1
|
Liu X, Zhu Z, Wang X, Yang J, Zhang Y, Yan X, Li S, Chang T, Hao Y, Qin S. Construction of controlled hyper-crosslinked nanofibrous tubes for Cr(VI) removal: Response surface, kinetics, and isotherm. ENVIRONMENTAL RESEARCH 2024; 263:119980. [PMID: 39270952 DOI: 10.1016/j.envres.2024.119980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Porous organic polymers (POPs) exhibit significant potential for adsorbing toxic metal ions in wastewater. Developing POPs with controlled morphologies is a pivotal direction in this field. This study synthesized a series of novel hyper-crosslinked nanofibrous tubes designated HCNT-Cn (n = 4, 8, 12, 16) via Friedel-Crafts alkylation and quaternization reactions. These reactions were fine-tuned through a post-synthetic strategy involving varying alkyl chain lengths. These materials were characterized using FT-IR, SEM, N₂ adsorption-desorption isotherms, among others, and they were specifically evaluated for their ability to adsorb Cr(VI). Among the variants, HCNT-C₄ exhibited the highest specific surface area (495.26 m2 g-1), superior hydrophilicity (CA = 48.7°), and optimal adsorption performance. The adsorption kinetics of HCNT-C₄ conformed to a pseudo-second-order model, while its adsorption isotherm aligned with the Langmuir model. An investigation into the impact of Cr(VI) removal was conducted using three independent variables in a Central Composite Design (CCD) response surface model, revealing that under optimal conditions, the Cr(VI) removal efficiency reached 98%. Additionally, a mechanism for Cr(VI) adsorption on HCNT-C₄ was proposed. It was also found that HCNT-C₄ could be reused up to four times, maintaining a removal efficiency of 70%. This study suggests potential applications for removing Cr(VI) from contaminated wastewater.
Collapse
Affiliation(s)
- Xuanbo Liu
- Key Laboratory of CO(2) Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering, Handan, 056038, Hebei, China
| | - Zheng Zhu
- Key Laboratory of CO(2) Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering, Handan, 056038, Hebei, China
| | - Xionglei Wang
- Key Laboratory of CO(2) Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering, Handan, 056038, Hebei, China
| | - Jiajia Yang
- Key Laboratory of CO(2) Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering, Handan, 056038, Hebei, China; College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, Hebei, China
| | - Yuhang Zhang
- Key Laboratory of CO(2) Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering, Handan, 056038, Hebei, China
| | - Xiuli Yan
- Key Laboratory of CO(2) Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering, Handan, 056038, Hebei, China
| | - Shuangshuo Li
- Key Laboratory of CO(2) Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering, Handan, 056038, Hebei, China
| | - Tao Chang
- Key Laboratory of CO(2) Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering, Handan, 056038, Hebei, China; College of Energy and Environmental Engineering, Hebei University of Engineering, Handan, 056038, Hebei, China.
| | - Yongjing Hao
- Key Laboratory of CO(2) Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering, Handan, 056038, Hebei, China.
| | - Shenjun Qin
- Key Laboratory of CO(2) Utilization of Handan City, College of Material Science and Engineering, Hebei University of Engineering, Handan, 056038, Hebei, China.
| |
Collapse
|
2
|
Shahzad K, Hasan A, Hussain Naqvi SK, Parveen S, Hussain A, Ko KC, Park SH. Recent advances and factors affecting the adsorption of nano/microplastics by magnetic biochar. CHEMOSPHERE 2024; 370:143936. [PMID: 39667528 DOI: 10.1016/j.chemosphere.2024.143936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
The increase in nano/microplastics (NPs/MPs) from various everyday products entering aquatic environments highlights the urgent need to develop mitigation strategies. Biochar (BC), known for its excellent adsorption capabilities, can effectively target various harmful organic and inorganic pollutants. However, traditional methods involving powdered BC necessitate centrifugation and filtration, which can lead to the desorption of pollutants and subsequent secondary pollution. Magnetic biochar (MBC) offers a solution that facilitates straightforward and rapid separation from water through magnetic techniques. This review provides the latest insights into the progress made in MBC applications for the adsorption of NPs/MPs. This review further discusses how external factors such as pH, ionic strength, temperature, competing ions, dissolved organic matter, aging time, and particle size impact the MBC adsorption efficiency of MPs. The use of machine learning (ML) for optimizing the design and properties of BC materials is also briefly addressed. Finally, this review addresses existing challenges and future research directions aimed at improving the large-scale application of MBC for NPs/MPs removal.
Collapse
Affiliation(s)
- Khurram Shahzad
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Areej Hasan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Syed Kumail Hussain Naqvi
- Graduate School of Integrated Energy-AI, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Saima Parveen
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Abrar Hussain
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Kyong-Cheol Ko
- Korea Preclinical Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34113, Republic of Korea.
| | - Sang Hyun Park
- Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea; Radiation Science, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
3
|
Deng WK, Zeng JL, Deng YH, Liao XD, Xing SC. A critical review of microplastic pollution in breeding industry: Sources, distribution, impacts, and characterization techniques, mitigation strategies and future research directions. CHEMOSPHERE 2024; 368:143713. [PMID: 39542368 DOI: 10.1016/j.chemosphere.2024.143713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Microplastic (MP) pollution has garnered significant attention due to its detrimental effects on ecosystems and human health. If MPs contaminate farmed animals, they are more likely to enter the human body through the food chain, thereby impacting human health. Exploring MPs in breeding industry can provide a theoretical basis for breeding industry to prevent MP pollution. However, there is currently a lack of comprehensive summaries and overviews of MPs research in the industry as a whole. The core focus of the review is to improve our understanding of MPs in the breeding industry and provide valuable references and support for the development of mitigation strategies and policies. The review found that there are more studies related to MP pollution in the breeding industry, but there is inadequate information on the prevention and control technology. This review proposes strategies for prevention and control and discusses future research directions.
Collapse
Affiliation(s)
- Wei-Kang Deng
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jing-Li Zeng
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Yi-Heng Deng
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, 510642, Guangdong, China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510642, Guangdong, China
| | - Si-Cheng Xing
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
4
|
Sun Z, Zhou H, Hou J, Shen F, Guo X, Dai L. In-situ DRIFTS insights into the evolution of surface functionality of biochar upon thermal air oxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122582. [PMID: 39299126 DOI: 10.1016/j.jenvman.2024.122582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Biochar surface functionality is crucial for its application. Herein, the evolution of biochar surface functionality upon thermal air oxidation (TAO) was investigated in-situ by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and thermogravimetric analysis (TGA). The results show that, although the surface functionality of biochar is remarkably changed during TAO at the initial low temperature range, the biochar weight is still stable in the initial low temperature range, suggesting the chemisorption of O2 as intermediate oxygenated functional groups (OFGs) on biochar surface. Moreover, the evolution of biochar surface functionality upon TAO is highly affected on its preparation temperature and intrinsic minerals. Specifically, biochar produced at a high temperature is more resistant to TAO, and more favorable for the formation of ketone groups during TAO. While the biochars prepared at low or medium temperatures show a remarkable formation of carboxyl/lactone groups upon TAO, and the maximum temperature for the formation of carboxyl/lactone groups can be achieved at 400 °C. It's worth noting that the intrinsic minerals in biochar catalyze the TAO reaction, resulting in a much higher mass loss of biochar upon TAO. Furthermore, with the catalysis of intrinsic minerals, TAO is more suitable for enhancing the performance of biochar with intrinsic minerals. These results facilitate the design of engineered biochar via TAO for enhanced applications.
Collapse
Affiliation(s)
- Zhuozhuo Sun
- Key Laboratory of Development and Application of Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Academy of Agricultural Sciences, Chengdu, 610041, Sichuan, China
| | - Haiqin Zhou
- Key Laboratory of Development and Application of Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Academy of Agricultural Sciences, Chengdu, 610041, Sichuan, China
| | - Jianhua Hou
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Feng Shen
- Agro-Environmental Protection Institute, Chinese Academy of Agricultural Sciences, No. 31, Fukang Road, Nankai District, Tianjin, 300191, China
| | - Xujing Guo
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Lichun Dai
- Key Laboratory of Development and Application of Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, China; Research Center for Rural Energy and Ecology, Chinese Academy of Agricultural Sciences, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
Liu C, Zhao Z, Sui J, Ma H, Zhu L, Jiang H, Zhou R, Wang S, Dai Y. The Sword of Damocles: Microplastics and the molecular dynamics of sulfamonomethoxine revealed. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117058. [PMID: 39299208 DOI: 10.1016/j.ecoenv.2024.117058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
In recent years, the environmental impact of microplastics (MPs) and antibiotics (ATs) as pollutants cannot be ignored. In order to evaluate the carrier effect of MPs in the aqueous environment, three MPs, polyamide (PA), polyethylene (PE) and polyethylene terephthalate (PET), were selected in this study, and their structures were analyzed by means of characterization. A preliminary description of their interactions with sulfamonomethoxine was carried out by adsorption kinetics and isotherm fitting. The dominance of non-bonding capacity (van der Waals and electrostatic interaction forces) in the adsorption process was demonstrated using molecular dynamics (MD) simulations and density functional theory (DFT), with the interaction strengths ranked as PA > PE > PET, respectively. PA is less adsorbent stable at the molecular level but exhibits the largest adsorption capacity influenced by the characterized structure and multiple interaction forces. PET possesses a stronger stability and is not easily replaced by other substances. This will help to further understand the complex effect mechanism between MPs and organic pollutants, and provide an important reference for the prevention and control of environmental pollution.
