1
|
Lee PY, Sitorus MA, Kuo CH, Tsai BCK, Kuo WW, Lin KH, Lu SY, Lin YM, Ho TJ, Huang CY. Platycodi radix aqueous extract salvages doxorubicin-induced senescence by mitochondrial reactive oxygen species reduction in umbilical cord matrix stem cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:3872-3882. [PMID: 38558324 DOI: 10.1002/tox.24240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/18/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
Platycodi radix is a widely used herbal medicine that contains numerous phytochemicals beneficial to health. The health and biological benefits of P. radix have been found across various diseases. The utilization of umbilical cord stromal stem cells, derived from Wharton's jelly of the human umbilical cord, has emerged as a promising approach for treating degenerative diseases. Nevertheless, growing evidence indicates that the function of stem cells declines with age, thereby limiting their regenerative capacity. The primary objective in this study is to investigate the beneficial effects of P. radix in senescent stem cells. We conducted experiments to showcase that diminished levels of Lamin B1 and Sox-2, along with an elevation in p21, which serve as indicative markers for the senescent stem cells. Our findings revealed the loss of Lamin B1 and Sox-2, coupled with an increase in p21, in umbilical cord stromal stem cells subjected to a low-dose (0.1 μM) doxorubicin (Dox) stimulation. However, P. radix restored the Dox-damage in the umbilical cord stromal stem cells. P. radix reversed the senescent conditions when the umbilical cord stromal stem cells exposed to Dox-induced reactive oxygen species (ROS) and mitochondrial membrane potential are significantly changed. In Dox-challenged aged umbilical cord stromal stem cells, P. radix reduced senescence, increased longevity, prevented mitochondrial dysfunction and ROS and protected against senescence-associated apoptosis. This study suggests that P. radix might be as a therapeutic and rescue agent for the aging effect in stem cells. Inhibition of cell death, mitochondrial dysfunction and aging-associated ROS with P. radix provides additional insights into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Pei-Ying Lee
- Holistic Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Maria Angelina Sitorus
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
- School of Physical Education and Sports Science, Soochow University, Suzhou, China
- Department of Kinesiology and Health, College of William and Mary, Williamsburg, Virginia, USA
| | - Bruce Chi-Kang Tsai
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Ph.D. Program for Biotechnology Industry, China Medical University, Taichung, Taiwan
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Kuan-Ho Lin
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - Shang-Yeh Lu
- Division of Cardiovascular Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Medicine, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
2
|
Zhang Y, Sun M, He Y, Gao W, Wang Y, Yang B, Sun Y, Kuang H. Polysaccharides from Platycodon grandiflorum: A review of their extraction, structures, modifications, and bioactivities. Int J Biol Macromol 2024; 271:132617. [PMID: 38795891 DOI: 10.1016/j.ijbiomac.2024.132617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/29/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Platycodon grandiflorum (P. grandiflorum) has long been used as a food and traditional herbal medicine. As a food, P. grandiflorum is often transformed into pickles for consumption, and as a traditional Chinese medicine, P. grandiflorum clears the lung, nourishes the pharynx, dispels phlegm, and discharges pus. Polysaccharides are among the main active components of P. grandiflorum. Recent literature has described the preparation, identification, and pharmacological activity of these polysaccharides. Studies have shown that these polysaccharides exhibit a variety of significant biological effects in vitro and in vivo, such as immune stimulation and antioxidant, anti-liver injury, anti-apoptosis and antitumour effects. However, there is no systematic summary of the related research articles on P. grandiflorum polysaccharide, which undoubtedly brings some difficulties to the future research. The purpose of this review is to comprehensively describe research progress on the extraction, purification, structural characterization, modification, and biological activity of P. grandiflorum polysaccharides. The shortcomings of recent research are summarized, further research on their biological activity is proposed to provide new reference value for the application of P. grandiflorum polysaccharides in drugs and health products in the future.
Collapse
Affiliation(s)
- Yuping Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Minghao Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Yujia He
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Wuyou Gao
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Yu Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| |
Collapse
|
3
|
Si Q, Su L, Wang D, De BJ, Na R, He N, Byambaa T, Dalkh T, Bao X, Yi L. An evaluation of the qualitative superiority of the Mongolian medicinal herb hurdan-tsagaan (Platycodi Radix) from five different geographic origins based on anti-inflammatory effects. JOURNAL OF ETHNOPHARMACOLOGY 2023; 310:116331. [PMID: 36931411 DOI: 10.1016/j.jep.2023.116331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The contents and types of the active compounds in medicinal herbs depend greatly on their extraction methods, sources of origin and the modes of cultivation. Platycodon grandiflorus (Jacq.) A.DC. is an ethnic medicinal herb widely cultivated in China, and its dried root, Platycodi Radix (PR), is an important ingredient in herbal formulae for attenuating lung issues in Mongolian medical practice. However, research evaluating the superiority of PR based on harvesting regions is relatively limited. AIM This study aimed to evaluate the qualitative superiority of PR from different regions based on anti-inflammatory effect. MATERIALS AND METHODS A total of three commercial PR samples were obtained from Anguo, Bozhou and Shangluo, and two wild samples were obtained from Chifeng and Hinggan. PR extract (PRE) was prepared by water distillation, and platycodin D content in the extract was examined by HPLC-UVD. An optimal dose of PRE was administered to BALB/c mice with S. pneumoniae pneumonia, and IL-10 and TNF-α levels in lung tissue were examined by ELISA. HepG2 cells were treated with PRE, and an analysis of differentially expressed gene and functional enrichment was performed using an HTS2 assay. RESULTS The contents of moisture, total ash, crude extract and platycodin D in the raw roots met the quality control requirements outlined in the Chinese Pharmacopoeia (2020 edition). The platycodin D content in the aqueous extract of the roots in descending order was 24.16% in PRE_Shangluo, 22.91% in PRE_Hinggan, 21.41% in PRE_Bozhou, 17.8% in PRE_Chifeng and 15.92% in PRE_Anguo. Furthermore, administration of PREs at an optimal dose of 2.0 g/kg resulted in some anti-inflammatory effect in mice with Streptococcus pneumoniae pneumonia, among which PRE_Shangluo administration exhibited a more obvious anti-inflammatory impact as shown by a significant decrease in the plasma white cell count (p < 0.05) and IL-10 level elevation and TNF-α reduction in lung tissue (p < 0.05) after treatment. In HepG2 cells treated with 100 μg/ml of each PRE, PRE_Hinggan and PRE_Shangluo resulted in significant differential expression of genes such as nuclear factor kappa B subunit 1 (NFKB1) and significant enrichment of pathways involved in the immune system, such as PI3K-Akt, MAPK and NF-kappa B signaling pathways. CONCLUSIONS In this study, based on the anti-inflammatory effect, the quality of PR of Shangluo origin was superior to that of PR from the other four regions.
