - Gaëlle Uzu
- Institute des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble INP, Grenoble, France.
| |
Collapse
|
3
|
Salana S, Yu H, Dai Z, Subramanian PSG, Puthussery JV, Wang Y, Singh A, Pope FD, Leiva G MA, Rastogi N, Tripathi SN, Weber RJ, Verma V. Inter-continental variability in the relationship of oxidative potential and cytotoxicity with PM 2.5 mass. Nat Commun 2024; 15:5263. [PMID: 38898130 PMCID: PMC11187120 DOI: 10.1038/s41467-024-49649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024] Open
Abstract
Most fine ambient particulate matter (PM2.5)-based epidemiological models use globalized concentration-response (CR) functions assuming that the toxicity of PM2.5 is solely mass-dependent without considering its chemical composition. Although oxidative potential (OP) has emerged as an alternate metric of PM2.5 toxicity, the association between PM2.5 mass and OP on a large spatial extent has not been investigated. In this study, we evaluate this relationship using 385 PM2.5 samples collected from 14 different sites across 4 different continents and using 5 different OP (and cytotoxicity) endpoints. Our results show that the relationship between PM2.5 mass vs. OP (and cytotoxicity) is largely non-linear due to significant differences in the intrinsic toxicity, resulting from a spatially heterogeneous chemical composition of PM2.5. These results emphasize the need to develop localized CR functions incorporating other measures of PM2.5 properties (e.g., OP) to better predict the PM2.5-attributed health burdens.
Collapse
Grants
- CBET-1847237 NSF | ENG/OAD | Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET)
- CBET-2012149 NSF | ENG/OAD | Division of Chemical, Bioengineering, Environmental, and Transport Systems (CBET)
- Centre of Excellence Advanced Technologies for Monitoring Air-quality iNdicators (ATMAN) approved by the PSA office, Government of India, and supported by a group of philanthropic funders, including the Bloomberg Philanthropies, the Open Philanthropy, and the Clean Air Fund
Collapse
Affiliation(s)
- Sudheer Salana
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Haoran Yu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Zhuying Dai
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - P S Ganesh Subramanian
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Joseph V Puthussery
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
- Department of Energy, Center for Aerosol Science and Engineering, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yixiang Wang
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
- College of Health, Lehigh University, Bethlehem, PA, 18015, USA
| | - Ajit Singh
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Francis D Pope
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Manuel A Leiva G
- Department of Chemistry, Faculty of Science, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, RM, Chile
| | - Neeraj Rastogi
- Geosciences Division, Physical Research Laboratory, Ahmedabad, 380009, India
| | - Sachchida Nand Tripathi
- Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Rodney J Weber
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Vishal Verma
- Department of Civil and Environmental Engineering, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
4
|
Castelhano FJ, Réquia WJ. Weather impact on ambient air pollution and its association with land use types/activities over 5,572 municipalities in Brazil. Heliyon 2024; 10:e31857. [PMID: 38882336 PMCID: PMC11177152 DOI: 10.1016/j.heliyon.2024.e31857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
Quantify the impact of meteorological changes on air pollution levels is the aim of numerous recent studies. However, there is still a lack of investigations assessing the influence of land use/activities on the relationship between climate and air quality. In this study, we used a two-stage design to estimate the influence of land use types and activities on the association between weather changes and air pollution (PM2.5, NO2, SO2, O3) over 5572 municipalities in Brazil. To calculate the influence of recent weather change on air pollution concentration for each municipality, we used the "weather penalty" concept. This approach considers differences in linear trend coefficients between two generalized additive models. Then, using quantile regression, we estimated the effect of land use types and activities (8 variables related to transportation, energy generation, and land use) on weather-related increases in ambient air pollution. We found that an increase in PM2.5 was associated to recent weather changes in most municipalities (average increase of 0.07μg/m3per year) and a decrease in NO2 in most municipalities (average decrease of 0.0003 ppb per year). O3 and SO2 had more intense increases associated with weather changes in the North region. Our findings suggest the most robust positive associations between weather penalties on PM2.5 and areas with non-clean energy and oil refineries (average increase of 0.006μg/m3per year and 0.04μg/m3per year, respectively). We also found positive associations between Pasture areas, urban areas, and transportation and the weather penalties of this pollutant. In contrast, forest areas were negatively associated with PM2.5 penalties. We also found that oil refineries, urban areas, and transportation significantly positively influenced weather penalties for SO2 and O3. Overall, the study highlights the importance of considering the influence of land use types and activities on weather-related changes in ambient air pollution.
Collapse
Affiliation(s)
- Francisco Jablinski Castelhano
- Geography Department, Federal University of Rio Grande do Norte Natal, Av. Sen. Salgado Filho, S/n - Lagoa Nova, Natal, Rio Grande do Norte, Brazil
| | - Weeberb J Réquia
- School of Public Policy and Government, Fundação Getúlio Vargas, Brasília, Distrito Federal, Brazil
| |
Collapse
|
5
|
Dominutti PA, Mari X, Jaffrezo JL, Dinh VTN, Chifflet S, Guigue C, Guyomarc'h L, Vu CT, Darfeuil S, Ginot P, Elazzouzi R, Mhadhbi T, Voiron C, Martinot P, Uzu G. Disentangling fine particles (PM 2.5) composition in Hanoi, Vietnam: Emission sources and oxidative potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171466. [PMID: 38447718 DOI: 10.1016/j.scitotenv.2024.171466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/11/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
A comprehensive chemical characterization of fine particulate matter (PM2.5) was conducted at an urban site in one of the most densely populated cities of Vietnam, Hanoi. Chemical analysis of a series of 57 daily PM2.5 samples obtained in 2019-2020 included the quantification of a detailed set of chemical tracers as well as the oxidative potential (OP), which estimates the ability of PM to catalyze reactive oxygen species (ROS) generation in vivo as an initial step of health effects due to oxidative stress. The PM2.5 concentrations ranged from 8.3 to 148 μg m-3, with an annual average of 40.2 ± 26.3 μg m-3 (from September 2019 to December 2020). Our results obtained by applying the Positive Matrix Factorization (PMF) source-receptor apportionment model showed the contribution of nine PM2.5 sources. The main anthropogenic sources contributing to the PM mass concentrations were heavy fuel oil (HFO) combustion (25.3 %), biomass burning (20 %), primary traffic (7.6 %) and long-range transport aerosols (10.6 %). The OP activities were evaluated for the first time in an urban site in Vietnam. The average OPv levels obtained in our study were 3.9 ± 2.4 and 4.5 ± 3.2 nmol min-1 m-3 for OPDTT and OPAA, respectively. We assessed the contribution to OPDTT and OPAA of each PM2.5 source by applying multilinear regression models. It shows that the sources associated with human activities (HFO combustion, biomass burning and primary traffic) are the sources driving OP exposure, suggesting that they should be the first sources to be controlled in future mitigation strategies. This study gives for the first time an extensive and long-term chemical characterization of PM2.5, providing also a link between emission sources, ambient concentrations and exposure to air pollution at an urban site in Hanoi, Vietnam.
Collapse
Affiliation(s)
- Pamela A Dominutti
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France.
| | - Xavier Mari
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Jean-Luc Jaffrezo
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France
| | - Vy Thuy Ngoc Dinh
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France
| | - Sandrine Chifflet
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Catherine Guigue
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Lea Guyomarc'h
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Cam Tu Vu
- Water-Environment-Oceanography (WEO) Department, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, Viet Nam
| | - Sophie Darfeuil
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France
| | - Patrick Ginot
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France
| | - Rhabira Elazzouzi
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France
| | - Takoua Mhadhbi
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France
| | - Céline Voiron
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France
| | - Pauline Martinot
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM 110, Marseille, France
| | - Gaëlle Uzu
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, G-INP, IGE (UMR 5001), 38000 Grenoble, France.
| |
Collapse
|
6
|
Liu J, Ye Z, Christensen JH, Dong S, Geels C, Brandt J, Nenes A, Yuan Y, Im U. Impact of anthropogenic emission control in reducing future PM 2.5 concentrations and the related oxidative potential across different regions of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170638. [PMID: 38316299 DOI: 10.1016/j.scitotenv.2024.170638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Affected by both future anthropogenic emissions and climate change, future prediction of PM2.5 and its Oxidative Potential (OP) distribution is a significant challenge, especially in developing countries like China. To overcome this challenge, we estimated historical and future PM2.5 concentrations and associated OP using the Danish Eulerian Hemispheric Model (DEHM) system with meteorological input from WRF weather forecast model. Considering different future socio-economic pathways and emission scenario assumptions, we quantified how the contribution from various anthropogenic emission sectors will change under these scenarios. Results show that compared to the CESM_SSP2-4.5_CLE scenario (based on moderate radiative forcing and Current Legislation Emission), the CESM_SSP1-2.6_MFR scenario (based on sustainability development and Maximum Feasible Reductions) is projected to yield greater environmental and health benefits in the future. Under the CESM_SSP1-2.6_MFR scenario, annual average PM2.5 concentrations (OP) are expected to decrease to 30 (0.8 nmolmin-1m-3) in almost all regions by 2030, which will be 65 % (67 %) lower than that in 2010. From a long-term perspective, it is anticipated that OP in the Fen-Wei Plain region will experience the maximum reduction (82.6 %) from 2010 to 2049. Largely benefiting from the effective control of PM2.5 in the region, it has decreased by 82.1 %. Crucially, once emission reduction measures reach a certain level (in 2040), further reductions become less significant. This study also emphasized the significant role of secondary aerosol formation and biomass-burning sources in influencing OP during both historical and future periods. In different scenarios, the reduction range of OP from 2010 to 2049 is estimated to be between 71 % and 85 % by controlling precursor emissions involved in secondary aerosol formation and emissions from biomass burning. Results indicate that strengthening the control of anthropogenic emissions in various regions are key to achieving air quality targets and safeguarding human health in the future.
Collapse
Affiliation(s)
- Jiemei Liu
- Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China; Aarhus University, Department of Environmental Science/Interdisciplinary Centre for Climate Change, Frederiksborgvej 399, Roskilde, Denmark
| | - Zhuyun Ye
- Aarhus University, Department of Environmental Science/Interdisciplinary Centre for Climate Change, Frederiksborgvej 399, Roskilde, Denmark
| | - Jesper H Christensen
- Aarhus University, Department of Environmental Science/Interdisciplinary Centre for Climate Change, Frederiksborgvej 399, Roskilde, Denmark
| | - Shikui Dong
- Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China
| | - Camilla Geels
- Aarhus University, Department of Environmental Science/Interdisciplinary Centre for Climate Change, Frederiksborgvej 399, Roskilde, Denmark
| | - Jørgen Brandt
- Aarhus University, Department of Environmental Science/Interdisciplinary Centre for Climate Change, Frederiksborgvej 399, Roskilde, Denmark
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and Their Impacts, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Center for the Study of Air Quality and Climate Change, Foundation for Research and Technology Hellas (FORTH), Thessaloniki, Greece
| | - Yuan Yuan
- Key Laboratory of Aerospace Thermophysics, Ministry of Industry and Information Technology, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001, China.
| | - Ulas Im
- Aarhus University, Department of Environmental Science/Interdisciplinary Centre for Climate Change, Frederiksborgvej 399, Roskilde, Denmark.
| |
Collapse
|
7
|
Yang Y, Battaglia MA, Mohan MK, Robinson ES, DeCarlo PF, Edwards KC, Fang T, Kapur S, Shiraiwa M, Cesler-Maloney M, Simpson WR, Campbell JR, Nenes A, Mao J, Weber RJ. Assessing the Oxidative Potential of Outdoor PM 2.5 in Wintertime Fairbanks, Alaska. ACS ES&T AIR 2024; 1:175-187. [PMID: 38482267 PMCID: PMC10928717 DOI: 10.1021/acsestair.3c00066] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 11/01/2024]
Abstract
The oxidative potential (OP) of outdoor PM2.5 in wintertime Fairbanks, Alaska, is investigated and compared to those in wintertime Atlanta and Los Angeles. Approximately 40 filter samples collected in January-February 2022 at a Fairbanks residential site were analyzed for OP utilizing dithiothreitol-depletion (OPDTT) and hydroxyl-generation (OPOH) assays. The study-average PM2.5 mass concentration was 12.8 μg/m3, with a 1 h average maximum of 89.0 μg/m3. Regression analysis, correlations with source tracers, and contrast between cold and warmer events indicated that OPDTT was mainly sensitive to copper, elemental carbon, and organic aerosol from residential wood burning, and OPOH to iron and organic aerosol from vehicles. Despite low photochemically-driven oxidation rates, the water-soluble fraction of OPDTT was unusually high at 77%, mainly from wood burning emissions. In contrast to other locations, the Fairbanks average PM2.5 mass concentration was higher than Atlanta and Los Angeles, whereas OPDTT in Fairbanks and Atlanta were similar, and Los Angeles had the highest OPDTT and OPOH. Site differences were observed in OP when normalized by both the volume of air sampled and the particle mass concentration, corresponding to exposure and the intrinsic health-related properties of PM2.5, respectively. The sensitivity of OP assays to specific aerosol components and sources can provide insights beyond the PM2.5 mass concentration when assessing air quality.
Collapse
Affiliation(s)
- Yuhan Yang
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Michael A. Battaglia
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Magesh Kumaran Mohan
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ellis S. Robinson
- Department
of Environmental Health & Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Peter F. DeCarlo
- Department
of Environmental Health & Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kasey C. Edwards
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Ting Fang
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Sukriti Kapur
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Manabu Shiraiwa
- Department
of Chemistry, University of California, Irvine, California 92697, United States
| | - Meeta Cesler-Maloney
- Geophysical
Institute and Department of Chemistry & Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - William R. Simpson
- Geophysical
Institute and Department of Chemistry & Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - James R. Campbell
- Geophysical
Institute and Department of Chemistry & Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - Athanasios Nenes
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- Laboratory
of Atmospheric Processes and their Impacts (LAPI), School of Architecture,
Civil & Environmental Engineering, Ecole
Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Center for
Studies of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research
and Technology Hellas, Patras 26504, Greece
| | - Jingqiu Mao
- Geophysical
Institute and Department of Chemistry & Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - Rodney J. Weber
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Ramamoorthy T, Nath A, Singh S, Mathew S, Pant A, Sheela S, Kaur G, Sathishkumar K, Mathur P. Assessing the Global Impact of Ambient Air Pollution on Cancer Incidence and Mortality: A Comprehensive Meta-Analysis. JCO Glob Oncol 2024; 10:e2300427. [PMID: 38513187 DOI: 10.1200/go.23.00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 01/30/2024] [Indexed: 03/23/2024] Open
Abstract
PURPOSE This study aims to examine the association between exposure to major ambient air pollutants and the incidence and mortality of lung cancer and some nonlung cancers. METHODS This meta-analysis used PubMed and EMBASE databases to access published studies that met the eligibility criteria. Primary analysis investigated the association between exposure to air pollutants and cancer incidence and mortality. Study quality was assessed using the Newcastle Ottawa Scale. Meta-analysis was conducted using R software. RESULTS The meta-analysis included 61 studies, of which 53 were cohort studies and eight were case-control studies. Particulate matter 2.5 mm or less in diameter (PM2.5) was the exposure pollutant in half (55.5%), and lung cancer was the most frequently studied cancer in 59% of the studies. A pooled analysis of exposure reported in cohort and case-control studies and cancer incidence demonstrated a significant relationship (relative risk [RR], 1.04 [95% CI, 1.02 to 1.05]; I2, 88.93%; P < .05). A significant association was observed between exposure to pollutants such as PM2.5 (RR, 1.08 [95% CI, 1.04 to 1.12]; I2, 68.52%) and nitrogen dioxide (NO2) (RR, 1.03 [95% CI, 1.01 to 1.05]; I2, 73.52%) and lung cancer incidence. The relationship between exposure to the air pollutants and cancer mortality demonstrated a significant relationship (RR, 1.08 [95% CI, 1.07 to 1.10]; I2, 94.77%; P < .001). Among the four pollutants, PM2.5 (RR, 1.15 [95% CI, 1.08 to 1.22]; I2, 95.33%) and NO2 (RR, 1.05 [95% CI, 1.02 to 1.08]; I2, 89.98%) were associated with lung cancer mortality. CONCLUSION The study confirms the association between air pollution exposure and lung cancer incidence and mortality. The meta-analysis results could contribute to community cancer prevention and diagnosis and help inform stakeholders and policymakers in decision making.