Collapse
Affiliation(s)
- Chunrui Liu
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Zitong Zhao
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Jia Sui
- College of Life Sciences, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Haoran Ma
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Liya Zhu
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Huating Jiang
- School of Environmental Science and Engineering, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Ruyi Zhou
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Shiyao Wang
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin 150030, China
| | - Yingjie Dai
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin 150030, China.
| |
Collapse
|
6
|
Liu L, Wang J, Zhai J, Yan D, Lin Z. Regional disparities and technological approaches in heavy metal remediation: A comprehensive analysis of soil contamination in Asia. CHEMOSPHERE 2024; 366:143485. [PMID: 39374671 DOI: 10.1016/j.chemosphere.2024.143485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Rapid industrialization and urbanization in Asia have significantly increased heavy metal emissions, leading to severe challenges in soil contamination. This review critically examines the diverse sources of heavy metal pollution, regional disparities in contamination levels, and various remediation strategies across Asia. The connections between pollution sources and the resulting heavy metal contamination are explored, with a focus on individual assessments of pollution status in East Asia, South Asia, Southeast Asia, Central Asia, and West Asia. These assessments consider human, geographical, policy, and economic factors. The advantages and limitations of physical, chemical, and biological remediation techniques, as well as their combined applications, are analyzed. Additionally, the importance of regulatory measures, sustainable practices, and public awareness is emphasized for ensuring the long-term health and sustainability of Asian soils. This review aims to contribute to the sustainable development of Asian soils by providing region-specific strategies for the effective remediation of heavy metal contamination.
Collapse
Affiliation(s)
- Lu Liu
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jialin Wang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jieru Zhai
- Heilongjiang Provincial Energy Conservation Monitoring Center, No.139 Wenchang Street, Nangang District, Harbin, Heilongjiang Province, 150001, PR China
| | - Dapeng Yan
- Harbin Dan Shao Da Environmental Protection Technology Co., Ltd, PR China
| | - Zhengda Lin
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment Harbin Institute of Technology, Harbin, 150090, PR China.
| |
Collapse
|
7
|
Rahim K, Nawaz MN, Almehmadi M, Alsuwat MA, Liu L, Yu C, Khan SS. Public health implications of antibiotic resistance in sewage water: an epidemiological perspective. BIORESOUR BIOPROCESS 2024; 11:91. [PMID: 39340706 PMCID: PMC11438758 DOI: 10.1186/s40643-024-00807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The emergence and rapid spread of antibiotic resistance pose a major threat to global health, attributing to misuse and overuse of antibiotics resulting in antibiotics-resistant bacteria through natural mutation or transfer of resistance genes. A cross-sectional study was carried out, in which a total of 36 samples were systematically collected; of these, 26 were derived from the wastewater efflux and 10 from the receiving waters at several critical junctures along the Sutlej River. Herein, this study elucidated elevated levels of antibiotic resistance among bacterial isolates sourced from urban wastewater. Escherichia coli (E. coli) was the highest at 90% among the isolates, followed by Klebsiella pneumoniae (K. pneumoniae) at 58%, Pseudomonas aeruginosa (P. aeruginosa) at 55%, and Salmonella spp. at 53%. Many antibiotics were found to be more resistant including Ciproflaxacin, Co-Trimaxazole, Ampicillin and Tetracycline. Several antibiotic-resistance genes were found in isolated bacterial spp., such as Aminoglycosides (aadA), Sulfonamides (Sul1, Sul3), Tetracyclines (Tet (A/B/D)) and Cephalosporins (Bla_CTM X) at 41%, 35%, 29% and 12% respectively. Furthermore, the development of innovative wastewater treatment models and surveillance programs are crucial to counteract the dissemination of antibiotic resistance. To investigate the genetic determinants of antibiotic resistance, molecular analysis was performed, including DNA isolation, PCR amplification, and sequence analysis. The study helps investigate a diverse range of ARBs and ARGs in wastewater, which highlights the need of better laws for antibiotic usage and wastewater treatment processes. This investigation also stresses on regular monitoring of ARBs and ARGs in sewage wastewater. Through proactive interventions and sustained scientific inquiry, we can strive toward preserving environmental integrity and public health for successive generations.
Collapse
Affiliation(s)
- Kashif Rahim
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Muhammad Naveed Nawaz
- Department of Biological Sciences and Technology, China University of Geosciences, Wuhan, China
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Meshari A Alsuwat
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Luo Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shahin Shah Khan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
8
|
Ma H, Zhang B, Wang S, Liu C, Zhu L, Zhao Z, Li W, Shao Z, Liu X, Dai Y. Enhanced removal of tetracycline by vitamin C-modified cow manure biochar in water. Sci Rep 2024; 14:22362. [PMID: 39333265 PMCID: PMC11436880 DOI: 10.1038/s41598-024-73210-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
Vitamin C (VC), due to its chemical properties, can provide more oxygen-containing functional groups such as hydroxyl groups for biochar (BC), which promotes the adsorption of tetracycline on biochar. Therefore, in this study, cow dung biochar (CDBC) was modified with VC and VC-modified CDBC (CDBC-VC) was synthesized. The modified biochar was characterized and related factors, adsorption kinetics, isotherms and adsorption mechanisms were investigated. Adsorption kinetics indicate a fast rate of adsorption. The adsorption isotherms showed that the maximum adsorption capacity was 31.72 mg/g (CDBC) and 50.90 mg/g (CDBC-VC), respectively, and the adsorption process was inhomogeneous with multiple molecular layers and the adsorbent has a higher affinity. Mechanistic studies showed that hydrogen bonding interactions, π-π electron donor-acceptor interactions, hydrophobic interactions, and electrostatic interactions were the key to the adsorption process. The analysis of adsorbent regeneration showed that CDBC-VC had good adsorption performance. CDBC and CDBC-VC showed the best performance in simulated industrial wastewater with removal rates of 78.81% and 93.69%. The adsorption mechanism was comprehensively analyzed using six machine learning models. The extreme gradient boosting model gave the best fit. Analysis of the weights of the input variables for predicting adsorption efficiency showed that the ratio of initial TC concentration to BC dosage (29.8%), specific surface area (23%), isoelectric point (8.8%), and ash content (7.7%) had a significant effect on the predicted results.
Collapse
Affiliation(s)
- Haoran Ma
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Baiting Zhang
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Shiyao Wang
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Chunrui Liu
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Liya Zhu
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Zitong Zhao
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Wei Li
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, People's Republic of China.
| | - Ziyi Shao
- Research Center for Eco-Environmental SciencesChinese Academy of Sciences, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiao Liu
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yingjie Dai
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, People's Republic of China.
| |
Collapse
|
9
|
Wang Y, Li J, Li Q, Xu L, Ai Y, Liu W, Zhou Y, Zhang B, Guo N, Cao B, Qu J, Zhang Y. Effective amendment of cadmium in water and soil before and after aging of nitrogen-doped biochar: Preparation optimization, removal efficiency and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135356. [PMID: 39094312 DOI: 10.1016/j.jhazmat.2024.135356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Nitrogen-doped biochar (NBC) is a green material for remediating heavy metal pollution, but it undergoes aging under natural conditions, affecting its interaction with heavy metals. The preparation conditions of NBC were optimized using response surface methodology (RSM), and NBC was subjected to five different aging treatments to analyze the removal efficiency of Cd(II) and soil remediation capability before and after aging. The results indicated that NBC achieved optimal performance with a mass ratio of 5:2.43, an immersion time of 10.66 h, and a pyrolysis temperature of 900 °C. Aging diminished NBC's adsorption capacity for Cd(II) but did not change the main removal mechanism of monolayer chemical adsorption. Freeze-thaw cycles (FT), UV aging (L), and composite aging (U) treatments increased the proportion of bioavailable-Cd, and all aging treatments facilitated the conversion of potentially bioavailable-Cd to non-bioavailable-Cd. The application of NBC and five aged NBCs reduced the proportion of bioavailable-Cd in the soil through precipitation and complexation, increasing the proportion of non-bioavailable-Cd. Aging modifies the physicochemical properties of NBC, thus influencing soil characteristics and ultimately diminishing NBC's ability to passivate Cd in the soil. This study provides reference for the long-term application of biochar in heavy metal-contaminated environments.
