1
|
Xu TT, Li ZL, Li HX, Lin L, Hou R, Liu S, Li T, Zeng EY, Yu KF, Xu XR. Unraveling the toxicity mechanisms of nanoplastics with various surface modifications on Skeletonema costatum: Cellular and molecular perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176164. [PMID: 39260474 DOI: 10.1016/j.scitotenv.2024.176164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Nanoplastics are ubiquitous in marine environments, exhibiting high bioavailability and potential toxicity to marine organisms. However, the impacts of nanoplastics with various surface modifications on marine microalgae remain largely unexplored. This study explored the toxicity mechanisms of two nanoplastic types-polystyrene (PS) and polymethyl methacrylate (PMMA)-with distinct surface modifications on Skeletonema costatum at cellular and molecular levels. Results showed that nanoplastics significantly impaired the growth of microalgae, particularly PS-NH2, which caused the most pronounced growth inhibition, reaching 56.99 % after a 96-h exposure at 50 mg/L. Transcriptomic profiling revealed that nanoplastics disrupted the expression of genes predominantly involved in ribosome biogenesis, aminoacyl-tRNA biosynthesis, amino acid metabolism, and carbohydrate metabolism pathways. The integrated biochemical and transcriptomic evidence highlighted that PS-NH2 nanoplastics had the most adverse impact on microalgae, affecting fundamental pathways such as ribosome biogenesis, energy metabolism, photosynthesis, and oxidative stress. Our findings underscore the influence of surface-modified nanoplastics on algal growth and contribute new understanding to the toxicity mechanisms of these nanoplastics in marine microalgae, offering critical information for assessing the risks of emerging pollutants.
Collapse
Affiliation(s)
- Ting-Ting Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Liang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng-Xiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China.
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Tao Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Eddy Y Zeng
- Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ke-Fu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xiang-Rong Xu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Liu S, Junaid M, Wang C, Wang J. Eco-corona enhanced the interactive effects of nanoplastics and 6:2 chlorinated polyfluorinated ether sulfonate in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176223. [PMID: 39270866 DOI: 10.1016/j.scitotenv.2024.176223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Nanoplastics (NPs, < 1000 nm) interact with chemicals and biomolecules to produce chemical-/eco-corona, altering the environmental destiny, bioavailability, and toxicity of plastic particles and co-occurring chemicals. This study employs exogenous (humic acid, HA) and endogenous (bovine serum albumin, BSA) natural organic matter (NOM) to investigate the eco-corona formation on NPs and explore the interfacial effects of eco-corona and 6:2 chlorinated polyfluorinated ether sulfonate (Cl-PFESA, commonly named as F-53B) on zebrafish (Danio rerio) after 7 days of exposure. Our results indicated significant changes in growth and developmental indices of zebrafish embryos among all eco-corona groups (p < 0.05). Additionally, NFB (BSA-corona, 1 mg/L NPs + 200 μg/L F-53B + 10 mg/L BSA), NFH (HA-corona, 1 mg/L NPs + 200 μg/L F-53B + 10 mg/L HA) and NFHB (BSA-HA-corona, 1 mg/L NPs + 200 μg/L F-53B + 10 mg/L BSA + 10 mg/L HA) showed elevated bioaccumulation of NPs, ROS generation and induction of apoptosis. Transcriptomic analysis showed the number of differentially expressed genes (DEGs) in the following order: BSA-HA-corona (NFHB (2953) > HA-corona (NFH (2797) > NH (2721) > F-53B (2292) > NF (2033) > BSA-corona (NFB (687) > NB (450)), and no DEGs were detected in the single NP compared to the control. Further, the PI3K-AKT, immune system, endocrine system, digestive system, infectious diseases, and neurovegetative disease pathways showed sensitive responses in the NFH/NFHB groups compared to those in the NFB group. Therefore, the interactive effects of NPs and F-53B on zebrafish embryos were lower in the presence of BSA-corona than those in HA- or HA-BSA-coronas, indicating a relationship between the formation of diverse eco-coronas on NPs by multiple NOM and an associated increase in the interfacial toxicological effects of plastic particles and F-35B in freshwater organisms.
Collapse
Affiliation(s)
- Shulin Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Chong Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| |
Collapse
|
3
|
Liu L, Ma Y, Xu Y, Liu B, Wang C, Feng J, Li M, Yin H, Sun L, Li P, Li ZH. Mechanisms of eco-corona effects on micro(nano)plastics in marine medaka: Insights into translocation, immunity, and energy metabolism. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136236. [PMID: 39442301 DOI: 10.1016/j.jhazmat.2024.136236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/06/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Biomolecules, prevalent in the marine environment, can readily adsorb onto the surface of micro(nano)plastics (MNPs), forming eco-corona. This study indicated that 50 nm polystyrene nanoplastics (NP50), whether wrapped with eco-corona or not, can passively enter embryos, whereas 5 µm polystyrene microplastics (MP5) cannot. Additionally, translocation of MP5 from the intestine to the liver was observed in larvae, a process facilitated by eco-corona. Notably, eco-corona prolonged the retention time of MNPs in larvae. However, NP50 was more challenging to purify than MP5, irrespective of the presence of eco-corona. Interestingly, eco-corona degraded in the intestine during the uptake of MNPs, and the hard coronae that readily formed on NP50 may restrict the degradation rate. Although NP50 significantly disrupted larval microbiota homeostasis compared with MP5, eco-corona was more likely to exacerbate MP5's damage to the intestine and liver by disrupting microbiota homeostasis. Additionally, NP50 caused more significant damage to immunity and energy metabolism compared with MP5, regardless of the presence of eco-corona. This study revealed that previously overlooked biomolecules in the marine environment can enhance the translocation of MNPs and subsequently exacerbate their toxic effects, providing theoretical support for assessing the ecological risks of MNPs in real environments.
Collapse
Affiliation(s)
- Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Yuqing Ma
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Yanan Xu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Cunlong Wang
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Jianxue Feng
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Mingyang Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Haiyang Yin
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Le Sun
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
4
|
Debroy A, Saravanan JS, Nirmala MJ, Pulimi M, Mukherjee A. Algal EPS modifies the toxicity potential of the mixture of polystyrene nanoplastics (PSNPs) and triphenyl phosphate in freshwater microalgae Chlorella sp. CHEMOSPHERE 2024; 366:143471. [PMID: 39368491 DOI: 10.1016/j.chemosphere.2024.143471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
Triphenyl phosphate (TPP) and polystyrene nanoplastics (PSNPs) are prevalent freshwater contaminants obtained mainly from food packaging, textiles and electronics. Algal extracellular polymeric substances (EPS), a part of natural organic matter, may influence these pollutants' behaviour and toxicity. The presence of EPS can enhance the aggregation of TPP-PSNP mixtures, and reduce the bioavailability, and thus the toxicity potential. Understanding the mutual interactions between TPP, PSNPs, and EPS in the aquatic environment is a prerequisite for the environmental risk assessment of these chemicals. The study examines the toxicity effects of various surface-modified PSNPs (1 mg/L of plain, animated, and carboxylated) and TPP (0.05, 0.5, and 5 mg/L) in pristine and combined forms on freshwater microalgae, Chlorella sp., as a model organism. The physical-chemical interactions of algal EPS (10 mg/L) with PSNPs and TPP and their mixtures were studied. The toxicity potential of the PSNPs was estimated by quantifying growth inhibition, oxidative stress, antioxidant activity, and photosynthesis in the cells. TPP toxicity increased in the presence of the PSNPs, however the addition of algal EPS reduced the combined toxic effects. EPS plays a protective role by reducing oxidative stress and enhancing photosynthetic efficiency in the algal cells. The Pearson modeling analysis indicated a positive correlation between growth inhibition, and reactive oxygen species, malondialdehyde production. The cluster heatmap and correlation mapping revealed a strong correlation among the oxidative stress, growth inhibition, and photosynthetic parameters. The study clearly highlights the potential of EPS in mitigating the risk of mixed emerging pollutants in the aquatic environment.
Collapse
Affiliation(s)
- Abhrajit Debroy
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | - M Joyce Nirmala
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Mrudula Pulimi
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
5
|
Soliman MG, Martinez-Serra A, Antonello G, Dobricic M, Wilkins T, Serchi T, Fenoglio I, Monopoli MP. Understanding the role of biomolecular coronas in human exposure to nanomaterials. ENVIRONMENTAL SCIENCE. NANO 2024:d4en00488d. [PMID: 39263008 PMCID: PMC11382216 DOI: 10.1039/d4en00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/17/2024] [Indexed: 09/13/2024]
Abstract
Nanomaterials (NMs) are increasingly used in medical treatments, electronics, and food additives. However, nanosafety-the possible adverse effects of NMs on human health-is an area of active research. This review provides an overview of the influence of biomolecular coronas on NM transformation following various exposure routes. We discuss potential exposure pathways, including inhalation and ingestion, describing the physiology of exposure routes and emphasising the relevance of coronas in these environments. Additionally, we review other routes to NM exposure, such as synovial fluid, blood (translocation and injection), dermal and ocular exposure, as well as the dose and medium impact on NM interactions. We emphasize the need for an in-depth characterisation of coronas in different biological media, highlighting the need and opportunity to study lung and gastric fluids to understand NM behaviour and potential toxicity. Future research aims to predict better in vivo outcomes and address the complexities of NM interactions with biological systems.
Collapse
Affiliation(s)
- Mahmoud G Soliman
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
- Physics Department, Faculty of Science, Al-Azhar University Cairo Egypt
| | - Alberto Martinez-Serra
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| | - Giulia Antonello
- Department of Chemistry, University of Torino 10125 Torino Italy
| | - Marko Dobricic
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| | - Terence Wilkins
- School of Chemical & Process Innovation, University of Leeds Engineering Building Leeds LS2 9JT UK
| | - Tommaso Serchi
- Environmental Research and Innovation Department (Luxembourg Institute of Science and Technology) 41, Rue du Brill L4422 Belvaux GD Luxembourg
| | - Ivana Fenoglio
- Department of Chemistry, University of Torino 10125 Torino Italy
| | - Marco P Monopoli
- Chemistry Department, RCSI (Royal College of Surgeons in Ireland) 123 St Stephen Green Dublin 2 Ireland
| |
Collapse
|
6
|
Junaid M, Liu S, Yue Q, Wang J. Exacerbated interfacial impacts of nanoplastics and 6:2 chlorinated polyfluorinated ether sulfonate by natural organic matter in adult zebrafish: Evidence through histopathology, gut microbiota, and transcriptomic analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135038. [PMID: 38941840 DOI: 10.1016/j.jhazmat.2024.135038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Nanoplastics (NPs) interact with cooccurring chemicals and natural organic matter (NOM) in the environment, forming complexes that can change their bioavailability and interfacial toxicity in aquatic organisms. This study aims to elucidate the single and combined impacts of 21-day chronic exposure to low levels of polystyrene NPs (size 80 nm) at 1 mg/L and 6:2 chlorinated polyfluorinated ether sulfonate (Cl-PFAES or F53B) at 200 μg/L in the presence and absence of NOM (humic acid-HA and bovine serum albumin-BSA at 10 mg/L) in adult zebrafish (Danio rerio). Our findings through multiple bioassays, revealed that the mixture group (M), comprising of NPs, F53B, HA, and BSA, caused a higher level of toxicity compared to the single NPs (AN), single F53B (AF), and combined NPs+F53B (ANF) groups. The mixture exposure caused the highest level of vacuolization and nuclear condensation in hepatocytes, and most of the intestinal villi were fused and highly reduced in villi length and crypt depth. Further, the T-AOC levels were significantly lower (p < 0.05), while the MDA levels in the liver and intestine were significantly higher (p < 0.05) in the M group with downregulation of nfkbiaa, while upregulation of prkcda, csf1ra, and il1b apoptosis genes in the liver. Pairwise comparison of gut microbiota showed significantly higher (p < 0.05) abundances of various genera in the M group, including Gordonia, Methylobacterium, Tundrisphaera, GKS98, Pedomicrobium, Clostridium, Candidatus and Anaerobacillus, as well as higher abundance of genera including pathogenic strains, while control group showed higher abundance of probiotic genus ZOR0006 than exposed group (p < 0.01). The transcriptomic analysis revealed highest number of DEGs in the M group (2815), followed by the AN group (506) and ANF group (206) with the activation of relaxin signaling pathway-RSP (slc9a1, slc9a2) and AMP-activated protein kinase (AMPK) pathway (plin1), and suppression of the toll-like receptor (TLR) pathway (tlr4a, tlr2, tlr1), cytokine-cytokine receptor interaction (CCRI) pathway (tnfb, il21r1, il21, ifng1), and peroxisome proliferator-activated receptors (PPAR) pathway (pfkfb3). Overall, toxicity in the M group was higher, indicating that the HA and BSA elevated the interfacial impacts of NPs and F53B in adult zebrafish after chronic environmentally relevant exposure, implying the revisitation of the critical interaction of NOM with co-occurring chemicals and associated impacts.
