1
|
Corridori E, Salviati S, Begni V, Marchesin A, Gambarana C, Riva MA, Scheggi S. Restorative properties of chronic lurasidone treatment on emotional dysfunction in rats exposed to chronic unavoidable stress: A role for medial prefrontal cortex - nucleus accumbens network. Neuropharmacology 2025; 267:110302. [PMID: 39814132 DOI: 10.1016/j.neuropharm.2025.110302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/30/2024] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Anhedonia, a transdiagnostic symptom prevalent in depressive and psychotic disorders, poses a significant challenge for pharmacological intervention due to its association with impaired motivation. Understanding how psychotropic drugs can modulate this pathological domain and elucidating the molecular mechanisms underlying such effects are crucial endeavors in psychiatric research. In this study, we aimed to investigate the pro-motivational properties of lurasidone in a rat (Sprague Dawley males) model of anhedonia and to unravel the interplay between lurasidone and the brain regions critical for reward processing. Exposure to unpredictable chronic stress (UCS) led to a marked reduction in motivation, a deficit that was restored by lurasidone treatment at 3 mg/kg, but not at 10 mg/kg. Interestingly, the stress-induced decrease in reactivity to negative stimuli was reversed by both doses of lurasidone. At the molecular level, stressed animals exhibited reduced expression of neuroplastic markers, that was increased following lurasidone administration. Furthermore, UCS exposure impaired the activation of the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) in response to hedonic stimuli, an effect amended by lurasidone treatment. Additionally, lurasidone restored the impaired phosphorylation of DARPP-32, a key regulator of dopamine signaling, in mPFC and NAc of UCS rats exposed to a hedonic stimulus. These findings underscore the potential of lurasidone in improving various psychopathological domains, like impaired motivation and emotional reactivity, core elements contributing to the disability associated with mental disorders. These effects highlight the therapeutic potential of lurasidone in addressing the intricate behavioral and neurochemical alterations associated with anhedonia and related mood disorders.
Collapse
Affiliation(s)
- Eleonora Corridori
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Sara Salviati
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Veronica Begni
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Alessia Marchesin
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Carla Gambarana
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Marco Andrea Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy.
| | - Simona Scheggi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy.
| |
Collapse
|
2
|
Long Z, Li J, Marino M. Brain structural changes underlying clinical symptom improvement following fast-acting treatments in treatment resistant depression. J Affect Disord 2025; 369:52-60. [PMID: 39326585 DOI: 10.1016/j.jad.2024.09.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND Electroconvulsive therapy (ECT), ketamine infusion (KI), and total sleep deprivation (TSD) are effective and fast in treating patients with treatment-resistant depression (TRD). However, it remains unclear whether the three treatments have the same effect on clinical symptom improvement and have common brain structural mechanisms. METHODS The current study included 127 TRD patients and 37 healthy controls, which were obtained from the Perturbation of the Treatment Resistant Depression Connectome Project. We aimed to investigate the shared and distinct brain structural changes underlying clinical symptom improvement among ECT, KI, and TSD treatments. RESULTS All of the three treatments significantly reduced the depressive symptoms in TRD patients, but they differently affected other clinical measurements. Neuroimaging results also revealed that all of ECT, KI, and TSD treatments significantly increased gray matter volume of left caudate after treatment in TRD patients. However, the gray matter volume of other brain regions including hippocampus, parahippocampus, amygdala, insula, fusiform gyrus, several occipital and temporal areas was increased only after ECT treatment. Still, the baseline or the change of gray matter volume did not correlate with the depressive symptom improvement for all of the three treatments. LIMITATIONS A higher sample size would be required to further validate our findings. CONCLUSIONS The results observed in the current study suggested that the ECT, KI, and TSD treatments differently affected clinical measurements and brain structures in TRD patients, though all of them were effective in depressive symptom improvement, which might facilitate the development of personalized treatment protocol for this disease.
Collapse
Affiliation(s)
- Zhiliang Long
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, PR China.
| | - Jiao Li
- Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China; MOE Key Laboratory for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Marco Marino
- Department of General Psychology, University of Padua, Italy; Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Simkute D, Dores AR, Barbosa F, Griskova-Bulanova I. Problematic Gaming and Gambling: A Systematic Review of Task-Specific EEG Protocols. J Gambl Stud 2024; 40:2153-2187. [PMID: 39002089 DOI: 10.1007/s10899-024-10332-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 07/15/2024]
Abstract
Even though gaming and gambling bear similar problematic behavioral aspects, there are no recognizable neurophysiological biomarkers or features characterizing and/or distinguishing these conditions. A systematic review of the literature with a focus on methods was performed in PubMed, Scopus, Web of Science (Web of Science Core Collection), EBSCOhost Research Databases (APA PsycINFO; APA PsycArticles; OpenDissertations; ERIC) databases. Following search terms were used to search the databases: ERP, "event related potential*", EP, "evoked potential*", SS, "steady state", EEG, electroencephal*; gam*. Data about the participants (total number, gender, age), main aim of the study and information about the experimental setup (experimental task description, stimuli used, ERPs measured (latency windows and placement of the electrodes), process evaluated) was extracted. A total of 24 studies were revised (problematic gaming - 16, pathological gambling - 8). The experimental protocols could be grouped into 3 main target domains (Cue-reactivity, General Information processing and Reward Processes & Risk Assessment). Sample-related limitations (small sample sizes, gender differences, differences between the groups regarding potential confounding variables) and heterogeneity regarding the experimental tasks, implementation and interpretation reviewed. Gambling-related research is highly focused on the investigation of the reward-related processes, whereas gaming-related research is mostly focused on the altered aspects of more general information processing. A vast heterogeneity regarding the ERP experimental paradigms being used and lack of clear guidelines and standardized procedures prevents identification of measures capable to reliably discriminate or characterize the population susceptible to addictive behavior or being able to diagnose and monitor these disorders.
Collapse
Affiliation(s)
- Dovile Simkute
- Life Sciences Center, Institute of Biosciences, Vilnius University, Sauletekio Ave. 7, 10257, Vilnius, Lithuania
| | - Artemisa R Dores
- Escola Superior de Saúde, Politécnico Do Porto, Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Fernando Barbosa
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, Porto, Portugal
| | - Inga Griskova-Bulanova
- Life Sciences Center, Institute of Biosciences, Vilnius University, Sauletekio Ave. 7, 10257, Vilnius, Lithuania.
| |
Collapse
|
4
|
Moraga-Amaro R, Vazquez-Matias DA, Nazario LR, Dierckx RAJO, Stehberg J, Doorduin J, de Vries EFJ. Increased dopamine D 2/D 3 receptor and serotonin transporter availability in male rats after spontaneous remission from repeated social defeat-induced depression; a PET study in rats. Neurobiol Dis 2024; 202:106727. [PMID: 39515530 DOI: 10.1016/j.nbd.2024.106727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Most pharmacological treatments for depression target monoamine transporters and about 50 % of treated patients attain symptomatic remission. Once remission is attained, it is hard to distinguish the changes on brain monoaminergic transmission induced by the antidepressants, from those associated to remission per se. In this study, we aimed at studying the brain of spontaneously remitted rats from repeated social defeat (RSD)-induced depression in terms of dopamine D2/D3 receptor and serotonin transporter (SERT) availability, showing absence of depressive symptoms 2 weeks after RSD. We combined behavioral tests and positron emission tomography (PET) with [11C]raclopride and [11C]DASB to explore the changes in dopamine D2/D3 receptor and serotonin transporter (SERT) availability, respectively. Male rats submitted to RSD showed increased peripheral corticosterone levels, decreased body weight and anhedonia, as measured with the sucrose preference test, 1 day after RSD, confirming depressive-like symptoms. These depressive-like symptoms were no longer present 2 weeks after RSD. Rats that recovered from depressive-like symptoms showed decreased D2/D3 receptor binding in the caudate putamen and increased SERT availability in the brainstem, insular cortex, midbrain and thalamus, compared to control non-stressed animals. Our study shows that remission of depressive-like symptoms does not just "normalize" monoaminergic transmission, as changes in dopaminergic and serotonergic neurotransmission linger in several brain regions even after depressive-like symptoms have already resolved. These results provide new insights into the brain changes associated to remission in the RSD-induced depression model in rats.
Collapse
Affiliation(s)
- Rodrigo Moraga-Amaro
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Daniel Aaron Vazquez-Matias
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Luiza Reali Nazario
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Jimmy Stehberg
- Laboratorio de Neurobiología, Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|
5
|
Liu Y, Yao Y, Fang W, Wang X, Lu W. Combinatorial therapy with sub-effective Ro25-6981 and ZL006 ameliorates depressive-like behavior in single or combined stressed male mice. Biochem Biophys Res Commun 2024; 730:150385. [PMID: 39002200 DOI: 10.1016/j.bbrc.2024.150385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Major depression is a severe neuropsychiatric disorder that poses a significant challenge to health. However, development of an effective therapy for the disease has long been difficult. Here, we investigate the efficacy of a novel combinatorial treatment employing sub-effective doses of Ro25-6981, an antagonist targeting GluN2B-containing NMDA receptors, in conjunction with ZL006, an inhibitor of the PSD95/nNOS, on mouse models of depression. We employed social isolation, chronic restraint stress, or a combination of both to establish a depressed mouse model. Treatment with the drug combination reduced depressive-like behaviors without affecting locomotor activity in mice subjected to social isolation or chronic restraint stress. Furthermore, the combination therapy ameliorated depressive-like behaviors induced by combined stress of chronic restraint followed by social isolation. Mechanistic studies revealed that the combined treatment downregulated the hippocampal nitric oxide level. However, the therapeutic benefits of this combination were negated by the activation of NMDA receptors with a low dose of NMDA or by increasing nitric oxide levels with l-arginine. Moreover, the combinatorial treatment had negligible effects on object memory and contextual fear memory. Our data establish a combined therapy paradigm, providing a potential strategy targeting major depression.
Collapse
Affiliation(s)
- Yixiu Liu
- Department of Clinical Medicine, Hainan Medical University, Haikou, China
| | - Yilan Yao
- Department of Clinical Medicine, Hainan Medical University, Haikou, China
| | - Weiqing Fang
- Department of Pharmacy, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, China.
| | - Xuemeng Wang
- Department of the First Clinical Medicine, Hainan Medical University, Haikou, China
| | - Wen Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
6
|
Liu N, Tu J, Yi F, Zhang X, Zhong X, Wang L, Xie L, Zhou J. The Identification of Potential Anti-Depression/Anxiety Drug Targets by Stress-Induced Rat Brain Regional Proteome and Network Analyses. Neurochem Res 2024; 49:2957-2971. [PMID: 39088164 DOI: 10.1007/s11064-024-04220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Depression and anxiety disorders are prevalent stress-related neuropsychiatric disorders and involve multiple molecular changes and dysfunctions across various brain regions. However, the specific and shared pathophysiological mechanisms occurring in these regions remain unclear. Previous research used a rat model of chronic mild stress (CMS) to segregate and identify depression-susceptible, anxiety-susceptible, and insusceptible groups; then the proteomes of six distinct brain regions (the hippocampus, prefrontal cortex, hypothalamus, pituitary, olfactory bulb, and striatum) were separately and quantitatively analyzed. To gain a comprehensive and systematic understanding of the molecular abnormalities, this study aimed to investigate and compare differential proteomics data from the six regions. Differentially expressed proteins (DEPs) were identified in between specific regions and across all regions and subjected to a series of bioinformatics analyses. Regional comparisons showed that stress-induced proteomic changes and corresponding gene ontology and pathway enrichments were largely distinct, attributable to differences in cell populations, protein compositions, and brain functions of these areas. Additionally, a notable degree of overlap in the significantly enriched terms was identified, potentially suggesting strong connections in the enrichment across different regions. Furthermore, intra-regional and inter-regional protein-protein interaction networks and drug-target-DEP networks were constructed. Integrated analysis of the three association networks in the six regions, along with the DisGeNET database, identified ten DEPs as potential targets for anti-depression/anxiety drugs. Collectively, these findings revealed commonalities and differences across different brain regions at the protein level induced by CMS, and identified several novel protein targets for the development of new therapeutics for depression and anxiety.
Collapse
Affiliation(s)
- Nan Liu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Jiaxin Tu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Faping Yi
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xiong Zhang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xianhui Zhong
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lili Wang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Liang Xie
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| | - Jian Zhou
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
7
|
Sun H, Bai T, Zhang X, Fan X, Zhang K, Zhang J, Hu Q, Xu J, Tian Y, Wang K. Molecular mechanisms underlying structural plasticity of electroconvulsive therapy in major depressive disorder. Brain Imaging Behav 2024; 18:930-941. [PMID: 38664360 DOI: 10.1007/s11682-024-00884-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 08/31/2024]
Abstract
Although previous studies reported structural changes associated with electroconvulsive therapy (ECT) in major depressive disorder (MDD), the underlying molecular basis of ECT remains largely unknown. Here, we combined two independent structural MRI datasets of MDD patients receiving ECT and transcriptomic gene expression data from Allen Human Brain Atlas to reveal the molecular basis of ECT for MDD. We performed partial least square regression to explore whether/how gray matter volume (GMV) alterations were associated with gene expression level. Functional enrichment analysis was conducted using Metascape to explore ontological pathways of the associated genes. Finally, these genes were further assigned to seven cell types to determine which cell types contribute most to the structural changes in MDD patients after ECT. We found significantly increased GMV in bilateral hippocampus in MDD patients after ECT. Transcriptome-neuroimaging association analyses showed that expression levels of 726 genes were positively correlated with the increased GMV in MDD after ECT. These genes were mainly involved in synaptic signaling, calcium ion binding and cell-cell signaling, and mostly belonged to excitatory and inhibitory neurons. Moreover, we found that the MDD risk genes of CNR1, HTR1A, MAOA, PDE1A, and SST as well as ECT related genes of BDNF, DRD2, APOE, P2RX7, and TBC1D14 showed significantly positive associations with increased GMV. Overall, our findings provide biological and molecular mechanisms underlying structural plasticity induced by ECT in MDD and the identified genes may facilitate future therapy for MDD.