Collapse
Affiliation(s)
- Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianen Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Qiaona Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Liang Xu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yunhe Ai
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Wei Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yutong Zhou
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Boyu Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Nan Guo
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Bo Cao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
10
|
Liu L, Liu C, Fu R, Nie F, Zuo W, Tian Y, Zhang J. Full-chain analysis on emerging contaminants in soil: Source, migration and remediation. CHEMOSPHERE 2024; 363:142854. [PMID: 39019170 DOI: 10.1016/j.chemosphere.2024.142854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Emerging contaminants (ECs) are gaining attention due to their prevalence and potential negative impacts on the environment and human health. This paper provides a comprehensive review of the status and trends of soil pollution caused by ECs, focusing on their sources, migration pathways, and environmental implications. Significant ECs, including plastics, synthetic polymers, pharmaceuticals, personal care products, plasticizers, and flame retardants, are identified due to their widespread use and toxicity. Their presence in soil is attributed to agricultural activities, urban waste, and wastewater irrigation. The review explores both horizontal and vertical migration pathways, with factors such as soil type, organic matter content, and moisture levels influencing their distribution. Understanding the behavior of ECs in soil is critical to mitigating their long-term risks and developing effective soil remediation strategies. The paper also examines the advantages and disadvantages of in situ and ex situ treatment approaches for ECs, highlighting optimal physical, chemical, and biological treatment conditions. These findings provide a fundamental basis for addressing the challenges and governance of soil pollution induced by ECs.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chunrui Liu
- College of Resources and Environment, Northeast Agricultural University, No. 600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - RunZe Fu
- Queen Mary School Hainan, Beijing University of Posts and Telecommunications, Lingshui Le'an International Education Innovation Pilot Zone, Hainan Province, 016000, China
| | - Fandi Nie
- Liaozhong District No. 1 Senior High School, No.139, Zhengfu Road, Liaozhong District, Shenyang, 110000, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
11
|
Hu J, Mi B, Chen L, Yuan Y, Zhang J, Wu F. An economical preparation strategy of magnetic biochar with high specific surface area for efficient removal of methyl orange. Int J Biol Macromol 2024; 276:134156. [PMID: 39098458 DOI: 10.1016/j.ijbiomac.2024.134156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Magnetic biochar (MBC) was obtained from pepper straw by impregnation-microwave pyrolysis method. The pyrolysis temperature and FeCl3 impregnation concentration were investigated on the structural properties of MBC and the adsorption of methyl orange (MO) in water. Characterization results showed that pyrolysis temperature and iron species significantly increased the specific surface area of MBC, which could reach the maximum of 2038.61 m2/g, and also provided more active adsorption sites by promoting the generation of graphitized structures and surface polar functional groups. MBC0.2-900 was selected as the adsorbent for MO with the maximum adsorption capacity reached 437.18 mg·g-1, 3.4 times higher than the virgin biochar. The adsorption process was dominated by chemisorption as well as spontaneous and exothermic. The adsorption mechanisms included pore-filling interaction, π-π EDA interaction, electrostatic interaction, hydrogen bonding, and Lewis acid-base electron interaction. In addition, MBC also exhibited excellent separability and reusability as a low-cost adsorbent. This study provided some theoretical foundation and technological support for producing high-performance biochar and developing pollutant removal technology in wastewater.
Collapse
Affiliation(s)
- Jian Hu
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Baobin Mi
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China; Research Institute of Vegetables, Hunan Academy of Agriculture Sciences, Changsha 410125, China.
| | - Long Chen
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yifan Yuan
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jilong Zhang
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Fangfang Wu
- School of Chemistry and Materials Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
12
|
Mo Y, Zhou L, Fu S, Yang H, Lin B, Zhang J, Lou Y, Li Y. Study on adsorption behavior of humic acid on aluminum in Enteromorpha prolifera. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:342-357. [PMID: 39219225 DOI: 10.1080/10934529.2024.2396728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
High level of aluminum content in Enteromorpha prolifera posed a growing threat to both its growth and human health. This study focused on exploring the factors, impacts, and process of removing aluminum from Enteromorpha prolifera using humic acid. The results showed that under experimental conditions of 0.0330 g·L-1 humic acid concentration, pH 3.80, 34 °C, and a duration of 40 min, the removal rate was up to 80.18%. The levels of major flavor components, proteins, and amino acids in Enteromorpha prolifera increased significantly after treatment, while polysaccharides and trace elements like calcium and magnesium decreased significantly. Infrared spectroscopy demonstrated that the main functional groups involved in binding with Al3+ during humic acid adsorption were hydroxyl, carboxyl, phenol, and other oxygen-containing groups. The adsorption process of Al3+ by humic acid was a spontaneous phenomenon divided into three key stages: fast adsorption, slow adsorption, and adsorption equilibrium, which resulted from both physical and chemical adsorption effects. This study provided a safe and efficient method in algae metal removal.
Collapse
Affiliation(s)
- Yuke Mo
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Liping Zhou
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Shiqian Fu
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Huicheng Yang
- Zhejiang Marine Development Research Institute, Zhoushan, Zhejiang, P. R. China
| | - Bangchu Lin
- Zhejiang Yulin Technology Co., Ltd., Ningbo, Zhejiang, P. R. China
| | - Jinjie Zhang
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Yongjiang Lou
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Yongyong Li
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, Zhejiang, P. R. China
| |
Collapse
|
13
|
Ren P, Wang L, Ma T, Zhao Y, Guo B, Luo C, Li S, Ji P. A thorough investigation into the adsorption behavior of sophorolipid-modified fly ash towards compound pollution of lead and tetracycline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174679. [PMID: 38992370 DOI: 10.1016/j.scitotenv.2024.174679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Heavy metal ions and antibiotics were simultaneously detected in authentic water systems. This research, for the first time, employed synthesized sophorolipid-modified fly ash(SFA) to eliminate tetracycline(TC) and lead(Pb2+) from wastewater. Various characterization techniques, including SEM-EDS, FTIR, XPS, BET, and Zeta, were employed to investigate the properties of the SFA. The results showed that the sophorolipid modification significantly improved the fly ash's adsorption capacities for the target pollutants. The static adsorption experiments elucidated the adsorption behaviors of SFA towards TC and Pb2+ in single and binary systems, highlighting the effects of different Environmental factors on the adsorption behavior in both types of systems. In single systems, SFA exhibited a maximum adsorption capacity of 128.96 mg/g for Pb2+ and 55.57 mg/g for TC. The adsorption of Pb2+ and TC followed pseudo-second-order kinetics and Freundlich isotherm models. The adsorption reactions are endothermic and occur spontaneously. SFA demonstrates varying adsorption mechanisms for two different types of pollutants. In the case of Pb2+, the primary mechanisms include ion exchange, electrostatic interaction, cation-π interaction, and complexation, while TC primarily engages in hydrogen bonding, π-π interaction, and complexation. The interaction between Pb2+ and TC has been shown to improve adsorption efficiency at low concentrations. Additionally, adsorption-desorption experiments confirm the reliable cycling performance of modified fly ash, highlighting its potential as a cost-effective and efficient adsorbent for antibiotics and heavy metals.
