1
|
Pye HOT, Xu L, Henderson BH, Pagonis D, Campuzano-Jost P, Guo H, Jimenez JL, Allen C, Skipper TN, Halliday HS, Murphy BN, D'Ambro EL, Wennberg PO, Place BK, Wiser FC, McNeill VF, Apel EC, Blake DR, Coggon MM, Crounse JD, Gilman JB, Gkatzelis GI, Hanisco TF, Huey LG, Katich JM, Lamplugh A, Lindaas J, Peischl J, St Clair JM, Warneke C, Wolfe GM, Womack C. Evolution of Reactive Organic Compounds and Their Potential Health Risk in Wildfire Smoke. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19785-19796. [PMID: 39436375 DOI: 10.1021/acs.est.4c06187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Wildfires are an increasing source of emissions into the air, with health effects modulated by the abundance and toxicity of individual species. In this work, we estimate reactive organic compounds (ROC) in western U.S. wildland forest fire smoke using a combination of observations from the 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) field campaign and predictions from the Community Multiscale Air Quality (CMAQ) model. Standard emission inventory methods capture 40-45% of the estimated ROC mass emitted, with estimates of primary organic aerosol particularly low (5-8×). Downwind, gas-phase species abundances in molar units reflect the production of fragmentation products such as formaldehyde and methanol. Mass-based units emphasize larger compounds, which tend to be unidentified at an individual species level, are less volatile, and are typically not measured in the gas phase. Fire emissions are estimated to total 1250 ± 60 g·C of ROC per kg·C of CO, implying as much carbon is emitted as ROC as is emitted as CO. Particulate ROC has the potential to dominate the cancer and noncancer risk of long-term exposure to inhaled smoke, and better constraining these estimates will require information on the toxicity of particulate ROC from forest fires.
Collapse
Affiliation(s)
- Havala O T Pye
- Office of Research and Development, US Environmental Protection Agency, Durham, North Carolina 27711, United States
| | - Lu Xu
- Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Barron H Henderson
- Office of Air and Radiation, US Environmental Protection Agency, Durham, North Carolina 27711, United States
| | - Demetrios Pagonis
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry & Biochemistry, Weber State University, Ogden, Utah 84408, United States
| | - Pedro Campuzano-Jost
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Hongyu Guo
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Jose L Jimenez
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | | | - T Nash Skipper
- Office of Research and Development, US Environmental Protection Agency, Durham, North Carolina 27711, United States
| | - Hannah S Halliday
- Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Benjamin N Murphy
- Office of Research and Development, US Environmental Protection Agency, Durham, North Carolina 27711, United States
| | - Emma L D'Ambro
- Office of Research and Development, US Environmental Protection Agency, Durham, North Carolina 27711, United States
| | - Paul O Wennberg
- California Institute of Technology, Pasadena, California 91125, United States
| | - Bryan K Place
- Office of Research and Development, US Environmental Protection Agency, Durham, North Carolina 27711, United States
| | - Forwood C Wiser
- Columbia University, New York, New York 10027, United States
| | - V Faye McNeill
- Columbia University, New York, New York 10027, United States
| | - Eric C Apel
- National Center for Atmospheric Research, Boulder, Colorado 80301, United States
| | - Donald R Blake
- University of California Irvine, Irvine, California 92697, United States
| | - Matthew M Coggon
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - John D Crounse
- California Institute of Technology, Pasadena, California 91125, United States
| | - Jessica B Gilman
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Georgios I Gkatzelis
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Thomas F Hanisco
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - L Gregory Huey
- Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Joseph M Katich
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Aaron Lamplugh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Jakob Lindaas
- Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeff Peischl
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Jason M St Clair
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
- University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Carsten Warneke
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| | - Glenn M Wolfe
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, United States
| | - Caroline Womack
- NOAA Chemical Sciences Laboratory, Boulder, Colorado 80305, United States
| |
Collapse
|
2
|
Fazakas E, Neamtiu IA, Gurzau ES. Health effects of air pollutant mixtures (volatile organic compounds, particulate matter, sulfur and nitrogen oxides) - a review of the literature. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:459-478. [PMID: 36932657 DOI: 10.1515/reveh-2022-0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The health risks associated with individual air pollutant exposures have been studied and documented, but in real-life, the population is exposed to a multitude of different substances, designated as mixtures. A body of literature on air pollutants indicated that the next step in air pollution research is investigating pollutant mixtures and their potential impacts on health, as a risk assessment of individual air pollutants may actually underestimate the overall risks. This review aims to synthesize the health effects related to air pollutant mixtures containing selected pollutants such as: volatile organic compounds, particulate matter, sulfur and nitrogen oxides. For this review, the PubMed database was used to search for articles published within the last decade, and we included studies assessing the associations between air pollutant mixtures and health effects. The literature search was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A number of 110 studies were included in the review from which data on pollutant mixtures, health effects, methods used, and primary results were extracted. Our review emphasized that there are a relatively small number of studies addressing the health effects of air pollutants as mixtures and there is a gap in knowledge regarding the health effects associated with these mixtures. Studying the health effects of air pollutant mixtures is challenging due to the complexity of components that mixtures may contain, and the possible interactions these different components may have.
Collapse
Affiliation(s)
- Emese Fazakas
- Health Department, Environmental Health Center, Cluj-Napoca, Romania
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Iulia A Neamtiu
- Health Department, Environmental Health Center, Cluj-Napoca, Romania
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Eugen S Gurzau
- Health Department, Environmental Health Center, Cluj-Napoca, Romania
- Research Center for functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Liu Q, Liu J, Zhang Y, Chen H, Liu X, Liu M. Associations between atmospheric PM 2.5 exposure and carcinogenic health risks: Surveillance data from the year of lowest recorded levels in Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124176. [PMID: 38768675 DOI: 10.1016/j.envpol.2024.124176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Scant research has pinpointed the year of minimum PM2.5 concentration through extensive, uninterrupted monitoring, nor has it thoroughly assessed carcinogenic risks associated with analyzing numerous components during this nadir in Beijing. This study endeavored to delineate the atmospheric PM2.5 pollution in Beijing from 2015 to 2022 and to undertake comprehensive evaluation of carcinogenic risks associated with the composition of atmospheric PM2.5 during the year exhibiting the lowest concentration. PM2.5 concentrations were monitored gradually in 9 districts of Beijing for 7 consecutive days per month from 2015 to 2022, and 32 kinds of PM2.5 components collected in the lowest PM2.5 concentration year were analyzed. This comprehensive dataset served as the basis for carcinogenic risk assessment using Monte Carlo simulation. And we applied the Positive Matrix Factorization (PMF) method to identity the sources of atmospheric PM2.5. Furthermore, we integrated this source appointment model with risk assessment model to discern the origins of these risks. The findings revealed that the annual average PM2.5 concentration in 2022 stood at 43.1 μg/m3, marking the lowest level recorded. The mean carcinogenic risks of atmospheric PM2.5 exposure calculated at 6.30E-6 (empirical 95% CI 1.09E-6 to 2.25E-5) in 2022. The PMF model suggested that secondary sources (35.4%), coal combustion (25.6%), resuspended dust (15.1%), biomass combustion (14.1%), vehicle emissions (7.1%), industrial emissions (2.0%) and others (0.7%) were the main sources of atmospheric PM2.5 in Beijing. The mixed model revealed that coal combustion (2.41E-6), vehicle emissions (1.90E-6) and industrial emissions (1.32E-6) were the main sources of carcinogenic risks with caution. Despite a continual decrease in atmospheric PM2.5 concentration in recent years, the lowest concentration levels still pose non-negligible carcinogenic risks. Notably, the carcinogenic risks associated with metals and metalloids exceeded that of PAHs. And the distribution of risk sources did not align proportionally with the distribution of PM2.5 mass concentration.
Collapse
Affiliation(s)
- Qichen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Institute for Environmental Health, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Jue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yong Zhang
- Institute for Environmental Health, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Huajie Chen
- Institute for Environmental Health, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Xiaofeng Liu
- Institute for Environmental Health, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Min Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.
| |
Collapse
|
4
|
de Oliveira Galvão MF, Scaramboni C, Ünlü Endirlik B, Vieira Silva A, Öberg M, Pozza SA, Watanabe T, de Oliveira Rodrigues PC, de Castro Vasconcellos P, Sadiktsis I, Dreij K. Application of an in vitro new approach methodology to determine relative cancer potency factors of air pollutants based on whole mixtures. ENVIRONMENT INTERNATIONAL 2024; 190:108942. [PMID: 39151266 DOI: 10.1016/j.envint.2024.108942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/08/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Air pollution is an example of a complex environmental mixture with different biological activities, making risk assessment challenging. Current cancer risk assessment strategies that focus on individual pollutants may overlook interactions among them, potentially underestimating health risks. Therefore, a shift towards the evaluation of whole mixtures is essential for accurate risk assessment. This study presents the application of an in vitro New Approach Methodology (NAM) to estimate relative cancer potency factors of whole mixtures, with a focus on organic pollutants associated with air particulate matter (PM). Using concentration-dependent activation of the DNA damage-signaling protein checkpoint kinase 1 (pChk1) as a readout, we compared two modeling approaches, the Hill equation and the benchmark dose (BMD) method, to derive Mixture Potency Factors (MPFs). MPFs were determined for five PM2.5 samples covering sites with different land uses and our historical pChk1 data for PM10 samples and Standard Reference Materials. Our results showed a concentration-dependent increase in pChk1 by all samples and a higher potency compared to the reference compound benzo[a]pyrene. The MPFs derived from the Hill equation ranged from 128 to 9793, while those from BMD modeling ranged from 70 to 303. Despite the differences in magnitude, a consistency in the relative order of potencies was observed. Notably, PM2.5 samples from sites strongly impacted by biomass burning had the highest MPFs. Although discrepancies were observed between the two modeling approaches for whole mixture samples, relative potency factors for individual PAHs were more consistent. We conclude that differences in the shape of the concentration-response curves and how MPFs are derived explain the observed differences in model agreement for complex mixtures and individual PAHs. This research contributes to the advancement of predictive toxicology and highlights the feasibility of transitioning from assessing individual agents to whole mixture assessment for accurate cancer risk assessment and public health protection.
Collapse
Affiliation(s)
| | - Caroline Scaramboni
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Chemistry, Faculty of Philosophy, Science and Letters at Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto, Brazil
| | - Burcu Ünlü Endirlik
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Erciyes University, 38280, Kayseri, Turkey
| | - Antero Vieira Silva
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Mattias Öberg
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Simone Andréa Pozza
- Faculdade de Tecnologia, Universidade Estadual de Campinas (Unicamp), Limeira, Brazil
| | - Tetsushi Watanabe
- Department of Public Health, Kyoto Pharmaceutical University, Kyoto, Japan
| | | | | | - Ioannis Sadiktsis
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
5
|
Kadelbach P, Weinmayr G, Chen J, Jaensch A, Rodopoulou S, Strak M, de Hoogh K, Andersen ZJ, Bellander T, Brandt J, Cesaroni G, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Katsouyanni K, Ketzel M, Leander K, Ljungman P, Magnusson PKE, Pershagen G, Rizzuto D, Samoli E, Severi G, Stafoggia M, Tjønneland A, Vermeulen R, Peters A, Wolf K, Raaschou-Nielsen O, Brunekreef B, Hoek G, Zitt E, Nagel G. Long-term exposure to air pollution and chronic kidney disease-associated mortality-Results from the pooled cohort of the European multicentre ELAPSE-study. ENVIRONMENTAL RESEARCH 2024; 252:118942. [PMID: 38649012 DOI: 10.1016/j.envres.2024.118942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Despite the known link between air pollution and cause-specific mortality, its relation to chronic kidney disease (CKD)-associated mortality is understudied. Therefore, we investigated the association between long-term exposure to air pollution and CKD-related mortality in a large multicentre population-based European cohort. Cohort data were linked to local mortality registry data. CKD-death was defined as ICD10 codes N18-N19 or corresponding ICD9 codes. Mean annual exposure at participant's home address was determined with fine spatial resolution exposure models for nitrogen dioxide (NO2), black carbon (BC), ozone (O3), particulate matter ≤2.5 μm (PM2.5) and several elemental constituents of PM2.5. Cox regression models were adjusted for age, sex, cohort, calendar year of recruitment, smoking status, marital status, employment status and neighbourhood mean income. Over a mean follow-up time of 20.4 years, 313 of 289,564 persons died from CKD. Associations were positive for PM2.5 (hazard ratio (HR) with 95% confidence interval (CI) of 1.31 (1.03-1.66) per 5 μg/m3, BC (1.26 (1.03-1.53) per 0.5 × 10- 5/m), NO2 (1.13 (0.93-1.38) per 10 μg/m3) and inverse for O3 (0.71 (0.54-0.93) per 10 μg/m3). Results were robust to further covariate adjustment. Exclusion of the largest sub-cohort contributing 226 cases, led to null associations. Among the elemental constituents, Cu, Fe, K, Ni, S and Zn, representing different sources including traffic, biomass and oil burning and secondary pollutants, were associated with CKD-related mortality. In conclusion, our results suggest an association between air pollution from different sources and CKD-related mortality.