Collapse
Affiliation(s)
- Thilagavathi Ramamoorthy
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Anita Nath
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Shubhra Singh
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Stany Mathew
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Apourv Pant
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Samvedana Sheela
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Gurpreet Kaur
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Krishnan Sathishkumar
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| | - Prashant Mathur
- Indian Council of Medical Research- National Centre for Disease Informatics and Research, Bengaluru, India
| |
Collapse
|
9
|
Marsal A, Sauvain JJ, Thomas A, Lyon-Caen S, Borlaza LJS, Philippat C, Jaffrezo JL, Boudier A, Darfeuil S, Elazzouzi R, Lepeule J, Chartier R, Bayat S, Slama R, Siroux V, Uzu G. Effects of personal exposure to the oxidative potential of PM 2.5 on oxidative stress biomarkers in pregnant women. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168475. [PMID: 37951259 DOI: 10.1016/j.scitotenv.2023.168475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
Oxidative stress is a prominent pathway for the health effects associated with fine particulate matter (PM2.5) exposure. Oxidative potential (OP) of PM has been associated to several health endpoints, but studies on its impact on biomarkers of oxidative stress remains insufficient. 300 pregnant women from the SEPAGES cohort (France) carried personal PM2.5 samplers for a week and OP was measured using ascorbic acid (AA) and dithiothreitol (DTT) assays, and normalized by 1) PM2.5 mass (OPm) and 2) sampled air volume (OPv). A pool of three urine spots collected on the 7th day of PM sampling was analyzed for biomarkers, namely 8-hydroxy-2-deoxyguanosine (8-OHdG), malondialdehyde (MDA) and 8-isoprostaglandin-F2α (8-isoPGF2α). Associations were investigated using adjusted multiple linear regressions. OP effects were additionally investigated by stratifying by median PM2.5 concentration (14 μg m-3). In the main models, no association was observed with 8-isoPGF2α, nor MDA. An interquartile range (IQR) increase in OPmAA exposure was associated with increased 8-OHdG (percent change: 6.2 %; 95 % CI: 0.2 % to 12.6 %). In the stratified analysis, exposure to OPmAA was associated with 8-OHdG for participants exposed to low levels of PM2.5 (percent change: 11.4 %; 95 % CI: 3.3 % to 20.1 %), but not for those exposed to high levels (percent change: -1.0 %; 95 % CI: -10.6 % to 9.6 %). Associations for OPmDTT also followed a similar pattern (p-values for OPmAA-PM and OPmDTT-PM interaction terms were 0.12 and 0.11, respectively). Overall, our findings suggest that OPmAA may be associated with increased DNA oxidative damage. This association was not observed with PM2.5 mass concentration exposure. The effects of OPmAA in 8-OHdG tended to be stronger at lower (below median) vs. higher concentrations of PM2.5. Further epidemiological, toxicological and aerosol research are needed to further investigate the OPmAA effects on 8-OHdG and the potential modifying effect of PM mass concentration on this association.
Collapse
Affiliation(s)
- Anouk Marsal
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 38000 Grenoble, France; Agence de l'environnement et de la Maîtrise de l'Energie, 20, avenue du Grésillé, BP 90406 49004 Angers Cedex 01, France
| | - Jean-Jacques Sauvain
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Lausanne, Switzerland
| | - Aurélien Thomas
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
| | - Sarah Lyon-Caen
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | | | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Jean-Luc Jaffrezo
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 38000 Grenoble, France
| | - Anne Boudier
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France; Pediatric Department, CHU Grenoble Alpes, Grenoble, France
| | - Sophie Darfeuil
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 38000 Grenoble, France
| | - Rhabira Elazzouzi
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 38000 Grenoble, France
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | | | - Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France; Univ. Grenoble Alpes, Inserm UA07 STROBE Laboratory, Grenoble, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Valérie Siroux
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, 38000 Grenoble, France
| | - Gaëlle Uzu
- Univ. Grenoble Alpes, CNRS, INRAE, IRD, Grenoble INP, IGE, 38000 Grenoble, France.
| |
Collapse
|
10
|
Shahpoury P, Lelieveld S, Johannessen C, Berkemeier T, Celo V, Dabek-Zlotorzynska E, Harner T, Lammel G, Nenes A. Influence of aerosol acidity and organic ligands on transition metal solubility and oxidative potential of fine particulate matter in urban environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167405. [PMID: 37777133 DOI: 10.1016/j.scitotenv.2023.167405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
The adverse health effects of air pollution around the world have been associated with the inhalation of fine particulate matter (PM2.5). Such outcomes are thought to be related to the induction of oxidative stress due to the excess formation of reactive oxygen species (ROS) in the respiratory and cardiovascular systems. The ability of airborne chemicals to deplete antioxidants and to form ROS is known as oxidative potential (OP). Here we studied the influence of aerosol acidity and organic ligands on the solubility of transition metals, in particular iron (Fe) and copper (Cu), and on the OP of PM2.5 from Canadian National Air Pollution Surveillance urban sites in Toronto, Vancouver, and Hamilton. Using chemical assays and model simulations of the lung redox chemistry, we quantified ROS formation in the lung lining fluid, targeting superoxide anion (O2•-), hydrogen peroxide (H2O2), and hydroxyl radical (•OH), as well as the PM2.5 redox potential (RP). Experimental •OH formation (OPOH) showed high correlations with RP and model-predicted ROS metrics. Both aerosol acidity and oxalate content enhanced the solubility of transition metals, with oxalate showing a stronger association. While experimental OP metrics were primarily associated with species of primary origin such as elemental carbon, Fe, and Cu, model-predicted ROS were associated with secondary processes including proton- and ligand-mediated dissolution of Fe. Model simulations showed that water-soluble Cu was the main contributor to O2•- formation, while water-soluble Fe dominated the formation of highly reactive •OH radical, particularly at study sites with highly acidic aerosol and elevated levels of oxalate. This study underscores the importance of reducing transition metal emissions in urban environments to improve population health.
Collapse
Affiliation(s)
- Pourya Shahpoury
- Environmental and Life Sciences, Trent University, Peterborough, Canada; Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.
| | - Steven Lelieveld
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | | | - Thomas Berkemeier
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Valbona Celo
- Analysis and Air Quality Section, Environment and Climate Change Canada, Ottawa, Canada
| | | | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Canada
| | - Gerhard Lammel
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Switzerland; Center for the Study of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| |
Collapse
|
11
|
Ripley S, Gao D, Pollitt KJG, Lakey PSJ, Shiraiwa M, Hatzopoulou M, Weichenthal S. Within-city spatial variations in long-term average outdoor oxidant gas concentrations and cardiovascular mortality: Effect modification by oxidative potential in the Canadian Census Health and Environment Cohort. Environ Epidemiol 2023; 7:e257. [PMID: 37545813 PMCID: PMC10403014 DOI: 10.1097/ee9.0000000000000257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/01/2023] [Indexed: 08/08/2023] Open
Abstract
Health effects of oxidant gases may be enhanced by components of particulate air pollution that contribute to oxidative stress. Our aim was to examine if within-city spatial variations in the oxidative potential of outdoor fine particulate air pollution (PM2.5) modify relationships between oxidant gases and cardiovascular mortality. Methods We conducted a retrospective cohort study of participants in the Canadian Census Health and Environment Cohort who lived in Toronto or Montreal, Canada, from 2002 to 2015. Cox proportional hazards models were used to estimate associations between outdoor concentrations of oxidant gases (Ox, a redox-weighted average of nitrogen dioxide and ozone) and cardiovascular deaths. Analyses were performed across strata of two measures of PM2.5 oxidative potential and reactive oxygen species concentrations (ROS) adjusting for relevant confounding factors. Results PM2.5 mass concentration showed little within-city variability, but PM2.5 oxidative potential and ROS were more variable. Spatial variations in outdoor Ox were associated with an increased risk of cardiovascular mortality [HR per 5 ppb = 1.028, 95% confidence interval (CI): 1.001, 1.055]. The effect of Ox on cardiovascular mortality was stronger above the median of each measure of PM2.5 oxidative potential and ROS (e.g., above the median of glutathione-based oxidative potential: HR = 1.045, 95% CI: 1.009, 1.081; below median: HR = 1.000, 95% CI: 0.960, 1.043). Conclusion Within-city spatial variations in PM2.5 oxidative potential may modify long-term cardiovascular health impacts of Ox. Regions with elevated Ox and PM2.5 oxidative potential may be priority areas for interventions to decrease the population health impacts of outdoor air pollution.
Collapse
Affiliation(s)
- Susannah Ripley
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Dong Gao
- Yale School of Public Health, New Haven, Connecticut
| | | | - Pascale S. J. Lakey
- Department of Chemistry, University of California Irvine, Irvine, California
| | - Manabu Shiraiwa
- Department of Chemistry, University of California Irvine, Irvine, California
| | - Marianne Hatzopoulou
- Department of Civil & Mineral Engineering, University of Toronto, Toronto, Canada
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| |
Collapse
|
12
|
Schiavo B, Meza-Figueroa D, Vizuete-Jaramillo E, Robles-Morua A, Angulo-Molina A, Reyes-Castro PA, Inguaggiato C, Gonzalez-Grijalva B, Pedroza-Montero M. Oxidative potential of metal-polluted urban dust as a potential environmental stressor for chronic diseases. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3229-3250. [PMID: 36197533 DOI: 10.1007/s10653-022-01403-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/21/2022] [Indexed: 06/01/2023]
Abstract
Oxidative stress (OS) associated with metals in urban dust has become a public health concern. Chronic diseases linked to general inflammation are particularly affected by OS. This research analyzes the spatial distribution of metals associated with OS, the urban dust´s oxidative potential (OP), and the occurrence of diseases whose treatments are affected by OS. We collected 70 urban dust samples during pre- and post-monsoon seasons to achieve this. We analyzed particle size distribution and morphology by scanning electron microscopy, as well as metal(loid)s by portable X-ray fluorescence, and OP of dust in artificial lysosomal fluid by using an ascorbic acid depletion assay. Our results show that the mean concentration of Fe, Pb, As, Cr, Cu, and V in pre-monsoon was 83,984.6, 98.4, 23.5, 165.8, 301.3, and 141.9 mg kg-1, while during post-monsoon was 50,638.8, 73.9, 16.7, 124.3, 178.9, and 133.5 mg kg-1, respectively. Impoverished areas with the highest presence of cardiovascular, cancer, diabetes, and respiratory diseases coincide with contaminated areas where young adults live. We identified significant differences in the OP between seasons. OP increases during the pre-monsoon (from 7.8 to 237.5 nmol AA min-1) compared to the post-monsoon season (from 1.6 to 163.2 nmol AA min-1). OP values are much higher than measured standards corresponding to contaminated soil and urban particulate matter, which means that additional sources beside metals cause the elevated OP. The results show no risk from chronic exposure to metals; however, our results highlight the importance of studying dust as an environmental factor that may potentially increase oxidative stress.
Collapse
Affiliation(s)
- Benedetto Schiavo
- Instituto de Geofísica, Universidad Nacional Autónoma de México, 04150, Mexico City, Mexico.
| | - Diana Meza-Figueroa
- Departamento de Geología, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico.
| | - Efrain Vizuete-Jaramillo
- Departamento de Ciencias del Agua y del Medio Ambiente, Instituto Tecnológico de Sonora, Ciudad Obregón, Mexico
| | - Agustin Robles-Morua
- Departamento de Ciencias del Agua y del Medio Ambiente, Instituto Tecnológico de Sonora, Ciudad Obregón, Mexico
| | - Aracely Angulo-Molina
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico
| | - Pablo A Reyes-Castro
- Centro de Estudios en Salud y Sociedad, El Colegio de Sonora, Hermosillo, Mexico
| | - Claudio Inguaggiato
- Departamento de Geología, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Ensenada, Mexico
| | - Belem Gonzalez-Grijalva
- Departamento de Geología, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico
| | - Martin Pedroza-Montero
- Departamento de Investigación en Física, Universidad de Sonora, Rosales y Encinas, 83000, Hermosillo, Sonora, Mexico
| |
Collapse
|
13
|
Mettakoonpitak J, Sawatdichai N, Thepnuan D, Siripinyanond A, Henry CS, Chantara S. Microfluidic paper-based analytical devices for simultaneous detection of oxidative potential and copper in aerosol samples. Mikrochim Acta 2023; 190:241. [PMID: 37243836 DOI: 10.1007/s00604-023-05819-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
The potential reach of point-of-care (POC) diagnostics into daily routines for exposure to reactive oxygen species (ROS) and Cu in aerosolized particulate matter (PM) demands that microfluidic paper-based analytical devices (μPADs) take into consideration the simple detection of these toxic PM components. Here, we propose μPADs with a dual-detection system for simultaneous ROS and Cu(II) detection. For colorimetric ROS detection, the glutathione (GSH) assay with a folding design to delay the reaction yielded complete ROS and GSH oxidation, and improved homogeneity of color development relative to using the lateral flow pattern. For electrochemical Cu(II) determination, 1,10-phenanthroline/Nafion modified graphene screen-printed electrodes showed ability to detect Cu(II) down to pg level being low enough to be applied to PM analysis. No intra- and inter-interference affecting both systems were found. The proposed μPADs obtained LODs for 1,4-naphthoquinone (1,4-NQ), used as the ROS representative, and Cu(II) of 8.3 ng and 3.6 pg, respectively and linear working ranges of 20 to 500 ng for ROS and 1 × 10-2 to 2 × 102 ng for Cu(II). Recovery of the method was between 81.4 and 108.3% for ROS and 80.5-105.3% for Cu(II). Finally, the sensors were utilized for simultaneous ROS and Cu(II) determination in PM samples and the results statistically agreed with those using the conventional methods at 95% confidence.
