1
|
Ryan PH, Newman N, Yolton K, Meinzen-Derr J, Glauser T, Cheng TL. A call for solutions-oriented research and policy to protect children from the effects of climate change. Pediatr Res 2024:10.1038/s41390-024-03559-9. [PMID: 39242938 DOI: 10.1038/s41390-024-03559-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Affiliation(s)
- Patrick H Ryan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nicholas Newman
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kimberly Yolton
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jareen Meinzen-Derr
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Tracy Glauser
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tina L Cheng
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Mota-Bertran A, Coenders G, Plaja P, Saez M, Barceló MA. Air pollution and children's mental health in rural areas: compositional spatio-temporal model. Sci Rep 2024; 14:19363. [PMID: 39169039 PMCID: PMC11339296 DOI: 10.1038/s41598-024-70024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
Air pollution stands as an environmental risk to child mental health, with proven relationships hitherto observed only in urban areas. Understanding the impact of pollution in rural settings is equally crucial. The novelty of this article lies in the study of the relationship between air pollution and behavioural and developmental disorders, attention deficit hyperactivity disorder (ADHD), anxiety, and eating disorders in children below 15 living in a rural area. The methodology combines spatio-temporal models, Bayesian inference and Compositional Data (CoDa), that make it possible to study areas with few pollution monitoring stations. Exposure to nitrogen dioxide (NO2), ozone (O3), and sulphur dioxide (SO2) is related to behavioural and development disorders, anxiety is related to particulate matter (PM10), O3 and SO2, and overall pollution is associated to ADHD and eating disorders. To sum up, like their urban counterparts, rural children are also subject to mental health risks related to air pollution, and the combination of spatio-temporal models, Bayesian inference and CoDa make it possible to relate mental health problems to pollutant concentrations in rural settings with few monitoring stations. Certain limitations persist related to misclassification of exposure to air pollutants and to the covariables available in the data sources used.
Collapse
Affiliation(s)
- Anna Mota-Bertran
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Carrer de la Universitat de Girona 10, Campus de Montilivi, 17003, Girona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III., Madrid, Spain
| | - Germà Coenders
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Carrer de la Universitat de Girona 10, Campus de Montilivi, 17003, Girona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III., Madrid, Spain
| | - Pere Plaja
- Fundació Salut Empordà., Figueres, Spain
| | - Marc Saez
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Carrer de la Universitat de Girona 10, Campus de Montilivi, 17003, Girona, Spain.
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III., Madrid, Spain.
| | - Maria Antònia Barceló
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Carrer de la Universitat de Girona 10, Campus de Montilivi, 17003, Girona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública, Instituto de Salud Carlos III., Madrid, Spain
| |
Collapse
|
3
|
Herting MM, Bottenhorn KL, Cotter DL. Outdoor air pollution and brain development in childhood and adolescence. Trends Neurosci 2024; 47:593-607. [PMID: 39054161 PMCID: PMC11324378 DOI: 10.1016/j.tins.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/26/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
Exposure to outdoor air pollution has been linked to adverse health effects, including potential widespread impacts on the CNS. Ongoing brain development may render children and adolescents especially vulnerable to neurotoxic effects of air pollution. While mechanisms remain unclear, promising advances in human neuroimaging can help elucidate both sensitive periods and neurobiological consequences of exposure to air pollution. Herein we review the potential influences of air pollution exposure on neurodevelopment, drawing from animal toxicology and human neuroimaging studies. Due to ongoing cellular and system-level changes during childhood and adolescence, the developing brain may be more sensitive to pollutants' neurotoxic effects, as a function of both timing and duration, with relevance to cognition and mental health. Building on these foundations, the emerging field of environmental neuroscience is poised to further decipher which air toxicants are most harmful and to whom.
Collapse
Affiliation(s)
- Megan M Herting
- Department of Populations and Public Health Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Katherine L Bottenhorn
- Department of Populations and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Department of Psychology, Florida International University, Miami, FL, USA
| | - Devyn L Cotter
- Department of Populations and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Tota M, Karska J, Kowalski S, Piątek N, Pszczołowska M, Mazur K, Piotrowski P. Environmental pollution and extreme weather conditions: insights into the effect on mental health. Front Psychiatry 2024; 15:1389051. [PMID: 38863619 PMCID: PMC11165707 DOI: 10.3389/fpsyt.2024.1389051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Environmental pollution exposures, including air, soil, water, light, and noise pollution, are critical issues that may implicate adverse mental health outcomes. Extreme weather conditions, such as hurricanes, floods, wildfires, and droughts, may also cause long-term severe concerns. However, the knowledge about possible psychiatric disorders associated with these exposures is currently not well disseminated. In this review, we aim to summarize the current knowledge on the impact of environmental pollution and extreme weather conditions on mental health, focusing on anxiety spectrum disorders, autism spectrum disorders, schizophrenia, and depression. In air pollution studies, increased concentrations of PM2.5, NO2, and SO2 were the most strongly associated with the exacerbation of anxiety, schizophrenia, and depression symptoms. We provide an overview of the suggested underlying pathomechanisms involved. We highlight that the pathogenesis of environmental pollution-related diseases is multifactorial, including increased oxidative stress, systematic inflammation, disruption of the blood-brain barrier, and epigenetic dysregulation. Light pollution and noise pollution were correlated with an increased risk of neurodegenerative disorders, particularly Alzheimer's disease. Moreover, the impact of soil and water pollution is discussed. Such compounds as crude oil, heavy metals, natural gas, agro-chemicals (pesticides, herbicides, and fertilizers), polycyclic or polynuclear aromatic hydrocarbons (PAH), solvents, lead (Pb), and asbestos were associated with detrimental impact on mental health. Extreme weather conditions were linked to depression and anxiety spectrum disorders, namely PTSD. Several policy recommendations and awareness campaigns should be implemented, advocating for the advancement of high-quality urbanization, the mitigation of environmental pollution, and, consequently, the enhancement of residents' mental health.
Collapse
Affiliation(s)
- Maciej Tota
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Julia Karska
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Szymon Kowalski
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Natalia Piątek
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | | - Katarzyna Mazur
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Patryk Piotrowski
- Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
5
|
Ji S, Guo Y, Yan W, Wei F, Ding J, Hong W, Wu X, Ku T, Yue H, Sang N. PM 2.5 exposure contributes to anxiety and depression-like behaviors via phenyl-containing compounds interfering with dopamine receptor. Proc Natl Acad Sci U S A 2024; 121:e2319595121. [PMID: 38739786 PMCID: PMC11127009 DOI: 10.1073/pnas.2319595121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/04/2024] [Indexed: 05/16/2024] Open
Abstract
As a global problem, fine particulate matter (PM2.5) really needs local fixes. Considering the increasing epidemiological relevance to anxiety and depression but inconsistent toxicological results, the most important question is to clarify whether and how PM2.5 causally contributes to these mental disorders and which components are the most dangerous for crucial mitigation in a particular place. In the present study, we chronically subjected male mice to a real-world PM2.5 exposure system throughout the winter heating period in a coal combustion area and revealed that PM2.5 caused anxiety and depression-like behaviors in adults such as restricted activity, diminished exploratory interest, enhanced repetitive stereotypy, and elevated acquired immobility, through behavioral tests including open field, elevated plus maze, marble-burying, and forced swimming tests. Importantly, we found that dopamine signaling was perturbed using mRNA transcriptional profile and bioinformatics analysis, with Drd1 as a potential target. Subsequently, we developed the Drd1 expression-directed multifraction isolating and nontarget identifying framework and identified a total of 209 compounds in PM2.5 organic extracts capable of reducing Drd1 expression. Furthermore, by applying hierarchical characteristic fragment analysis and molecular docking and dynamics simulation, we clarified that phenyl-containing compounds competitively bound to DRD1 and interfered with dopamine signaling, thereby contributing to mental disorders. Taken together, this work provides experimental evidence for researchers and clinicians to identify hazardous factors in PM2.5 and prevent adverse health outcomes and for local governments and municipalities to control source emissions for diminishing specific disease burdens.
Collapse
Affiliation(s)
- Shaoyang Ji
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
| | - Yuqiong Guo
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
| | - Wei Yan
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
- Xuzhou Engineering Research Center of Medical Genetics and Transformation, Key Laboratory of Genetic Foundation and Clinical Application, Department of Genetics, Xuzhou Medical University, Xuzhou, Jiangsu221004, People’s Republic of China
| | - Fang Wei
- Department of Environment Engineering, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang310018, People’s Republic of China
| | - Jinjian Ding
- Department of Environment Engineering, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang310018, People’s Republic of China
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang310018, People’s Republic of China
| | - Wenjun Hong
- Department of Environment Engineering, College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang310018, People’s Republic of China
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang310018, People’s Republic of China
| | - Xiaoyun Wu
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
| | - Tingting Ku
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
| | - Huifeng Yue
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
| | - Nan Sang
- Department of Environment Science, College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi030006, People’s Republic of China
| |
Collapse
|
6
|
Wang X, Wu Y, Chen Y, Xu J, Gao Q, Zang S. Traffic-related pollution and symptoms of depression and anxiety among Chinese adults: A population-based study. J Affect Disord 2024; 352:101-109. [PMID: 38360369 DOI: 10.1016/j.jad.2024.02.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Limited understanding exists regarding the associations of traffic-related pollution with depression and anxiety symptoms in individuals residing within low- and middle-income countries. METHODS Data for this study were extracted from the Psychology and Behavior Investigation of Chinese Residents (PBICR) survey, implemented between June 20 and August 31, 2023. We determined residential proximity to major roadways through self-reports and evaluated depression symptoms using the Patient Health Questionnaire-9 (PHQ-9), along with anxiety symptoms assessed through the Generalized Anxiety Disorder-7 (GAD-7). We examined the associations between residential proximity to major roadways and depression and anxiety symptoms using logistic regressions and generalized linear models, while controlling for potential confounding variables. RESULTS This study comprised a total of 22,723 participants. The adjusted odds ratios (OR) for depression symptoms were 1.34 (95 % confidence interval (CI) 1.20, 1.51), 1.29 (95 % CI 1.17, 1.43), 1.34 (95 % CI 1.20, 1.49), and 1.32 (95 % CI 1.17, 1.49) among individuals residing within <50 m, 50-100 m, 101-200 m, and 201-300 m, respectively, in comparison to those residing >300 m from a major roadway. Individuals residing <50 m, 50-100 m, 101-200 m, and 201-300 m from a major roadway exhibited adjusted OR for anxiety symptoms of 1.49 (95 % CI 1.30, 1.69), 1.21 (95 % CI 1.07, 1.37), 1.38 (95 % CI 1.21, 1.56), and 1.38 (95 % CI 1.20, 1.59), respectively, in contrast to those residing >300 m. CONCLUSIONS This study provides valuable insights into the associations between environmental factors and mental health. The findings underscore the importance of integrating environmental considerations into comprehensive mental health frameworks, especially for individuals residing near high-traffic areas.
Collapse
Affiliation(s)
- Xue Wang
- Department of Community Nursing, School of Nursing, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, China
| | - Yibo Wu
- School of Public Health, Peking University, No.38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yifei Chen
- Department of Interventional Radiology, The First Hospital of China Medical University, No.155 Nanjing North Street, Heping District Area, Shenyang, Liaoning Province 110002, China
| | - Jiayi Xu
- Department of Community Nursing, School of Nursing, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, China
| | - Qian Gao
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, China
| | - Shuang Zang
- Department of Community Nursing, School of Nursing, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, China.
| |
Collapse
|
7
|
Baker E, Barlow CF, Daniel L, Morey C, Bentley R, Taylor MP. Mental health impacts of environmental exposures: A scoping review of evaluative instruments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169063. [PMID: 38048998 DOI: 10.1016/j.scitotenv.2023.169063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
To date, much of the health focus of environmental policy has been on preventing physical health impacts of environmental exposures. Recent research has however highlighted increasingly concurrent mental health effects and its consideration is an emerging requirement for many governments and their agencies, yet there are limited universal mental health assessment tools for environmental exposures. This paper details the findings of a scoping review that evaluated assessment tools used to measure psychological impacts from environmental exposures and pollution, as reported in recent peer-reviewed literature (2000-2022). Across the 126 papers identified in our review, a wide range of tools to assess mental health impact were identified. We document a clear recent upswing of research interest in the mental and psychological impacts of environmental exposures, and an overarching concern for air pollution from industry, traffic, and fires. A majority of studies utilised standardised assessment instruments, but there was little consistency in the way that these were combined or deployed. The dominant mental health outcomes of interest in these studies were depression, anxiety, and mental and psychiatric health. The findings of the review identify a need and opportunity to develop a best-practice approach to consistently assess the mental health impacts arising from environmental exposures. Future work is needed to define the most appropriate choice and application of assessment tools to evaluate adverse mental health impacts from environmental exposures. This will support a more universal, coordinated and cross-jurisdiction approach for the assessment, quantification and targeted response to addressing mental health impacts arising from environmental exposures.