Collapse
Affiliation(s)
- Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Shulin Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Qiang Yue
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| |
Collapse
|
7
|
Natarajan L, Jenifer MA, Mukherjee A. Influence of algal-extracellular polymeric substances (EPS) on the pristine and combined toxicity of TiO 2 NPs and PSNPs in Artemia salina: Eco-corona enhances the toxic effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116760. [PMID: 39029223 DOI: 10.1016/j.ecoenv.2024.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
The study on the influence of Natural Organic Matter (NOM) over the individual and combined effects of different nanomaterials on marine species is pertinent. The current study explores the role of Extracellular Polymeric Substances (EPS) in influencing the individual and combined toxic effects of polystyrene nanoplastics (PSNPs) viz. aminated (NH2-PSNPs), carboxylated (COOH-PSNPs), and plain PSNPs and TiO2 NPs in the marine crustacean, Artemia salina. A. salina was interacted with pristine PSNPs, pristine TiO2 NPs, EPS incubated PSNPs, EPS incubated TiO2 NPs, binary mixture of PSNPs and TiO2 NPs, and EPS adsorbed binary mixture of PSNPs and TiO2 NPs for 48 h. The present study proves that, when compared to the pristine toxicity of PSNPs and TiO2 NPs, the coexposure of TiO2 NPs with PSNPs resulted in increased toxicity. The adsorption of algal EPS on the NMs (both in their pristine and combined forms) significantly increased the toxic nature of the NMs against A. salina. It was observed that with an increase in the hydrodynamic diameter of the particles, the mortality, oxidative stress, and ingestion of the NMs by A. salina increased. The uptake of Ti by A. salina from 8 mg/L TiO2 NPs, EPS adsorbed 8 mg/L TiO2 NPs, 8 mg/L TiO2 NPs + NH2-PSNPs and the EPS adsorbed mixture of 8 mg/L TiO2 NPs, 8 mg/L TiO2 NPs + NH2-PSNPs was observed to be 0.043, 0.047, 0.186, and 0.307 mg/g of A. salina. The adsorption of algal EPS on the NMs (both in their pristine and combined forms) significantly increased the toxic nature of the NMs against A. salina. The major outcomes from the current study highlight the role of EPS in exacerbating the toxicity of NMs in marine crustaceans.
Collapse
Affiliation(s)
| | - M Annie Jenifer
- VIT School of Agricultural Innovations and Advanced Learning, VIT, Vellore, Tamil Nadu, India.
| | | |
Collapse
|
8
|
Barari F, Eydi Gabrabad M, Bonyadi Z. Recent progress on the toxic effects of microplastics on Chlorella sp. in aquatic environments. Heliyon 2024; 10:e32881. [PMID: 38975222 PMCID: PMC11226894 DOI: 10.1016/j.heliyon.2024.e32881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Microplastics (MPs) are emerging contaminants that have harmful effects on ecosystems. Microalgae are important primary producers in aquatic environments, providing nutrients for various organisms. These microorganisms may be affected by MPs. Therefore, it is important to investigate the toxicity aspects of different MPs on Chlorella species. It can be seen that the BG-11 culture medium was the most commonly used medium in 40 % of the studies for the growth of Chlorella sp. Chlorella sp. grows optimally at a temperature of 25 °C and a pH of 7. Most studies show that Chlorella sp. can grow in the range of 3000-6000 lux. Moreover, various techniques have been used to analyze the morphological properties of MPs in different studies. These techniques included scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and transmission electron microscopy (TEM), which were used in 65 %, 35 %, and 27 % of the studies, respectively. 53 % of the research has focused on the toxic effects of PS on Chlorella sp. Findings show that 41 % of the studies investigated MPs concentrations in the range of 10-100 mg/L, followed by 32 % of the studies in the range of 100-1000 mg/L. The studies found that MPs were used in a spherical shape in 45 % of the cases. The enzymes most affected by MPs were superoxide dismutase (SOD) and Malondialdehyde (MDA), accounting for 48 % of the studies each. Additionally, exposure to MPs increased the activity of enzymes such as SOD and MDA. In general, it can be concluded that MPs had a relatively high negative effect on the growth of Chlorella sp.
Collapse
Affiliation(s)
- Fateme Barari
- Student Research Committee, Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Eydi Gabrabad
- Student Research Committee, Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ziaeddin Bonyadi
- Department of Environmental Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Habumugisha T, Zhang Z, Uwizewe C, Yan C, Ndayishimiye JC, Rehman A, Zhang X. Toxicological review of micro- and nano-plastics in aquatic environments: Risks to ecosystems, food web dynamics and human health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116426. [PMID: 38718727 DOI: 10.1016/j.ecoenv.2024.116426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/11/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
The increase of micro- and nano-plastics (MNPs) in aquatic environments has become a significant concern due to their potential toxicological effects on ecosystems, food web dynamics, and human health. These plastic particles emerge from a range of sources, such as the breakdown of larger plastic waste, consumer products, and industrial outputs. This review provides a detailed report of the transmission and dangers of MNPs in aquatic ecosystems, environmental behavior, and interactions within aquatic food webs, emphasizing their toxic impact on marine life. It explores the relationship between particle size and toxicity, their distribution in different tissues, and the process of trophic transfer through the food web. MNPs, once consumed, can be found in various organs, including the digestive system, gills, and liver. Their consumption by lower trophic level organisms facilitates their progression up the food chain, potentially leading to bioaccumulation and biomagnification, thereby posing substantial risks to the health, reproduction, and behavior of aquatic species. This work also explores how MNPs, through their persistence and bioaccumulation, pose risks to aquatic biodiversity and disrupt trophic relationships. The review also addresses the implications of MNPs for human health, particularly through the consumption of contaminated seafood, highlighting the direct and indirect pathways through which humans are exposed to these pollutants. Furthermore, the review highlights the recommendations for future research directions, emphasizing the integration of ecological, toxicological, and human health studies to inform risk assessments and develop mitigation strategies to address the global challenge of plastic pollution in aquatic environments.
Collapse
Affiliation(s)
- Théogène Habumugisha
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Zixing Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Constance Uwizewe
- Key Laboratory of Physical Oceanography, Ocean University of China, Qingdao 266100, PR China
| | - Changzhou Yan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | | | - Abdul Rehman
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xian Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| |
Collapse
|
10
|
Khoshnamvand M, You D, Xie Y, Feng Y, Sultan M, Pei DS, Fu A. Alleviating binary toxicity of polystyrene nanoplastics and atrazine to Chlorella vulgaris through humic acid interaction: Long-term toxicity using environmentally relevant concentrations. CHEMOSPHERE 2024; 358:142111. [PMID: 38663677 DOI: 10.1016/j.chemosphere.2024.142111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/16/2024] [Accepted: 04/21/2024] [Indexed: 05/22/2024]
Abstract
In this study, microalgae Chlorella vulgaris (C. vulgaris) were simultaneously exposed to environmental concentrations of amino-functionalized polystyrene nanoplastics (PS-NH2; 0.05, 0.1, 0.2, 0.3 and 0.4 mg/L) and the world's second most used pesticide, the herbicide atrazine (ATZ; 10 μg/L), in the absence and presence of humic acid (HA; 1 mg/L) for 21 days. Due to the low concentrations of PS-NH2, the majority of them could not cause a significant difference in the end-points of biomass, chlorophylls a and b, total antioxidant, total protein, and superoxide dismutase and malondialdehyde compared to the control group (p > 0.05). On the other hand, by adding ATZ to the PS-NH2, all the mentioned end-point values showed a considerable difference from the control (p < 0.05). The exposure of PS-NH2+ATZ treatments to the HA could remarkably reduce their toxicity, additionally, HA was able to decrease the changes in the expression of genes related to oxidative stress (e.g., superoxide dismutase, glutathione reductase, and catalase) in the C. vulgaris in the most toxic treatment group (e.g., PS-NH2+ATZ). The synergistic toxicity of the PS-NH2+ATZ group could be due to their enhanced bioavailability for algal cells. Nevertheless, the toxicity alleviation in the PS-NH2+ATZ treatment group after the addition of HA could be due to the eco-corona formation, and changes in their zeta potential from positive to negative value, which would increase their electrostatic repulsion with the C. vulgaris cells, in such a way that HA also caused a decrease in the formation of C. vulgaris-NPs hetero-aggregates. This research underscores the complex interplay between PS-NH2, ATZ, and HA in aquatic environments and their collective impact on microalgal communities.
Collapse
Affiliation(s)
- Mehdi Khoshnamvand
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - Dongmei You
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - Yafang Xie
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - Yixiao Feng
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - Marriya Sultan
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| | - Ailing Fu
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
11
|
Khoshnamvand M, You D, Xie Y, Feng Y, Sultan M, Wei X, Li J, Fu A, Pei DS. Presence of humic acid in the environment holds promise as a potential mitigating factor for the joint toxicity of polystyrene nanoplastics and herbicide atrazine to Chlorella vulgaris: 96-H acute toxicity. CHEMOSPHERE 2024; 357:142061. [PMID: 38642775 DOI: 10.1016/j.chemosphere.2024.142061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Increasing amounts of amino-functionalized polystyrene nanoplastics (PS-NH2) are entering aquatic ecosystems, raising concerns. Hence, this study investigated 96-h acute toxicity of PS-NH2 and its combination with the pesticide atrazine (ATZ) in the absence/presence of humic acid (HA) on the microalgae Chlorella vulgaris (C. vulgaris). Results showed that both PS-NH2 and PS-NH2+ATZ reduced algal growth, photosynthetic pigments, protein content, and antioxidant capacity, while increasing enzymatic activities. Gene expression related to oxidative stress was altered in C. vulgaris exposed to these treatments. Morphological and intracellular changes were also observed. The combined toxicity of PS-NH2+ATZ demonstrated a synergistic effect, but the addition of environmentally relevant concentration of HA significantly alleviated its toxicity to C. vulgaris, indicating an antagonistic effect due to the emergence of an eco-corona, and entrapment and sedimentation of PS-NH2+ATZ particles by HA. This study firstly highlights the role of HA in mitigating the toxicity of PS-NH2 when combined with other harmful compounds, enhancing our understanding of HA's presence in the environment.
Collapse
Affiliation(s)
- Mehdi Khoshnamvand
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - Dongmei You
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - Yafang Xie
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - Yixiao Feng
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - Marriya Sultan
- Chongqing Institute of Green and Intelligent Technology, Chongqing School of University of Chinese Academy of Sciences, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xingyi Wei
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Jingli Li
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
| | - Ailing Fu
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China.