Collapse
Affiliation(s)
- Pauline Kadelbach
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany.
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany.
| | - Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Andrea Jaensch
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maciej Strak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Zorana J Andersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; iClimate-interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Giulia Cesaroni
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Daniela Fecht
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy; Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College, London, United Kingdom
| | - John Gulliver
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom; Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, United Kingdom
| | - Ole Hertel
- Faculty of Technical Sciences, Aarhus University, Roskilde, Denmark
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Petter Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden; Department of Cardiology, Danderyd University Hospital, 182 88, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Debora Rizzuto
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gianluca Severi
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" team, CESP UMR1018, 94805, Villejuif, France
| | - Massimo Stafoggia
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, SE-171 77, Sweden; Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Anne Tjønneland
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark; The Danish Cancer Institute, Copenhagen, Denmark
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ole Raaschou-Nielsen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; The Danish Cancer Institute, Copenhagen, Denmark
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Emanuel Zitt
- Agency for Preventive and Social Medicine (aks), Bregenz, Austria; Department of Internal Medicine 3, LKH Feldkirch, Feldkirch, Austria; Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany; Agency for Preventive and Social Medicine (aks), Bregenz, Austria
| |
Collapse
|
6
|
Karimi B, Samadi S. Long-term exposure to air pollution on cardio-respiratory, and lung cancer mortality: a systematic review and meta-analysis. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:75-95. [PMID: 38887768 PMCID: PMC11180069 DOI: 10.1007/s40201-024-00900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 04/02/2024] [Indexed: 06/20/2024]
Abstract
Air pollution is a major cause of specific deaths worldwide. This review article aimed to investigate the results of cohort studies for air pollution connected with the all-cause, cardio-respiratory, and lung cancer mortality risk by performing a meta-analysis. Relevant cohort studies were searched in electronic databases (PubMed/Medline, Web of Science, and Scopus). We used a random effect model to estimate the pooled relative risks (RRs) and their 95% CIs (confidence intervals) of mortality. The risk of bias for each included study was also assessed by Office of Health Assessment and Translation (OHAT) checklists. We applied statistical tests for heterogeneity and sensitivity analyses. The registration code of this study in PROSPERO was CRD42023422945. A total of 88 cohort studies were eligible and included in the final analysis. The pooled relative risk (RR) per 10 μg/m3 increase of fine particulate matter (PM2.5) was 1.080 (95% CI 1.068-1.092) for all-cause mortality, 1.058 (95% CI 1.055-1.062) for cardiovascular mortality, 1.066 (95%CI 1.034-1.097) for respiratory mortality and 1.118 (95% CI 1.076-1.159) for lung cancer mortality. We observed positive increased associations between exposure to PM2.5, PM10, black carbon (BC), and nitrogen dioxide (NO2) with all-cause, cardiovascular and respiratory diseases, and lung cancer mortality, but the associations were not significant for nitrogen oxides (NOx), sulfur dioxide (SO2) and ozone (O3). The risk of mortality for males and the elderly was higher compared to females and younger age. The pooled effect estimates derived from cohort studies provide substantial evidence of adverse air pollution associations with all-cause, cardiovascular, respiratory, and lung cancer mortality. Supplementary Information The online version contains supplementary material available at 10.1007/s40201-024-00900-6.
Collapse
Affiliation(s)
- Behrooz Karimi
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, Arak, Iran
| | - Sadegh Samadi
- Department of Occupational Health and safety, School of Health, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
7
|
Zhou RX, Liao HJ, Hu JJ, Xiong H, Cai XY, Ye DW. Global Burden of Lung Cancer Attributable to Household Fine Particulate Matter Pollution in 204 Countries and Territories, 1990 to 2019. J Thorac Oncol 2024; 19:883-897. [PMID: 38311022 DOI: 10.1016/j.jtho.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/06/2024]
Abstract
INTRODUCTION Household particulate matter (PM) air pollution is substantially associated with lung cancer. Nevertheless, the global burden of lung cancer attributable to household PM2.5 is still uncertain. METHODS In this study, data from the Global Burden and Disease Study 2019 are used to thoroughly assess the burden of lung cancer associated with household PM2.5. RESULTS The number of deaths and disability-adjusted life-years (DALYs) attributable to household PM2.5 was found to be 0.08 million and 1.94 million, respectively in 2019. Nevertheless, the burden of lung cancer attributable to household PM2.5 decreased from 1990 to 2019. At the sociodemographic index (SDI) district level, the middle SDI region had the most number of lung cancer deaths and DALYs attributable to household PM2.5. Moreover, the burden of lung cancer was mainly distributed in low-SDI regions, such as Sub-Saharan Africa. Conversely, in high-SDI regions, the age-standardized mortality rate and age-standardized DALY rate of lung cancer attributable to household PM2.5 exhibit the most rapid declines. The burden of lung cancer attributable to household PM2.5 is heavier for men than for women. The sex difference is more obvious in the elderly. CONCLUSIONS The prevalence of lung cancer attributable to household PM2.5 has exhibited a declining trend from 1990 to 2019 owing to a concurrent decline in household PM2.5 exposure.
Collapse
Affiliation(s)
- Run-Xuan Zhou
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hong-Jin Liao
- The Second Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Jun-Jie Hu
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hua Xiong
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiu-Yu Cai
- Department of VIP Inpatient, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, People's Republic of China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
8
|
Nagel G, Chen J, Jaensch A, Skodda L, Rodopoulou S, Strak M, de Hoogh K, Andersen ZJ, Bellander T, Brandt J, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Katsouyanni K, Ketzel M, Leander K, Magnusson PKE, Pershagen G, Rizzuto D, Samoli E, Severi G, Stafoggia M, Tjønneland A, Vermeulen RCH, Wolf K, Zitt E, Brunekreef B, Hoek G, Raaschou-Nielsen O, Weinmayr G. Long-term exposure to air pollution and incidence of gastric and the upper aerodigestive tract cancers in a pooled European cohort: The ELAPSE project. Int J Cancer 2024; 154:1900-1910. [PMID: 38339851 DOI: 10.1002/ijc.34864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 02/12/2024]
Abstract
Air pollution has been shown to significantly impact human health including cancer. Gastric and upper aerodigestive tract (UADT) cancers are common and increased risk has been associated with smoking and occupational exposures. However, the association with air pollution remains unclear. We pooled European subcohorts (N = 287,576 participants for gastric and N = 297,406 for UADT analyses) and investigated the association between residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone in the warm season (O3w) with gastric and UADT cancer. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. During 5,305,133 and 5,434,843 person-years, 872 gastric and 1139 UADT incident cancer cases were observed, respectively. For gastric cancer, we found no association with PM2.5, NO2 and BC while for UADT the hazard ratios (95% confidence interval) were 1.15 (95% CI: 1.00-1.33) per 5 μg/m3 increase in PM2.5, 1.19 (1.08-1.30) per 10 μg/m3 increase in NO2, 1.14 (1.04-1.26) per 0.5 × 10-5 m-1 increase in BC and 0.81 (0.72-0.92) per 10 μg/m3 increase in O3w. We found no association between long-term ambient air pollution exposure and incidence of gastric cancer, while for long-term exposure to PM2.5, NO2 and BC increased incidence of UADT cancer was observed.
Collapse
Affiliation(s)
- Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Andrea Jaensch
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Lea Skodda
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maciej Strak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Zorana J Andersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- iClimate - Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Daniela Fecht
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
- Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College, London, UK
| | - John Gulliver
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, UK
| | - Ole Hertel
- Faculty of Technical Sciences, Aarhus University, Roskilde, Denmark
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, UK
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Debora Rizzuto
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Massimo Stafoggia
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Anne Tjønneland
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- The Danish Cancer Institute, Copenhagen, Denmark
| | - Roel C H Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Emanuel Zitt
- Agency for Preventive and Social Medicine (aks), Bregenz, Austria
- Department of Internal Medicine 3, LKH Feldkirch, Feldkirch, Austria
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ole Raaschou-Nielsen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- The Danish Cancer Institute, Copenhagen, Denmark
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| |
Collapse
|
9
|
Weinmayr G, Chen J, Jaensch A, Skodda L, Rodopoulou S, Strak M, de Hoogh K, Andersen ZJ, Bellander T, Brandt J, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Katsouyanni K, Ketzel M, Leander K, Magnusson PKE, Pershagen G, Rizzuto D, Samoli E, Severi G, Stafoggia M, Tjønneland A, Vermeulen R, Wolf K, Zitt E, Brunekreef B, Thurston G, Hoek G, Raaschou-Nielsen O, Nagel G. Long-term exposure to several constituents and sources of PM 2.5 is associated with incidence of upper aerodigestive tract cancers but not gastric cancer: Results from the large pooled European cohort of the ELAPSE project. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168789. [PMID: 37996018 DOI: 10.1016/j.scitotenv.2023.168789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
It is unclear whether cancers of the upper aerodigestive tract (UADT) and gastric cancer are related to air pollution, due to few studies with inconsistent results. The effects of particulate matter (PM) may vary across locations due to different source contributions and related PM compositions, and it is not clear which PM constituents/sources are most relevant from a consideration of overall mass concentration alone. We therefore investigated the association of UADT and gastric cancers with PM2.5 elemental constituents and sources components indicative of different sources within a large multicentre population based epidemiological study. Cohorts with at least 10 cases per cohort led to ten and eight cohorts from five countries contributing to UADT- and gastric cancer analysis, respectively. Outcome ascertainment was based on cancer registry data or data of comparable quality. We assigned home address exposure to eight elemental constituents (Cu, Fe, K, Ni, S, Si, V and Zn) estimated from Europe-wide exposure models, and five source components identified by absolute principal component analysis (APCA). Cox regression models were run with age as time scale, stratified for sex and cohort and adjusted for relevant individual and neighbourhood level confounders. We observed 1139 UADT and 872 gastric cancer cases during a mean follow-up of 18.3 and 18.5 years, respectively. UADT cancer incidence was associated with all constituents except K in single element analyses. After adjustment for NO2, only Ni and V remained associated with UADT. Residual oil combustion and traffic source components were associated with UADT cancer persisting in the multiple source model. No associations were found for any of the elements or source components and gastric cancer incidence. Our results indicate an association of several PM constituents indicative of different sources with UADT but not gastric cancer incidence with the most robust evidence for traffic and residual oil combustion.