Collapse
Affiliation(s)
- Emma Baker
- Australian Centre for Housing Research, The University of Adelaide, Adelaide 5005, Australia
| | - Cynthia Faye Barlow
- Australian Centre for Housing Research, The University of Adelaide, Adelaide 5005, Australia
| | - Lyrian Daniel
- UniSA Creative, University of South Australia, Adelaide 5000, Australia
| | - Claire Morey
- Australian Centre for Housing Research, The University of Adelaide, Adelaide 5005, Australia
| | - Rebecca Bentley
- Centre of Research Excellence in Healthy Housing, Melbourne School of Population and Global Health, The University of Melbourne, Parkville 3010, Australia
| | - Mark Patrick Taylor
- Environment Protection Authority Victoria, Centre for Applied Sciences, Ernest Jones Drive, Macleod, Melbourne, Victoria 3085, Australia.
| |
Collapse
|
8
|
Anneser E, Levine P, Lane KJ, Corlin L. Climate stress and anxiety, environmental context, and civic engagement: A nationally representative study. JOURNAL OF ENVIRONMENTAL PSYCHOLOGY 2024; 93:102220. [PMID: 38222971 PMCID: PMC10785829 DOI: 10.1016/j.jenvp.2023.102220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
There is increasing recognition that people are experiencing stress and anxiety around climate change, and that this climate stress/anxiety may be associated with more pro-environmental behavior. However, less is known about whether people's own environmental exposures affect climate stress/anxiety or the relationship between climate stress/anxiety and civic engagement. Using three waves of survey data (2020-2022) from the nationally representative Tufts Equity in Health, Wealth, and Civic Engagement Study of US adults (n = 1071), we assessed relationships among environmental exposures (county-level air pollution, greenness, number of toxic release inventory sites, and heatwaves), self-reported climate stress/anxiety, and civic engagement measures (canvasing behavior, collaborating to solve community problems, personal efficacy to solve community problems, group efficacy to solve community problems, voting behavior). Most participants reported experiencing climate stress/anxiety (61%). In general, the environmental exposures we assessed were not significantly associated with climate stress/anxiety or civic engagement metrics, but climate stress/anxiety was positively associated with most of the civic engagement outcomes (canvassing, personal efficacy, group efficacy, voter preference). Our results support the growing literature that climate stress/anxiety may spur constructive civic action, though do not suggest a consistent relationship between adverse environmental exposures and either climate stress/anxiety or civic engagement. Future research and action addressing the climate crisis should promote climate justice by ensuring mental health support for those who experience climate stress anxiety and by promoting pro-environmental civic engagement efforts.
Collapse
Affiliation(s)
- Elyssa Anneser
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Peter Levine
- Jonathan Tisch College of Civic Life, Tufts University, Medford, MA, 02155, USA
| | - Kevin J. Lane
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Laura Corlin
- Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, 02111, USA
- Department of Civil and Environmental Engineering, Tufts University School of Engineering, Medford, MA, 02155, USA
| |
Collapse
|
9
|
McGuinn LA, Gutiérrez-Avila I, Rosa MJ, Just A, Coull B, Kloog I, Ortiz MT, Harari H, Martinez S, Osorio-Valencia E, Téllez-Rojo MM, Klein DN, Wright RJ, Wright RO. Association between prenatal and childhood PM 2.5 exposure and preadolescent anxiety and depressive symptoms. Environ Epidemiol 2024; 8:e283. [PMID: 38343740 PMCID: PMC10852372 DOI: 10.1097/ee9.0000000000000283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/14/2023] [Indexed: 03/13/2024] Open
Abstract
Background Fine particulate matter (PM2.5) exposure has been linked to anxiety and depression in adults; however, there is limited research in the younger populations, in which symptoms often first arise. Methods We examined the association between early-life PM2.5 exposure and symptoms of anxiety and depression in a cohort of 8-11-year-olds in Mexico City. Anxiety and depressive symptoms were assessed using the Spanish versions of the Revised Children's Manifest Anxiety Scale and Children's Depression Inventory. Daily PM2.5 was estimated using a satellite-based exposure model and averaged over several early and recent exposure windows. Linear and logistic regression models were used to estimate the change in symptoms with each 5-µg/m3 increase in PM2.5. Models were adjusted for child's age, child's sex, maternal age, maternal socioeconomic status, season of conception, and temperature. Results Average anxiety and depressive symptom T-scores were 51.0 (range 33-73) and 53.4 (range 44-90), respectively. We observed consistent findings for exposures around the fourth year of life, as this was present for both continuous and dichotomized anxiety symptoms, in both independent exposure models and distributed lag modeling approaches. This window was also observed for elevated depressive symptoms. An additional consistent finding was for PM2.5 exposure during early pregnancy in relation to both clinically elevated anxiety and depressive symptoms, this was seen in both traditional and distributed lag modeling approaches. Conclusion Both early life and recent PM2.5 exposure were associated with higher mental health symptoms in the child highlighting the role of PM2.5 in the etiology of these conditions.
Collapse
Affiliation(s)
- Laura A. McGuinn
- Institute for Population and Precision Health, University of Chicago, Chicago, Illinois
- Department of Family Medicine, University of Chicago, Chicago, Illinois
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Iván Gutiérrez-Avila
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Maria José Rosa
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Allan Just
- Department of Epidemiology, School of Public Health, Brown University, Providence, Rhode Island
| | - Brent Coull
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Itai Kloog
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Marcela Tamayo Ortiz
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, New York
| | - Homero Harari
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York
| | | | | | - Martha Maria Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Daniel N. Klein
- Department of Psychology, Stony Brook University, Stony Brook, New York
| | - Rosalind J. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York
- Kravis Children’s Hospital, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York
| |
Collapse
|
10
|
Ge L, Liu J, Kang X, Wang W, Zhang D. Association of serum individual and mixed aldehydes with depressive symptoms in the general population: A machine learning study. J Affect Disord 2024; 345:8-17. [PMID: 37865348 DOI: 10.1016/j.jad.2023.10.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Humans have many opportunities to be exposed to aldehydes which have potential mechanisms for causing depression. We aimed to explore the relationships between serum individual and mixed aldehydes with depressive symptoms in general population. METHODS The data was extracted from the National Health and Nutrition Examination Survey 2013-2014. Depressive symptoms were assessed by Patient Health Questionnaire-9. Weighted binomial logistic regression and Bayesian kernel machine regression (BKMR) model were used to explore the association of six individual aldehyde and mixed aldehydes with depressive symptoms, respectively. Sex stratification analysis and sensitivity analysis were conducted. RESULTS A total of 701 participants were included. We found a positive association between the highest (Q4) versus lowest quartile (Q1) of butyraldehyde with depressive symptoms (OR: 2.86, 95 % CI: 1.22-6.68), and a negative association between the Q3 versus Q1 of benzaldehyde (0.21, 0.07-0.60) and isopentanaldehyde (0.28, 0.08-0.90) with depressive symptoms in multivariate-adjusted model. The mixed aldehydes were positively associated with depressive symptoms using BKMR model, and butyraldehyde and heptanaldehyde were the dominant aldehydes. Several aldehydes, such as butyraldehyde and benzaldehyde, interacted with each other in their effects on depressive symptoms. The results of gender stratification analysis showed that butyraldehyde was the major contributor to the total effect of aldehydes on depressive symptoms in males, while heptanaldehyde was the dominant aldehyde in females. LIMITATIONS Causality cannot be inferred in this cross-sectional study. CONCLUSIONS Our study indicated that mixed aldehydes can increase the risk of depressive symptoms, of which butyraldehyde and heptanaldehyde were the major contributing aldehydes.
Collapse
Affiliation(s)
- Lin Ge
- Department of Epidemiology and Health Statistics, the School of Public Health of Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Jin Liu
- Department of Epidemiology and Health Statistics, the School of Public Health of Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Xiao Kang
- Department of Epidemiology and Health Statistics, the School of Public Health of Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Weijing Wang
- Department of Epidemiology and Health Statistics, the School of Public Health of Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China.
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, the School of Public Health of Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
11
|
Campbell CE, Cotter DL, Bottenhorn KL, Burnor E, Ahmadi H, Gauderman WJ, Cardenas-Iniguez C, Hackman D, McConnell R, Berhane K, Schwartz J, Chen JC, Herting MM. Air pollution and age-dependent changes in emotional behavior across early adolescence in the U.S. ENVIRONMENTAL RESEARCH 2024; 240:117390. [PMID: 37866541 PMCID: PMC10842841 DOI: 10.1016/j.envres.2023.117390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/24/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023]
Abstract
Recent studies have linked air pollution to increased risk for behavioral problems during development, albeit with inconsistent findings. Additional longitudinal studies are needed that consider how emotional behaviors may be affected when exposure coincides with the transition to adolescence - a vulnerable time for developing mental health difficulties. This study investigates if annual average PM2.5 and NO2 exposure at ages 9-10 years moderates age-related changes in internalizing and externalizing behaviors over a 2-year follow-up period in a large, nationwide U.S. sample of participants from the Adolescent Brain Cognitive Development (ABCD) Study®. Air pollution exposure was estimated based on the residential address of each participant using an ensemble-based modeling approach. Caregivers answered questions from the Child Behavior Checklist (CBCL) at the baseline, 1-year follow-up, and 2-year follow-up visits, for a total of 3 waves of data; from the CBCL we obtained scores on internalizing and externalizing problems plus 5 syndrome scales (anxious/depressed, withdrawn/depressed, rule-breaking behavior, aggressive behavior, and attention problems). Zero-inflated negative binomial models were used to examine both the main effect of age as well as the interaction of age with each pollutant on behavior while adjusting for various socioeconomic and demographic characteristics. Against our hypothesis, there was no evidence that greater air pollution exposure was related to more behavioral problems with age over time.
Collapse
Affiliation(s)
- Claire E Campbell
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089-2520, USA
| | - Devyn L Cotter
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, 90089-2520, USA
| | - Katherine L Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Department of Psychology, Florida International University, Miami, FL, USA
| | - Elisabeth Burnor
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - W James Gauderman
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Daniel Hackman
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, 90089, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Kiros Berhane
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90063, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA.
| |
Collapse
|
12
|
Bradley M, Dean K, Lim S, Laurens KR, Harris F, Tzoumakis S, O'Hare K, Carr VJ, Green MJ. Early life exposure to air pollution and psychotic-like experiences, emotional symptoms, and conduct problems in middle childhood. Soc Psychiatry Psychiatr Epidemiol 2024; 59:87-98. [PMID: 37470830 PMCID: PMC10799785 DOI: 10.1007/s00127-023-02533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Air pollution has been linked to a variety of childhood mental health problems, but results are inconsistent across studies and the effect of exposure timing is unclear. We examined the associations between air pollution exposure at two time-points in early development and psychotic-like experiences (PLEs), and emotional and conduct symptoms, assessed in middle childhood (mean age 11.5 years). METHODS Participants were 19,932 children selected from the NSW Child Development Study (NSW-CDS) with available linked multi-agency data from birth, and self-reported psychotic-like experiences (PLEs) and psychopathology at age 11-12 years (middle childhood). We used binomial logistic regression to examine associations between exposure to nitrogen dioxide (NO2) and particulate matter less than 2.5 μm (PM2.5) at two time-points (birth and middle childhood) and middle childhood PLEs, and emotional and conduct symptoms, with consideration of socioeconomic status and other potential confounding factors in adjusted models. RESULTS In fully adjusted models, NO2 exposure in middle childhood was associated with concurrent PLEs (OR = 1.10, 95% CI = 1.02-1.20). Similar associations with PLEs were found for middle childhood exposure to PM2.5 (OR = 1.05, 95% CI = 1.01-1.09). Neither NO2 nor PM2.5 exposure was associated with emotional symptoms or conduct problems in this study. CONCLUSIONS This study highlights the need for a better understanding of potential mechanisms of action of NO2 in the brain during childhood.
Collapse
Affiliation(s)
- Melissa Bradley
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kimberlie Dean
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
- Justice Health and Forensic Mental Health Network, Sydney, NSW, Australia
| | - Samsung Lim
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
- Biosecurity Program, Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Kristin R Laurens
- School of Psychology and Counselling, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Felicity Harris
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Stacy Tzoumakis
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Criminology and Criminal Justice, Griffith University, Southport, QLD, Australia
| | - Kirstie O'Hare
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Vaughan J Carr
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Psychiatry, Monash University, Melbourne, VIC, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Melissa J Green
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia.
- Neuroscience Research Australia, Sydney, NSW, Australia.
| |
Collapse
|
13
|
Lee H, Kravitz-Wirtz N, Rao S, Crowder K. Effects of Prolonged Exposure to Air Pollution and Neighborhood Disadvantage on Self-Rated Health among Adults in the United States: Evidence from the Panel Study of Income Dynamics. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87001. [PMID: 37531580 PMCID: PMC10396329 DOI: 10.1289/ehp11268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
BACKGROUND Although overall air quality has improved in the United States, air pollution remains unevenly distributed across neighborhoods, producing disproportionate environmental burdens for minoritized and socioeconomically disadvantaged residents for whom greater exposure to other structurally rooted neighborhood stressors is also more frequent. These interrelated dynamics and layered vulnerabilities each have well-documented associations with physical and psychological health outcomes; however, much remains unknown about the joint effects of environmental hazards and neighborhood socioeconomic factors on self-reported health status. OBJECTIVES We examined the nexus of air pollution exposure, neighborhood socioeconomic disadvantage, and self-rated health (SRH) among adults in the United States. METHODS This observational study used individual-level data from the Panel Study of Income Dynamics merged with contextual information, including neighborhood socioeconomic and air pollution data at the census tract and census block levels, spanning the period of 1999-2015. We estimated ordinary least squares regression models predicting SRH by 10-y average exposures to fine particulate matter [particles ≤ 2.5 μ m in aerodynamic diameter (PM 2.5 )] and neighborhood socioeconomic disadvantage while controlling for individual-level correlates of health. We also investigated the interaction effects of air pollution and neighborhood socioeconomic disadvantage on SRH. RESULTS On average, respondents in our sample rated their health as 3.41 on a scale of 1 to 5. Respondents in neighborhoods with higher 10-y average PM 2.5 concentrations or socioeconomic disadvantage rated their health more negatively after controlling for covariates [β = - 0.024 (95% CI: - 0.034 , - 0.014 ); β = - 0.107 (95% CI: - 0.163 , - 0.052 ), respectively]. We also found that the deleterious associations of PM 2.5 exposure with SRH were weaker in the context of greater neighborhood socioeconomic disadvantage (β = 0.007 ; 95% CI: 0.002, 0.011). DISCUSSION Study results indicate that the effects of air pollution on SRH may be less salient in socioeconomically disadvantaged neighborhoods compared with more advantaged areas, perhaps owing to the presence of other more proximate structurally rooted health risks and vulnerabilities in disinvested areas (e.g., lack of economic resources, health access, healthy food options). This intersection may further underscore the importance of meaningful involvement and political power building among community stakeholders on issues concerning the nexus of environmental and socioeconomic justice, particularly in structurally marginalized communities. https://doi.org/10.1289/EHP11268.