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
12
|
Brunelli A, Cazzagon V, Faraggiana E, Bettiol C, Picone M, Marcomini A, Badetti E. An overview on dispersion procedures and testing methods for the ecotoxicity testing of nanomaterials in the marine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171132. [PMID: 38395161 DOI: 10.1016/j.scitotenv.2024.171132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/26/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Considerable efforts have been devoted to develop or adapt existing guidelines and protocols, to obtain robust and reproducible results from (eco)toxicological assays on engineered nanomaterials (NMs). However, while many studies investigated adverse effects of NMs on freshwater species, less attention was posed to the marine environment, a major sink for these contaminants. This review discusses the procedures used to assess the ecotoxicity of NMs in the marine environment, focusing on the use of protocols and methods for preparing NMs dispersions and on the NMs physicochemical characterization in exposure media. To this purpose, a critical analysis of the literature since 2010 was carried out, based on the publication of the first NMs dispersion protocols. Among the 89 selected studies, only <5 % followed a standardized dispersion protocol combined with NMs characterization in ecotoxicological media, while more than half used a non-standardized dispersion method but performed NMs characterization. In the remaining studies, only partial or no information on dispersion procedures or on physicochemical characterization was provided. This literature review also highlighted that metal oxides NMs were the most studied (42 %), but with an increasing interest in last years towards nanoplastics (14 %) and multicomponent nanomaterials (MCNMs, 7 %), in line with the growing attention on these emerging contaminants. For all these NMs, primary producers as algae and bacteria were the most studied groups of marine species, in addition to mollusca, while organisms at higher trophic levels were less represented, likely due to challenges in evaluating adverse effects on more complex organisms. Thus, despite the wide use of NMs in different applications, standard dispersion protocols are not often used for ecotoxicity testing with marine species. However, the efforts to characterize NMs in ecotoxicological media recognize the importance of following conditions that are as standardized as possible to support the ecological hazard assessment of NMs.
Collapse
Affiliation(s)
- Andrea Brunelli
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy.
| | - Virginia Cazzagon
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Eleonora Faraggiana
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Cinzia Bettiol
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Marco Picone
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Elena Badetti
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy.
| |
Collapse
|
13
|
Angelescu DG. Molecular modeling of the carbohydrate corona formation on a polyvinyl chloride nanoparticle and its impact on the adhesion to lipid bilayers. J Chem Phys 2024; 160:144901. [PMID: 38591687 DOI: 10.1063/5.0198254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
The pervasive presence of nanoplastics (NPs) in the environment has gained increasing attention due to their accumulation in living organisms. These emerging contaminants inevitably interact with extracellular polymeric substances along respiratory or gastrointestinal tracts, and diverse organic coating on the surface of NPs, known as bio- or eco-corona, is formed. Although its impact on altering the NP properties and potential cell internalization has been extensively examined, studies on its role in NP partitioning in the cell membrane are elusive yet. In this work, molecular dynamics is used to investigate the formation of chitosan (CT) corona centered on a polyvinyl chloride (PVC) nanoparticle and the uptake of the resulting complex onto lipid membranes. Coarse-grained models compatible with the newly developed Martini 3.0 force field are implemented for the two polymers employing the atomistic properties as targets in the parameterization. The reliability of the coarse-grained polymer models is demonstrated by reproducing the structural properties of the PVC melt and of solvated CT strands, as well as by determining the conformation adopted by the latter at the NP surface. Results show that the spontaneous binding of CT chains of high and intermediate protonation degrees led to the formation of soft and hard corona that modulates the interaction of PVC core with model membranes. The structural changes of the corona adsorbed at the lipid-water interface enable a subsequent transfer of the NP to the center of the saturated lipid membranes and a complete or partial transition to a snorkel conformation depending on the hydrophilic/hydrophobic balance in the CT-PVC complex. Overall, the computational investigation of the coarse-grained model system provides implications for understanding how the eco-corona development influences the uptake and implicit toxicology of NPs.
Collapse
Affiliation(s)
- Daniel G Angelescu
- Romanian Academy, "Ilie Murgulescu" Institute of Physical Chemistry, Splaiul Independentei 202, 060021 Bucharest, Romania
| |
Collapse
|
14
|
Khoshnamvand M, Hamidian AH, Ashtiani S, Ali J, Pei DS. Combined toxic effects of polystyrene nanoplastics and lead on Chlorella vulgaris growth, membrane lipid peroxidation, antioxidant capacity, and morphological alterations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28620-28631. [PMID: 38561535 DOI: 10.1007/s11356-024-33084-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
In recent years, there has been a significant rise in the utilization of amino-functionalized polystyrene nanoplastics (PS-NH2). This surge in usage can be attributed to their exceptional characteristics, including a substantial specific surface area, high energy, and strong reactivity. These properties make them highly suitable for a wide range of industrial and medical applications. Nevertheless, there is a growing apprehension regarding their potential toxicity to aquatic organisms, particularly when considering the potential impact of heavy metals like lead (Pb) on the toxicity of PS-NH2. Herein, we examined the toxic effects of sole PS-NH2 (90 nm) at five concentrations (e.g., 0, 0.125, 0.25, 0.5, and 1 mg/L), as well as the simultaneous exposure of PS-NH2 and Pb2+ (using two environmental concentrations, e.g., 20 μg/L for Pb low (PbL) and 80 μg/L for Pb higher (PbH)) to the microalga Chlorella vulgaris. After a 96-h exposure, significant differences in chlorophyll a content and algal growth (biomass) were observed between the control group and other treatments (ANOVA, p < 0.05). The algae exposed to PS-NH2, PS-NH2 + PbL, and PS-NH2 + PbH treatment groups exhibited dose-dependent toxicity responses to chlorophyll a content and biomass. According to the Abbott toxicity model, the combined toxicity of treatment groups of PS-NH2 and PbL,H showed synergistic effects. The largest morphological changes such as C. vulgaris' size reduction and cellular aggregation were evident in the medium treated with elevated concentrations of both PS-NH2 and Pb2+. The toxicity of the treatment groups followed the sequence PS-NH2 < PS-NH2 + PbL < PS-NH2 + PbH. These results contribute novel insights into co-exposure toxicity to PS-NH2 and Pb2+ in algae communities.
Collapse
Affiliation(s)
- Mehdi Khoshnamvand
- College of Pharmaceutical Science, Southwest University, Chongqing, 400716, China
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Amir Hossein Hamidian
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| | - Saeed Ashtiani
- Department of Physical Chemistry, University of Chemistry and Technology, Technicka 5, Prague 6, Prague, 16628, Czech Republic
| | - Jafar Ali
- Key Lab of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, 130021, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
15
|
Debroy A, Roy N, Giri S, Pulimi M, Chandrasekaran N, Peijnenburg WJGM, Mukherjee A. EPS-corona formation on graphene family nanomaterials (GO, rGO and graphene) and its role in mitigating their toxic effects in the marine alga Chlorella sp. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:123015. [PMID: 38008250 DOI: 10.1016/j.envpol.2023.123015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/02/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
GFNs have widespread applications but can harm marine systems due to excessive use and improper disposal. Algae-secreted EPS can mitigate nanomaterial harm, but their impact on GFN toxicity is understudied. Hence, in the present study, we investigated the toxicity of three GFNs, graphene oxide (GO), reduced graphene oxide (rGO), and graphene, in pristine and EPS-adsorbed forms in the marine alga Chlorella sp. At an environmentally relevant concentration of 1 mgL-1, all three GFNs induced considerable oxidative stress and impeded growth and photosynthetic activity of the algae. The order of the toxic potential followed GO > rGO > graphene. The various facets of adsorption of EPS (1:1 mixture of loosely bound, and tightly bound EPS) on GFNs were investigated through microscopy, surface chemical analyses, fluorescence quenching studies, and isotherm and kinetics studies. Amongst the pristine GFNs treated with algal cells, GO was found to exert the maximum negative effects on algal growth. Upon adsorption of EPS over the GFNs, a significant decline in growth inhibition was observed compared to the respective pristine forms which strongly correlated with reduced oxidative stress and enhanced photosynthetic parameters in the cells. The formation of a layer of eco-corona after interaction of GFNs with EPS possibly caused a barrier effect which in turn diminished their toxic potential. The findings from the present investigation offer valuable insights into the environmental toxicity of GFNs and show that the eco-corona formation may lessen the risk posed by these materials in the marine environment.
Collapse
Affiliation(s)
- Abhrajit Debroy
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Namrata Roy
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Sayani Giri
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Mrudula Pulimi
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden, 2300, RA, the Netherlands; National Institute of Public Health and the Environment, Centre for the Safety of Substances and Products, Bilthoven, 3720, BA, the Netherlands
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
16
|
Li D, Liu Q, Zhao Y, Lv M, Tang X, Zhao Y. ROS meditated paralytic shellfish toxins production changes of Alexandrium tamarense caused by microplastic particles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122702. [PMID: 37821042 DOI: 10.1016/j.envpol.2023.122702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/22/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
A variety of studies have investigated the toxic effects of microplastics (MPs) on microalgae, but few of them considered their influence on dinoflagellate toxins production, which could cause significant ecological safety concerns in coastal areas. This research investigated the impacts of 5 μg L-1 and 5 mg L-1 polystyrene (PS) MPs on the changes of paralytic shellfish toxins (PSTs) production and their relationship with cellular oxidative stress of Alexandrium tamarense, a common harmful algal blooms causative dinoflagellate. The results showed elevation of reactive oxygen species (ROS) levels, activation of antioxidant system and overproduction of PSTs were positively correlated under PS MPs exposure (especially under 5 mg L-1 PS MPs), and the PSTs changes were eliminated by the ROS inhibitor. Further transcriptomic analysis revealed that ROS could enhance biosynthesis of glutamate, providing raw materials for PSTs precursor arginine, accompanied with enhanced acetyl-CoA and ATP production, finally leading to the overproduction of PSTs. Moreover, the oxidative intracellular environments might block the reduction process from STX to C1&C2, leading to the increase of STX and decrease of C1&C2 proportions. This work brings the first evidence that ROS could mediate PSTs production and compositions of Alexandrium under MPs exposure, with important scientific and ecological significance.
Collapse
Affiliation(s)
- Danrui Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Qian Liu
- Marine Science Research Institute of Shandong Province, Qingdao, 266104, China; Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Qingdao, 266104, China
| | - Yirong Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Mengchen Lv
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Xuexi Tang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Yan Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
17
|
Yuan X, Gao X, Liu C, Liang W, Xue H, Li Z, Jin H. Application of Nanomaterials in the Production of Biomolecules in Microalgae: A Review. Mar Drugs 2023; 21:594. [PMID: 37999418 PMCID: PMC10672109 DOI: 10.3390/md21110594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
Nanomaterials (NMs) are becoming more commonly used in microalgal biotechnology to empower the production of algal biomass and valuable metabolites, such as lipids, proteins, and exopolysaccharides. It provides an effective and promising supplement to the existing algal biotechnology. In this review, the potential for NMs to enhance microalgal growth by improving photosynthetic utilization efficiency and removing reactive oxygen species is first summarized. Then, their positive roles in accumulation, bioactivity modification, and extraction of valuable microalgal metabolites are presented. After the application of NMs in microalgae cultivation, the extracted metabolites, particularly exopolysaccharides, contain trace amounts of NM residues, and thus, the impact of these residues on the functional properties of the metabolites is also evaluated. Finally, the methods for removing NM residues from the extracted metabolites are summarized. This review provides insights into the application of nanotechnology for sustainable production of valuable metabolites in microalgae and will contribute useful information for ongoing and future practice.