Collapse
Affiliation(s)
- Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany.
| | - Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Andrea Jaensch
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Lea Skodda
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maciej Strak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Zorana J Andersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; iClimate - interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Daniela Fecht
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy; Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College, London, UK
| | - John Gulliver
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, UK
| | - Ole Hertel
- Faculty of Technical Sciences, Aarhus University, Roskilde, Denmark
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford GU2 7XH, UK
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Debora Rizzuto
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gianluca Severi
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" team, CESP UMR1018, 94805, Villejuif, France
| | - Massimo Stafoggia
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Anne Tjønneland
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark; The Danish Cancer Institute, Copenhagen, Denmark
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Emanuel Zitt
- Agency for Preventive and Social Medicine (aks), Bregenz, Austria; Department of Internal Medicine 3, LKH Feldkirch, Feldkirch, Austria
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - George Thurston
- Division of Environmental Medicine, Depts of Medicine and Population Health, New York University Grossman School of Medicine, New York, USA
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Ole Raaschou-Nielsen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; The Danish Cancer Institute, Copenhagen, Denmark
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| |
Collapse
|
10
|
Taj T, Chen J, Rodopoulou S, Strak M, de Hoogh K, Poulsen AH, Andersen ZJ, Bellander T, Brandt J, Zitt E, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Jørgensen JT, Katsouyanni K, Ketzel M, Lager A, Leander K, Liu S, Ljungman P, Severi G, Besson C, Magnusson PKE, Nagel G, Pershagen G, Peters A, Rizzuto D, Samoli E, Sørensen M, Stafoggia M, Tjønneland A, Weinmayr G, Wolf K, Brunekreef B, Hoek G, Raaschou-Nielsen O. Long-term exposure to ambient air pollution and risk of leukemia and lymphoma in a pooled European cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123097. [PMID: 38065336 DOI: 10.1016/j.envpol.2023.123097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/08/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
Leukemia and lymphoma are the two most common forms of hematologic malignancy, and their etiology is largely unknown. Pathophysiological mechanisms suggest a possible association with air pollution, but little empirical evidence is available. We aimed to investigate the association between long-term residential exposure to outdoor air pollution and risk of leukemia and lymphoma. We pooled data from four cohorts from three European countries as part of the "Effects of Low-level Air Pollution: a Study in Europe" (ELAPSE) collaboration. We used Europe-wide land use regression models to assess annual mean concentrations of fine particulate matter (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone (O3) at residences. We also estimated concentrations of PM2.5 elemental components: copper (Cu), iron (Fe), zinc (Zn); sulfur (S); nickel (Ni), vanadium (V), silicon (Si) and potassium (K). We applied Cox proportional hazards models to investigate the associations. Among the study population of 247,436 individuals, 760 leukemia and 1122 lymphoma cases were diagnosed during 4,656,140 person-years of follow-up. The results showed a leukemia hazard ratio (HR) of 1.13 (95% confidence intervals [CI]: 1.01-1.26) per 10 μg/m3 NO2, which was robust in two-pollutant models and consistent across the four cohorts and according to smoking status. Sex-specific analyses suggested that this association was confined to the male population. Further, the results showed increased lymphoma HRs for PM2.5 (HR = 1.16; 95% CI: 1.02-1.34) and potassium content of PM2.5, which were consistent in two-pollutant models and according to sex. Our results suggest that air pollution at the residence may be associated with adult leukemia and lymphoma.
Collapse
Affiliation(s)
- Tahir Taj
- Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark.
| | - Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Maciej Strak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland.
| | | | - Zorana J Andersen
- Section of Environment and Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden.
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark.
| | - Emanuel Zitt
- Agency for Preventive and Social Medicine (aks), Bregenz, Austria; Department of Internal Medicine 3, LKH Feldkirch, Feldkirch, Austria.
| | - Daniela Fecht
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom.
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Region Health Service, ASL Roma 1, Rome, Italy; Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College, London, United Kingdom.
| | - John Gulliver
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom; Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, United Kingdom.
| | - Ole Hertel
- Department of Ecoscience, Aarhus University, Roskilde, Denmark.
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Germany.
| | | | - Jeanette T Jørgensen
- Section of Environment and Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom.
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark; Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford GU2 7XH, United Kingdom.
| | - Anton Lager
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden.
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Shuo Liu
- Section of Environment and Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Petter Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Cardiology, Danderyd University Hospital, Stockholm, Sweden.
| | - Gianluca Severi
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, 94805, Villejuif, France; Department of Statistics, Computer Science, Applications "G. Parenti" (DISIA), University of Florence, Italy.
| | - Caroline Besson
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" Team, CESP UMR1018, 94805, Villejuif, France.
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany.
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany; Chair of Epidemiology, Ludwig Maximilians Universität München, Munich, Germany.
| | - Debora Rizzuto
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Stockholm Gerontology Research Center, Stockholm, Sweden.
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Mette Sørensen
- Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark.
| | - Massimo Stafoggia
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Epidemiology, Lazio Region Health Service, ASL Roma 1, Rome, Italy.
| | - Anne Tjønneland
- Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark.
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany.
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Ole Raaschou-Nielsen
- Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark; Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark.
| |
Collapse
|
11
|
Zhang J, Chen Z, Shan D, Wu Y, Zhao Y, Li C, Shu Y, Linghu X, Wang B. Adverse effects of exposure to fine particles and ultrafine particles in the environment on different organs of organisms. J Environ Sci (China) 2024; 135:449-473. [PMID: 37778818 DOI: 10.1016/j.jes.2022.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 10/03/2023]
Abstract
Particulate pollution is a global risk factor that seriously threatens human health. Fine particles (FPs) and ultrafine particles (UFPs) have small particle diameters and large specific surface areas, which can easily adsorb metals, microorganisms and other pollutants. FPs and UFPs can enter the human body in multiple ways and can be easily and quickly absorbed by the cells, tissues and organs. In the body, the particles can induce oxidative stress, inflammatory response and apoptosis, furthermore causing great adverse effects. Epidemiological studies mainly take the population as the research object to study the distribution of diseases and health conditions in a specific population and to focus on the identification of influencing factors. However, the mechanism by which a substance harms the health of organisms is mainly demonstrated through toxicological studies. Combining epidemiological studies with toxicological studies will provide a more systematic and comprehensive understanding of the impact of PM on the health of organisms. In this review, the sources, compositions, and morphologies of FPs and UFPs are briefly introduced in the first part. The effects and action mechanisms of exposure to FPs and UFPs on the heart, lungs, brain, liver, spleen, kidneys, pancreas, gastrointestinal tract, joints and reproductive system are systematically summarized. In addition, challenges are further pointed out at the end of the paper. This work provides useful theoretical guidance and a strong experimental foundation for investigating and preventing the adverse effects of FPs and UFPs on human health.
Collapse
Affiliation(s)
- Jianwei Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhao Chen
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Dan Shan
- Department of Medical, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China
| | - Yang Wu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Yue Zhao
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Chen Li
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin 300070, China
| | - Yue Shu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoyu Linghu
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Baiqi Wang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin 300070, China; National Demonstration Center for Experimental Preventive Medicine Education (Tianjin Medical University), Tianjin 300070, China.
| |
Collapse
|
12
|
Zgłobicki W, Baran-Zgłobicka B. Air pollution in major Polish cities in the period 2005-2021: Intensity, effects and attempts to reduce it. ENVIRONMENTAL RESEARCH 2024; 240:117497. [PMID: 37914007 DOI: 10.1016/j.envres.2023.117497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Air quality in Poland is among the lowest in Europe due to high emissions of harmful substances. This causes the development of diseases and leads to a high number of premature deaths. Particularly high pollution occurs in parts of urban areas. The most serious problem is unregulated emissions from buildings and vehicles. That is why it is so important to take action to improve air quality at the local level. The study assessed changes in the concentrations of NO2, O3, PM10, PM2.5 and benzo(a)pyrene in 11 major Polish cities between 2005 and 2021. In 2021 average levels were: NO2 - 25 μg/m3, O3 - 45 μg/m3, PM10 - 26 μg/m3, PM2.5 -17 μg/m3, benzo(a)pyrene - 2.1 ng/m3. The highest exceedances of WHO standards over the studied period were for PM2.5, followed by NO2 and PM10. The annual average levels fell by 17% for NO2 and by 18% for PM10 between 2005 and 2021, and by 34% for PM2.5 and 27% for benzo(a)pyrene between 2010 and 2021. The most polluted cities are Kraków, Katowice and Łódź. The highest concentrations of pollutants typically occurred in 2006 and 2011, the lowest in 2020. Strategic documents and programmes that formulate objectives for reducing emissions and improving air quality were evaluated. Policy documents enable numerous measures to improve air quality. Plans are not always effectively implemented due to a lack of formal tools and financial resources.
Collapse
Affiliation(s)
- Wojciech Zgłobicki
- Institute of Earth and Environmental Sciences, Maria Curie-Skłodowska University, Kraśnicka 2d, 20-718, Poland.
| | - Bogusława Baran-Zgłobicka
- Institute of Socio-Economic Geography and Spatial Management, Maria Curie-Skłodowska University, Kraśnicka 2d, 20-718, Lublin, Poland
| |
Collapse
|
13
|
Nakhjirgan P, Kashani H, Kermani M. Exposure to outdoor particulate matter and risk of respiratory diseases: a systematic review and meta-analysis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 46:20. [PMID: 38153542 DOI: 10.1007/s10653-023-01807-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
According to epidemiological studies, particulate matter (PM) is an important air pollutant that poses a significant threat to human health. The relationship between particulate matter and respiratory diseases has been the subject of numerous studies, but these studies have produced inconsistent findings. The purpose of this systematic review was to examine the connection between outdoor particulate matter (PM2.5 and PM10) exposure and respiratory disorders (COPD, lung cancer, LRIs, and COVID-19). For this purpose, we conducted a literature search between 2012 and 2022 in PubMed, Web of Science, and Scopus. Out of the 58 studies that were part of the systematic review, meta-analyses were conducted on 53 of them. A random effect model was applied separately for each category of study design to assess the pooled association between exposure to PM2.5 and PM10 and respiratory diseases. Based on time-series and cohort studies, which are the priorities of the strength of evidence, a significant relationship between the risk of respiratory diseases (COPD, lung cancer, and COVID-19) was observed (COPD: pooled HR = 1.032, 95% CI: 1.004-1.061; lung cancer: pooled HR = 1.017, 95% CI: 1.015-1.020; and COVID-19: pooled RR = 1.004, 95% CI: 1.002-1.006 per 1 μg/m3 increase in PM2.5). Also, a significant relationship was observed between PM10 and respiratory diseases (COPD, LRIs, and COVID-19) based on time-series and cohort studies. Although the number of studies in this field is limited, which requires more investigations, it can be concluded that outdoor particulate matter can increase the risk of respiratory diseases.
Collapse
Affiliation(s)
- Pegah Nakhjirgan
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Homa Kashani
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Turner MC, Andersen ZJ, Neira M, Krzyzanowski M, Malmqvist E, González Ortiz A, Kiesewetter G, Katsouyanni K, Brunekreef B, Melén E, Ljungman P, Tolotto M, Forastiere F, Dendale P, Price R, Bakke O, Reichert S, Hoek G, Pershagen G, Peters A, Querol X, Gerometta A, Samoli E, Markevych I, Basthiste R, Khreis H, Pant P, Nieuwenhuijsen M, Sacks JD, Hansen K, Lymes T, Stauffer A, Fuller GW, Boogaard H, Hoffmann B. Clean air in Europe for all! Taking stock of the proposed revision to the ambient air quality directives: a joint ERS, HEI and ISEE workshop report. Eur Respir J 2023; 62:2301380. [PMID: 37827574 PMCID: PMC10894647 DOI: 10.1183/13993003.01380-2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Abstract
Ambient air pollution is a major public health concern and comprehensive new legislation is currently being considered to improve air quality in Europe. The European Respiratory Society (ERS), Health Effects Institute (HEI), and International Society for Environmental Epidemiology (ISEE) organised a joint meeting on May 24, 2023 in Brussels, Belgium, to review and critically evaluate the latest evidence on the health effects of air pollution and discuss ongoing revisions of the European Ambient Air Quality Directives (AAQDs). A multi-disciplinary expert group of air pollution and health researchers, patient and medical societies, and policy representatives participated. This report summarises key discussions at the meeting.