Collapse
Affiliation(s)
- Hannah Lee
- Department of Sociology, University of Washington, Seattle, Washington, USA
| | - Nicole Kravitz-Wirtz
- Department of Emergency Medicine, University of California, Davis School of Medicine, Sacramento, California, USA
| | - Smitha Rao
- College of Social Work, Ohio State University, Columbus, Ohio, USA
| | - Kyle Crowder
- Department of Sociology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
14
|
Feng Y, Ni N, Liu W, Chi X. Air Pollution and Prosocial Behavior in Chinese Adolescents: The Role of Resilience and Interpersonal Relations. Psychol Res Behav Manag 2023; 16:2569-2580. [PMID: 37457391 PMCID: PMC10349605 DOI: 10.2147/prbm.s409663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Purpose Past studies have indicated that air pollution is a major environmental factor that negatively affects prosocial behavior in adolescents. However, the mechanism underlying this negative relationship has not been fully explored. This study postulated that this impact may occur through individual resilience, a major psychological capital for adolescents. In addition, we studied interpersonal relations, namely, adolescents' perceived family and teacher support, which may moderate the proposed relationship. Methods This study combined the three-year tracking survey data of 11-to-15 old adolescents (N=1301; approximately 48% female) in China with objective data from the air quality index (AQI) to measure the level of air pollution. Results Findings from ordinary least squares analysis indicated that air pollution negatively influences adolescents' prosocial behavior, and their resilience mediates this negative relationship. In addition, the results showed that the negative effect of air pollution on adolescent resilience is attenuated by higher family income, whereas it is accentuated by the absence of teacher support. Conclusion Our study provides insight into how the negative effect of air pollution on adolescents' prosocial behavior is mediated by their psychological resilience, and highlights the moderating role of adolescents' interpersonal relations in the association between air pollution and their psychological resilience. Our research also provides practical advice on how families, teachers, and psychologists can mitigate this negative impact.
Collapse
Affiliation(s)
- Yukun Feng
- Shenzhen Audencia Financial Technology Institute, Shenzhen University, Shenzhen, 518060, People’s Republic of China
- Faculty of Business Administration, University of Macau, Macau, People’s Republic of China
| | - Na Ni
- Faculty of Business, Lingnan University, Hong Kong, People's Republic of China
| | - Wei Liu
- School of Management, Xiamen University, Xiamen, 361005, People’s Republic of China
| | - Xinli Chi
- School of Psychology, Shenzhen University, Shenzhen, 518060, People’s Republic of China
- The Shenzhen Humanities & Social Sciences Key Research Bases of the Center for Mental Health, Shenzhen, 518060, People’s Republic of China
| |
Collapse
|
15
|
Iyanna N, Yolton K, LeMasters G, Lanphear BP, Cecil KM, Schwartz J, Brokamp C, Rasnick E, Xu Y, MacDougall MC, Ryan PH. Air pollution exposure and social responsiveness in childhood: The cincinnati combined childhood cohorts. Int J Hyg Environ Health 2023; 251:114172. [PMID: 37116232 PMCID: PMC10682723 DOI: 10.1016/j.ijheh.2023.114172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Autism Spectrum Disorder (ASD) affects about 1 in 44 children and environmental exposures may contribute to disease onset. Air pollution has been associated with adverse neurobehavioral outcomes, yet little research has examined its association with autistic-like behaviors. Therefore, our objective was to examine the association between exposure to air pollution, including NO2 and PM2.5, during pregnancy and the first year of life to ASD-like behaviors during childhood. Participants (n = 435) enrolled in the Cincinnati Childhood Allergy and Air Pollution Study and the Health Outcomes and Measures of the Environment Study were included in the analysis. Daily exposures to NO2 and PM2.5 at the residential addresses of participants were estimated using validated spatiotemporal models and averaged to obtain prenatal and first year exposure estimates. ASD-like behaviors were assessed via the Social Responsiveness Scale (SRS) questionnaire at age 12. Linear regression models adjusting for confounders were applied to estimate the association between pollutants and SRS scores. After adjusting for covariates, the association between NO2 and PM2.5 and SRS scores remained positive but were no longer statistically significant. Prenatal and first year exposure to NO2 were associated with total SRS T-scores with an estimated 0.4 point increase (95% CI: -0.7, 1.6) per 5.2 ppb increase in NO2 exposure and 0.7 point (95% CI: -0.3, 1.6) per 4.2 ppb increase in NO2 exposure, respectively. For PM2.5, a 2.6 μg/m3 increase in prenatal exposure was associated with a 0.1 point increase (95% CI: -1.1, 1.4) in SRS Total T-scores and a 1.3 μg/m3 increase first year of life was associated with a 1 point increase (95% CI: -0.2, 2.3). In summary, exposure to NO2 and PM2.5 during pregnancy and the first year of life were not significantly associated with higher autistic-like behaviors measured with SRS scores after adjustment of covariates. Additional research is warranted given prior studies suggesting air pollution contributes to ASD.
Collapse
Affiliation(s)
- Nidhi Iyanna
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Grace LeMasters
- Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Bruce P Lanphear
- Child and Family Research Institute, BC Children's and Women's Hospital, Vancouver, BC, Canada; Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Kim M Cecil
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, OH, USA; Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard TH Chan School of Public Health, USA
| | - Cole Brokamp
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Erika Rasnick
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yingying Xu
- Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Melinda C MacDougall
- Division of General and Community Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Patrick H Ryan
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Environmental and Public Health Sciences, University of Cincinnati, College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
16
|
Campbell CE, Cotter DL, Bottenhorn KL, Burnor E, Ahmadi H, Gauderman WJ, Cardenas-Iniguez C, Hackman D, McConnell R, Berhane K, Schwartz J, Chen JC, Herting MM. Air pollution and emotional behavior in adolescents across the U.S. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.19.23288834. [PMID: 37162908 PMCID: PMC10168412 DOI: 10.1101/2023.04.19.23288834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Recent studies have linked air pollution to increased risk for behavioral problems during development, albeit with inconsistent findings. Additional longitudinal studies are needed that consider how emotional behaviors may be affected when exposure coincides with the transition to adolescence - a vulnerable time for developing mental health difficulties. This study examines how annual average PM2.5 and NO2 exposure at ages 9-10 years relates to internalizing and externalizing behaviors over a 2-year follow-up period in a large, nationwide U.S. sample of participants from the Adolescent Brain Cognitive Development (ABCD) Study®. Air pollution exposure was estimated based on the residential address of each participant using an ensemble-based modeling approach. Caregivers answered questions from the Child Behavior Checklist (CBCL) at baseline and annually for two follow-up sessions for a total of 3 waves of data; from the CBCL we obtained scores on internalizing and externalizing problems plus 5 syndrome scales (anxious/depressed, withdrawn/depressed, rule-breaking behavior, aggressive behavior, and attention problems). Zero-inflated negative binomial models were used to examine both the main effect of age as well as the interaction of age with each pollutant on behavior while adjusting for various socioeconomic and demographic characteristics. Overall, the pollution effects moderated the main effects of age with higher levels of PM2.5 and NO2 leading to an even greater likelihood of having no behavioral problems (i.e., score of zero) with age over time, as well as fewer problems when problems are present as the child ages. Albeit this was on the order equal to or less than a 1-point change. Thus, one year of annual exposure at 9-10 years is linked with very small change in emotional behaviors in early adolescence, which may be of little clinical relevance.
Collapse
Affiliation(s)
- Claire E Campbell
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA 90089-2520
| | - Devyn L Cotter
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California, USA 90089-2520
| | - Katherine L Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Psychology, Florida International University, Miami, FL, USA
| | - Elisabeth Burnor
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - W James Gauderman
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Daniel Hackman
- Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA 90089
| | - Rob McConnell
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Kiros Berhane
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
- Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| |
Collapse
|
17
|
Fang D, Bing W, Yao-Hui H, Chun-Xia J, Ying Z, Xing-Li L, Hua-Wei T, Ying-Jun X, Wan-Wei L, Xiu-Juan L, Dong-Yong F, Wei-Ting Y, Rong Z, Jian-Ping L, Yin-Qin Z. The association of air pollutants with hospital outpatient visits for child and adolescence psychiatry in Shenzhen, China. ENVIRONMENTAL RESEARCH 2023; 216:114598. [PMID: 36257448 DOI: 10.1016/j.envres.2022.114598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 09/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Although exposure to ambient air pollution has been associated with mental disorder, little is known about its potential effects on children and adolescents, especially in Chinese population. We aimed to reveal the relationship of air pollutants with hospital outpatient visits for child and adolescence psychiatry (HOVCAP) in Shenzhen. METHODS A case-crossover study based on time-series data was applied, and a distributed lag non-linear model (DLNM) was used to evaluate the non-linear and delayed effects of 4 major air pollutants (NO2, PM2.5, SO2 and O3) on HOVCAP. Least absolute shrinkage and selection operator (LASSO) regression was used to control the multicollinearity between covariates and to filter variables. RESULT A total of 94,660 cases aged 3-18 were collected from 2014 to 2019 in the Mental Health Center of Shenzhen. Results of pollutants at mode value (M0) showed that in the single lag effect result, when the average daily concentration of NO2 at 24 μg/m3, there was a significant effect on HOVCAP over lag 1, lag 4 and lag 5, respectively. The cumulative RR of NO2 M0 value to the outpatient visits were 1.438 (1.137-1.818) over lag 0-2, 1.454 (1.120-1.887) over lag 0-3, 1.466 (1.084-1.982) over lag 0-4, 1.680 (1.199-2.354) over lag 0-5, 1.993 (1.369-2.903) over lag 0-6, and 2.069 (1.372-3.119) over lag 0-7. However, PM2.5, SO2, O3 were not associated with HOVCAP over neither single lag effects nor cumulative effects. The RR values both shown an increase either when NO2 increases by 10 units or when the maximum concentration of NO2 is reached. CONCLUSION Our study suggests that exposure to the normal air quality of NO2 in Shenzhen may associated with the risk of HOVCAP. However, PM2.5, SO2, O3 were not associated with HOVCAP.
Collapse
Affiliation(s)
- Dong Fang
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518034, China.
| | - Wang Bing
- Department of Child Psychiatry, Shenzhen Kangning Hospital, Shenzhen, 518003, China.
| | - Han Yao-Hui
- Chronic Disease Prevention and Treatment Center of Shenzhen Futian District, Shenzhen, 518034, China.
| | - Jing Chun-Xia
- Department of Epidemiology, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China.
| | - Zhang Ying
- Department of Child Psychiatry, Shenzhen Kangning Hospital, Shenzhen, 518003, China.
| | - Liu Xing-Li
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518034, China.
| | - Tian Hua-Wei
- Chronic Disease Prevention and Treatment Center of Shenzhen Futian District, Shenzhen, 518034, China.
| | - Xiang Ying-Jun
- Chronic Disease Prevention and Treatment Center of Shenzhen Futian District, Shenzhen, 518034, China.
| | - Liao Wan-Wei
- Chronic Disease Prevention and Treatment Center of Shenzhen Futian District, Shenzhen, 518034, China.
| | - Li Xiu-Juan
- Department of Child Psychiatry, Shenzhen Kangning Hospital, Shenzhen, 518003, China.
| | - Fan Dong-Yong
- Chronic Disease Prevention and Treatment Center of Shenzhen Futian District, Shenzhen, 518034, China.
| | - Yang Wei-Ting
- Chronic Disease Prevention and Treatment Center of Shenzhen Futian District, Shenzhen, 518034, China.
| | - Zhao Rong
- Chronic Disease Prevention and Treatment Center of Shenzhen Futian District, Shenzhen, 518034, China
| | - Lu Jian-Ping
- Department of Child Psychiatry, Shenzhen Kangning Hospital, Shenzhen, 518003, China
| | - Zhong Yin-Qin
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518034, China.
| |
Collapse
|
18
|
Shang M, Tang M, Xue Y. Neurodevelopmental toxicity induced by airborne particulate matter. J Appl Toxicol 2023; 43:167-185. [PMID: 35995895 DOI: 10.1002/jat.4382] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/08/2022]
Abstract
Airborne particulate matter (PM), the primary component associated with health risks in air pollution, can negatively impact human health. Studies have shown that PM can enter the brain by inhalation, but data on the exact quantity of particles that reach the brain are unknown. Particulate matter exposure can result in neurotoxicity. Exposure to PM poses a greater health risk to infants and children because their nervous systems are not fully developed. This review paper highlights the association between PM and neurodevelopmental toxicity (NDT). Exposure to PM can induce oxidative stress and inflammation, potentially resulting in blood-brain barrier damage and increased susceptibility to development of neurodevelopmental disorders (NDD), such as autism spectrum disorders and attention deficit disorders. In addition, human and animal exposure to PM can induce microglia activation and epigenetic alterations and alter the neurotransmitter levels, which may increase risks for development of NDD. However, the systematic comparisons of the effects of PM on NDD at different ages of exposure are deficient. The elucidation of PM exposure risks and NDT in children during the early developmental stages are of great importance. The synthesis of current research may help to identify markers and mechanisms of PM-induced neurodevelopmental toxicity, allowing for the development of strategies to prevent permanent damage of developing brain.