Collapse
Affiliation(s)
- Hui Sun
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Tongjian Bai
- Department of Neurology, the First Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaodong Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xinxin Fan
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Kai Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiang Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Qingmao Hu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jinping Xu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yanghua Tian
- Department of Neurology, the First Hospital of Anhui Medical University, Hefei, 230022, China.
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230022, China.
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China.
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230022, China.
- Department of Neurology, the Second Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Kai Wang
- Department of Neurology, the First Hospital of Anhui Medical University, Hefei, 230022, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230022, China
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230022, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, 230022, China
- Anhui Province clinical research center for neurological disease, Hefei, 230022, China
| |
Collapse
|
8
|
Miguel Telega L, Berti R, Blazhenets G, Domogalla LC, Steinacker N, Omrane MA, Meyer PT, Coenen VA, Eder AC, Döbrössy MD. Reserpine-induced rat model for depression: Behavioral, physiological and PET-based dopamine receptor availability validation. Prog Neuropsychopharmacol Biol Psychiatry 2024; 133:111013. [PMID: 38636702 DOI: 10.1016/j.pnpbp.2024.111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Reserpine (RES), a Vesicular Monoamine Transporter 2 (VMAT2) inhibitor agent, has been used in preclinical research for many years to create animal models for depression and to test experimental antidepressant strategies. Nevertheless, evidence of the potential use and validity of RES as a chronic pharmacological model for depression is lacking, and there are no comprehensive studies of the behavioral effects in conjunction with molecular outcomes. METHODS Experiment 1. Following baseline behavior testing sensitive to depression-like phenotype and locomotion (Phase 1), 27 Sprague-Dawley (SD) rats received i.p. either vehicle solution (0.0 mg/kg), low (0.2 mg/kg) or high (0.8 mg/kg) RES dose for 20 days using a pre-determined schedule and reassessed for behavioral phenotypes (Phase 2). After 10 days washout period, and a final behavioral assessment (Phase 3), the brains were collected 16 days after the last injection for mRNA-expression assessment. Experiment 2. In a similar timetable as in Experiment 1 but without the behavioral testing, 12 SD rats underwent repetitive dopamine D2/3 receptor PET scanning with [18F]DMFP following each Phase. The binding potential (BPND) of [18F]DMFP was quantified by kinetic analysis as a marker of striatal D2/3R availability. Weight and welfare were monitored throughout the study. RESULTS Significant, dose-dependent weight loss and behavioral deficits including both motor (hypo-locomotion) and non-motor behavior (anhedonia, mild anxiety and reduced exploration) were found for both the low and high dose groups with significant decrease in D2R mRNA expression in the accumbal region for the low RES group after Phase 3. Both RES treated groups showed substantial increase in [18F]DMFP BPND (in line with dopamine depletion) during Phase 2 and 3 compared to baseline and Controls. CONCLUSIONS The longitudinal design of the study demonstrated that chronic RES administration induced striatal dopamine depletion that persisted even after the wash-out period. However, the behavior phenotype observed were transient. The data suggest that RES administration can induce a rodent model for depression with mild face validity.
Collapse
Affiliation(s)
- Lidia Miguel Telega
- Lab of Stereotaxy and Interventional Neurosciences (SIN), Dept. of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Germany; Department of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Germany; Faculty of Biology, University of Freiburg, Germany; BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), Freiburg, Germany
| | - Raissa Berti
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ganna Blazhenets
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa-Charlotte Domogalla
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| | - Nils Steinacker
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| | - M Aymen Omrane
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Basics in Neuromodulation, University of Freiburg, Freiburg, Germany
| | - Volker A Coenen
- Lab of Stereotaxy and Interventional Neurosciences (SIN), Dept. of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Germany; Department of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Germany; Center for Basics in Neuromodulation, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools, IMBIT (Institute for Machine-Brain Interfacing Technology), Freiburg, Germany
| | - Ann-Christin Eder
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Radiopharmaceutical Development, German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany and German Cancer Research Center, Heidelberg, Germany
| | - Máté D Döbrössy
- Lab of Stereotaxy and Interventional Neurosciences (SIN), Dept. of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Germany; Department of Stereotactic and Functional Neurosurgery, Medical Center - University Freiburg, Germany; Faculty of Biology, University of Freiburg, Germany; Center for Basics in Neuromodulation, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
9
|
Hird EJ, Slanina-Davies A, Lewis G, Hamer M, Roiser JP. From movement to motivation: a proposed framework to understand the antidepressant effect of exercise. Transl Psychiatry 2024; 14:273. [PMID: 38961071 PMCID: PMC11222551 DOI: 10.1038/s41398-024-02922-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 03/28/2024] [Accepted: 05/10/2024] [Indexed: 07/05/2024] Open
Abstract
Depression is the leading cause of disability worldwide, exerting a profound negative impact on quality of life in those who experience it. Depression is associated with disruptions to several closely related neural and cognitive processes, including dopamine transmission, fronto-striatal brain activity and connectivity, reward processing and motivation. Physical activity, especially aerobic exercise, reduces depressive symptoms, but the mechanisms driving its antidepressant effects are poorly understood. Here we propose a novel hypothesis for understanding the antidepressant effects of exercise, centred on motivation, across different levels of explanation. There is robust evidence that aerobic exercise decreases systemic inflammation. Inflammation is known to reduce dopamine transmission, which in turn is strongly implicated in effort-based decision making for reward. Drawing on a broad range of research in humans and animals, we propose that by reducing inflammation and boosting dopamine transmission, with consequent effects on effort-based decision making for reward, exercise initially specifically improves 'interest-activity' symptoms of depression-namely anhedonia, fatigue and subjective cognitive impairment - by increasing propensity to exert effort. Extending this framework to the topic of cognitive control, we explain how cognitive impairment in depression may also be conceptualised through an effort-based decision-making framework, which may help to explain the impact of exercise on cognitive impairment. Understanding the mechanisms underlying the antidepressant effects of exercise could inform the development of novel intervention strategies, in particular personalised interventions and boost social prescribing.
Collapse
Affiliation(s)
- E J Hird
- Institute of Cognitive Neuroscience, University College London, London, UK.
| | - A Slanina-Davies
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - G Lewis
- Division of Psychiatry, University College London, London, UK
| | - M Hamer
- Institute of Sport, Exercise and Health, University College London, London, UK
| | - J P Roiser
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
10
|
Wang F, Xin M, Li X, Li L, Wang C, Dai L, Zheng C, Cao K, Yang X, Ge Q, Li B, Wang T, Zhan S, Li D, Zhang X, Paerhati H, Zhou Y, Liu J, Sun B. Effects of deep brain stimulation on dopamine D2 receptor binding in patients with treatment-refractory depression. J Affect Disord 2024; 356:672-680. [PMID: 38657771 DOI: 10.1016/j.jad.2024.04.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/26/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Depression is a chronic psychiatric disorder related to diminished dopaminergic neurotransmission. Deep brain stimulation (DBS) has shown effectiveness in treating patients with treatment-refractory depression (TRD). This study aimed to evaluate the effect of DBS on dopamine D2 receptor binding in patients with TRD. METHODS Six patients with TRD were treated with bed nucleus of the stria terminalis (BNST)-nucleus accumbens (NAc) DBS were recruited. Ultra-high sensitivity [11C]raclopride dynamic total-body positron emission tomography (PET) imaging was used to assess the brain D2 receptor binding. Each patient underwent a [11C]raclopride PET scan for 60-min under DBS OFF and DBS ON, respectively. A simplified reference tissue model was used to generate parametric images of binding potential (BPND) with the cerebellum as reference tissue. RESULTS Depression and anxiety symptoms improved after 3-6 months of DBS treatment. Compared with two-day-nonstimulated conditions, one-day BNST-NAc DBS decreased [11C]raclopride BPND in the amygdala (15.9 %, p < 0.01), caudate nucleus (15.4 %, p < 0.0001) and substantia nigra (10.8 %, p < 0.01). LIMITATIONS This study was limited to the small sample size and lack of a healthy control group. CONCLUSIONS Chronic BNST-NAc DBS improved depression and anxiety symptoms, and short-term stimulation decreased D2 receptor binding in the amygdala, caudate nucleus, and substantia nigra. The findings suggest that DBS relieves depression and anxiety symptoms possibly by regulating the dopaminergic system.
Collapse
Affiliation(s)
- Fang Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, School of Medicine, Tongji University, Shanghai 200124, China
| | - Mei Xin
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Xuefei Li
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai 201815, China
| | - Lianghua Li
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Cheng Wang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Lulin Dai
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chaojie Zheng
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai 201815, China
| | - Kaiyi Cao
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai 201815, China
| | - Xuefei Yang
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai 201815, China
| | - Qi Ge
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai 201815, China
| | - Bolun Li
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai 201815, China
| | - Tao Wang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shikun Zhan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaoxiao Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Halimureti Paerhati
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group Co., Ltd, Shanghai 201815, China.
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
11
|
Lv R, Cai M, Tang N, Shi Y, Zhang Y, Liu N, Han T, Zhang Y, Wang H. Active versus sham DLPFC-NAc rTMS for depressed adolescents with anhedonia using resting-state functional magnetic resonance imaging (fMRI): a study protocol for a randomized placebo-controlled trial. Trials 2024; 25:44. [PMID: 38218932 PMCID: PMC10787505 DOI: 10.1186/s13063-023-07814-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/21/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Anhedonia, which is defined as the inability to feel pleasure, is considered a core symptom of major depressive disorder (MDD). It can lead to several adverse outcomes in adolescents, including heightened disease severity, resistance to antidepressants, recurrence of MDD, and even suicide. Specifically, patients who suffer from anhedonia may exhibit a limited response to selective serotonin reuptake inhibitors (SSRIs) and cognitive behavioral therapy (CBT). Previous researches have revealed a link between anhedonia and abnormalities within the reward circuitry, making the nucleus accumbens (NAc) a potential target for treatment. However, since the NAc is deep within the brain, repetitive transcranial magnetic stimulation (rTMS) has the potential to modulate this specific region. Recent advances have enabled treatment technology to precisely target the left dorsolateral prefrontal cortex (DLPFC) and modify the functional connectivity (FC) between DLPFC and NAc in adolescent patients with anhedonia. Therefore, we plan to conduct a study to explore the safety and effectiveness of using resting-state functional connectivity magnetic resonance imaging (fcMRI)-guided rTMS to alleviate anhedonia in adolescents diagnosed with MDD. METHODS The aim of this article is to provide a study protocol for a parallel-group randomized, double-blind, placebo-controlled experiment. The study will involve 88 participants who will be randomly assigned to receive either active rTMS or sham rTMS. The primary object is to measure the percentage change in the severity of anhedonia, using the Snaith-Hamilton Pleasure Scale (SHAPS). The assessment will be conducted from the baseline to 8-week post-treatment period. The secondary outcome includes encompassing fMRI measurements, scores on the 17-item Hamilton Rating Scale for Depression (HAMD-17), the Montgomery Asberg Depression Rating Scale (MADRS), the Chinese Version of Temporal Experience of Pleasure Scale (CV-TEPS), and the Chinese Version of Beck Scale for Suicide Ideation (BSI-CV). The Clinical Global Impression (CGI) scores will also be taken into account, and adverse events will be monitored. These evaluations will be conducted at baseline, as well as at 1, 2, 4, and 8 weeks. DISCUSSION If the hypothesis of the current study is confirmed, (fcMRI)-guided rTMS could be a powerful tool to alleviate the core symptoms of MDD and provide essential data to explore the mechanism of anhedonia. TRIAL REGISTRATION ClinicalTrials.gov NCT05544071. Registered on 16 September 2022.
Collapse
Affiliation(s)
- Runxin Lv
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China
| | - Min Cai
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China
| | - Nailong Tang
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China
- Department of Psychiatry, 907 Hospital, No. 99 Binjiang North Road, Yanping District, Nanping City, Fujian Province, China
| | - Yifan Shi
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China
| | - Yuyu Zhang
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China
| | - Nian Liu
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China
| | - Tianle Han
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China
| | - Yaochi Zhang
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China
| | - Huaning Wang
- Department of Psychiatry of Xijing Hospital of Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi Province, China.
| |
Collapse
|
12
|
Gonçalves A, Mendes A, Damásio J, Vila-Chã N, Boleixa D, Leal B, Cavaco S. DRD3 Predicts Cognitive Impairment and Anxiety in Parkinson's Disease: Susceptibility and Protective Effects. JOURNAL OF PARKINSON'S DISEASE 2024; 14:313-324. [PMID: 38363619 PMCID: PMC10977366 DOI: 10.3233/jpd-230292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Background A possible genetic contribution of dopamine D3 receptor (DRD3) to cognitive impairment in Parkinson's disease (PD) has yet to be investigated. Objective To explore the effects of rs6280 (Ser9Gly) genotype on PD patients' cognitive performance and to clarify possible interactions with psychopathology. Methods Two hundred and fifty-three consecutive PD patients underwent neurological and neuropsychological evaluations, which included: Unified Parkinson's Disease Rating Scale (UPDRS), Hoehn & Yahr scale (H&Y), Dementia Rating Scale-2 (DRS-2), and Hospital Anxiety and Depression Scale (HADS). rs6280 polymorphism was genotyped for all PD patients and for 270 ethnically matched healthy volunteers (HC). Non-parametric group comparisons and logistic regressions were used for data analyses. Results rs6280 genotype did not differ between PD and HC groups. PD patients with rs6280 CC genotype had more impaired cognitive performance (i.e., <1st percentile of demographically adjusted norms) on DRS-2 subscales Initiation/Perseveration and Construction than those with TT genotype. These associations remained statistically significant when other covariates (e.g., demographic features, disease duration, severity of motor symptoms in OFF and ON states, anti-parkinsonian medication, and psychopathology symptoms) were taken into consideration. PD patients with rs6280 TC had less anxiety (i.e., HADS Anxiety≥11) than those with TT (p = 0.012). This association was also independent of other covariates. Conclusions Study findings suggest that rs6280 CC genotype predisposes to executive dysfunction and visuoconstructional deficits, whereas the heterozygous genotype protects from anxiety in PD. These effects do not appear to be dependent of one another. rs6280 is not a genotypic susceptibility factor for PD.