Collapse
Affiliation(s)
- Michelle C Turner
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Maria Neira
- World Health Organization (WHO), Geneva, Switzerland
| | | | | | | | - Gregor Kiesewetter
- International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | | | | | - Erik Melén
- Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Paul Dendale
- European Society of Cardiology (ESC), Sophia Antipolis, France
| | - Richard Price
- European Cancer Organisation (ECO), Brussels, Belgium
| | - Ole Bakke
- Standing Committee of European Doctors (CPME), Brussels, Belgium
| | - Sibylle Reichert
- International Association of Mutual Benefit Societies (AIM), Brussels, Belgium
| | - Gerard Hoek
- Utrecht University, Utrecht, The Netherlands
| | | | - Annette Peters
- Helmholtz München - German Center for Environmental Health, Neuherberg, Germany
- IBE, Medical Faculty, Ludwig Maximilians Universität, Munich, Germany
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Spain
| | | | - Evangelia Samoli
- Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Iana Markevych
- Institute of Psychology, Jagiellonian University, Krakow, Poland
- Health and Quality of Life in a Green and Sustainable Environment, SRIPD, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Haneen Khreis
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Jason D Sacks
- Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency (EPA), Research Triangle Park, NC, USA
| | - Kjeld Hansen
- European Lung Foundation, Sheffield, UK
- Kristiania University College, Oslo, Norway
| | | | | | - Gary W Fuller
- MRC Centre for Environment and Health, Imperial College London, London, UK
| | | | | |
Collapse
|
15
|
Park EJ, Yang MJ, Kang MS, Jo YM, Yoon C, Kim HB, Kim DW, Lee GH, Kwon IH, Park HJ, Kim JB. Subway station dust-induced pulmonary inflammation may be due to the dysfunction of alveolar macrophages: Possible contribution of bound elements. Toxicology 2023; 496:153618. [PMID: 37611816 DOI: 10.1016/j.tox.2023.153618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/09/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
With its increasing value as a means of public transportation, the health effects of the air in subway stations have attracted public concern. In the current study, we investigated the pulmonary toxicity of dust collected from an air purifier installed on the platform of the busiest subway station in Seoul. We found that the dust contained various elements which are attributable to the facilities and equipment used to operate the subway system. Particularly, iron (Fe), chromium (Cr), zirconium (Zr), barium (Ba), and molybdenum (Mo) levels were more notable in comparison with those in dust collected from the ventilation chamber of a subway station. To explore the health effects of inhaled dust, we first instilled via the trachea in ICR mice for 13 weeks. The total number of pulmonary macrophages increased significantly with the dose, accompanying hematological changes. Dust-laden alveolar macrophages and inflammatory cells accumulated in the perivascular regions in the lungs of the treated mice, and pulmonary levels of CXCL-1, TNF-α, and TGF-β increased clearly compared with the control. The CCR5 and CD54 level expressed on BAL cell membranes was also enhanced following exposure to dust, whereas the CXCR2 level tended to decrease in the same samples. In addition, we treated the dust to alveolar macrophages (known as dust cells), lysosomal and mitochondrial function decreased, accompanied by cell death, and NO production was rapidly elevated with concentration. Moreover, the expression of autophagy- (p62) and anti-oxidant (SOD-2)-related proteins increased, and the expression of inflammation-related genes was dramatically up-regulated in the dust-treated cells. Therefore, we suggest that dysfunction of alveolar macrophages may importantly contribute to dust-induced inflammatory responses and that the exposure concentrations of Cr, Fe, Mo, Zr, and Ba should be considered carefully when assessing the health risks associated with subway dust. We also hypothesize that the bound elements may contribute to dust-induced macrophage dysfunction by inhibiting viability.
Collapse
Affiliation(s)
- Eun-Jung Park
- College of Medicine, Graduate School, Kyung Hee University, 02447, Republic of Korea; Human Health and Environmental Toxins Research Center, Kyung Hee University, 02447, Republic of Korea.
| | - Mi-Jin Yang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup 56212, Republic of Korea
| | - Min-Sung Kang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup 56212, Republic of Korea; Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 02447, Republic of Korea
| | - Young-Min Jo
- Department of Environmental Science and Engineering, Global Campus, Kyung Hee University, 17104, Republic of Korea
| | - Cheolho Yoon
- Ochang Center, Korea Basic Science Institute, 28119, Republic of Korea
| | - Hyun-Bin Kim
- College of Medicine, Graduate School, Kyung Hee University, 02447, Republic of Korea
| | - Dong-Wan Kim
- School of Civil, Environmental and Architectural Engineering, Korea University, 02841, Republic of Korea
| | - Gwang-Hee Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, 02841, Republic of Korea
| | - Ik-Hwan Kwon
- Safety Measurement Institute, Korea Research Institute of Standards and Science, 34113, Republic of Korea
| | - Hee-Jin Park
- Jeonbuk Branch Institute, Korea Institute of Toxicology, Jeongup 56212, Republic of Korea
| | - Jin-Bae Kim
- Division of Cardiology, Department of Internal Medicine, Kyung-Hee University Hospital, Kyung Hee University, 02447, Republic of Korea.
| |
Collapse
|
16
|
Guimarães Ribeiro A, Ferlay J, Piñeros M, Dias de Oliveira Latorre MDR, Tavares Guerreiro Fregnani JH, Bray F. Geographic variations in cancer incidence and mortality in the State of São Paulo, Brazil 2001-17. Cancer Epidemiol 2023; 85:102403. [PMID: 37390700 PMCID: PMC10432824 DOI: 10.1016/j.canep.2023.102403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Cancer is a leading cause of morbidity and mortality in Brazil and the burden is rising. To better inform tailored cancer actions, we compare incidence and mortality profiles according to small areas in the capital and northeast region of the State of São Paulo for the leading cancer types. METHODS New cancer cases were obtained from cancer registries covering the department of Barretos (2003-2017) and the municipality of São Paulo (2001-2015). Cancer deaths for the same period were obtained from a Brazilian public government database. Age-standardized rates per 100,000 persons-years by cancer and sex are presented as thematic maps, by municipality for Barretos region, and by district for São Paulo. RESULTS Prostate and breast cancer were the leading forms of cancer incidence in Barretos, with lung cancer leading in terms of cancer mortality in both regions. The highest incidence and mortality rates were seen in municipalities from the northeast of Barretos region in both sexes, while elevated incidence rates were mainly found in São Paulo districts with high and very high socioeconomic status (SES), with mortality rates more dispersed. Breast cancer incidence rates in São Paulo were 30 % higher than Barretos, notably in high and very high SES districts, while corresponding rates of cervical cancer conveyed the opposite profile, with elevated rates in low and medium SES districts. CONCLUSIONS There is substantial diversity in the cancer profiles in the two regions, by cancer type and sex, with a clear relation between the cancer incidence and mortality patterns observed at the district level and corresponding SES in the capital.
Collapse
Affiliation(s)
- Adeylson Guimarães Ribeiro
- Cancer Surveillance Branch, International Agency for Research on Cancer, Lyon, France; Educational and Research Institute, Barretos Cancer Hospital, Barretos, Brazil.
| | - Jacques Ferlay
- Cancer Surveillance Branch, International Agency for Research on Cancer, Lyon, France.
| | - Marion Piñeros
- Cancer Surveillance Branch, International Agency for Research on Cancer, Lyon, France.
| | | | | | - Freddie Bray
- Cancer Surveillance Branch, International Agency for Research on Cancer, Lyon, France.
| |
Collapse
|
17
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN. Peculiar weather patterns effects on air pollution and COVID-19 spread in Tokyo metropolis. ENVIRONMENTAL RESEARCH 2023; 228:115907. [PMID: 37080275 PMCID: PMC10111861 DOI: 10.1016/j.envres.2023.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
As a pandemic hotspot in Japan, between March 1, 2020-October 1, 2022, Tokyo metropolis experienced seven COVID-19 waves. Motivated by the high rate of COVID-19 incidence and mortality during the seventh wave, and environmental/health challenges we conducted a time-series analysis to investigate the long-term interaction of air quality and climate variability with viral pandemic in Tokyo. Through daily time series geospatial and observational air pollution/climate data, and COVID-19 incidence and death cases, this study compared the environmental conditions during COVID-19 multiwaves. In spite of five State of Emergency (SOEs) restrictions associated with COVID-19 pandemic, during (2020-2022) period air quality recorded low improvements relative to (2015-2019) average annual values, namely: Aerosol Optical Depth increased by 9.13% in 2020 year, and declined by 6.64% in 2021, and 12.03% in 2022; particulate matter PM2.5 and PM10 decreased during 2020, 2021, and 2022 years by 10.22%, 62.26%, 0.39%, and respectively by 4.42%, 3.95%, 5.76%. For (2021-2022) period the average ratio of PM2.5/PM10 was (0.319 ± 0.1640), showing a higher contribution to aerosol loading of traffic-related coarse particles in comparison with fine particles. The highest rates of the daily recorded COVID-19 incidence and death cases in Tokyo during the seventh COVID-19 wave (1 July 2022-1 October 2022) may be attributed to accumulation near the ground of high levels of air pollutants and viral pathogens due to: 1) peculiar persistent atmospheric anticyclonic circulation with strong positive anomalies of geopotential height at 500 hPa; 2) lower levels of Planetary Boundary Layer (PBL) heights; 3) high daily maximum air temperature and land surface temperature due to the prolonged heat waves (HWs) in summer 2022; 4) no imposed restrictions. Such findings can guide public decision-makers to design proper strategies to curb pandemics under persistent stable anticyclonic weather conditions and summer HWs in large metropolitan areas.
Collapse
Affiliation(s)
- Maria A Zoran
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania.
| | - Roxana S Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Dan M Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Marina N Tautan
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| |
Collapse
|
18
|
Ścibior A, Llopis J, Dobrakowski PP, Męcik-Kronenberg T. CNS-Related Effects Caused by Vanadium at Realistic Exposure Levels in Humans: A Comprehensive Overview Supplemented with Selected Animal Studies. Int J Mol Sci 2023; 24:ijms24109004. [PMID: 37240351 DOI: 10.3390/ijms24109004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Neurodegenerative disorders, which are currently incurable diseases of the nervous system, are a constantly growing social concern. They are progressive and lead to gradual degeneration and/or death of nerve cells, resulting in cognitive deterioration or impaired motor functions. New therapies that would ensure better treatment results and contribute to a significant slowdown in the progression of neurodegenerative syndromes are constantly being sought. Vanadium (V), which is an element with a wide range of impacts on the mammalian organism, is at the forefront among the different metals studied for their potential therapeutic use. On the other hand, it is a well-known environmental and occupational pollutant and can exert adverse effects on human health. As a strong pro-oxidant, it can generate oxidative stress involved in neurodegeneration. Although the detrimental effects of vanadium on the CNS are relatively well recognized, the role of this metal in the pathophysiology of various neurological disorders, at realistic exposure levels in humans, is not yet well characterized. Hence, the main goal of this review is to summarize data on the neurological side effects/neurobehavioral alterations in humans, in relation to vanadium exposure, with the focus on the levels of this metal in biological fluids/brain tissues of subjects with some neurodegenerative syndromes. Data collected in the present review indicate that vanadium cannot be excluded as a factor playing a pivotal role in the etiopathogenesis of neurodegenerative illnesses, and point to the need for additional extensive epidemiological studies that will provide more evidence supporting the relationship between vanadium exposure and neurodegeneration in humans. Simultaneously, the reviewed data, clearly showing the environmental impact of vanadium on health, suggest that more attention should be paid to chronic diseases related to vanadium and to the assessment of the dose-response relationship.