Collapse
Affiliation(s)
- Mengting Shang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
19
|
Kyi-Tha-Thu C, Fujitani Y, Hirano S, Win-Shwe TT. Early-Life Exposure to Traffic-Related Air Pollutants Induced Anxiety-like Behaviors in Rats via Neurotransmitters and Neurotrophic Factors. Int J Mol Sci 2022; 24:ijms24010586. [PMID: 36614034 PMCID: PMC9820394 DOI: 10.3390/ijms24010586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Recent epidemiological studies have reported significantly increasing hospital admission rates for mental disorders such as anxiety and depression, not only in adults but also in children and adolescents, indicating more research is needed for evaluation of the etiology and possible reduction and prevention of these disorders. The aim of the present study was to examine the associations between perinatal exposure to traffic-related air pollutants and anxiety-like behaviors and alterations in neurological and immunological markers in adulthood using a rat model. Sprague Dawley pregnant rats were exposed to clean air (control), diesel exhaust (DE) 101 ± 9 μg/m3 or diesel exhaust origin secondary organic aerosol (DE-SOA) 118 ± 23 μg/m3 from gestational day 14 to postnatal day 21. Anxiety-related behavioral tests including open field tests, elevated plus maze, light/dark transition tests and novelty-induced hypophagia were performed on 10-week-old rats. The hippocampal expression of neurotransmitters, neurotrophic factors, and inflammatory molecular markers was examined by real-time RT-PCR. Anxiety-like behaviors were observed in both male and female rat offspring exposed to DE or DE-SOA. Moreover, serotonin receptor (5HT1A), dopamine receptor (Drd2), brain-derived neurotrophic factor and vascular endothelial growth factor A mRNAs were significantly decreased, whereas interleukin-1β, cyclooxygenase-2, heme oxygenase-1 mRNAs and microglial activation were significantly increased in both male and female rats. These findings indicate that brain developmental period exposure to traffic-related air pollutants may induce anxiety-like behaviors via modulation of neurotransmitters, neurotrophic factors, and immunological molecular markers, triggering neuroinflammation and microglia activation in rats.
Collapse
Affiliation(s)
- Chaw Kyi-Tha-Thu
- Department of Immunology, School of Medicine, International University of Health and Welfare, 4-3, Kozunomori, Narita 286-8686, Chiba, Japan
| | - Yuji Fujitani
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Ibaraki, Japan
| | - Seishiro Hirano
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Ibaraki, Japan
| | - Tin-Tin Win-Shwe
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Ibaraki, Japan
- Correspondence: ; Tel.: +81-29-850-2542
| |
Collapse
|
20
|
Zierold KM, Myers JV, Brock GN, Zhang CH, Sears CG, Sears L. Heavy Metal(loid) Body Burden in Environmentally Exposed Children With and Without Internalizing Behavior Problems. EXPOSURE AND HEALTH 2022; 14:903-914. [PMID: 38894859 PMCID: PMC11185413 DOI: 10.1007/s12403-022-00469-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 11/09/2021] [Accepted: 01/17/2022] [Indexed: 06/21/2024]
Abstract
The prevalence of internalizing behavior disorders in children is increasing. Reasons for increasing anxiety and depression include several factors with a less studied consideration being the potential neurotoxic effects of environmental exposures. One group at risk for environmental exposures is children living near coal-burning power plants with coal ash storage facilities. Multivariate logistic regression was used to assess the relationship between metal(loid) exposures and internalizing behaviors in children aged 6-14 years. Metal(loid)s in nail samples were determined by Proton-Induced X-ray Emission and internalizing behavior problems were obtained from the parent ratings on the Child Behavior Checklist. Results indicated that concentrations of metal(loid)s in nails differ between children with internalizing behaviors and without internalizing behaviors. Logistic regression models suggested that exposure to zinc and imputed zirconium were associated with internalizing behaviors in children. However, when a sex-metal(loid) interaction term was included, none of the metal(loid)s were associated with internalizing behaviors indicating a role of sex differences in neurotoxicity with zinc and copper showing effects only for males. In all models, greater exposure to traffic was associated with internalizing behaviors. Zinc has previously been shown to increase risk for mental health problems, while zirconium has received less attention. Out findings indicate that environmental exposures of zinc and zirconium deserve further attention in studies of childhood internalizing disorders.
Collapse
Affiliation(s)
- Kristina M. Zierold
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, RPHB 534C, 1720 2nd Ave S, Birmingham, AL 35294‑0022, USA
| | - John V. Myers
- Department of Biomedical Informatics and Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Guy N. Brock
- Department of Biomedical Informatics and Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Charlie H. Zhang
- Department of Geographic & Environmental Sciences, University of Louisville, Louisville, KY, USA
| | - Clara G. Sears
- Department of Environmental Medicine, University of Louisville, Louisville, KY, USA
| | - Lonnie Sears
- Department of Pediatrics, University of Louisville, Louisville, KY, USA
| |
Collapse
|
21
|
Zundel CG, Ryan P, Brokamp C, Heeter A, Huang Y, Strawn JR, Marusak HA. Air pollution, depressive and anxiety disorders, and brain effects: A systematic review. Neurotoxicology 2022; 93:272-300. [PMID: 36280190 PMCID: PMC10015654 DOI: 10.1016/j.neuro.2022.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Accumulating data suggest that air pollution increases the risk of internalizing psychopathology, including anxiety and depressive disorders. Moreover, the link between air pollution and poor mental health may relate to neurostructural and neurofunctional changes. We systematically reviewed the MEDLINE database in September 2021 for original articles reporting effects of air pollution on 1) internalizing symptoms and behaviors (anxiety or depression) and 2) frontolimbic brain regions (i.e., hippocampus, amygdala, prefrontal cortex). One hundred and eleven articles on mental health (76% human, 24% animals) and 92 on brain structure and function (11% human, 86% animals) were identified. For literature search 1, the most common pollutants examined were PM2.5 (64.9%), NO2 (37.8%), and PM10 (33.3%). For literature search 2, the most common pollutants examined were PM2.5 (32.6%), O3 (26.1%) and Diesel Exhaust Particles (DEP) (26.1%). The majority of studies (73%) reported higher internalizing symptoms and behaviors with higher air pollution exposure. Air pollution was consistently associated (95% of articles reported significant findings) with neurostructural and neurofunctional effects (e.g., increased inflammation and oxidative stress, changes to neurotransmitters and neuromodulators and their metabolites) within multiple brain regions (24% of articles), or within the hippocampus (66%), PFC (7%), and amygdala (1%). For both literature searches, the most studied exposure time frames were adulthood (48% and 59% for literature searches 1 and 2, respectively) and the prenatal period (26% and 27% for literature searches 1 and 2, respectively). Forty-three percent and 29% of studies assessed more than one exposure window in literature search 1 and 2, respectively. The extant literature suggests that air pollution is associated with increased depressive and anxiety symptoms and behaviors, and alterations in brain regions implicated in risk of psychopathology. However, there are several gaps in the literature, including: limited studies examining the neural consequences of air pollution in humans. Further, a comprehensive developmental approach is needed to examine windows of susceptibility to exposure and track the emergence of psychopathology following air pollution exposure.
Collapse
Affiliation(s)
- Clara G Zundel
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA.
| | - Patrick Ryan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Cole Brokamp
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Autumm Heeter
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA.
| | - Yaoxian Huang
- Department of Civil and Environmental Engineering, Wayne State University, 5050 Anthony Wayne Drive, Detroit, MI, USA.
| | - Jeffrey R Strawn
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Anxiety Disorders Research Program, Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA.
| | - Hilary A Marusak
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA; Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, MI, USA; Translational Neuroscience Program, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
22
|
Strawn JR, Xu Y, Cecil KM, Khoury J, Altaye M, Braun JM, Lanphear BP, Sjodin A, Chen A, Yolton K. Early exposure to flame retardants is prospectively associated with anxiety symptoms in adolescents: A prospective birth cohort study. Depress Anxiety 2022; 39:780-793. [PMID: 36218051 PMCID: PMC10092502 DOI: 10.1002/da.23284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/05/2022] [Accepted: 09/11/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Anxiety disorders emerge during childhood and adolescence and are frequently preceded by subsyndromal anxiety symptoms. Environmental toxicants, including gestational polybrominated diphenyl ether (PBDE) exposure, are associated with neuropsychiatric sequelae; however, the role of PBDEs as risk factors for anxiety in adolescence is unclear. METHODS Using data from the Health Outcomes and Measures of the Environment (HOME) Study, a prospective pregnancy and birth cohort enrolled from 2003 to 2006, we investigated the relationship between gestational serum PBDE concentrations and anxiety symptoms in adolescents (N = 236). We measured five PBDE congeners (PBDE-28, -47, -99, -100, and -153) at 16 ± 3 weeks of gestation and calculated their sum (∑PBDE). We assessed self-reported anxiety symptoms using the Screen for Child Anxiety Related Emotional Disorders (SCARED) and depressive symptoms using the Children's Depression Inventory (CDI-2) at age 12 years. We estimated the associations of maternal PBDE concentrations with child anxiety and depressive symptoms using multivariable linear regression and modified Poisson regression. Covariates included child sex, maternal race, maternal age at delivery, maternal marital status, maternal education, and household income at the 12-year study visit as well as maternal depressive and anxiety symptoms. Sensitivity analyses were performed to control for maternal lead and mercury at delivery. RESULTS After adjusting for predetermined covariates, each doubling in maternal PBDE concentrations was associated with increased SCARED scores (e.g., for ∑PBDE, SCARED total score, β = 1.6 95% confidence interval [CI]: 0.3-2.9, p = .019) and a nonsignificant increase in depressive symptoms (e.g., for CDI total score, β = .8, 95% CI: -0.2-1.8, p = .11). CONCLUSIONS Gestational serum PBDE concentrations just before mid-pregnancy and during a period of active cortical and limbic neurogenesis, synaptogenesis and myelogenesis may be a risk factor for developing anxiety symptoms in early adolescence.
Collapse
Affiliation(s)
- Jeffrey R. Strawn
- Department of Psychiatry and Behavioral Neuroscience, Anxiety Disorders Research Program, College of MedicineUniversity of CincinnatiCincinnatiOhioUSA
- Department of Pediatrics, Cincinnati Children's Hospital Medical CenterDivision of Clinical PharmacologyCincinnatiOhioUSA
| | - Yingying Xu
- Department of Pediatrics, Cincinnati Children's Hospital Medical CenterDivision of General and Community PediatricsCincinnatiOhioUSA
| | - Kim M. Cecil
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of MedicineUniversity of CincinnatiCincinnatiOhioUSA
- Department of Environmental and Public Health Sciences, University of Cincinnati College of MedicineUniversity of CincinnatiCincinnatiOhioUSA
- Department of Radiology, University of Cincinnati College of MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | - Jane Khoury
- Department of Pediatrics, Division of Biostatistics and EpidemiologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Mekibib Altaye
- Department of Pediatrics, Division of Biostatistics and EpidemiologyCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Joseph M. Braun
- Department of EpidemiologyBrown University School of Public HealthProvidenceRhode IslandUSA
| | - Bruce P. Lanphear
- BC Children's Hospital Research InstituteSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Andreas Sjodin
- Division of Laboratory SciencesCenters for Disease Control and PreventionAtlantaGeorgiaUSA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and InformaticsUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical CenterDivision of General and Community PediatricsCincinnatiOhioUSA
| |
Collapse
|
23
|
Zierold KM, Sears CG, Myers JV, Brock GN, Zhang CH, Sears L. Exposure to coal ash and depression in children aged 6-14 years old. ENVIRONMENTAL RESEARCH 2022; 214:114005. [PMID: 35944620 PMCID: PMC10725726 DOI: 10.1016/j.envres.2022.114005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND When coal is burned for energy, coal ash, a hazardous waste product, is generated. Throughout the world, over 1 billion tons of coal ash is produced yearly. In the United States, over 78 million tons of coal ash was produced in 2019. Fly ash, the main component of coal ash contains neurotoxic metal (loid)s that may affect children's neurodevelopment and mental health. The objective of this study was to investigate the association between fly ash and depressive problems in children aged 6-14 years old. METHODS Children and their parents/guardians were recruited from 2015 to 2020. Tobit regression and logistic regression were used to assess the association between coal fly ash and depressive problems. To determine fly ash presence, Scanning Electron Microscopy was conducted on polycarbonate filters containing PM10 from the homes of the study participants. Depressive problems in children were measured using the Depressive Problems DSM and withdrawn/depressed syndromic problem scales of the Child Behavior Checklist. RESULTS In covariate-adjusted Tobit regression models, children with fly ash on the filter had higher scores on the DSM Depressive Problems (3.13 points; 95% CI = 0.39, 5.88) compared with children who did not have fly ash on the filter. Logistic regression supported these findings. CONCLUSION Coal ash is one of the largest waste streams in the U.S, but it is not classified as a hazardous waste by the Environmental Protection Agency. To our knowledge, no studies have assessed the impact of coal ash on children's mental health. This study highlights the need for further research into the effects of coal ash exposure on children's mental health, and improved regulations on release and storage of coal ash.