Collapse
Affiliation(s)
- Xiaolong Yuan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (X.Y.); (C.L.); (W.L.); (H.X.); (Z.L.)
| | - Xiang Gao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (X.Y.); (C.L.); (W.L.); (H.X.); (Z.L.)
| | - Chang Liu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (X.Y.); (C.L.); (W.L.); (H.X.); (Z.L.)
| | - Wensheng Liang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (X.Y.); (C.L.); (W.L.); (H.X.); (Z.L.)
| | - Huidan Xue
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (X.Y.); (C.L.); (W.L.); (H.X.); (Z.L.)
| | - Zhengke Li
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China; (X.Y.); (C.L.); (W.L.); (H.X.); (Z.L.)
| | - Haojie Jin
- The College of Forestry, Beijing Forestry University, Beijing 100083, China;
| |
Collapse
|
18
|
Das S, Giri S, Jose SA, Pulimi M, Anand S, Chandrasekaran N, Rai PK, Mukherjee A. Comparative toxicity assessment of individual, binary and ternary mixtures of SiO 2, Fe 3O 4, and ZnO nanoparticles in freshwater microalgae, Scenedesmus obliquus: Exploring the role of dissolved ions. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109718. [PMID: 37591457 DOI: 10.1016/j.cbpc.2023.109718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Metal oxide nanoparticles (NPs) are considered among the most prevalent engineered nanomaterials. To have a deeper understanding of the mode of action of multiple metal oxide nanoparticles in mixtures, we have used a unicellular freshwater microalga Scenedesmus obliquus as a model organism. The toxicity of silicon dioxide (SiO2), iron oxide (Fe3O4), and zinc oxide (ZnO) NPs was studied individually as well as in their binary (SiO2 + Fe3O4, Fe3O4 + ZnO, and ZnO + SiO2) and ternary (SiO2 + Fe3O4 + ZnO) combinations. The effects of metal ions from ZnO and Fe3O4 were investigated as well. The results observed from the study, showed that a significant amount of toxicity was contributed by the dissolved ions in the mixtures of the nanoparticles. Decreases in the cell viability, ROS generation, lipid peroxidation, antioxidant enzyme activity, and photosynthetic efficiency were analyzed. Among all the individual particles, ZnO NPs showed the maximum effects and increased the toxicities of the binary mixtures. The binary and ternary mixtures of the NPs clearly showed increased toxic effects in comparison with the individual entities. However, the ternary combination had lesser toxic effects than the binary combination of Fe3O4 + ZnO. The decline in cell viability and photosynthetic efficiency were strongly correlated with various oxidative stress biomarkers emphasizing the crucial role of reactive oxygen species in inducing the toxic effects. The findings from this study highlight the importance of evaluating the combinatorial effects of various metal oxide NPs as part of a comprehensive ecotoxicity assessment in freshwater microalgae.
Collapse
Affiliation(s)
- Soupam Das
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sayani Giri
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shinta Ann Jose
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Mrudula Pulimi
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shalini Anand
- Centre for Fire, Explosives and Environment Safety, Timarpur, Delhi 110054, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Pramod Kumar Rai
- Centre for Fire, Explosives and Environment Safety, Timarpur, Delhi 110054, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
19
|
Zhu J, Cai Y, Wakisaka M, Yang Z, Yin Y, Fang W, Xu Y, Omura T, Yu R, Zheng ALT. Mitigation of oxidative stress damage caused by abiotic stress to improve biomass yield of microalgae: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165200. [PMID: 37400020 DOI: 10.1016/j.scitotenv.2023.165200] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023]
Abstract
Microalgae have been recognized as emerging cell factories due to the high value-added bio-products. However, the balance between algal growth and the accumulation of metabolites is always the main contradiction in algal biomass production. Hence, the security and effectiveness of regulating microalgal growth and metabolism simultaneously have drawn substantial attention. Since the correspondence between microalgal growth and reactive oxygen species (ROS) level has been confirmed, improving its growth under oxidative stress and promoting biomass accumulation under non-oxidative stress by exogenous mitigators is feasible. This paper first introduced ROS generation in microalgae and described the effects of different abiotic stresses on the physiological and biochemical status of microalgae from these aspects associated with growth, cell morphology and structure, and antioxidant system. Secondly, the role of exogenous mitigators with different mechanisms in alleviating abiotic stress was concluded. Finally, the possibility of exogenous antioxidants regulating microalgal growth and improving the accumulation of specific products under non-stress conditions was discussed.
Collapse
Affiliation(s)
- Jiangyu Zhu
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China; Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Fukuoka 808-0196, Japan.
| | - Yifei Cai
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| | - Minato Wakisaka
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Fukuoka 808-0196, Japan; Food Study Centre, Fukuoka Women's University, 1-1-1 Kasumigaoka, Fukuoka 813-8529, Japan.
| | - Zhengfei Yang
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| | - Yongqi Yin
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| | - Weiming Fang
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| | - Yan Xu
- School of Food Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou 225127, China
| | - Taku Omura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ruihui Yu
- School of International Trade, Anhui University of Finance and Economics, Bengbu 233030, China
| | - Alvin Lim Teik Zheng
- Faculty of Humanities, Management and Science, Universiti Putra Malaysia Bintulu Campus, Bintulu, Sarawak 97008, Malaysia
| |
Collapse
|
20
|
Liu Y, Yue T, Liu L, Zhang B, Feng H, Li S, Liu X, Dai Y, Zhao J. Molecular assembly of extracellular polymeric substances regulating aggregation of differently charged nanoplastics and subsequent interactions with bacterial membrane. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131825. [PMID: 37315410 DOI: 10.1016/j.jhazmat.2023.131825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
Extracellular polymeric substances (EPS) represent an interface between microbial cells and aquatic environment, where nanoplastics acquire coatings to alter their fate and toxicity. However, little is known about molecular interactions governing modification of nanoplastics at biological interfaces. Molecular dynamics simulations combining experiments were conducted to investigate assembly of EPS and its regulatory roles in the aggregation of differently charged nanoplastics and interactions with bacterial membrane. Driven by hydrophobic and electrostatic interactions, EPS formed micelle-like supramolecular structures with hydrophobic core and amphiphilic exterior. Different components, depending on their hydrophobicity and charge, were found to promote or suppress EPS assembly. Neutral and hydrophobic nanoplastics showed unbiased adsorption of EPS species, while cationic and anionic nanoplastics were distinct and attracted specific molecules of opposite charges. Compared with isolated EPS, assembled EPS concealed hydrophobic groups to be less adsorbed by nanoplastics. Aggregation of nanoplastics was alleviated by EPS due to electrostatic repulsion plus steric hindrance. ESP suppressed binding of cationic nanoplastics to the bacterial membrane through reducing the surface charge. Neutral and anionic nanoplastics showed weak membrane association, but their binding interactions were promoted by EPS. The structural details revealed here provided molecular level insights into modifications of nanoplastics at the eco-environment interface.
Collapse
Affiliation(s)
- Yingjie Liu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Lu Liu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Bowen Zhang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Hao Feng
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Shixin Li
- Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Xia Liu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yanhui Dai
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
21
|
Das S, Giri S, Wadhwa G, Pulimi M, Anand S, Chandrasekaran N, Johari SA, Rai PK, Mukherjee A. Comparative ecotoxicity of graphene, functionalized multi-walled CNTs, and their mixture in freshwater microalgae, Scenedesmus obliquus: analyzing the role of oxidative stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27367-6. [PMID: 37145361 DOI: 10.1007/s11356-023-27367-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Due to their remarkable properties, the applications of carbon-based nanomaterials (CNMs) such as graphene and functionalized multi-walled carbon nanotubes (f-MWCNTs) are increasing. These CNMs can enter the freshwater environment via numerous routes, potentially exposing various organisms. The current study assesses the effects of graphene, f-MWCNTs, and their binary mixture on the freshwater algal species Scenedesmus obliquus. The concentration for the individual materials was kept at 1 mg L-1, while graphene and f-MWCNTs were taken at 0.5 mg L-1 each for the combination. Both the CNMs caused a decrease in cell viability, esterase activity, and photosynthetic efficiency in the cells. The cytotoxic effects were accompanied by increased hydroxyl and superoxide radical generation, lipid peroxidation, antioxidant enzyme activity (catalase and superoxide dismutase), and mitochondrial membrane potential. Graphene was more toxic compared to f-MWCNTs. The binary mixture of the pollutants demonstrated a synergistic enhancement of the toxic potential. Oxidative stress generation played a critical role in toxicity responses, as noted by a strong correlation between the physiological parameters and the biomarkers of oxidative stress. The outcomes from this study emphasize the significance of considering the combined effects of various CNMs as part of a thorough evaluation of ecotoxicity in freshwater organisms.
Collapse
Affiliation(s)
- Soupam Das
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sayani Giri
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gaurav Wadhwa
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Mrudula Pulimi
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Shalini Anand
- Centre for Fire, Explosives and Environment Safety, Timarpur, Delhi, 110054, India
| | | | - Seyed Ali Johari
- Aquaculture Department, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
| | - Pramod Kumar Rai
- Centre for Fire, Explosives and Environment Safety, Timarpur, Delhi, 110054, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
22
|
Das S, Chandrasekaran N, Mukherjee A. Unmasking effects of masks: Microplastics released from disposable surgical face masks induce toxic effects in microalgae Scenedesmus obliquus and Chlorella sp. Comp Biochem Physiol C Toxicol Pharmacol 2023; 267:109587. [PMID: 36858140 DOI: 10.1016/j.cbpc.2023.109587] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/04/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023]
Abstract
During the COVID-19 pandemic billions of face masks were used since they became a necessity in everyone's lives. But these were not disposed properly and serve as one of the most significant sources of micro and nano plastics in the environment. The effects of mask leached plastics in aquatic biota remains largely unexplored. In this work, we quantified and characterized the released microplastics from the three layers of the mask. The outer layer of the face mask released more microplastics i.e., polypropylene than middle and inner layers. We investigated and compared the acute toxic effects of the released microplastics between Scenedesmus obliquus and Chlorella sp. The results showed a decrease in cell viability, photosynthetic yield, and electron transport rate in both the algal species. This was accompanied by an increase in oxidative stress markers such reactive oxygen species (ROS) and malondialdehyde (MDA) content. There was also a significant rise of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) in both the algal cells. Furthermore, morphological changes like cell aggregation and surface chemical changes in the algae were ascertained by optical microscopy and FTIR spectroscopy techniques, respectively. The tests confirmed that Scenedesmus obliquus was more sensitive than Chlorella sp. to the mask leachates. Our study clearly revealed serious environmental risk posed by the released microplastics from surgical face masks. Further work with other freshwater species is required to assess the environmental impacts of the mask leachates.
Collapse
Affiliation(s)
- Soupam Das
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore 632014, India.
| |
Collapse
|
23
|
Chen Y, Wang X, Sui Q, Chang G, Sun X, Zhu L, Chen B, Qu K, Xia B. Charge-dependent negative effects of polystyrene nanoplastics on Oryzias melastigma under ocean acidification conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161248. [PMID: 36587669 DOI: 10.1016/j.scitotenv.2022.161248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Marine nanoplastics (NPs) have attracted increasing global attentions because of their detrimental effects on marine environments. A co-existing major environmental concern is ocean acidification (OA). However, the effects of differentially charged NPs on marine organisms under OA conditions are poorly understood. We therefore investigated the effects of OA on the embryotoxicity of both positively and negatively charged polystyrene (PS) NPs to marine medaka (Oryzias melastigma). Positively charged PS-NH2 exhibited slighter aggregation under normal conditions and more aggregation under OA conditions than negatively charged PS-COOH. According to the integrated biomarker approach, OA reversed the toxicity of positively and negatively charged NPs towards embryos. Importantly, at environmental relevant concentrations, both types of PS-NPs could enter the embryos through chorionic pores and then transfer to the larvae. OA reversed the internalization of PS-NH2 and PS-COOH in O. melastigma. Overall, the reversed toxicity of PS-NH2 and PS-COOH associated with OA could be caused by the reversed bioavailability of NPs to O. melastigma, which was attributed to altered aggregation of the NPs in acidified seawater. This finding demonstrates the charge-dependent toxicity of NPs to marine fish and provides new insights into the potential hazard of NPs to marine environments under OA conditions that could be encountered in the near future.