Collapse
Affiliation(s)
- Agnieszka Ścibior
- Laboratory of Oxidative Stress, Department of Biomedicine and Environmental Research, Institute of Biological Sciences, Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynów St. 1J, 20-708 Lublin, Poland
| | - Juan Llopis
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, 18100 Armilla, Spain
- Sport and Health Research Centre, University of Granada, 18016 Granada, Spain
| | - Paweł Piotr Dobrakowski
- Psychology Institute, Humanitas University in Sosnowiec, Jana Kilińskiego St. 43, 41-200 Sosnowiec, Poland
| | - Tomasz Męcik-Kronenberg
- Department of Pathomorphology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 3 Maja St. 13, 41-800 Zabrze, Poland
| |
Collapse
|
19
|
Negoita SI, Ionescu RV, Zlati ML, Antohi VM, Nechifor A. New Regional Dynamic Cancer Model across the European Union. Cancers (Basel) 2023; 15:cancers15092545. [PMID: 37174011 PMCID: PMC10177237 DOI: 10.3390/cancers15092545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Can increasing levels of economic wealth significantly influence changes in cancer incidence and mortality rates? METHODS We investigated this issue by means of regression analyses based on the study of incidence and mortality indicators for lip, oral cavity, and pharyngeal; colon; pancreatic; lung; leukaemia; brain and central nervous system cancers in correlation with the levels of economic welfare and financial allocations to health at the level of the European Union member states, with the exception of Luxembourg and Cyprus for which there are no official statistical data reported. RESULTS The results of the study showed that there were significant disparities both regionally and by gender, requiring corrective public policy measures that were formulated in this study. CONCLUSIONS The conclusions highlight the main findings of the study in terms of the evolution of the disease, present the significant aspects that characterise the evolution of each type of cancer during the period analysed (1993-2021), and highlight the novelty and limitations of the study and future directions of research. As a result, increasing economic welfare is a potential factor in halting the effects of cancer incidence and mortality at the population level, while the financial allocations to health of EU member countries' budgets are a drawback due to large regional disparities.
Collapse
Affiliation(s)
- Silvius Ioan Negoita
- Anaesthesia Intensive Care Unit, Department Orthopedics, University of Medicine and Pharmacy Carol Davila of Bucharest, 020021 Bucharest, Romania
| | - Romeo Victor Ionescu
- Department of Administrative Sciences and Regional Studies, Dunarea de Jos University of Galati, 800008 Galati, Romania
| | - Monica Laura Zlati
- Department of Business Administration, Dunarea de Jos University of Galati, 800008 Galati, Romania
| | - Valentin Marian Antohi
- Department of Business Administration, Dunarea de Jos University of Galati, 800008 Galati, Romania
- Departament of Finance, Accounting and Economic Theory, Transilvania University of Brasov, 500036 Galati, Romania
| | - Alexandru Nechifor
- Department of Medical Clinical, Dunarea de Jos University of Galati, 800008 Galati, Romania
| |
Collapse
|
20
|
Stelzner S, Keller G, Gockel I, Herrmann M. [Climate change and (surgical) health in context]. CHIRURGIE (HEIDELBERG, GERMANY) 2023; 94:191-198. [PMID: 36688970 DOI: 10.1007/s00104-022-01795-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND The impacts of the climate crisis will result in a health crisis in addition to loss of habitats and increasing supply uncertainty. In this context, the health sector and especially surgery are relevant emitters of greenhouse gases, thus contributing to the magnitude of the climate crisis. Many reviews regarding the impacts on human health are available; however, a view from the surgical perspective has so far been underrepresented. MATERIAL AND METHODS This narrative review summarizes the relevance of climate-related changes for the surgical disciplines based on a literature search. RESULTS Immediate impacts are expected by the increasing number of extreme weather events, e.g., floods, droughts and wildfires. In these settings, surgery is a part of the disaster medicine chain but simultaneously the functionality of surgical departments can be impaired or even break down when they are themselves affected by extreme weather events. Heat waves cause an increase in surgical site infections, which may lead to postponement of elective surgery for patients at high risk. Collateral impacts are mirrored by an increase in the incidence of lung and skin cancers, which often need surgical treatment within a multidisciplinary setting. Additionally, there are indirect impacts that are of a very different nature, e.g., inadequate diet which leads to further deterioration of the greenhouse gas footprint of the health sector due to the necessity of bariatric surgical capacities. CONCLUSION The climate crisis represents a major challenge in surgery and all other medical disciplines. At the same time is it indispensable that the health sector and therefore surgery, take steps towards a zero emission pathway.
Collapse
Affiliation(s)
- Sigmar Stelzner
- Klinik für Viszeral‑, Transplantations‑, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig, AöR, Liebigstr. 20, 04103, Leipzig, Deutschland.
| | | | - Ines Gockel
- Klinik für Viszeral‑, Transplantations‑, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig, AöR, Liebigstr. 20, 04103, Leipzig, Deutschland
| | - Martin Herrmann
- KLUG - Deutsche Allianz Klimawandel und Gesundheit e. V., Berlin, Deutschland
| |
Collapse
|
21
|
Park JE, Lee JY, Chae J, Min CH, Shin HS, Lee SY, Lee JY, Park JH, Jeon J. In vivo tracking of toxic diesel particulate matter in mice using radiolabeling and nuclear imaging. CHEMOSPHERE 2023; 313:137395. [PMID: 36574577 DOI: 10.1016/j.chemosphere.2022.137395] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Exposure to diesel particulate matter (DPM) is associated with several adverse health effects, including severe respiratory diseases. Quantitative analysis of DPM in vivo can provide important information on the behavior of harmful chemicals, as well as their toxicological impacts in living subjects. This study presents whole-body images and tissue distributions of DPM in animal models, using molecular imaging and radiolabeling techniques. The self-assembly of the 89Zr-labeled pyrene analog with a suspension of DPM efficiently produced 89Zr-incorporated DPM (89Zr-DPM). Positron emission tomography images were obtained for mice exposed to 89Zr-DPM via three administration routes: intratracheal, oral, and intravenous injection. DPM was largely distributed in the lungs and only slowly cleared after 7 days in mice exposed via the intratracheal route. In addition, a portion of 89Zr-DPM was translocated to other organs, such as the heart, spleen, and liver. Uptake values in these organs were also noticeable following exposure via the intravenous route. In contrast, most of the orally administered DPM was excreted quickly within a day. These results suggest that continuous inhalation exposure to DPM causes serious lung damage and may cause toxic effects in the extrapulmonary organs.
Collapse
Affiliation(s)
- Jung Eun Park
- Department of Applied Chemistry, College of Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Jun Young Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, Republic of Korea
| | - Jungho Chae
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, Republic of Korea
| | - Chang Ho Min
- Department of Applied Chemistry, College of Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Hee Soon Shin
- Division of Functional Food Research, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea; Food Biotechnology Program, University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - So-Young Lee
- Division of Functional Food Research, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea; Food Biotechnology Program, University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Jae Young Lee
- Department of Environmental and Safety Engineering, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Jeong Hoon Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup, 56212, Republic of Korea.
| | - Jongho Jeon
- Department of Applied Chemistry, College of Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|
22
|
Jegasothy E, Hanigan IC, Van Buskirk J, Morgan GG, Jalaludin B, Johnston FH, Guo Y, Broome RA. Acute health effects of bushfire smoke on mortality in Sydney, Australia. ENVIRONMENT INTERNATIONAL 2023; 171:107684. [PMID: 36577296 DOI: 10.1016/j.envint.2022.107684] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/28/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Bushfire smoke is a major ongoing environmental hazard in Australia. In the summer of 2019-2020 smoke from an extreme bushfire event exposed large populations to high concentrations of particulate matter (PM) pollution. In this study we aimed to estimate the effect of bushfire-related PM of less than 2.5 μm in diameter (PM2.5) on the risk of mortality in Sydney, Australia from 2010 to 2020. METHODS We estimated concentrations of PM2.5 for three subregions of Sydney from measurements at monitoring stations using inverse-distance weighting and cross-referenced extreme days (95th percentile or above) with satellite imagery to determine if bushfire smoke was present. We then used a seasonal and trend decomposition method to estimate the Non-bushfire PM2.5 concentrations on those days. Daily PM2.5 concentrations above the Non-bushfire concentrations on bushfire smoke days were deemed to be Bushfire PM2.5. We used distributed-lag non-linear models to estimate the effect of Bushfire and Non-bushfire PM2.5 on daily counts of mortality with sub-analyses by age. These models controlled for seasonal trends in mortality as well as daily temperature, day of week and public holidays. RESULTS Within the three subregions, between 110 and 134 days were identified as extreme bushfire smoke days within the subregions of Sydney. Bushfire-related PM2.5 ranged from 6.3 to 115.4 µg/m3. A 0 to 10 µg/m3 increase in Bushfire PM2.5 was associated with a 3.2% (95% CI 0.3, 6.2%) increase in risk of all-cause death, cumulatively, in the 3 days following exposure. These effects were present in those aged 65 years and over, while no effect was observed in people under 65 years. CONCLUSION Bushfire PM2.5 exposure is associated with an increased risk of mortality, particularly in those over 65 years of age. This increase in risk was clearest at Bushfire PM2.5 concentrations up to 30 µg/m3 above background (Non-bushfire), with possible plateauing at higher concentrations of Bushfire PM2.5.
Collapse
Affiliation(s)
- Edward Jegasothy
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; University Centre for Rural Health, Faculty of Medicine and Health, University of Sydney, Lismore, NSW, Australia; The Centre for Air Pollution, Energy and Health Research (CAR), Glebe, NSW, Australia.