Collapse
Affiliation(s)
- Kristina M Zierold
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Clara G Sears
- Department of Environmental Medicine, University of Louisville, Louisville, KY, USA.
| | - John V Myers
- Department of Biomedical Informatics and Center for Biostatistics, The Ohio State University, Columbus, OH, USA.
| | - Guy N Brock
- Department of Biomedical Informatics and Center for Biostatistics, The Ohio State University, Columbus, OH, USA.
| | - Charlie H Zhang
- Department of Geographic & Environmental Sciences, University of Louisville, Louisville, KY, USA.
| | - Lonnie Sears
- Department of Pediatrics, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
24
|
Peterson BS, Bansal R, Sawardekar S, Nati C, Elgabalawy ER, Hoepner LA, Garcia W, Hao X, Margolis A, Perera F, Rauh V. Prenatal exposure to air pollution is associated with altered brain structure, function, and metabolism in childhood. J Child Psychol Psychiatry 2022; 63:1316-1331. [PMID: 35165899 DOI: 10.1111/jcpp.13578] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Prenatal exposure to air pollution disrupts cognitive, emotional, and behavioral development. The brain disturbances associated with prenatal air pollution are largely unknown. METHODS In this prospective cohort study, we estimated prenatal exposures to fine particulate matter (PM2.5 ) and polycyclic aromatic hydrocarbons (PAH), and then assessed their associations with measures of brain anatomy, tissue microstructure, neurometabolites, and blood flow in 332 youth, 6-14 years old. We then assessed how those brain disturbances were associated with measures of intelligence, ADHD and anxiety symptoms, and socialization. RESULTS Both exposures were associated with thinning of dorsal parietal cortices and thickening of postero-inferior and mesial wall cortices. They were associated with smaller white matter volumes, reduced organization in white matter of the internal capsule and frontal lobe, higher metabolite concentrations in frontal cortex, reduced cortical blood flow, and greater microstructural organization in subcortical gray matter nuclei. Associations were stronger for PM2.5 in boys and PAH in girls. Youth with low exposure accounted for most significant associations of ADHD, anxiety, socialization, and intelligence measures with cortical thickness and white matter volumes, whereas it appears that high exposures generally disrupted these neurotypical brain-behavior associations, likely because strong exposure-related effects increased the variances of these brain measures. CONCLUSIONS The commonality of effects across exposures suggests PM2.5 and PAH disrupt brain development through one or more common molecular pathways, such as inflammation or oxidative stress. Progressively higher exposures were associated with greater disruptions in local volumes, tissue organization, metabolite concentrations, and blood flow throughout cortical and subcortical brain regions and the white matter pathways interconnecting them. Together these affected regions comprise cortico-striato-thalamo-cortical circuits, which support the regulation of thought, emotion, and behavior.
Collapse
Affiliation(s)
- Bradley S Peterson
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Department of Psychiatry, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Ravi Bansal
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA.,Department of Pediatrics, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Siddhant Sawardekar
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Carlo Nati
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Eman R Elgabalawy
- Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, SUNY Downstate School of Public Health, Brooklyn, NY, USA
| | - Wanda Garcia
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Xuejun Hao
- Department of Psychiatry, Columbia Presbyterian Medical Center & New York State Psychiatric Institute, New York, NY, USA
| | - Amy Margolis
- Department of Psychiatry, Columbia Presbyterian Medical Center & New York State Psychiatric Institute, New York, NY, USA
| | - Frederica Perera
- Columbia Center for Children's Environmental Health, New York, NY, USA.,Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Virginia Rauh
- Heilbrunn Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY, USA.,Columbia Center for Children's Environmental Health, New York, NY, USA
| |
Collapse
|
25
|
Li D, Gao R, Qin L, Yue H, Sang N. New Insights into Prenatal NO 2 Exposure and Behavioral Abnormalities in Male Offspring: Disturbed Serotonin Metabolism and Delayed Oligodendrocyte Development. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11536-11546. [PMID: 35895862 DOI: 10.1021/acs.est.2c03037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Epidemiological studies show that prenatal exposure to nitrogen dioxide (NO2) might cause behavioral abnormalities in childhood. However, toxicological mechanisms for such effects remain unclear, and it is still difficult to define adverse outcome pathways linking exposures to behavioral phenotypes. In this study, by exposing pregnant mice to NO2 (2.5 ppm, 5 h/day) throughout gestation, we provided the first experimental evidence that prenatal NO2 exposure did cause anxiety- and depression-like behaviors in weaning male offspring but not females. Specifically, the behavioral abnormalities were associated with abnormal myelination and the alterations attributed to the delayed oligodendrocyte (OL) development in the fetus and the early stage after birth. The expression of platelet-derived growth factor receptor α (Pdgfr-α) and Olig2 significantly decreased in the NO2 group at E13.5 and E15.5, and the expression of Olig2, adenomatous polyposis coli colon (Cc1), and myelin basic protein (Mbp) was reduced in offspring at PNDs 1, 7, and 21. We performed the targeted metabolomic analysis of neurotransmitters in the placenta and found that prenatal exposure to NO2 disturbed the metabolism of placental neurotransmitters. Serotonin (5-HT) was transferred from the placenta to the fetus at E10.5, and its accumulation in the fetal forebrain might affect oligodendrocyte progenitor cell (OPC) differentiation and OL maturation and eventually be involved in behavioral abnormalities. Our findings provide new insights into the association between prenatal NO2 exposure with anxiety- and depression-like behaviors in male offspring.
Collapse
Affiliation(s)
- Dan Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Rui Gao
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Liyao Qin
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, P. R. China
| |
Collapse
|
26
|
Cardenas-Iniguez C, Burnor E, Herting MM. Neurotoxicants, the Developing Brain, and Mental Health. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:223-232. [PMID: 35911498 PMCID: PMC9337627 DOI: 10.1016/j.bpsgos.2022.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022] Open
Abstract
While life in urban environments may confer a number of benefits, it may also result in a variety of exposures, with toxic consequences for neurodevelopment and neuropsychological health. Neurotoxicants are any of a large number of chemicals or substances that interfere with normal function and/or compromise adaptation in the central and/or peripheral nervous system. Evidence suggests that neurotoxicant effects have a greater effect when occurring in utero and during early childhood. Recent findings exploring neural-level mechanisms provide a crucial opportunity to explore the ways in which environmental conditions may get "under the skin" to impact a number of psychological behaviors and cognitive processes, ultimately allowing for greater synergy between macro- and microlevel efforts to improve mental health in the presence of neurotoxicant exposures. In this review, we provide an overview of 3 types of neurotoxicants related to the built environment and relevant to brain development during childhood and adolescence: lead exposure, outdoor particulate matter pollution, and endocrine-disrupting chemicals. We also discuss mechanisms through which these neurotoxicants affect central nervous system function, including recent evidence from neuroimaging literature. Furthermore, we discuss neurotoxicants and mental health during development in the context of social determinants and how differences in the spatial distribution of neurotoxicant exposures result in health disparities that disproportionately affect low-income and minority populations. Multifaceted approaches incorporating social systems and their effect on neurotoxicant exposures and downstream mental health will be key to reduce societal costs and improve quality of life for children, adolescents, and adults.
Collapse
Affiliation(s)
- Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Elisabeth Burnor
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, California
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, California
| |
Collapse
|
27
|
Turner AL, Brokamp C, Wolfe C, Reponen T, Brunst KJ, Ryan PH. Mental and Physical Stress Responses to Personal Ultrafine Particle Exposure in Adolescents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127509. [PMID: 35742759 PMCID: PMC9223710 DOI: 10.3390/ijerph19127509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023]
Abstract
Incidence rates of mental health disorders among adolescents is increasing, indicating a strong need for effective prevention efforts at a population level. The etiology of mental health disorders includes genetic, social, and environmental factors. Ultrafine particles (UFPs; particles less than 0.1 μm in diameter) have been shown to exert neurotoxic effects on the brain; however, epidemiologic evidence on the relationship between UFPs and childhood mental health outcomes is unclear. The objective of this study was to determine if exposure to UFPs was associated with symptoms of mental health in adolescents. Adolescents completed personal UFP monitoring for one week as well as a series of validated Patient-Reported Outcomes Measurement Information System (PROMIS) assessments to measure five domains of mental and physical stress symptoms. Multivariable linear regression models were used to estimate the association between PROMIS domain T-scores and median weekly personal UFP exposure with the inclusion of interactions to explore sex differences. We observed that median weekly UFP exposure was significantly associated with physical stress symptoms (β: 5.92 per 10-fold increase in UFPs, 95% CI [0.72, 11.13]) but no other measured domains. Further, we did not find effect modification by sex on any of the PROMIS outcomes. The results of this study indicate UFPs are associated with physical symptoms of stress response among adolescents, potentially contributing to mental health disorders in this population.
Collapse
Affiliation(s)
- Ashley L. Turner
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (C.B.); (C.W.); (P.H.R.)
- Correspondence: ; Tel.: +1-630-306-2259
| | - Cole Brokamp
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (C.B.); (C.W.); (P.H.R.)
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Chris Wolfe
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (C.B.); (C.W.); (P.H.R.)
| | - Tiina Reponen
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA; (T.R.); (K.J.B.)
| | - Kelly J. Brunst
- Department of Environmental and Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA; (T.R.); (K.J.B.)
| | - Patrick H. Ryan
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (C.B.); (C.W.); (P.H.R.)
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
28
|
Affiliation(s)
- Frederica Perera
- From the Department of Environmental Health Sciences and Columbia Center for Children's Environmental Health, Columbia University, New York (F.P.); and the Departments of Medicine, Pediatrics, Otolaryngology, and Epidemiology and Population Health, Stanford University, Stanford, CA (K.N.)
| | - Kari Nadeau
- From the Department of Environmental Health Sciences and Columbia Center for Children's Environmental Health, Columbia University, New York (F.P.); and the Departments of Medicine, Pediatrics, Otolaryngology, and Epidemiology and Population Health, Stanford University, Stanford, CA (K.N.)
| |
Collapse
|
29
|
Ji Y, Liu B, Song J, Cheng J, Wang H, Su H. Association between traffic-related air pollution and anxiety hospitalizations in a coastal Chinese city: are there potentially susceptible groups? ENVIRONMENTAL RESEARCH 2022; 209:112832. [PMID: 35104480 DOI: 10.1016/j.envres.2022.112832] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/14/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Motor vehicle exhaust emissions have become the main source of urban air pollution in China, but few studies have explored the association of short-term exposure to traffic-related air pollutants (TRAPs) with anxiety disorders. Thus, we used an overdispersed, generalized additive model (GAM) to investigate the association between TRAPs and hospital admissions (HAs) for anxiety in Qingdao, a coastal Chinese city with high vehicle ownership. In addition, stratified analyses were performed by gender, age, season and hospitalization frequency (first admission and readmission). A positive association between TRAPs and HAs for anxiety was observed. Both inhalable particulate matter (PM10) and nitrogen dioxide (NO2) showed significant effects at lag 3 in the single-day lag structure, and each 10 μg/m3 increase in the concentrations was significantly associated with increases of 0.88% [95% confidence interval (CI): 0.04%, 1.72%] for PM10 and 2.74% (0.45%, 5.08%) for NO2 on anxiety hospitalizations. For fine particulate matter (PM2.5) and carbon monoxide (CO), the strongest effects were found at lag05 and lag04 [2.67% (0.77%, 4.62%) and 0.19% (0.04%, 0.34%), respectively] in the multiday lag structure. The estimates of PM2.5 were relatively robust after adjusting for other pollutants in the two-pollutant model. Stratified analyses indicated that the associations were stronger in females and younger individuals (<45 in age) than in males and elderly individuals (≥45 in age). Furthermore, the effects of PM2.5 and CO were most obvious during the cold season. Regarding hospitalization frequency, only PM2.5 was found to have a significant effect in the first-admission group. The results showed that short-term exposure to TRAPs, especially to PM2.5, was significantly associated with the increased risk of daily HAs for anxiety, which can help clinicians and policymakers better understand the effects of TRAPs to implement targeted interventions.
Collapse
Affiliation(s)
- Yanhu Ji
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Bin Liu
- Qingdao Mental Health Center, Qingdao, Shandong Province, China
| | - Jian Song
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Jian Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Heng Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China.
| |
Collapse
|
30
|
Miller JG, Buthmann JL, Gotlib IH. Hippocampal volume indexes neurobiological sensitivity to the effect of pollution burden on telomere length in adolescents. New Dir Child Adolesc Dev 2022; 2022:155-172. [PMID: 35738556 PMCID: PMC9492639 DOI: 10.1002/cad.20471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Exposure to environmental pollutants has been associated with cellular aging in children and adolescents. Individuals may vary, however, in their sensitivity or vulnerability to the effects of environmental pollutants. Larger hippocampal volume has emerged as a potential index of increased sensitivity to social contexts. In exploratory analyses (N = 214), we extend work in this area by providing evidence that larger hippocampal volume in early adolescence reflects increased sensitivity to the effect of neighborhood pollution burden on telomere length (standardized β = -0.40, 95% CI[-0.65, -0.15]). In contrast, smaller hippocampal volume appears to buffer this association (standardized β = 0.02). In youth with larger hippocampal volume, pollution burden was indirectly associated with shorter telomere length approximately 2 years later through shorter telomere length at baseline (indirect standardized β = -0.25, 95% CI[-0.40, 0.10]). For these youth, living in high or low pollution-burdened neighborhoods may predispose them to develop shorter or longer telomeres, respectively, later in adolescence.
Collapse
Affiliation(s)
- Jonas G Miller
- Department of Psychology, Stanford University, Stanford, California, USA
| | - Jessica L Buthmann
- Department of Psychology, Stanford University, Stanford, California, USA
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, California, USA
| |
Collapse
|
31
|
Hartley K, MacDougall MC, Terrizzi B, Xu Y, Cecil KM, Chen A, Braun JM, Lanphear BP, Newman NC, Vuong AM, Sjödin A, Yolton K. Gestational exposure to polybrominated diphenyl ethers and social skills and problem behaviors in adolescents: The HOME study. ENVIRONMENT INTERNATIONAL 2022; 159:107036. [PMID: 34896668 PMCID: PMC8748392 DOI: 10.1016/j.envint.2021.107036] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs) are persistent environmental pollutants used as flame retardants. Gestational PBDE exposure has been associated with a variety of behavior problems in children, but little is known about its impact into adolescence, particularly on social skills, which are important for achieving social competence, establishing identity, and forming lasting relationships. OBJECTIVE We investigated associations between gestational exposure to PBDEs and social skills and problem behaviors in early adolescence in a longitudinal pregnancy and birth cohort in Cincinnati, Ohio (recruited 2003-2006). METHODS We measured maternal serum concentrations of five PBDE congeners during gestation. At age 12, we measured social skills and problem behaviors scores for 243 adolescents using self- and caregiver-report on the Social Skills Improvement System (SSiS). We used multivariable linear regression models to estimate associations between maternal PBDE concentrations and SSiS scores, controlling for potential covariates. We report associations for the five congeners and a summary exposure variable (∑5BDE: the sum of BDE- 28, 47, 99, 100, and 153, n = 197). RESULTS We found sex-specific associations of ∑5BDE concentrations with adolescent-reported Problem Behaviors (∑5BDE × sex pint = 0.02) and caregiver-reported Social Skills (∑5BDE × sex pint = 0.02). In sex-stratified models, log10 transformed data revealed increased maternal ∑5BDE concentration among males was associated with decreased caregiver-reported Social Skills composite score (β = -10.2, 95% CI: -19.5, -1.0), increased adolescent-reported Problem Behaviors composite score (β = 12.1, 95% CI: 5.4, 18.8), and increased caregiver-reported Problem Behaviors composite score (β = 6.2, 95% CI: 0.7, 11.7). Further analysis on SSiS subscales revealed similar patterns in significant associations among males. There were no statistically significant associations in stratified models among females despite higher ∑5BDE exposure (Female GM=40.15 ng/g lipid, GSE=1.10; Male GM=35.30 ng/g lipid, GSE=1.09). DISCUSSION We found gestational PBDE exposure in males was associated with poorer behavioral outcomes, extending previous findings among this cohort into early adolescence.