Collapse
Affiliation(s)
- Jaruwan Mettakoonpitak
- Department of Chemistry, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chantaburi, 22000, Thailand.
| | - Nalatthaporn Sawatdichai
- Department of Chemistry, Faculty of Science and Technology, Rambhai Barni Rajabhat University, Chantaburi, 22000, Thailand
| | - Duangduean Thepnuan
- Department of Chemistry, Faculty of Science and Technology, Chiang Mai Rajabhat University, Chiang Mai, 50300, Thailand
| | - Atitaya Siripinyanond
- Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Somporn Chantara
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
14
|
Borlaza LJS, Uzu G, Ouidir M, Lyon-Caen S, Marsal A, Weber S, Siroux V, Lepeule J, Boudier A, Jaffrezo JL, Slama R. Personal exposure to PM 2.5 oxidative potential and its association to birth outcomes. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:416-426. [PMID: 36369373 DOI: 10.1038/s41370-022-00487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/03/2023]
Abstract
BACKGROUND Prenatal exposure to fine particulate matter (PM2.5) assessed through its mass concentration has been associated with foetal growth restriction in studies based on outdoor levels. Oxidative potential of PM2.5 (OP) is an emerging metric a priori relevant to mechanisms of action of PM on health, with very limited evidence to indicate its role on birth outcomes. OBJECTIVES We investigated the association of OP with birth outcomes and compared it with that of PM2.5 mass concentration. METHODS 405 pregnant women from SEPAGES cohort (Grenoble area) carried PM2.5 personal dosimeters for one or two one-week periods. OP was measured using dithiothreitol (DTT) and ascorbic acid (AA) assays from the collected filters. Associations of each exposure metric with offspring weight, height, and head circumference at birth were estimated adjusting for potential confounders. RESULTS The correlation between PM2.5 mass concentration and [Formula: see text] was 0.7. An interquartile range increase in .. was associated with reduced weight (adjusted change, -64 g, -166 to -11, p = 0.02) and height (-4 mm, -6 to -1, p = 0.01) at birth. PM2.5 mass concentration showed similar associations with weight (-53 g, -99 to -8, p = 0.02) and height (-2 mm, -5 to 0, p = 0.05). In birth height models mutually adjusted for the two exposure metrics, the association with [Formula: see text] was less attenuated than that with mass concentration, while for weight both effect sizes attenuated similarly. There was no clear evidence of associations with head circumference for any metric, nor for [Formula: see text] with any growth parameter. IMPACT PM2.5 pregnancy exposure assessed from personal dosimeters was associated with altered foetal growth. Personal OP exposure was associated with foetal growth restrictions, specifically decreased weight and height at birth, possibly to a larger extent than PM2.5 mass concentration alone. These results support OP assessed from DTT as being a health-relevant metric. Larger scale cohort studies are recommended to support our findings.
Collapse
Affiliation(s)
| | - Gaëlle Uzu
- University of Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), F-38000, Grenoble, France.
| | - Marion Ouidir
- University of Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
| | - Sarah Lyon-Caen
- University of Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
| | - Anouk Marsal
- University of Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), F-38000, Grenoble, France
| | - Samuël Weber
- University of Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), F-38000, Grenoble, France
| | - Valérie Siroux
- University of Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
| | - Johanna Lepeule
- University of Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
| | - Anne Boudier
- University of Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
- Pediatrics, CHU Grenoble-Alpes, Grenoble, France
| | - Jean-Luc Jaffrezo
- University of Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), F-38000, Grenoble, France
| | - Rémy Slama
- University of Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France.
| |
Collapse
|
15
|
Sun H, Chen S, Li X, Cheng L, Luo Y, Xie L. Prediction and early warning model of mixed exposure to air pollution and meteorological factors on death of respiratory diseases based on machine learning. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53754-53766. [PMID: 36864340 DOI: 10.1007/s11356-023-26017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
In recent years, with the repeated occurrence of extreme weather and the continuous increase of air pollution, the incidence of weather-related diseases has increased yearly. Air pollution and extreme temperature threaten sensitive groups' lives, among which air pollution is most closely related to respiratory diseases. Owing to the skewed attention, timely intervention is necessary to better predict and warn the occurrence of death from respiratory diseases. In this paper, according to the existing research, based on a number of environmental monitoring data, the regression model is established by integrating the machine learning methods XGBoost, support vector machine (SVM), and generalized additive model (GAM) model. The distributed lag nonlinear model (DLNM) is used to set the warning threshold to transform the data and establish the warning model. According to the DLNM model, the cumulative lag effect of meteorological factors is explored. There is a cumulative lag effect between air temperature and PM2.5, which reaches the maximum when the lag is 3 days and 5 days, respectively. If the low temperature and high environmental pollutants (PM2.5) continue to influence for a long time, the death risk of respiratory diseases will continue to rise, and the early warning model based on DLNM has better performance.
Collapse
Affiliation(s)
- HongYing Sun
- The Faculty of Economics, Guangdong University of Finance & Economics, Guangzhou, 510320, China
| | - SiYi Chen
- The Faculty of Economics, Guangdong University of Finance & Economics, Guangzhou, 510320, China
| | - XinYi Li
- The Faculty of Economics, Guangdong University of Finance & Economics, Guangzhou, 510320, China
| | - LiPing Cheng
- The Faculty of Economics, Guangdong University of Finance & Economics, Guangzhou, 510320, China.
| | - YiPei Luo
- The Faculty of Economics, Guangdong University of Finance & Economics, Guangzhou, 510320, China
| | - LingLi Xie
- School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
16
|
Xing C, Wang Y, Yang X, Zeng Y, Zhai J, Cai B, Zhang A, Fu TM, Zhu L, Li Y, Wang X, Zhang Y. Seasonal variation of driving factors of ambient PM 2.5 oxidative potential in Shenzhen, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160771. [PMID: 36513240 DOI: 10.1016/j.scitotenv.2022.160771] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Reactive oxygen species (ROS) play a central role in health effects of ambient fine particulate matter (PM2.5). In this work, we screened for efficient and complementary oxidative potential (OP) measurements by comparing the response values of multiple chemical probes (OPDTT, OPOH, OPGSH) to ambient PM2.5 in Shenzhen, China. Combined with meteorological condition and PM2.5 chemical composition analysis, we explored the effects of different chemical components and emission sources on the ambient PM2.5 OP and analyzed their seasonal variations. The results show that OPmDTT(mass-normalized) and OPmGSH-SLF were highly correlated (r = 0.77). OPDTT was mainly influenced by organic carbon, while OPOH was highly dominated by heavy metals. The combination of OPDTT and OPOH provides an efficient and comprehensive measurement of OP. Temporally, the OPs were substantially higher in winter than in summer (1.4 and 4 times higher for OPmDTT and OPmOH, respectively). The long-distance transported biomass burning sources from the north dominated the OPDTT in winter, while the ship emissions mainly influenced the summer OP. The OPmDTT increased sharply with the decrease of PM2.5 mass concentration, especially when the PM2.5 concentration was lower than 30 μg/m3. The huge differences in wind fields between the winter and summer cause considerable variations in PM2.5 concentrations, components, and OP. Our work emphasizes the necessity of long-term, multi-method, multi-component assessment of the OP of PM2.5.
Collapse
Affiliation(s)
- Chunbo Xing
- School of Environment, Harbin Institute of Technology, Harbin 150001, China; Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yixiang Wang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Shenzhen, Guangdong 518055, China.
| | - Yaling Zeng
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jinghao Zhai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Baohua Cai
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Antai Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lei Zhu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ying Li
- Department of Ocean Sciences and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yanli Zhang
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
17
|
Zhang X, Chen X, Yue Y, Wang S, Zhao B, Huang X, Li T, Sun Q, Wang J. Ecological Study on Global Health Effects due to Source-Specific Ambient Fine Particulate Matter Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1278-1291. [PMID: 36607898 PMCID: PMC9879273 DOI: 10.1021/acs.est.2c06752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Ambient air pollution of fine particulate matter with diameters less than 2.5 μm (PM2.5) is associated with millions of premature deaths per year, recognized as a leading global health concern. The dose-response relation between ambient PM2.5 exposure and mortality risk is the most fundamental information for assessments of the health effects of PM2.5. The existing dose-response relations were generally developed based on the assumption of equal contribution to toxicity from various sources. However, the sources of PM2.5 may significantly influence health effects. In this study, we conducted an ecological study to investigate the global long-term correlation between source-specific PM2.5 exposure and cause-specific mortality risk (SPECM) based on the regional aggregate data of the publically available official health databases from 528 regions worldwide with a total registered population of 3.2 billion. The results provided preliminary epidemiological evidence for differing chronic health effects across various sources. The relative mortality risks of lung cancer and circulatory diseases were closely correlated with the primary emissions from industrial and residential combustion sources. Chronic lower respiratory diseases were mostly associated with the mass concentration of particulate matter.
Collapse
Affiliation(s)
- Xiaole Zhang
- Institute
of Environmental Engineering (IfU), ETH
Zürich, ZürichCH-8093, Switzerland
- Laboratory
for Advanced Analytical Technologies, Empa, DübendorfCH-8600, Switzerland
- Institute
of Public Safety Research, Department of Engineering Physics, Tsinghua University, Beijing100084, China
| | - Xi Chen
- Institute
of Environmental Engineering (IfU), ETH
Zürich, ZürichCH-8093, Switzerland
| | - Yang Yue
- Institute
of Environmental Engineering (IfU), ETH
Zürich, ZürichCH-8093, Switzerland
- Laboratory
for Advanced Analytical Technologies, Empa, DübendorfCH-8600, Switzerland
| | - Shuxiao Wang
- State
Key Joint Laboratory of Environmental Simulation and Pollution Control,
School of Environment, Tsinghua University, Beijing100084, China
| | - Bin Zhao
- State
Key Joint Laboratory of Environmental Simulation and Pollution Control,
School of Environment, Tsinghua University, Beijing100084, China
| | - Xinmei Huang
- Institute
of Environmental Engineering (IfU), ETH
Zürich, ZürichCH-8093, Switzerland
| | - Tiantian Li
- China
CDC Key Laboratory of Environment and Population Health, National
Institute of Environmental Health, Chinese
Center for Disease Control and Prevention, Beijing100021, China
| | - Qinghua Sun
- China
CDC Key Laboratory of Environment and Population Health, National
Institute of Environmental Health, Chinese
Center for Disease Control and Prevention, Beijing100021, China
| | - Jing Wang
- Institute
of Environmental Engineering (IfU), ETH
Zürich, ZürichCH-8093, Switzerland
- Laboratory
for Advanced Analytical Technologies, Empa, DübendorfCH-8600, Switzerland
| |
Collapse
|
18
|
Chen TL, Hsiao TC, Chuang HC, Ting YC, Wang CH. A mobile platform for characterizing on-road tailpipe emissions and toxicity of ultrafine particles under real driving Conditions. ENVIRONMENTAL RESEARCH 2023; 216:114523. [PMID: 36270534 DOI: 10.1016/j.envres.2022.114523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Acute exposure to fresh traffic-related air pollutants (TRAPs) can be high for road users, including motorbike drivers, cyclists, and pedestrians. However, evaluating the toxicity of fresh traffic emissions from on-road vehicles is challenging since pollution properties can change dynamically within a short distance and time. This study demonstrated a mobile platform equipped with an On-Board Diagnostic II (OBDII) system, a tailor-made portable emission measurement system, and an electrostatic air-liquid interface exposure system with human monocytic THP-1 cells to characterize on-road tailpipe emissions under real driving conditions. High number concentrations up to 106-107 # cm-3 of ultrafine particles (UFPs) were observed for a gasoline engine at the cold-start stage and a diesel engine during particulate filter regeneration. In particular, a substantial fraction of freshly emitted UFPs within the size less than 23 nm were observed and should be cautioned. The potential toxicity of fresh TRAPs was quantified by cell viability, cytotoxicity, oxidative stress, and inflammatory biomarkers. Results show that the decreased cell viability, increased lactate dehydrogenase (LDH) activity, and high oxidative stress induced by the fresh TRAPs were potentially contributed by gaseous pollutants as well as particles, especially driving with the high idling frequency. Moreover, the dominant contributor to the toxicity is different for gasoline's and diesel's TRAPs. Characterizing on-road air pollutant toxicity as well as physicochemical properties using an innovative mobile platform can fill this knowledge gap.
Collapse
Affiliation(s)
- Tse-Lun Chen
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan; Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan.
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Chieh Ting
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Chen-Hua Wang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
19
|
Marsal A, Slama R, Lyon-Caen S, Borlaza LJS, Jaffrezo JL, Boudier A, Darfeuil S, Elazzouzi R, Gioria Y, Lepeule J, Chartier R, Pin I, Quentin J, Bayat S, Uzu G, Siroux V. Prenatal Exposure to PM2.5 Oxidative Potential and Lung Function in Infants and Preschool- Age Children: A Prospective Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:17004. [PMID: 36695591 PMCID: PMC9875724 DOI: 10.1289/ehp11155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 11/29/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Fine particulate matter (PM 2.5 ) has been found to be detrimental to respiratory health of children, but few studies have examined the effects of prenatal PM 2.5 oxidative potential (OP) on lung function in infants and preschool children. OBJECTIVES We estimated the associations of personal exposure to PM 2.5 and OP during pregnancy on offspring objective lung function parameters and compared the strengths of associations between both exposure metrics. METHODS We used data from 356 mother-child pairs from the SEPAGES cohort. PM filters collected twice during a week were analyzed for OP, using the dithiothreitol (DTT) and the ascorbic acid (AA) assays, quantifying the exposure of each pregnant woman. Lung function was assessed with tidal breathing analysis (TBFVL) and nitrogen multiple-breath washout (N 2 MBW ) test, performed at 6 wk, and airwave oscillometry (AOS) performed at 3 y. Associations of prenatal PM 2.5 mass and OP with lung function parameters were estimated using multiple linear regressions. RESULTS In neonates, an interquartile (IQR) increase in OP v DTT (0.89 nmol / min / m 3 ) was associated with a decrease in functional residual capacity (FRC) measured by N 2 MBW [β = - 2.26 mL ; 95% confidence interval (CI): - 4.68 , 0.15]. Associations with PM 2.5 showed similar patterns in comparison with OP v DTT but of smaller magnitude. Lung clearance index (LCI) and TBFVL parameters did not show any clear association with the exposures considered. At 3 y, increased frequency-dependent resistance of the lungs (Rrs 7 - 19 ) from AOS tended to be associated with higher OP v DTT (β = 0.09 hPa × s / L ; 95% CI: - 0.06 , 0.24) and OP v AA (IQR = 1.14 nmol / min / m 3 ; β = 0.12 hPa × s / L ; 95% CI: - 0.04 , 0.27) but not with PM 2.5 (IQR = 6.9 μ g / m 3 ; β = 0.02 hPa × s / L ; 95% CI: - 0.13 , 0.16). Results for FRC and Rrs 7 - 19 remained similar in OP models adjusted on PM 2.5 . DISCUSSION Prenatal exposure to OP v DTT was associated with several offspring lung function parameters over time, all related to lung volumes. https://doi.org/10.1289/EHP11155.
