1
|
Sharma M, Pal P, Gupta SK. Microglial mediators in autoimmune Uveitis: Bridging neuroprotection and neurotoxicity. Int Immunopharmacol 2024; 136:112309. [PMID: 38810304 DOI: 10.1016/j.intimp.2024.112309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/29/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Autoimmune uveitis, a severe inflammatory condition of the eye, poses significant challenges due to its complex pathophysiology and the critical balance between protective and detrimental immune responses. Central to this balance are microglia, the resident immune cells of the central nervous system, whose roles in autoimmune uveitis are multifaceted and dynamic. This review article delves into the dual nature of microglial functions, oscillating between neuroprotective and neurotoxic outcomes in the context of autoimmune uveitis. Initially, we explore the fundamental aspects of microglia, including their activation states and basic functions, setting the stage for a deeper understanding of their involvement in autoimmune uveitis. The review then navigates through the intricate mechanisms by which microglia contribute to disease onset and progression, highlighting both their protective actions in immune regulation and tissue repair, and their shift towards a pro-inflammatory, neurotoxic profile. Special emphasis is placed on the detailed pathways and cellular interactions underpinning these dual roles. Additionally, the review examines the potential of microglial markers as diagnostic and prognostic indicators, offering insights into their clinical relevance. The article culminates in discussing future research directions, and the ongoing challenges in translating these findings into effective clinical applications. By providing a comprehensive overview of microglial mechanisms in autoimmune uveitis, this review underscores the critical balance of microglial activities and its implications for disease management and therapy development.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Pharmacology, Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.
| | - Sukesh Kumar Gupta
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India; Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA.
| |
Collapse
|
2
|
Rao M, Chang KC. Aldose reductase is a potential therapeutic target for neurodegeneration. Chem Biol Interact 2024; 389:110856. [PMID: 38185272 PMCID: PMC10842418 DOI: 10.1016/j.cbi.2024.110856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Neurodegeneration is a complex process involving various inflammatory mediators and cellular responses. Aldose reductase (AR) is a key enzyme in the polyol pathway, which converts glucose to sorbitol. Beyond its metabolic role, AR has also been found to play a significant role in modulating neuroinflammation. This review aims to provide an overview of the current knowledge regarding the involvement of AR inhibition in attenuating neuroinflammation and complications from diabetic neuropathies. Here, we review the literature regarding AR and neuropathy/neurodegeneration. We discuss the mechanisms underlying the influence of AR inhibitors on ocular inflammation, beta-amyloid-induced neurodegeneration, and optic nerve degeneration. Furthermore, potential therapeutic strategies targeting AR in neurodegeneration are explored. The understanding of AR's role in neurodegeneration may lead to the development of novel therapeutic interventions for other neuroinflammatory disorders.
Collapse
Affiliation(s)
- Mishal Rao
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Kun-Che Chang
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Neurobiology, Center of Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
3
|
Hong Y, Jiang L, Tang F, Zhang M, Cui L, Zhong H, Xu F, Li M, Chen C, Chen L. PPAR-γ promotes the polarization of rat retinal microglia to M2 phenotype by regulating the expression of CD200-CD200R1 under hypoxia. Mol Biol Rep 2023; 50:10277-10285. [PMID: 37971567 DOI: 10.1007/s11033-023-08815-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/11/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Recent reports suggest that peroxisome proliferator-activated receptor-γ (PPAR-γ) could promote microglial M2 polarization to inhibit inflammation. However, the specific molecular mechanisms that trigger PPAR-γ's anti-inflammatory ability in microglia are yet to be expounded. Thus, in this study, we aimed to explore the molecular mechanisms behind the anti-inflammatory effects of PPAR-γ in hypoxia-stimulated rat retinal microglial cells. METHODS AND RESULTS We used shRNA expressing lentivirus to knock down PPAR-γ and CD200 genes, and we assessed hypoxia-induced polarization markers release - M1 (iNOS, IL-1β, IL-6, and TNF-α) and M2 (Arg-1, YM1, IL-4, and IL-10) by RT-PCR. We also monitored PPAR-γ-related signals (PPAR-γ, PPAR-γ in cytoplasm or nucleus, CD200, and CD200Rs) by Western blot and RT-PCR. Our results showed that hypoxia enhanced PPAR-γ and CD200 expressions in microglial cells. Moreover, PPAR-γ agonist 15d-PGJ2 elevated CD200 and CD200R1 expressions, whereas sh-PPAR-γ had the opposite effect. Following hypoxia, expressions of M1 markers increased significantly, while those of M2 markers decreased, and the above effects were attenuated by 15d-PGJ2. Conversely, knocking down PPAR-γ or CD200 inhibited the polarization of microglial cells to M2 phenotype. CONCLUSION Our findings demonstrated that PPAR-γ performed an anti-inflammatory function in hypoxia-stimulated microglial cells by promoting their polarization to M2 phenotype via the CD200-CD200R1 pathway.
Collapse
Affiliation(s)
- Yiyi Hong
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Li Jiang
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Fen Tang
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Mingyuan Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning, 530021, China
| | - Ling Cui
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Haibin Zhong
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Fan Xu
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Min Li
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China
| | - Changzheng Chen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Lifei Chen
- Research center of Ophthalmology, Guangxi Health Commission Key Laboratory of Ophthalmology and Related Systemic Diseases Artificial Intelligence Screening Technology & Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
4
|
Pfeifer CW, Walsh JT, Santeford A, Lin JB, Beatty WL, Terao R, Liu YA, Hase K, Ruzycki PA, Apte RS. Dysregulated CD200-CD200R signaling in early diabetes modulates microglia-mediated retinopathy. Proc Natl Acad Sci U S A 2023; 120:e2308214120. [PMID: 37903272 PMCID: PMC10636339 DOI: 10.1073/pnas.2308214120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/25/2023] [Indexed: 11/01/2023] Open
Abstract
Diabetic retinopathy (DR) is a neurovascular complication of diabetes. Recent investigations have suggested that early degeneration of the neuroretina may occur prior to the appearance of microvascular changes; however, the mechanisms underlying this neurodegeneration have been elusive. Microglia are the predominant resident immune cell in the retina and adopt dynamic roles in disease. Here, we show that ablation of retinal microglia ameliorates visual dysfunction and neurodegeneration in a type I diabetes mouse model. We also provide evidence of enhanced microglial contact and engulfment of amacrine cells, ultrastructural modifications, and transcriptome changes that drive inflammation and phagocytosis. We show that CD200-CD200R signaling between amacrine cells and microglia is dysregulated during early DR and that targeting CD200R can attenuate high glucose-induced inflammation and phagocytosis in cultured microglia. Last, we demonstrate that targeting CD200R in vivo can prevent visual dysfunction, microglia activation, and retinal inflammation in the diabetic mouse. These studies provide a molecular framework for the pivotal role that microglia play in early DR pathogenesis and identify a potential immunotherapeutic target for treating DR in patients.
Collapse
Affiliation(s)
- Charles W. Pfeifer
- John F. Hardesty, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
- Neurosciences Graduate Program, Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO63110
| | - James T. Walsh
- John F. Hardesty, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
| | - Andrea Santeford
- John F. Hardesty, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
| | - Joseph B. Lin
- John F. Hardesty, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
- Neurosciences Graduate Program, Roy and Diana Vagelos Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO63110
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO63110
| | - Ryo Terao
- John F. Hardesty, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
- Department of Ophthalmology, Graduate School of Medicine, The University of Tokyo, Tokyo1138665, Japan
| | - Yizhou A. Liu
- John F. Hardesty, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
| | - Keitaro Hase
- John F. Hardesty, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
| | - Philip A. Ruzycki
- John F. Hardesty, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
- Department of Genetics, Washington University School of Medicine, St. Louis, MO63110
| | - Rajendra S. Apte
- John F. Hardesty, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO63110
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
- Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
5
|
Murenu E, Gerhardt MJ, Biel M, Michalakis S. More than meets the eye: The role of microglia in healthy and diseased retina. Front Immunol 2022; 13:1006897. [PMID: 36524119 PMCID: PMC9745050 DOI: 10.3389/fimmu.2022.1006897] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Microglia are the main resident immune cells of the nervous system and as such they are involved in multiple roles ranging from tissue homeostasis to response to insults and circuit refinement. While most knowledge about microglia comes from brain studies, some mechanisms have been confirmed for microglia cells in the retina, the light-sensing compartment of the eye responsible for initial processing of visual information. However, several key pieces of this puzzle are still unaccounted for, as the characterization of retinal microglia has long been hindered by the reduced population size within the retina as well as the previous lack of technologies enabling single-cell analyses. Accumulating evidence indicates that the same cell type may harbor a high degree of transcriptional, morphological and functional differences depending on its location within the central nervous system. Thus, studying the roles and signatures adopted specifically by microglia in the retina has become increasingly important. Here, we review the current understanding of retinal microglia cells in physiology and in disease, with particular emphasis on newly discovered mechanisms and future research directions.
Collapse
Affiliation(s)
- Elisa Murenu
- Department of Ophthalmology, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany,*Correspondence: Elisa Murenu, ; ; Stylianos Michalakis,
| | | | - Martin Biel
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany,*Correspondence: Elisa Murenu, ; ; Stylianos Michalakis,
| |
Collapse
|
6
|
Statins Inhibit the Gliosis of MIO-M1, a Müller Glial Cell Line Induced by TRPV4 Activation. Int J Mol Sci 2022; 23:ijms23095190. [PMID: 35563594 PMCID: PMC9100994 DOI: 10.3390/ijms23095190] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
We characterized Müller cell gliosis induced by the activation of transient receptor potential vanilloid-type 4 (TRPV4) and assessed whether statins could modulate the gliosis. The human Müller cell line, MIO-M1, was used to analyze the gliosis caused by glaucomatous stimulation. To induce Müller gliosis in MIO-M1 cells, GSK101 was used to activate TRPV4, and Müller gliosis was evaluated by analyzing vimentin, nestin, and glial fibrillary acidic protein (GFAP) expression. The expression level of TNF-α was determined by ELISA. To evaluate the GSK101 activation of the NF-κB pathway, p65 phosphorylation was measured by Western blotting, and the nuclear translocation of p65 and IκBα phosphorylation were assessed by immunostaining. To assess the effect of statins on MIO-M1 gliosis, cells were pretreated for 24 h with statins before GSK101 treatment. Vimentin, nestin, and GFAP expression were upregulated by GSK101, while statins effectively inhibited them. The expression of TNF-α was increased by GSK101. The phosphorylation and nuclear translocation of p65 and IκBα phosphorylation, which occurs prior to p65 activation, were induced. Statins suppressed the GSK101-mediated phosphorylation of IκBα and p65 translocation. Statins can mitigate gliosis in the human Müller cell line. Because TRPV4 activation in Müller cells reflects glaucoma pathophysiology, statins may have the potential to prevent RGC death.