Collapse
Affiliation(s)
- Alexandra Gonçalves
- Neuropsychology Service, Centro Hospitalar Universitário de Santo António, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Alexandre Mendes
- Neurology Department, Centro Hospitalar Universitário de Santo António, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- ITR – Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Joana Damásio
- Neurology Department, Centro Hospitalar Universitário de Santo António, Porto, Portugal
| | - Nuno Vila-Chã
- Neurology Department, Centro Hospitalar Universitário de Santo António, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- ITR – Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Daniela Boleixa
- Departamento de Patologia e Imunologia Molecular, Immunogenetics Laboratory, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Bárbara Leal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- ITR – Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
- Departamento de Patologia e Imunologia Molecular, Immunogenetics Laboratory, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Sara Cavaco
- Neuropsychology Service, Centro Hospitalar Universitário de Santo António, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- ITR – Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| |
Collapse
|
13
|
Taha A, Alassi A, Gjedde A, Wong DF. Transforming Neurology and Psychiatry: Organ-specific PET Instrumentation and Clinical Applications. PET Clin 2024; 19:95-103. [PMID: 37813719 DOI: 10.1016/j.cpet.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
PET technology has immense potential for furthering understanding of the brain and associated disorders, including advancements in high-resolution tomographs and hybrid imaging modalities. Novel radiotracers targeting specific neurotransmitter systems and molecular markers provide opportunities to unveil intricate mechanisms underlying neurologic and psychiatric conditions. As PET imaging techniques and analysis methods continue to be refined, the field is poised to make significant contributions to personalized medicine for more targeted and effective interventions. PET instrumentation has advanced the fields of neurology and psychiatry, providing insights into pathophysiology and development of effective treatments.
Collapse
Affiliation(s)
- Ahmed Taha
- Mallinckrodt Institute of Radiology, Washington University in St Louis, Saint Louis, MO, USA
| | - Amer Alassi
- Mallinckrodt Institute of Radiology, Washington University in St Louis, Saint Louis, MO, USA
| | - Albert Gjedde
- Department of Clinical Medicine, Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Neuroscience, University of Copenhagen, Denmark
| | - Dean F Wong
- Mallinckrodt Institute of Radiology, Departments of Radiology, Psychiatry, Neurology, Neuroscience, Washington University in St Louis, Saint Louis, MO, USA.
| |
Collapse
|
14
|
Zhao H, Zhou M, Liu Y, Jiang J, Wang Y. Recent advances in anxiety disorders: Focus on animal models and pathological mechanisms. Animal Model Exp Med 2023; 6:559-572. [PMID: 38013621 PMCID: PMC10757213 DOI: 10.1002/ame2.12360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/09/2023] [Indexed: 11/29/2023] Open
Abstract
Anxiety disorders have become one of the most severe psychiatric disorders, and the incidence is increasing every year. They impose an extraordinary personal and socioeconomic burden. Anxiety disorders are influenced by multiple complex and interacting genetic, psychological, social, and environmental factors, which contribute to disruption or imbalance in homeostasis and eventually cause pathologic anxiety. The selection of a suitable animal model is important for the exploration of disease etiology and pathophysiology, and the development of new drugs. Therefore, a more comprehensive understanding of the advantages and limitations of existing animal models of anxiety disorders is helpful to further study the underlying pathological mechanisms of the disease. This review summarizes animal models and the pathogenesis of anxiety disorders, and discusses the current research status to provide insights for further study of anxiety disorders.
Collapse
Affiliation(s)
- Hongqing Zhao
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| | - Mi Zhou
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| | - Yang Liu
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| | - Jiaqi Jiang
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| | - Yuhong Wang
- Science & technology innovation centerHunan University of Chinese MedicineChangshaChina
| |
Collapse
|
15
|
Mizuno Y, Ashok AH, Bhat BB, Jauhar S, Howes OD. Dopamine in major depressive disorder: A systematic review and meta-analysis of in vivo imaging studies. J Psychopharmacol 2023; 37:1058-1069. [PMID: 37811803 PMCID: PMC10647912 DOI: 10.1177/02698811231200881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
BACKGROUND Major depressive disorder (MDD) is a leading cause of global disability. Several lines of evidence implicate the dopamine system in its pathophysiology. However, the magnitude and consistency of the findings are unknown. We address this by systematically reviewing in vivo imaging evidence for dopamine measures in MDD and meta-analysing these where there are sufficient studies. METHODS Studies investigating the dopaminergic system using positron emission tomography or single photon emission computed tomography in MDD and a control group were included. Demographic, clinical and imaging measures were extracted from each study, and meta-analyses and sensitivity analyses were conducted. RESULTS We identified 43 studies including 662 patients and 801 controls. Meta-analysis of 38 studies showed no difference in mean or mean variability of striatal D2/3 receptor availability (g = 0.06, p = 0.620), or combined dopamine synthesis and release capacity (g = 0.19, p = 0.309). Dopamine transporter (DAT) availability was lower in the MDD group in studies using DAT selective tracers (g = -0.56, p = 0.006), but not when tracers with an affinity for serotonin transporters were included (g = -0.21, p = 0.420). Subgroup analysis showed greater dopamine release (g = 0.49, p = 0.030), but no difference in dopamine synthesis capacity (g = -0.21, p = 0.434) in the MDD group. Striatal D1 receptor availability was lower in patients with MDD in two studies. CONCLUSIONS The meta-analysis indicates striatal DAT availability is lower, but D2/3 receptor availability is not altered in people with MDD compared to healthy controls. There may be greater dopamine release and lower striatal D1 receptors in MDD, although further studies are warranted. We discuss factors associated with these findings, discrepancies with preclinical literature and implications for future research.
Collapse
Affiliation(s)
- Yuya Mizuno
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Abhishekh Hulegar Ashok
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Department of Radiology, University of Cambridge, Cambridge, UK
- Department of Radiology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Sameer Jauhar
- South London and Maudsley NHS Foundation Trust, London, UK
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Psychiatric Imaging Group, Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
16
|
Fitzgerald E, Arcego DM, Shen MJ, O'Toole N, Wen X, Nagy C, Mostafavi S, Craig K, Silveira PP, Rayan NA, Diorio J, Meaney MJ, Zhang TY. Sex and cell-specific gene expression in corticolimbic brain regions associated with psychiatric disorders revealed by bulk and single-nuclei RNA sequencing. EBioMedicine 2023; 95:104749. [PMID: 37549631 PMCID: PMC10432187 DOI: 10.1016/j.ebiom.2023.104749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/28/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND There are sex-specific differences in the prevalence, symptomology and course of psychiatric disorders. However, preclinical models have primarily used males, such that the molecular mechanisms underlying sex-specific differences in psychiatric disorders are not well established. METHODS In this study, we compared transcriptome-wide gene expression profiles in male and female rats within the corticolimbic system, including the cingulate cortex, nucleus accumbens medial shell (NAcS), ventral dentate gyrus and the basolateral amygdala (n = 22-24 per group/region). FINDINGS We found over 3000 differentially expressed genes (DEGs) in the NAcS between males and females. Of these DEGs in the NAcS, 303 showed sex-dependent conservation DEGs in humans and were significantly enriched for gene ontology terms related to blood vessel morphogenesis and regulation of cell migration. Single nuclei RNA sequencing in the NAcS of male and female rats identified widespread sex-dependent expression, with genes upregulated in females showing a notable enrichment for synaptic function. Female upregulated genes in astrocytes, Drd3+MSNs and oligodendrocyte were also enriched in several psychiatric genome-wide association studies (GWAS). INTERPRETATION Our data provide comprehensive evidence of sex- and cell-specific molecular profiles in the NAcS. Importantly these differences associate with anxiety, bipolar disorder, schizophrenia, and cross-disorder, suggesting an intrinsic molecular basis for sex-based differences in psychiatric disorders that strongly implicates the NAcS. FUNDING This work was supported by funding from the Hope for Depression Research Foundation (MJM).
Collapse
Affiliation(s)
- Eamon Fitzgerald
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, H4H 1R3, Canada
| | - Danusa Mar Arcego
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, H4H 1R3, Canada
| | - Mo Jun Shen
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nicholas O'Toole
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, H4H 1R3, Canada
| | - Xianglan Wen
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, H4H 1R3, Canada
| | - Corina Nagy
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada
| | - Sara Mostafavi
- Paul G. Allen School of Computer Science and Engineering, University of Washington, 185 E Stevens Way NE, Seattle, WA 9819, USA
| | - Kelly Craig
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada
| | - Patricia Pelufo Silveira
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, H4H 1R3, Canada; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nirmala Arul Rayan
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences and Brain - Body Initiative, Agency for Science, Technology and Research (A∗STAR), Singapore
| | - Josie Diorio
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada
| | - Michael J Meaney
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, H4H 1R3, Canada; Translational Neuroscience Program, Singapore Institute for Clinical Sciences and Brain - Body Initiative, Agency for Science, Technology and Research (A∗STAR), Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tie-Yuan Zhang
- Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montréal, H4H 1R3, Canada; Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montréal, H4H 1R3, Canada.
| |
Collapse
|
17
|
Taylor D, Chithiramohan R, Grewal J, Gupta A, Hansen L, Reynolds GP, Pappa S. Dopamine partial agonists: a discrete class of antipsychotics. Int J Psychiatry Clin Pract 2023; 27:272-284. [PMID: 36495086 DOI: 10.1080/13651501.2022.2151473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 12/14/2022]
Abstract
Worldwide, there are now three marketed dopamine D2 partial agonists: aripiprazole, brexpiprazole and cariprazine. These three drugs share a number of properties other than their action at D2 receptors. Pharmacologically, they are 5HT2 antagonists and D3 and 5HT1A partial agonists but with little or no alpha-adrenergic, anticholinergic or antihistaminic activity. They also share a long duration of action. Clinically, D2 partial agonists are effective antipsychotics and generally have useful antimanic and antidepressant activity. They are usually well tolerated, causing akathisia and insomnia only at the start of treatment, and are non-sedating. These drugs also share a very low risk of increased prolactin and of weight gain and accompanying metabolic effects. They may also have a relatively low risk of tardive dyskinesia. There is some evidence that they are preferred by patients to dopamine antagonists. Individual dopamineD2 partial agonists have much in common and as a group they differ importantly from dopamine D2 antagonists. Dopamine D2 partial agonists should be considered a distinct class of antipsychotics.Key pointsD2 partial agonists share many pharmacological and clinical propertiesD2 partial agonists differ in several important respects from D2 antagonistsD2 partial agonists should be considered a discrete class of antipsychotics.
Collapse
Affiliation(s)
- David Taylor
- Institute of Pharmaceutical Science, King's College London, London, UK
- Pharmacy Department, South London and Maudsley NHS Foundation Trust, London, UK
| | | | | | - Avirup Gupta
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Lars Hansen
- Southampton University, Hartley Library B12, Southampton, UK
- Southern Health NHS Foundation Trust, Southampton, UK
| | - Gavin P Reynolds
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Sofia Pappa
- Department of Brain Sciences, Imperial College London, London, UK
- West London NHS Trust, London, UK
| |
Collapse
|
18
|
Phillips RD, Walsh EC, Zürcher NR, Lalush DS, Kinard JL, Tseng CE, Cernasov PM, Kan D, Cummings K, Kelley L, Campbell D, Dillon DG, Pizzagalli DA, Izquierdo-Garcia D, Hooker JM, Smoski MJ, Dichter GS. Striatal dopamine in anhedonia: A simultaneous [ 11C]raclopride positron emission tomography and functional magnetic resonance imaging investigation. Psychiatry Res Neuroimaging 2023; 333:111660. [PMID: 37301129 PMCID: PMC10594643 DOI: 10.1016/j.pscychresns.2023.111660] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/21/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Anhedonia is hypothesized to be associated with blunted mesocorticolimbic dopamine (DA) functioning in samples with major depressive disorder. The purpose of this study was to examine linkages between striatal DA, reward circuitry functioning, anhedonia, and, in an exploratory fashion, self-reported stress, in a transdiagnostic anhedonic sample. METHODS Participants with (n = 25) and without (n = 12) clinically impairing anhedonia completed a reward-processing task during simultaneous positron emission tomography and magnetic resonance (PET-MR) imaging with [11C]raclopride, a DA D2/D3 receptor antagonist that selectively binds to striatal DA receptors. RESULTS Relative to controls, the anhedonia group exhibited decreased task-related DA release in the left putamen, caudate, and nucleus accumbens and right putamen and pallidum. There were no group differences in task-related brain activation (fMRI) during reward processing after correcting for multiple comparisons. General functional connectivity (GFC) findings revealed blunted fMRI connectivity between PET-derived striatal seeds and target regions in the anhedonia group. Associations were identified between anhedonia severity and the magnitude of task-related DA release to rewards in the left putamen, but not mesocorticolimbic GFC. CONCLUSIONS Results provide evidence for reduced striatal DA functioning during reward processing and blunted mesocorticolimbic network functional connectivity in a transdiagnostic sample with clinically significant anhedonia.