Collapse
Affiliation(s)
- Anouk Marsal
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
- Agence de l’environnement et de la Maîtrise de l’Energie, Angers, France
| | - Rémy Slama
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Sarah Lyon-Caen
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Lucille Joanna S. Borlaza
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Jean-Luc Jaffrezo
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Anne Boudier
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- Pediatric Department, CHU Grenoble Alpes, Grenoble, France
| | - Sophie Darfeuil
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Rhabira Elazzouzi
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Yoann Gioria
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Johanna Lepeule
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Ryan Chartier
- RTI International, Research Triangle Park, North Carolina, USA
| | - Isabelle Pin
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- Pediatric Department, CHU Grenoble Alpes, Grenoble, France
| | - Joane Quentin
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
| | - Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Inserm UA07 STOBE Laboratory, Grenoble, France
| | - Gaëlle Uzu
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
| | - Valérie Siroux
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - the SEPAGES cohort study group
- Université Grenoble Alpes, Centre national de la recherche scientifique (CNRS), INRAE, IRD, INP-G, IGE (UMR 5001), Grenoble, France
- Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
- Pediatric Department, CHU Grenoble Alpes, Grenoble, France
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, Inserm UA07 STOBE Laboratory, Grenoble, France
- RTI International, Research Triangle Park, North Carolina, USA
- Agence de l’environnement et de la Maîtrise de l’Energie, Angers, France
| |
Collapse
|
20
|
Zou K, Sun P, Huang H, Zhuo H, Qie R, Xie Y, Luo J, Li N, Li J, He J, Aschebrook-Kilfoy B, Zhang Y. Etiology of lung cancer: Evidence from epidemiologic studies. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:216-225. [PMID: 39036545 PMCID: PMC11256564 DOI: 10.1016/j.jncc.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 12/05/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer incidence and mortality worldwide. While smoking, radon, air pollution, as well as occupational exposure to asbestos, diesel fumes, arsenic, beryllium, cadmium, chromium, nickel, and silica are well-established risk factors, many lung cancer cases cannot be explained by these known risk factors. Over the last two decades the incidence of adenocarcinoma has risen, and it now surpasses squamous cell carcinoma as the most common histologic subtype. This increase warrants new efforts to identify additional risk factors for specific lung cancer subtypes as well as a comprehensive review of current evidence from epidemiologic studies to inform future studies. Given the myriad exposures individuals experience in real-world settings, it is essential to investigate mixture effects from complex exposures and gene-environment interactions in relation to lung cancer and its subtypes.
Collapse
Affiliation(s)
- Kaiyong Zou
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiyuan Sun
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huang Huang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haoran Zhuo
- Yale School of Public Health, New Haven, United States of America
| | - Ranran Qie
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuting Xie
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiajun Luo
- Department of Public Health Sciences, the University of Chicago, Chicago, United States of America
| | - Ni Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiang Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Yawei Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Toyib O, Lavigne E, Traub A, Umbrio D, You H, Ripley S, Pollitt K, Shin T, Kulka R, Jessiman B, Tjepkema M, Martin R, Stieb DM, Hatzopoulou M, Evans G, Burnett RT, Weichenthal S. Long-term Exposure to Oxidant Gases and Mortality: Effect Modification by PM 2.5 Transition Metals and Oxidative Potential. Epidemiology 2022; 33:767-776. [PMID: 36165987 PMCID: PMC9531968 DOI: 10.1097/ede.0000000000001538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Populations are simultaneously exposed to outdoor concentrations of oxidant gases (i.e., O 3 and NO 2 ) and fine particulate air pollution (PM 2.5 ). Since oxidative stress is thought to be an important mechanism explaining air pollution health effects, the adverse health impacts of oxidant gases may be greater in locations where PM 2.5 is more capable of causing oxidative stress. METHODS We conducted a cohort study of 2 million adults in Canada between 2001 and 2016 living within 10 km of ground-level monitoring sites for outdoor PM 2.5 components and oxidative potential. O x exposures (i.e., the redox-weighted average of O 3 and NO 2 ) were estimated using a combination of chemical transport models, land use regression models, and ground-level data. Cox proportional hazards models were used to estimate associations between 3-year moving average O x and mortality outcomes across strata of transition metals and sulfur in PM 2.5 and three measures of PM 2.5 oxidative potential adjusting for possible confounding factors. RESULTS Associations between O x and mortality were consistently stronger in regions with elevated PM 2.5 transition metal/sulfur content and oxidative potential. For example, each interquartile increase (6.27 ppb) in O x was associated with a 14.9% (95% CI = 13.0, 16.9) increased risk of nonaccidental mortality in locations with glutathione-related oxidative potential (OP GSH ) above the median whereas a 2.50% (95% CI = 0.600, 4.40) increase was observed in regions with OP GSH levels below the median (interaction P value <0.001). CONCLUSION Spatial variations in PM 2.5 composition and oxidative potential may contribute to heterogeneity in the observed health impacts of long-term exposures to oxidant gases.
Collapse
Affiliation(s)
- Olaniyan Toyib
- Health Analysis Division, Statistics Canada, Ottawa, ON, Canada
| | - Eric Lavigne
- Air Health Science Division, Health Canada, Ottawa, ON, Canada
- School of Epidemiology & Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Alison Traub
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Dana Umbrio
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Hongyu You
- Air Health Science Division, Health Canada, Ottawa, ON, Canada
| | - Susannah Ripley
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| | - Krystal Pollitt
- Department of Environmental Health Sciences, Yale, New Haven, CT
| | - Tim Shin
- Air Health Science Division, Health Canada, Ottawa, ON, Canada
| | - Ryan Kulka
- Air Health Science Division, Health Canada, Ottawa, ON, Canada
| | | | | | - Randall Martin
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
- Department of Physics and Atmospheric Science, Washington University, St Louis, MI
| | - Dave M. Stieb
- Population Studies Division, Health Canada, Ottawa, ON, Canada
| | - Marianne Hatzopoulou
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada
| | - Greg Evans
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | | | - Scott Weichenthal
- Air Health Science Division, Health Canada, Ottawa, ON, Canada
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| |
Collapse
|
22
|
Prueitt RL, Li W, Edwards L, Zhou J, Goodman JE. Systematic review of the association between long-term exposure to fine particulate matter and mortality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1647-1685. [PMID: 33849343 DOI: 10.1080/09603123.2021.1901864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
We used a transparent systematic review framework based on best practices for evaluating study quality and integrating evidence to conduct a review of the available epidemiology studies evaluating associations between long-term exposure to ambient concentrations of PM2.5 and mortality (all-cause and non-accidental) conducted in North America. We found that while there is some consistency across studies for reporting positive associations, these associations are weak and several important methodological issues have led to uncertainties with regard to the evidence from these studies, including potential confounding by measured and unmeasured factors, exposue measurement error, and model misspecification. These uncertainties provide a plausible, alternative explanation to causality for the weakly positive findings across studies. Using a causality framework that incorporates best practices for making causal determinations, we concluded that the evidence for a causal relationship between long-term exposure to ambient PM2.5 concentrations and mortality from these studies is inadequate.
Collapse
|
23
|
Korsiak J, Pinault L, Christidis T, Burnett RT, Abrahamowicz M, Weichenthal S. Long-term exposure to wildfires and cancer incidence in Canada: a population-based observational cohort study. Lancet Planet Health 2022; 6:e400-e409. [PMID: 35550079 DOI: 10.1016/s2542-5196(22)00067-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Wildfires emit many carcinogenic pollutants that contaminate air, water, terrestrial, and indoor environments. However, little is known about the relationship between exposure to wildfires and cancer risk. We aimed to assess the associations between residential exposure to wildfires and the incidence of several cancer outcomes (lung cancer, brain cancer, non-Hodgkin lymphoma, multiple myeloma, and leukaemia) in Canada. METHODS We did a population-based observational cohort study of participants in the 1996 Canadian Census Health and Environment Cohort. The 1996 Canadian Census Health and Environment Cohort is a nationally representative sample of Canadian adults, followed up for cancer incidence and mortality from 1996 to 2015. For this analysis, we excluded participants who lived in major Canadian cities (with a population size greater than 1·5 million people), recent immigrants, and individuals younger than 25 years or 90 years of age or older at baseline. Exposures to wildfires were assigned on the basis of area burned within a 20 km or 50 km radius of residential locations and updated for annual residential mobility. Multivariable Cox proportional hazards models were used to estimate associations between exposure to wildfires and specific cancers associated with carcinogenic compounds released by wildfires, including lung and brain cancer, non-Hodgkin lymphoma, multiple myeloma, and leukaemia, adjusted for many personal and neighbourhood-level covariates. FINDINGS Our analyses included more than 2 million people followed up for a median of 20 years, for a total of 34 million person-years. Wildfire exposure was associated with slightly increased incidence of lung cancer and brain tumours. For example, cohort members exposed to a wildfire within 50 km of residential locations in the past 10 years had a 4·9% relatively higher incidence (adjusted hazard ratio [HR] 1·049, 95% CI 1·028-1·071) of lung cancer than unexposed populations, and a 10% relatively higher incidence (adjusted HR 1·100, 1·026-1·179) of brain tumours. Similar associations were observed for the 20 km buffer size. Wildfires were not associated with haematological cancers in this study, and concentration-response trends were not readily apparent when area burned was modelled as a continuous variable. INTERPRETATION Long-term exposure to wildfires might increase the risk of lung cancer and brain tumours. Further work is needed to develop long-term estimates of wildfire exposures that capture the complex mixture of environmental pollutants released during these events. FUNDING Canadian Institute for Health Research and Fonds de recherche du Quebec.
Collapse
Affiliation(s)
- Jill Korsiak
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| | - Lauren Pinault
- Health Analysis Division, Statistics Canada, Ottawa, ON, Canada
| | | | - Richard T Burnett
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Michal Abrahamowicz
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada.
| |
Collapse
|
24
|
Jeong CH, Yousif M, Evans GJ. Impact of the COVID-19 lockdown on the chemical composition and sources of urban PM 2.5. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118417. [PMID: 34743966 PMCID: PMC8747944 DOI: 10.1016/j.envpol.2021.118417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
The lockdown measures caused by the COVID-19 pandemic substantially affected air quality in many cities through reduced emissions from a variety of sources, including traffic. The change in PM2.5 and its chemical composition in downtown Toronto, Canada, including organic/inorganic composition and trace metals, were examined by comparing with a pre-lockdown period and respective periods in the three previous years. During the COVID-19 lockdown, the average traffic volume reduced by 58%, whereas PM2.5 only decreased by 4% relative to the baselines. Major chemical components of PM2.5, such as organic aerosol and ammonium nitrate, showed significant seasonal changes between pre- and lockdown periods. The changes in local and regional PM2.5 sources were assessed using hourly chemical composition measurements of PM2.5. Major regional and secondary PM2.5 sources exhibited no clear reductions during the lockdown period compared to pre-lockdown and the previous years. However, cooking emissions substantially dropped by approximately 61% due to the restrictions imposed on local businesses (i.e., restaurants) during the lockdown, and then gradually increased throughout the recovery periods. The reduction in non-tailpipe emissions, characterized by road dust and brake/tire dust, ranged from 37% to 61%, consistent with the changes in traffic volume and meteorology across seasons in 2020. Tailpipe emissions dropped by approximately 54% and exhibited even larger reductions during morning rush hours. The reduction of tailpipe emissions was statistically associated with the reduced number of trucks, highlighting that a small fraction of trucks contributes disproportionally to tailpipe emissions. This study provides insight into the potential for local benefits to arise from traffic intervention in traffic-dominated urban areas and supports the development of targeted strategies and regulations to effectively reduce local air pollution.
Collapse
Affiliation(s)
- Cheol-Heon Jeong
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, Toronto, Ontario, Canada.
| | - Meguel Yousif
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, Toronto, Ontario, Canada
| | - Greg J Evans
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
25
|
Weichenthal S, Lavigne E, Traub A, Umbrio D, You H, Pollitt K, Shin T, Kulka R, Stieb DM, Korsiak J, Jessiman B, Brook JR, Hatzopoulou M, Evans G, Burnett RT. Association of Sulfur, Transition Metals, and the Oxidative Potential of Outdoor PM2.5 with Acute Cardiovascular Events: A Case-Crossover Study of Canadian Adults. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:107005. [PMID: 34644144 PMCID: PMC8513754 DOI: 10.1289/ehp9449] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/30/2021] [Accepted: 09/28/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND We do not currently understand how spatiotemporal variations in the composition of fine particulate air pollution [fine particulate matter with aerodynamic diameter ≤2.5μm (PM2.5)] affects population health risks. However, recent evidence suggests that joint concentrations of transition metals and sulfate may influence the oxidative potential (OP) of PM2.5 and associated health impacts. OBJECTIVES The purpose of the study was to evaluate how combinations of transition metals/OP and sulfur content in outdoor PM2.5 influence associations with acute cardiovascular events. METHODS We conducted a national case-crossover study of outdoor PM2.5 and acute cardiovascular events in Canada between 2016 and 2017 (93,344 adult cases). Monthly mean transition metal and sulfur (S) concentrations in PM2.5 were determined prospectively along with estimates of OP using acellular assays for glutathione (OPGSH), ascorbate (OPAA), and dithiothreitol depletion (OPDTT). Conditional logistic regression models were used to estimate odds ratios (OR) [95% confidence intervals (CI)] for PM2.5 across strata of transition metals/OP and sulfur. RESULTS Among men, the magnitudes of observed associations were strongest when both transition metal and sulfur content were elevated. For example, an OR of 1.078 (95% CI: 1.049, 1.108) (per 10μg/m3) was observed for cardiovascular events in men when both copper and S were above the median, whereas a weaker association was observed when both elements were below median values (OR=1.019, 95% CI: 1.007, 1.031). A similar pattern was observed for OP metrics. PM2.5 was not associated with acute cardiovascular events in women. DISCUSSION The combined transition metal and sulfur content of outdoor PM2.5 influences the strength of association with acute cardiovascular events in men. Regions with elevated concentrations of both sulfur and transition metals in PM2.5 should be examined as priority areas for regulatory interventions. https://doi.org/10.1289/EHP9449.