Collapse
Affiliation(s)
- Pengyu Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Lu Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Tianhai Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yimo Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Bin Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Chi Luo
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Shaohua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Puhui Ji
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
14
|
Liu L, Guo Z, Wang Y, Yin L, Zuo W, Tian Y, Zhang J. Low energy-consumption oriented membrane fouling control strategy in anaerobic fluidized membrane bioreactor. CHEMOSPHERE 2024; 359:142254. [PMID: 38714253 DOI: 10.1016/j.chemosphere.2024.142254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Anaerobic fluidized membrane bioreactors (AFMBR) has attracted growing interest as an emerging wastewater treatment technology towards energy recovery from wastewater. AFMBR combines the advantages of anaerobic digestion and membrane bioreactors and shows great potential in overcoming limiting factors such as membrane fouling and low efficiency in treating low-strength wastewater such as domestic sewage. In AFMBR, the fluidized media performs significant role in reducing the membrane fouling, as well as improving the anaerobic microbial activity of AFMBRs. Despite extensive research aimed at mitigating membrane fouling in AFMBR, there has yet to emerge a comprehensive review focusing on strategies for controlling membrane fouling with an emphasis on low energy consumption. Thus, this work overviews the recent progress of AFMBR by summarizing the factors of membrane fouling and energy consumption in AFMBR, and provides targeted in-depth analysis of energy consumption related to membrane fouling control. Additionally, future development directions for AFMBR are also outlooked, and further promotion of AFMBR engineering application is expected. By shedding light on the relationship between energy consumption and membrane fouling control, this review offers a useful information for developing new AFMBR processes with an improved efficiency, low membrane fouling and low energy consumption, and encourages more research efforts and technological advancements in the domain of AFMBR.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Ze Guo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yihe Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Linlin Yin
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
15
|
Zhang Y, Dong Y, Qin L, Yue X, Zhou A, Wu H. Distinct roles of biochar and pyrite substrates in enhancing nutrient and heavy metals removal in intermittent-aerated constructed wetlands: Performances and mechanism. ENVIRONMENTAL RESEARCH 2024; 258:119393. [PMID: 38857856 DOI: 10.1016/j.envres.2024.119393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Constructed wetlands have been widely employed as a cost-effective and environmentally friendly alternative for treating primary and secondary sewage effluents. In this study, biochar and pyrite were utilized as electron donor substrates in intermittent-aerated vertical flow constructed wetlands to strengthen the nutrient and heavy metals removal simultaneously, and the response of nutrient reduction and microbial community to heavy metals stress was also explored. The results indicated that biochar addition exhibited a better nitrogen removal, while pyrite addition greatly promoted the phosphorus removal. Moreover, the high removal efficiencies of Cu2+, Pb2+ and Cd2+ (above 90%) except for Zn2+ were obtained in each system. However, the exposure of heavy metals decreased phosphorus removal while had little effect on nitrogen removal. The influent load and intermittent aeration implementation led to a significant shift in microbial community structures, but microbial biodiversity and abundance decreased under the exposure of heavy metals. Particularly, Thiobacillus and Ferritrophicum, associated with sulfur autotrophic denitrification and iron autotrophic denitrification, were more abundant in pyrite-based wetland systems.
Collapse
Affiliation(s)
- Yan Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China; Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China
| | - Yu Dong
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China
| | - Langlang Qin
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
16
|
Li X, Liu W, Zhang J, Wang Z, Guo Z, Ali J, Wang L, Yu Z, Zhang X, Sun Y. Effective removal of microplastics by filamentous algae and its magnetic biochar: Performance and mechanism. CHEMOSPHERE 2024; 358:142152. [PMID: 38679178 DOI: 10.1016/j.chemosphere.2024.142152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/06/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024]
Abstract
In recent years, filamentous algae blooms and microplastics (MPs) pollution have become two major ecological and environmental problems in urban water systems. In order to solve these two problems at the same time, this study explored the loading capacity of MPs on fresh filamentous algae, and successfully synthesized magnetic filamentous algae biochar loading with Fe3O4 by hydrothermal method, with the purpose of removing MPs from water. The magnetic filamentous algal biochar was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and so on. Experiments on adsorption kinetics, adsorption isotherms and optimum pH were carried out to explore the adsorption mechanism of MPs on magnetic filamentous algal biochar. The adsorption kinetics and adsorption isotherm models were evaluated, and the selection criterion for the appropriate model was determined by using the residual sum of squares (RSS) and Bayesian information criterion (BIC). Microscope images revealed that fresh filamentous algae could interact with MPs in the form of entanglement, adhesion and encapsulation. The average load of MPs in filamentous algae samples was 14.1 ± 5 items/g dry weight. The theoretical maximum adsorption capacities of polystyrene MPs (PS-MPs) by raw biochar (A500) and magnetic biochar with Fe3O4 (M2A500) were 176.99 mg/g and 215.58 mg/g, respectively. The adsorbent materials gave better reusability because they could be reused up to five times. Overall, these findings have provided new insights into the use of filamentous algae for in situ remediation of fluvial MPs pollution, as well as feasible strategies for the recycling of algal waste.
Collapse
Affiliation(s)
- Xinyang Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjia Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingshen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhibin Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhiwei Guo
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Jafar Ali
- Key Lab of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun, 130021, China
| | - Lei Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiru Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangzhao Sun
- Norwegian Water Research Institute, Økernveien 94, 0579, Oslo, Norway
| |
Collapse
|
17
|
Yan J, Guo X, Li Q, Yuan X, Zhang Z, Tremblay LA, Li Z. Biochar derivation at low temperature: A novel strategy for harmful resource usage of antibiotic mycelial dreg. ENVIRONMENTAL RESEARCH 2024; 250:118376. [PMID: 38354891 DOI: 10.1016/j.envres.2024.118376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/14/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Antibiotic mycelial dreg (AMD) has been categorized as hazardous waste due to the high residual hazardous contaminants. Inappropriate management and disposal of AMD can cause potential environmental and ecological risks. In this study, the potential of pleuromutilin mycelial dreg (PMD) as a novel feedstock for preparing tetracycline hydrochloride (TC) adsorbent was explored to achieve safe management of PMD. The results suggested that residual hazardous contaminants were completely eliminated after pyrolysis. With the increase of pyrolysis temperature, the yields, H/C, O/C, (O + N)/C, and pore size in PMD-derived biochars (PMD-BCs) decreased, while BET surface area and pore volume increased, resulting in the higher stability of the PMD-BCs prepared from higher temperatures. The TC adsorption of the PMD-BCs increased from 27.3 to 46.9 mg/g with the increase of the pyrolysis temperature. Surprisingly, pH value had a strong impact on the TC adsorption, the adsorption capacity of BC-450 increased from 6.5 to 71.1 mg/g when the solution pH value increased from 2 to 10. Lewis acid-base interaction, pore filling, π-π interaction, hydrophobic interaction, and charge-assisted hydrogen bond (CAHB) are considered to drive the adsorption. This work provides a novel pathway for the concurrent detoxification and reutilization of AMD.
Collapse
Affiliation(s)
- Jing Yan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueqi Guo
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingjie Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xufeng Yuan
- College of Agronomy and Biotechnology, China Agriculture University, Beijing, 100193, China
| | - Zhenghai Zhang
- Shandong Shengli Bioengineering Co., LTD., Jining, 272000, Shandong, China
| | - Louis A Tremblay
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand; School of Biological Sciences, University of Auckland, PO Box 92019, Auckland, 1142, New Zealand
| | - Zhaojun Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
18
|
Oral B, Coşgun A, Günay ME, Yıldırım R. Machine learning-based exploration of biochar for environmental management and remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121162. [PMID: 38749129 DOI: 10.1016/j.jenvman.2024.121162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024]
Abstract
Biochar has a wide range of applications, including environmental management, such as preventing soil and water pollution, removing heavy metals from water sources, and reducing air pollution. However, there are several challenges associated with the usage of biochar for these purposes, resulting in an abundance of experimental data in the literature. Accordingly, the purpose of this study is to examine the use of machine learning in biochar processes with an eye toward the potential of biochar in environmental remediation. First, recent developments in biochar utilization for the environment are summarized. Then, a bibliometric analysis is carried out to illustrate the major trends (demonstrating that the top three keywords are heavy metal, wastewater, and adsorption) and construct a comprehensive perspective for future studies. This is followed by a detailed review of machine learning applications, which reveals that adsorption efficiency and capacity are the primary utilization targets in biochar utilization. Finally, a comprehensive perspective is provided for the future. It is then concluded that machine learning can help to detect hidden patterns and make accurate predictions for determining the combination of variables that results in the desired properties which can be later used for decision-making, resource allocation, and environmental management.
Collapse
Affiliation(s)
- Burcu Oral
- Department of Chemical Engineering, Boğaziçi University, 34342, Bebek, Istanbul, Turkey
| | - Ahmet Coşgun
- Department of Chemical Engineering, Boğaziçi University, 34342, Bebek, Istanbul, Turkey
| | - M Erdem Günay
- Department of Energy Systems Engineering, Istanbul Bilgi University, 34060, Eyupsultan, Istanbul, Turkey.
| | - Ramazan Yıldırım
- Department of Chemical Engineering, Boğaziçi University, 34342, Bebek, Istanbul, Turkey.
| |
Collapse
|
19
|
Chen B, Chen Y, Chen S, Duan X, Gao J, Zhang N, He L, Wang X, Huang J, Chen X, Pan X. Iron‑calcium dual crosslinked graphene oxide/alginate aerogel microspheres for extraordinary elimination of tetracycline in complex wastewater: Performance, mechanism, and applications. Int J Biol Macromol 2024; 264:130554. [PMID: 38431001 DOI: 10.1016/j.ijbiomac.2024.130554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/12/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Antibiotics have been considered as a group of emerging contaminants for their stable chemical structure, significant pseudo-persistence, and biological toxicity. Tetracycline (TC), as one of the typical antibiotics frequently detected in environmental media, can cause the dissemination and accumulation of antibiotic resistance gene (ARG), ultimately threatening human health and environmental safety. Herein, a novel iron‑calcium di-crosslinked graphene oxide/alginate (GO/SA-Fe3+-Ca2+) aerogel was facilely synthesized for TC uptake. It was found that the introduction of GO nanosheets and Fe3+ sites into composite enormously enhanced TC removal. Specifically, TC can be stably and efficiently eliminated over the wide pH range of 5-8. The fitted maximum qe with Liu isotherm model at 308 K reached 1664.05 mg/g, surpassing almost all reported sorbents. The pseudo-second-order kinetic model with chemical sorption characteristics better fitted TC adsorption process, which was endothermic and spontaneous in nature. Multifarious adsorptive sites of GO/SA-Fe3+-Ca2+ synergically participated in TC uptake through multi-mechanisms (e.g., π-π EDA, cation-π bonding, H-bonding, Fe3+-coordination, and electrostatic attraction, etc.). The as-prepared composite showed satisfactory TC removal in several runs of adsorption-desorption operations, high salinity, and model aquaculture wastewater. Moreover, the packed-column could continuously run for >200 h until adsorption saturation was achieved with a dynamic adsorption capacity of 216.69 mg/g, manifesting its scale-up engineering applications. All above merits make as-constructed composite an alternative sorbent for eliminating TC from complex wastewater.