Collapse
Affiliation(s)
- Rachel D Phillips
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States.
| | - Erin C Walsh
- Department of Psychiatry, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States
| | - Nicole R Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - David S Lalush
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, United States
| | - Jessica L Kinard
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, Chapel Hill, NC, United States
| | - Chieh-En Tseng
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Paul M Cernasov
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States
| | - Delia Kan
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, Chapel Hill, NC, United States
| | - Kaitlin Cummings
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States
| | - Lisalynn Kelley
- Department of Psychiatry & Behavioral Sciences, Duke University, Durham, NC, United States
| | - David Campbell
- Department of Psychiatry & Behavioral Sciences, Duke University, Durham, NC, United States
| | - Daniel G Dillon
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, United States
| | - Diego A Pizzagalli
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA, United States
| | - David Izquierdo-Garcia
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Moria J Smoski
- Department of Psychiatry & Behavioral Sciences, Duke University, Durham, NC, United States
| | - Gabriel S Dichter
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States; Department of Psychiatry, University of North Carolina-Chapel Hill, Chapel Hill, NC, United States; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
19
|
Liu X, He J, Jiang W, Wen S, Xiao Z. The Roles of Periaqueductal Gray and Dorsal Raphe Nucleus Dopaminergic Systems in the Mechanisms of Thermal Hypersensitivity and Depression in Mice. THE JOURNAL OF PAIN 2023; 24:1213-1228. [PMID: 36796500 DOI: 10.1016/j.jpain.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/05/2023] [Accepted: 02/05/2023] [Indexed: 02/16/2023]
Abstract
Depression and thermal hypersensitivity share pathogenic features and symptomology, but their pathophysiologic interactions have not been fully elucidated. Dopaminergic systems in the ventrolateral periaqueductal gray (vlPAG) and dorsal raphe nucleus have been implicated in these conditions due to their antinociception and antidepression effects, although their specific roles and underlying mechanisms remain obscure. In this study, chronic unpredictable mild stress (CMS) was used to induce depression-like behaviors and thermal hypersensitivity in C57BL/6J (wild-type) or dopamine transporter promoter mice to establish a mouse model of pain and depression comorbidity. Microinjections of quinpirole, a dopamine D2 receptor agonist, up-regulated D2 receptor expression in dorsal raphe nucleus and reduced depressive behaviors and thermal hypersensitivity with CMS, while dorsal raphe nucleus injections of JNJ-37822681, an antagonist of D2 receptors, had the reciprocal effect on dopamine D2 receptor expression and behaviors. Moreover, using a chemical genetics approach to activate or inhibit dopaminergic neurons in vlPAG ameliorated or exacerbated depression-like behaviors and thermal hypersensitivity, respectively, in dopamine transporter promoter-Cre CMS mice. Collectively these results demonstrated the specific role of vlPAG and dorsal raphe nucleus dopaminergic systems in the regulation of pain and depression comorbidity in mice. PERSPECTIVE: The current study provides insights into the complex mechanisms underlying thermal hypersensitivity induced by depression, and the findings suggest that pharmacological and chemogenetic modulation of dopaminergic systems in the vlPAG and dorsal raphe nucleus may be a promising therapeutic strategy to simultaneously mitigate pain and depression.
Collapse
Affiliation(s)
- Xingfeng Liu
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, Guizhou, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingxin He
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei Jiang
- Graduate School, Zunyi Medical University, Zunyi, Guizhou, China
| | - Song Wen
- Department of Pain Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhi Xiao
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, Guizhou, China; Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
20
|
Silveira PP, Pokhvisneva I, Howard DM, Meaney MJ. A sex-specific genome-wide association study of depression phenotypes in UK Biobank. Mol Psychiatry 2023; 28:2469-2479. [PMID: 36750733 PMCID: PMC10611579 DOI: 10.1038/s41380-023-01960-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/07/2022] [Accepted: 01/11/2023] [Indexed: 02/09/2023]
Abstract
There are marked sex differences in the prevalence, phenotypic presentation and treatment response for major depression. While genome-wide association studies (GWAS) adjust for sex differences, to date, no studies seek to identify sex-specific markers and pathways. In this study, we performed a sex-stratified genome-wide association analysis for broad depression with the UK Biobank total participants (N = 274,141), including only non-related participants, as well as with males (N = 127,867) and females (N = 146,274) separately. Bioinformatics analyses were performed to characterize common and sex-specific markers and associated processes/pathways. We identified 11 loci passing genome-level significance (P < 5 × 10-8) in females and one in males. In both males and females, genetic correlations were significant between the broad depression GWA and other psychopathologies; however, correlations with educational attainment and metabolic features including body fat, waist circumference, waist-to-hip ratio and triglycerides were significant only in females. Gene-based analysis showed 147 genes significantly associated with broad depression in the total sample, 64 in the females and 53 in the males. Gene-based analysis revealed "Regulation of Gene Expression" as a common biological process, but suggested sex-specific molecular mechanisms. Finally, sex-specific polygenic risk scores (PRSs) for broad depression outperformed total and the opposite sex PRSs in the prediction of broad major depressive disorder. These findings provide evidence for sex-dependent genetic pathways for clinical depression as well as for health conditions comorbid with depression.
Collapse
Affiliation(s)
- Patrícia Pelufo Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Department of Psychiatry, Faculty of Medicine & Douglas Research Centre, McGill University, Montreal, QC, Canada
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Department of Psychiatry, Faculty of Medicine & Douglas Research Centre, McGill University, Montreal, QC, Canada
| | - David M Howard
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Michael J Meaney
- Ludmer Centre for Neuroinformatics and Mental Health, Department of Psychiatry, Faculty of Medicine & Douglas Research Centre, McGill University, Montreal, QC, Canada.
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences and Brain - Body Initiative, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Brain-Body Initiative, Institute for Cell & Molecular Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
21
|
Paul ER, Östman L, Heilig M, Mayberg HS, Hamilton JP. Towards a multilevel model of major depression: genes, immuno-metabolic function, and cortico-striatal signaling. Transl Psychiatry 2023; 13:171. [PMID: 37208333 DOI: 10.1038/s41398-023-02466-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
Biological assay and imaging techniques have made visible a great deal of the machinery of mental illness. Over fifty years of investigation of mood disorders using these technologies has identified several biological regularities in these disorders. Here we present a narrative connecting genetic, cytokine, neurotransmitter, and neural-systems-level findings in major depressive disorder (MDD). Specifically, we connect recent genome-wide findings in MDD to metabolic and immunological disturbance in this disorder and then detail links between immunological abnormalities and dopaminergic signaling within cortico-striatal circuitry. Following this, we discuss implications of reduced dopaminergic tone for cortico-striatal signal conduction in MDD. Finally, we specify some of the flaws in the current model and propose ways forward for advancing multilevel formulations of MDD most efficiently.
Collapse
Affiliation(s)
- Elisabeth R Paul
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Center for Medical Imaging and Visualization, Linköping University, Linköping, Sweden
| | - Lars Östman
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Psychiatry, Region Östergötland, Linköping, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Psychiatry, Region Östergötland, Linköping, Sweden
| | | | - J Paul Hamilton
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.
| |
Collapse
|
22
|
Hu Y, Zhao C, Zhao H, Qiao J. Abnormal functional connectivity of the nucleus accumbens subregions mediates the association between anhedonia and major depressive disorder. BMC Psychiatry 2023; 23:282. [PMID: 37085792 PMCID: PMC10122393 DOI: 10.1186/s12888-023-04693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/17/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND The nucleus accumbens (Nac) is a crucial brain region in the pathophysiology of major depressive disorder (MDD) patients with anhedonia. However, the relationship between the functional imaging characteristics of Nac subregions and anhedonia remains unclear. Thus, this study aimed to investigate the role of resting-state functional connectivity (rsFC) of the Nac subregions between MDD and anhedonia. METHODS We performed resting-state functional magnetic resonance imaging (fMRI) to measure the rsFC of Nac subregions in 55 MDD patients and 30 healthy controls (HCs). A two-sample t test was performed to determine the brain regions with varying rsFC among Nac subregions between groups. Then, correlation analyses were carried out to investigate the relationships between the aberrant rsFC of Nac subregions and the severity of anhedonia. Furthermore, we constructed a mediation model to explain the role of the aberrant rsFC of Nac subregions between MDD and the severity of anhedonia. RESULTS Compared with the HC group, decreased rsFC of Nac subregions with regions of the prefrontal cortex, insula, lingual gyrus, and visual association cortex was observed in MDD patients. In the MDD group, the rsFC of the right Nac shell-like subregions with the middle frontal gyrus (MFG)/superior frontal gyrus (SFG) was correlated with consummatory anhedonia, and the rsFC of the Nac core-like subdivisions with the inferior frontal gyrus (IFG)/insula and lingual gyrus/visual association cortex was correlated with anticipatory anhedonia. More importantly, the functional alterations in the Nac subregions mediated the association between anhedonia and depression. CONCLUSIONS The present findings suggest that the functional alteration of the Nac subregions mediates the association between MDD and anhedonia, which provides evidence for the hypothesis that MDD patients have neurobiological underpinnings of reward systems that differ from those of HCs.
Collapse
Affiliation(s)
- Yanqin Hu
- Department of Psychiatry, First Clinical College, Xuzhou Medical University, Xuzhou, 221000, China
| | - Chaoqi Zhao
- Department of Psychiatry, First Clinical College, Xuzhou Medical University, Xuzhou, 221000, China
| | - Houfeng Zhao
- Department of Psychiatry, the Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, 221000, China.
- Department of Medical Psychology, Second Clinical College, Xuzhou Medical University, Xuzhou, 221000, China.
| | - Juan Qiao
- Department of Psychiatry, the Affiliated Xuzhou Oriental Hospital of Xuzhou Medical University, Xuzhou, 221000, China.
- Department of Medical Psychology, Second Clinical College, Xuzhou Medical University, Xuzhou, 221000, China.
| |
Collapse
|
23
|
Barreto Meichtry L, Silva da Silva G, Londero L, Munir Mustafa Dahleh M, Cardoso Bortolotto V, Machado Araujo S, Aparecida Musachio E, Trivisiol da Silva D, Emanuelli T, Ricardo Sigal Carriço M, Roehrs R, Petri Guerra G, Prigol M. Exposure to trans fat during the developmental period ofDrosophila melanogasteralters the composition of fatty acids in the head and induces depression-like behavior. Neuroscience 2023; 519:10-22. [PMID: 36933760 DOI: 10.1016/j.neuroscience.2023.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Given the importance of understanding the disorders caused by trans fatty acids (TFAs), this study sought to add different concentrations hydrogenated vegetable fat (HVF) to the diet of Drosophila melanogaster during the developmental period and evaluate the effects on neurobehavioral parameters. Longevity, hatching rate, and behavioral functions were assessed, such as negative geotaxis, forced swimming, light/dark, mating, and aggressiveness. The fatty acids (FAs) present in the heads of the flies were quantified as well as serotonin (5HT) and dopamine (DA) levels. Our findings showed that flies that received HVF at all concentrations during development showed reduced longevity and hatching rates, in addition to increased depression-like, anxious-like, anhedonia-like, and aggressive behaviors. As for the biochemical parameters, there was a more significant presence of TFA in flies exposed to HVF at all concentrations evaluated and lower 5HT and DA levels. This study shows that HVF during the developmental phase can cause neurological changes and consequently induce behavioral disorders, thereby highlighting the importance of the type of FA offered in the early stages of life.
Collapse
Affiliation(s)
- Luana Barreto Meichtry
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Guilherme Silva da Silva
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Larissa Londero
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Mustafa Munir Mustafa Dahleh
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Vandreza Cardoso Bortolotto
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Stífani Machado Araujo
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Elize Aparecida Musachio
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Dariane Trivisiol da Silva
- Departamento de Tecnologia e Ciência dos Alimentos, Centro de Ciências Rurais Universidade Federal de Santa Maria, Santa Maria, RS, Brazil, CEP 97105-900
| | - Tatiana Emanuelli
- Departamento de Tecnologia e Ciência dos Alimentos, Centro de Ciências Rurais Universidade Federal de Santa Maria, Santa Maria, RS, Brazil, CEP 97105-900
| | - Murilo Ricardo Sigal Carriço
- Universidade Federal do Pampa - Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, Brazil, CEP 97501-970
| | - Rafael Roehrs
- Universidade Federal do Pampa - Campus Uruguaiana, Programa de Pós-Graduação em Bioquímica (PPGBioq), BR-472 Km 7, Uruguaiana, Brazil, CEP 97501-970
| | - Gustavo Petri Guerra
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas - LaftamBio Pampa - Universidade Federal do Pampa - Campus Itaqui - Rua Luiz Joaquim de Sá Britto, Promorar, Itaqui, Rio Grande do Sul, Brazil, CEP 97650-000.
| |
Collapse
|
24
|
Chen B, Xu J, Chen S, Mou T, Wang Y, Wang H, Zhang Z, Ren F, Wang Z, Jin K, Lu J. Dysregulation of striatal dopamine D2/D3 receptor-mediated by hypocretin induces depressive behaviors in rats. J Affect Disord 2023; 325:256-263. [PMID: 36638964 DOI: 10.1016/j.jad.2023.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
BACKGROUND The dysregulation of the dopamine system contributes to depressive-like behaviors in rats, and the neurological functions regulated by hypocretin are severely affected in depression. However, whether suvorexant plays a role in alleviating depression by affecting the dopamine system is unclear. METHODS To preliminarily explore the mechanism of suvorexant (10 mg/kg) in the treatment of depression, the mRNA and protein expression of TH, Drd2, Drd3, GluN2A, DAT, and GluN2B in the striatum of rats was quantified by qPCR and western blotting. The plasma hypocretin-1 and dopamine levels and the striatal dopamine levels were determined by ELISA. RESULTS i) Compared to those of the control group, chronic unpredictable mild stress (CUMS) rats showed depressive-like behaviors, which were subsequently reversed by treatment with suvorexant. ii) The mRNA and protein expressions of TH, Drd2, Drd3, GluN2A, and GluN2B in the striatum of CUMS were significantly increased compared with those in the controls, but decreased after suvorexant treatment. iii) Compared with those in the control group, the plasma and striatal dopamine levels of CUMS decreased while plasma hypocretin-1 levels increased, which was reversed after suvorexant treatment. LIMITATIONS i) The suvorexant is a dual hypocretin receptor antagonist; however, the responsible receptor is unclear. ii) We only focused on related factors in the striatum but did not explore other brain regions, nor did we directly explore the relationship among these factors. CONCLUSION Depressive-like behaviors induced by CUMS can be reversed by suvorexant, and the therapeutic effects of suvorexant may be mediated by affecting the dopamine system.