Collapse
Affiliation(s)
- Scott Weichenthal
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada
- Air Health Science Division, Health Canada, Ottawa, Canada
| | - Eric Lavigne
- Air Health Science Division, Health Canada, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Alison Traub
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Dana Umbrio
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Hongyu You
- Air Health Science Division, Health Canada, Ottawa, Canada
| | - Krystal Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Tim Shin
- Air Health Science Division, Health Canada, Ottawa, Canada
| | - Ryan Kulka
- Air Health Science Division, Health Canada, Ottawa, Canada
| | - Dave M. Stieb
- Population Studies Division, Health Canada, Ottawa, Canada
| | - Jill Korsiak
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Canada
| | - Barry Jessiman
- Air Health Science Division, Health Canada, Ottawa, Canada
| | - Jeff R. Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Marianne Hatzopoulou
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, Canada
| | - Greg Evans
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | | |
Collapse
|
26
|
Fleck ADS, Debia M, Ryan PE, Couture C, Traub A, Evans GJ, Suarthana E, Smargiassi A. Assessment of the Oxidative Potential and Oxidative Burden from Occupational Exposures to Particulate Matter. Ann Work Expo Health 2021; 66:379-391. [PMID: 34595509 DOI: 10.1093/annweh/wxab086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 08/03/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Oxidative potential (OP) is a toxicologically relevant metric that integrates features like mass concentration and chemical composition of particulate matter (PM). Although it has been extensively explored as a metric for the characterization of environmental particles, this is still an underexplored application in the occupational field. This study aimed to estimate the OP of particles in two occupational settings from a construction trades school. This characterization also includes the comparison between activities, sampling strategies, and size fractions. Particulate mass concentrations (PM4-Personal, PM4-Area, and PM2.5-Area) and number concentrations were measured during three weeks of welding and construction/bricklaying activities. The OP was assessed by the ascorbate assay (OPAA) using a synthetic respiratory tract lining fluid (RTLF), while the oxidative burden (OBAA) was determined by multiplying the OPAA values with PM concentrations. Median (25th-75th percentiles) of PM mass and number concentrations were 900 (672-1730) µg m-3 and 128 000 (78 000-169 000) particles cm-3 for welding, and 432 (345-530) µg m-3 and 2800 (1700-4400) particles cm-3 for construction. Welding particles, especially from the first week of activities, were also associated with higher redox activity (OPAA: 3.3 (2.3-4.6) ρmol min-1 µg-1; OBAA: 1750 (893-4560) ρmol min-1 m-3) compared to the construction site (OPAA: 1.4 (1.0-1.8) ρmol min-1 µg-1; OBAA: 486 (341-695) ρmol min-1 m-3). The OPAA was independent of the sampling strategy or size fraction. However, driven by the higher PM concentrations, the OBAA from personal samples was higher compared to area samples in the welding shop, suggesting an influence of the sampling strategy on PM concentrations and OBAA. These results demonstrate that important levels of OPAA can be found in occupational settings, especially during welding activities. Furthermore, the OBAA found in both workplaces largely exceeded the levels found in environmental studies. Therefore, measures of OP and OB could be further explored as metrics for exposure assessment to occupational PM, as well as for associations with cardiorespiratory outcomes in future occupational epidemiological studies.
Collapse
Affiliation(s)
- Alan da Silveira Fleck
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, Quebec, Canada.,Centre de Recherche en Santé Publique (CReSP), Montreal, Quebec, Canada
| | - Maximilien Debia
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, Quebec, Canada.,Centre de Recherche en Santé Publique (CReSP), Montreal, Quebec, Canada
| | - Patrick Eddy Ryan
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, Quebec, Canada.,Centre de Recherche en Santé Publique (CReSP), Montreal, Quebec, Canada
| | - Caroline Couture
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, Quebec, Canada.,Centre de Recherche en Santé Publique (CReSP), Montreal, Quebec, Canada
| | - Alison Traub
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto Engineering, Toronto, Ontario, Canada
| | - Greg J Evans
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto Engineering, Toronto, Ontario, Canada
| | - Eva Suarthana
- Research Institute of McGill University Health Center, Montreal, Quebec, Canada.,Centre de Recherche de l'Hôpital du Sacré-Cœur de Montréal (CRHSCM), 5400 Boul Gouin O, Montreal, Quebec, Canada
| | - Audrey Smargiassi
- Department of Environmental and Occupational Health, School of Public Health, University of Montreal, Montreal, Quebec, Canada.,Centre de Recherche en Santé Publique (CReSP), Montreal, Quebec, Canada.,Institut National de Sante Publique du Québec (INSPQ), 190 Boul Crémazie E, Montreal, Quebec, Canada
| |
Collapse
|
27
|
Lind L, Araujo JA, Barchowsky A, Belcher S, Berridge BR, Chiamvimonvat N, Chiu WA, Cogliano VJ, Elmore S, Farraj AK, Gomes AV, McHale CM, Meyer-Tamaki KB, Posnack NG, Vargas HM, Yang X, Zeise L, Zhou C, Smith MT. Key Characteristics of Cardiovascular Toxicants. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:95001. [PMID: 34558968 PMCID: PMC8462506 DOI: 10.1289/ehp9321] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND The concept of chemical agents having properties that confer potential hazard called key characteristics (KCs) was first developed to identify carcinogenic hazards. Identification of KCs of cardiovascular (CV) toxicants could facilitate the systematic assessment of CV hazards and understanding of assay and data gaps associated with current approaches. OBJECTIVES We sought to develop a consensus-based synthesis of scientific evidence on the KCs of chemical and nonchemical agents known to cause CV toxicity along with methods to measure them. METHODS An expert working group was convened to discuss mechanisms associated with CV toxicity. RESULTS The group identified 12 KCs of CV toxicants, defined as exogenous agents that adversely interfere with function of the CV system. The KCs were organized into those primarily affecting cardiac tissue (numbers 1-4 below), the vascular system (5-7), or both (8-12), as follows: 1) impairs regulation of cardiac excitability, 2) impairs cardiac contractility and relaxation, 3) induces cardiomyocyte injury and death, 4) induces proliferation of valve stroma, 5) impacts endothelial and vascular function, 6) alters hemostasis, 7) causes dyslipidemia, 8) impairs mitochondrial function, 9) modifies autonomic nervous system activity, 10) induces oxidative stress, 11) causes inflammation, and 12) alters hormone signaling. DISCUSSION These 12 KCs can be used to help identify pharmaceuticals and environmental pollutants as CV toxicants, as well as to better understand the mechanistic underpinnings of their toxicity. For example, evidence exists that fine particulate matter [PM ≤2.5μm in aerodynamic diameter (PM2.5)] air pollution, arsenic, anthracycline drugs, and other exogenous chemicals possess one or more of the described KCs. In conclusion, the KCs could be used to identify potential CV toxicants and to define a set of test methods to evaluate CV toxicity in a more comprehensive and standardized manner than current approaches. https://doi.org/10.1289/EHP9321.
Collapse
Affiliation(s)
- Lars Lind
- Department of Medical Sciences, Clinical Epidemiology, University of Uppsala, Sweden
| | - Jesus A. Araujo
- Division of Cardiology, David Geffen School of Medicine at University of California Los Angeles (UCLA), UCLA, Los Angeles, California, USA
- Department of Environmental Health Sciences, Fielding School of Public Health and Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, USA
| | - Scott Belcher
- Department of Biological Sciences, North Carolina State University, North Carolina, USA
| | - Brian R. Berridge
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, University of California, Davis, Davis, California, USA
| | - Weihsueh A. Chiu
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Vincent J. Cogliano
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Sarah Elmore
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Aimen K. Farraj
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology and Behavior, College of Biological Sciences, University of California, Davis, Davis, California, USA
| | - Cliona M. McHale
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | | | - Nikki Gillum Posnack
- Children’s National Heart Institute and the Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, DC, USA
| | - Hugo M. Vargas
- Translational Safety & Bioanalytical Sciences, Amgen, Inc., Thousand Oaks, California, USA
| | - Xi Yang
- Division of Pharmacology and Toxicology, Office of Cardiology, Hematology, Endocrinology, and Nephrology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency (EPA), Oakland, California, USA
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
28
|
Xu JW, Martin RV, Evans GJ, Umbrio D, Traub A, Meng J, van Donkelaar A, You H, Kulka R, Burnett RT, Godri Pollitt KJ, Weichenthal S. Predicting Spatial Variations in Multiple Measures of Oxidative Burden for Outdoor Fine Particulate Air Pollution across Canada. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9750-9760. [PMID: 34241996 DOI: 10.1021/acs.est.1c01210] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fine particulate air pollution (PM2.5) is a leading contributor to the overall global burden of disease. Traditionally, outdoor PM2.5 has been characterized using mass concentrations which treat all particles as equally harmful. Oxidative potential (OP) (per μg) and oxidative burden (OB) (per m3) are complementary metrics that estimate the ability of PM2.5 to cause oxidative stress, which is an important mechanism in air pollution health effects. Here, we provide the first national estimates of spatial variations in multiple measures (glutathione, ascorbate, and dithiothreitol depletion) of annual median outdoor PM2.5 OB across Canada. To do this, we combined a large database of ground-level OB measurements collected monthly prospectively across Canada for 2 years (2016-2018) with PM2.5 components estimated using a chemical transport model (GEOS-Chem) and satellite aerosol observations. Our predicted ground-level OB values of all three methods were consistent with ground-level observations (cross-validation R2 = 0.63-0.74). We found that forested regions and urban areas had the highest OB, predicted primarily by black carbon and organic carbon from wildfires and transportation sources. Importantly, the dominant components associated with OB were different than those contributing to PM2.5 mass concentrations (secondary inorganic aerosol); thus, OB metrics may better indicate harmful components and sources on health than the bulk PM2.5 mass, reinforcing that OB estimates can complement the existing PM2.5 data in future national-level epidemiological studies.
Collapse
Affiliation(s)
- Jun-Wei Xu
- Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Randall V Martin
- Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
- Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, United States
| | - Greg J Evans
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Dalla Lana School of Public Health, University of Toronto, 480 University Avenue, Toronto, Ontario M5G 1V2, Canada
| | - Dana Umbrio
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Alison Traub
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Jun Meng
- Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
| | - Aaron van Donkelaar
- Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, United States
| | - Hongyu You
- Air Health Science Division, Health Canada, 269 Laurier Avenue West, Ottawa, Ontario K1A 0K0, Canada
| | - Ryan Kulka
- Air Health Science Division, Health Canada, 269 Laurier Avenue West, Ottawa, Ontario K1A 0K0, Canada
| | - Richard T Burnett
- Population Studies Division, Health Canada, 101 Tunney's Pasture Dr., Ottawa, Ontario K1A 0K9, Canada
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, Connecticut 06520, United States
| | - Scott Weichenthal
- Air Health Science Division, Health Canada, 269 Laurier Avenue West, Ottawa, Ontario K1A 0K0, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1020 Pine Avenue West, Montreal, Quebec H3A 1A2, Canada
| |
Collapse
|
29
|
Ma X, Nie D, Chen M, Ge P, Liu Z, Ge X, Li Z, Gu R. The Relative Contributions of Different Chemical Components to the Oxidative Potential of Ambient Fine Particles in Nanjing Area. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18062789. [PMID: 33801823 PMCID: PMC8001455 DOI: 10.3390/ijerph18062789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/29/2022]
Abstract
Ambient fine particles (PM2.5) have been shown to have adverse health effects by inducing oxidative stress. Here, dithiothreitol (DTT)-based oxidative potential (OP) was used to assess the capacity of oxidative stress caused by PM2.5. In this study, PM2.5 samples were collected in the Nanjing area in 2016, and physicochemical properties and DTT activity were investigated. The annual mean PM2.5 mass concentration was 73 μg m−3 and greatly varied among seasons (spring > winter > summer > autumn). Three fluorescent substances were identified by the excitation-emission matrix (EEM) spectrum. The annual mean mass-normalized DTT activity (DTTm; 0.02 nmol min−1 μg−1) was similar to that documented for cities of some developed countries. The annual mean volume-normalized DTT activity (DTTv) showed a relatively high value of 1.16 nmol min−1 m−3, and the seasonal mean DTTv was highest in winter, followed by spring, autumn, and summer, whose pattern is different from PM2.5 mass concentration. Correlation and multiple linear regression analysis suggested that transition metals may have a greater effect on OP in autumn and winter, humic-like substances and UV absorbing aromatic substances may have a strong effect on OP in spring and summer. Generally, this study enhances our understanding of seasonal variation in health effects associated with PM2.5.
Collapse
Affiliation(s)
- Xiaoyun Ma
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; (X.M.); (P.G.); (Z.L.); (X.G.); (Z.L.)
| | - Dongyang Nie
- School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China;
| | - Mindong Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; (X.M.); (P.G.); (Z.L.); (X.G.); (Z.L.)
- Correspondence: ; Tel.: +86-25-5873-1089
| | - Pengxiang Ge
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; (X.M.); (P.G.); (Z.L.); (X.G.); (Z.L.)
| | - Zhengjiang Liu
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; (X.M.); (P.G.); (Z.L.); (X.G.); (Z.L.)
| | - Xinlei Ge
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; (X.M.); (P.G.); (Z.L.); (X.G.); (Z.L.)
| | - Zhirao Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China; (X.M.); (P.G.); (Z.L.); (X.G.); (Z.L.)
| | - Rui Gu
- Siegwerk Shanghai Ltd., Shanghai 201108, China;
| |
Collapse
|
30
|
Cheng Y, Ma Y, Dong B, Qiu X, Hu D. Pollutants from primary sources dominate the oxidative potential of water-soluble PM 2.5 in Hong Kong in terms of dithiothreitol (DTT) consumption and hydroxyl radical production. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124218. [PMID: 33092883 DOI: 10.1016/j.jhazmat.2020.124218] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/30/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Increasing scientific findings show that the adverse health effects of PM2.5 are related not only to its mass but also PM2.5 sources and chemical compositions. Here, we conducted a comprehensive characterization and source apportionment of oxidative potential (OP) of water-soluble PM2.5 collected in Hong Kong for one year. Two OP indicators, namely dithiothreitol (DTT) consumption and ∙OH formation, were quantified. Six PM2.5 sources, i.e. secondary sulfate, biomass burning, secondary organic aerosol (SOA), vehicle emissions, marine vessels, and a metal-related factor, were apportioned and identified to be DTT active. The four primary sources accounted for 83.5% of DTT activity of water-soluble PM2.5, with the metal-related factor and marine vessels as the leading contributors. However, only three sources, i.e. metal-related factor, vehicle emissions, and SOA, showed ∙OH generation ability, with a predominant contribution of 96.2% from the two primary sources, especially the metal-related factor (84.5%). Based on the source apportionment results, we further evaluate the intrinsic OP of water-soluble PM2.5 from each source. Marine vessels exhibited the highest intrinsic DTT activity; while metal-related factor was most effective in ∙OH generation.