Collapse
Affiliation(s)
- Bo Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Yuning Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Shuyin Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xingyu Duan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jie Gao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Nuan Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Liucun He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xin Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Jin Huang
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Xiaoping Chen
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
20
|
El-Qelish M, Maged A, Elwakeel KZ, Bhatnagar A, Elgarahy AM. Dual valorization of coastal biowastes for tetracycline remediation and biomethane production: A composite assisted anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133143. [PMID: 38056261 DOI: 10.1016/j.jhazmat.2023.133143] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Harnessing coastal biowaste for dual valorization in water treatment and biofuel production holds paramount importance for sustainability and resource challenges. This study investigated the potential of engineered composite (CABC) derived from coastal biowaste-based materials for tetracycline (TC) removal and biomethane production. High-yield calcium carbonate (CaCO3; 95.65%; bivalve shells) and biochar (GA-BC; 41.50%; green macroalgae) were produced and used as precursors for CABC. The characterization results revealed presence of β-CaCO3 and ν2-CO3 aragonite in CaCO3, and composite homogeneity was achieved. The CABC exhibited a maximum TC sorption capacity of 342.26 mg/g via synergistic sorption mechanisms (i.e., surface/pore filling, electrostatic attraction, calcium ion exchange, and chelation). Supplementation of anaerobic digestion process with GA-BC, CaCO3, and CABC was investigated via three consecutive cycles. Biochemical methane potential of glucose as a sole substrate was increased from 157.50 to 217.00, 187.00, and 259.00 mL-CH4, while dual substrate (glucose+TC) treatment was increased from 94.5 to 146.5, 129.0, and 153.00 mL-CH4 for GA-BC, CaCO3, and CABC, respectively. Moreover, system stability and TC removal were increased with the addition of GA-BC (40.90%), CaCO3 (16.30%), and CABC (53.70%). Therefore, this study exemplifies the circular bioeconomy approach, demonstrating the sustainable use of biowaste-derived composite for water treatment and biofuel production.
Collapse
Affiliation(s)
- Mohamed El-Qelish
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, 12622 Cairo, Egypt
| | - Ali Maged
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland; Department of Geology, Faculty of Science, Suez University, P.O. Box 43221, Suez, Egypt; Institute of Process Engineering, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria.
| | - Khalid Z Elwakeel
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt; Egyptian Propylene and Polypropylene Company (EPPC), Port Said, Egypt
| |
Collapse
|
21
|
Li X, Jiang H, Zhu L, Tang J, Liu Z, Dai Y. Adsorption interactions between typical microplastics and enrofloxacin: Relevant contributions to the mechanism. CHEMOSPHERE 2024; 351:141181. [PMID: 38211798 DOI: 10.1016/j.chemosphere.2024.141181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
Microplastics (MPs) are increasingly contaminating the environment and they can combine with antibiotics as carriers to form complex contaminants. In this study, we systematically investigated the interactions between the antibiotic enrofloxacin (ENR) and MPs comprising polyethylene (PE), polyvinyl chloride (PVC), and polystyrene (PS). Characterization was performed by using conventional techniques and the mechanisms involved in interactions were initially explored based on adsorption kinetics, isotherms, and resolution experiments, and the adsorption capacities of the MPs were determined. In addition, the extended Derjaguin-Landau-Verwey-Overbeek theory was used to investigate the interaction mechanisms. The results showed that the interactions were weaker in strong acidic and alkaline environments, and the interactions were also inhibited at higher salt ion concentrations. The saturation adsorption amounts of ENR on PVC, PE, and PS were 74.63 μg/g, 103.09 μg/g, and 142.86 μg/g, respectively. The interactions between MPs and ENR were dominated by hydrophobic interactions, followed by van der Waals forces and acid-base forces. This study provides new insights into the adsorption behavior of ENR by MPs.
Collapse
Affiliation(s)
- Xiang Li
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Huating Jiang
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China; School of Environmental Science and Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Liya Zhu
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Junqian Tang
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Zhihua Liu
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| | - Yingjie Dai
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
22
|
Song Z, Zhang L, Tian C, Li K, Chen P, Jia Z, Hu P, Cui S. Chemical characteristics, distribution patterns, and source apportionment of particulate elements and inorganic ions in snowpack in Harbin, China. CHEMOSPHERE 2024; 349:140886. [PMID: 38065265 DOI: 10.1016/j.chemosphere.2023.140886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024]
Abstract
Snowpack, which serves as a natural archive of atmospheric deposition of multiple pollutants, is a practical environmental media that can be used for assessing atmospheric records and input of the pollutants to the surface environments and ecosystems. A total of 29 snowpack samples were collected at 20 sampling sites covering three different functional areas of a major city (Harbin) in Northeast China. Two samples at the "snow layer" and one or two samples at the "particulate layer" were collected at each sampling site in the industrial areas characterized by multi-layer snowpack, and only one sample at the "snow layer" was collected at each sampling site in the cultural and recreational as well as agricultural areas. The snow contents of 31 elements (Na, Mg, Al, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Y, Cd, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Pb) and six major water-soluble inorganic ions (WSIIs, NH4+, K+, Ca2+, NO2-, NO3-, and SO42-) were analyzed. The total mass of the measured elements is dominated (95.8%-99.2%) by crustal elements. Heavy metals only account for 0.77%-4.07% of the total mass of the elements, but are occasionally close to or even above the standard limit in the "Environmental Quality Standards for Surface Water" of China (GB3838-2002). SO42- and Ca2+ are the main anion and cation, accounting for 34.9%-81.1% and 1.43%-29.9%, respectively, of the measured total ions. Total atmospheric deposition of crustal elements and heavy metals is dominated by wet deposition in areas near the petrochemical plant and by dry deposition in areas near the cement plant. Coal combustion, industrial emissions, and traffic-related activities lead to the enrichment of heavy metals in the snowpacks of urban and suburban areas, while coal combustion and biomass burning contribute to pollution in rural areas. The cities and regions situated in the western, northwestern, northern, and northeastern directions from Harbin are potential source regions of these pollutant species.
Collapse
Affiliation(s)
- Zihan Song
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, Ontario, M3H 5T4, Canada
| | - Chongguo Tian
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, 264003, China
| | - Kunyang Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Pengyu Chen
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Zhaoyang Jia
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Peng Hu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| | - Song Cui
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Research Center for Eco-Environment Protection of Songhua River Basin, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
23
|
Shao Z, Shuangbao, Wu S, Gao Y, Liu X, Dai Y. Two-step pyrolytic preparation of biochar for the adsorption study of tetracycline in water. ENVIRONMENTAL RESEARCH 2024; 242:117566. [PMID: 37977274 DOI: 10.1016/j.envres.2023.117566] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/07/2023] [Accepted: 10/22/2023] [Indexed: 11/19/2023]
Abstract
In this study, cow dung biomass was converted into biochar (BC). BC900 was obtained through one-step pyrolysis at 900 °C, while BC700-900 and BC900-700 were obtained via two-step pyrolysis at temperature ranges of 700-900 °C and 900-700 °C, respectively. The primary objective was to investigate the adsorption performance and application value of BCs for tetracycline (TC) in water. The samples underwent characterization using scanning electron microscopy and mapping analysis, Fourier transform infrared spectroscopy, X-ray diffraction, and thermogravimetric analysis. Subsequently, the effects of reaction time, adsorbent dosage, temperature, pH, and ionic strength were analyzed. Based on the fitting results of adsorption kinetics, the pyrolytic BCs exhibited a better fit with the pseudo-secondary kinetic model. The adsorption isotherm indicated monolayer adsorption on the surface of the adsorbents, with maximum adsorption capacities of 158.93 mg/g for BC900-700, 150.15 mg/g for BC700-900, and 142.56 mg/g for BC900, respectively. Furthermore, results from simulated wastewater and regeneration experiments demonstrated that BC900-700 exhibited not only excellent adsorption performance in wastewater but also remarkable regeneration capabilities. The two-step pyrolysis BCs in this study displayed a higher adsorption capacity compared to the one-step pyrolysis BCs in practical applications. These findings provide insights for further exploring the adsorption mechanism and optimizing the process.