Collapse
Affiliation(s)
- Bing Chen
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Jiangang Xu
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999007, Hong Kong
| | - Simiao Chen
- School of Life Science, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou 310053, China
| | - Tingting Mou
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Ying Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Haojun Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Zhihan Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Feifan Ren
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Zheng Wang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China
| | - Kangyu Jin
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
| | - Jing Lu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou 310003, China.
| |
Collapse
|
25
|
PET imaging of animal models with depressive-like phenotypes. Eur J Nucl Med Mol Imaging 2023; 50:1564-1584. [PMID: 36642759 PMCID: PMC10119194 DOI: 10.1007/s00259-022-06073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/03/2022] [Indexed: 01/17/2023]
Abstract
Major depressive disorder is a growing and poorly understood pathology. Due to technical and ethical limitations, a significant proportion of the research on depressive disorders cannot be performed on patients, but needs to be investigated in animal paradigms. Over the years, animal studies have provided new insight in the mechanisms underlying depression. Several of these studies have used PET imaging for the non-invasive and longitudinal investigation of the brain physiology. This review summarises the findings of preclinical PET imaging in different experimental paradigms of depression and compares these findings with observations from human studies. Preclinical PET studies in animal models of depression can be divided into three main different approaches: (a) investigation of glucose metabolism as a biomarker for regional and network involvement, (b) evaluation of the availability of different neuroreceptor populations associated with depressive phenotypes, and (c) monitoring of the inflammatory response in phenotypes of depression. This review also assesses the relevance of the use of PET imaging techniques in animal paradigms for the understanding of specific aspects of the depressive-like phenotypes, in particular whether it might contribute to achieve a more detailed characterisation of the clinical depressive phenotypes for the development of new therapies for depression.
Collapse
|
26
|
Juza R, Musilek K, Mezeiova E, Soukup O, Korabecny J. Recent advances in dopamine D 2 receptor ligands in the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:55-211. [PMID: 36111795 DOI: 10.1002/med.21923] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1-5 Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2 Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2 R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2 R affinity. Four to six atoms chains are optimal for D2 R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2 R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2 R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2 R ligands, which have been developed in the last decade (2010-2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2 R ligands and D2 R modulators from patents are not discussed in this review.
Collapse
Affiliation(s)
- Radomir Juza
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
27
|
Tallarico M, Pisano M, Leo A, Russo E, Citraro R, De Sarro G. Antidepressant Drugs for Seizures and Epilepsy: Where do we Stand? Curr Neuropharmacol 2023; 21:1691-1713. [PMID: 35761500 PMCID: PMC10514547 DOI: 10.2174/1570159x20666220627160048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/13/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022] Open
Abstract
People with epilepsy (PWE) are more likely to develop depression and both these complex chronic diseases greatly affect health-related quality of life (QOL). This comorbidity contributes to the deterioration of the QOL further than increasing the severity of epilepsy worsening prognosis. Strong scientific evidence suggests the presence of shared pathogenic mechanisms. The correct identification and management of these factors are crucial in order to improve patients' QOL. This review article discusses recent original research on the most common pathogenic mechanisms of depression in PWE and highlights the effects of antidepressant drugs (ADs) against seizures in PWE and animal models of seizures and epilepsy. Newer ADs, such as selective serotonin reuptake inhibitors (SRRI) or serotonin-noradrenaline reuptake inhibitors (SNRI), particularly sertraline, citalopram, mirtazapine, reboxetine, paroxetine, fluoxetine, escitalopram, fluvoxamine, venlafaxine, duloxetine may lead to improvements in epilepsy severity whereas the use of older tricyclic antidepressant (TCAs) can increase the occurrence of seizures. Most of the data demonstrate the acute effects of ADs in animal models of epilepsy while there is a limited number of studies about the chronic antidepressant effects in epilepsy and epileptogenesis or on clinical efficacy. Much longer treatments are needed in order to validate the effectiveness of these new alternatives in the treatment and the development of epilepsy, while further clinical studies with appropriate protocols are warranted in order to understand the real potential contribution of these drugs in the management of PWE (besides their effects on mood).
Collapse
Affiliation(s)
- Martina Tallarico
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Maria Pisano
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Emilio Russo
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giovambattista De Sarro
- System and Applied Pharmacology, Science of Health Department, School of Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
28
|
Steffens DC, Fahed M, Manning KJ, Wang L. The neurobiology of apathy in depression and neurocognitive impairment in older adults: a review of epidemiological, clinical, neuropsychological and biological research. Transl Psychiatry 2022; 12:525. [PMID: 36572691 PMCID: PMC9792580 DOI: 10.1038/s41398-022-02292-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022] Open
Abstract
Apathy is a common condition that involves diminished initiative, diminished interest and diminished emotional expression or responsiveness. It is highly prevalent in the context of a variety of neuropsychiatric disorders and is related to poor health outcomes. Presence of apathy is associated with cognitive and functional decline in dementia. Despite its negative impact on health, there is no definitive treatment for apathy, a clinical reality that may be due in part to lack of knowledge about assessment, neuropsychological features and neurobiological underpinnings. Here, we review and synthesize evidence from clinical, epidemiological, neuropsychological, peripheral biomarker and neuroimaging research. Apathy is a common feature of depression and cognitive disorders and is associated with impairment in executive function. Neuropsychological and neuroimaging studies point to dysfunction of brain circuitry involving the prefrontal cortex, especially the dorsolateral prefrontal cortex circuit, the dorsomedial prefrontal cortex circuit, and the ventromedial prefrontal cortex circuit. However, inconsistent findings, particularly in neuroimaging may be due to heterogeneity of apathy symptoms (with a need to better elucidate subtypes), neuropsychiatric comorbidities, the severity of cognitive impairment and other factors. These factors need to be accounted for in future studies so that biomarker research can make progress. On the whole, the literature on apathy has identified likely neurocognitive, peripheral biomarker and neuroimaging targets for understanding apathy, but also points to the need to address methodological issues that will better inform future studies. In turn, as we learn more about the underpinning of apathy and its subtypes, subsequent research can focus on new neurally based interventions that will strengthen the clinical management of apathy in the context of its comorbidities.
Collapse
Affiliation(s)
- David C Steffens
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Mario Fahed
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Kevin J Manning
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Lihong Wang
- Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
29
|
Sun J, Du Z, Ma Y, Guo C, Gao S, Luo Y, Chen Q, Hong Y, Xiao X, Yu X, Fang J. Characterization of Resting-State Striatal Differences in First-Episode Depression and Recurrent Depression. Brain Sci 2022; 12:brainsci12121603. [PMID: 36552063 PMCID: PMC9776048 DOI: 10.3390/brainsci12121603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/19/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022] Open
Abstract
The presence of reward deficits in major depressive disorder is associated with abnormal striatal function. However, differences in striatal whole-brain functional between recurrent depressive episode (RDE) and first-episode depression (FDE) have not been elucidated. Thirty-three patients with RDE, 27 with FDE, and 35 healthy controls (HCs) were recruited for this study. A seed-based functional connectivity (FC) method was used to analyze abnormalities in six predefined striatal subregion circuits among the three groups of subjects and to further explore the correlation between abnormal FC and clinical symptoms. The results revealed that compared with the FDE group, the RDE group showed higher FC of the striatal subregion with the left middle occipital gyrus, left orbital area of the middle frontal gyrus, and bilateral posterior cerebellar gyrus, while showing lower FC of the striatal subregion with the right thalamus, left inferior parietal lobule, left middle cingulate gyrus, right angular gyrus, right cerebellum anterior lobe, and right caudate nucleus. In the RDE group, the HAMD-17 scores were positively correlated with the FC between the left dorsal rostral putamen and the left cerebellum posterior lobe. This study provides new insights into understanding the specificity of striatal circuits in the RDE group.
Collapse
Affiliation(s)
- Jifei Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Zhongming Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yue Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chunlei Guo
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Shanshan Gao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yi Luo
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qingyan Chen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Hong
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xue Xiao
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing 100026, China
| | - Xue Yu
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing 100026, China
| | - Jiliang Fang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Correspondence: ; Tel.: +86-010-88001493
| |
Collapse
|
30
|
Lamontagne SJ, Wash SIJ, Irwin SH, Zucconi KE, Olmstead MC. Effects of dopamine modulation on chronic stress-induced deficits in reward learning. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:736-753. [PMID: 35396630 DOI: 10.3758/s13415-022-01001-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Anhedonia is characteristically preceded by chronic stress, likely involving downstream effects of glucocorticoid alterations on dopamine (DA) function. To elucidate the neural underpinnings of this interaction, we examined whether acute pharmacological modulation of DA alters reward learning after chronic mild stress (CMS). Forty-eight male Wistar rats were exposed to a 21-day CMS regime (n = 48 no stress controls) before completing the probabilistic reward task (PRT), a well-validated cross-species test of reward learning. We first examined whether stress-induced reward dysfunction could be restored by systemic injections of low-dose amisulpride (AMI), which increases DA transmission via D2-like autoreceptor blockade. Then, we investigated region-specific effects through bilateral infusions of quinpirole (QUIN), a D2-like receptor agonist, into either the nucleus accumbens core (NAcc) or medial prefrontal cortex (mPFC). Blunted reward learning in CMS animals was reversed by acute AMI administration, but this treatment did not alter reward learning in the no stress group. Elevated adrenal gland weight, a proxy for stress reactivity, predicted lower reward learning in the untreated CMS group. This effect was extinguished following AMI treatment. These findings might be attributed to significantly higher D2 receptor density in the NAcc of high stress reactive animals. To this end, NAcc QUIN infusions potentiated reward learning relative to mPFC QUIN infusions in CMS rats, but there was no effect in no stress control rats. Collectively, these findings suggest that DA modulation reverses stress-induced reward dysfunction, even among the most stress-reactive animals. The effect might depend on D2-like receptor activation in the mesolimbic system.
Collapse
Affiliation(s)
- Steven J Lamontagne
- Department of Psychology, Queen's University, 62 Arch Street, Kingston, ON, K7L 3N6, USA.
| | - Sarah I J Wash
- Department of Psychology, Queen's University, 62 Arch Street, Kingston, ON, K7L 3N6, USA
| | - Samantha H Irwin
- Department of Psychology, Queen's University, 62 Arch Street, Kingston, ON, K7L 3N6, USA
| | - Kate E Zucconi
- Department of Psychology, Queen's University, 62 Arch Street, Kingston, ON, K7L 3N6, USA
| | - Mary C Olmstead
- Department of Psychology, Queen's University, 62 Arch Street, Kingston, ON, K7L 3N6, USA
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
31
|
Itskovich E, Bowling DL, Garner JP, Parker KJ. Oxytocin and the social facilitation of placebo effects. Mol Psychiatry 2022; 27:2640-2649. [PMID: 35338314 PMCID: PMC9167259 DOI: 10.1038/s41380-022-01515-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 01/30/2023]
Abstract
Significant clinical improvement is often observed in patients who receive placebo treatment in randomized double-blind placebo-controlled trials. While a proportion of this "improvement" reflects experimental design limitations (e.g., reliance on subjective outcomes, unbalanced groups, reporting biases), some of it reflects genuine improvement corroborated by physiological change. Converging evidence across diverse medical conditions suggests that clinically-relevant benefits from placebo treatment are associated with the activation of brain reward circuits. In parallel, evidence has accumulated showing that such benefits are facilitated by clinicians that demonstrate warmth and proficiency during interactions with patients. Here, we integrate research on these neural and social aspects of placebo effects with evidence linking oxytocin and social reward to advance a neurobiological account for the social facilitation of placebo effects. This account frames oxytocin as a key mediator of treatment success across a wide-spectrum of interventions that increase social connectedness, thereby providing a biological basis for assessing this fundamental non-specific element of medical care.
Collapse
Affiliation(s)
- Elena Itskovich
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Daniel L. Bowling
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Joseph P. Garner
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305.,Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Karen J. Parker
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305.,Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
32
|
Lin H, Lin WH, Lin F, Liu CY, Che CH, Huang HP. Potential Pleiotropic Genes and Shared Biological Pathways in Epilepsy and Depression Based on GWAS Summary Statistics. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6799285. [PMID: 35463244 PMCID: PMC9019309 DOI: 10.1155/2022/6799285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022]
Abstract
Current epidemiological and experimental studies have indicated the overlapping genetic foundation of epilepsy and depression. However, the detailed pleiotropic genetic etiology and neurobiological pathways have not been well understood, and there are many variants with underestimated effect on the comorbidity of the two diseases. Utilizing genome-wide association study (GWAS) summary statistics of epilepsy (15,212 cases and 29,677 controls) and depression (170,756 cases and 329,443 controls) from large consortia, we assessed the integrated gene-based association with both diseases by Multimarker Analysis of Genomic Annotation (MAGMA) and Fisher's meta-analysis. On the one hand, shared genes with significantly altered transcripts in Gene Expression Omnibus (GEO) data sets were considered as possible pleiotropic genes. On the other hand, the pathway enrichment analysis was conducted based on the gene lists with nominal significance in the gene-based association test of each disease. We identified a total of two pleiotropic genes (CD3G and SLCO3A1) with gene expression analysis validated and interpreted twenty-five common biological process supported with literature mining. This study indicates the potentially shared genes associated with both epilepsy and depression based on gene expression, meta-data analysis, and pathway enrichment strategy along with traditional GWAS and provides insights into the possible intersecting pathways that were not previously reported.