Collapse
Affiliation(s)
- Kim Hartley
- Cincinnati Children's Hospital Medical Center, Division of General and Community Pediatrics, Cincinnati, OH, USA.
| | - Melinda C MacDougall
- Cincinnati Children's Hospital Medical Center, Division of General and Community Pediatrics, Cincinnati, OH, USA.
| | - Brandon Terrizzi
- Cincinnati Children's Hospital Medical Center, Division of General and Community Pediatrics, Cincinnati, OH, USA
| | - Yingying Xu
- Cincinnati Children's Hospital Medical Center, Division of General and Community Pediatrics, Cincinnati, OH, USA.
| | - Kim M Cecil
- Cincinnati Children's Hospital Medical Center, Division of General and Community Pediatrics, Cincinnati, OH, USA; University of Cincinnati, College of Medicine, Cincinnati, OH, USA.
| | - Aimin Chen
- University of Pennsylvania, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, Philadelphia, PA, USA.
| | - Joseph M Braun
- Brown University, Department of Epidemiology, Providence, RI, USA.
| | - Bruce P Lanphear
- Simon Fraser University, Faculty of Health Sciences, Burnaby, British Columbia, Canada.
| | - Nicholas C Newman
- Cincinnati Children's Hospital Medical Center, Division of General and Community Pediatrics, Cincinnati, OH, USA.
| | - Ann M Vuong
- University of Nevada, Las Vegas School of Public Health, Las Vegas, NV, USA.
| | - Andreas Sjödin
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Mail Stop F-20, 4770 Buford Highway NE, Atlanta, GA, USA.
| | - Kimberly Yolton
- Cincinnati Children's Hospital Medical Center, Division of General and Community Pediatrics, Cincinnati, OH, USA; University of Cincinnati, College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
32
|
Trushna T, Dhiman V, Raj D, Tiwari RR. Effects of ambient air pollution on psychological stress and anxiety disorder: a systematic review and meta-analysis of epidemiological evidence. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:501-521. [PMID: 34821119 DOI: 10.1515/reveh-2020-0125] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/22/2020] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Ambient air pollution (AAP) is an important risk factor for increased mental health morbidity. Studies have highlighted the effect of AAP on psychological stress and anxiety disorder. However, existing evidence regarding this is largely equivocal. This systematic review with meta-analysis aims to synthesize published evidence to calculate the pooled estimate of the effect of AAP on psychological stress and anxiety disorder. CONTENT A systematic bibliographic search was undertaken using PubMed, JGateplus, Google Scholar, and Cochrane Library for observational human studies published in English till 31st March 2020 reporting the effect of AAP on psychological stress and anxiety disorder. Study quality was assessed using the Joanna Briggs Institute critical appraisal tools. Meta-analysis was performed adopting a random-effects model using Meta-XL. Of 412 articles retrieved, a total of 30 articles [AAP and anxiety disorders, (n=17, 57%); AAP and psychological stress, (n=9, 30%) and AAP and both psychological stress and anxiety disorders, (n=4, 13%)] fulfilled the inclusion criteria covering a total population of 973,725 individuals. The pooled estimate (OR) of the effects of PM10 on psychological stress was 1.03 [(95% CI: 1.00, 1.05) (p=0.17, I 2=41%)]. The pooled estimate of the effects of NO2 and PM10 on anxiety disorder was 0.93 [(95% CI: 0.89, 0.97) (p=0.91, I 2=0%)] and 0.88 [(95% CI: 0.78, 0.98) (p=0.01, I 2=59%)] respectively. The pooled estimate of the effects of PM2.5 on anxiety Disorder was 0.88 [(95% CI: 0.72, 1.06) (p=0.00, I 2=80%)]. SUMMARY AND OUTLOOK The present study provides the most updated pooled estimate of the effect of AAP on psychological stress and anxiety disorder. Future studies should focus on longitudinal studies conducted in LIC and LMIC countries using uniform and standardized criteria for exposure and outcome assessment as well as robust adjustment for confounders to minimize methodological heterogeneity resulting in reliable and comparable estimation of environmental mental health burden.
Collapse
Affiliation(s)
- Tanwi Trushna
- Department of Environmental Health and Epidemiology, ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, Madhya Pradesh, India
| | - Vikas Dhiman
- Department of Environmental Health and Epidemiology, ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, Madhya Pradesh, India
| | - Dharma Raj
- Department of Biostatistics and Bioinformatics, ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, Madhya Pradesh, India
| | - Rajnarayan R Tiwari
- ICMR-National Institute for Research in Environmental Health (NIREH), Bhopal, Madhya Pradesh, India
| |
Collapse
|
33
|
Tran PTM, Adam MG, Balasubramanian R. Assessment and mitigation of toddlers' personal exposure to black carbon before and during the COVID-19 pandemic: A case study in Singapore. ENVIRONMENTAL RESEARCH 2021; 202:111711. [PMID: 34280416 PMCID: PMC9749899 DOI: 10.1016/j.envres.2021.111711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 05/17/2023]
Abstract
Black carbon (BC), an important indicator of traffic-related air pollution (TRAP) in urban environments, is receiving increased attention because of its adverse health effects. Personal exposure (PE) of adults to BC has been widely studied, but little is known about the exposure of young children (toddlers) to BC in cities. We carried out a pilot study to investigate the integrated daily PE of toddlers to BC in a city-state with a high population density (Singapore). We studied the impact of urban traffic on the PE of toddlers to BC by comparing and contrasting on-road traffic flow (i.e., volume and composition) in Singapore in 2019 (before the COVID-19 pandemic) and in 2020 (during the COVID-19 pandemic). Our observations indicate that the daily BC exposure levels and inhaled doses increased by about 25% in 2020 (2.9 ± 0.3 μg m-3 and 35.5 μg day-1) compared to that in 2019 (2.3 ± 0.4 μg m-3 and 28.5 μg day-1 for exposure concentration and inhaled dose, respectively). The increased BC levels were associated with the increased traffic volume on both weekdays and weekends in 2020 compared to the same time period in 2019. Specifically, we observed an increase in the number of trucks as well as cars/taxis and motorcycles (private transport) and a decline in the number of buses (public transport) in 2020. The implementation of lockdown measures in 2020 resulted in significant changes in the time, place and duration of PE of toddlers to BC. The recorded daily time-activity patterns indicated that toddlers spent almost all the time in indoor environments during the measurement period in 2020. When we compared different ventilation options (natural ventilation (NV), air conditioning (AC), and portable air cleaner (PAC)) for mitigation of PE to BC in the home environment, we found a significant decrease (>30%) in daily BC exposure levels while using the PAC compared to the NV scenario. Our case study shows that the PE of toddlers to BC is of health concern in indoor environments in 2020 because of the migration of the increased TRAP into naturally ventilated residential homes and more time spent indoors than outdoors. Since toddlers' immune system is weak, technological intervention is necessary to protect their health against inhalation exposure to air pollutants.
Collapse
Affiliation(s)
- Phuong T M Tran
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore; Faculty of Environment, University of Science and Technology, The University of Danang, 54 Nguyen Luong Bang Street, Lien Chieu District, Danang City, Viet Nam
| | - Max G Adam
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, 117576, Singapore.
| |
Collapse
|
34
|
Tsai SS, Chiu YW, Weng YH, Yang CY. Relationship between fine particulate air pollution and hospital admissions for depression: a case-crossover study in Taipei. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:702-709. [PMID: 34058967 DOI: 10.1080/15287394.2021.1932652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There are few apparent studies regarding the association between fine particulate matter (PM2.5) air pollution and development of depression. Data obtained from epidemiological studies are inconsistent and controversial. The aim of this case-crossover study was to examine the association between short-term exposure to PM2.5 alone and in combination with other pollutants and frequency of hospitalizations for depression from 2009 to 2013 in Taipei, Taiwan. In the single pollutant model without adjustment for other pollutants, 17% and 4% increase in admissions attributed to depression correlated with interquartile range (IQR) rise in PM2.5 levels was noted on warm and cool days, respectively. Data were also analyzed using two-pollutant models and it was found that on warm days, the association continued to be significant after including one of the following pollutants: sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3) or carbon monoxide (CO). On cool days, the significance was lost. In conclusion, the relationship between ambient outdoor PM2.5 exposure and rates of hospitalization for depression appeared to be temperature dependent in Taipei. Further research is needed to verify these observations as well as to distinguish the relative contributions of PM2.5 and temperature to development for hospital admissions for depression.
Collapse
Affiliation(s)
- Shang-Shyue Tsai
- Department of Healthcare Administration, I-Shou University, Kaohsiung, Taiwan
| | - Ya-Wen Chiu
- Master Program in Global Health and Development, College of Public, Health, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hao Weng
- Division of Neonatology, Department of Pediatrics, Chang Gung, Memorial Hospital, Chang Gung University College of Medicine, Taipei, Taiwwan
| | - Chun-Yuh Yang
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institute, Miaoli, Taiwan
| |
Collapse
|
35
|
Su Y, D'Arcy C, Meng X. Research Review: Developmental origins of depression - a systematic review and meta-analysis. J Child Psychol Psychiatry 2021; 62:1050-1066. [PMID: 33259072 PMCID: PMC8451906 DOI: 10.1111/jcpp.13358] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Many observational studies have found a direct association between adverse in utero, perinatal and postnatal exposures and offspring's depression. These findings are consistent with the 'developmental origins of disease hypothesis'. But no review has comprehensively summarized the roles of these exposures. This review aims to systematically scrutinize the strength of associations between individual prenatal, perinatal, and postnatal exposures and subsequent depression in offspring. METHODS We conducted a systematic review and meta-analysis to synthesize the literature from the EMBASE, HealthStar, PsychoInfo, and Medline databases since their inception to September 1, 2019. English language articles on population-based prospective cohort studies examining the associations between in utero, perinatal, and postnatal exposures and offspring's depression were searched. Random-effects models were used to calculate pooled estimates, and heterogeneity and sensitivity tests were conducted to explore potential confounders in the relationships of depression and early-life factors. Qualitative analysis was also conducted. RESULTS Sixty-four prospective cohort studies with 28 exposures studied in the relationships to offspring's depression met inclusion criteria. The meta-analysis found 12 prenatal, perinatal, and postnatal characteristics were associated with an increased risk of depression in offspring: low birth weight, premature birth, small gestational age, maternal education, socioeconomic status, having younger parents (<20 years), having older parents (≥35 years), maternal smoking, paternal smoking, maternal stress, maternal anxiety, and prenatal depression. Heterogeneity and sensitivity tests supported the findings. By and large, study characteristics had no effects on conclusions. Qualitative analyses generally supported the findings of meta-analysis and reported on additional risk factors. CONCLUSIONS This review provides a robust and comprehensive overview of the lasting psychopathological effects of in utero, perinatal, and postnatal exposures. The findings highlight the need for clinical and public health interventions focusing on the identified risk factors. Large prospective cohort studies are warranted to investigate the combined effects of multiple co-existing early-life exposures.
Collapse
Affiliation(s)
- Yingying Su
- School of Public HealthUniversity of SaskatchewanSaskatoonSKCanada
| | - Carl D'Arcy
- School of Public HealthUniversity of SaskatchewanSaskatoonSKCanada
- Department of PsychiatryCollege of MedicineUniversity of SaskatchewanSaskatoonSKCanada
| | - Xiangfei Meng
- Department of PsychiatryMcGill UniversityMontrealQCCanada
- Douglas Research CentreMontrealQCCanada
| |
Collapse
|
36
|
Li D, Ji S, Guo Y, Sang N. Ambient NO 2 exposure sex-specifically impairs myelin and contributes to anxiety and depression-like behaviors of C57BL/6J mice. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125836. [PMID: 34492793 DOI: 10.1016/j.jhazmat.2021.125836] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/27/2021] [Accepted: 04/04/2021] [Indexed: 06/13/2023]
Abstract
NO2 is a common indoor and outdoor air pollutant, but its health effects are still controversial. Beside respiratory injury, more epidemiological studies show that inhalation of NO2 is associated with an increased risk of anxiety and depression. However, the causal relationship at the molecular level remains unclear. In the present study, we exposed adult C57BL/6J mice to NO2 (2.5 ppm, 5 h/day) for four weeks, and found anxiety and depression-like behaviors in male mice, but not female mice. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment indicated that differentially expressed genes (DEGs) in the prefrontal cortex and cerebellum were closely associated with signal transduction pathways, such as axon guidance. Importantly, NO2 inhalation damaged the ultrastructure of myelin sheath and caused the abnormal expression of related genes in males, which partially contributed to mental disorders. We also found that prolactin (Prl), through its anti-inflammatory activity and remyelination, might play a major role in the sex-specific neurobehavioral disorder in male mice caused by NO2 exposure.