Collapse
Affiliation(s)
- Ziyi Shao
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Shuangbao
- College of Life Sciences, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Si Wu
- College of Life Sciences, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Yuewen Gao
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Xiao Liu
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Yingjie Dai
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
24
|
Tang L, Xiong L, Zhang H, Joseph A, Wang Y, Li J, Yuan X, Rene ER, Zhu N. Reduced arsenic availability in paddy soil through Fe-organic ligand complexation mediated by bamboo biochar. CHEMOSPHERE 2024; 349:140790. [PMID: 38013023 DOI: 10.1016/j.chemosphere.2023.140790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/22/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
The reuse of arsenic (As)-contaminated paddy fields is a global challenge because long-term flooding would result in As release due to the reductive dissolution of iron minerals. Biochar amendment is a common and effective remediation technique for As-contaminated paddy soil. However, the literature is still lacking in systematic research on the function of biochar in controlling the complexation of released dissolved organic matter (DOM) and iron oxides and its synergistic impact on the availability of As in flooded paddy soil. In the present study, bamboo biochar was prepared at different pyrolysis temperatures (300, 450 and 600 °C), as BB300, BB450 and BB600. Four paddy soil treatments including BB300, BB450, BB600 applications (1% ratio, m/m, respectively) and control (CK, no biochar application) were set and incubated for 60 d in flooding condition. The results showed that As availability represented by adsorbed As species (A-As) was mitigated by BB450 amendment compared with CK. The amendment of BB450 in paddy soil facilitated the complexation of HCl extractable Fe(III)/(II) and DOM and formation of amorphous iron oxides (e.g. complexed Fe species). Moreover, the abundance of Geobacteraceae and Xanthomonadaceae, as common electroactive bacteria, was promoted in the BB450 treated paddy soil in comparison to CK, which assisted to form amorphous iron oxides. The formed amorphous iron oxides then facilitated the formation of ternary complex (As-Fe-DOM) with highly stability, which could be considered as a mechanism for As immobilization after biochar was applied to the flooding paddy soil. Thus, the synergistic effect between amorphous iron oxides and electroactive stains could make main contribution to the passivation of released As in paddy soil under long-term flooding condition. This study provided a new insight for As immobilization via regulating iron-organic ligand complexation amendment with biochar in flooding paddy soil.
Collapse
Affiliation(s)
- Li Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Ling Xiong
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, PR China
| | - Haiyan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Akaninyene Joseph
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; Department of Biosciences and Biotechnology, Faculty of Science, University of Medical Sciences, Ondo City, Nigeria
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jizhou Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xuyin Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Ningyuan Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, PR China.
| |
Collapse
|
25
|
Wang W, Chang JS, Lee DJ. Machine learning applications for biochar studies: A mini-review. BIORESOURCE TECHNOLOGY 2024; 394:130291. [PMID: 38184089 DOI: 10.1016/j.biortech.2023.130291] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/20/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Biochar is a promising carbon sink whose application can assist in reducing carbon emissions. Development of this technology currently relies on experimental trials, which are time-consuming and labor-intensive. Machine learning (ML) technology presents a potential solution for streamlining this process. This review summarizes the current research on ML's applications in biochar production, characterization, and applications. It briefly explains commonly used machine learning algorithms and discusses prospects and challenges. A hybrid model that combines ML with mechanism-based analysis could be a future trend, addressing the ML's black-box nature. While biochar studies have adopted ML technology, current works mostly use lab-scale data for model training. Further work is needed to develop ML models based on pilot or industrial-scale data to realize the use of ML techniques for the field application of biochar.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong.
| |
Collapse
|
26
|
Qu J, Shi S, Li Y, Liu R, Hu Q, Zhang Y, Wang Y, Ma Y, Hao X, Zhang Y. Fe/N co-doped magnetic porous hydrochar for chromium(VI) removal in water: Adsorption performance and mechanism investigation. BIORESOURCE TECHNOLOGY 2024; 394:130273. [PMID: 38160851 DOI: 10.1016/j.biortech.2023.130273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Four kinds of Fe/N co-doped porous hydrochar were prepared by one/two-step N-doping schemes using microwave/traditional pyrolysis methods for removing Cr(VI) from aqueous phase. Heterocyclic-N was introduced through CO(NH2)2-based hydrothermal carbonization process, which could adjust the electronic structure of the hydrochar framework. Furthermore, Fe0 and Fe3O4 were embedded into hydrochar via carbothermal reduction reaction using FeCl3 as the precursor, which improved the reducibility and magnetism of the material. The modified hydrochar exhibited pH-dependency and rapid kinetic equilibrium, and the maximal adsorption amount of magnetic porous hydrochar obtained by microwave-assisted one-step N-doping (MP1HCMW) reached 274.34 mg/g. Meanwhile, the modified hydrochar had a high tolerance to multiple co-existing ions and the removal efficiency maintained above 73.91 % during five regeneration cycles. Additionally, MP1HCMW efficiently removed Cr(VI) via pore filling, electrostatic attraction, ion exchange, reduction, complexation, and precipitation. Summarily, Fe/N co-doped porous hydrochar was a feasible adsorbent with outstanding remediation potential for Cr(VI)-contaminated water.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuai Shi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yuhui Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ruixin Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Qi Hu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yupeng Zhang
- College of Resources and Environmental Sciences, Henan Agricultural University, No. 63 Agricultural Road, Zhengzhou 450002, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yunqiao Ma
- Heilongjiang Agricultural Environment and Cultivated Land Protection Station, Harbin 150036, China
| | - Xiaoyu Hao
- Heilongjiang Academy of Black Soil Conservation and Utilization, Harbin 150086, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
27
|
Jiang W, Cai Y, Liu D, Yu X, Wang Q. Enhanced adsorption performance of oxytetracycline in aqueous solutions by Mg-Fe modified suaeda-based magnetic biochar. ENVIRONMENTAL RESEARCH 2024; 241:117662. [PMID: 37967702 DOI: 10.1016/j.envres.2023.117662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023]
Abstract
Oxytetracycline (OTC) in the waste water can be removed by biochar adsorption. How to separate the biochar adsorbed antibiotics from the wastewater was also a problem. The nontoxic magnetic biochar was prepared from Suaeda biochar (800SBC) by mafic bimetal modification, and used for the removal of OTC. The results of XRD and VSM indicated that the main composition of biochar was ferrite. Then through batch adsorption experiments, the adsorption kinetics, isothermal adsorption, thermodynamics, and coexisting ion and adsorbent regeneration experiments were studied. Through the fitting of the adsorption model, it was found that Mg-Fe@800SBC(1:1) and 800SBC belonged to chemisorption. 800SBC was consistent with the Langmuir model, mainly monolayer adsorption, and Mg-Fe@800SBC(1:1) was consistent with the Freundlich model, mainly multilayer adsorption. The adsorption processes of the two materials were spontaneous, endothermic and entropic decreasing processes. The maximum adsorption capacity of the Mg-Fe@800SBC(1:1) for OTC from the Sips L-F model was 82.83 mg/g. Through various characterizations of magnetic biochar, it was found that the adsorption mechanism of the modified biochar included the hydrogen bonds between the oxygen-containing functional group of biochar and the -NH2 group of OTC, π-π EDA interaction, electrostatic attraction and complexation. Coexistence anions (CO32- and PO43-) have a negative effect on the adsorption process.
Collapse
Affiliation(s)
- Weili Jiang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Yanrong Cai
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China.
| | - Di Liu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Xuechun Yu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Qiong Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| |
Collapse
|
28
|
Jiang H, Li X, Dai Y. Phosphoric acid activation of cow dung biochar for adsorbing enrofloxacin in water: Icing on the cake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122887. [PMID: 37951523 DOI: 10.1016/j.envpol.2023.122887] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/20/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
In this study, we used different concentrations of H3PO4 to activate pristine biochar (BC) derived from cow dung (BC and BC modified with phosphoric acid at concentrations of 10% (10P-BC), 30% (30P-BC), and 50% (50P-BC)) in order to obtain cheap, high-performance adsorbents. Brunauer-Emmett-Teller analysis, scanning electron microscopy, X-ray diffraction, Fourier transform-infrared spectroscopy, X-ray photoelectron spectroscopy, organic element composition determination, and other analyses showed that activation with H3PO4 increased the porosity and hydrophilicity compared with the original BC, thereby enhancing the adsorption properties. The Langmuir isotherm model obtained the best fit and the maximum capacities for adsorbing enrofloxacin by BCs were 12.66 mg/g for BC, 51.90 mg/g for 10P-BC, 63.61 mg/g for 30P-BC, and 26.79 mg/g for 50P-BC. The main mechanisms responsible for antibiotic loading on BC were hydrogen bonding, π-π electron donor-acceptor interactions, pore filling, and electrostatic interactions. Calculations of fixed carbon retention before and after pyrolysis, and adsorption showed that activated BC had a good carbon fixation capacity and it was more capable of adsorbing enrofloxacin compared with the original BC, thereby providing a new method for removing organic pollutants from the environment and reducing carbon emissions. The cost efficiency was analyzed using the improved fuzzy comprehensive evaluation model based on the entropy method. Removal efficiency and utilization efficiency indicators were calculated for the different phosphoric acid activated BCs. The pollutant removal efficiencies were better for 10P-BC and 30P-BC, and the optimal removal efficiency was determined for 30P-BC. Given the current global climate change situation, using 10P-BC and 30P-BC could also help to meet China's carbon neutrality goals by reducing emissions of pollutants containing carbon.