Collapse
Affiliation(s)
- Han Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Wan-Hui Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Intensive Care Unit, Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou 350001, China
| | - Feng Lin
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chang-Yun Liu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Chun-Hui Che
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Hua-Pin Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Intensive Care Unit, Department of Neurology, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Fujian Key Laboratory of Molecular Neurology, Fuzhou 350001, China
- Department of Geriatrics, Fujian Medical University Union Hospital, Fuzhou 350001, China
| |
Collapse
|
33
|
Di Rosa E, Mapelli D, Ronconi L, Macchia E, Gentili C, Bisiacchi P, Edelstyn N. Anxiety predicts impulsive-compulsive behaviours in Parkinson's disease: Clinical relevance and theoretical implications. J Psychiatr Res 2022; 148:220-229. [PMID: 35134729 DOI: 10.1016/j.jpsychires.2022.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/13/2022] [Accepted: 01/26/2022] [Indexed: 10/19/2022]
Abstract
Patients with Parkinson's disease (PD) often present symptoms of anxiety, depression and apathy. These negative affect manifestations have been recently associated with the presence of impulsive compulsive behaviours (ICBs). However, their relation with the use of dopamine replacement therapy (DRT), a renewed risk factor for ICBs, is still not fully understood. Elucidating the role of these different ICBs predictors in PD could inform both prevention/intervention recommendations as well as theoretical models. In the present study, we have analysed data collected in 417 PD patients, 50 patients with Parkinsonian symptoms but with scan without evidence of dopaminergic deficit (SWEDD), and 185 healthy controls (HC). We examined each patient's clinical profile over a two-year time window, investigating the role of both negative affect and DRT on ICBs. Results confirmed the presence of higher levels of anxiety in both the clinical groups, and of higher level of ICBs in SWEDD patients, respect to both PD and HC. Mixed model analyses revealed a statistically significant association between anxiety and ICBs in the SWEDD patients who did not take any DRT. Findings suggest the independence between anxiety and DRT in ICBs development, and provide new evidence for the motivational opponency theoretical framework.
Collapse
Affiliation(s)
- Elisa Di Rosa
- Department of General Psychology, University of Padua, Padua, Italy; School of Psychology, Keele University, Staffordshire, UK.
| | - Daniela Mapelli
- Department of General Psychology, University of Padua, Padua, Italy
| | - Lucia Ronconi
- Department of General Psychology, University of Padua, Padua, Italy
| | - Eleonora Macchia
- Department of General Psychology, University of Padua, Padua, Italy
| | - Claudio Gentili
- Department of General Psychology, University of Padua, Padua, Italy; Padua Neuroscience Centre, University of Padua, Padua, Italy; Centro di Ateneo dei Servizi Clinici Universitari Psicologici, University of Padua, Padua, Italy
| | - Patrizia Bisiacchi
- Department of General Psychology, University of Padua, Padua, Italy; Padua Neuroscience Centre, University of Padua, Padua, Italy
| | - Nicky Edelstyn
- School of Psychology, Keele University, Staffordshire, UK
| |
Collapse
|
34
|
Dopamine D3 receptor in the nucleus accumbens alleviates neuroinflammation in a mouse model of depressive-like behavior. Brain Behav Immun 2022; 101:165-179. [PMID: 34971757 DOI: 10.1016/j.bbi.2021.12.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
We recently reported that dopamine D3 receptor (D3R) was involved in inflammation-related depression. Nucleus accumbens (NAc) inflammation is implicated in the development and progression of depression, but its regulatory mechanism remains largely unknown. In a mouse model of NAc neuroinflammation induced by bilateral NAc injection of lipopolysaccharide (LPS), we observed that NAc neuroinflammation triggered depressive-like behaviors, and D3R expression decline and microglial activation in the NAc. A selective knockdown of D3R in the NAc elicited depressive-like behaviors, while re-expression of D3R in the NAc of global D3RKO mice alleviated depressive-like behaviors induced by D3R deficiency. D3R downregulation in the NAc shifted microglia toward a proinflammatory state, which was validated with cultured mouse microglial cultures. Further in vitro results demonstrated that D3R inhibition induced microglia to enter a proinflammatory state primarily through the Akt signaling pathway. In conclusion, our results suggest that D3R expression in the NAc may inhibit microglial proinflammatory responses in the NAc, thus alleviating NAc neuroinflammation and subsequent depressive-like behaviors through the Akt signaling pathway.
Collapse
|
35
|
Influences of dopaminergic system dysfunction on late-life depression. Mol Psychiatry 2022; 27:180-191. [PMID: 34404915 PMCID: PMC8850529 DOI: 10.1038/s41380-021-01265-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Deficits in cognition, reward processing, and motor function are clinical features relevant to both aging and depression. Individuals with late-life depression often show impairment across these domains, all of which are moderated by the functioning of dopaminergic circuits. As dopaminergic function declines with normal aging and increased inflammatory burden, the role of dopamine may be particularly salient for late-life depression. We review the literature examining the role of dopamine in the pathogenesis of depression, as well as how dopamine function changes with aging and is influenced by inflammation. Applying a Research Domain Criteria (RDoC) Initiative perspective, we then review work examining how dopaminergic signaling affects these domains, specifically focusing on Cognitive, Positive Valence, and Sensorimotor Systems. We propose a unified model incorporating the effects of aging and low-grade inflammation on dopaminergic functioning, with a resulting negative effect on cognition, reward processing, and motor function. Interplay between these systems may influence development of a depressive phenotype, with an initial deficit in one domain reinforcing decline in others. This model extends RDoC concepts into late-life depression while also providing opportunities for novel and personalized interventions.
Collapse
|
36
|
Shi Y, Chen M, Zhao Z, Pan J, Huang S. Network Pharmacology and Molecular Docking Analyses of Mechanisms Underlying Effects of the Cyperi Rhizoma- Chuanxiong Rhizoma Herb Pair on Depression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5704578. [PMID: 34976096 PMCID: PMC8716227 DOI: 10.1155/2021/5704578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE We aimed to investigate the mechanisms underlying the effects of the Cyperi Rhizoma-Chuanxiong Rhizoma herb pair (CCHP) against depression using a network pharmacology approach. METHODS A network pharmacology approach, including screening of active compounds, target prediction, construction of a protein-protein interaction (PPI) network, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and molecular docking, molecular dynamics (MD) simulations, and molecular mechanics Poisson-Boltzmann surface area (MMPBSA), were used to explore the mechanisms of CCHP against depression. RESULTS Twenty-six active compounds and 315 and 207 targets of CCHP and depression, respectively, were identified. The PPI network suggested that AKT1, IL-6, TP53, DRD2, MAPK1, NR3C1, TNF, etc., were core targets. GO enrichment analyses showed that positive regulation of transcription from RNA polymerase II promoter, plasma membrane, and protein binding were of great significance. Neuroactive ligand-receptor interaction, PI3K-Akt signaling pathway, dopaminergic synapse, and mTOR signaling pathway were important pathways. Molecular docking results revealed good binding affinities for the core compounds and core targets. MD simulations and MMPBSA validated that quercetin can stably bind to 6hhi. CONCLUSIONS The effects of CCHP against depression involve multiple components, targets, and pathways, and these findings will promote further research on and clinical application of CCHP.
Collapse
Affiliation(s)
- Yanan Shi
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Mingqi Chen
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zehua Zhao
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Juhua Pan
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Shijing Huang
- Research and Development Center of Traditional Chinese Medicine, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
37
|
Mingardi J, La Via L, Tornese P, Carini G, Trontti K, Seguini M, Tardito D, Bono F, Fiorentini C, Elia L, Hovatta I, Popoli M, Musazzi L, Barbon A. miR-9-5p is involved in the rescue of stress-dependent dendritic shortening of hippocampal pyramidal neurons induced by acute antidepressant treatment with ketamine. Neurobiol Stress 2021; 15:100381. [PMID: 34458512 PMCID: PMC8379501 DOI: 10.1016/j.ynstr.2021.100381] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Converging clinical and preclinical evidence demonstrates that depressive phenotypes are associated with synaptic dysfunction and dendritic simplification in cortico-limbic glutamatergic areas. On the other hand, the rapid antidepressant effect of acute ketamine is consistently reported to occur together with the rescue of dendritic atrophy and reduction of spine number induced by chronic stress in the hippocampus and prefrontal cortex of animal models of depression. Nevertheless, the molecular mechanisms underlying these morphological alterations remain largely unknown. Here, we found that miR-9-5p levels were selectively reduced in the hippocampus of rats vulnerable to Chronic Mild Stress (CMS), while acute subanesthetic ketamine restored its levels to basal condition in just 24h; miR-9-5p expression inversely correlated with the anhedonic phenotype. A decrease of miR-9-5p was reproduced in an in vitro model of stress, based on primary hippocampal neurons incubated with the stress hormone corticosterone. In both CMS animals and primary neurons, decreased miR-9-5p levels were associated with dendritic simplification, while treatment with ketamine completely rescued the changes. In vitro modulation of miR-9-5p expression showed a direct role of miR-9-5p in regulating dendritic length and spine density in mature primary hippocampal neurons. Among the putative target genes tested, Rest and Sirt1 were validated as biological targets in primary neuronal cultures. Moreover, in line with miR-9-5p changes, REST protein expression levels were remarkably increased in both CMS vulnerable animals and corticosterone-treated neurons, while ketamine completely abolished this alteration. Finally, the shortening of dendritic length in corticosterone-treated neurons was shown to be partly rescued by miR-9-5p overexpression and dependent on REST protein expression. Overall, our data unveiled the functional role of miR-9-5p in the remodeling of dendritic arbor induced by stress/corticosterone in vulnerable animals and its rescue by acute antidepressant treatment with ketamine.
Collapse
Affiliation(s)
- Jessica Mingardi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luca La Via
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paolo Tornese
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Giulia Carini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Kalevi Trontti
- Sleep Well Research Program, Department of Psychology and Logopedics, and Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mara Seguini
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Daniela Tardito
- Department of Technical and Applied Sciences, eCampus University, Novedrate, Italy
| | - Federica Bono
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Chiara Fiorentini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Leonardo Elia
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
- Humanitas Clinical and Research Center, IRCCS, Rozzano, MI, Italy
| | - Iiris Hovatta
- Sleep Well Research Program, Department of Psychology and Logopedics, and Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
38
|
Cai X, Yang C, Chen J, Gong W, Yi F, Liao W, Huang R, Xie L, Zhou J. Proteomic Insights Into Susceptibility and Resistance to Chronic-Stress-Induced Depression or Anxiety in the Rat Striatum. Front Mol Biosci 2021; 8:730473. [PMID: 34676246 PMCID: PMC8523913 DOI: 10.3389/fmolb.2021.730473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic stress is a key factor for the onset of anxiety and depression disorders. However, the stress-induced common and unique molecular basis of the two psychiatric disorders is not fully known and still needs to be explored. Previously, we employed a chronic mild stress (CMS) procedure to induce a rat model including depression-susceptible (Dep-Sus), anxiety-susceptible (Anx-Sus), and insusceptible (Insus) cohorts. In this work, we continuously analyze the striatal proteomes of the three stressed cohorts by the use of comparative proteomics and bioinformatics approaches. Through isobaric tags for relative and absolute quantitation (iTRAQ)-based analysis, 386 abnormally expressed proteins in total were identified. These deregulated proteins are involved in various biological functions and significant pathways that are potentially connected with resistance and susceptibility to CMS-caused anxious- or depressive-like behaviors and, hence, could act as suggestive protein targets. A further parallel reaction monitoring-based independent investigation shows that alterations in Pak5, Dgkg, Scn4b, Rb1cc1, and Acin1; Ggps1, Fntb, Nudt19, Ufd1, and Ndufab1; and Dnajb12, Hbb2, Ap2s1, Ip6k1, and Stk4 were specifically connected with Dep-Sus, Anx-Sus, or Insus groups, respectively, potentially indicating that identical CMS treatment results in the different changes in the striatal protein regulations. Overall, our current proteomics study of the striatum provides an important molecular foundation and comprehensive insights into common and specific deregulations correlated with pathophysiological mechanisms that underlie resistance and susceptibility to chronic stress-induced anxiety or depression.
Collapse
Affiliation(s)
- Xiao Cai
- Basic Medical College, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Chen Yang
- Basic Medical College, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Jin Chen
- Basic Medical College, Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weibo Gong
- Basic Medical College, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Faping Yi
- Basic Medical College, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Wei Liao
- Basic Medical College, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Rongzhong Huang
- Statistics Laboratory, ChuangXu Institute of Life Science, Chongqing, China.,Chongqing Institute of Life Science, Chongqing, China
| | - Liang Xie
- Basic Medical College, Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Zhou
- Basic Medical College, Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| |
Collapse
|
39
|
Cookson J, Pimm J. Partial agonists of dopamine receptors: receptor theory and the dopamine hypothesis of psychosis. BJPSYCH ADVANCES 2021. [DOI: 10.1192/bja.2021.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
SUMMARY
This article discusses dopamine partial agonism, which is the main mechanism of action of the psychiatric drugs aripiprazole, brexpiprazole and cariprazine. It outlines the principles of receptor theory and the structure of dopamine receptors; characterises agonists, antagonists and partial agonists; and summarises the dopamine hypothesis of psychosis and the role of dopamine and serotonin in depression.