Collapse
Affiliation(s)
- Yufei Chen
- Qingdao University of Science and Technology, Qingdao 266042, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xia Wang
- Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qi Sui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Guozhu Chang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xuemei Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Lin Zhu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Bijuan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Keming Qu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Bin Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
24
|
Xiong S, Cao X, Eggleston I, Chi Y, Li A, Liu X, Zhao J, Xing B. Role of extracellular polymeric substances in the aggregation and biological response of micro(nano)plastics with different functional groups and sizes. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130713. [PMID: 36630882 DOI: 10.1016/j.jhazmat.2022.130713] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
In this work, the effects of extracellular polymeric substances (EPS) on the aggregation and biological responses of different micro(nano)plastics (MNPs, <1000 µm) were investigated. EPS increased the colloidal stability of PS MPs in NaCl or CaCl2. For the three PS NPs (PS-NH2, PS-COOH, and PS-naked), EPS also enhanced their colloidal stabilities in the presence of NaCl. However, the effect of CaCl2 on the colloidal stabilities of PS NPs in the presence of EPS depended on their surface functional groups. In CaCl2, both Derjaguin-Landau-Verwey-Overbeek theory and molecular bridging explained the interaction between MNPs (both NPs and MPs) and EPS. Laser Direct Infrared and scanning electron microscope imaging showed that opalescent EPS corona formed on PS MPs via intermolecular-bridging by Ca2+, and the critical coagulation concentrations (70 mM in NaCl, 1.5 mM in CaCl2) in EPS were much lower than that for PS NPs (1000 mM for NaCl; 65 mM for CaCl2). PS-NH2 NPs showed the highest increase in the growth of bacteria (Bacillus subtilis), followed by PS MPs and PS-naked NPs, while PS-COOH NPs had no significant effect. Biological response of PS NPs was unaffected by EPS, while EPS further enhanced the positive effects of PS MPs on bacterial growth.
Collapse
Affiliation(s)
- Sicheng Xiong
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Ian Eggleston
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Yuantong Chi
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Aoze Li
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Xia Liu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jian Zhao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
25
|
Song W, Fu C, Fang Y, Wang Z, Li J, Zhang X, Bhatt K, Liu L, Wang N, Liu F, Zhu S. Single and combined toxicity assessment of primary or UV-aged microplastics and adsorbed organic pollutants on microalga Chlorella pyrenoidosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120925. [PMID: 36566677 DOI: 10.1016/j.envpol.2022.120925] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs), an emerging pollutant, have been increasingly raising concern due to the potential impacts on aquatic organisms. Moreover, the environmental aged MPs always exhibit different environmental behavior and interaction effect with organic pollutants from virgin MPs. In this work, the single and combined toxicity impact on Chlorella pyrenoidosa, a symbiont representative, has been investigated between MPs (e.g., polyamide microplastic (PA6), 75 μm) and organic pollutants (e.g., sulfamethoxazole (SMX) and dicamba (DCB)). Growth inhibition, chlorophyll accumulation, superoxide dismutase (SOD), malondialdehyde (MDA), and catalase (CAT) were investigated with the primary or UV-aged PA6. Above 0.5 g/L PA6 (primary or UV-aged) inhibited cell growth and chlorophyll accumulation after 96 h cultivation as compared with the control. Besides, the inhibition impacts have enhanced as the UV-aging time extending in the single PA6 systems. The algae growth inhibition rate after 96 h cultivation in both the system i.e., single (PA6: 6.9%) and combined (PA6-SMX: 14.2%, PA6-DCB: 14.9%) was slightly lower than that of exposing in organic pollutants alone (SMX: 23.9%, DCB: 25.0%), while the chl. b concentration in 60 days UV-aged PA6 combined with SMX (1.19 mg/L) or DCB (1.40 mg/L) systems were higher than in single SMX (1.04 mg/L) or DCB (1.33 mg/L) system. In addition, there were several differences of the cellular oxidative stress in the combined system of SMX and DCB. Specially, it was not noticeable of three enzymatic activities for SMX exposing in the presence of primary or UV-aged PA6. While SOD, CAT, and MDA activities was obviously increasing after exposing in PA6 and DCB combined system, indicating the significant synergistic effect on algae cells damage. This research verified the remarkable combined toxicity between UV-aged MPs and organic pollutants on microalgae.
Collapse
Affiliation(s)
- Wei Song
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Caixia Fu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| | - Yuning Fang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Zhuoyue Wang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Ji Li
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Xiaolei Zhang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China.
| | - Kalpana Bhatt
- Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Lu Liu
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Ningjie Wang
- School of Civil and Environmental Engineering, Shenzhen Key Laboratory of Water Resource Application and Environmental Pollution Control, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, PR China
| | - Fang Liu
- Beijing BHT Environmental Technology Co., Ltd. (BHT), Beijing, 100000, PR China
| | - Shunni Zhu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China
| |
Collapse
|
26
|
Liu S, Zhang X, Zeng K, He C, Huang Y, Xin G, Huang X. Insights into eco-corona formation and its role in the biological effects of nanomaterials from a molecular mechanisms perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159867. [PMID: 36334667 DOI: 10.1016/j.scitotenv.2022.159867] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Broad application of nanotechnology inevitably results in the release of nanomaterials (NMs) into the aquatic environment, and the negative effects of NMs on aquatic organisms have received much attention. Notably, in the natural aquatic environment, ubiquitous ecological macromolecules (i.e., natural organic matter, extracellular polymeric substances, proteins, and metabolites) can easily adsorb onto the surfaces of NMs and form an "eco-corona". As most NMs have such an eco-corona modification, the properties of their eco-corona significantly determine the fate and ecotoxicity of NMs in the natural aquatic ecosystem. Therefore, it is of great importance to understand the role of the eco-corona to evaluate the environmental risks NMs pose. However, studies on the mechanism of eco-corona formation and its resulting nanotoxicity on aquatic organisms, especially at molecular levels, are rare. This review systemically summarizes the mechanisms of eco-corona formation by several typical ecological macromolecules. In addition, the similarities and differences in nanotoxicity between pristine and corona-coated NMs to aquatic organisms at different trophic levels were compared. Finally, recent findings about potential mechanisms on how NM coronas act on aquatic organisms are discussed, including cellular internalization, oxidative stress, and genotoxicity. The literature shows that 1) the formation of an eco-corona on NMs and its biological effect highly depend on both the composition and conformation of macromolecules; 2) both feeding behavior and body size of aquatic organisms at different trophic levels result in different responses to corona-coated NMs; 3) genotoxicity can be used as a promising biological endpoint for evaluating the role of eco-coronas in natural waters. This review provides informative insight for a better understanding of the role of eco-corona plays in the nanotoxicity of NMs to aquatic organisms which will aid the safe use of NMs.
Collapse
Affiliation(s)
- Saibo Liu
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xinran Zhang
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Kai Zeng
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chuntao He
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Guorong Xin
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaochen Huang
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
27
|
Yuan X, Gao X, Zheng T, Wang J, Dong Y, Xue H. Carbon nanomaterial-treated cell cultures of Nostoc flagelliforme produce exopolysaccharides with ameliorative physio-chemical properties. Int J Biol Macromol 2023; 227:726-735. [PMID: 36565826 DOI: 10.1016/j.ijbiomac.2022.12.209] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
The feasibility and efficiency of carbon nanomaterials (CNMs) in algal biotechnology are less known. In this study, the influences of four CNMs, graphene (G), graphene oxide (GO), multiwalled carbon nanotube (MWCNT), and aminated multiwalled carbon nanotube (MWCNT-NH2), on cell growth and exopolysaccharide (EPS) production, as well as the physiochemical properties of EPS, were investigated in cell culture of Nostoc flagelliforme. A proper concentration (15 mg L-1) of four CNMs was chosen for use after a preliminary test. Upon GO treatment, the biomass was improved by 11.1 % and the EPS production was increased by 36.1 % on day 16 compared to the nontreated control. Four CNM treatments significantly improved cellular O2·- and H2O2 levels as well as superoxide dismutase and catalase activities. The monosaccharide compositions and functional groups of the EPSs were obviously altered by the CNM treatments. Particularly, the GO treatment-resulting EPS showed obviously improved flocculating ability, water absorption ability, and reactive oxygen species scavenging ability. In general, four CNMs exerted distinct influences on the production and physio-chemical property alteration of the EPS in N. flagelliforme culture. This work expands our understanding of the application of CNMs in the induced production and functional modification of polysaccharides during algal cultivation.
Collapse
Affiliation(s)
- Xiaolong Yuan
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi Province, China
| | - Xiang Gao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi Province, China.
| | - Tao Zheng
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi Province, China
| | - Jing Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi Province, China
| | - Yibei Dong
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi Province, China
| | - Huidan Xue
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, Shaanxi Province, China
| |
Collapse
|
28
|
Yu Y, Dai W, Luan Y. Bio- and eco-corona related to plants: Understanding the formation and biological effects of plant protein coatings on nanoparticles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120784. [PMID: 36462678 DOI: 10.1016/j.envpol.2022.120784] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/20/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The thriving nano-enabled agriculture facilitates the interaction of nanomaterials with plants. Recently, these interactions and their biological effects are receiving increasing attention. Upon entering plants via leaves, roots, stems, and other organs, nanoparticles adsorb numerous biomolecules inside plants and form bio-corona. In addition, nanoparticles that enter plants through roots may have formed eco-corona with root exudates in the rhizosphere environment before contacting with plant exogenous proteins. The most significant biological effects of plant protein corona include changes in protein structure and function, as well as changes in nanoparticle toxicity and targeting ability. However, the mechanisms, particularly how protein corona affects plant protein function, plant development and growth, and rhizosphere environment properties, require further investigation. Our review summarizes the current understanding of the formation and biological effects of nanoparticle-plant protein corona and provides an outlook on future research.
Collapse
Affiliation(s)
- Yanni Yu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Wei Dai
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China
| | - Yaning Luan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
29
|
Senousy HH, Khairy HM, El-Sayed HS, Sallam ER, El-Sheikh MA, Elshobary ME. Interactive adverse effects of low-density polyethylene microplastics on marine microalga Chaetoceros calcitrans. CHEMOSPHERE 2023; 311:137182. [PMID: 36356803 DOI: 10.1016/j.chemosphere.2022.137182] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/22/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Low-density polyethylene (LDPE) is broadly utilized worldwide, increasing more dramatically during the COVID-19 pandemic, and the majority ends up in the aquatic environment as microplastics. The influence of polyethylene microplastics (LDPE-MPs) on aquatic ecosystems still needs further investigation, especially on microalgae as typical organisms represented in all aquatic systems and at the base of the trophic chain. Thereby, the biological and toxicity impacts of LDPE-MPs on Chaetoceros calcitrans were examined in this work. The results revealed that LDPE-MPs had a concentration-dependent adverse effect on the growth and performance of C. calcitrans. LDPE-MPs contributed the maximum inhibition rates of 85%, 51.3%, 21.49% and 16.13% on algal growth chlorophyll content, φPSII and Fv/Fm, respectively. The total protein content, superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) activities were significantly increased at 25 mg L-1 LDPE-MPs by 1.37, 3.52, 2.75 and 1.84 folds higher than those of the controls to sustain the adverse effects of LDPE-MPs. Extracellular polymeric substance (EPS) and monosaccharides contents of C. calcitrans were improved under low concentration of LDPE-MPs, which could facilitate the adsorption of MPs particles on the microalgae cell wall. This adsorption caused significant physical damage to the algal cell structure, as observed by SEM. These results suggest that the ecological footprint of MPs may require more attention, particularly due to the continuing breakdown of plastics in the ecosystem.
Collapse
Affiliation(s)
- Hoda H Senousy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Hanan M Khairy
- National Institute of Oceanography and Fisheries, NIOF, Egypt
| | - Heba S El-Sayed
- National Institute of Oceanography and Fisheries, NIOF, Egypt
| | - Eman R Sallam
- National Institute of Oceanography and Fisheries, NIOF, Egypt
| | - Mohamed A El-Sheikh
- Botany & Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mostafa E Elshobary
- Department of Botany, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
30
|
Li X, Qiu H, Zhang P, Song L, Romero-Freire A, He E. Role of heteroaggregation and internalization in the toxicity of differently sized and charged plastic nanoparticles to freshwater microalgae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120517. [PMID: 36309302 DOI: 10.1016/j.envpol.2022.120517] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/29/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The toxic effect of waterborne nanoplastics is a manifestation of bio-nano interfacial interactions. Although nanoplastics with different physicochemical characteristics are known to exhibit distinct toxicities, it remains poorly understood how the properties of nanoplastics affect the bio-nano interface interactions. Here, polystyrene nanoparticles (PSNPs) varying in size (50, 300, and 500 nm) and surface charge (negative and positive charge) were employed to explore the interplay between PSNPs and algal cells (Chlamydomonas reinhardtii), with special focus on the heteroaggregation of PSNPs and microalgae, PSNPs cellular internalization, and cellular physiological responses. Results showed that large-sized PSNPs (300 and 500 nm) caused apparent toxicity to C. reinhardtii, mainly due to light blockage resulting from the PSNPs-microalgae heteroaggregation and the shading effect of PSNPs, which was independent of PSNPs concentrations. However, the toxicity of small-sized PSNPs (50 nm) was controlled by both particle surface charge and particle concentration. The positively charged PS-NH2 was more readily heteroaggregated with microalgae than the negatively charged PS-COOH, leading to photosynthesis damage-induced toxicity. Increasing the concentration of small-sized PSNPs stimulated the secretion of extracellular polymeric substances, allowing more PSNPs to attach on the cell surface and further to enter the cell, which was responsible for the increased toxicity. These findings provide new insights into how nanoplastics induce contact toxicity in microalgae cells through specific biointerfacial interactions.