Collapse
|
7
|
Fan W, Huang W, Chen J, Li N, Mao L, Hou S. Retinal microglia: Functions and diseases. Immunology 2022; 166:268-286. [PMID: 35403700 DOI: 10.1111/imm.13479] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Wei Fan
- The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Ophthalmology Chongqing China
- Chongqing Eye Institute Chongqing China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases Chongqing China
| | - Weidi Huang
- The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Department of Ophthalmology, Second Xiangya Hospital Central South University Changsha Hunan China
| | - Jiayi Chen
- The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Na Li
- College of Basic Medicine Chongqing Medical University Chongqing China
| | - Liming Mao
- Department of Immunology School of Medicine, Nantong University, 19 Qixiu Road Nantong Jiangsu China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University Chongqing China
- Chongqing Key Laboratory of Ophthalmology Chongqing China
- Chongqing Eye Institute Chongqing China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases Chongqing China
| |
Collapse
|
8
|
Molecular regulation of neuroinflammation in glaucoma: Current knowledge and the ongoing search for new treatment targets. Prog Retin Eye Res 2022; 87:100998. [PMID: 34348167 PMCID: PMC8803988 DOI: 10.1016/j.preteyeres.2021.100998] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
Neuroinflammation relying on the inflammatory responses of glial cells has emerged as an impactful component of the multifactorial etiology of neurodegeneration in glaucoma. It has become increasingly evident that despite early adaptive and reparative features of glial responses, prolonged reactivity of the resident glia, along with the peripheral immune cells, create widespread toxicity to retinal ganglion cell (RGC) axons, somas, and synapses. As much as the synchronized responses of astrocytes and microglia to glaucoma-related stress or neuron injury, their bi-directional interactions are critical to build and amplify neuroinflammation and to dictate the neurodegenerative outcome. Although distinct molecular programs regulate somatic and axonal degeneration in glaucoma, inhibition of neurodegenerative inflammation can provide a broadly beneficial treatment strategy to rescue RGC integrity and function. Since inflammatory toxicity and mitochondrial dysfunction are converging etiological paths that can boost each other and feed into a vicious cycle, anti-inflammatory treatments may also offer a multi-target potential. This review presents an overview of the current knowledge on neuroinflammation in glaucoma with particular emphasis on the cell-intrinsic and cell-extrinsic factors involved in the reciprocal regulation of glial responses, the interdependence between inflammatory and mitochondrial routes of neurodegeneration, and the research aspects inspiring for prospective immunomodulatory treatments. With the advent of powerful technologies, ongoing research on molecular and functional characteristics of glial responses is expected to accumulate more comprehensive and complementary information and to rapidly move the field forward to safe and effective modulation of the glial pro-inflammatory activities, while restoring or augmenting the glial immune-regulatory and neurosupport functions.
Collapse
|
9
|
Auler N, Tonner H, Pfeiffer N, Grus FH. Antibody and Protein Profiles in Glaucoma: Screening of Biomarkers and Identification of Signaling Pathways. BIOLOGY 2021; 10:biology10121296. [PMID: 34943212 PMCID: PMC8698915 DOI: 10.3390/biology10121296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary Glaucoma is a chronic eye disease that is one of the leading causes of blindness worldwide. Currently, the only therapeutic option is to lower intraocular pressure. The onset of the disease is often delayed because patients do not notice visual impairment until very late, which is why glaucoma is also known as “the silent thief of sight”. Therefore, early detection and definition of specific markers, the so-called biomarkers, are immensely important. For the methodical implementation, high-throughput methods and omic-based methods came more and more into focus. Thus, interesting targets for possible biomarkers were already suggested by clinical research and basic research, respectively. This review article aims to join the findings of the two disciplines by collecting overlaps as well as differences in various clinical studies and to shed light on promising candidates concerning findings from basic research, facilitating conclusions on possible therapy options. Abstract Glaucoma represents a group of chronic neurodegenerative diseases, constituting the second leading cause of blindness worldwide. To date, chronically elevated intraocular pressure has been identified as the main risk factor and the only treatable symptom. However, there is increasing evidence in the recent literature that IOP-independent molecular mechanisms also play an important role in the progression of the disease. In recent years, it has become increasingly clear that glaucoma has an autoimmune component. The main focus nowadays is elucidating glaucoma pathogenesis, finding early diagnostic options and new therapeutic approaches. This review article summarizes the impact of different antibodies and proteins associated with glaucoma that can be detected for example by microarray and mass spectrometric analyzes, which (i) provide information about expression profiles and associated molecular signaling pathways, (ii) can possibly be used as a diagnostic tool in future and, (iii) can identify possible targets for therapeutic approaches.
Collapse
|
10
|
Rodrigo MJ, Martinez-Rincon T, Subias M, Mendez-Martinez S, Pablo LE, Polo V, Aragon-Navas A, Garcia-Herranz D, Feijoo JG, Osuna IB, Herrero-Vanrell R, Garcia-Martin E. Influence of Sex on Neuroretinal Degeneration: Six-Month Follow-Up in Rats With Chronic Glaucoma. Invest Ophthalmol Vis Sci 2021; 62:9. [PMID: 34643665 PMCID: PMC8525827 DOI: 10.1167/iovs.62.13.9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Purpose To evaluate differences by sex in the neuroretina of rats with chronic glaucoma over 24 weeks of follow-up, and to assess by sex the influence on neurodegeneration of different methods of inducing ocular hypertension. Methods Forty-six Long-Evans rats-18 males and 28 females-with induced chronic glaucoma were analyzed. Glaucoma was achieved via 2 models: repeatedly sclerosing the episcleral veins (9 male/14 female) or by injecting poly(lactic-co-glycolic acid) microspheres measuring 20 to 10 µm (Ms20/10) into the anterior chamber (9 male/14 female). The IOP was measured weekly by tonometer; neuroretinal function was recorded by dark/light-adapted electroretinography at baseline and weeks 12 and 24; and structure was analyzed by optical coherence tomography using the retina posterior pole, retinal nerve fiber layer and ganglion cell layer protocols at baseline and weeks 8, 12, 18, and 24. Results Males showed statistically significant (P < 0.05) higher IOP in both chronic glaucoma models, and greater differences were found in the episcleral model at earlier stages. Males with episclerally induced glaucoma showed a statistically higher increase in retinal thickness in optical coherence tomography recordings than females and also when comparing Ms20/10 at 12 weeks. Males showed a higher percentage of retinal nerve fiber layer thickness loss in both models. Ganglion cell layer thickness loss was only detected in the Ms20/10 model. Males exhibited worse dark/light-adapted functionality in chronic glaucoma models, which worsened in the episcleral sclerosis model at 12 weeks, than females. Conclusions Female rats with chronic glaucoma experienced lower IOP and structural loss and better neuroretinal functionality than males. Sex and the ocular hypertension-inducing method influenced neuroretinal degeneration.
Collapse
Affiliation(s)
- Maria J Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain.,National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain
| | - Teresa Martinez-Rincon
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Manuel Subias
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Silvia Mendez-Martinez
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Luis E Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain.,National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain
| | - Vicente Polo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Alba Aragon-Navas
- Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - David Garcia-Herranz
- Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Julian García Feijoo
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Department of Ophthalmology, San Carlos Clinical Hospital, UCM, Madrid, Spain
| | - Irene Bravo Osuna
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.,Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Rocio Herrero-Vanrell
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.,Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain.,National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.,https://orcid.org/0000-0001-6258-2489
| |
Collapse
|
11
|
Li Y, Glotfelty EJ, Karlsson T, Fortuno LV, Harvey BK, Greig NH. The metabolite GLP-1 (9-36) is neuroprotective and anti-inflammatory in cellular models of neurodegeneration. J Neurochem 2021; 159:867-886. [PMID: 34569615 DOI: 10.1111/jnc.15521] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/23/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is best known for its insulinotropic action following food intake. Its metabolite, GLP-1 (9-36), was assumed biologically inactive because of low GLP-1 receptor (GLP-1R) affinity and non-insulinotropic properties; however, recent studies contradict this assumption. Increased use of FDA approved GLP-1 analogues for treating metabolic disorders and neurodegenerative diseases raises interest in GLP-1 (9-36)'s biological role. We use human SH-SY5Y neuroblastoma cells and a GLP-1R over-expressing variety (#9), in both undifferentiated and differentiated states, to evaluate the neurotrophic/neuroprotective effects of GLP-1 (9-36) against toxic glutamate exposure and other oxidative stress models (via the MTS, LDH or ROS assays). In addition, we examine GLP-1 (9-36)'s signaling pathways, including cyclic-adenosine monophosphate (cAMP), protein kinase-A (PKA), and 5' adenosine monophosphate-activated protein kinase (AMPK) via the use of ELISA, pharmacological inhibitors, or GLP-1R antagonist. Human HMC3 and mouse IMG microglial cell lines were used to study the anti-inflammatory effects of GLP-1 (9-36) against lipopolysaccharide (LPS) (via ELISA). Finally, we applied GLP-1 (9-36) to primary dissociation cultures challenged with α-synuclein or amyloid-β and assessed survival and morphology via immunochemistry. We demonstrate evidence of GLP-1R, cAMP, PKA, and AMPK-mediated neurotrophic and neuroprotective effects of GLP-1 (9-36). The metabolite significantly reduced IL-6 and TNF-α levels in HMC3 and IMG microglial cells, respectively. Lastly, we show mild but significant effects of GLP-1 (9-36) in primary neuron cultures challenged with α-synuclein or amyloid-β. These studies enhance understanding of GLP-1 (9-36)'s effects on the nervous system and its potential as a primary or complementary treatment in pathological contexts.
Collapse
Affiliation(s)
- Yazhou Li
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Elliot J Glotfelty
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tobias Karlsson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lowella V Fortuno
- Molecular Mechanisms of Cellular Stress and Inflammation Unit, Integrative Neuroscience Department, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Brandon K Harvey
- Molecular Mechanisms of Cellular Stress and Inflammation Unit, Integrative Neuroscience Department, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland, USA
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Multifactorial Pathogenic Processes of Retinal Ganglion Cell Degeneration in Glaucoma towards Multi-Target Strategies for Broader Treatment Effects. Cells 2021; 10:cells10061372. [PMID: 34199494 PMCID: PMC8228726 DOI: 10.3390/cells10061372] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal ganglion cell (RGC) somas, degeneration of axons, and loss of synapses at dendrites and axon terminals. Glaucomatous neurodegeneration encompasses multiple triggers, multiple cell types, and multiple molecular pathways through the etiological paths with biomechanical, vascular, metabolic, oxidative, and inflammatory components. As much as intrinsic responses of RGCs themselves, divergent responses and intricate interactions of the surrounding glia also play decisive roles for the cell fate. Seen from a broad perspective, multitarget treatment strategies have a compelling pathophysiological basis to more efficiently manipulate multiple pathogenic processes at multiple injury sites in such a multifactorial neurodegenerative disease. Despite distinct molecular programs for somatic and axonal degeneration, mitochondrial dysfunction and glia-driven neuroinflammation present interdependent processes with widespread impacts in the glaucomatous retina and optic nerve. Since dysfunctional mitochondria stimulate inflammatory responses and proinflammatory mediators impair mitochondria, mitochondrial restoration may be immunomodulatory, while anti-inflammatory treatments protect mitochondria. Manipulation of these converging routes may thus allow a unified treatment strategy to protect RGC axons, somas, and synapses. This review presents an overview of recent research advancements with emphasis on potential treatment targets to achieve the best treatment efficacy to preserve visual function in glaucoma.