Collapse
|
40
|
Cernasov P, Walsh EC, Kinard JL, Kelley L, Phillips R, Pisoni A, Eisenlohr-Moul TA, Arnold M, Lowery SC, Ammirato M, Truong K, Nagy GA, Oliver JA, Haworth K, Smoski M, Dichter GS. Multilevel growth curve analyses of behavioral activation for anhedonia (BATA) and mindfulness-based cognitive therapy effects on anhedonia and resting-state functional connectivity: Interim results of a randomized trial ✰. J Affect Disord 2021; 292:161-171. [PMID: 34126308 PMCID: PMC8282772 DOI: 10.1016/j.jad.2021.05.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/03/2021] [Accepted: 05/23/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND The neural mechanisms associated with anhedonia treatment response are poorly understood. Additionally, no study has investigated changes in resting-state functional connectivity (rsFC) accompanying psychosocial treatment for anhedonia. METHODS We evaluated a novel psychotherapy, Behavioral Activation Therapy for Anhedonia (BATA, n = 38) relative to Mindfulness-Based Cognitive Therapy (MBCT, n = 35) in a medication-free, transdiagnostic, anhedonic sample in a parallel randomized controlled trial. Participants completed up to 15 sessions of therapy and up to four 7T MRI scans before, during, and after treatment (n = 185 scans). Growth curve models estimated change over time in anhedonia and in rsFC using average region-of-interest (ROI)-to-ROI connectivity within the default mode network (DMN), frontoparietal network (FPN), salience network, and reward network. Changes in rsFC from pre- to post-treatment were further evaluated using whole-network seed-to-voxel and ROI-to-ROI edgewise analyses. RESULTS Growth curve models showed significant reductions in anhedonia symptoms and in average rsFC within the DMN and FPN over time, across BATA and MBCT. There were no differences in anhedonia reductions between treatments. Within-person, changes in average rsFC were unrelated to changes in anhedonia. Between-person, higher than average FPN rsFC was related to less anhedonia across timepoints. Seed-to-voxel and edgewise rsFC analyses corroborated reductions within the DMN and between the DMN and FPN over time, across the sample. CONCLUSIONS Reductions in rsFC within the DMN, FPN, and between these networks co-occurred with anhedonia improvement across two psychosocial treatments for anhedonia. Future anhedonia clinical trials with a waitlist control group should disambiguate treatment versus time-related effects on rsFC.
Collapse
Affiliation(s)
- Paul Cernasov
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Erin C Walsh
- Department of Psychiatry, University of North Carolina-Chapel Hill, Chapel Hill, NC 57514, USA
| | - Jessica L Kinard
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27510, USA; Division of Speech and Hearing Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Lisalynn Kelley
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27705, USA
| | - Rachel Phillips
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Angela Pisoni
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27505, USA
| | - Tory A Eisenlohr-Moul
- Department of Psychiatry, University of Illinois at Chicago, Neuropsychiatry Institute, Chicago, IL 60612, USA
| | - Macey Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27705, USA
| | - Sarah C Lowery
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Marcy Ammirato
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA
| | - Kinh Truong
- Department of Biostatistics, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Gabriela A Nagy
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27705, USA; Duke University School of Nursing, 307 Trent Drive, Durham, NC 27710, USA
| | - Jason A Oliver
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27705, USA; Division of Cancer Control and Population Sciences, Duke Cancer Institute, Durham, NC 27705, USA
| | - Kevin Haworth
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27705, USA
| | - Moria Smoski
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27705, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC 27505, USA
| | - Gabriel S Dichter
- Department of Psychology and Neuroscience, University of North Carolina-Chapel Hill, Chapel Hill, NC 27514, USA; Department of Psychiatry, University of North Carolina-Chapel Hill, Chapel Hill, NC 57514, USA; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27510, USA.
| |
Collapse
|
41
|
Hajj A, Hachem R, Khoury R, Hallit S, ElJEBBAWI B, Nasr F, El Karak F, Chahine G, Kattan J, Rabbaa Khabbaz L. Clinical and genetic factors associated with anxiety and depression in breast cancer patients: a cross-sectional study. BMC Cancer 2021; 21:872. [PMID: 34330229 PMCID: PMC8323303 DOI: 10.1186/s12885-021-08615-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/15/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Despite the progress in assessment and treatment of breast cancer, being diagnosed with it or receiving chemotherapy treatment is still conceived as a traumatic experience. Women develop negative thoughts about life and death with detrimental effects on their daily physical functioning/activities, emotional state and overall quality of life. The aim of our study was to evaluate the level of anxiety and depression among breast cancer patients receiving chemotherapy and explore the correlation between these psychological disorders, clinical, sociodemographic and genetic factors. METHODS A cross-sectional study was conducted among breast cancer patients undergoing intravenous chemotherapy at the oncology outpatient unit of Hôtel-Dieu de France hospital (November 2017-June 2019; Ethical approval number: CEHDF1016). All patients gave their written informed consent and completed several validated scales, including the Hospital Anxiety and Depression scale (HADS) for the assessment of anxiety and depression. Sleep quality, insomnia, cognitive function, fatigue and pain were also evaluated. Genotyping for certain gene polymorphisms (CLOCK, PER2, CRY2, OPRM1, ABCB1, COMT, DRD2) was performed using the Lightcycler® (Roche). RESULTS A total of 112 women was included. The prevalence of depression was 43.4%, and 56.2% of the patients reported anxiety (based on the HADS classification). Multivariable analysis showed that higher cognitive scores and taking fosaprepitant were significantly associated with lower depression and anxiety scores. Moreover, being married compared to single was also associated with lower depression scores, whereas higher PSQI scores (worse sleep quality) and having the PER2 AA variant genotype compared to GG were significantly associated with higher depression scores. Finally, reporting a more severe insomnia and having the COMT Met/Met genotype were significantly associated with a higher anxiety score. CONCLUSIONS Our study demonstrated a strong relationship between depression scores and cognitive impairment, sleep quality, marital status, fosaprepitant intake, and PER2 polymorphism, while anxiety scores were correlated to cognitive impairment, insomnia severity, fosaprepitant intake, and COMT polymorphism. The association with PER polymorphism was not previously reported. Identification of genetic and clinical risk factors for anxiety and depression would help clinicians implement an individualized management therapy aiming at preventing and alleviating the burden of these symptoms in breast cancer patients, hence improving their overall quality of life.
Collapse
Affiliation(s)
- Aline Hajj
- Faculty of Pharmacy, Saint-Joseph University, Beirut, Lebanon. .,Laboratoire de Pharmacologie, Pharmacie Clinique et Contrôle de Qualité des Médicaments, Faculté de pharmacie, Saint-Joseph University, Beirut, Lebanon.
| | - Roula Hachem
- Faculty of Pharmacy, Saint-Joseph University, Beirut, Lebanon.,Laboratoire de Pharmacologie, Pharmacie Clinique et Contrôle de Qualité des Médicaments, Faculté de pharmacie, Saint-Joseph University, Beirut, Lebanon
| | - Rita Khoury
- Faculty of Pharmacy, Saint-Joseph University, Beirut, Lebanon.,Laboratoire de Pharmacologie, Pharmacie Clinique et Contrôle de Qualité des Médicaments, Faculté de pharmacie, Saint-Joseph University, Beirut, Lebanon
| | - Souheil Hallit
- Faculty of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Jounieh, Lebanon.,INSPECT-LB (Institut National de Santé Publique d'Épidémiologie Clinique et de Toxicologie-Liban), Beirut, Lebanon.,Research Department, Psychiatric Hospital of the Cross, Jal Eddib, Lebanon
| | - Bashar ElJEBBAWI
- Faculty of Pharmacy, Saint-Joseph University, Beirut, Lebanon.,Laboratoire de Pharmacologie, Pharmacie Clinique et Contrôle de Qualité des Médicaments, Faculté de pharmacie, Saint-Joseph University, Beirut, Lebanon
| | - Fady Nasr
- Department of Hemato-Oncology, Hôtel-Dieu de France Hospital, Faculty of Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Fadi El Karak
- Department of Hemato-Oncology, Hôtel-Dieu de France Hospital, Faculty of Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Georges Chahine
- Department of Hemato-Oncology, Hôtel-Dieu de France Hospital, Faculty of Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Joseph Kattan
- Department of Hemato-Oncology, Hôtel-Dieu de France Hospital, Faculty of Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
| | - Lydia Rabbaa Khabbaz
- Faculty of Pharmacy, Saint-Joseph University, Beirut, Lebanon.,Laboratoire de Pharmacologie, Pharmacie Clinique et Contrôle de Qualité des Médicaments, Faculté de pharmacie, Saint-Joseph University, Beirut, Lebanon
| |
Collapse
|
42
|
Wang P, Gao X, Zhao F, Gao Y, Wang K, Tian JS, Li Z, Qin XM. Study of the Neurotransmitter Changes Adjusted by Circadian Rhythm in Depression Based on Liver Transcriptomics and Correlation Analysis. ACS Chem Neurosci 2021; 12:2151-2166. [PMID: 34060807 DOI: 10.1021/acschemneuro.1c00115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Depression has drawn increasing attention from the public around the world in recent years. Studies have shown that liver injury caused by chronic stress is relevant to depression and neurotransmitter changes. It is essential to clarify the relationship between neurotransmitter changes and hepatic gene expression in depression. In this study, we used the chronic unpredictable mild stress (CUMS) model combined with UHPLC-MS to explore the changes of neurotransmitters in serum and hippocampus and to decipher the differential gene expression in the liver by using the RNA-Seq combined with multivariate statistical analysis. Compared with the control group, the levels of neurotransmitters including 5-hydroxytryptamine (5-HT), acetylcholine, glutamate (Glu), and dopamine (DA) in the hippocampus and 5-HT, norepinephrine, γ-aminobutyric acid (GABA), and 5-hydroxyindoleacetic acid in serum were significantly changed in the CUMS rats. The results of liver transcriptomic analysis and correlation analysis showed that the Glu, DA, 5-HT, and GABA were impacted by 68 liver genes which were mainly enriched in three pathways including circadian rhythm, serotonergic synapse, and p53 signaling pathway. The expressive levels of clock genes and serotonergic synapse genes were validated by using q-PCR, and the diurnal rhythms of neurotransmitters were validated by in vivo hippocampus microdialysis. The CUMS stressors might cause phase advance of Glu and GABA by adjusting clock genes. The transcriptomic technique combined with correlation analysis and in vivo microdialysis could be used to discover comprehensive pathways of depression. It provides a new strategy for the rational assessment of the mechanism of disease.
Collapse
Affiliation(s)
- Peng Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Xiaoxia Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry Education of Shanxi University, Taiyuan 030006, China
| | - Fang Zhao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yao Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Kexin Wang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
| | - Jun-Sheng Tian
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry Education of Shanxi University, Taiyuan 030006, China
| | - Zhenyu Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry Education of Shanxi University, Taiyuan 030006, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry Education of Shanxi University, Taiyuan 030006, China
| |
Collapse
|
43
|
Cheong RY, Baldo B, Sajjad MU, Kirik D, Petersén Å. Effects of mutant huntingtin inactivation on Huntington disease-related behaviours in the BACHD mouse model. Neuropathol Appl Neurobiol 2021; 47:564-578. [PMID: 33330988 PMCID: PMC8247873 DOI: 10.1111/nan.12682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/27/2020] [Accepted: 12/14/2020] [Indexed: 01/02/2023]
Abstract
AIMS Huntington disease (HD) is a fatal neurodegenerative disorder with no disease-modifying treatments approved so far. Ongoing clinical trials are attempting to reduce huntingtin (HTT) expression in the central nervous system (CNS) using different strategies. Yet, the distribution and timing of HTT-lowering therapies required for a beneficial clinical effect is less clear. Here, we investigated whether HD-related behaviours could be prevented by inactivating mutant HTT at different disease stages and to varying degrees in an experimental model. METHODS We generated mutant BACHD mice with either a widespread or circuit-specific inactivation of mutant HTT by using Cre recombinase (Cre) under the nestin promoter or the adenosine A2A receptor promoter respectively. We also simulated a clinical gene therapy scenario with allele-specific HTT targeting by injections of recombinant adeno-associated viral (rAAV) vectors expressing Cre into the striatum of adult BACHD mice. All mice were assessed using behavioural tests to investigate motor, metabolic and psychiatric outcome measures at 4-6 months of age. RESULTS While motor deficits, body weight changes, anxiety and depressive-like behaviours are present in BACHD mice, early widespread CNS inactivation during development significantly improves rotarod performance, body weight changes and depressive-like behaviour. However, conditional circuit-wide mutant HTT deletion from the indirect striatal pathway during development and focal striatal-specific deletion in adulthood failed to rescue any of the HD-related behaviours. CONCLUSIONS Our results indicate that widespread targeting and the timing of interventions aimed at reducing mutant HTT are important factors to consider when developing disease-modifying therapies for HD.