Collapse
Affiliation(s)
- Yubo Cheng
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China
| | - Yiqiu Ma
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen 518057, PR China
| | - Biao Dong
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, PR China
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, PR China
| | - Di Hu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen 518057, PR China.
| |
Collapse
|
31
|
Shahpoury P, Zhang ZW, Arangio A, Celo V, Dabek-Zlotorzynska E, Harner T, Nenes A. The influence of chemical composition, aerosol acidity, and metal dissolution on the oxidative potential of fine particulate matter and redox potential of the lung lining fluid. ENVIRONMENT INTERNATIONAL 2021; 148:106343. [PMID: 33454608 PMCID: PMC7868889 DOI: 10.1016/j.envint.2020.106343] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/28/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Air pollution is a major environmental health risk and it contributes to respiratory and cardiovascular diseases and excess mortality worldwide. The adverse health effects have been associated with the inhalation of fine particulate matter (PM2.5) and induction of respiratory oxidative stress. In this work, we quantified the oxidative potential (OP) of PM2.5 from several Canadian cities (Toronto, Hamilton, Montreal, Vancouver) using a recently developed bioanalytical method which measures the oxidation of lung antioxidants, glutathione, cysteine, and ascorbic acid, the formation of glutathione disulfide and cystine, and the related redox potential (RP) in a simulated epithelial lining fluid (SELF). We evaluated the application of empirical SELF RP as a new metric for aerosol OP. We further investigated how PM2.5 chemical composition and OP are related across various emission source sectors and whether these features are linked to specific properties of aerosol aqueous phase, such as pH and metal-ligand complexation. The OP indicators including SELF RP were strongly correlated among each other, indicating that the empirical RP could be used as a reliable metric in future studies. OP based on ascorbic acid showed dependency on the emission source sectors, most likely due to variation in the solubility of Fe. Traffic emissions resulted in the highest OP, followed by industrial emissions and resuspended crustal matter. OP presented low correlation with PM2.5 concentrations, low-moderate correlation with the aerosol organic matter, and moderate-strong association with black carbon and transition metals across the sites. We did not find strong association between the concentration of biomass burning tracers and OP. Copper was the only metal that showed high association with OP across all sites, whereas the correlation with other metals, such as iron, manganese, and titanium, showed clear dependency on the source sectors. The aerosol pH correlated negatively with ambient temperature and positively with biomass burning tracers and the levels of nitrate, ammonium, and aerosol liquid water content. The solubility of Fe was associated with sulfate and aerosol pH at most sites, suggesting the involvement of proton-mediated dissolution pathway, while this was not visible at the site influenced by industrial emission, most likely due to the abundance of pyrogenic Fe. The effect of metal-ligand complexation on the solubility of transition metals, in particular Fe, was clearly observed at all sites, whereas a combined effect with aerosol pH, and a subsequent impact on OP, was only seen at the traffic site in Toronto. The enhanced solubility of Fe due to proton- and ligand-mediated dissolution pathways and subsequent formation of reactive oxygen species may in part explain the health effects of PM2.5 seen in previous epidemiological studies.
Collapse
Affiliation(s)
- Pourya Shahpoury
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Canada.
| | - Zheng Wei Zhang
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Canada
| | - Andrea Arangio
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Valbona Celo
- Air Quality Research Division, Environment and Climate Change Canada, Ottawa, Canada
| | | | - Tom Harner
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Canada
| | - Athanasios Nenes
- Laboratory of Atmospheric Processes and their Impacts, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Switzerland; Institute of Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, Greece
| |
Collapse
|
32
|
Alexeeff SE, Liao NS, Liu X, Van Den Eeden SK, Sidney S. Long-Term PM 2.5 Exposure and Risks of Ischemic Heart Disease and Stroke Events: Review and Meta-Analysis. J Am Heart Assoc 2020; 10:e016890. [PMID: 33381983 PMCID: PMC7955467 DOI: 10.1161/jaha.120.016890] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background Fine particulate matter <2.5 µm in diameter (PM2.5) has known effects on cardiovascular morbidity and mortality. However, no study has quantified and compared the risks of incident myocardial infarction, incident stroke, ischemic heart disease (IHD) mortality, and cerebrovascular mortality in relation to long‐term PM2.5 exposure. Methods and Results We sought to quantitatively summarize studies of long‐term PM2.5 exposure and risk of IHD and stroke events by conducting a review and meta‐analysis of studies published by December 31, 2019. The main outcomes were myocardial infarction, stroke, IHD mortality, and cerebrovascular mortality. Random effects meta‐analyses were used to estimate the combined risk of each outcome among studies. We reviewed 69 studies and included 42 studies in the meta‐analyses. In meta‐analyses, we found that a 10‐µg/m3 increase in long‐term PM2.5 exposure was associated with an increased risk of 23% for IHD mortality (95% CI, 15%–31%), 24% for cerebrovascular mortality (95% CI, 13%–36%), 13% for incident stroke (95% CI, 11%–15%), and 8% for incident myocardial infarction (95% CI, −1% to 18%). There were an insufficient number of studies of recurrent stroke and recurrent myocardial infarction to conduct meta‐analyses. Conclusions Long‐term PM2.5 exposure is associated with increased risks of IHD mortality, cerebrovascular mortality, and incident stroke. The relationship with incident myocardial infarction is suggestive of increased risk but not conclusive. More research is needed to understand the relationship with recurrent events.
Collapse
Affiliation(s)
| | | | - Xi Liu
- Kaiser Permanente Division of Research Oakland CA
| | | | | |
Collapse
|
33
|
Air Pollution Measurements and Land-Use Regression in Urban Sub-Saharan Africa Using Low-Cost Sensors—Possibilities and Pitfalls. ATMOSPHERE 2020. [DOI: 10.3390/atmos11121357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Air pollution is recognized as the most important environmental factor that adversely affects human and societal wellbeing. Due to rapid urbanization, air pollution levels are increasing in the Sub-Saharan region, but there is a shortage of air pollution monitoring. Hence, exposure data to use as a base for exposure modelling and health effect assessments is also lacking. In this study, low-cost sensors were used to assess PM2.5 (particulate matter) levels in the city of Adama, Ethiopia. The measurements were conducted during two separate 1-week periods. The measurements were used to develop a land-use regression (LUR) model. The developed LUR model explained 33.4% of the variance in the concentrations of PM2.5. Two predictor variables were included in the final model, of which both were related to emissions from traffic sources. Some concern regarding influential observations remained in the final model. Long-term PM2.5 and wind direction data were obtained from the city’s meteorological station, which should be used to validate the representativeness of our sensor measurements. The PM2.5 long-term data were however not reliable. Means of obtaining good reference data combined with longer sensor measurements would be a good way forward to develop a stronger LUR model which, together with improved knowledge, can be applied towards improving the quality of health. A health impact assessment, based on the mean level of PM2.5 (23 µg/m3), presented the attributable burden of disease and showed the importance of addressing causes of these high ambient levels in the area.
Collapse
|
34
|
Large global variations in measured airborne metal concentrations driven by anthropogenic sources. Sci Rep 2020; 10:21817. [PMID: 33311638 PMCID: PMC7733447 DOI: 10.1038/s41598-020-78789-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
Globally consistent measurements of airborne metal concentrations in fine particulate matter (PM2.5) are important for understanding potential health impacts, prioritizing air pollution mitigation strategies, and enabling global chemical transport model development. PM2.5 filter samples (N ~ 800 from 19 locations) collected from a globally distributed surface particulate matter sampling network (SPARTAN) between January 2013 and April 2019 were analyzed for particulate mass and trace metals content. Metal concentrations exhibited pronounced spatial variation, primarily driven by anthropogenic activities. PM2.5 levels of lead, arsenic, chromium, and zinc were significantly enriched at some locations by factors of 100–3000 compared to crustal concentrations. Levels of metals in PM2.5 and PM10 exceeded health guidelines at multiple sites. For example, Dhaka and Kanpur sites exceeded the US National Ambient Air 3-month Quality Standard for lead (150 ng m−3). Kanpur, Hanoi, Beijing and Dhaka sites had annual mean arsenic concentrations that approached or exceeded the World Health Organization’s risk level for arsenic (6.6 ng m−3). The high concentrations of several potentially harmful metals in densely populated cites worldwide motivates expanded measurements and analyses.
Collapse
|
35
|
Abstract
Urbanization is an ongoing global phenomenon as more and more people are moving from rural to urban areas for better employment opportunities and a higher standard of living, leading to the growth of megacities, broadly defined as urban agglomeration with more than 10 million inhabitants. Intense activities in megacities induce high levels of air pollutants in the atmosphere that harm human health, cause regional haze and acid deposition, damage crops, influence air quality in regions far from the megacity sources, and contribute to climate change. Since the Great London Smog and the first recognized episode of Los Angeles photochemical smog seventy years ago, substantial progress has been made in improving the scientific understanding of air pollution and in developing emissions reduction technologies. However, much remains to be understood about the complex processes of atmospheric oxidation mechanisms; the formation and evolution of secondary particles, especially those containing organic species; and the influence of emerging emissions sources and changing climate on air quality and health. While air quality has substantially improved in megacities in developed regions and some in the developing regions, many still suffer from severe air pollution. Strong regional and international collaboration in data collection and assessment will be beneficial in strengthening the capacity. This article provides an overview of the sources of emissions in megacities, atmospheric physicochemical processes, air quality trends and management in a few megacities, and the impacts on health and climate. The challenges and opportunities facing megacities due to lockdown during the COVID-19 pandemic is also discussed.
Collapse
Affiliation(s)
- Luisa T Molina
- Molina Center for Energy and the Environment, La Jolla, California 92037, USA.
| |
Collapse
|
36
|
Chen J, Hoek G. Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis. ENVIRONMENT INTERNATIONAL 2020; 143:105974. [PMID: 32703584 DOI: 10.1016/j.envint.2020.105974] [Citation(s) in RCA: 372] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 05/21/2023]
Abstract
As new scientific evidence on health effects of air pollution is generated, air quality guidelines need to be periodically updated. The objective of this review is to support the derivation of updated guidelines by the World Health Organization (WHO) by performing a systematic review of evidence of associations between long-term exposure to particulate matter with diameter under 2.5 µm (PM2.5) and particulate matter with diameter under 10 µm (PM10), in relation to all-cause and cause-specific mortality. As there is especially uncertainty about the relationship at the low and high end of the exposure range, the review needed to provide an indication of the shape of the concentration-response function (CRF). We systematically searched MEDLINE and EMBASE from database inception to 9 October 2018. Articles were checked for eligibility by two reviewers. We included cohort and case-control studies on outdoor air pollution in human populations using individual level data. In addition to natural-cause mortality, we evaluated mortality from circulatory diseases (ischemic heart disease (IHD) and cerebrovascular disease (stroke) also specifically), respiratory diseases (Chronic Obstructive Pulmonary Disease (COPD) and acute lower respiratory infection (ALRI) also specifically) and lung cancer. A random-effect meta-analysis was performed when at least three studies were available for a specific exposure-outcome pair. Risk of bias was assessed for all included articles using a specifically developed tool coordinated by WHO. Additional analyses were performed to assess consistency across geographic region, explain heterogeneity and explore the shape of the CRF. An adapted GRADE (Grading of Recommendations Assessment, Development and Evaluation) assessment of the body of evidence was made using a specifically developed tool coordinated by WHO. A large number (N = 107) of predominantly cohort studies (N = 104) were included after screening more than 3000 abstracts. Studies were conducted globally with the majority of studies from North America (N = 62) and Europe (N = 25). More studies used PM2.5 (N = 71) as the exposure metric than PM10 (N = 42). PM2.5 was significantly associated with all causes of death evaluated. The combined Risk Ratio (RR) for PM2.5 and natural-cause mortality was 1.08 (95%CI 1.06, 1.09) per 10 µg/m3. Meta analyses of studies conducted at the low mean PM2.5 levels (<25, 20, 15, 12, 10 µg/m3) yielded RRs that were similar or higher compared to the overall RR, consistent with the finding of generally linear or supra-linear CRFs in individual studies. Pooled RRs were almost identical for studies conducted in North America, Europe and Western Pacific region. PM10 was significantly associated with natural-cause and most but not all causes of death. Application of the risk of bias tool showed that few studies were at a high risk of bias in any domain. Application of the adapted GRADE tool resulted in an assessment of "high certainty of evidence" for PM2.5 with all assessed endpoints except for respiratory mortality (moderate). The evidence was rated as less certain for PM10 and cause-specific mortality ("moderate" for circulatory, IHD, COPD and "low" for stroke mortality. Compared to the previous global WHO evaluation, the evidence base has increased substantially. However, studies conducted in low- and middle- income countries (LMICs) are still limited. There is clear evidence that both PM2.5 and PM10 were associated with increased mortality from all causes, cardiovascular disease, respiratory disease and lung cancer. Associations remained below the current WHO guideline exposure level of 10 µg/m3 for PM2.5. Systematic review registration number (PROSPERO ID): CRD42018082577.
Collapse
Affiliation(s)
- Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands.
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| |
Collapse
|
37
|
Airborne Aerosols and Human Health: Leapfrogging from Mass Concentration to Oxidative Potential. ATMOSPHERE 2020. [DOI: 10.3390/atmos11090917] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mass concentration of atmospheric particulate matter (PM) has been systematically used in epidemiological studies as an indicator of exposure to air pollutants, connecting PM concentrations with a wide variety of human health effects. However, these effects can be hardly explained by using one single parameter, especially because PM is formed by a complex mixture of chemicals. Current research has shown that many of these adverse health effects can be derived from the oxidative stress caused by the deposition of PM in the lungs. The oxidative potential (OP) of the PM, related to the presence of transition metals and organic compounds that can induce the production of reactive oxygen and nitrogen species (ROS/RNS), could be a parameter to evaluate these effects. Therefore, estimating the OP of atmospheric PM would allow us to evaluate and integrate the toxic potential of PM into a unique parameter, which is related to emission sources, size distribution and/or chemical composition. However, the association between PM and particle-induced toxicity is still largely unknown. In this commentary article, we analyze how this new paradigm could help to deal with some unanswered questions related to the impact of atmospheric PM over human health.
Collapse
|
38
|
Turner MC, Andersen ZJ, Baccarelli A, Diver WR, Gapstur SM, Pope CA, Prada D, Samet J, Thurston G, Cohen A. Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA Cancer J Clin 2020; 70:10.3322/caac.21632. [PMID: 32964460 PMCID: PMC7904962 DOI: 10.3322/caac.21632] [Citation(s) in RCA: 306] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
Outdoor air pollution is a major contributor to the burden of disease worldwide. Most of the global population resides in places where air pollution levels, because of emissions from industry, power generation, transportation, and domestic burning, considerably exceed the World Health Organization's health-based air-quality guidelines. Outdoor air pollution poses an urgent worldwide public health challenge because it is ubiquitous and has numerous serious adverse human health effects, including cancer. Currently, there is substantial evidence from studies of humans and experimental animals as well as mechanistic evidence to support a causal link between outdoor (ambient) air pollution, and especially particulate matter (PM) in outdoor air, with lung cancer incidence and mortality. It is estimated that hundreds of thousands of lung cancer deaths annually worldwide are attributable to PM air pollution. Epidemiological evidence on outdoor air pollution and the risk of other types of cancer, such as bladder cancer or breast cancer, is more limited. Outdoor air pollution may also be associated with poorer cancer survival, although further research is needed. This report presents an overview of outdoor air pollutants, sources, and global levels, as well as a description of epidemiological evidence linking outdoor air pollution with cancer incidence and mortality. Biological mechanisms of air pollution-derived carcinogenesis are also described. This report concludes by summarizing public health/policy recommendations, including multilevel interventions aimed at individual, community, and regional scales. Specific roles for medical and health care communities with regard to prevention and advocacy and recommendations for further research are also described.