Collapse
|
13
|
García-Bermúdez MY, Freude KK, Mouhammad ZA, van Wijngaarden P, Martin KK, Kolko M. Glial Cells in Glaucoma: Friends, Foes, and Potential Therapeutic Targets. Front Neurol 2021; 12:624983. [PMID: 33796062 PMCID: PMC8007906 DOI: 10.3389/fneur.2021.624983] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/26/2021] [Indexed: 12/15/2022] Open
Abstract
Glaucoma is the second leading cause of blindness worldwide, affecting ~80 million people by 2020 (1, 2). The condition is characterized by a progressive loss of retinal ganglion cells (RGCs) and their axons accompanied by visual field loss. The underlying pathophysiology of glaucoma remains elusive. Glaucoma is recognized as a multifactorial disease, and lowering intraocular pressure (IOP) is the only treatment that has been shown to slow the progression of the condition. However, a significant number of glaucoma patients continue to go blind despite intraocular pressure-lowering treatment (2). Thus, the need for alternative treatment strategies is indisputable. Accumulating evidence suggests that glial cells play a significant role in supporting RGC function and that glial dysfunction may contribute to optic nerve disease. Here, we review recent advances in understanding the role of glial cells in the pathophysiology of glaucoma. A particular focus is on the dynamic and essential interactions between glial cells and RGCs and potential therapeutic approaches to glaucoma by targeting glial cells.
Collapse
Affiliation(s)
| | - Kristine K Freude
- Department for Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Zaynab A Mouhammad
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Peter van Wijngaarden
- Center for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Keith K Martin
- Center for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia.,Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, VIC, Australia
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| |
Collapse
|
14
|
Tribble JR, Kokkali E, Otmani A, Plastino F, Lardner E, Vohra R, Kolko M, André H, Morgan JE, Williams PA. When Is a Control Not a Control? Reactive Microglia Occur Throughout the Control Contralateral Pathway of Retinal Ganglion Cell Projections in Experimental Glaucoma. Transl Vis Sci Technol 2021; 10:22. [PMID: 33510961 PMCID: PMC7804521 DOI: 10.1167/tvst.10.1.22] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose Animal models show retinal ganglion cell (RGC) injuries that replicate features of glaucoma and the contralateral eye is commonly used as an internal control. There is significant crossover of RGC axons from the ipsilateral to the contralateral side at the level of the optic chiasm, which may confound findings when damage is restricted to one eye. The effect of unilateral glaucoma on neuroinflammatory damage to the contralateral pathway of RGC projections has largely been unexplored. Methods Ocular hypertensive glaucoma was induced unilaterally or bilaterally in the rat and RGC neurodegenerative events were assessed. Neuroinflammation was quantified in the retina, optic nerve head, optic nerve, lateral geniculate nucleus, and superior colliculus by high-resolution imaging, and in the retina by flow cytometry and protein arrays. Results After ocular hypertensive stress, peripheral monocytes enter the retina and microglia become reactive. This effect is more marked in animals with bilateral ocular hypertensive glaucoma. In rats where glaucoma was induced unilaterally, there was significant microglia activation in the contralateral (control) eye. Microglial activation extended into the optic nerve and terminal visual thalami, where it was similar across hemispheres in unilateral ocular hypertension. Conclusions These data suggest that caution is warranted when using the contralateral eye as a control and in comparing visual thalami in unilateral models of glaucoma. Translational Relevance The use of a contralateral eye as a control may confound the discovery of human-relevant mechanism and treatments in animal models. We also identify neuroinflammatory protein responses that warrant further investigation as potential disease-modifiable targets.
Collapse
Affiliation(s)
- James R. Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Eirini Kokkali
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, UK
| | - Amin Otmani
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Flavia Plastino
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Emma Lardner
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Rupali Vohra
- Department of Veterinary and Animal Sciences, Pathobiological Sciences, University of Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Ophthalmology, Rigshospitalet-Glostrup, Copenhagen, Denmark
| | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - James E. Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, UK
- School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Pete A. Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Zhao SC, Heng X, Ya-Ping W, Di L, Wen-Qian W, Ling-Song M, Chu ZH, Xu Y. CD200-CD200R1 signaling pathway regulates neuroinflammation after stroke. Brain Behav 2020; 10:e01882. [PMID: 33067924 PMCID: PMC7749562 DOI: 10.1002/brb3.1882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/23/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To study how the CD200-CD200R1 signaling pathway modulates poststroke inflammation and advances our knowledge of immune responses to ischemia insults in stroke. METHODS Focal middle cerebral artery occlusion (MCAO) was induced in mice for 90 min, and mice were sacrificed at 1, 3, and 7 days of reperfusion. CD200, CD200R1, iNOS, and Arg-1 expression in ischemic brains was assessed by Western blotting (WB), and immunohistochemical (IHC) staining was performed to examine the expression of CD200 on neurons and CD200R1 on infiltrating lymphocytes. The severity of neurobehavioral deficits was evaluated by neurological deficit scores (NDS) and infarction volume estimated by TTC staining. To study the relationship between CD200/CD200R1 expression and the diversity of the neuroinflammatory response in stroke, CD200Fc (CD200R1 agonist) was subcutaneously injected at onset, at 1 day and 2 days after MCAO operation, and the brains were collected for detection at 3 days after MCAO/R (reperfusion). RESULTS CD200 expression on neurons increased at 1 day and then decreased at 3 days after MCAO/R, and the expression of CD200R1 on lymphocytes showed an opposite temporal pattern as tested by IHC. The WB results showed that CD200/CD200R1 variance exhibited a similar pattern of IHC results, and the level of iNOS peaked at 1 day and then decreased gradually, but Arg-1 increased with time after MCAO/R in ischemic brains. After CD200Fc injection, CD200R1 expression significantly increased, and CD200Fc promoted Arg-1 but inhibited iNOS expression. The infarct volume and NDS of the group treated with CD200Fc were significantly smaller than those of the IgG2a-treated group. CONCLUSIONS The CD200-CD200R1 signaling pathway regulates neuroinflammation after stroke. Stimulation of CD200R1 by CD200Fc promotes the anti-inflammatory response and alleviates ischemic injury.
Collapse
Affiliation(s)
- Shou-Cai Zhao
- Department of Neurology, Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Xu Heng
- Department of Neurology, Zhu Madian Central Hospital, Zhumadian, China
| | - Wang Ya-Ping
- Department of Neurology, Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Luan Di
- Department of Neurology, Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Wu Wen-Qian
- Department of Neurology, The Second Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Ma Ling-Song
- Department of Neurology, Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Zhao-Hu Chu
- Department of Neurology, Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Yang Xu
- Department of Neurology, Wannan Medical College, Yijishan Hospital, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| |
Collapse
|
16
|
Hu X, Xu MX, Zhou H, Cheng S, Li F, Miao Y, Wang Z. Tumor necrosis factor-alpha aggravates gliosis and inflammation of activated retinal Müller cells. Biochem Biophys Res Commun 2020; 531:383-389. [PMID: 32800547 DOI: 10.1016/j.bbrc.2020.07.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/17/2022]
Abstract
Tumor necrosis factor-alpha (TNF-α), a major inflammatory factor released from activated retinal glial cells, is implicated in the pathogenesis of glaucoma. In this study, we investigated whether and how TNF-α may affect functional conditions of activated retinal Müller cells. Our results showed that in the group I metabotropic glutamate receptor (mGluR I) agonist DHPG-activated cultured Müller cells, TNF-α treatment aggravated cell gliosis, as evidenced by significantly increased expression of glial fibrillary acidic protein (GFAP). TNF-α treatment of the DHPG-activated Müller cells decreased cell proliferation and induced cell apoptosis. In normal Müller cells, TNF-α treatment increased the mRNA levels of leukocyte inhibitory factor (LIF), intercellular cell adhesion molecule (ICAM), vascular cell adhesion molecule (VCAM), and chemokine C-C-motif ligand 2 (CCL2), which could be significantly attenuated when Müller cells were pre-activated. However, TNF-α-induced elevation in mRNA levels of inflammatory factors, such as TNF-α, inducible nitric oxide synthase (iNOS), and interleukin-6 (IL-6), in normal Müller cells still kept higher levels when Müller cells were pre-activated. Furthermore, the TNF-α-induced changes of cytokines were partially mediated by NF-κB signaling pathway. Our results suggest that TNF-α may promote gliosis and inflammatory response of activated Müller cells, thus aggravating RGC injury in glaucoma.
Collapse
Affiliation(s)
- Xin Hu
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Meng-Xi Xu
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Han Zhou
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Shuo Cheng
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Fang Li
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yanying Miao
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhongfeng Wang
- Department of Ophthalmology, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
17
|
Time course of bilateral microglial activation in a mouse model of laser-induced glaucoma. Sci Rep 2020; 10:4890. [PMID: 32184450 PMCID: PMC7078298 DOI: 10.1038/s41598-020-61848-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/03/2020] [Indexed: 12/31/2022] Open
Abstract
Microglial activation is associated with glaucoma. In the model of unilateral laser-induced ocular hypertension (OHT), the time point at which the inflammatory process peaks remains unknown. Different time points (1, 3, 5, 8, and 15 d) were compared to analyze signs of microglial activation both in OHT and contralateral eyes. In both eyes, microglial activation was detected in all retinal layers at all time points analyzed, including: i) increase in the cell number in the outer segment photoreceptor layer and plexiform layers (only in OHT eyes) from 3 d onward; ii) increase in soma size from 1 d onward; iii) retraction of the processes from 1 d in OHT eyes and 3 d in contralateral eyes; iv) increase in the area of the retina occupied by Iba-1+ cells in the nerve fiber layer/ganglion cell layer from 1 d onward; v) increase in the number of vertical processes from 1 d in contralateral eyes and 3 d in OHT eyes. In OHT eyes at 24 h and 15 d, most Iba-1+ cells were P2RY12+ and were down-regulated at 3 and 5 d. In both eyes, microglial activation was stronger at 3 and 5 d (inflammation peaked in this model). These time points could be useful to identify factors implicated in the inflammatory process.