Collapse
Affiliation(s)
- Xing Li
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peihua Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lan Song
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ana Romero-Freire
- Department of Soil Science, University of Granada, Granada, 18002, Spain
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
31
|
Zhou J, Yu Y, Luan Y, Dai W. The Formation of Protein Corona by Nanoplastics and Horseradish Peroxidase. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4467. [PMID: 36558320 PMCID: PMC9784054 DOI: 10.3390/nano12244467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
In theory, nanoplastics (NPs) can adsorb biological macromolecules, such as proteins, in the surrounding environment to form protein corona (PC). In this study, we focus on amino polystyrene (PS) NPs and horseradish peroxidase (HRP) to explore the dynamic process of the formation of PS-HRP PC and their influence on PS and HRP. This work used atomic force microscopy, laser particle size and Zeta potential analyzer, and UV-vis spectrophotometer. According to the adsorption behavior of HRP to NPs, the surface morphology characteristics of NPs can be observed to change at 60 min. Meanwhile, the increase in size and hydrodynamic diameter, the decrease in Zeta potential, surface roughness and HRP activity, and the change in HRP structure attest to the PC formation. The thickness of the PC was approximately 30 nm and there are differences in the dynamic and static variations in the size of the PC. The PC formation process progresses gradually from 0 min to 240 min. Overall, the formation of PS-HRP PC is identified, and the changes in its properties are confirmed from the perspective of nanoplastics and peroxidase, which help study the effects of nanoplastics on the environment and creatures.
Collapse
Affiliation(s)
| | | | | | - Wei Dai
- Correspondence: (Y.L.); (W.D.)
| |
Collapse
|
32
|
Kokilathasan N, Dittrich M. Nanoplastics: Detection and impacts in aquatic environments - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157852. [PMID: 35944628 DOI: 10.1016/j.scitotenv.2022.157852] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The rise in the global production of plastics has led to severe concerns about the impacts of plastics in aquatic environments. Although plastic materials degrade over extreme long periods, they can be broken down through physical, chemical, and/or biological processes to form microplastics (MPs), defined here as particles between 1 μm and 5 mm in size, and later to form nanoplastics (NPls), defined as particles <1 μm in size. We know little about the abundance and effects of NPls, even though a lot of research has been conducted on the ecotoxicological impacts of MPs on both aquatic biota. Nevertheless, there is evidence that NPls can both bypass the cell membranes of microorganisms and bioaccumulate in the tissues and organs of higher organisms. This review analyzes 150 publications collected by searching through the databases Web of Science, SCOPUS, and Google Scholar using keywords such as nanoplastics*, aquatic*, detection*, toxic*, biofilm*, formation*, and extracellular polymeric substance* as singular or plural combinations. We highlight and critically synthesize current studies on the formation and degradation of NPls, NPls' interactions with aquatic biota and biofilm communities, and methods of detection. One reason for the missing data and studies in this area of research is the lack of a protocol for the detection of, and suitable methods for the characterization of, NPls in the field. Our primary aim is to identify gaps in knowledge throughout the review and define future directions of research to address the impacts of NPls in aquatic environments. The development of consistent and standardized sets of procedures would address the gaps in knowledge regarding the formation and degradation of NPls as well as sampling and characterizing natural NPls needed to observe the full extent of NPls on aquatic biota and biofilm communities.
Collapse
Affiliation(s)
- Nigarsan Kokilathasan
- Biogeochemistry Group, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON M1C1A4, Canada
| | - Maria Dittrich
- Biogeochemistry Group, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON M1C1A4, Canada.
| |
Collapse
|
33
|
Lakshmikanthan D, Chandrasekaran N. Humic Acid Alleviates the Toxicity of Nanoplastics towards Solanum lycopersicum. AGRONOMY 2022; 12:2787. [DOI: 10.3390/agronomy12112787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Nanoplastics (NPs) are emerging pollutants that contaminate agricultural produce. The present study investigates the impact of polystyrene (PS) and humic acid (HA) individually and in combination on the germination and growth of seeds of Solanum lycopersicum (tomato). Here we report the formation of eco-corona upon the interaction of PS with humic acid at 24 h with a significant increase in hydrodynamic size. Seed germination, plant growth, and chlorophyll content increased in the coronated PS. In addition, we report that the treatment of seeds with PS + HA resulted in the germination of 90% of seeds, while treatment with only PS resulted in the germination of only 65.8% of seeds. A quantitative analysis of chlorophyll (a, b, and a + b) revealed that HA-treated groups and PS + HA-treated groups showed significantly high chlorophyll (a, b, and a + b) contents of (PS: 3.48 mg g−1, 2.12 mg g−1, and 4.19 mg g−1, HA: 5.76 mg g−1, 3.88 mg g−1, and 6.41 mg g−1, PS + HA: 4.17 mg g−1, 3.23 mg g−1, and 6.58 mg g−1)respectively compared to PS treated groups. Similarly, ROS levels were comparatively low in HA and PS + HA-treated groups than in only-PS-treated groups. Furthermore, we observed a decline in the level of antioxidant enzyme (superoxide dismutase and catalase) activity in HA and PS + HA treated groups than that in only-PS treated groups. The results indicate that HA significantly reduces PS-induced toxicity and improves germination and growth of seeds of Solanum lycopersicum; the corresponding reduction in toxic effects may be due to eco-corona formation on the PS. We understand that eco-corona is a way to protect plants from xenobiotics concerning nanoplastics.
Collapse
|
34
|
Lakshmikanthan D, Chandrasekaran N. The Effect of Humic Acid and Polystyrene Fluorescence Nanoplastics on Solanum lycopersicum Environmental Behavior and Phytotoxicity. PLANTS (BASEL, SWITZERLAND) 2022; 11:3000. [PMID: 36365451 PMCID: PMC9653858 DOI: 10.3390/plants11213000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The impacts of nanoplastics (100 nm) on terrestrial systems are unclear at this time. Due to the utilization of sewage sludge, plastic particles are likely to accumulate in these systems. The current research investigates how Solanum lycopersicum seed germination and growth are affected by fluorescence polystyrene (Flu-PS), humic acid (HA), and a Flu-PS+HA combination (tomato). Following 24 h of interaction between Flu-PS and HA, our report details the development of an eco-corona with a significant increase in hydrodynamic size. Plant growth, seed germination, and chlorophyll content were all enhanced by the eco-coronated Flu-PS.Additionally, we discover that seeds treated with Flu-PS+HA demonstrated a germination rate of 90%, compared to just 65.8% for seeds treated with Flu-PS alone. Chlorophyll (a, b, and a + b) content measurements indicated that HA-treated groups and Flu-PS+HA-treated groups had considerably higher levels of chlorophyll (a, b, and a + b) than Flu-PS-treated groups (Flu-PS: 3.18 mg g-1, 2.12 mg g-1, and 3.89 mg g-1, HA: 5.96 mg g-1, 4.28 mg g-1, and 6.36 mg g-1, and Flu-PS+HA: 4.17 mg g-1, 3.01 mg g-1, and 6.08 mg g-1, respectively). In a similar manner, the HA and Flu-PS+HA treatment groups showed lower ROS levels than the Flu-PS treatment groups. In addition, we discovered that the activity of the antioxidant enzymes superoxide dismutase and catalase was lower in the groups treated with HA and Flu-PS+HA than in the groups solely treated with Flu-PS. The results demonstrated that HA significantly lessens the toxicity caused by Flu-PS, while also promoting the germination and growth of Solanum lycopersicum seeds. The related decrease in toxic effects may be ascribed to the establishment of an eco-corona on the Flu-PS. We think that the use of eco-coronas is a technique for safeguarding plants against xenobiotics such as nanoplastics.
Collapse
|
35
|
Wang L, Hu Z, Yin H, Bradford SA, Luo J, Hou D. Aging of colloidal contaminants and pathogens in the soil environment: Implications for nanoplastic and COVID-19 risk mitigation. SOIL USE AND MANAGEMENT 2022; 39:SUM12849. [PMID: 36711026 PMCID: PMC9874619 DOI: 10.1111/sum.12849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/18/2023]
Abstract
Colloidal contaminants and pathogens are widely distributed in soil, whose tiny sizes and distinct surface properties render unique environmental behaviours. Because of aging, colloids can undergo dramatic changes in their physicochemical properties once in the soil environment, thus leading to diverse or even unpredictable environmental behaviour and fate. Herein, we provide a state-of-art review of colloid aging mechanisms and characteristics and implications for risk mitigation. First, we review aging-induced formation of colloidal contaminants and aging-associated changes. We place a special focus on emerging nanoplastic (NP) contaminants and associated physical, chemical, and biological aging processes in soil environments. Second, we assess aging and survival features of colloidal pathogens, especially viruses. Viruses in soils may survive from several days to months, or even several years in groundwater, depending on their rates of inactivation and the reversibility of attachment. Furthermore, we identify implications for risk mitigation based on aging mechanisms. Hotspots of (photo)chemical aging of NPs, including plastic gauzes at construction sites and randomly discarded plastic waste in rural areas, are identified as area requiring greater research attention. For COVID-19, we suggest taking greater care in regions where viruses are persist for long periods, such as cold climate regions. Soil amendment with quicklime (CaO) may act as an effective means for pathogen disinfection. Future risk mitigation of colloidal contaminants and pathogens relies on a better understanding of aging mechanisms and more sophisticated models accurately depicting processes in real soil environments.
Collapse
Affiliation(s)
- Liuwei Wang
- School of EnvironmentTsinghua UniversityBeijingChina
| | - Zhongtao Hu
- School of EnvironmentTsinghua UniversityBeijingChina
- Faculty of ScienceThe University of MelbourneMelbourneVictoriaAustralia
| | - Hanbing Yin
- School of EnvironmentTsinghua UniversityBeijingChina
- College of Environmental Science and EngineeringBeijing Forestry UniversityBeijingChina
| | - Scott A. Bradford
- United States Department of Agriculture, Agricultural Research ServiceSustainable Agricultural Water Systems UnitDavisCaliforniaUSA
| | - Jian Luo
- School of Civil and Environmental EngineeringGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Deyi Hou
- School of EnvironmentTsinghua UniversityBeijingChina
| |
Collapse
|
36
|
Zhang B, Tang X, Liu Q, Li L, Zhao Y, Zhao Y. Different effecting mechanisms of two sized polystyrene microplastics on microalgal oxidative stress and photosynthetic responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114072. [PMID: 36113269 DOI: 10.1016/j.ecoenv.2022.114072] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Increasing marine microplastics (MPs) pollution potentially threatens the stability of phytoplankton community structures in marine environments. MPs toxicities to microalgae are largely determined by particle size, while the size-dependent mechanisms are still not fully understood. In this study, two sizes (0.1 µm and 1 µm) of polystyrene (PS) MPs were used as experimental targets to systemically compare their different effecting mechanisms on the marine model diatom Thalassiosira pseudonana with respect to oxidative stress and photosynthesis. The results indicated the toxicity of 1 µm sized MPs was higher than 0.1 µm sized MPs regarding to population growth. In condition of similar microalgal population inhibition rates, we found more enhanced cellular oxidative stress and cell death happened in the 1 µm MPs treatments, which could be linked to higher zeta potential of 1 µm MPs and more severe cell surface damage; microalgal surface light shading and cellular pigments decline were more obvious in the 0.1 µm MPs treatment, which could be linked to high aggregation abilities of 0.1 µm MPs. Gene expressions supported the morphological and physiological findings on the transcriptional level. Environmental related MPs concentrations (5 μg L-1) also aroused gene expression changes of T. pseudonana while more changing genes were found under 0.1 µm MPs than 1 µm MPs. These results provide novel insights into the size-dependent mechanisms of MPs toxicity on marine microalgae, as well as their potential influence on the marine environment.