Collapse
Affiliation(s)
- Michelle C. Turner
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, Ontario, Canada
| | - Zorana J. Andersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, United States
| | - W. Ryan Diver
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia, United States
| | - Susan M. Gapstur
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia, United States
| | - C. Arden Pope
- Department of Economics, Brigham Young University, Provo, Utah, United States
| | - Diddier Prada
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, United States
- Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Jonathan Samet
- Colorado School of Public Health, Aurora, Colorado, United States
| | - George Thurston
- New York University School of Medicine, New York, New York, United States
| | - Aaron Cohen
- Health Effects Institute, Boston, Massachusetts, United States
- Institute for Health Metrics and Evaluation, Seattle, Washington, United States
| |
Collapse
|
39
|
Gao D, Ripley S, Weichenthal S, Godri Pollitt KJ. Ambient particulate matter oxidative potential: Chemical determinants, associated health effects, and strategies for risk management. Free Radic Biol Med 2020; 151:7-25. [PMID: 32430137 DOI: 10.1016/j.freeradbiomed.2020.04.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Exposure to ambient air pollution has an adverse influence on human health. There is increasing evidence that oxidative potential (OP), the capacity of airborne pollutants to oxidize target molecules by generating redox oxidizing species, is a plausible metric for particulate matter (PM) toxicity. Here we describe the commonly used acellular techniques for measuring OP (respiratory tract lining fluid, dithiothreitol, ascorbic acid, and electron paramagnetic resonance assays) and review the PM chemical constituents that have been identified to drive the OP response. We further perform a review of the epidemiologic literature to identify studies that reported an association between exposure to ambient PM and a health outcome in a human population, and in which exposure was measured by both PM mass concentration and OP. Laboratory studies have shown that specific redox-active metals and quinones are able to contribute OP directly. However, interactions among PM species may alter the redox properties of PM components. In ambient PM measurements, all OP assays were found to be correlated with metals (Fe, Cu) and organic species (photochemically aged organics). Across the epidemiological studies reviewed, associations between fine PM (PM2.5) mass and cardio-respiratory outcomes were found to be stronger at elevated OP levels but findings varied across the different OP measurement techniques. Future work should aim to identify specific situations in which PM OP can improve air pollution exposure assessment and/or risk management. This may be particularly useful in countries with low PM2.5 mass concentrations over broad spatial scales where such information may greatly improve the efficiency of risk management activities.
Collapse
Affiliation(s)
- Dong Gao
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, United States
| | - Susannah Ripley
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada; Air Health Science Division, Health Canada, Ottawa, Ontario, Canada
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, United States; Yale Center for Perinatal, Pediatric, and Environmental Epidemiology, Yale School of Public Health, New Haven, CT, United States.
| |
Collapse
|
40
|
Pope CA, Coleman N, Pond ZA, Burnett RT. Fine particulate air pollution and human mortality: 25+ years of cohort studies. ENVIRONMENTAL RESEARCH 2020; 183:108924. [PMID: 31831155 DOI: 10.1016/j.envres.2019.108924] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/15/2019] [Accepted: 11/11/2019] [Indexed: 05/02/2023]
Abstract
Much of the key epidemiological evidence that long-term exposure to fine particulate matter air pollution (PM2.5) contributes to increased risk of mortality comes from survival studies of cohorts of individuals. Although the first two of these studies, published in the mid-1990s, were highly controversial, much has changed in the last 25 + years. The objectives of this paper are to succinctly compile and summarize the findings of these cohort studies using meta-analytic tools and to address several of the key controversies. Independent reanalysis and substantial extended analysis of the original cohort studies have been conducted and many additional studies using a wide variety of cohorts, including cohorts constructed from public data and leveraging natural experiments have been published. Meta-analytic estimates of the mean of the distribution of effects from cohort studies that are currently available, provide substantial evidence of adverse air pollution associations with all-cause, cardiopulmonary, and lung cancer mortality.
Collapse
Affiliation(s)
- C Arden Pope
- Department of Economics, Brigham Young University, Provo, UT, USA.
| | - Nathan Coleman
- Department of Economics, Brigham Young University, Provo, UT, USA
| | - Zachari A Pond
- Department of Economics, Brigham Young University, Provo, UT, USA
| | | |
Collapse
|
41
|
Shin S, Bai L, Oiamo TH, Burnett RT, Weichenthal S, Jerrett M, Kwong JC, Goldberg MS, Copes R, Kopp A, Chen H. Association Between Road Traffic Noise and Incidence of Diabetes Mellitus and Hypertension in Toronto, Canada: A Population-Based Cohort Study. J Am Heart Assoc 2020; 9:e013021. [PMID: 32146894 PMCID: PMC7335534 DOI: 10.1161/jaha.119.013021] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Background Exposure to road traffic noise has been linked to cardiometabolic complications, such as elevated blood pressure and glucose dysregulation. However, epidemiologic evidence linking road traffic noise to diabetes mellitus and hypertension remains scarce. We examined associations between road traffic noise and the incidence of diabetes mellitus and hypertension in Toronto, Canada. Methods and Results Using the Ontario Population Health and Environment Cohort, we conducted a retrospective, population-based cohort study of long-term residents of Toronto, aged 35 to 100 years, who were registered for provincial publicly funded health insurance, and were without a history of hypertension (n=701 174) or diabetes mellitus (n=914 607). Road traffic noise exposure levels were assessed by the equivalent continuous A-weighted sound pressure level (dBA) for the 24-hour day and the equivalent continuous A-weighted sound pressure level for the night (11 pm-7am). Noise exposures were assigned to subjects according to their annual residential postal codes during the 15-year follow-up. We used random-effect Cox proportional hazards models adjusting for personal and area-level characteristics. From 2001 to 2015, each interquartile range increase in the equivalent continuous A-weighted sound pressure level (dBA) for the 24-hour day (10.0 dBA) was associated with an 8% increase in incident diabetes mellitus (95% CI, 1.07-1.09) and a 2% increase in hypertension (95% CI, 1.01-1.03). We obtained similar estimates with the equivalent continuous A-weighted sound pressure level for the night (11 pm-7am). These results were robust to all sensitivity analyses conducted, including further adjusting for traffic-related air pollutants (ultrafine particles and nitrogen dioxide). For both hypertension and diabetes mellitus, we observed stronger associations with the equivalent continuous A-weighted sound pressure level (dBA) for the 24-hour day among women and younger adults (aged <60 years). Conclusions Long-term exposure to road traffic noise was associated with an increased incidence of diabetes mellitus and hypertension in Toronto.
Collapse
Affiliation(s)
- Saeha Shin
- Public Health Ontario Toronto Ontario Canada
| | - Li Bai
- ICES Toronto Ontario Canada
| | - Tor H Oiamo
- Department of Geography and Environmental Studies Ryerson University Toronto Ontario Canada
| | - Richard T Burnett
- Environmental Health Science and Research Bureau Population Studies Division Health Canada Ottawa Ontario Canada
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics, and Occupational Health and Gerald Bronfman Department of Oncology McGill University Montreal Québec Canada.,Air Health Science Division Health Canada Ottawa Ontario Canada
| | - Michael Jerrett
- Department of Environmental Health Sciences Fielding School of Public Health University of California Los Angeles CA
| | - Jeffrey C Kwong
- Public Health Ontario Toronto Ontario Canada.,ICES Toronto Ontario Canada.,Dalla Lana School of Public Health University of Toronto Ontario Canada.,Department of Family and Community Medicine University of Toronto Ontario Canada
| | - Mark S Goldberg
- Department of Medicine McGill University Montreal Québec Canada.,Centre for Outcomes Research and Evaluation Research Institute of the McGill University Health Centre Montreal Québec Canada
| | - Ray Copes
- Public Health Ontario Toronto Ontario Canada.,Dalla Lana School of Public Health University of Toronto Ontario Canada
| | | | - Hong Chen
- Public Health Ontario Toronto Ontario Canada.,ICES Toronto Ontario Canada.,Environmental Health Science and Research Bureau Population Studies Division Health Canada Ottawa Ontario Canada.,Dalla Lana School of Public Health University of Toronto Ontario Canada
| |
Collapse
|
42
|
Lipfert FW, Wyzga RE. Longitudinal relationships between lung cancer mortality rates, smoking, and ambient air quality: a comprehensive review and analysis. Crit Rev Toxicol 2020; 49:790-818. [DOI: 10.1080/10408444.2019.1700210] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Zhang Q, Pardo M, Rudich Y, Kaplan-Ashiri I, Wong JPS, Davis AY, Black MS, Weber RJ. Chemical Composition and Toxicity of Particles Emitted from a Consumer-Level 3D Printer Using Various Materials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12054-12061. [PMID: 31513393 DOI: 10.1021/acs.est.9b04168] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Consumer-level 3D printers emit ultrafine and fine particles, though little is known about their chemical composition or potential toxicity. We report chemical characteristics of the particles in comparison to raw filaments and assessments of particle toxicity. Particles emitted from polylactic acid (PLA) appeared to be largely composed of the bulk filament material with mass spectra similar to the PLA monomer spectra. Acrylonitrile butadiene styrene (ABS), extruded at a higher temperature than PLA, emitted vastly more particles and their composition differed from that of the bulk filament, suggesting that trace additives may control particle formation. In vitro cellular assays and in vivo mice exposure all showed toxic responses when exposed to PLA and ABS-emitted particles, where PLA-emitted particles elicited higher response levels than ABS-emitted particles at comparable mass doses. A chemical assay widely used in ambient air-quality studies showed that particles from various filament materials had comparable particle oxidative potentials, slightly lower than those of ambient particulate matter (PM2.5). However, particle emissions from ABS filaments are likely more detrimental when considering overall exposure due to much higher emissions. Our results suggest that 3D printer particle emissions are not benign and exposures should be minimized.
Collapse
Affiliation(s)
- Qian Zhang
- Chemical Safety and Human Health , Underwriters Laboratories Inc. , Marietta , Georgia 30067 , United States
| | | | | | | | - Jenny P S Wong
- School of Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Aika Y Davis
- Chemical Safety and Human Health , Underwriters Laboratories Inc. , Marietta , Georgia 30067 , United States
| | - Marilyn S Black
- Chemical Safety and Human Health , Underwriters Laboratories Inc. , Marietta , Georgia 30067 , United States
| | - Rodney J Weber
- School of Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
44
|
Requia WJ, Jhun I, Coull BA, Koutrakis P. Climate impact on ambient PM 2.5 elemental concentration in the United States: A trend analysis over the last 30 years. ENVIRONMENT INTERNATIONAL 2019; 131:104888. [PMID: 31302483 DOI: 10.1016/j.envint.2019.05.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/06/2019] [Accepted: 05/31/2019] [Indexed: 05/02/2023]
Abstract
Weather impacts on the chemical composition of PM2.5 varies significantly over space and time given the diversity of particle components and the complex mechanisms governing particle formation and removal. In this study, we employed generalized additive models (GAMs) to estimate weather-associated changes in PM2.5 composition in the US during 1988-2017. We considered seven components of ambient PM2.5, which included elemental carbon (EC), organic carbon (OC), nitrate, sulfate, sodium, ammonium, and silicon. The impact of long-term weather changes on each PM2.5 component was defined in our study as "weather penalty". During our study period, temperature increased in four regions, including the Industrial Midwest and Northeast during the warm and cold season; and Upper Midwest and West in the cold season. Wind speed decreased in the both seasons. Relative humidity increased in the warm season and decreased in the cold season. The weather changes between 1988 and 2017 were associated with most PM2.5 components during both warm and cold seasons. The direction and the magnitude of the weather penalty varied considerably over the space and season. In the warm season, our findings suggest a nationwide weather penalty for EC, OC, nitrate, sulfate, sodium, ammonium, and silicon of 0.04, 0.21, 0.04, 0.35, -0.01, 0.05, and 0.01 μg/m3, respectively. In the cold season, the estimated total penalty was 0.04, 0.21, 0.06, 0.04, -0.01, -0.02, and 0.02 μg/m3, respectively.
Collapse
Affiliation(s)
- Weeberb J Requia
- Harvard University, Department of Environmental Health, School of Public Health, Boston, MA, United States.
| | - Iny Jhun
- Harvard University, Harvard Medical School, Boston, MA, United States
| | - Brent A Coull
- Harvard University, Department of Biostatistics, School of Public Health, Boston, MA, United States
| | - Petros Koutrakis
- Harvard University, Department of Environmental Health, School of Public Health, Boston, MA, United States
| |
Collapse
|
45
|
Oxidative Potential Versus Biological Effects: A Review on the Relevance of Cell-Free/Abiotic Assays as Predictors of Toxicity from Airborne Particulate Matter. Int J Mol Sci 2019; 20:ijms20194772. [PMID: 31561428 PMCID: PMC6801578 DOI: 10.3390/ijms20194772] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 12/20/2022] Open
Abstract
Background and Objectives: The oxidative potential (OP) of particulate matter (PM) in cell-free/abiotic systems have been suggested as a possible measure of their biological reactivity and a relevant exposure metric for ambient air PM in epidemiological studies. The present review examined whether the OP of particles correlate with their biological effects, to determine the relevance of these cell-free assays as predictors of particle toxicity. Methods: PubMed, Google Scholar and Web of Science databases were searched to identify relevant studies published up to May 2019. The main inclusion criteria used for the selection of studies were that they should contain (1) multiple PM types or samples, (2) assessment of oxidative potential in cell-free systems and (3) assessment of biological effects in cells, animals or humans. Results: In total, 50 independent studies were identified assessing both OP and biological effects of ambient air PM or combustion particles such as diesel exhaust and wood smoke particles: 32 in vitro or in vivo studies exploring effects in cells or animals, and 18 clinical or epidemiological studies exploring effects in humans. Of these, 29 studies assessed the association between OP and biological effects by statistical analysis: 10 studies reported that at least one OP measure was statistically significantly associated with all endpoints examined, 12 studies reported that at least one OP measure was significantly associated with at least one effect outcome, while seven studies reported no significant correlation/association between any OP measures and any biological effects. The overall assessment revealed considerable variability in reported association between individual OP assays and specific outcomes, but evidence of positive association between intracellular ROS, oxidative damage and antioxidant response in vitro, and between OP assessed by the dithiothreitol (DDT) assay and asthma/wheeze in humans. There was little support for consistent association between OP and any other outcome assessed, either due to repeated lack of statistical association, variability in reported findings or limited numbers of available studies. Conclusions: Current assays for OP in cell-free/abiotic systems appear to have limited value in predicting PM toxicity. Clarifying the underlying causes may be important for further advancement in the field.