Collapse
|
18
|
Hu Y, Xie A, Cheng Q. Upregulated CD200 in pre-retinal proliferative fibrovascular membranes of proliferative diabetic retinopathy patients and its correlation with vascular endothelial growth factor. Inflamm Res 2019; 68:1071-1079. [PMID: 31612255 DOI: 10.1007/s00011-019-01290-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE AND DESIGN The objective was to determine the expression of CD200 in the pre-retinal proliferative fibrovascular membranes (PFVM) of patients with proliferative diabetic retinopathy (PDR) and to clarify its correlation with vascular endothelial growth factor (VEGF) and corresponding receptors. METHODS PFVM samples were collected by vitrectomy from 14 patients with PDR, and 11 non-diabetic patients who accepted vitrectomy for idiopathic epiretinal membranes removal. The expression of CD200, VEGF,VEGF-R1 and VEGF-R2 was measured via qPCR and immunofluorescent staining. RESULTS The mRNA level of CD200 was significantly higher in PDR patients than that in control patients. Meanwhile, CD200 and CD31 were found co-located and statistically associated in PFVM of PDR patients. The mRNA levels of VEGF, VEGF-R1 and VEGF-R2 were also significantly higher in PDR patients. Moreover, statistical association was found between CD200 and VEGF, VEGF-R1 in mRNA levels. But there was no significant correlationship between CD200 and VEGF-R2. CONCLUSIONS These results suggest a significantly increased expression of CD200 in PFVM of patients with PDR and present a crucial association between CD200 and VEGF-involved pathway. It represents a potential therapy that interfering with CD200 may inhibit the VEFG expression and neovascular formation in PDR patients.
Collapse
Affiliation(s)
- Yaguang Hu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China
| | - Anming Xie
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China
| | - Qiaochu Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
19
|
Tsang JKW, Liu J, Lo ACY. Vascular and Neuronal Protection in the Developing Retina: Potential Therapeutic Targets for Retinopathy of Prematurity. Int J Mol Sci 2019; 20:E4321. [PMID: 31484463 PMCID: PMC6747312 DOI: 10.3390/ijms20174321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
Retinopathy of prematurity (ROP) is a common retinal disease in preterm babies. To prolong the lives of preterm babies, high oxygen is provided to mimic the oxygen level in the intrauterine environment for postnatal organ development. However, hyperoxia-hypoxia induced pathological events occur when babies return to room air, leading to ROP with neuronal degeneration and vascular abnormality that affects retinal functions. With advances in neonatal intensive care, it is no longer uncommon for increased survival of very-low-birth-weight preterm infants, which, therefore, increased the incidence of ROP. ROP is now a major cause of preventable childhood blindness worldwide. Current proven treatment for ROP is limited to invasive retinal ablation, inherently destructive to the retina. The lack of pharmacological treatment for ROP creates a great need for effective and safe therapies in these developing infants. Therefore, it is essential to identify potential therapeutic agents that may have positive ROP outcomes, especially in preserving retinal functions. This review gives an overview of various agents in their efficacy in reducing retinal damages in cell culture tests, animal experiments and clinical studies. New perspectives along the neuroprotective pathways in the developing retina are also reviewed.
Collapse
Affiliation(s)
- Jessica K W Tsang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jin Liu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Amy C Y Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
20
|
Anti-angiogenic and anti-inflammatory effects of CD200-CD200R1 axis in oxygen-induced retinopathy mice model. Inflamm Res 2019; 68:945-955. [PMID: 31444514 DOI: 10.1007/s00011-019-01276-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE In this study, the expression changes and the potential effects of CD200 and its receptors during the process of retinal neovascularization (RNV) development had been detected, using a classic oxygen-induced retinopathy (OIR) mice model and CD200Fc (a CD200R1 agonist) intravitreal injection. MATERIALS AND METHODS 7 day postnatal (P7) C57BL/6J mice were raised in hyperoxia incubators with 75±2% oxygen for 5 days, and returned to room air at P12. All animals were subdivided into three groups: normoxia control, OIR, and OIR+CD200Fc group. The mice of OIR+CD200Fc group were intravitreal injected with CD200Fc (2μg/μL, 0.5μL) at P12. Retinas and vitreous samples were harvested at P17. The expression and localization of CD200 and its receptors were analyzed by Western blot, quantitative real-time polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), and retinal whole-mount immunofluorescence. To investigate the effects of CD200Fc treatment, vascular endothelial growth factor (VEGF)-A, platelet-derived growth factor (PDGF)-BB, pro-inflammatory cytokines, NV area, and microglial activation were detected respectively. RESULTS In OIR group, both protein and RNA levels of CD200 and CD200R1 were significantly up-regulated. The increased CD200 and CD200R1 were co-localized with Alex594-labeled Griffonia simplicifolia isolectin B4 (IB4) on vascular endothelial cells in NV area of OIR samples, and CD200R1 was co-expressed with ionized calcium-bind adapter molecule 1 (iba1) on microglia in OIR samples at the same time. CD200Fc intravitreal injection could significantly reduce the release of VEGF-A, PDGF-BB, and pro-inflammatory cytokines; shrink the NV area; and inhibit the activation of microglia in OIR mice. CONCLUSION These findings suggested that the up-regulation of CD200 and CD200R1 was closely related to RNV development, and the antiangiogenic effects of CD200Fc in OIR model might be realized by inhibition of inflammatory response and microglia activation. The results may provide a new therapeutic target for RNV diseases.
Collapse
|
21
|
Bariş M, Tezel G. Immunomodulation as a Neuroprotective Strategy for Glaucoma Treatment. CURRENT OPHTHALMOLOGY REPORTS 2019; 7:160-169. [PMID: 31360618 PMCID: PMC6662642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
PURPOSE OF REVIEW This review aims to highlight the current knowledge about inflammatory mechanisms of neurodegeneration in glaucoma with emphasis on potential immunomodulation strategies. RECENT FINDINGS Glaucomatous retina and optic nerve present multiple evidences of inflammatory responses of astroglia, microglia, and blood-born immune cells. Although adaptive/protective responses of resident or systemic immune cells can support neurons and promote tissue repair mechanisms after injurious insults, prolonged inflammatory processes can also produce neurotoxic mediators. Treatments targeting these neurodestructive outcomes may restore immune homeostasis and protect neurons from inflammatory injury. Due to widespread and chronic nature of neuroinflammation in glaucoma, immunomodulation offers a treatment strategy to protect different neuronal compartments of RGCs during the chronic and asynchronous course of neurodegeneration. Uncovering of distinct molecular responses and interactions of different immune cells that determine the neuroinflammatory phenotype and participate in neurodegenerative outcomes will be critical to develop effective strategies for immunomodulation in glaucoma. SUMMARY Neuroinflammation has increasingly been recognized to play an important role in glaucomatous neurodegeneration, and its modulation appears to be a promising treatment strategy for neuroprotection.
Collapse
Affiliation(s)
- Mine Bariş
- Columbia University, College of Physicians and Surgeons, Department of Ophthalmology, New York, NY
| | - Gülgün Tezel
- Columbia University, College of Physicians and Surgeons, Department of Ophthalmology, New York, NY
| |
Collapse
|
22
|
|
23
|
Manich G, Recasens M, Valente T, Almolda B, González B, Castellano B. Role of the CD200-CD200R Axis During Homeostasis and Neuroinflammation. Neuroscience 2018; 405:118-136. [PMID: 30367946 DOI: 10.1016/j.neuroscience.2018.10.030] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/27/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
Abstract
Microglia are considered to be the resident macrophages of the CNS and main effector of immune brain function. Due to their essential role in the regulation of neuroinflammatory response, microglia constitute an important target for neurological diseases, such as multiple sclerosis, Alzheimer's or Parkinson's disease. The communication between neurons and microglia contributes to a proper maintenance of homeostasis in the CNS. Research developed in the last decade has demonstrated that this interaction is mediated by "Off-signals" - molecules exerting immune inhibition - and "On signals" - molecules triggering immune activation. Among "Off signals", molecular pair CD200 and its CD200R receptor, expressed mainly in the membrane of neurons and microglia, respectively, have centered our attention due to its unexplored and powerful immunoregulatory functions. In this review, we will offer an updated global view of the CD200-CD200R role in the microglia-neuron crosstalk during homeostasis and neuroinflammation. Specifically, the effects of CD200-CD200R in the inhibition of pro-inflammatory microglial activation will be explained, and their involvement in other functions such as homeostasis preservation, tissue repair, and brain aging, among others, will be pointed out. In addition, we will depict the effects of CD200-CD200R uncoupling in the etiopathogenesis of autoimmune and neurodegenerative diseases. Finally, we will explore how to translate the scientific evidence of CD200-CD200R interaction into possible clinical therapeutic strategies to tackle neuroinflammatory CNS diseases.
Collapse
Affiliation(s)
- Gemma Manich
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience. Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Mireia Recasens
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience. Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Tony Valente
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience. Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Beatriz Almolda
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience. Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain.
| | - Berta González
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience. Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Bernardo Castellano
- Department of Cell Biology, Physiology and Immunology, Institute of Neuroscience. Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
24
|
Rathnasamy G, Foulds WS, Ling EA, Kaur C. Retinal microglia - A key player in healthy and diseased retina. Prog Neurobiol 2018; 173:18-40. [PMID: 29864456 DOI: 10.1016/j.pneurobio.2018.05.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/09/2018] [Accepted: 05/29/2018] [Indexed: 01/04/2023]
Abstract
Microglia, the resident immune cells of the brain and retina, are constantly engaged in the surveillance of their surrounding neural tissue. During embryonic development they infiltrate the retinal tissues and participate in the phagocytosis of redundant neurons. The contribution of microglia in maintaining the purposeful and functional histo-architecture of the adult retina is indispensable. Within the retinal microenvironment, robust microglial activation is elicited by subtle changes caused by extrinsic and intrinsic factors. When there is a disturbance in the cell-cell communication between microglia and other retinal cells, for example in retinal injury, the activated microglia can manifest actions that can be detrimental. This is evidenced by activated microglia secreting inflammatory mediators that can further aggravate the retinal injury. Microglial activation as a harbinger of a variety of retinal diseases is well documented by many studies. In addition, a change in the microglial phenotype which may be associated with aging, may predispose the retina to age-related diseases. In light of the above, the focus of this review is to highlight the role played by microglia in the healthy and diseased retina, based on findings of our own work and from that of others.