Collapse
Affiliation(s)
- Bihan Zhang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China
| | - Xuexi Tang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Qian Liu
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China
| | - Luying Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China
| | - Yirong Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China
| | - Yan Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
37
|
Sendra M, Rodriguez-Romero A, Yeste MP, Blasco J, Tovar-Sánchez A. Products released from surgical face masks can provoke cytotoxicity in the marine diatom Phaeodactylum tricornutum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156611. [PMID: 35691357 DOI: 10.1016/j.scitotenv.2022.156611] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Surgical face masks are more present than ever as personal protective equipment due to the COVID-19 pandemic. In this work, we show that the contents of regular surgical masks: i) polypropylene microfibres and ii) some added metals such as: Al, Fe, Cu, Mn, Zn and Ba, may be toxic to some marine life. This work has got two objectives: i) to study the release rate of the products from face masks in marine water and ii) to assess the toxicity in Phaeodactylum tricornutum of these by-products. To achieve these two objectives, we performed release kinetic experiments by adding masks in different stages of fragmentation to marine water (i.e. whole face masks and fragments of them 1.52 ± 0.86 mm). Released microfibres were found after one month in shaking marine water; 0.33 ± 0.24 and 21.13 ± 13.19 fibres·mL-1 were collected from the whole and fragmented face masks, respectively. Significant amounts of dissolved metals such as Mn, Zn and Ni, as well as functional groups only in the water containing the face mask fragments were detected. Water from both treatments was employed to study its toxicity on the marine diatom. Only the water from the face mask fragments showed a significant, dose-dependent, decrease in cell density in P. tricornutum; 53.09 % lower than in the controls. Although the water from the face mask fragments showed greater effects on the microalgae population than the water from the whole face mask, the latter treatment did show significant changes in the photosynthetic apparatus and intrinsic properties of the cells. These results indicate that during fragmentation and degradation face masks a significant chemical print can be observed in the marine environment.
Collapse
Affiliation(s)
- Marta Sendra
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001 Burgos, Spain.
| | - Araceli Rodriguez-Romero
- Department of Analytical Chemistry, Faculty of Marine and Environmental Sciences, Marine Research Institute (INMAR), University of Cadiz, Cadiz, Spain
| | - María Pilar Yeste
- Department of Material Science, Metallurgical Engineering and Inorganic Chemistry, University of Cádiz, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain
| | - Antonio Tovar-Sánchez
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
38
|
Yang W, Jannatun N, Zeng Y, Liu T, Zhang G, Chen C, Li Y. Impacts of microplastics on immunity. FRONTIERS IN TOXICOLOGY 2022; 4:956885. [PMID: 36238600 PMCID: PMC9552327 DOI: 10.3389/ftox.2022.956885] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Most disposable plastic products are degraded slowly in the natural environment and continually turned to microplastics (MPs) and nanoplastics (NPs), posing additional environmental hazards. The toxicological assessment of MPs for marine organisms and mammals has been reported. Thus, there is an urgent need to be aware of the harm of MPs to the human immune system and more studies about immunological assessments. This review focuses on how MPs are produced and how they may interact with the environment and our body, particularly their immune responses and immunotoxicity. MPs can be taken up by cells, thus disrupting the intracellular signaling pathways, altering the immune homeostasis and finally causing damage to tissues and organs. The generation of reactive oxygen species is the mainly toxicological mechanisms after MP exposure, which may further induce the production of danger-associated molecular patterns (DAMPs) and associate with the processes of toll-like receptors (TLRs) disruption, cytokine production, and inflammatory responses in immune cells. MPs effectively interact with cell membranes or intracellular proteins to form a protein-corona, and combine with external pollutants, chemicals, and pathogens to induce greater toxicity and strong adverse effects. A comprehensive research on the immunotoxicity effects and mechanisms of MPs, including various chemical compositions, shapes, sizes, combined exposure and concentrations, is worth to be studied. Therefore, it is urgently needed to further elucidate the immunological hazards and risks of humans that exposed to MPs.
Collapse
Affiliation(s)
- Wenjie Yang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Nahar Jannatun
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanqiao Zeng
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tinghao Liu
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Guofang Zhang
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano Safety, National Centre for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangzhou, Guangdong, China
| | - Yang Li
- Laboratory of Immunology and Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
39
|
Zhang P, Liu Y, Zhang L, Xu M, Gao L, Zhao B. The interaction of micro/nano plastics and the environment: Effects of ecological corona on the toxicity to aquatic organisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113997. [PMID: 35988380 DOI: 10.1016/j.ecoenv.2022.113997] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Concerns about the micro/nano plastics (MNPs) exposure risks have risen in recent years. The ecological corona (EC), which is generated by the interaction between MNPs and environmental substances, has a significant impact on their environmental fate and ecological risks. As the largest sink of MNPs, the aquatic environment is of great significance for understanding the environmental behaviour of MNPs. Transmission Electron Microscope (TME), Fourier Transform Infra-Red (FTIR), Scanning Electron Microscope (SEM), Dynamic Light Scattering (DLS) and other analytical methods have been used as effective methods to analyse the formation process of EC and detect the existing EC directly or indirectly on the surface of MNPs. The physicochemical properties of MNPs, complex aquatic environments and ageing time have been identified as the key factors affecting EC formation in aquatic environments. Moreover, the EC absorbed on MNPs significantly changed their environmental behaviour and toxicity to aquatic organisms. This review gives a full understanding of the EC formation progress on the surface of MNPs and different analytical methods for EC have been summarised which can further assist the ecological risk assessment of MNPs in the aquatic environment.
Collapse
Affiliation(s)
- Peiming Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yin Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China.
| | - Long Zhang
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China; State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
| | - Ming Xu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lirong Gao
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bin Zhao
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
40
|
Liu S, Junaid M, Liao H, Liu X, Wu Y, Wang J. Eco-corona formation and associated ecotoxicological impacts of nanoplastics in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155703. [PMID: 35523339 DOI: 10.1016/j.scitotenv.2022.155703] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Nanoplastics (NPs, diameter < 100 nm), are ubiquitously found in the environment including water, atmosphere, and soil because of their widespread applications and degradation resistant nature. Similarly, large quantities of natural organic matter (NOM) are present in the environment, in the form of extracellular polymeric substances (DNA, proteins, carbohydrates, etc.) and humic substances (humic acid, fulvic acid, humin, etc.), respectively released by organisms and degradation products of organic matter. These biomolecules interact with NPs and encapsulate to form a unique layered structure termed as eco-corona, which can alter the physicochemical characteristics, interaction, fate, and effects of plastic particles in the environment. The current study collated and reviewed recent findings emphasizing the progress of ecological (eco)-corona formation on NPs and affiliated toxicological effects in freshwater, marine water, and terrestrial ecosystems. The eco-corona layer formed around NPs may vary in sizes and biochemical composition, attributed mainly to the abundance, properties and physicochemical nature of both biomolecules and plastic particles, as well as medium properties and source of NOM in the ecosystem. Besides, most of the reviewed literature showed that eco-corona can reduces the toxicity of NPs with few exceptions, which demonstrates that eco-corona may enhance the NPs toxicity through the Trojan horse effect and longer retention time in biological system. Overall, this review also highlights future research perspectives for a better understanding of NPs toxicity modified by eco-corona, which is crucial to realizing the complex nature of interactions among plastic particles and NOM in a natural ecosystem.
Collapse
Affiliation(s)
- Shulin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xinyu Liu
- Guangzhou Dublin International College of Life Sciences and Technology, College of International Education, South China Agricultural University, Guangzhou 510642, China
| | - Yan Wu
- Guangzhou Environmental Monitoring Centre, Guangzhou 510006, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China.
| |
Collapse
|
41
|
Shebeeb CM, Joseph A, Farzeena C, Dinesh R, Sajith V. Fluorescent carbon dot embedded polystyrene particle: an alternative to fluorescently tagged polystyrene for fate of microplastic studies: a preliminary investigation. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Das S, Thiagarajan V, Chandrasekaran N, Ravindran B, Mukherjee A. Nanoplastics enhance the toxic effects of titanium dioxide nanoparticle in freshwater algae Scenedesmus obliquus. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109305. [PMID: 35219900 DOI: 10.1016/j.cbpc.2022.109305] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 01/22/2023]
Abstract
The increased usage of titanium dioxide nanoparticles (nTiO2) in consumer products has led to their prevalence in freshwater systems. Nanoplastics, a secondary pollutant, can significantly influence the toxic effects of nTiO2 in freshwater organisms. The present study investigates the role of fluorescent nanoplastics (FNPs) in modifying the harmful effects of P25 nTiO2 in freshwater algae Scenedesmus obliquus. Three different concentrations of nTiO2, 0.025, 0.25, and 2.5 mg/L, were mixed with 1 mg/L of the FNPs to perform the mixture toxicity experiments. The presence of the FNPs in the mixture increased the toxicity of nTiO2 significantly. A significant increment in the oxidative stress parameters like total ROS, superoxide (O2∎-), and hydroxyl radical generation was observed for the mixture of nTiO2 with the FNPs in comparison with their individual counterparts. The lipid peroxidation, and the antioxidant enzyme activities in the algal cells correlated well with the reactive species generation results. The treatments with the binary mixture resulted in notable decrease in the esterase activity in the algal cells. The mixture toxicity results were further validated with Abbott's independent action model. Additionally, optical microscopic analysis and FTIR analysis were performed to study the morphological and surface chemical changes in the algae. This study demonstrated that the FNPs played a key role in enhancing the toxicity of nTiO2 in freshwater algae.
Collapse
Affiliation(s)
- Soupam Das
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - Vignesh Thiagarajan
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - N Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University Youngtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
43
|
Li Y, Liu Z, Jiang Q, Ye Y, Zhao Y. Effects of nanoplastic on cell apoptosis and ion regulation in the gills of Macrobrachium nipponense. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118989. [PMID: 35157932 DOI: 10.1016/j.envpol.2022.118989] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/24/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Nanoplastic, ubiquitous in aquatic environments, are raising concern worldwide. However, studies on nanoplastic exposure and its effects on ion transport in aquatic organisms are limited. In this study, the juvenile oriental river shrimp, Macrobrachium nipponense, was exposed to five levels of nanoplastic concentrations (0, 5, 10, 20, 40 mg/L) in order to evaluate cell viability, ion content, ion transport, ATPase activity, and related gene expression. The results showed that the apoptosis rate was higher in the high concentration nanoplastic group (40 mg/L) compared to the low concentration nanoplastic group (5 mg/L) and the control group (0 mg/L). The ion content of sodium (Na+), potassium (K+), chloride (Cl-), and calcium (Ca2+) showed a decreasing trend in gill tissue compared to the control group. The Na+K+-ATPase, V(H)-ATPase, Ca2+Mg2+-ATPase, and total ATPase activities in the gills of M. nipponense showed a general decrease with the increasement of nanoplastic concentration and time of exposure. When increasing nanoplastic concentration, the expression of ion transport-related genes in the gills of M. nipponense showed first rise then descend trend. As elucidated by the results, high nanoplastic concentrations have negative effect on cell viability, ion content, ion transport ATPase activity, and ion transport-related gene expression in the gills of M. nipponense. This research provides a theoretical foundation for the toxic effects of nanoplastic in aquaculture.