Collapse
|
46
|
Erickson AC, Brauer M, Christidis T, Pinault L, Crouse DL, van Donkelaar A, Weichenthal S, Pappin A, Tjepkema M, Martin RV, Brook JR, Hystad P, Burnett RT. Evaluation of a method to indirectly adjust for unmeasured covariates in the association between fine particulate matter and mortality. ENVIRONMENTAL RESEARCH 2019; 175:108-116. [PMID: 31108354 DOI: 10.1016/j.envres.2019.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/09/2019] [Accepted: 05/09/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Indirect adjustment via partitioned regression is a promising technique to control for unmeasured confounding in large epidemiological studies. The method uses a representative ancillary dataset to estimate the association between variables missing in a primary dataset with the complete set of variables of the ancillary dataset to produce an adjusted risk estimate for the variable in question. The objective of this paper is threefold: 1) evaluate the method for non-linear survival models, 2) formalize an empirical process to evaluate the suitability of the required ancillary matching dataset, and 3) test modifications to the method to incorporate time-varying exposure data, and proportional weighting of datasets. METHODS We used the association between fine particle air pollution (PM2.5) with mortality in the 2001 Canadian Census Health and Environment Cohort (CanCHEC, N = 2.4 million, 10-years follow-up) as our primary dataset, and the 2001 cycle of the Canadian Community Health Survey (CCHS, N = 80,630) as the ancillary matching dataset that contained confounding risk factor information not available in CanCHEC (e.g., smoking). The main evaluation process used a gold-standard approach wherein two variables (education and income) available in both datasets were excluded, indirectly adjusted for, and compared to true models with education and income included to assess the amount of bias correction. An internal validation for objective 1 used only CanCHEC data, whereas an external validation for objective 2 replaced CanCHEC with the CCHS. The two proposed modifications were applied as part of the validation tests, as well as in a final indirect adjustment of four missing risk factor variables (smoking, alcohol use, diet, and exercise) in which adjustment direction and magnitude was compared to models using an equivalent longitudinal cohort with direct adjustment for the same variables. RESULTS At baseline (2001) both cohorts had very similar PM2.5 distributions across population characteristics, although levels for CCHS participants were consistently 1.8-2.0 μg/m3 lower. Applying sample-weighting largely corrected for this discrepancy. The internal validation tests showed minimal downward bias in PM2.5 mortality hazard ratios of 0.4-0.6% using a static exposure, and 1.7-3% when a time-varying exposure was used. The external validation of the CCHS as the ancillary dataset showed slight upward bias of -0.7 to -1.1% and downward bias of 1.3-2.3% using the static and time-varying approaches respectively. CONCLUSIONS The CCHS was found to be fairly well representative of CanCHEC and its use in Canada for indirect adjustment is warranted. Indirect adjustment methods can be used with survival models to correct hazard ratio point estimates and standard errors in models missing key covariates when a representative matching dataset is available. The results of this formal evaluation should encourage other cohorts to assess the suitability of ancillary datasets for the application of the indirect adjustment methodology to address potential residual confounding.
Collapse
Affiliation(s)
- Anders C Erickson
- The University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Brauer
- The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Tanya Christidis
- Health Analysis Division, Statistics Canada, Ottawa, Ontario, Canada
| | - Lauren Pinault
- Health Analysis Division, Statistics Canada, Ottawa, Ontario, Canada
| | - Daniel L Crouse
- University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Aaron van Donkelaar
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
| | | | - Amanda Pappin
- Health Analysis Division, Statistics Canada, Ottawa, Ontario, Canada
| | - Michael Tjepkema
- Health Analysis Division, Statistics Canada, Ottawa, Ontario, Canada
| | - Randall V Martin
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada
| | | | | | | |
Collapse
|
47
|
Gogna P, Narain TA, O'Sullivan DE, Villeneuve PJ, Demers PA, Hystad P, Brenner DR, Friedenreich CM, King WD. Estimates of the current and future burden of lung cancer attributable to PM 2.5 in Canada. Prev Med 2019; 122:91-99. [PMID: 31078178 DOI: 10.1016/j.ypmed.2019.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The International Agency for Research on Cancer has classified PM2.5 (fine particulate matter, PM2.5) as a lung cancer carcinogen in humans. We estimated the proportion of lung cancer cases attributable to PM2.5 exposure in Canada in 2015, and future avoidable cancers over the period 2016-2042 under different future exposure scenarios. A meta-analysis was conducted to estimate the relative risk of lung cancer associated with PM2.5 that was generalizable to Canada. A population-weighted Canadian distribution of residential PM2.5 exposure was estimated annually using ecological-level, satellite-derived PM2.5 data for the period 1990 to 2009. Population attributable risks (PAR) were estimated for PM2.5 and applied to lung cancer incidence from the Canadian Cancer Registry. Potential impact fractions based on counterfactual scenarios for the year 2042 were estimated, along with cumulative preventable cases from 2016 to 2042. The relative risk of lung cancer associated with PM2.5 was 1.09 (95% CI: 1.06-1.12) per an increase of 10 μg/m3. The average population-weighted exposure to PM2.5 corresponding to a 20-year exposure window from 1990 to 2009 was 8.3 μg/m3. The PAR for PM2.5 was estimated at 6.9%, accounting for 1739 attributable lung cancer cases in 2015. If patterns of decline in PM2.5 continue, over 3000 lung cancer cases could be prevented between 2016 and 2042. Exposure to PM2.5 contributes to a considerable burden of lung cancer in Canada and policies aimed at sustaining outdoor PM2.5 declines are important for lung cancer prevention in Canada.
Collapse
Affiliation(s)
- Priyanka Gogna
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Tasha A Narain
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Dylan E O'Sullivan
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Paul J Villeneuve
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Paul A Demers
- Occupational Cancer Research Centre, Toronto, Ontario, Canada
| | - Perry Hystad
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Darren R Brenner
- Department of Cancer Epidemiology and Prevention Research, Cancer Control Alberta, Alberta Health Services, Calgary, Alberta, Canada; Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christine M Friedenreich
- Department of Cancer Epidemiology and Prevention Research, Cancer Control Alberta, Alberta Health Services, Calgary, Alberta, Canada; Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Will D King
- Department of Public Health Sciences, Queen's University, Kingston, Ontario, Canada.
| | | |
Collapse
|
48
|
Bates JT, Fang T, Verma V, Zeng L, Weber RJ, Tolbert PE, Abrams JY, Sarnat SE, Klein M, Mulholland JA, Russell AG. Review of Acellular Assays of Ambient Particulate Matter Oxidative Potential: Methods and Relationships with Composition, Sources, and Health Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:4003-4019. [PMID: 30830764 DOI: 10.1021/acs.est.8b03430] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Oxidative stress is a potential mechanism of action for particulate matter (PM) toxicity and can occur when the body's antioxidant capacity cannot counteract or detoxify harmful effects of reactive oxygen species (ROS) due to an excess presence of ROS. ROS are introduced to the body via inhalation of PM with these species present on and/or within the particles (particle-bound ROS) and/or through catalytic generation of ROS in vivo after inhaling redox-active PM species (oxidative potential, OP). The recent development of acellular OP measurement techniques has led to a surge in research across the globe. In this review, particle-bound ROS techniques are discussed briefly while OP measurements are the focus due to an increasing number of epidemiologic studies using OP measurements showing associations with adverse health effects in some studies. The most common OP measurement techniques, including the dithiothreitol assay, glutathione assay, and ascorbic acid assay, are discussed along with evidence for utility of OP measurements in epidemiologic studies and PM characteristics that drive different responses between assay types (such as species composition, emission source, and photochemistry). Overall, most OP assays respond to metals like copper than can be found in emission sources like vehicles. Some OP assays respond to organics, especially photochemically aged organics, from sources like biomass burning. Select OP measurements have significant associations with certain cardiorespiratory end points, such as asthma, congestive heart disease, and lung cancer. In fact, multiple studies have found that exposure to OP measured using the dithiothreitol and glutathione assays drives higher risk ratios for certain cardiorespiratory outcomes than PM mass, suggesting OP measurements may be integrating the health-relevant fraction of PM and will be useful tools for future health analyses. The compositional impacts, including species and emission sources, on OP could have serious implications for health-relevant PM exposure. Though more work is needed, OP assays show promise for health studies as they integrate the impacts of PM species and properties on catalytic redox reactions into one measurement, and current work highlights the importance of metals, organic carbon, vehicles, and biomass burning emissions to PM exposures that could impact health.
Collapse
Affiliation(s)
- Josephine T Bates
- Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Ting Fang
- Department of Chemistry , University of California Irvine , Irvine , California 92697 , United States
| | - Vishal Verma
- Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , Champaign , Illinois 61820 , United States
| | - Linghan Zeng
- Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Rodney J Weber
- Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Paige E Tolbert
- Rollins School of Public Health , Emory University , Atlanta , Georgia 30322 , United States
| | - Joseph Y Abrams
- Center for Disease Control and Prevention, Atlanta , Georgia 30329 , United States
| | - Stefanie E Sarnat
- Rollins School of Public Health , Emory University , Atlanta , Georgia 30322 , United States
| | - Mitchel Klein
- Rollins School of Public Health , Emory University , Atlanta , Georgia 30322 , United States
| | - James A Mulholland
- Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Armistead G Russell
- Civil and Environmental Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
49
|
Jin L, Xie J, Wong CKC, Chan SKY, Abbaszade G, Schnelle-Kreis J, Zimmermann R, Li J, Zhang G, Fu P, Li X. Contributions of City-Specific Fine Particulate Matter (PM 2.5) to Differential In Vitro Oxidative Stress and Toxicity Implications between Beijing and Guangzhou of China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2881-2891. [PMID: 30730710 DOI: 10.1021/acs.est.9b00449] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Growing literature has documented varying toxic potencies of source- or site-specific fine particulate matter (PM2.5), as opposed to the practice that treats particle toxicities as independent of composition given the incomplete understanding of the toxicity of the constituents. Quantifying component-specific contribution is the key to unlocking the geographical disparities of particle toxicity from a mixture perspective. In this study, we performed integrated mixture-toxicity experiments and modeling to quantify the contribution of metals and polycyclic aromatic hydrocarbons (PAHs), two default culprit component groups of PM2.5 toxicity, to in vitro oxidative stress caused by wintertime PM2.5 from Beijing and Guangzhou, two megacities in China. PM2.5 from Beijing exhibited greater toxic potencies at equal mass concentrations. The targeted chemical analysis revealed higher burden of metals and PAHs per unit mass of PM2.5 in Beijing. These chemicals together explained 38 and 24% on average of PM2.5-induced reactive oxygen species in Beijing and Guangzhou, respectively, while >60% of the effects remained to be resolved in terms of contributing chemicals. PAHs contributed approximately twice the share of the PM2.5 mixture effects as metals. Fe, Cu, and Mn were the dominant metals, constituting >80% of the metal-shared proportion of the PM2.5 effects. Dibenzo[ a, l]pyrene alone explained >65% of the PAH-shared proportion of the PM2.5 toxicity effects. The significant contribution from coal combustion and vehicular emissions in Beijing suggested the major source disparities of toxicologically active PAHs between the two cities. Our study provided novel quantitative insights into the role of varying toxic component profiles in shaping the differential toxic potencies of city-specific PM2.5 pollution.
Collapse
Affiliation(s)
- Ling Jin
- Department of Civil and Environmental Engineering , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen , Guangdong 518057 , People's Republic of China
| | - Jiawen Xie
- Department of Civil and Environmental Engineering , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen , Guangdong 518057 , People's Republic of China
| | - Chris K C Wong
- Croucher Institute for Environmental Sciences, Department of Biology , Hong Kong Baptist University , Kowloon Tong , Hong Kong
| | - Serena K Y Chan
- Croucher Institute for Environmental Sciences, Department of Biology , Hong Kong Baptist University , Kowloon Tong , Hong Kong
| | - Gülcin Abbaszade
- Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics , Helmholtz Zentrum München (HMGU/CMA) , 85764 Neuherberg , Germany
| | - Jürgen Schnelle-Kreis
- Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics , Helmholtz Zentrum München (HMGU/CMA) , 85764 Neuherberg , Germany
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics , Helmholtz Zentrum München (HMGU/CMA) , 85764 Neuherberg , Germany
- Joint Mass Spectrometry Centre, Chair of Analytical Chemistry , University of Rostock (UR/IC) , 18059 Rostock , Germany
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou , Guangdong 510640 , People's Republic of China
| | - Pingqing Fu
- Institute of Surface-Earth System Science , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Xiangdong Li
- Department of Civil and Environmental Engineering , The Hong Kong Polytechnic University , Hung Hom, Kowloon , Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute , Shenzhen , Guangdong 518057 , People's Republic of China
| |
Collapse
|
50
|
Weichenthal S, Shekarrizfard M, Traub A, Kulka R, Al-Rijleh K, Anowar S, Evans G, Hatzopoulou M. Within-City Spatial Variations in Multiple Measures of PM 2.5 Oxidative Potential in Toronto, Canada. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2799-2810. [PMID: 30735615 DOI: 10.1021/acs.est.8b05543] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Few studies have characterized within-city spatial variations in the oxidative potential of fine particulate air pollution (PM2.5). In this study, we evaluated multiple measures of PM2.5 oxidative potential across Toronto, Canada (2016-2017), including glutathione/ascorbate-related oxidative potential (OPGSH and OPAA) and dithiothreitol depletion (OPDTT). Integrated 2-week samples were collected from 67 sites in summer and 42 sites in winter. Multivariable linear models were developed to predict OP based on various land use/traffic factors, and PM2.5 metals and black carbon were also examined. All three measures of PM2.5 oxidative potential varied substantially across Toronto. OPAA and OPDTT were primarily associated with traffic-related components of PM2.5 (i.e., Fe, Cu, and black carbon) whereas OPGSH was not a strong marker for traffic during either season. During summer, multivariable models performed best for OPAA ( RCV2 = 0.48) followed by OPDTT ( RCV2 = 0.32) and OPGSH ( RCV2 = 0.22). During winter, model performance was best for OPDTT ( RCV2 = 0.55) followed by OPGSH ( RCV2 = 0.50) and OPAA ( RCV2 = 0.23). Model parameters varied between seasons, and between-season differences in PM2.5 mass concentrations were weakly/moderately correlated with seasonal differences in OP. Our findings highlight substantial within-city variations in PM2.5 oxidative potential. More detailed information is needed on local sources of air pollution to improve model performance.
Collapse
Affiliation(s)
- Scott Weichenthal
- Department of Epidemiology, Biostatistics and Occupational Health , McGill University , Montreal , Quebec H3A 1A2 , Canada
- Air Health Science Division , Health Canada , Ottawa , Ontario K1A 0K9 , Canada
| | - Maryam Shekarrizfard
- Department of Civil Engineering , University of Toronto , Toronto , Ontario M5S 1A4 , Canada
| | - Alison Traub
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Ryan Kulka
- Air Health Science Division , Health Canada , Ottawa , Ontario K1A 0K9 , Canada
| | - Kenan Al-Rijleh
- Department of Civil Engineering , University of Toronto , Toronto , Ontario M5S 1A4 , Canada
| | - Sabreena Anowar
- Department of Civil Engineering , University of Toronto , Toronto , Ontario M5S 1A4 , Canada
| | - Greg Evans
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Marianne Hatzopoulou
- Department of Civil Engineering , University of Toronto , Toronto , Ontario M5S 1A4 , Canada
| |
Collapse
|