Collapse
Affiliation(s)
- Gurugirijha Rathnasamy
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore; Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53706, United States
| | - Wallace S Foulds
- Singapore Eye Research Institute Level 6, The Academia, Discovery Tower, 20 College Road, 169856, Singapore; University of Glasgow, Glasgow, Scotland, G12 8QQ, United Kingdom
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore
| | - Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, 117594, Singapore.
| |
Collapse
|
25
|
Zeng HL, Shi JM. The role of microglia in the progression of glaucomatous neurodegeneration- a review. Int J Ophthalmol 2018; 11:143-149. [PMID: 29376003 DOI: 10.18240/ijo.2018.01.22] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022] Open
Abstract
Glaucoma is a serious leading cause of irreversible blindness worldwide. Reducing intraocular pressure (IOP) does not always stop glaucomatous neurodegeneration and the optic nerve may continue to be damaged in the normal IOP. Microglial activity has been recognized to play essential roles in pathogenesis of the central nervous system (CNS) as well as retinal ganglion cell (RGC) survival. The relationship between the neurodegeneration and the microglia cells in glaucoma is very complicated and still remains unclear. In the present review, we summarize the recent studies of mechanisms of microglia in glaucoma neurodegeneration, which might provide new ways to treat glaucoma.
Collapse
Affiliation(s)
- Hui-Lan Zeng
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Jing-Ming Shi
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| |
Collapse
|
26
|
Huang R, Lan Q, Chen L, Zhong H, Cui L, Jiang L, Huang H, Li L, Zeng S, Li M, Zhao X, Xu F. CD200Fc Attenuates Retinal Glial Responses and RGCs Apoptosis After Optic Nerve Crush by Modulating CD200/CD200R1 Interaction. J Mol Neurosci 2017; 64:200-210. [PMID: 29280053 DOI: 10.1007/s12031-017-1020-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022]
Abstract
To explore the hypothesis that CD200Fc, a CD200R1 agonist with anti-inflammatory properties, will inhibit retinal glial cells hyperactivation and retinal ganglion cells (RGCs) apoptosis after optic nerve injury. CD200Fc was immediately administered after optic nerve crush (ONC) once by intravitreal injection. Rats were euthanized at 5 days after ONC. The density of RGCs was counted by immunostaining of retina flat mounts for Brn3a. TUNEL assay, immunoblotting analysis of ionized calcium-binding adapter molecule 1(iba1) (microglia marker) and glial fibrillary acidic protein (GFAP) (astrocytes and Müller cells marker), RT-PCR analysis of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), monocyte chemotactic protein 1 (MCP-1), tumor necrosis factor-α (TNF-α), interleukin (IL)-8 and IL-10, ELISA measure protein levels of inflammatory cytokines and western blot analysis of CD200 and CD200R1 were evaluated. CD200Fc treatment suppressed ONC-induced RGCs loss through inhibition of RGCs apoptosis. Additionally, expression of glial cells activation markers GFAP and iba1 and production of pro-inflammatory cytokines (COX-2, iNOS, MCP-1, TNF-α, IL-8) were decreased in CD200Fc treated animals after ONC. Meanwhile, anti-inflammatory cytokine IL-10 was increased by CD200Fc treatment in ONC-induced rat retina. Finally, we found that CD200Fc significantly inhibited ONC-induced increased in expression of CD200 and raised the already high basal CD200R1 expression in the rat retina after ONC. Our results demonstrated that the anti-inflammatory effects of CD200Fc in ONC rats model through inhibited the activation of retinal glial cells via the interaction between CD200 and CD200R1, and the neuroprotective effects of CD200Fc on RGCs thought inhibited its apoptosis.
Collapse
Affiliation(s)
- Rong Huang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China.,Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Qianqian Lan
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China
| | - Lifei Chen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China
| | - Haibin Zhong
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China
| | - Ling Cui
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China
| | - Li Jiang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China
| | - Hui Huang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China
| | - Li Li
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China
| | - Siming Zeng
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China
| | - Min Li
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China.
| | - Xin Zhao
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China.
| | - Fan Xu
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530021, Guangxi, People's Republic of China.
| |
Collapse
|
27
|
Ramirez AI, de Hoz R, Salobrar-Garcia E, Salazar JJ, Rojas B, Ajoy D, López-Cuenca I, Rojas P, Triviño A, Ramírez JM. The Role of Microglia in Retinal Neurodegeneration: Alzheimer's Disease, Parkinson, and Glaucoma. Front Aging Neurosci 2017; 9:214. [PMID: 28729832 PMCID: PMC5498525 DOI: 10.3389/fnagi.2017.00214] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/16/2017] [Indexed: 12/12/2022] Open
Abstract
Microglia, the immunocompetent cells of the central nervous system (CNS), act as neuropathology sensors and are neuroprotective under physiological conditions. Microglia react to injury and degeneration with immune-phenotypic and morphological changes, proliferation, migration, and inflammatory cytokine production. An uncontrolled microglial response secondary to sustained CNS damage can put neuronal survival at risk due to excessive inflammation. A neuroinflammatory response is considered among the etiological factors of the major aged-related neurodegenerative diseases of the CNS, and microglial cells are key players in these neurodegenerative lesions. The retina is an extension of the brain and therefore the inflammatory response in the brain can occur in the retina. The brain and retina are affected in several neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and glaucoma. AD is an age-related neurodegeneration of the CNS characterized by neuronal and synaptic loss in the cerebral cortex, resulting in cognitive deficit and dementia. The extracellular deposits of beta-amyloid (Aβ) and intraneuronal accumulations of hyperphosphorylated tau protein (pTau) are the hallmarks of this disease. These deposits are also found in the retina and optic nerve. PD is a neurodegenerative locomotor disorder with the progressive loss of dopaminergic neurons in the substantia nigra. This is accompanied by Lewy body inclusion composed of α-synuclein (α-syn) aggregates. PD also involves retinal dopaminergic cell degeneration. Glaucoma is a multifactorial neurodegenerative disease of the optic nerve, characterized by retinal ganglion cell loss. In this pathology, deposition of Aβ, synuclein, and pTau has also been detected in retina. These neurodegenerative diseases share a common pathogenic mechanism, the neuroinflammation, in which microglia play an important role. Microglial activation has been reported in AD, PD, and glaucoma in relation to protein aggregates and degenerated neurons. The activated microglia can release pro-inflammatory cytokines which can aggravate and propagate neuroinflammation, thereby degenerating neurons and impairing brain as well as retinal function. The aim of the present review is to describe the contribution in retina to microglial-mediated neuroinflammation in AD, PD, and glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Ana I. Ramirez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid (UCM)Madrid, Spain
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid (UCM)Madrid, Spain
| | - Elena Salobrar-Garcia
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid (UCM)Madrid, Spain
| | - Juan J. Salazar
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid (UCM)Madrid, Spain
| | - Blanca Rojas
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid (UCM)Madrid, Spain
| | - Daniel Ajoy
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
| | - Inés López-Cuenca
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
| | - Pilar Rojas
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Servicio de Oftalmología, Hospital Gregorio MarañónMadrid, Spain
| | - Alberto Triviño
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid (UCM)Madrid, Spain
| | - José M. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid (UCM)Madrid, Spain
| |
Collapse
|
28
|
Williams PA, Braine CE, Foxworth NE, Cochran KE, John SWM. GlyCAM1 negatively regulates monocyte entry into the optic nerve head and contributes to radiation-based protection in glaucoma. J Neuroinflammation 2017; 14:93. [PMID: 28446179 PMCID: PMC5406973 DOI: 10.1186/s12974-017-0868-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/18/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND We previously reported a profound long-term neuroprotection subsequent to a single radiation-therapy in the DBA/2J mouse model of glaucoma. This neuroprotection prevents entry of monocyte-like immune cells into the optic nerve head during glaucoma. Gene expression studies in radiation-treated mice implicated Glycam1 in this protection. Glycam1 encodes a proteoglycan ligand for L-selectin and is an excellent candidate to modulate immune cell entry into the eye. Here, we experimentally test the hypothesis that radiation-induced over-expression of Glycam1 is a key component of the neuroprotection. METHODS We generated a null allele of Glycam1 on a DBA/2J background. Gene and protein expression of Glycam1, monocyte entry into the optic nerve head, retinal ganglion cell death, and axon loss in the optic nerve were assessed. RESULTS Radiation therapy potently inhibits monocyte entry into the optic nerve head and prevents retinal ganglion cell death and axon loss. DBA/2J mice carrying a null allele of Glycam1 show increased monocyte entry and increased retinal ganglion cell death and axon loss following radiation therapy, but the majority of optic nerves were still protected by radiation therapy. CONCLUSIONS Although GlyCAM1 is an L-selectin ligand, its roles in immunity are not yet fully defined. The current study demonstrates a partial role for GlyCAM1 in radiation-mediated protection. Furthermore, our results clearly show that GlyCAM1 levels modulate immune cell entry from the vasculature into neural tissues. As Glycam1 deficiency has a more profound effect on cell entry than on neurodegeneration, further experiments are needed to precisely define the role of monocyte entry in DBA/2J glaucoma. Nevertheless, GlyCAM1's function as a negative regulator of extravasation may lead to novel therapeutic strategies for an array of common conditions involving inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Simon W. M. John
- The Jackson Laboratory, Bar Harbor, ME USA
- Department of Ophthalmology, Tufts University of Medicine, Boston, MA USA
- The Howard Hughes Medical Institute, Bar Harbor, ME USA
| |
Collapse
|
29
|
|
30
|
Williams PA, Tribble JR, Pepper KW, Cross SD, Morgan BP, Morgan JE, John SWM, Howell GR. Inhibition of the classical pathway of the complement cascade prevents early dendritic and synaptic degeneration in glaucoma. Mol Neurodegener 2016; 11:26. [PMID: 27048300 PMCID: PMC4822272 DOI: 10.1186/s13024-016-0091-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/23/2016] [Indexed: 12/13/2022] Open
Abstract
Background Glaucoma is a complex, multifactorial disease characterised by the loss of retinal ganglion cells and their axons leading to a decrease in visual function. The earliest events that damage retinal ganglion cells in glaucoma are currently unknown. Retinal ganglion cell death appears to be compartmentalised, with soma, dendrite and axon changes potentially occurring through different mechanisms. There is mounting evidence from other neurodegenerative diseases suggesting that neuronal dendrites undergo a prolonged period of atrophy, including the pruning of synapses, prior to cell loss. In addition, recent evidence has shown the role of the complement cascade in synaptic pruning in glaucoma and other diseases. Results Using a genetic (DBA/2J mouse) and an inducible (rat microbead) model of glaucoma we first demonstrate that there is loss of retinal ganglion cell synapses and dendrites at time points that precede axon or soma loss. We next determine the role of complement component 1 (C1) in early synaptic loss and dendritic atrophy during glaucoma. Using a genetic knockout of C1qa (D2.C1qa-/- mouse) or pharmacological inhibition of C1 (in the rat bead model) we show that inhibition of C1 is sufficient to preserve dendritic and synaptic architecture. Conclusions This study further supports assessing the potential for complement-modulating therapeutics for the prevention of retinal ganglion cell degeneration in glaucoma.
Collapse
Affiliation(s)
| | - James R Tribble
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | | | - Stephen D Cross
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - B Paul Morgan
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - James E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Simon W M John
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA. .,Department of Ophthalmology, Tufts University of Medicine, Boston, MA, 02111, USA. .,The Howard Hughes Medical Institute, Bar Harbor, ME, 04609, USA.