Collapse
Affiliation(s)
- Yiming Li
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Zhiquan Liu
- School of Life and Environmental Sciences, Hangzhou Normal University, 310018, Hangzhou, Zhejiang, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Yucong Ye
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
44
|
Yu Y, Luan Y, Dai W. Dynamic process, mechanisms, influencing factors and study methods of protein corona formation. Int J Biol Macromol 2022; 205:731-739. [PMID: 35321813 DOI: 10.1016/j.ijbiomac.2022.03.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/21/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022]
Abstract
Nanoparticles interacting with proteins to form protein corona represent one of the most fundamental problems in the rapid development of nanotechnology. In the past decade, thousands of studies have pointed out this issue. Within multi-protein systems, the formation of protein corona is a homeostasis process in which proteins compete for the limited surface sites of nanoparticles. Besides, the formation of protein corona generally shows a tendency of evolving with time and involves many different driving forces controlled by properties of nanoparticles, proteins and environment. Therefore, recent research on the dynamic process and mechanisms of protein corona formation in both animals and plants are summarized in this review. The factors that affect the formation and the techniques that commonly used for protein corona analysis are proposed. Furthermore, in order to provide reference for the future research, the limitations and challenges in protein corona studies are assessed and the future perspectives are proposed.
Collapse
Affiliation(s)
- Yanni Yu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Yaning Luan
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Wei Dai
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
45
|
Hanachi P, Khoshnamvand M, Walker TR, Hamidian AH. Nano-sized polystyrene plastics toxicity to microalgae Chlorella vulgaris: Toxicity mitigation using humic acid. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106123. [PMID: 35183843 DOI: 10.1016/j.aquatox.2022.106123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 01/16/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Polystyrene nanoplastics (PS-NPs) can cause toxicity in aquatic organisms, but presence of natural organic matter (NOM) may alter toxicity of PS-NPs. To better understand effects of NOM on acute toxicity of PS-NPs, humic acid (HA) as a model of NOM was added to green microalga Chlorella vulgaris medium in the presence of amino-functionalized polystyrene nanoplastics (PS-NH2). Acute toxicity tests of PS-NH2 to C. vulgaris biomass and chlorophyll a content showed statistical differences between media treated with different concentrations of PS-NH2 and control groups (p<0.05). HA significantly mitigated PS-NH2 toxicity to C. vulgaris biomass and chlorophyll a end-points (p<0.05). Additionally, high HA concentration was more effective than low concentration (10 vs 5 mg/L), showing a greater ameliorative effect on PS-NH2 acute toxicity (p<0.05). Algae exposed to higher PS-NH2 concentrations showed greater morphological changes (i.e., diminution of photosynthetic pigments, reduction of algal size and formation of more cellular aggregates). Formation of high amounts of algal aggregates under influence of PS-NH2 was presumably related to the high electrostatic tendency of these particles (with positively charged surfaces) to C. vulgaris polysaccharide walls (having negative charge). Formation of aggregates was significantly reduced in the presence of HA. HA with dominant negatively charged functional groups (following sorption by PS-NH2 via reduction of PS-NH2 zeta potential), could decrease electrostatic attraction between PS-NH2 and algae, thereby substantially ameliorating cellular aggregation and cell size reduction.
Collapse
Affiliation(s)
- Parichehr Hanachi
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | - Mehdi Khoshnamvand
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran.
| | - Tony R Walker
- School for Resource and Environmental Studies, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Amir Hossein Hamidian
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
46
|
Natarajan L, Jenifer MA, Chandrasekaran N, Suraishkumar GK, Mukherjee A. Polystyrene nanoplastics diminish the toxic effects of Nano-TiO 2 in marine algae Chlorella sp. ENVIRONMENTAL RESEARCH 2022; 204:112400. [PMID: 34800532 DOI: 10.1016/j.envres.2021.112400] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/15/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Widespread usage of nano-TiO2 in various commercial products and their consequent release into the seawater pose a severe threat to marine biota. Nanoplastics, a secondary pollutant in the marine environment, could influence adverse effects of nano-TiO2. The main goal of the present study was to investigate the influence of the differently functionalized polystyrene nanoplastics (COOH-PSNPs, NH2-PSNPs, and Plain-PSNPs) on the acute toxic effects of P25 nano-TiO2 in marine algae Chlorella sp. Three different concentrations of nano-TiO2, 0.25, 0.5, and 1 mg/L, mixed with 5 mg/L of the PSNPs were employed in this study. A substantial increase was noted in mean hydrodynamic sizes of nano-TiO2 when they were mixed with the PSNPs. This hetero-aggregation would reduce the bioavailability of the particles to the algae. The presence of the PSNPs in the mixture reduced the toxicity of nano-TiO2 significantly. A signficant decline in the oxidative stress parameters like total ROS, superoxide (), and hydroxyl radical generation was noted for the mixture of nano-TiO2 with the PSNPs in comparison with the pristine counterparts. The lipid peroxidation, and the antioxidant enzyme activities in the cells correlated well with the reactive species generation results. The treatments with the mixture resulted in notable enhancement in the esterase activity in the cells. The Independent Action model suggested antagonistic interactions between PSNPs and nano-TiO2. The results from this study clearly demonstrate that nano-TiO2 in presence of the PSNPs exerted significantly reduced cytotoxic effects in Chlorella sp, in comparison with the pristine particles.
Collapse
Affiliation(s)
- Lokeshwari Natarajan
- School of Biosciences and Technology, VIT, Vellore, India; Centre for Nanobiotechnology, VIT, Vellore, Tamil Nadu, India
| | - M Annie Jenifer
- VIT School of Agricultural Innovations and Advanced Learning, VIT, Vellore, Tamil Nadu, India
| | | | - G K Suraishkumar
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | | |
Collapse
|
47
|
Dong J, Li L, Liu Q, Yang M, Gao Z, Qian P, Gao K, Deng X. Interactive effects of polymethyl methacrylate (PMMA) microplastics and salinity variation on a marine diatom Phaeodactylum tricornutum. CHEMOSPHERE 2022; 289:133240. [PMID: 34896422 DOI: 10.1016/j.chemosphere.2021.133240] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Until now, knowledge about the interactive effects of microplastics and environmental factors on primary producers is quite limited. In this work, a marine diatom (Phaeodactylum tricornutum) was exposed to polymethyl methacrylate (PMMA) microplastics at different salinities (25, 35, and 45‰) for 10 days in order to study their interactive effects. Results showed that growth of P. tricornutum was negatively affected by PMMA microplastics and salinity variation with a minimum EC50 value of 91.75 mg L-1. Photosynthetic activity of P. tricornutum was also inhibited by the two factors, and their interactive effects on chlorophyll fluorescence parameters (Fv/Fm and ΦPSII) were significant. In the algal cells, soluble protein accumulated, activities of two antioxidant enzymes changed, and malondialdehyde (MDA) content increased when this diatom was exposed to the microplastics at different salinities. These data would help to evaluate the risks of microplastics to primary producers under different environmental factors.
Collapse
Affiliation(s)
- Jingwei Dong
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China
| | - Linqing Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China
| | - Qiaoqiao Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China
| | - Mengting Yang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China
| | - Zheng Gao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China
| | - Pingkang Qian
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China
| | - Kun Gao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China
| | - Xiangyuan Deng
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212100, People's Republic of China.
| |
Collapse
|
48
|
Chakraborty D, Giri S, Natarajan L, Chandrasekaran N, Mukherjee A. Recent Advances in Understanding the Facets of Eco-corona on Engineered Nanomaterials. J Indian Inst Sci 2022. [DOI: 10.1007/s41745-021-00266-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Yin L, Wen X, Huang D, Du C, Deng R, Zhou Z, Tao J, Li R, Zhou W, Wang Z, Chen H. Interactions between microplastics/nanoplastics and vascular plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117999. [PMID: 34500397 DOI: 10.1016/j.envpol.2021.117999] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 05/06/2023]
Abstract
Microplastics and nanoplastics are distributed in the environments universally. The interrelationship between vascular plants and micro/nanoplastics began to attract attention in recent years. Based on the relevant literatures collected from various databases, this review focuses on two topics: 1) the effect of vascular plants on the fate of micro/nanoplastics; 2) the effects of micro/nanoplastics on vascular plants. The review of the available studies reveals that vascular plants can act as sinks for microplastics and nanoplastics as their surfaces can adsorb these plastics; moreover, nanoplastics can be internalized by plants. Plastics on the surfaces and in the interiors of vascular plants can cause various phytotoxicity effects, including impacts on growth, photosynthesis, and oxidative stress. Furthermore, the results and mechanisms of phytotoxicity effects caused by microplastics or nanoplastics can be very different. However, knowledge gaps still exist in the relationships between micro/nanoplastics and vascular plants based on the analysis of available studies; thus, potential subjects for future studies were proposed, including the fates, analysis methods, influencing factors, mechanisms of phytotoxicity, and further influences of microplastics and nanoplastics in the vascular plant ecosystems. This study presents a review of micro/nanoplastics-vascular plant research and reaches a basis for future research.
Collapse
Affiliation(s)
- Lingshi Yin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Xiaofeng Wen
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China; Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China.
| | - Chunyan Du
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Rui Deng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Zhenyu Zhou
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Jiaxi Tao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Ruijin Li
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| | - Zeyu Wang
- School of Hydraulic Engineering, Changsha University of Science and Technology, Changsha, 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
| | - Haojie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan, 410082, China
| |
Collapse
|
50
|
Casabianca S, Bellingeri A, Capellacci S, Sbrana A, Russo T, Corsi I, Penna A. Ecological implications beyond the ecotoxicity of plastic debris on marine phytoplankton assemblage structure and functioning. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118101. [PMID: 34523510 DOI: 10.1016/j.envpol.2021.118101] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Plastic pollution is a global issue posing a threat to marine biota with ecological implications on ecosystem functioning. Micro and nanoplastic impact on phytoplankton autotrophic species (e.g., cell growth inhibition, decrease in chlorophyll a and photosynthetic efficiency and hetero-aggregates formation) have been largely documented. However, the heterogeneity of data makes rather difficult a comparison based on size (i.e. micro vs nano). In addition, knowledge gaps on the ecological impact on phytoplankton assemblage structure and functioning are evident. A new virtual meta-analysis on cause-effect relationships of micro and nanoplastics on phytoplankton species revealed the significant effect posed by polymer type on reducing cell density for tested PVC, PS and PE plastics. Linked with autotrophic phytoplankton role in atmospheric CO2 fixation, a potential impact of plastics on marine carbon pump is discussed. The understanding of the effects of microplastics and nanoplastics on the phytoplankton functioning is fundamental to raise awareness on the overall impact on the first level of marine food web. Interactions between micro and nanoplastics and phytoplankton assemblages have been quite documented by in vitro examinations; but, further studies considering natural plankton assemblages and/or large mesocosm experiments should be performed to evaluate and try predicting ecological impacts on primary producers.
Collapse
Affiliation(s)
- Silvia Casabianca
- Department of Biomolecular Sciences, University of Urbino, Campus E. Mattei, 61121, Urbino, Italy; CoNISMa, National Inter-University Consortium for Marine Sciences, 00196, Rome, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032, Fano, Italy.
| | - Arianna Bellingeri
- Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy
| | - Samuela Capellacci
- Department of Biomolecular Sciences, University of Urbino, Campus E. Mattei, 61121, Urbino, Italy; CoNISMa, National Inter-University Consortium for Marine Sciences, 00196, Rome, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032, Fano, Italy
| | - Alice Sbrana
- Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy; PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica snc, 00133, Roma, Italy
| | - Tommaso Russo
- CoNISMa, National Inter-University Consortium for Marine Sciences, 00196, Rome, Italy; Department of Biology, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Ilaria Corsi
- CoNISMa, National Inter-University Consortium for Marine Sciences, 00196, Rome, Italy; Department of Physical, Earth and Environmental Sciences, University of Siena, 53100, Siena, Italy
| | - Antonella Penna
- Department of Biomolecular Sciences, University of Urbino, Campus E. Mattei, 61121, Urbino, Italy; CoNISMa, National Inter-University Consortium for Marine Sciences, 00196, Rome, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032, Fano, Italy
| |
Collapse
|