Collapse
Affiliation(s)
- Huating Jiang
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China; School of Environmental Science and Engineering, Huazhong University of Science & Technology, Wuhan, 430074, China
| | - Xiang Li
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China
| | - Yingjie Dai
- College of Resources and Environment, Northeast Agricultural University, No.600 Changjiang Road, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
29
|
Yao Q, Guo J, Guan F, Yang Q, Li J, Bao D, He J, Ji X, Song X. In-situ growth of zinc sulfide on the surface of alginate-based biomass carbon: A new material for removing methylene blue/basic fuchsin and copper ions. Int J Biol Macromol 2024; 256:128360. [PMID: 38000601 DOI: 10.1016/j.ijbiomac.2023.128360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
This work aims to prepare a composite adsorbent with a fixed shape to improve the performance of carbon materials and to solve the problem of adsorbent in powder form which is difficult to recycle after use. The BC-ZnS composite system was successfully prepared by hydrothermal method based on the preparation of biomass carbon (BC) using alginate (Alg), while the ZnS component was grown in-situ on the surface of BC. The effects of Alg, Zn source, hydrothermal temperature and time on the synthesis of BC-ZnS were explored, the results indicated that ZnS was successfully grown in-situ on the BC surface, while the BC maintained its original morphology. BC-ZnS showed excellent adsorption capacity for methylene blue (MB), basic fuchsin (BF), and copper ions (Cu2+), reaching 301.50 mg/g for MB and exhibiting good cyclic stability. The adsorption of MB/BF/Cu2+ by BC-ZnS was characterized by the presence of multiple forces, where the BC component mainly depended on the electrostatic force of Alg residue, while the ZnS involves electrostatic forces, ion exchange and Lewis acid/base soft-soft interactions. The adsorption process conforms to pseudo-first-kinetics and is a spontaneous entropy-increasing process. BC-ZnS can be a candidate for reusable wastewater treatment and has excellent potential for application.
Collapse
Affiliation(s)
- Qiang Yao
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jing Guo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University), Qingdao 266071, China.
| | - Fucheng Guan
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Qiang Yang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jia Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Da Bao
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jiahao He
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xinbin Ji
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xuecui Song
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
30
|
Zhang J, Liu C, Wu Y, Li X, Zhang J, Liang J, Li Y. Adsorption of tetracycline by polycationic straw: Density functional theory calculation for mechanism and machine learning prediction for tetracyclines' remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122869. [PMID: 37926411 DOI: 10.1016/j.envpol.2023.122869] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/07/2023]
Abstract
The abuse of antibiotics causes serious environmental pollution, whose removal has become a hot topic. The adsorption of tetracycline (TC) on a prepared polycationic straw (MMS) was investigated. The kinetic, thermodynamic and adsorption isotherm models showed that adsorption of TC by MMS was a spontaneous, monolayer reaction with coexistence of physical and chemical process. Density functional theory indicated that the adsorption of TC resulted from electrostatic interaction and hydrogen bonds, which proved the mechanism of TC by macromolecular biomass for the first time. The expected and empirical values of TC adsorption showed a high fit degree, through predication of machine learning, indicating the feasibility and avoiding lots of experiments. Further, the adsorption ability of MMS to other TCs was predicted, founding that the highest removal efficiency was doxycycline, which provides a novel strategy for removal of other pollution and reduce of economic and time cost in practical application.
Collapse
Affiliation(s)
- Jianfeng Zhang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chunyu Liu
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yu Wu
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xinyu Li
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jiejing Zhang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jing Liang
- College of Life Science, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Yongguang Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
31
|
Sheng X, Chen S, Zhao Z, Li L, Zou Y, Shi H, Shao P, Yang L, Wu J, Tan Y, Lai X, Luo X, Cui F. Rationally designed calcium carbonate multifunctional trap for contaminants adsorption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166142. [PMID: 37574061 DOI: 10.1016/j.scitotenv.2023.166142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
Adsorption technology has been widely developed to control environmental pollution, which plays an important role in the sustainable development of modern society. Calcium carbonate (CaCO3) is characterized by its flexible pore design and functional group modification, which meet the high capacity and targeting requirements of adsorption. Therefore, its charm of "small materials for great use" makes it a suitable candidate for adsorption. Firstly, we comprehensively review the research progress of controlled synthesis and surface modification of CaCO3, and its application for adsorbing contaminants from water and air. Then, we systematically examine the structure-effect relationship between CaCO3 adsorbents and contaminants, while also intrinsic mechanism of remarkable capacity and targeted adsorption. Finally, from the perspective of material design and engineering application, we offer insightful discussion on the prospects and challenges of calcium carbonate adsorbents, providing a valuable reference for the further research in this field.
Collapse
Affiliation(s)
- Xin Sheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Shengnan Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Zhiwei Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.
| | - Li Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yuanpeng Zou
- School of Foreign Languages and Cultures, Chongqing University, 400044, PR China
| | - Hui Shi
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Penghui Shao
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jingsheng Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Yaofu Tan
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Xinyuan Lai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Xubiao Luo
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource utilization, Nanchang Hangkong University, Nanchang 330063, PR China; School of Life Science, Jinggangshan University, Ji'an 343009, PR China
| | - Fuyi Cui
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
32
|
Wang J, Tan Y, Yang H, Zhan L, Sun G, Luo L. On the adsorption characteristics and mechanism of methylene blue by ball mill modified biochar. Sci Rep 2023; 13:21174. [PMID: 38040771 PMCID: PMC10692330 DOI: 10.1038/s41598-023-48373-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023] Open
Abstract
In this study, modified biochar (BRB) was prepared from rice straw by ball milling technique and used for the adsorption of methylene blue (MB) in wastewater. The BRB was characterized by SEM, FTIR and XPS, and the adsorption model and Box-Behnken design were used to optimize the five influencing factors. The results showed that the ball milling technique could increase the content of functional groups (-OH, C=C and C-O, etc.) and aromatic structures on the surface of biochar, thus facilitating the removal of MB. The isotherm model was consistent with the Langmuir adsorption model (R2 = 0.947) and the maximum adsorption capacity was 50.27 mg/g. The adsorption kinetics was consistent with the pseudo-second-order kinetic model (R2 = 1) and the adsorption rate was mainly controlled by chemisorption. The thermodynamic model confirmed that the adsorption process was a spontaneous heat absorption reaction. The maximum adsorption efficiency was 99.78% under the optimal conditions (40℃, pH 8, reaction time = 90 min, dosing amount = 0.1 mg), and the adsorption efficiency could be improved by increasing the pH and BRB dosing amount. The surface functional groups and crystal structure properties of BRB were the main determinants of adsorption, and it was clarified that physical adsorption, electrostatic attraction and π-π interaction were the main mechanisms for the adsorption of MB by BRB. The main mechanisms were clarified. Therefore, BRB is an economic, efficient and green adsorption material with good potential for the removal of dye pollutants in the aqueous environment.