Collapse
Affiliation(s)
- Rachel Y. Cheong
- Translational Neuroendocrine Research UnitDepartment of Experimental Medical ScienceLund UniversityLundSweden
| | - Barbara Baldo
- Translational Neuroendocrine Research UnitDepartment of Experimental Medical ScienceLund UniversityLundSweden
- Present address:
Evotec SEHD Research and Translational SciencesHamburgGermany
| | - Muhammad U. Sajjad
- Translational Neuroendocrine Research UnitDepartment of Experimental Medical ScienceLund UniversityLundSweden
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems UnitDepartment of Experimental Medical ScienceLund UniversityLundSweden
| | - Åsa Petersén
- Translational Neuroendocrine Research UnitDepartment of Experimental Medical ScienceLund UniversityLundSweden
| |
Collapse
|
44
|
L M, Mitra P, Goyal T, Abhilasha, Sharma S, Purohit P, Sharma P. Association of blood lead level with neurobehavior and neurotransmitter expressions in Indian children. Toxicol Rep 2021; 8:971-976. [PMID: 34026560 PMCID: PMC8122146 DOI: 10.1016/j.toxrep.2021.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 11/15/2022] Open
Abstract
BLL had a significant direct correlation with abnormal neurobehavior. Serum serotonin levels were significantly lower in children with high blood lead levels (BLL). Serum serotonin and dopamine receptor expression were upregulated in children with high BLL. Serum serotonin levels had significant negative association with adverse neurobehavior. Dopamine receptor expression had significant positive association with adverse neurobehavior.
Present study aimed to assess the alterations in neurotransmitter expression and its association with Blood Lead Level (BLL) and neurobehavioral pattern in children. 72 school going children were recruited. Blood lead levels were determined by Atomic Absorption Spectrophotometer. Neurobehavioral state was assessed by means of population specific scale i.e. CPMS (Childhood Psychopathological measurement Schedule). Serum serotonin and dopamine were estimated by ELISA, receptor and transporter gene expressions were assessed by quantitative real time PCR. Significant positive correlation was observed between Total CPMS score (i.e. adverse neurobehaviour) and BLL. Further, serum serotonin levels and dopamine receptor expression showed a negative and positive association with BLL, respectively. In similarity, serum serotonin levels showed a negative correlation and dopamine receptor expression had a significant positive correlation with total CPMS score. Environmental exposure to Lead (Pb) may result in significant alterations in the neurotransmitter levels which may be associated with neurobehavioral changes in the children exposed to Pb.
Collapse
Affiliation(s)
- Malavika L
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Prasenjit Mitra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Taru Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Abhilasha
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Shailja Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| |
Collapse
|
45
|
Chen S, Gao L, Li X, Ye Y. Allopregnanolone in mood disorders: Mechanism and therapeutic development. Pharmacol Res 2021; 169:105682. [PMID: 34019980 DOI: 10.1016/j.phrs.2021.105682] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 01/23/2023]
Abstract
The neuroactive steroid allopregnanolone (ALLO) is an endogenous positive allosteric modulator of GABA type A receptor (GABAAR), and the down-regulation of its biosynthesis have been attributed to the development of mood disorders, such as depression, anxiety and post-traumatic stress disorder (PTSD). ALLO mediated depression/anxiety involves GABAergic mechanisms and appears to be related to brain-derived neurotrophic factor (BDNF), dopamine receptor, glutamate neurotransmission, and Ca2+ channel. In the clinical, brexanolone, as a newly developed intravenous ALLO preparation, has been approved for the treatment of postpartum depression (PPD). In addition, traditional antidepressants such as selective serotonin reuptake inhibitor (SSRI) could reverse ALLO decline. Recently, the translocation protein (TSPO, 18 kDa), which involves in the speed-limiting step of ALLO synthesis, and ALLO derivatization have been identified as new directions for antidepressant therapy. This review provides an overview of ALLO researches in animal model and patients, discusses its role in the development and treatment of depression/anxiety, and directs its therapeutic potential in future.
Collapse
Affiliation(s)
- Shiyi Chen
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| | - Lijuan Gao
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| | - Xiaoyu Li
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| | - Yiping Ye
- School of Pharmacy, Hangzhou Medical College (Zhejiang Academy of Medical Sciences), Hangzhou, Zhejiang, People's Republic of China; Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
46
|
Sałat K, Furgała-Wojas A. Serotonergic Neurotransmission System Modulator, Vortioxetine, and Dopaminergic D 2/D 3 Receptor Agonist, Ropinirole, Attenuate Fibromyalgia-Like Symptoms in Mice. Molecules 2021; 26:molecules26082398. [PMID: 33924258 PMCID: PMC8074757 DOI: 10.3390/molecules26082398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 01/28/2023] Open
Abstract
Fibromyalgia is a disease characterized by lowered pain threshold, mood disorders, and decreased muscular strength. It results from a complex dysfunction of the nervous system and due to unknown etiology, its diagnosis, treatment, and prevention are a serious challenge for contemporary medicine. Impaired serotonergic and dopaminergic neurotransmission are regarded as key factors contributing to fibromyalgia. The present research assessed the effect of serotonergic and dopaminergic system modulators (vortioxetine and ropinirole, respectively) on the pain threshold, depressive-like behavior, anxiety, and motor functions of mice with fibromyalgia-like symptoms induced by subcutaneous reserpine (0.25 mg/kg). By depleting serotonin and dopamine in the mouse brain, reserpine induced symptoms of human fibromyalgia. Intraperitoneal administration of vortioxetine and ropinirole at the dose of 10 mg/kg alleviated tactile allodynia. At 5 and 10 mg/kg ropinirole showed antidepressant-like properties, while vortioxetine had anxiolytic-like properties. None of these drugs influenced muscle strength but reserpine reduced locomotor activity of mice. Concluding, in the mouse model of fibromyalgia vortioxetine and ropinirole markedly reduced pain. These drugs affected emotional processes of mice in a distinct manner. Hence, these two repurposed drugs should be considered as potential drug candidates for fibromyalgia. The selection of a specific drug should depend on patient’s key symptoms.
Collapse
|
47
|
Kibitov AO, Mazo GE. [Anhedonia in depression: neurobiological and genetic aspects]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:146-154. [PMID: 33834733 DOI: 10.17116/jnevro2021121031146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Anhedonia is indeed a pathogenetically important clinical phenotype and a promising endophenotype for depressive symptoms with a very high contribution of biological and genetic factors. Neurobiological mechanisms of anhedonia are impaired functioning of the reward system of the brain, which is confirmed by many neuroimaging, genetic and experimental studies. Anhedonia has a trans-diagnoctic character and should be understood as a complex phenomenon, and it is important to correctly evaluate it within the framework of a particular research paradigm. It seems optimal to form several complementary research strategies that evaluate the most important «facets» of anhedonia, regardless of the nosological form of the disease, within the framework of one study using various methods to search for adequate biomarkers of anhedonia severity (genetic, neuroimaging, biochemical). Given the high-quality organization of such comprehensive studies based on the correct methodology of evidence-based medicine, it is likely that significant biomarker systems will be available in the near future, which, if replicated in independent samples, can be used to personalize the diagnosis and treatment of depression.
Collapse
Affiliation(s)
- A O Kibitov
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia.,Serbsky National Medical Research Center on Psychiatry and Addictions, Moscow, Russia
| | - G E Mazo
- Bekhterev National Medical Research Center for Psychiatry and Neurology, St. Petersburg, Russia
| |
Collapse
|
48
|
Duval F, Mokrani MC, Erb A, Gonzalez Lopera F, Danila V, Tomsa M. Neuroendocrine Assessment of Dopaminergic Function during Antidepressant Treatment in Major Depressed Patients. Brain Sci 2021; 11:425. [PMID: 33810562 PMCID: PMC8065982 DOI: 10.3390/brainsci11040425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 11/20/2022] Open
Abstract
The effects of antidepressants on dopamine (DA) receptor sensitivity in the mesolimbic-hypothalamic system have yielded contradictory results. The postsynaptic DA receptor function was evaluated by the cortisol response to apomorphine (APO; 0.75 mg SC) in 16 drug-free DSM-5 major depressed inpatients and 18 healthy hospitalized control (HC) subjects. Cortisol response to the dexamethasone suppression test (DST) was also measured. After two and four weeks of antidepressant treatment (ADT), the DST and APO test were repeated in all patients. Cortisol response to APO (∆COR) was not influenced by the hypothalamic-pituitary-adrenal (HPA) axis activity, as assessed by the DST. Pre-treatment ∆COR values did not differ significantly between patients and HCs. During ADT, ∆COR values were lower than in HCs at week 2 and 4. After four weeks of treatment, among the eight patients who had blunted ∆COR values, seven were subsequent remitters, while among the eight patients who had normal ∆COR values, seven were non-remitters. Considering the limitations of our study, the results suggest that following chronic ADT, the desensitization of postsynaptic DA receptors connected with the regulation of the HPA axis at the hypothalamic level is associated with clinical remission. These results could reflect increased DA levels in the mesolimbic pathway.
Collapse
Affiliation(s)
- Fabrice Duval
- Pôle 8/9-APF2R, Centre Hospitalier, 68250 Rouffach, France; (M.-C.M.); (A.E.); (F.G.L.); (V.D.); (M.T.)
| | | | | | | | | | | |
Collapse
|
49
|
Peciña M, Dombrovski AY, Price R, Karim HT. Understanding the Neurocomputational Mechanisms of Antidepressant Placebo Effects. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2021; 6:e210001. [PMID: 33732892 PMCID: PMC7963355 DOI: 10.20900/jpbs.20210001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Over the last two decades, neuroscientists have used antidepressant placebo probes to examine the biological mechanisms implicated in antidepressant placebo effects. However, findings from these studies have not yet elucidated a model-based theory that would explain the mechanism through which antidepressant expectancies evolve to induce persistent mood changes. Emerging evidence suggests that antidepressant placebo effects may be informed by models of reinforcement learning (RL). Such that an individual's expectation of improvement is updated with the arrival of new sensory evidence, by incorporating a reward prediction error (RPE), which signals the mismatch between the expected (expected value) and perceived improvement. Consistent with this framework, neuroimaging studies of antidepressant placebo effects have demonstrated placebo-induced μ-opioid activation and increased blood-oxygen-level dependent (BOLD) responses in regions tracking expected values (e.g., ventromedial prefrontal cortex (vmPFC)) and RPEs (e.g., ventral striatum (VS)). In this study, we will demonstrate the causal contribution of reward learning signals (expected values and RPEs) to antidepressant placebo effects by experimentally manipulating expected values using transcranial magnetic stimulation (TMS) targeting the vmPFC and μ-opioid striatal RPE signal using pharmacological approaches. We hypothesized that antidepressant placebo expectancies are represented in the vmPFC (expected value) and updated by means of μ-opioid-modulated striatal learning signal. In a 3 × 3 factorial double-blind design, we will randomize 120 antidepressant-free individuals with depressive symptoms to one of three between-subject opioid conditions: the μ-opioid agonist buprenorphine, the μ-opioid antagonist naltrexone, or an inert pill. Within each arm, individuals will be assigned to receive three within-subject counterbalanced forms of TMS targeting the vmPFC-intermittent Theta Burst Stimulation (TBS) expected to potentiate the vmPFC, continuous TBS expected to de-potentiate the vmPFC, or sham TBS. These experimental manipulations will be used to modulate trial-by-trial reward learning signals and related brain activity during the Antidepressant Placebo functional MRI (fMRI) Task to address the following aims: (1) investigate the relationship between reward learning signals within the vmPFC-VS circuit and antidepressant placebo effects; (2) examine the causal contribution of vmPFC expected value computations to antidepressant placebo effects; and (3) investigate the causal contribution of μ-opioid-modulated striatal RPEs to antidepressant placebo effects. The proposed study will be the first to investigate the causal contribution of μ-opioid-modulated vmPFC-VS learning signals to antidepressant placebo responses, paving the way for developing novel treatments modulating learning processes and objective means of quantifying and potentially reducing placebo effects during drug development. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04276259.
Collapse
Affiliation(s)
- Marta Peciña
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | | | - Rebecca Price
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Helmet T. Karim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| |
Collapse
|
50
|
Yin B, Peng B, Luo Y, Fan S, Xiao T, Zou X, Dong H. Efficacy of Repetitive Transcranial Magnetic Stimulation Combined with Botulinum Toxin Type A for Benign Essential Blepharospasm Patients Accompanied by Anxiety and Depression. Neuropsychiatr Dis Treat 2021; 17:2707-2711. [PMID: 34429606 PMCID: PMC8380137 DOI: 10.2147/ndt.s316163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/26/2021] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVE To evaluate the improvement of motor, anxiety, and depression in patients with blepharospasm with the use of botulinum toxin type A (BTX-A) and repetitive transcranial magnetic stimulation (rTMS). METHODS A total of 63 BEB patients accompanied by anxiety/depression were enrolled, among which 28 patients were treated with the injection of botulinum toxin type A (BTX-A) alone, while 35 patients were treated with BTX-A injection combined with rTMS. All patients were followed up for 6 months, and the overall efficacy was evaluated. RESULTS BTX-A alone treatment and combined rTMS treatment could both significantly improve the symptoms of patients, and the effective rate was 92.86% and 94.29%, respectively. The duration of efficacy was significantly longer in the combined rTMS treatment group (16.89±3.39 weeks) than in BTX-A treatment group (13.04±3.48 weeks). After treatment, SDS score of BTX-A treatment group and combined rTMS treatment group was 49.69±7.90 and 49.46±6.73, respectively, and there was no significant difference between the two treatment groups; SAS score of BTX-A treatment group and combined rTMS treatment group was 53.88±7.34 and 48.79±6.62, respectively, and there was significant difference between the two treatment groups. CONCLUSION Compared to BTX-A alone treatment, BTX-A combined with rTMS can effectively improve the effect of BTX-A, prolong the duration of blepharospasm relief, and significantly reduce depression and anxiety in patients with BEB.
Collapse
Affiliation(s)
- Bo Yin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Bin Peng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Ying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Shanghua Fan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Ting Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Xiaoli Zou
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Hongjuan Dong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| |
Collapse
|