| | - Ivan C Hanigan
- The Centre for Air Pollution, Energy and Health Research (CAR), Glebe, NSW, Australia; WHO Collaborating Centre for Environmental Health Impact Assessment, School of Population Health, Faculty of Health Sciences, Curtin University, Bentley, WA, Australia
| | - Joe Van Buskirk
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; Sydney Local Health District, NSW Health, Camperdown, NSW, Australia
| | - Geoffrey G Morgan
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia; University Centre for Rural Health, Faculty of Medicine and Health, University of Sydney, Lismore, NSW, Australia; The Centre for Air Pollution, Energy and Health Research (CAR), Glebe, NSW, Australia
| | - Bin Jalaludin
- The Centre for Air Pollution, Energy and Health Research (CAR), Glebe, NSW, Australia; School of Population Health, University of New South Wales, NSW, Australia
| | - Fay H Johnston
- The Centre for Air Pollution, Energy and Health Research (CAR), Glebe, NSW, Australia; Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Yuming Guo
- The Centre for Air Pollution, Energy and Health Research (CAR), Glebe, NSW, Australia; Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Richard A Broome
- The Centre for Air Pollution, Energy and Health Research (CAR), Glebe, NSW, Australia; Health Protection NSW, NSW Health, St Leonards, NSW, Australia
| |
Collapse
|
23
|
Yu M, Chen F, Wang H, Fu Q, Yan L, Chen Z, Li H, Jia M, Yang D, Hua X, Shen T, Zhu Q, Zhou C. Endoplasmic reticulum stress mediates nickel chloride-induced epithelial‑mesenchymal transition and migration of human lung cancer A549 cells through Smad2/3 and p38 MAPK activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114398. [PMID: 36508813 DOI: 10.1016/j.ecoenv.2022.114398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The endoplasmic reticulum (ER) is a cellular membrane-bound organelle whereby proteins are synthesized, folded and glycosylated. Due to intrinsic (e.g., genetic) and extrinsic (e.g., environmental stressors) perturbations, ER proteostasis can be deregulated within cells which triggers unfolded protein response (UPR) as an adaptive stress response that may impact the migration and invasion properties of cancer cells. However, the mechanisms underlying the nickel compounds on lung cancer cell migration and invasion remain uncertain. OBJECTIVE We aimed to study whether Nickel chloride (NiCl2) induces ER stress in lung cancer cells, and whether ER stress is involved in modulating epithelial-mesenchymal transition (EMT) and migration by Smads and MAPKs pathways activation following NiCl2 treatment. METHODS A549 cells were treated with NiCl2 to determine the cell viability using MTT assay. The wound healing assay was used to evaluate cell migration ability. ER ultrastructure was observed by transmission electron microscopy. Western blotting assay was performed to evaluate the protein levels of BIP, PERK, IRE-1α, XBP-1 s, and ATF6 for ER stress and UPR, E-cadherin and Vimentin for EMT, p-Smad2/3, p-ERK, p-JNK, and p-P38 for activation of Smads and MAPKs signaling pathways. RESULTS The expression levels of BIP, PERK, IRE-1α, XBP-1 s, and ATF6 were significantly increased following treatment with NiCl2 in time- and dose-effect relationship. The ER stress inhibitor 4-PBA downregulated the expression levels of the above five proteins, and reversed the decrease in E-cadherin protein level and the increase in vimentin protein expression and cell migration abilities caused by NiCl2. Furthermore, 4-PBA significantly reduced nickel chloride-induced Smad2/3 and p38 MAPK pathway activation, while not affected ERK and JNK MAPK pathways. CONCLUSION NiCl2 triggers ER stress and UPR in A549 cells. Moreover, 4-PBA alleviates NiCl2-induced EMT and migration ability of A549 cells possibly through the Smad2/3 and p38 MAPK pathways activation, rather than ERK and JNK MAPK pathways.
Collapse
Affiliation(s)
- Mengping Yu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Feipeng Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Haopei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Qianlei Fu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Lingzi Yan
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Zhao Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Huijun Li
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Miaomiao Jia
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Dalong Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Xiaohui Hua
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Tong Shen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China
| | - Qixing Zhu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China; Institute of Dermatology, the First Affiliated Hospital, Anhui Medical University, Hefei 230022, Anhui, PR China
| | - Chengfan Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, PR China.
| |
Collapse
|
24
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN. Cumulative effects of air pollution and climate drivers on COVID-19 multiwaves in Bucharest, Romania. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION : TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS, PART B 2022; 166:368-383. [PMID: 36034108 PMCID: PMC9391082 DOI: 10.1016/j.psep.2022.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Over more than two years of global health crisis due to ongoing COVID-19 pandemic, Romania experienced a five-wave pattern. This study aims to assess the potential impact of environmental drivers on COVID-19 transmission in Bucharest, capital of Romania during the analyzed epidemic period. Through descriptive statistics and cross-correlation tests applied to time series of daily observational and geospatial data of major outdoor inhalable particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) or ≤ 10 µm (PM10), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), carbon monoxide (CO), Aerosol Optical Depth at 550 nm (AOD) and radon (222Rn), we investigated the COVID-19 waves patterns under different meteorological conditions. This study examined the contribution of individual climate variables on the ground level air pollutants concentrations and COVID-19 disease severity. As compared to the long-term average AOD over Bucharest from 2015 to 2019, for the same year periods, this study revealed major AOD level reduction by ~28 % during the spring lockdown of the first COVID-19 wave (15 March 2020-15 May 2020), and ~16 % during the third COVID-19 wave (1 February 2021-1 June 2021). This study found positive correlations between exposure to air pollutants PM2.5, PM10, NO2, SO2, CO and 222Rn, and significant negative correlations, especially for spring-summer periods between ground O3 levels, air temperature, Planetary Boundary Layer height, and surface solar irradiance with COVID-19 incidence and deaths. For the analyzed time period 1 January 2020-1 April 2022, before and during each COVID-19 wave were recorded stagnant synoptic anticyclonic conditions favorable for SARS-CoV-2 virus spreading, with positive Omega surface charts composite average (Pa/s) at 850 mb during fall- winter seasons, clearly evidenced for the second, the fourth and the fifth waves. These findings are relevant for viral infections controls and health safety strategies design in highly polluted urban environments.
Collapse
Key Words
- 222Rn
- 222Rn, Radon
- AOD, Total Aerosol Optical Depth at 550 nm
- Aerosol Optical Depth (AOD)
- CAMS, Copernicus Atmosphere Monitoring Service
- CO, Carbon monoxide
- COVID, 19 Coronavirus Disease 2019
- COVID-19 disease
- Climate variables
- DNC, Daily New COVID-19 positive cases
- DND, Daily New COVID-19 Deaths
- MERS, CoV Middle East respiratory syndrome coronavirus
- NO2, Nitrogen dioxide
- NOAA, National Oceanic and Atmospheric Administration U.S.A.
- O3, Ozone
- Outdoor air pollutants
- PBL, Planetary Boundary Layer height
- PM, Particulate Matter: PM1(1 µm), PM2.5 (2.5 µm) and PM10(10.0 µm) diameter
- RH, Air relative humidity
- SARS, CoV Severe Outdoor Respiratory Syndrome Coronavirus
- SARS, CoV-2 Severe Outdoor Respiratory Syndrome Coronavirus 2
- SI, Surface solar global irradiance
- SO2, Sulfur dioxide
- Synoptic meteorological circulation
- T, Air temperature at 2 m height
- p, Air pressure
- w, Wind speed intensity
Collapse
Affiliation(s)
- Maria A Zoran
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| | - Roxana S Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| | - Dan M Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| | - Marina N Tautan
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele, Bucharest 077125, Romania
| |
Collapse
|
25
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN. Impacts of exposure to air pollution, radon and climate drivers on the COVID-19 pandemic in Bucharest, Romania: A time series study. ENVIRONMENTAL RESEARCH 2022; 212:113437. [PMID: 35594963 PMCID: PMC9113773 DOI: 10.1016/j.envres.2022.113437] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 05/05/2023]
Abstract
During the ongoing global COVID-19 pandemic disease, like several countries, Romania experienced a multiwaves pattern over more than two years. The spreading pattern of SARS-CoV-2 pathogens in the Bucharest, capital of Romania is a multi-factorial process involving among other factors outdoor environmental variables and viral inactivation. Through descriptive statistics and cross-correlation analysis applied to daily time series of observational and geospatial data, this study aims to evaluate the synergy of COVID-19 incidence and lethality with air pollution and radon under different climate conditions, which may exacerbate the coronavirus' effect on human health. During the entire analyzed period 1 January 2020-21 December 2021, for each of the four COVID-19 waves were recorded different anomalous anticyclonic synoptic meteorological patterns in the mid-troposphere, and favorable stability conditions during fall-early winter seasons for COVID-19 disease fast-spreading, mostly during the second, and the fourth waves. As the temporal pattern of airborne SARS-CoV-2 and its mutagen variants is affected by seasonal variability of the main air pollutants and climate parameters, this paper found: 1) the daily outdoor exposures to air pollutants (particulate matter PM2.5 and PM10, nitrogen dioxide-NO2, sulfur dioxide-SO2, carbon monoxide-CO) and radon - 222Rn, are directly correlated with the daily COVID-19 incidence and mortality, and may contribute to the spread and the severity of the pandemic; 2) the daily ground ozone-O3 levels, air temperature, Planetary Boundary Layer height, and surface solar irradiance are anticorrelated with the daily new COVID-19 incidence and deaths, averageingful for spring-summer periods. Outdoor exposure to ambient air pollution associated with radon is a non-negligible driver of COVID-19 transmission in large metropolitan areas, and climate variables are risk factors in spreading the viral infection. The findings of this study provide useful information for public health authorities and decision-makers to develop future pandemic diseases strategies in high polluted metropolitan environments.
Collapse
Affiliation(s)
- Maria A Zoran
- National Institute of R&D for Optoelectronics, Bucharest, Magurele, Romania.
| | - Roxana S Savastru
- National Institute of R&D for Optoelectronics, Bucharest, Magurele, Romania
| | - Dan M Savastru
- National Institute of R&D for Optoelectronics, Bucharest, Magurele, Romania
| | - Marina N Tautan
- National Institute of R&D for Optoelectronics, Bucharest, Magurele, Romania
| |
Collapse
|
26
|
Karimi B, Moradzadeh R, Samadi S. Air pollution and COVID-19 mortality and hospitalization: An ecological study in Iran. ATMOSPHERIC POLLUTION RESEARCH 2022; 13:101463. [PMID: 35664828 PMCID: PMC9154086 DOI: 10.1016/j.apr.2022.101463] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 05/07/2023]
Abstract
Exposure to air pollution can exacerbate the severe COVID-19 conditions, subsequently causing an increase in the death rate. In this study, we investigated the association between long-term exposure to air pollution and risks of COVID-19 hospitalization and mortality in Arak, Iran. Air pollution data was obtained from air quality monitoring stations located in Arak, including particulate matter (PM), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3) and carbon monoxide (CO). Daily numbers of Covid-19 cases including hospital admissions (hospitalization) and deaths (mortality) were obtained from a national data registry recorded by Arak University of Medical Sciences. A Poisson regression model with natural spline functions was applied to set the effects of air pollution on COVID-19 hospitalization and mortality. The percent change of COVID-19 hospitalization per 10 μg/m3 increase in PM2.5 and PM10 were 8.5% (95% CI 7.6 to 11.5) and 4.8% (95% CI 3 to 6.5), respectively. An increase of 10 μg/m3 in PM2.5 resulting in 5.6% (95% CI: 3.1-8.3%) increase in COVID-19 mortality. The percent change of hospitalization (7.7%, 95% CI 2.2 to 13.3) and mortality (4.5%, 95% CI 0.3 to 9.5) were positively significant per one ppb increment in SO2, while NO2, O3 and CO were inversely associated with hospitalization and mortality. Our findings strongly suggesting that a small increase in long-term exposure to PM2.5, PM10 and SO2 elevating risks of hospitalization and mortality related to COVID-19.
Collapse
Affiliation(s)
- Behrooz Karimi
- Department of Environmental Health Engineering, Health Faculty, Arak University of Medical Sciences, Arak, Iran
| | - Rahmatollah Moradzadeh
- Department of Epidemiology, Health Faculty, Arak University of Medical Sciences, Arak, Iran
| | - Sadegh Samadi
- Department of Occupational Health and Safety Engineering, Health Faculty, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
27
|
Chen J, Rodopoulou S, Strak M, de Hoogh K, Taj T, Poulsen AH, Andersen ZJ, Bellander T, Brandt J, Zitt E, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Verschuren WMM, Jørgensen JT, Katsouyanni K, Ketzel M, Lager A, Leander K, Liu S, Ljungman P, Severi G, Boutron-Ruault MC, Magnusson PKE, Nagel G, Pershagen G, Peters A, Rizzuto D, van der Schouw YT, Samoli E, Sørensen M, Stafoggia M, Tjønneland A, Weinmayr G, Wolf K, Brunekreef B, Raaschou-Nielsen O, Hoek G. Long-term exposure to ambient air pollution and bladder cancer incidence in a pooled European cohort: the ELAPSE project. Br J Cancer 2022; 126:1499-1507. [PMID: 35173304 PMCID: PMC9090745 DOI: 10.1038/s41416-022-01735-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/21/2022] [Accepted: 02/02/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The evidence linking ambient air pollution to bladder cancer is limited and mixed. METHODS We assessed the associations of bladder cancer incidence with residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC), warm season ozone (O3) and eight PM2.5 elemental components (copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc) in a pooled cohort (N = 302,493). Exposures were primarily assessed based on 2010 measurements and back-extrapolated to the baseline years. We applied Cox proportional hazard models adjusting for individual- and area-level potential confounders. RESULTS During an average of 18.2 years follow-up, 967 bladder cancer cases occurred. We observed a positive though statistically non-significant association between PM2.5 and bladder cancer incidence. Hazard Ratios (HR) were 1.09 (95% confidence interval (CI): 0.93-1.27) per 5 µg/m3 for 2010 exposure and 1.06 (95% CI: 0.99-1.14) for baseline exposure. Effect estimates for NO2, BC and O3 were close to unity. A positive association was observed with PM2.5 zinc (HR 1.08; 95% CI: 1.00-1.16 per 10 ng/m3). CONCLUSIONS We found suggestive evidence of an association between long-term PM2.5 mass exposure and bladder cancer, strengthening the evidence from the few previous studies. The association with zinc in PM2.5 suggests the importance of industrial emissions.