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA. .,Graduate Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA, USA.
| |
Collapse
|
31
|
Russo R, Varano GP, Adornetto A, Nucci C, Corasaniti MT, Bagetta G, Morrone LA. Retinal ganglion cell death in glaucoma: Exploring the role of neuroinflammation. Eur J Pharmacol 2016; 787:134-42. [PMID: 27044433 DOI: 10.1016/j.ejphar.2016.03.064] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 03/10/2016] [Accepted: 03/31/2016] [Indexed: 01/06/2023]
Abstract
In clinical glaucoma, as well as in experimental models, the loss of retinal ganglion cells occurs by apoptosis. This final event is preceded by inflammatory responses involving the activation of innate and adaptive immunity, with retinal and optic nerve resident glial cells acting as major players. Here we review the current literature on the role of neuroinflammation in neurodegeneration, focusing on the inflammatory molecular mechanisms involved in the pathogenesis and progression of the optic neuropathy.
Collapse
Affiliation(s)
- Rossella Russo
- Department of Pharmacy, Nutritional and Health Sciences, University of Calabria, Arcavacata di Rende, Italy.
| | - Giuseppe Pasquale Varano
- Department of Pharmacy, Nutritional and Health Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Annagrazia Adornetto
- Department of Pharmacy, Nutritional and Health Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Carlo Nucci
- Ophthalmology Unit, Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome Italy
| | | | - Giacinto Bagetta
- Department of Pharmacy, Nutritional and Health Sciences, University of Calabria, Arcavacata di Rende, Italy; University Center for Adaptive Disorders and Head Pain, Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University of Calabria, Arcavacata di Rende, Italy
| | - Luigi Antonio Morrone
- Department of Pharmacy, Nutritional and Health Sciences, University of Calabria, Arcavacata di Rende, Italy; University Center for Adaptive Disorders and Head Pain, Section of Neuropharmacology of Normal and Pathological Neuronal Plasticity, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
32
|
CD200Fc reduces TLR4-mediated inflammatory responses in LPS-induced rat primary microglial cells via inhibition of the NF-κB pathway. Inflamm Res 2016; 65:521-32. [DOI: 10.1007/s00011-016-0932-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/18/2016] [Accepted: 02/20/2016] [Indexed: 02/07/2023] Open
|
33
|
Holmannová D, Koláčková M, Kondělková K, Kuneš P, Krejsek J, Andrýs C. CD200/CD200R Paired Potent Inhibitory Molecules Regulating Immune and Inflammatory Responses; Part II : CD 200/CD200R Potential Clinical Applications. ACTA MEDICA (HRADEC KRÁLOVÉ) 2015; 55:59-65. [DOI: 10.14712/18059694.2015.56] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
CD200 and its receptor were recognized as having the multiple immunoregulatory functions. Their immunoregulatory, suppressive, and tolerogenic potentials could be very effectively exploited in the treatment of many diseases, e.g. Alzheimer disease, rheumatoid arthritis, and allergy to name only some. Many research projects are aimed to develop clinically valuable methods being based on the structure and function of these paired molecules. In this review, we would like to introduce CD200/CD200R functions in a clinical context.
Collapse
|
34
|
Madeira MH, Elvas F, Boia R, Gonçalves FQ, Cunha RA, Ambrósio AF, Santiago AR. Adenosine A2AR blockade prevents neuroinflammation-induced death of retinal ganglion cells caused by elevated pressure. J Neuroinflammation 2015; 12:115. [PMID: 26054642 PMCID: PMC4465153 DOI: 10.1186/s12974-015-0333-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/27/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Elevated intraocular pressure (IOP) is a major risk factor for glaucoma, a degenerative disease characterized by the loss of retinal ganglion cells (RGCs). There is clinical and experimental evidence that neuroinflammation is involved in the pathogenesis of glaucoma. Since the blockade of adenosine A2A receptor (A2AR) confers robust neuroprotection and controls microglia reactivity in the brain, we now investigated the ability of A2AR blockade to control the reactivity of microglia and neuroinflammation as well as RGC loss in retinal organotypic cultures exposed to elevated hydrostatic pressure (EHP) or lipopolysaccharide (LPS). METHODS Retinal organotypic cultures were either incubated with LPS (3 μg/mL), to elicit a pro-inflammatory response, or exposed to EHP (+70 mmHg), to mimic increased IOP, for 4 or 24 h, in the presence or absence of the A2AR antagonist SCH 58261 (50 nM). A2AR expression, microglial reactivity and neuroinflammatory response were evaluated by immunohistochemistry, quantitative PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). RGC loss was assessed by immunohistochemistry. In order to investigate the contribution of pro-inflammatory mediators to RGC loss, the organotypic retinal cultures were incubated with rabbit anti-tumour necrosis factor (TNF) (2 μg/mL) and goat anti-interleukin-1β (IL-1β) (1 μg/mL) antibodies. RESULTS We report that the A2AR antagonist (SCH 58261) prevented microglia reactivity, increase in pro-inflammatory mediators as well as RGC loss upon exposure to either LPS or EHP. Additionally, neutralization of TNF and IL-1β prevented RGC loss induced by LPS or EHP. CONCLUSIONS This work demonstrates that A2AR blockade confers neuroprotection to RGCs by controlling microglia-mediated retinal neuroinflammation and prompts the hypothesis that A2AR antagonists may be a novel therapeutic option to manage glaucomatous disorders.
Collapse
Affiliation(s)
- Maria H Madeira
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548, Coimbra, Portugal. .,CNC.IBILI, University of Coimbra, 3004-517, Coimbra, Portugal.
| | - Filipe Elvas
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548, Coimbra, Portugal.
| | - Raquel Boia
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548, Coimbra, Portugal. .,CNC.IBILI, University of Coimbra, 3004-517, Coimbra, Portugal.
| | - Francisco Q Gonçalves
- CNC.IBILI, University of Coimbra, 3004-517, Coimbra, Portugal. .,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal.
| | - Rodrigo A Cunha
- CNC.IBILI, University of Coimbra, 3004-517, Coimbra, Portugal. .,CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal. .,Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal.
| | - António Francisco Ambrósio
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548, Coimbra, Portugal. .,CNC.IBILI, University of Coimbra, 3004-517, Coimbra, Portugal. .,Association for Innovation and Biomedical Research on Light (AIBILI), 3000-548, Coimbra, Portugal.
| | - Ana Raquel Santiago
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3004-548, Coimbra, Portugal. .,CNC.IBILI, University of Coimbra, 3004-517, Coimbra, Portugal. .,Association for Innovation and Biomedical Research on Light (AIBILI), 3000-548, Coimbra, Portugal. .,Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal. .,IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3004-548, Coimbra, Portugal.
| |
Collapse
|
35
|
Morrison JC, Cepurna WO, Johnson EC. Modeling glaucoma in rats by sclerosing aqueous outflow pathways to elevate intraocular pressure. Exp Eye Res 2015; 141:23-32. [PMID: 26003399 DOI: 10.1016/j.exer.2015.05.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/14/2022]
Abstract
Injection of hypertonic saline via episcleral veins toward the limbus in laboratory rats can produce elevated intraocular pressure (IOP) by sclerosis of aqueous humor outflow pathways. This article describes important anatomic characteristics of the rat optic nerve head (ONH) that make it an attractive animal model for human glaucoma, along with the anatomy of rat aqueous humor outflow on which this technique is based. The injection technique itself is also described, with the aid of a supplemental movie, including necessary equipment and specific tips to acquire this skill. Outcomes of a successful injection are presented, including IOP elevation and patterns of optic nerve injury. These concepts are then specifically considered in light of the use of this model to assess potential neuroprotective therapies. Advantages of the hypertonic saline model include a delayed and relatively gradual IOP elevation, likely reproduction of scleral and ONH stresses and strains that may be important in producing axonal injury, and its ability to be applied to any rat (and potentially mouse) strain, leaving the unmanipulated fellow eye as an internal control. Challenges include the demanding surgical skill required by the technique itself, a wide range of IOP response, and mild corneal clouding in some animals. However, meticulous application of the principles detailed in this article and practice will allow most researchers to attain this useful skill for studying cellular events of glaucomatous optic nerve damage.
Collapse
Affiliation(s)
- John C Morrison
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, USA.
| | - William O Cepurna
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, USA
| | - Elaine C Johnson
- The Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, USA
| |
Collapse
|
36
|
Trost A, Motloch K, Bruckner D, Schroedl F, Bogner B, Kaser-Eichberger A, Runge C, Strohmaier C, Klein B, Aigner L, Reitsamer HA. Time-dependent retinal ganglion cell loss, microglial activation and blood-retina-barrier tightness in an acute model of ocular hypertension. Exp Eye Res 2015; 136:59-71. [PMID: 26001526 DOI: 10.1016/j.exer.2015.05.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 02/04/2023]
Abstract
Glaucoma is a group of neurodegenerative diseases characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons, and is the second leading cause of blindness worldwide. Elevated intraocular pressure is a well known risk factor for the development of glaucomatous optic neuropathy and pharmacological or surgical lowering of intraocular pressure represents a standard procedure in glaucoma treatment. However, the treatment options are limited and although lowering of intraocular pressure impedes disease progression, glaucoma cannot be cured by the currently available therapy concepts. In an acute short-term ocular hypertension model in rat, we characterize RGC loss, but also microglial cell activation and vascular alterations of the retina at certain time points. The combination of these three parameters might facilitate a better evaluation of the disease progression, and could further serve as a new model to test novel treatment strategies at certain time points. Acute ocular hypertension (OHT) was induced by the injection of magnetic microbeads into the rat anterior chamber angle (n = 22) with magnetic position control, leading to constant elevation of IOP. At certain time points post injection (4d, 7d, 10d, 14d and 21d), RGC loss, microglial activation, and microvascular pericyte (PC) coverage was analyzed using immunohistochemistry with corresponding specific markers (Brn3a, Iba1, NG2). Additionally, the tightness of the retinal vasculature was determined via injections of Texas Red labeled dextran (10 kDa) and subsequently analyzed for vascular leakage. For documentation, confocal laser-scanning microscopy was used, followed by cell counts, capillary length measurements and morphological and statistical analysis. The injection of magnetic microbeads led to a progressive loss of RGCs at the five time points investigated (20.07%, 29.52%, 41.80%, 61.40% and 76.57%). Microglial cells increased in number and displayed an activated morphology, as revealed by Iba1-positive cell number (150.23%, 175%, 429.25%,486.72% and 544.78%) and particle size analysis (205.49%, 203.37%, 412.84%, 333.37% and 299.77%) compared to contralateral control eyes. Pericyte coverage (NG2-positive PC/mm) displayed a significant reduction after 7d of OHT in central, and after 7d and 10d in peripheral retina. Despite these alterations, the tightness of the retinal vasculature remained unaltered at 14 and 21 days after OHT induction. While vascular tightness was unchanged in the course of OHT, a progressive loss of RGCs and activation of microglial cells was detected. Since a significant loss in RGCs was observed already at day 4 of experimental glaucoma, and since activated microglia peaked at day 10, we determined a time frame of 7-14 days after MB injection as potential optimum to study glaucoma mechanisms in this model.