Collapse
Affiliation(s)
- Jinxia Wang
- College of Resources and Safety, Chongqing Vocational Institute of Engineering, Chongqing, 402260, China.
| | - Yunfeng Tan
- College of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Hongjun Yang
- College of Resources and Environment, Southwest University, Beibei, Chongqing, 400715, China.
| | - Lingling Zhan
- College of Resources and Safety, Chongqing Vocational Institute of Engineering, Chongqing, 402260, China
| | - Guowen Sun
- College of Resources and Safety, Chongqing Vocational Institute of Engineering, Chongqing, 402260, China
| | - Le Luo
- College of Resources and Safety, Chongqing Vocational Institute of Engineering, Chongqing, 402260, China
| |
Collapse
|
33
|
Abdel Maksoud MIA, Murad GA, Hassan HS. Utilization of carbon-coated ZrO 2/Mn-Mg-Zn ferrites nanostructures for the adsorption of Cs (I) and Sr (II) from the binary system: kinetic and equilibrium studies. BMC Chem 2023; 17:149. [PMID: 37925482 PMCID: PMC10625698 DOI: 10.1186/s13065-023-01069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023] Open
Abstract
Carbon-coated ZrO2/Mn-Mg-Zn ferrites nanostructures (CZ-FN) have been prepared as a new inorganic sorbent to remove Cs (I) and Sr (II) from a waste stream. Adsorption of Cs (I) and Sr (II) has been implemented considering different noteworthy parameters, for example, shaking time and the optimum time achieved high adsorption capacity of both ions [103 and 41 mg/g for Sr (II) and Cs (I)] was found 30 min. Also, the impact of pH values was studied; the best pH value for the adsorption process is pH 6. The adsorption saturation capacity of CZ-FN is 420.22 and 250.45 mg/g for strontium and cesium, respectively. The solubility percentage of CZ-FN was calculated utilizing diverse molarities from HNO3, HCl, and NaOH as eluents, the obtained data reveals an increase in the solubility percentage with more increase in the molarity of the eluents. The elevation in the solubility percentage follows the following order; HNO3 < HCl < NaOH. The kinetic studies were applied using the nanolinear form of different kinetic models; it was found that the adsorption process obeys the nonlinear pseudo-second-order. According to equilibrium studies, the Langmuir model has been more accurate than the Freundlich model for adsorption in the case of binary systems. The values of Di for the strontium and cesium are 10-10 m2/s, which displays the chemisorption nature of this process. The greatest values of the desorption process for the strontium and cesium are 96.87% and 94.43 by 0.3 M of HNO3. This indicated that the carbon-coated ZrO2/Mn-Mg-Zn ferrites could be regenerated and recycled to remove strontium and cesium ions from waste streams.
Collapse
Affiliation(s)
- M I A Abdel Maksoud
- Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - G A Murad
- Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority (EAEA), Inshas, 13759, Egypt.
| | - H S Hassan
- Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority (EAEA), Inshas, 13759, Egypt
| |
Collapse
|
34
|
Jiang W, Cai Y, Liu D, Shi Q, Wang Q. Adsorption properties and mechanism of suaeda biochar and modified materials for tetracycline. ENVIRONMENTAL RESEARCH 2023; 235:116549. [PMID: 37474093 DOI: 10.1016/j.envres.2023.116549] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 07/02/2023] [Indexed: 07/22/2023]
Abstract
Adsorption was an available way to eliminate Tetracycline (TC) from waste water. Suaeda biochar (800SBC) and iron modified biochar (Fe-800SBC) were prepared using pyrolysis under oxygen-limiting conditions. BET and SEM showed that the surface of Fe-800SBC was rougher, and the specific surface area (SBET) was 7 times that of 800SBC. There existed pore filling, ion exchange, metal ion complexation, hydrogen bonds and cation-π interaction mechanism. Both 800SBC and Fe-800SBC conformed to quasi-second-order kinetics model, belonged to chemisorption. Fe-800SBC conformed to Elovich model too. The adsorption process of 800SBC conformed to Freundlich and Sips L-F models, Fe-800SBC conformed to the Sips L-F and Temkin models, identifying the presence of physical and chemical adsorption during adsorption. Response surface method (RSM) was used to optimize important process parameters. The quadratic model was sufficient to predict TC removal response in the range of studied parameters.
Collapse
Affiliation(s)
- Weili Jiang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Yanrong Cai
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China.
| | - Di Liu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Qixian Shi
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| | - Qiong Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, China
| |
Collapse
|
35
|
Fan Y, Su J, Xu L, Liu S, Hou C, Liu Y, Cao S. Removal of oxytetracycline from wastewater by biochar modified with biosynthesized iron oxide nanoparticles and carbon nanotubes: Modification performance and adsorption mechanism. ENVIRONMENTAL RESEARCH 2023; 231:116307. [PMID: 37268205 DOI: 10.1016/j.envres.2023.116307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/04/2023]
Abstract
The pollution problem of oxytetracycline (OTC) from wastewater becomes more serious, so an efficient, economical, and green adsorption material is urgently explored. In this study, the multilayer porous biochar (OBC) was prepared by coupling carbon nanotubes with iron oxide nanoparticles synthesized by Aquabacterium sp. XL4 to modify corncobs under medium temperature (600 °C) conditions. The adsorption capacity of OBC could reach 72.59 mg g-1 after preparation and operation parameters were optimized. In addition, various adsorption models suggested that OTC removal resulted from the combined effect of chemisorption, multilayer interaction, and disordered diffusion. Meanwhile, the OBC was fully characterized and exhibited a large specific surface area (237.51 m2 g-1), abundant functional groups, stable crystal structure, high graphitization, and mild magnetic properties (0.8 emu g-1). The OTC removal mechanisms mainly included electrostatic interactions, ligand exchange, π-π bonding reactions, hydrogen bonds, and complexation. pH and coexistence substance experiments revealed that the OBC possesses a wide pH adaptation range and excellent anti-interference ability. Finally, the safety and reusability of OBC were confirmed by repeated experiments. In summary, OBC as a biosynthetic material shows considerable potential for application in the field of purifying new pollution from wastewater.
Collapse
Affiliation(s)
- Yong Fan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shuyu Liu
- School of Environment and Chemistry Engineering, Shanghai University, Shanghai, 200444, China.
| | - Chenxi Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shumiao Cao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
36
|
Laddha H, Yadav P, Sharma M, Agarwal M, Gupta R. Waste to value transformation: Converting Carica papaya seeds into green fluorescent carbon dots for simultaneous selective detection and degradation of tetracycline hydrochloride in water. ENVIRONMENTAL RESEARCH 2023; 227:115820. [PMID: 37003557 DOI: 10.1016/j.envres.2023.115820] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 05/08/2023]
Abstract
Rampant use of antibiotics has resulted in their seepage into groundwater and ultimately ending up in the food chain, causing antimicrobial resistance. To address this issue, it is imperative to not only quantitatively detect but eliminate them from water. An eco-friendly, one-step microwave-induced pyrolysis of waste papaya seeds (PS) with ethylenediamine (EDA) for just 5min gave green fluorescent nitrogen-doped carbon dots (PS-CDs), which are capable of detecting and photocatalytically degrading TC. The fluorescence properties of PS-CDs displayed that it has high sensitivity and selectivity towards sensing of TC with a detection limit as low as 120 nM. Also, the method gave satisfactory recovery results when extrapolated to determine TC in spiked milk, orange juice, tap water, and honey samples. On the other hand, PS-CDs alone potentially function as an efficient photocatalyst for the degradation of TC. PS-CDs' dual functionality provides an effectual method for the simultaneous detection and degradation of TC by a single nanoprobe.
Collapse
Affiliation(s)
- Harshita Laddha
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Priya Yadav
- Department of Chemistry, JECRC University, Jaipur, India
| | - Manish Sharma
- Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Madhu Agarwal
- Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Ragini Gupta
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India; Materials Research Centre, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India.
| |
Collapse
|
37
|
Chen B, Yu F, Wang S, Liu Y, Li D, Chen Y, Dao G, Xu Z, Pan X. Structuring alginate/dopamine powder into macroscopic aerogel microsphere for exceptional removal of tetracycline from water: Performance and mechanisms. Int J Biol Macromol 2023:124994. [PMID: 37236556 DOI: 10.1016/j.ijbiomac.2023.124994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/26/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Aerogel was selected as one of IUPAC Top Ten Emerging Technologies in Chemistry in 2022, and has attracted tremendous concerns of scientists in removal of emerging contaminants. In this work a novel Fe3+ cross-linked alginate aerogel (SA/DA-Fe3+) with multiple sorption sites were facilely fabricated and applied for highly efficient removal of tetracycline (TC) from water. Results showed that Fe3+ and DA cooperatively improve adsorption of TC and TC was efficiently removed over a broad pH range of 4-8. The kinetics process can be better described by a chemisorption controlled pseudo-second-order kinetics model and Langmuir isotherm equation with characteristics of monolayer coverage. The fitted qmax value of TC at ambient temperature was 804.6 mg g-1 higher than those of other reported adsorbents. Multiple interactions including π-π EDA, complexation, hydrogen bonding, electrostatic attraction, etc. were involved in adsorption process. Moreover, SA/DA-Fe3+ aerogel exhibited satisfactory stability, reusability, and recyclability for consecutive applications. Most importantly, after consecutively running for >1000 h with dynamic sorption capacity over 500 mg g-1, the packed-column was still not saturated, manifesting its great potentials for treating actual wastewaters. Thus, above superiorities make SA/DA-Fe3+ a promising candidate adsorbent for treating TC-containing wastewater.
Collapse
Affiliation(s)
- Bo Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Fengling Yu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Sha Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yang Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Dehong Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Yuning Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Guohua Dao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Zhixiang Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|