Collapse
Affiliation(s)
- Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maciej Strak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Tahir Taj
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Zorana J Andersen
- Section of Environment and Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- iClimate - interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Emanuel Zitt
- Agency for Preventive and Social Medicine (aks), Bregenz, Austria
- Department of Internal Medicine 3, LKH Feldkirch, Feldkirch, Austria
| | - Daniela Fecht
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
- Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College, London, UK
| | - John Gulliver
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, UK
| | - Ole Hertel
- Departments of Bioscience, Aarhus University, Roskilde, Denmark
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - W M Monique Verschuren
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jeanette T Jørgensen
- Section of Environment and Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, GU2 7XH, United Kingdom
| | - Anton Lager
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shuo Liu
- Section of Environment and Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Petter Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Danderyd University Hospital, Stockholm, Sweden
| | - Gianluca Severi
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" team, CESP UMR1018, 94805, Villejuif, France
- Department of Statistics, Computer Science and Applications "G. Parenti" (DISIA), University of Florence, Florence, Italy
| | - Marie-Christine Boutron-Ruault
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" team, CESP UMR1018, 94805, Villejuif, France
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Epidemiology, Ludwig Maximilians Universität München, Munich, Germany
| | - Debora Rizzuto
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Mette Sørensen
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Massimo Stafoggia
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Diet, Genes and Environment (DGE), Bonn, Germany
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Ole Raaschou-Nielsen
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
28
|
Korsiak J, Pinault L, Christidis T, Burnett RT, Abrahamowicz M, Weichenthal S. Long-term exposure to wildfires and cancer incidence in Canada: a population-based observational cohort study. Lancet Planet Health 2022; 6:e400-e409. [PMID: 35550079 DOI: 10.1016/s2542-5196(22)00067-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Wildfires emit many carcinogenic pollutants that contaminate air, water, terrestrial, and indoor environments. However, little is known about the relationship between exposure to wildfires and cancer risk. We aimed to assess the associations between residential exposure to wildfires and the incidence of several cancer outcomes (lung cancer, brain cancer, non-Hodgkin lymphoma, multiple myeloma, and leukaemia) in Canada. METHODS We did a population-based observational cohort study of participants in the 1996 Canadian Census Health and Environment Cohort. The 1996 Canadian Census Health and Environment Cohort is a nationally representative sample of Canadian adults, followed up for cancer incidence and mortality from 1996 to 2015. For this analysis, we excluded participants who lived in major Canadian cities (with a population size greater than 1·5 million people), recent immigrants, and individuals younger than 25 years or 90 years of age or older at baseline. Exposures to wildfires were assigned on the basis of area burned within a 20 km or 50 km radius of residential locations and updated for annual residential mobility. Multivariable Cox proportional hazards models were used to estimate associations between exposure to wildfires and specific cancers associated with carcinogenic compounds released by wildfires, including lung and brain cancer, non-Hodgkin lymphoma, multiple myeloma, and leukaemia, adjusted for many personal and neighbourhood-level covariates. FINDINGS Our analyses included more than 2 million people followed up for a median of 20 years, for a total of 34 million person-years. Wildfire exposure was associated with slightly increased incidence of lung cancer and brain tumours. For example, cohort members exposed to a wildfire within 50 km of residential locations in the past 10 years had a 4·9% relatively higher incidence (adjusted hazard ratio [HR] 1·049, 95% CI 1·028-1·071) of lung cancer than unexposed populations, and a 10% relatively higher incidence (adjusted HR 1·100, 1·026-1·179) of brain tumours. Similar associations were observed for the 20 km buffer size. Wildfires were not associated with haematological cancers in this study, and concentration-response trends were not readily apparent when area burned was modelled as a continuous variable. INTERPRETATION Long-term exposure to wildfires might increase the risk of lung cancer and brain tumours. Further work is needed to develop long-term estimates of wildfire exposures that capture the complex mixture of environmental pollutants released during these events. FUNDING Canadian Institute for Health Research and Fonds de recherche du Quebec.
Collapse
Affiliation(s)
- Jill Korsiak
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| | - Lauren Pinault
- Health Analysis Division, Statistics Canada, Ottawa, ON, Canada
| | | | - Richard T Burnett
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Michal Abrahamowicz
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| | - Scott Weichenthal
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada.
| |
Collapse
|
29
|
Li Z, Ho KF, Dong G, Lee HF, Yim SHL. A novel approach for assessing the spatiotemporal trend of health risk from ambient particulate matter components: Case of Hong Kong. ENVIRONMENTAL RESEARCH 2022; 204:111866. [PMID: 34390721 DOI: 10.1016/j.envres.2021.111866] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The spatiotemporal assessment of health risk due to exposure to particulate matter (PM) components should be well studied because of the different toxicity among PM components. However, this research topic has long been overlooked. This study aimed to examine the spatiotemporal variability in ambient respirable PM (PM10) components associated inhalation carcinogenic and non-carcinogenic risk (ICR and INCR) in Hong Kong over 2015-2019. The land-use regression (LUR) approach was adopted to predict the spatial distribution of PM10 component concentrations for the period of 2015-2019, whereas the ICR and INCR values of PM10 components were also estimated using the classic health risk assessment method. Both concentration of PM10 and INCR of PM10 components showed a general decreasing trend, while ICR of PM10 components increased slightly over the study period. LUR-model-based spatial maps at 500 m × 500 m resolution revealed the important spatial variability in PM10 and its eleven components, and their associated ICR and INCR values. High pollution levels and high ICR and INCR of studied PM10 components were generally found in developed urban areas and along the road network. Despite the fact that the PM10 concentrations met the Hong Kong annual PM10 air quality objective of 50 μg/m3, there was still significant potential health risk from the studied PM10 components. This study highlights the importance of taking PM component concentrations and associated inhalation health risk as well as PM mass concentrations into account for the perspective of air quality management and protecting public health.
Collapse
Affiliation(s)
- Zhiyuan Li
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Kin-Fai Ho
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Guanghui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Harry Fung Lee
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Steve Hung Lam Yim
- Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Department of Geography and Resource Management, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Asian School of the Environment, Nanyang Technological University, Singapore; Stanley Ho Big Data Decision Analytics Research Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
30
|
Yang X, Zhang T, Zhang X, Chu C, Sang S. Global burden of lung cancer attributable to ambient fine particulate matter pollution in 204 countries and territories, 1990-2019. ENVIRONMENTAL RESEARCH 2022; 204:112023. [PMID: 34520750 DOI: 10.1016/j.envres.2021.112023] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Understanding the latest global spatio-temporal pattern of lung cancer burden attributable to ambient fine particulate matter pollution (PM2.5) is crucial to prioritize global lung cancer prevention, as well as environment improvement. METHODS Data on lung cancer attributable to ambient PM2.5 were downloaded from the Global Burden of Disease Study (GBD) 2019. The numbers and age-standardized rates on lung cancer mortality (ASMR) and disability-adjusted life years (ASDR) were estimated by age, sex, region, and country. We used estimated annual percentage change (EAPC) to quantify the temporal trends of ASMR and ASDR from 1990 to 2019. RESULTS In 2019, the number of global lung cancer deaths and DALYs attributable to ambient PM2.5 was approximately 0.31 million and 7.02 million respectively, among which more deaths and DALYs occurred in males. At GBD region level, the heaviest burden occurred in East Asia, accounting for over 50% worldwide, with China ranked first worldwide. The number of ambient PM2.5 attributable lung cancer deaths and DALYs has over doubled from 1990 to 2019, but high sociodemographic index (SDI) region had a rapid decrease, with EAPC -2.21 in ASMR (95% CI: -2.32, -2.09). The age-specific mortality rate or DALY rate has increased in all age groups in low to middle SDI regions from 1990 to 2019. The ASMR or ASDR showed an inverted V-shaped association with SDI. The EAPC in ASMR or ASDR was highly negatively correlated with ASMR or ASDR in 1990 and SDI in 2019, with coefficients around 0.70. CONCLUSIONS The number of ambient PM2.5-related lung cancer deaths and DALYs has largely increased because of the increase of exposure to PM2.5, population growth, and aging. Local governments should do economic activities under the consideration of public health, especially in high-burden areas.
Collapse
Affiliation(s)
- Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China; Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Tongchao Zhang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China; Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China; Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xiangwei Zhang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Chong Chu
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Shaowei Sang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, People's Republic of China; Clinical Research Center of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China; Department of Epidemiology and Health Statistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
31
|
Rodopoulou S, Stafoggia M, Chen J, de Hoogh K, Bauwelinck M, Mehta AJ, Klompmaker JO, Oftedal B, Vienneau D, Janssen NAH, Strak M, Andersen ZJ, Renzi M, Cesaroni G, Nordheim CF, Bekkevold T, Atkinson R, Forastiere F, Katsouyanni K, Brunekreef B, Samoli E, Hoek G. Long-term exposure to fine particle elemental components and mortality in Europe: Results from six European administrative cohorts within the ELAPSE project. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:152205. [PMID: 34890671 DOI: 10.1016/j.scitotenv.2021.152205] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 05/25/2023]
Abstract
Evidence for the association between long-term exposure to ambient particulate matter components and mortality from natural causes is sparse and inconsistent. We evaluated this association in six large administrative cohorts in the framework of the Effects of Low-Level Air Pollution: A Study in Europe (ELAPSE) project. We analyzed data from country-wide administrative cohorts in Norway, Denmark, the Netherlands, Belgium, Switzerland and in Rome (Italy). Annual 2010 mean concentrations of copper (Cu), iron (Fe), potassium (K), nickel (Ni), sulfur (S), silicon (Si), vanadium (V) and zinc (Zn) in fine particulate matter (PM2.5) were estimated using 100 × 100 m Europe-wide hybrid land use regression models assigned to the participants' residential addresses. We applied cohort-specific Cox proportional hazard models controlling for area- and individual-level covariates to evaluate associations with natural mortality. Two pollutant models adjusting for PM2.5 total mass or nitrogen dioxide (NO2) were also applied. We pooled cohort-specific estimates using a random effects meta-analysis. We included almost 27 million participants contributing more than 240 million person-years. All components except Zn were significantly associated with natural mortality [pooled Hazard Ratios (HRs) (95% CI): 1.037 (1.014, 1.060) per 5 ng/m3 Cu; 1.069 (1.031, 1.108) per 100 ng/m3 Fe; 1.039 (1.018, 1.062) per 50 ng/m3 K; 1.024 (1.006, 1.043) per 1 ng/m3 Ni; 1.036 (1.016, 1.057) per 200 ng/m3 S; 1.152 (1.048, 1.266) per 100 ng/m3 Si; 1.020 (1.006, 1.034) per 2 ng/m3 V]. Only K and Si were robust to PM2.5 or NO2 adjustment [pooled HRs (95% CI) per 50 ng/m3 in K: 1.025 (1.008, 1.044), 1.020 (0.999, 1.042) and per 100 ng/m3 in Si: 1.121 (1.039, 1.209), 1.068 (1.022, 1.117) adjusted for PM2.5 and NO2 correspondingly]. Our findings indicate an association of natural mortality with most components, which was reduced after adjustment for PM2.5 and especially NO2.