Collapse
Affiliation(s)
- A Trost
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020 Salzburg, Austria; Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - K Motloch
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020 Salzburg, Austria
| | - D Bruckner
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020 Salzburg, Austria
| | - F Schroedl
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020 Salzburg, Austria; Anatomy, Paracelsus Medical University, Salzburg, Austria
| | - B Bogner
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020 Salzburg, Austria
| | - A Kaser-Eichberger
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020 Salzburg, Austria
| | - C Runge
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020 Salzburg, Austria
| | - C Strohmaier
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020 Salzburg, Austria
| | - B Klein
- Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Austria
| | - L Aigner
- Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Austria
| | - H A Reitsamer
- University Clinic of Ophthalmology and Optometry, Research Program for Experimental Ophthalmology and Glaucoma Research, Paracelsus Medical University/SALK, 5020 Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Austria.
| |
Collapse
|
37
|
Nickells RW, Pelzel HR. Tools and resources for analyzing gene expression changes in glaucomatous neurodegeneration. Exp Eye Res 2015; 141:99-110. [PMID: 25999234 DOI: 10.1016/j.exer.2015.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 05/10/2015] [Accepted: 05/17/2015] [Indexed: 01/12/2023]
Abstract
Evaluating gene expression changes presents one of the most powerful interrogative approaches to study the molecular, biochemical, and cellular pathways associated with glaucomatous disease pathology. Technologies to study gene expression profiles in glaucoma are wide ranging. Qualitative techniques provide the power of localizing expression changes to individual cells, but are not robust to evaluate differences in expression changes. Alternatively, quantitative changes provide a high level of stringency to quantify changes in gene expression. Additionally, advances in high throughput analysis and bioinformatics have dramatically improved the number of individual genes that can be evaluated in a single experiment, while dramatically reducing amounts of input tissue/starting material. Together, gene expression profiling and proteomics have yielded new insights on the roles of neuroinflammation, the complement cascade, and metabolic shutdown as important players in the pathology of the optic nerve head and retina in this disease.
Collapse
Affiliation(s)
- Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin - Madison, Madison, WI, USA; McPherson Eye Research Institute, University of Wisconsin - Madison, Madison, WI, USA.
| | - Heather R Pelzel
- Department of Biological Sciences, University of Wisconsin - Whitewater, Whitewater, WI, USA
| |
Collapse
|
38
|
Madeira MH, Boia R, Santos PF, Ambrósio AF, Santiago AR. Contribution of microglia-mediated neuroinflammation to retinal degenerative diseases. Mediators Inflamm 2015; 2015:673090. [PMID: 25873768 PMCID: PMC4385698 DOI: 10.1155/2015/673090] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/16/2014] [Indexed: 12/27/2022] Open
Abstract
Retinal degenerative diseases are major causes of vision loss and blindness worldwide and are characterized by chronic and progressive neuronal loss. One common feature of retinal degenerative diseases and brain neurodegenerative diseases is chronic neuroinflammation. There is growing evidence that retinal microglia, as in the brain, become activated in the course of retinal degenerative diseases, having a pivotal role in the initiation and propagation of the neurodegenerative process. A better understanding of the events elicited and mediated by retinal microglia will contribute to the clarification of disease etiology and might open new avenues for potential therapeutic interventions. This review aims at giving an overview of the roles of microglia-mediated neuroinflammation in major retinal degenerative diseases like glaucoma, age-related macular degeneration, and diabetic retinopathy.
Collapse
Affiliation(s)
- Maria H. Madeira
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3004-548 Coimbra, Portugal
| | - Raquel Boia
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3004-548 Coimbra, Portugal
| | - Paulo F. Santos
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3004-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - António F. Ambrósio
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3004-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- AIBILI, Coimbra, Portugal
| | - Ana R. Santiago
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3004-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- AIBILI, Coimbra, Portugal
| |
Collapse
|
39
|
Karlstetter M, Scholz R, Rutar M, Wong WT, Provis JM, Langmann T. Retinal microglia: just bystander or target for therapy? Prog Retin Eye Res 2014; 45:30-57. [PMID: 25476242 DOI: 10.1016/j.preteyeres.2014.11.004] [Citation(s) in RCA: 385] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
Abstract
Resident microglial cells can be regarded as the immunological watchdogs of the brain and the retina. They are active sensors of their neuronal microenvironment and rapidly respond to various insults with a morphological and functional transformation into reactive phagocytes. There is strong evidence from animal models and in situ analyses of human tissue that microglial reactivity is a common hallmark of various retinal degenerative and inflammatory diseases. These include rare hereditary retinopathies such as retinitis pigmentosa and X-linked juvenile retinoschisis but also comprise more common multifactorial retinal diseases such as age-related macular degeneration, diabetic retinopathy, glaucoma, and uveitis as well as neurological disorders with ocular manifestation. In this review, we describe how microglial function is kept in balance under normal conditions by cross-talk with other retinal cells and summarize how microglia respond to different forms of retinal injury. In addition, we present the concept that microglia play a key role in local regulation of complement in the retina and specify aspects of microglial aging relevant for chronic inflammatory processes in the retina. We conclude that this resident immune cell of the retina cannot be simply regarded as bystander of disease but may instead be a potential therapeutic target to be modulated in the treatment of degenerative and inflammatory diseases of the retina.
Collapse
Affiliation(s)
- Marcus Karlstetter
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Rebecca Scholz
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany
| | - Matt Rutar
- The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
| | - Wai T Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jan M Provis
- The John Curtin School of Medical Research, The Australian National University (ANU), Canberra, Australian Capital Territory, Australia
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne, Germany.
| |
Collapse
|
40
|
The role of glial cells and the complement system in retinal diseases and Alzheimer’s disease: common neural degeneration mechanisms. Exp Brain Res 2014; 232:3363-77. [DOI: 10.1007/s00221-014-4078-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 08/19/2014] [Indexed: 02/07/2023]
|
41
|
Santiago AR, Baptista FI, Santos PF, Cristóvão G, Ambrósio AF, Cunha RA, Gomes CA. Role of microglia adenosine A(2A) receptors in retinal and brain neurodegenerative diseases. Mediators Inflamm 2014; 2014:465694. [PMID: 25132733 PMCID: PMC4124703 DOI: 10.1155/2014/465694] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/20/2014] [Indexed: 12/20/2022] Open
Abstract
Neuroinflammation mediated by microglial cells in the brain has been commonly associated with neurodegenerative diseases. Whether this microglia-mediated neuroinflammation is cause or consequence of neurodegeneration is still a matter of controversy. However, it is unequivocal that chronic neuroinflammation plays a role in disease progression and halting that process represents a potential therapeutic strategy. The neuromodulator adenosine emerges as a promising targeting candidate based on its ability to regulate microglial proliferation, chemotaxis, and reactivity through the activation of its G protein coupled A2A receptor (A2AR). This is in striking agreement with the ability of A2AR blockade to control several brain diseases. Retinal degenerative diseases have been also associated with microglia-mediated neuroinflammation, but the role of A2AR has been scarcely explored. This review aims to compare inflammatory features of Parkinson's and Alzheimer's diseases with glaucoma and diabetic retinopathy, discussing the therapeutic potential of A2AR in these degenerative conditions.
Collapse
Affiliation(s)
- Ana R. Santiago
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- AIBILI, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Largo Marquês de Pombal, Universidade de Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Filipa I. Baptista
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Paulo F. Santos
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Largo Marquês de Pombal, Universidade de Coimbra, 3004-517 Coimbra, Portugal
- Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Gonçalo Cristóvão
- Center for Neuroscience and Cell Biology, Largo Marquês de Pombal, Universidade de Coimbra, 3004-517 Coimbra, Portugal
| | - António F. Ambrósio
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- AIBILI, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Largo Marquês de Pombal, Universidade de Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Rodrigo A. Cunha
- Center for Neuroscience and Cell Biology, Largo Marquês de Pombal, Universidade de Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| | - Catarina A. Gomes
- Centre of Ophthalmology and Vision Sciences, IBILI, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Largo Marquês de Pombal, Universidade de Coimbra, 3004-517 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal
| |
Collapse
|
42
|
Soto I, Howell GR. The complex role of neuroinflammation in glaucoma. Cold Spring Harb Perspect Med 2014; 4:cshperspect.a017269. [PMID: 24993677 DOI: 10.1101/cshperspect.a017269] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Glaucoma is a multifactorial neurodegenerative disorder affecting 80 million people worldwide. Loss of retinal ganglion cells and degeneration of their axons in the optic nerve are the major pathological hallmarks. Neuroinflammatory processes, inflammatory processes in the central nervous system, have been identified in human glaucoma and in experimental models of the disease. Furthermore, neuroinflammatory responses occur at early stages of experimental glaucoma, and inhibition of certain proinflammatory pathways appears neuroprotective. Here, we summarize the current understanding of neuroinflammation in the central nervous system, with emphasis on events at the optic nerve head during early stages of glaucoma.
Collapse
Affiliation(s)
- Ileana Soto
- The Jackson Laboratory, Bar Harbor, Maine 04609
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, Maine 04609 School of Medicine, Tufts University, Boston, Massachusetts 02111
| |
Collapse
|
43
|
Astafurov K, Dong CQ, Panagis L, Kamthan G, Ren L, Rozenboym A, Perera TD, Coplan JD, Danias J. Complement expression in the retina is not influenced by short-term pressure elevation. Mol Vis 2014; 20:140-52. [PMID: 24505213 PMCID: PMC3913488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 01/28/2014] [Indexed: 10/27/2022] Open
Abstract
PURPOSE To determine whether short-term pressure elevation affects complement gene expression in the retina in vitro and in vivo. METHODS Muller cell (TR-MUL5) cultures and organotypic retinal cultures from adult mice and monkeys were subjected to either 24-h or 72-h of pressure at 0, 15, 30, and 45 mmHg above ambient. C57BL/6 mice were subjected to microbead-induced intraocular pressure (IOP) elevation for 7 days. RNA and protein were extracted and used for analysis of expression levels of complement component genes and complement component 1, q subcomponent (C1q) and complement factor H (CFH) immunoblotting. RESULTS mRNA levels of complement genes and C1q protein levels in Muller cell cultures remained the same for all pressure levels after exposure for either 24 or 72 h. In primate and murine organotypic cultures, pressure elevation did not produce changes in complement gene expression or C1q and CFH protein levels at either the 24-h or 72-h time points. Pressure-related glial fibrillary acidic protein (GFAP) mRNA expression changes were detected in primate retinal organotypic cultures (analysis of variance [ANOVA]; p<0.05). mRNA expression of several other genes changed as a result of time in culture. Eyes subjected to microbead-induced IOP elevation had no differences in mRNA expression of complement genes and C1q protein levels (ANOVA; p>0.05 for both) with contralateral control and naïve control eyes. CONCLUSIONS Short-term elevation of pressure in vitro as well as short-term (1 week) IOP elevation in vivo does not seem to dramatically alter complement system gene expression in the retina. Prolonged expression to elevated pressure may be necessary to affect the complement system expression.