Collapse
Affiliation(s)
- Dan Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Shaoyang Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Yuqiong Guo
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| |
Collapse
|
37
|
Zhu Z, Zhang Y, Wang X, Yong D. WITHDRAWN: Analysis of distribution characteristics of PM2.5 and health risk appraisal in northeast china through the geographically weighted regression model. Work 2021:WOR205373. [PMID: 34308888 DOI: 10.3233/wor-205373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ahead of Print article withdrawn by publisher.
Collapse
Affiliation(s)
- Zhe Zhu
- Zhang Yanting School of Marxism, Jilin University, Changchun, China
| | - Yanting Zhang
- Zhang Yanting School of Marxism, Jilin University, Changchun, China
| | - Xi Wang
- Institute of Economics, Jilin Academy of Social Sciences, Changchun, China
| | - David Yong
- Business Administration, Oakland University, Rochester MI, USA
| |
Collapse
|
38
|
Niemeier-Walsh C, Ryan PH, Meller J, Ollberding NJ, Adhikari A, Reponen T. Exposure to traffic-related air pollution and bacterial diversity in the lower respiratory tract of children. PLoS One 2021; 16:e0244341. [PMID: 34166366 PMCID: PMC8224880 DOI: 10.1371/journal.pone.0244341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Exposure to particulate matter has been shown to increase the adhesion of bacteria to human airway epithelial cells. However, the impact of traffic-related air pollution (TRAP) on the respiratory microbiome is unknown. METHODS Forty children were recruited through the Cincinnati Childhood Allergy and Air Pollution Study, a longitudinal cohort followed from birth through early adolescence. Saliva and induced sputum were collected at age 14 years. Exposure to TRAP was characterized from birth through the time of sample collection using a previously validated land-use regression model. Sequencing of the bacterial 16S and ITS fungal rRNA genes was performed on sputum and saliva samples. The relative abundance of bacterial taxa and diversity indices were compared in children with exposure to high and low TRAP. We also used multiple linear regression to assess the effect of TRAP exposure, gender, asthma status, and socioeconomic status on the alpha diversity of bacteria in sputum. RESULTS We observed higher bacterial alpha diversity indices in sputum than in saliva. The diversity indices for bacteria were greater in the high TRAP exposure group than the low exposure group. These differences remained after adjusting for asthma status, gender, and mother's education. No differences were observed in the fungal microbiome between TRAP exposure groups. CONCLUSION Our findings indicate that exposure to TRAP in early childhood and adolescence may be associated with greater bacterial diversity in the lower respiratory tract. Asthma status does not appear to confound the observed differences in diversity. These results demonstrate that there may be a TRAP-exposure related change in the lower respiratory microbiota that is independent of asthma status.
Collapse
Affiliation(s)
- Christine Niemeier-Walsh
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, United States of America
| | - Patrick H. Ryan
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, United States of America
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States of America
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Jaroslaw Meller
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, United States of America
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States of America
| | - Nicholas J. Ollberding
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States of America
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States of America
| | - Atin Adhikari
- Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, Georgia, United States of America
| | - Tiina Reponen
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, United States of America
| |
Collapse
|
39
|
Latham RM, Kieling C, Arseneault L, Rocha TBM, Beddows A, Beevers SD, Danese A, De Oliveira K, Kohrt BA, Moffitt TE, Mondelli V, Newbury JB, Reuben A, Fisher HL. Childhood exposure to ambient air pollution and predicting individual risk of depression onset in UK adolescents. J Psychiatr Res 2021; 138:60-67. [PMID: 33831678 PMCID: PMC8412033 DOI: 10.1016/j.jpsychires.2021.03.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
Knowledge about early risk factors for major depressive disorder (MDD) is critical to identify those who are at high risk. A multivariable model to predict adolescents' individual risk of future MDD has recently been developed however its performance in a UK sample was far from perfect. Given the potential role of air pollution in the aetiology of depression, we investigate whether including childhood exposure to air pollution as an additional predictor in the risk prediction model improves the identification of UK adolescents who are at greatest risk for developing MDD. We used data from the Environmental Risk (E-Risk) Longitudinal Twin Study, a nationally representative UK birth cohort of 2232 children followed to age 18 with 93% retention. Annual exposure to four pollutants - nitrogen dioxide (NO2), nitrogen oxides (NOX), particulate matter <2.5 μm (PM2.5) and <10 μm (PM10) - were estimated at address-level when children were aged 10. MDD was assessed via interviews at age 18. The risk of developing MDD was elevated most for participants with the highest (top quartile) level of annual exposure to NOX (adjusted OR = 1.43, 95% CI = 0.96-2.13) and PM2.5 (adjusted OR = 1.35, 95% CI = 0.95-1.92). The separate inclusion of these ambient pollution estimates into the risk prediction model improved model specificity but reduced model sensitivity - resulting in minimal net improvement in model performance. Findings indicate a potential role for childhood ambient air pollution exposure in the development of adolescent MDD but suggest that inclusion of risk factors other than this may be important for improving the performance of the risk prediction model.
Collapse
Affiliation(s)
- Rachel M. Latham
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK.,ESRC Centre for Society and Mental Health, King’s College London, London, UK
| | - Christian Kieling
- Department of Psychiatry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.,Child and Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Louise Arseneault
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK.,ESRC Centre for Society and Mental Health, King’s College London, London, UK
| | - Thiago Botter-Maio Rocha
- Department of Psychiatry, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.,Child and Adolescent Psychiatry Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Andrew Beddows
- Environmental Research Group, School of Public Health, Imperial College London, London, UK
| | - Sean D. Beevers
- Environmental Research Group, School of Public Health, Imperial College London, London, UK
| | - Andrea Danese
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK.,King’s College London, Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, London, UK.,National and Specialist CAMHS Trauma, Anxiety, and Depression Clinic, South London and Maudsley NHS Foundation Trust, London, UK
| | - Kathryn De Oliveira
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK
| | - Brandon A. Kohrt
- Division of Global Mental Health, George Washington University, Washington, DC, USA
| | - Terrie E. Moffitt
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK.,Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, USA.,Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA.,Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, USA.,PROMENTA, Department of Psychology, University of Oslo, Norway
| | - Valeria Mondelli
- King’s College London, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Joanne B. Newbury
- Bristol Medical School: Population and Health Sciences, University of Bristol, Bristol, UK
| | - Aaron Reuben
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, USA
| | - Helen L. Fisher
- King’s College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, UK.,ESRC Centre for Society and Mental Health, King’s College London, London, UK.,Correspondence to: Dr Helen L. Fisher, SGDP Centre, Institute of Psychiatry, Psychology, & Neuroscience, 16 De Crespigny Park, London, SE5 8AF, UK. Tel: +44(0)2078485430.
| |
Collapse
|
40
|
Zhou YM, Fan YN, Yao CY, Xu C, Liu XL, Li X, Xie WJ, Chen Z, Jia XY, Xia TT, Li YF, Ji AL, Cai TJ. Association between short-term ambient air pollution and outpatient visits of anxiety: A hospital-based study in northwestern China. ENVIRONMENTAL RESEARCH 2021; 197:111071. [PMID: 33798515 DOI: 10.1016/j.envres.2021.111071] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 03/21/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Anxiety, a common and devastating mental disorder, has raised widespread interests. The impacts of air pollution on physical health are well known, whereas few studies have explored the association of atmospheric pollution, especially short-term air pollution exposure, with the risk of anxiety disorders. In addition, there are increasing concerns in emerging evidence supporting a possible etiological link. Therefore, our aim was to evaluate the relationship between short-term exposure to atmospheric pollutants and anxiety outpatient visits in Xi'an, a city of northwestern China and a metropolis with relatively heavy air pollution. We collected the data of both daily outpatient visits and daily air pollution (SO2, NO2, and PM10) between January 1, 2010 and January 31, 2016 (2222 days). To clarify the association between short-term ambient atmospheric pollution exposure and anxiety outpatient visits, an over-dispersed Poisson generalized additive model was applied by adjusting the day of the week and weather conditions (including temperature, humidity, sunlight hours, and rainfalls). Positive association between gaseous air pollutants (SO2 and NO2) and anxiety daily outpatient visits was observed. Moreover, the largest estimated values of both SO2 and NO2 were evidence at lag 03 (4-day moving average lag), with 10 μg/m3 increase corresponded to the increase of outpatient anxiety visits at 4.11% (95% CI: 2.15%, 6.06%) for SO2 and 3.97% (95% CI: 1.90%, 6.06%) for NO2. However, there was no differences in susceptibility to air pollutants between different genders as well as different ages. Taken together, short-term exposure to ambient air pollutants, especially gaseous air pollutants (NO2 and SO2), can be related to higher risk of anxiety outpatient visits.
Collapse
Affiliation(s)
- Yu-Meng Zhou
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Yan-Ni Fan
- Medical Record Room of Information Department, Second Affiliated Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710038, China.
| | - Chun-Yan Yao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Chen Xu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University (Fourth Military Medical University), Xi'an, 710032, China.
| | - Xiao-Ling Liu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Xiang Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; Department of Plastic & Cosmetic Surgery, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, 400042, China.
| | - Wei-Jia Xie
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Zheng Chen
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Xiao-Yue Jia
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Ting-Ting Xia
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Ya-Fei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Ai-Ling Ji
- Department of Preventive Medicine & Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China.
| | - Tong-Jian Cai
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
41
|
Pelgrims I, Devleesschauwer B, Guyot M, Keune H, Nawrot TS, Remmen R, Saenen ND, Trabelsi S, Thomas I, Aerts R, De Clercq EM. Association between urban environment and mental health in Brussels, Belgium. BMC Public Health 2021; 21:635. [PMID: 33794817 PMCID: PMC8015067 DOI: 10.1186/s12889-021-10557-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Background Mental health disorders appear as a growing problem in urban areas. While common mental health disorders are generally linked to demographic and socioeconomic factors, little is known about the interaction with the urban environment. With growing urbanization, more and more people are exposed to environmental stressors potentially contributing to increased stress and impairing mental health. It is therefore important to identify features of the urban environment that affect the mental health of city dwellers. The aim of this study was to define associations of combined long-term exposure to air pollution, noise, surrounding green at different scales, and building morphology with several dimensions of mental health in Brussels. Methods Research focuses on the inhabitants of the Brussels Capital Region older than 15 years. The epidemiological study was carried out based on the linkage of data from the national health interview surveys (2008 and 2013) and specifically developed indicators describing each participant’s surroundings in terms of air quality, noise, surrounding green, and building morphology. These data are based on the geographical coordinates of the participant’s residence and processed using Geographical Information Systems (GIS). Mental health status was approached through several validated indicators: the Symptom Checklist-90-R subscales for depressive, anxiety and sleeping disorders and the 12-Item General Health Questionnaire for general well-being. For each mental health outcome, single and multi-exposure models were performed through multivariate logistic regressions. Results Our results suggest that traffic-related air pollution (black carbon, NO2, PM10) exposure was positively associated with higher odds of depressive disorders. No association between green surrounding, noise, building morphology and mental health could be demonstrated. Conclusions These findings have important implications because most of the Brussel’s population resides in areas where particulate matters concentrations are above the World Health Organization guidelines. This suggests that policies aiming to reduce traffic related-air pollution could also reduce the burden of depressive disorders in Brussels. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-021-10557-7.
Collapse
Affiliation(s)
- Ingrid Pelgrims
- Risk and Health Impact Assessment, Sciensano, Rue Juliette Wytsman 14, BE-1050, Brussels, Belgium. .,Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281, S9, BE-9000, Ghent, Belgium. .,Epidemiology and Public Health, Sciensano, Rue Juliette Wytsman 14, BE-1050, Brussels, Belgium.