Collapse
Affiliation(s)
- Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | - Mariska Bauwelinck
- Interface Demography - Department of Sociology, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Amar J Mehta
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark; Methodology and Analysis, Statistics Denmark, Copenhagen, Denmark.
| | - Jochem O Klompmaker
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Bente Oftedal
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | - Nicole A H Janssen
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands.
| | - Maciej Strak
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands; Institute for Risk Assessment Sciences, Utrecht University, the Netherlands.
| | - Zorana J Andersen
- Section of Environmental and Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Matteo Renzi
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy.
| | - Giulia Cesaroni
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy.
| | - Carl Fredrik Nordheim
- Department of Zoonotic, Food- and Waterborne Infections, Norwegian Institute of Public Health, Oslo, Norway.
| | - Terese Bekkevold
- Department of Method Development and Analytics, Norwegian Institute of Public Health, Oslo, Norway.
| | - Richard Atkinson
- Population Health Research, Institute St George's, University of London, London, UK.
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy; Science Policy & Epidemiology Environmental Research Group, King's College London, London, UK
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, UK.
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
32
|
Shao L, Cao Y, Jones T, Santosh M, Silva LFO, Ge S, da Boit K, Feng X, Zhang M, BéruBé K. COVID-19 mortality and exposure to airborne PM 2.5: A lag time correlation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151286. [PMID: 34743816 PMCID: PMC8553633 DOI: 10.1016/j.scitotenv.2021.151286] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/07/2021] [Accepted: 10/23/2021] [Indexed: 05/05/2023]
Abstract
COVID-19 has escalated into one of the most serious crises in the 21st Century. Given the rapid spread of SARS-CoV-2 and its high mortality rate, here we investigate the impact and relationship of airborne PM2.5 to COVID-19 mortality. Previous studies have indicated that PM2.5 has a positive relationship with the spread of COVID-19. To gain insights into the delayed effect of PM2.5 concentration (μgm-3) on mortality, we focused on the role of PM2.5 in Wuhan City in China and COVID-19 during the period December 27, 2019 to April 7, 2020. We also considered the possible impact of various meteorological factors such as temperature, precipitation, wind speed, atmospheric pressure and precipitation on pollutant levels. The results from the Pearson's correlation coefficient analyses reveal that the population exposed to higher levels of PM2.5 pollution are susceptible to COVID-19 mortality with a lag time of >18 days. By establishing a generalized additive model, the delayed effect of PM2.5 on the death toll of COVID-19 was verified. A negative correction was identified between temperature and number of COVID-19 deaths, whereas atmospheric pressure exhibits a positive correlation with deaths, both with a significant lag effect. The results from our study suggest that these epidemiological relationships may contribute to the understanding of the COVID-19 pandemic and provide insights for public health strategies.
Collapse
Affiliation(s)
- Longyi Shao
- State Key Laboratory of Coal Resources and Safe Mining, College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.
| | - Yaxin Cao
- State Key Laboratory of Coal Resources and Safe Mining, College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Tim Jones
- School of Earth and Environmental Sciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK
| | - M Santosh
- School of Earth Sciences and Resources, China University of Geoscience Beijing, Beijing 100083, China; Department of Earth Science, University of Adelaide, Adelaide, SA 5005, Australia
| | - Luis F O Silva
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia
| | - Shuoyi Ge
- State Key Laboratory of Coal Resources and Safe Mining, College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Kátia da Boit
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia
| | - Xiaolei Feng
- State Key Laboratory of Coal Resources and Safe Mining, College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Mengyuan Zhang
- State Key Laboratory of Coal Resources and Safe Mining, College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Kelly BéruBé
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, Wales, UK
| |
Collapse
|
33
|
Klompmaker JO, Janssen NAH, Bloemsma LD, Marra M, Lebret E, Gehring U, Hoek G. Effects of exposure to surrounding green, air pollution and traffic noise with non-accidental and cause-specific mortality in the Dutch national cohort. Environ Health 2021; 20:82. [PMID: 34261495 PMCID: PMC8281461 DOI: 10.1186/s12940-021-00769-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/05/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Everyday people are exposed to multiple environmental factors, such as surrounding green, air pollution and traffic noise. These exposures are generally spatially correlated. Hence, when estimating associations of surrounding green, air pollution or traffic noise with health outcomes, the other exposures should be taken into account. The aim of this study was to evaluate associations of long-term residential exposure to surrounding green, air pollution and traffic noise with mortality. METHODS We followed approximately 10.5 million adults (aged ≥ 30 years) living in the Netherlands from 1 January 2013 until 31 December 2018. We used Cox proportional hazard models to evaluate associations of residential surrounding green (including the average Normalized Difference Vegetation Index (NDVI) in buffers of 300 and 1000 m), annual average ambient air pollutant concentrations [including particulate matter (PM2.5), nitrogen dioxide (NO2)] and traffic noise with non-accidental and cause-specific mortality, adjusting for potential confounders. RESULTS In single-exposure models, surrounding green was negatively associated with all mortality outcomes, while air pollution was positively associated with all outcomes. In two-exposure models, associations of surrounding green and air pollution attenuated but remained. For respiratory mortality, in a two-exposure model with NO2 and NDVI 300 m, the HR of NO2 was 1.040 (95%CI: 1.022, 1.059) per IQR increase (8.3 µg/m3) and the HR of NDVI 300 m was 0.964 (95%CI: 0.952, 0.976) per IQR increase (0.14). Road-traffic noise was positively associated with lung cancer mortality only, also after adjustment for air pollution or surrounding green. CONCLUSIONS Lower surrounding green and higher air pollution were associated with a higher risk of non-accidental and cause-specific mortality. Studies including only one of these correlated exposures may overestimate the associations with mortality of that exposure.
Collapse
Affiliation(s)
- Jochem O. Klompmaker
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Nicole A. H. Janssen
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Lizan D. Bloemsma
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Marten Marra
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
| | - Erik Lebret
- National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
34
|
Chen J, Rodopoulou S, de Hoogh K, Strak M, Andersen ZJ, Atkinson R, Bauwelinck M, Bellander T, Brandt J, Cesaroni G, Concin H, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Janssen NAH, Jöckel KH, Jørgensen J, Katsouyanni K, Ketzel M, Klompmaker JO, Lager A, Leander K, Liu S, Ljungman P, MacDonald CJ, Magnusson PK, Mehta A, Nagel G, Oftedal B, Pershagen G, Peters A, Raaschou-Nielsen O, Renzi M, Rizzuto D, Samoli E, van der Schouw YT, Schramm S, Schwarze P, Sigsgaard T, Sørensen M, Stafoggia M, Tjønneland A, Vienneau D, Weinmayr G, Wolf K, Brunekreef B, Hoek G. Long-Term Exposure to Fine Particle Elemental Components and Natural and Cause-Specific Mortality-a Pooled Analysis of Eight European Cohorts within the ELAPSE Project. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:47009. [PMID: 33844598 PMCID: PMC8041432 DOI: 10.1289/ehp8368] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/18/2021] [Accepted: 03/15/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Inconsistent associations between long-term exposure to particles with an aerodynamic diameter ≤ 2.5 μ m [fine particulate matter (PM 2.5 )] components and mortality have been reported, partly related to challenges in exposure assessment. OBJECTIVES We investigated the associations between long-term exposure to PM 2.5 elemental components and mortality in a large pooled European cohort; to compare health effects of PM 2.5 components estimated with two exposure modeling approaches, namely, supervised linear regression (SLR) and random forest (RF) algorithms. METHODS We pooled data from eight European cohorts with 323,782 participants, average age 49 y at baseline (1985-2005). Residential exposure to 2010 annual average concentration of eight PM 2.5 components [copper (Cu), iron (Fe), potassium (K), nickel (Ni), sulfur (S), silicon (Si), vanadium (V), and zinc (Zn)] was estimated with Europe-wide SLR and RF models at a 100 × 100 m scale. We applied Cox proportional hazards models to investigate the associations between components and natural and cause-specific mortality. In addition, two-pollutant analyses were conducted by adjusting each component for PM 2.5 mass and nitrogen dioxide (NO 2 ) separately. RESULTS We observed 46,640 natural-cause deaths with 6,317,235 person-years and an average follow-up of 19.5 y. All SLR-modeled components were statistically significantly associated with natural-cause mortality in single-pollutant models with hazard ratios (HRs) from 1.05 to 1.27. Similar HRs were observed for RF-modeled Cu, Fe, K, S, V, and Zn with wider confidence intervals (CIs). HRs for SLR-modeled Ni, S, Si, V, and Zn remained above unity and (almost) significant after adjustment for both PM 2.5 and NO 2 . HRs only remained (almost) significant for RF-modeled K and V in two-pollutant models. The HRs for V were 1.03 (95% CI: 1.02, 1.05) and 1.06 (95% CI: 1.02, 1.10) for SLR- and RF-modeled exposures, respectively, per 2 ng / m 3 , adjusting for PM 2.5 mass. Associations with cause-specific mortality were less consistent in two-pollutant models. CONCLUSION Long-term exposure to V in PM 2.5 was most consistently associated with increased mortality. Associations for the other components were weaker for exposure modeled with RF than SLR in two-pollutant models. https://doi.org/10.1289/EHP8368.
Collapse
Affiliation(s)
- Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Maciej Strak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Zorana J. Andersen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Richard Atkinson
- Population Health Research, St George’s, University of London, London, UK
| | - Mariska Bauwelinck
- Interface Demography, Department of Sociology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm, Sweden
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Denmark
| | - Giulia Cesaroni
- Department of Epidemiology, Lazio Region Health Service, Rome, Italy
| | - Hans Concin
- Agency for Preventive and Social Medicine, Bregenz, Austria
| | - Daniela Fecht
- Medical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Region Health Service, Rome, Italy
- Science Policy and Epidemiology Environmental Research Group, King’s College London, London, UK
| | - John Gulliver
- Medical Research Council Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Centre for Environmental Health and Sustainability, School of Geography, Geology and the Environment, University of Leicester, Leicester, UK
| | - Ole Hertel
- Department of Environmental Science, Aarhus University, Denmark
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | | | - Nicole A. H. Janssen
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Jeanette Jørgensen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Science Policy and Epidemiology Environmental Research Group, King’s College London, London, UK
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Denmark
- Global Centre for Clean Air Research, University of Surrey, Guildford, UK
| | - Jochem O. Klompmaker
- National Institute for Public Health and the Environment, Bilthoven, Netherlands
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Anton Lager
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shuo Liu
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Petter Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Danderyd University Hospital, Stockholm, Sweden
| | - Conor J. MacDonald
- Centre de recherche en Epidémiologie et Santé des Populations, Faculté de Medicine, Université Paris-Saclay, Villejuif, France
- Department of Statistics, Computer Science and Applications, University of Florence, Florence, Italy
| | - Patrik K.E. Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Amar Mehta
- Section of Epidemiology, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Bente Oftedal
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm, Sweden
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Epidemiology, Ludwig Maximilians Universität München, Munich, Germany
| | | | - Matteo Renzi
- Department of Epidemiology, Lazio Region Health Service, Rome, Italy
| | - Debora Rizzuto
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Yvonne T. van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Sara Schramm
- Institute for Medical Informatics, Biometry and Epidemiology, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Per Schwarze
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Torben Sigsgaard
- Department of Public Health, Section of Environment Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Mette Sørensen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Massimo Stafoggia
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Epidemiology, Lazio Region Health Service, Rome, Italy
| | | | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|