Collapse
Affiliation(s)
| | - Cecilia Q. Dong
- Department of Ophthalmology, SUNY Downstate Medical Center, Brooklyn, NY
| | - Lampros Panagis
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY
| | - Gautam Kamthan
- Department of Ophthalmology, Mount Sinai School of Medicine, New York, NY
| | - Lizhen Ren
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY
| | - Anna Rozenboym
- Department of Biological Sciences, CUNY Kingsborough Community College, Brooklyn, NY
| | - Tarique D. Perera
- Department of Psychiatry, Columbia University Medical Center and New York State Psychiatric Institute, New York, NY
| | - Jeremy D. Coplan
- Department of Psychiatry, SUNY Downstate Medical Center, Brooklyn, NY
| | - John Danias
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY,Department of Ophthalmology, SUNY Downstate Medical Center, Brooklyn, NY
| |
Collapse
|
44
|
Yang F, Wu L, Guo X, Wang D, Li Y. Improved retinal ganglion cell survival through retinal microglia suppression by a chinese herb extract, triptolide, in the DBA/2J mouse model of glaucoma. Ocul Immunol Inflamm 2013; 21:378-89. [PMID: 23876132 DOI: 10.3109/09273948.2013.806989] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
To investigate the changes in retinal microglia and retinal ganglion cell (RGC) survival after long-term administration of a Chinese herb extract, triptolide, in a DBA/2J mice. DBA/2J mice (n = 96) were administered triptolide (n = 48) 25 µg/kg or vehicle (n = 48) and were judged at 7, 9, 11 months of age. Long-term triptolide treatment tended to attenuate the anterior segment pathology in experimental group, though intraocular pressure was not significantly different between the two groups. In the experimental group, RGC survival was improved (7, 9, 11 months: p = 0.035, 0.004, 0.014), and microglia activation was suppressed based on a more ramified appearance (9, 11 months: p = 0.024, 0.013) and a lower total microglial cell count (7, 9, 11 months: p = 0.028, 0.025, 0.014). Double-immunofluorescence staining revealed TNF? localized to microglia, TNFR1 localized to the RGCs and nerve fiber layer. These findings indicate that long-term triptolide administration suppressed microglia activation and improved RGC survival in DBA/2J mice.
Collapse
Affiliation(s)
- Fan Yang
- Peking university third hospital , Beijing , China
| | | | | | | | | |
Collapse
|
45
|
Forrester JV, Xu H. Good news-bad news: the Yin and Yang of immune privilege in the eye. Front Immunol 2012; 3:338. [PMID: 23230433 PMCID: PMC3515883 DOI: 10.3389/fimmu.2012.00338] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/23/2012] [Indexed: 12/27/2022] Open
Abstract
The eye and the brain are prototypical tissues manifesting immune privilege (IP) in which immune responses to foreign antigens, particularly alloantigens are suppressed, and even completely inhibited. Explanations for this phenomenon are numerous and mostly reflect our evolving understanding of the molecular and cellular processes underpinning immunological responses generally. IP is now viewed as a property of many tissues and the level of expression of IP varies not only with the tissue but with the nature of the foreign antigen and changes in the limited conditions under which privilege can operate as a mechanism of immunological tolerance. As a result, IP functions normally as a homeostatic mechanism preserving normal function in tissues, particularly those with highly specialized function and limited capacity for renewal such as the eye and brain. However, IP is relatively easily bypassed in the face of a sufficiently strong immunological response, and the privileged tissues may be at greater risk of collateral damage because its natural defenses are more easily breached than in a fully immunocompetent tissue which rapidly rejects foreign antigen and restores integrity. This two-edged sword cuts its swathe through the eye: under most circumstances, IP mechanisms such as blood-ocular barriers, intraocular immune modulators, induction of T regulatory cells, lack of lymphatics, and other properties maintain tissue integrity; however, when these are breached, various degrees of tissue damage occur from severe tissue destruction in retinal viral infections and other forms of uveoretinal inflammation, to less severe inflammatory responses in conditions such as macular degeneration. Conversely, ocular IP and tumor-related IP can combine to permit extensive tumor growth and increased risk of metastasis thus threatening the survival of the host.
Collapse
Affiliation(s)
- John V. Forrester
- Laboratory of Immunology, Lion’s Eye Institute, University of Western AustraliaPerth, WA, Australia
- Ocular Immunology Laboratory, Section of Immunology and Infection, Institute of Medical Sciences, University of AberdeenAberdeen, UK
| | - Heping Xu
- Laboratory of Immunology, Lion’s Eye Institute, University of Western AustraliaPerth, WA, Australia
| |
Collapse
|
46
|
Nickells RW, Howell GR, Soto I, John SWM. Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy. Annu Rev Neurosci 2012; 35:153-79. [PMID: 22524788 DOI: 10.1146/annurev.neuro.051508.135728] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Glaucoma is a complex neurodegenerative disorder that is expected to affect 80 million people by the end of this decade. Retinal ganglion cells (RGCs) are the most affected cell type and progressively degenerate over the course of the disease. RGC axons exit the eye and enter the optic nerve by passing through the optic nerve head (ONH). The ONH is an important site of initial damage in glaucoma. Higher intraocular pressure (IOP) is an important risk factor for glaucoma, but the molecular links between elevated IOP and axon damage in the ONH are poorly defined. In this review and focusing primarily on the ONH, we discuss recent studies that have contributed to understanding the etiology and pathogenesis of glaucoma. We also identify areas that require further investigation and focus on mechanisms identified in other neurodegenerations that may contribute to RGC dysfunction and demise in glaucoma.
Collapse
Affiliation(s)
- Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
47
|
Abstract
Microglia, the brain's innate immune cell type, are cells of mesodermal origin that populate the central nervous system (CNS) during development. Undifferentiated microglia, also called ameboid microglia, have the ability to proliferate, phagocytose apoptotic cells and migrate long distances toward their final destinations throughout all CNS regions, where they acquire a mature ramified morphological phenotype. Recent studies indicate that ameboid microglial cells not only have a scavenger role during development but can also promote the death of some neuronal populations. In the mature CNS, adult microglia have highly motile processes to scan their territorial domains, and they display a panoply of effects on neurons that range from sustaining their survival and differentiation contributing to their elimination. Hence, the fine tuning of these effects results in protection of the nervous tissue, whereas perturbations in the microglial response, such as the exacerbation of microglial activation or lack of microglial response, generate adverse situations for the organization and function of the CNS. This review discusses some aspects of the relationship between microglial cells and neuronal death/survival both during normal development and during the response to injury in adulthood.
Collapse
|
48
|
Pietilä M, Lehtonen S, Tuovinen E, Lähteenmäki K, Laitinen S, Leskelä HV, Nätynki A, Pesälä J, Nordström K, Lehenkari P. CD200 positive human mesenchymal stem cells suppress TNF-alpha secretion from CD200 receptor positive macrophage-like cells. PLoS One 2012; 7:e31671. [PMID: 22363701 PMCID: PMC3282758 DOI: 10.1371/journal.pone.0031671] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/11/2012] [Indexed: 01/14/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) display immunosuppressive properties in vitro and the potential has also been transferred successfully to clinical trials for treatment of autoimmune diseases. OX-2 (CD200), a member of the immunoglobulin superfamily, is widely expressed in several tissues and has recently been found from hMSCs. The CD200 receptor (CD200R) occurs only in myeloid-lineage cells. The CD200-CD200R is involved in down-regulation of several immune cells, especially macrophages. The present study on 20 hMSC lines shows that the CD200 expression pattern varied from high (CD200Hi) to medium (CD200Me) and low (CD200Lo) in bone marrow-derived mesenchymal stem cell (BMMSC) lines, whereas umbilical cord blood derived mesenchymal stem cells (UCBMSCs) were constantly negative for CD200. The role of the CD200-CD200R axis in BMMSCs mediated immunosuppression was studied using THP-1 human macrophages. Interestingly, hMSCs showed greater inhibition of TNF-α secretion in co-cultures with IFN-γ primed THP-1 macrophages when compared to LPS activated cells. The ability of CD200Hi BMMSCs to suppress TNF-α secretion from IFN-γ stimulated THP-1 macrophages was significantly greater when compared to CD200Lo whereas UCBMSCs did not significantly reduce TNF-α secretion. The interference of CD200 binding to the CD200R by anti-CD200 antibody weakened the capability of BMMSCs to inhibit TNF-α secretion from IFN-γ activated THP-1 macrophages. This study clearly demonstrated that the efficiency of BMMSCs to suppress TNF-α secretion of THP-1 macrophages was dependent on the type of stimulus. Moreover, the CD200-CD200r axis could have a previously unidentified role in the BMMSC mediated immunosuppression.
Collapse
Affiliation(s)
- Mika Pietilä
- Institute of Biomedicine, Department of Anatomy and Cell Biology, University of Oulu, Oulu, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Blaylock RL, Maroon J. Natural plant products and extracts that reduce immunoexcitotoxicity-associated neurodegeneration and promote repair within the central nervous system. Surg Neurol Int 2012; 3:19. [PMID: 22439110 PMCID: PMC3307240 DOI: 10.4103/2152-7806.92935] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 01/11/2012] [Indexed: 12/14/2022] Open
Abstract
Our understanding of the pathophysiological and biochemical basis of a number of neurological disorders has increased enormously over the last three decades. Parallel with this growth of knowledge has been a clearer understanding of the mechanism by which a number of naturally occurring plant extracts, as well as whole plants, can affect these mechanisms so as to offer protection against injury and promote healing of neurological tissues. Curcumin, quercetin, green tea catechins, balcalein, and luteolin have been extensively studied, and they demonstrate important effects on cell signaling that go far beyond their antioxidant effects. Of particular interest is the effect of these compounds on immunoexcitotoxicity, which, the authors suggest, is a common mechanism in a number of neurological disorders. By suppressing or affecting microglial activation states as well as the excitotoxic cascade and inflammatory mediators, these compounds dramatically affect the pathophysiology of central nervous system disorders and promote the release and generation of neurotrophic factors essential for central nervous system healing. We discuss the various aspects of these processes and suggest future directions for study.
Collapse
Affiliation(s)
- Russell L Blaylock
- Theoretical Neurosciences, Department of Biology, Belhaven University, Jackson, MS 39157, USA
| | | |
Collapse
|