| | - Brecht Devleesschauwer
- Epidemiology and Public Health, Sciensano, Rue Juliette Wytsman 14, BE-1050, Brussels, Belgium.,Department of Veterinary Public Health and Food Safety, Ghent University, Salisburylaan 133, Hoogbouw, BE-9820, Merelbeke, Belgium
| | - Madeleine Guyot
- Louvain Institute of Data Analysis and Modelling in Economics and Statistics, UCLouvain, Voie du Roman Pays, 34 bte L1.03.01, BE-1348, Louvain-La-Neuve, Belgium
| | - Hans Keune
- Nature and Society, Own-Capital Research Institute for Nature and Forest (EV-INBO), Vlaams Administratief Centrum Herman Teirlinckgebouw, Havenlaan 88 bus 73, BE-1000, Brussels, Belgium.,Centre of General Practice, University of Antwerp, Doornstraat 331, BE-2610, Antwerp, Belgium
| | - Tim S Nawrot
- Center for Environmental Sciences, University of Hasselt, Agoralaan D, BE-3590, Hasselt, Belgium.,Center for Environment and Sciences, Department of Public Health and Primary Care, University of Leuven (KU Leuven), Herestraat 49-706, BE-3000, Leuven, Belgium
| | - Roy Remmen
- Centre of General Practice, University of Antwerp, Doornstraat 331, BE-2610, Antwerp, Belgium
| | - Nelly D Saenen
- Center for Environmental Sciences, University of Hasselt, Agoralaan D, BE-3590, Hasselt, Belgium
| | - Sonia Trabelsi
- Louvain Institute of Data Analysis and Modelling in Economics and Statistics, UCLouvain, Voie du Roman Pays, 34 bte L1.03.01, BE-1348, Louvain-La-Neuve, Belgium
| | - Isabelle Thomas
- Louvain Institute of Data Analysis and Modelling in Economics and Statistics, UCLouvain, Voie du Roman Pays, 34 bte L1.03.01, BE-1348, Louvain-La-Neuve, Belgium.,Fund of scientific research, FNRS, Brussels, Belgium
| | - Raf Aerts
- Risk and Health Impact Assessment, Sciensano, Rue Juliette Wytsman 14, BE-1050, Brussels, Belgium.,Center for Environmental Sciences, University of Hasselt, Agoralaan D, BE-3590, Hasselt, Belgium.,Division Ecology, Evolution and Biodiversity Conservation, University of Leuven (KU Leuven), Kasteelpark Arenberg 31-2435, BE-3001, Leuven, Belgium
| | - Eva M De Clercq
- Risk and Health Impact Assessment, Sciensano, Rue Juliette Wytsman 14, BE-1050, Brussels, Belgium
| |
Collapse
|
42
|
Hartley K, Perazzo J, Brokamp C, Gillespie GL, Cecil KM, LeMasters G, Yolton K, Ryan P. Residential surrounding greenness and self-reported symptoms of anxiety and depression in adolescents. ENVIRONMENTAL RESEARCH 2021; 194:110628. [PMID: 33345894 PMCID: PMC9933414 DOI: 10.1016/j.envres.2020.110628] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Evidence on the relationship between exposure to greenness and adolescent mental health is limited. The purpose of this study was to examine the association between greenness throughout childhood and mental health at age 12 years. METHODS We assessed greenness using the satellite-based measure of Normalized Difference Vegetation Index (NDVI) within 200m, 400m, and 800m of home address at birth, age 12 years, and across childhood (averaged for each year from birth to age 12) among the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS) cohort. Self-reported symptoms of anxiety and depression were assessed at age 12 years using the Spence Children's Anxiety Scale (SCAS) and Children's Depression Inventory 2 (CDI 2), respectively. Associations were estimated using linear regression, adjusting for covariates including traffic-related air pollution, neurological hazard exposure, blood lead level, household income, and community deprivation. RESULTS In adjusted models, NDVI was largely not associated with self-reported anxiety and depression symptoms, except for the SCAS separation anxiety subscale at 400m and 800m (0.1 unit increase mean NDVI 400m: β = -0.97, 95% CI: -1.86, -0.07; 800m: β = -1.33, 95% CI: -2.32, -0.34). CONCLUSION While we found no direct relationship between greenness and overall symptoms of anxiety and depression in adolescents upon adjustment for relevant covariates at the 200m distance, greenness may lesson symptoms of separation anxiety within 400m and 800m distance from the home address at age 12 years. Future research should examine mechanisms for these relationships at the community- and individual-level.
Collapse
Affiliation(s)
- Kim Hartley
- University of Cincinnati, College of Nursing, Cincinnati, OH, USA; Cincinnati Children's Hospital Medical Center, Division of General and Community Pediatrics, Cincinnati, OH, USA.
| | - Joseph Perazzo
- University of Cincinnati, College of Nursing, Cincinnati, OH, USA.
| | - Cole Brokamp
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH, USA; Cincinnati Children's Hospital Medical Center, Division of Biostatistics and Epidemiology, Cincinnati, OH, USA.
| | | | - Kim M Cecil
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH, USA; Cincinnati Children's Hospital Medical Center, Department of Radiology, Cincinnati, OH, USA.
| | - Grace LeMasters
- University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, USA.
| | - Kimberly Yolton
- Cincinnati Children's Hospital Medical Center, Division of General and Community Pediatrics, Cincinnati, OH, USA; University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH, USA.
| | - Patrick Ryan
- University of Cincinnati, College of Medicine, Department of Pediatrics, Cincinnati, OH, USA; Cincinnati Children's Hospital Medical Center, Division of Biostatistics and Epidemiology, Cincinnati, OH, USA; University of Cincinnati, College of Medicine, Department of Environmental and Public Health Sciences, Cincinnati, OH, USA.
| |
Collapse
|
43
|
Sharma A, Kumar P. Quantification of air pollution exposure to in-pram babies and mitigation strategies. ENVIRONMENT INTERNATIONAL 2020; 139:105671. [PMID: 32278197 DOI: 10.1016/j.envint.2020.105671] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/09/2020] [Accepted: 03/16/2020] [Indexed: 05/02/2023]
Abstract
Young children are particularly vulnerable to air pollution exposure during their early childhood development, yet research on exposure to in-pram babies in different types of single/double prams is limited. This work aims to mimick their exposure to multiple air pollutants - particulate matter ≤10 µm in aerodynamic diameter (PM10), ≤2.5 µm (PM2.5; fine particles), ≤1 µm (PM1), ≤0.10 µm (measured as particle number concentration, PNC) - in three different types of prams (single pram facing the road; single pram facing parents; double pram facing the road). We also assessed the differences in exposure concentrations between typical adult and in-pram baby breathing height via simultaneous measurements besides assessing their physico-chemical properties (morphology and elemental composition). In addition, we analysed the impact of pram covers in mitigating in-pram exposure concentrations of selected pollutants. We carried out a total of 89 single runs, repeating on a 2.1 km long pre-defined route between an origin-destination pair (the University of Surrey to a local school) during the morning (08:00-10:00 h; local time) and afternoon (15:00-17:00 h) hours. These run simulated morning drop-off and afternoon pick-off times of school children. Overall, the experimental runs took about 66 h and covered the total length of 145 km. Substantial variability is observed in measured concentrations of different pollutants within each run (e.g., up to 290-times for PNC) and between different runs performed during different times of the day (e.g., ~62% variability in average PNC; ~7% for PM1 and 8% for PM2.5 during morning versus afternoon). The average in-pram concentration of fine particles was always higher by up to 44% compared with adult breathing height during both morning and afternoon runs. The comparison of exposure concentrations at two different sitting heights of double pram showed that PNC concentrations were higher by about 72% at the bottom seat compared to the top seat. Scanning electron microscope (SEM) analysis of PM2.5-10 revealed traces of brake wear, tyre wear and re-suspended dust minerals with the predominance of brake and tyre wear emissions at baby height compared with a relatively larger share of earth crust elements at adult height. For mitigation measures, pram covers reduced concentrations of small-sized particles by as much as 39% (fine particles) and 43% (coarse particles). Our results reinforce the need for mitigating exposures to in-pram babies, especially at urban pollution hotspots such as busy congested roads, bus stops, and traffic intersections.
Collapse
Affiliation(s)
- Ashish Sharma
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom.
| |
Collapse
|
44
|
Reduced gray matter volume and cortical thickness associated with traffic-related air pollution in a longitudinally studied pediatric cohort. PLoS One 2020; 15:e0228092. [PMID: 31978108 PMCID: PMC6980590 DOI: 10.1371/journal.pone.0228092] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/07/2020] [Indexed: 12/20/2022] Open
Abstract
Early life exposure to air pollution poses a significant risk to brain development from direct exposure to toxicants or via indirect mechanisms involving the circulatory, pulmonary or gastrointestinal systems. In children, exposure to traffic related air pollution has been associated with adverse effects on cognitive, behavioral and psychomotor development. We aimed to determine whether childhood exposure to traffic related air pollution is associated with regional differences in brain volume and cortical thickness among children enrolled in a longitudinal cohort study of traffic related air pollution and child health. We used magnetic resonance imaging to obtain anatomical brain images from a nested subset of 12 year old participants characterized with either high or low levels of traffic related air pollution exposure during their first year of life. We employed voxel-based morphometry to examine group differences in regional brain volume, and with separate analyses, changes in cortical thickness. Smaller regional gray matter volumes were determined in the left pre- and post-central gyri, the cerebellum, and inferior parietal lobe of participants in the high traffic related air pollution exposure group relative to participants with low exposure. Reduced cortical thickness was observed in participants with high exposure relative to those with low exposure, primarily in sensorimotor regions of the brain including the pre- and post-central gyri and the paracentral lobule, but also within the frontal and limbic regions. These results suggest that significant childhood exposure to traffic related air pollution is associated with structural alterations in brain.
Collapse
|
45
|
Barthelemy J, Sanchez K, Miller MR, Khreis H. New Opportunities to Mitigate the Burden of Disease Caused by Traffic Related Air Pollution: Antioxidant-Rich Diets and Supplements. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020630. [PMID: 31963738 PMCID: PMC7014349 DOI: 10.3390/ijerph17020630] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 12/13/2022]
Abstract
Air pollution is associated with premature mortality and a wide spectrum of diseases. Traffic-related air pollution (TRAP) is one of the most concerning sources of air pollution for human exposure and health. Until TRAP levels can be significantly reduced on a global scale, there is a need for effective shorter-term strategies to prevent the adverse health effects of TRAP. A growing number of studies suggest that increasing antioxidant intake, through diet or supplementation, may reduce this burden of disease. In this paper, we conducted a non-systematic literature review to assess the available evidence on antioxidant-rich diets and antioxidant supplements as a strategy to mitigate adverse health effects of TRAP in human subjects. We identified 11 studies that fit our inclusion criteria; 3 of which investigated antioxidant-rich diets and 8 of which investigated antioxidant supplements. Overall, we found consistent evidence that dietary intake of antioxidants from adherence to the Mediterranean diet and increased fruit and vegetable consumption is effective in mitigating adverse health effects associated with TRAP. In contrast, antioxidant supplements, including fish oil, olive oil, and vitamin C and E supplements, presented conflicting evidence. Further research is needed to determine why antioxidant supplementation has limited efficacy and whether this relates to effective dose, supplement formulation, timing of administration, or population being studied. There is also a need to better ascertain if susceptible populations, such as children, the elderly, asthmatics and occupational workers consistently exposed to TRAP, should be recommended to increase their antioxidant intake to reduce their burden of disease. Policymakers should consider increasing populations' antioxidant intake, through antioxidant-rich diets, as a relatively cheap and easy preventive measure to lower the burden of disease associated with TRAP.
Collapse
Affiliation(s)
- Jillian Barthelemy
- Center for Advancing Research in Transportation Emissions, Energy, and Health (CARTEEH), Texas A & M Transportation Institute (TTI), College Station, TX 77843, USA; (J.B.); (K.S.)
| | - Kristen Sanchez
- Center for Advancing Research in Transportation Emissions, Energy, and Health (CARTEEH), Texas A & M Transportation Institute (TTI), College Station, TX 77843, USA; (J.B.); (K.S.)
| | - Mark R. Miller
- Centre for Cardiovascular Science, Queens Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK;
| | - Haneen Khreis
- Center for Advancing Research in Transportation Emissions, Energy, and Health (CARTEEH), Texas A & M Transportation Institute (TTI), College Station, TX 77843, USA; (J.B.); (K.S.)
- Barcelona Institute for Global Health (ISGlobal), Centre for Research in Environmental Epidemiology (CREAL), 08003 Barcelona, Spain
- Correspondence:
| |
Collapse
|
46
|
Brunst KJ, Ryan PH, Altaye M, Yolton K, Maloney T, Beckwith T, LeMasters G, Cecil KM. Myo-inositol mediates the effects of traffic-related air pollution on generalized anxiety symptoms at age 12 years. ENVIRONMENTAL RESEARCH 2019; 175:71-78. [PMID: 31103795 PMCID: PMC6571158 DOI: 10.1016/j.envres.2019.05.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/23/2019] [Accepted: 05/09/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND Exposure to traffic-related air pollution (TRAP) has been linked to childhood anxiety symptoms. Neuroimaging in patients with anxiety disorders indicate altered neurochemistry. OBJECTIVES Evaluate the impact of TRAP on brain metabolism and its relation to childhood anxiety symptoms in the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS). METHODS Adolescents (n = 145) underwent magnetic resonance spectroscopy. Brain metabolites, including myo-inositol, N-acetylaspartate, creatine, choline, glutamate, glutamate plus glutamine, and glutathione were measured in the anterior cingulate cortex. Anxiety symptoms were assessed using the Spence Children's Anxiety Scale. TRAP exposure in early-life, averaged over childhood, and during the 12 months prior to imaging was estimated using a validated land use regression model. Associations between TRAP exposure, brain metabolism, and anxiety symptoms were estimated using linear regression and a bootstrapping approach for testing mediation by brain metabolite levels. RESULTS Recent exposure to high levels of TRAP was associated with significant increases in myo-inositol (β = 0.26; 95%CI 0.01, 0.51) compared to low TRAP exposure. Recent elevated TRAP exposure (β = 4.71; 95% CI 0.95, 8.45) and increased myo-inositol levels (β = 2.98; 95% CI 0.43, 5.52) were also significantly associated with increased generalized anxiety symptoms with 12% of the total effect between TRAP and generalized anxiety symptoms being mediated by myo-inositol levels. CONCLUSIONS This is the first study of children to utilize neuroimaging to link TRAP exposure, metabolite dysregulation in the brain, and generalized anxiety symptoms among otherwise healthy children. TRAP may elicit atypical excitatory neurotransmission and glial inflammatory responses leading to increased metabolite levels and subsequent anxiety symptoms.
Collapse
Affiliation(s)
- Kelly J Brunst
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, ML 0056, Cincinnati, OH, 45267, USA.
| | - Patrick H Ryan
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, ML 0056, Cincinnati, OH, 45267, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7035, Cincinnati, OH, 45229, USA
| | - Mekibib Altaye
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, ML 0056, Cincinnati, OH, 45267, USA; Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7035, Cincinnati, OH, 45229, USA
| | - Kimberly Yolton
- Division of General and Community Pediatrics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, 3333 Burnet Avenue, MLC, 5041, Cincinnati, OH, USA
| | - Thomas Maloney
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML 5033, Cincinnati, OH, 45229, USA
| | - Travis Beckwith
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML 5033, Cincinnati, OH, 45229, USA
| | - Grace LeMasters
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, ML 0056, Cincinnati, OH, 45267, USA
| | - Kim M Cecil
- Department of Environmental Health, University of Cincinnati, 160 Panzeca Way, ML 0056, Cincinnati, OH, 45267, USA; Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, ML 5033, Cincinnati, OH, 45229, USA
| |
Collapse
|