Collapse
Affiliation(s)
- Qin Si
- Scientific Research Department, Inner Mongolia International Mongolian Hospital, Hohhot, 010065, China; Inner Mongolia Azitai Mongolian Medicine Psychosomatic Research Co., Ltd., Ordos, 017004, China
| | - Longga Su
- Medicine Innovation Center for Nationalities, Inner Mongolia Medical University, Hohhot, 010110, China; Drug Quality Testing Center, Ordos Mongolian Hospital, Ordos, 017010, China
| | - Dong Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bao-Jun De
- Inner Mongolia Azitai Mongolian Medicine Psychosomatic Research Co., Ltd., Ordos, 017004, China
| | - Risu Na
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, China
| | - Nagongbilige He
- Experimental Center, Traditional Chinese & Mongolian Medical Research Institute of Inner Mongolia, Hohhot, 010010, China
| | - Tserentsoo Byambaa
- International School of Mongolian Medicine, Mongolian National University of Medical Sciences, 14210, Ulaanbaatar, Mongolia
| | - Tserendagva Dalkh
- International School of Mongolian Medicine, Mongolian National University of Medical Sciences, 14210, Ulaanbaatar, Mongolia
| | - Xilinqiqige Bao
- Scientific Research Department, Inner Mongolia International Mongolian Hospital, Hohhot, 010065, China; Medicine Innovation Center for Nationalities, Inner Mongolia Medical University, Hohhot, 010110, China.
| | - Letai Yi
- Medicine Innovation Center for Nationalities, Inner Mongolia Medical University, Hohhot, 010110, China.
| |
Collapse
|
4
|
Lancemaside A from Codonopsis lanceolata: Studies on Antiviral Activity and Mechanism of Action against SARS-CoV-2 and Its Variants of Concern. Antimicrob Agents Chemother 2022; 66:e0120122. [PMID: 36374087 PMCID: PMC9765103 DOI: 10.1128/aac.01201-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Several plant-derived natural products with anti-SARS-CoV-2 activity have been evaluated for the potential to serve as chemotherapeutic agents for the treatment of COVID-19. Codonopsis lanceolata (CL) has long been used as a medicinal herb in East Asian countries to treat inflammatory diseases of the respiratory system but its antiviral activity has not been investigated so far. Here, we showed that CL extract and its active compound lancemaside A (LA) displayed potent inhibitory activity against SARS-CoV-2 infection using a pseudotyped SARS-CoV-2 entry assay system. We demonstrated that this inhibitory effect of LA was due to the alteration of membrane cholesterol and blockade of the membrane fusion between SARS-CoV-2 and host cells by filipin staining and cell-based membrane fusion assays. Our findings also showed that LA, as a membrane fusion blocker, could impede the endosomal entry pathway of SARS-CoV-2 and its variants of concern (VOCs), including Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529), in Vero cells with similar of IC50 values ranging from 2.23 to 3.37 μM as well as the TMPRSS2-mediated viral entry pathway in A549 cells overexpressing ACE2 and TMPRSS2 with IC50 value of 3.92 μM. We further demonstrated that LA could prevent the formation of multinucleated syncytia arising from SARS-CoV-2 spike protein-mediated membrane fusion. Altogether, the findings reported here suggested that LA could be a broad-spectrum anti-SARS-CoV-2 therapeutic agent by targeting the fusion of viral envelope with the host cell membrane.
Collapse
|
5
|
Liu Y, Chen Q, Ren R, Zhang Q, Yan G, Yin D, Zhang M, Yang Y. Platycodon grandiflorus polysaccharides deeply participate in the anti-chronic bronchitis effects of platycodon grandiflorus decoction, a representative of “the lung and intestine are related”. Front Pharmacol 2022; 13:927384. [PMID: 36160385 PMCID: PMC9489837 DOI: 10.3389/fphar.2022.927384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/22/2022] [Indexed: 11/22/2022] Open
Abstract
Platycodon grandiflorus (Jacq.) A. DC. (PG) root is one of the most commonly used medicine-food materials for respiratory discomfort in Asia, usually in the form of a decoction or leaching solution. As everyone knows, both of decoction and leaching solution is a polyphase dispersion system, containing low-molecular-weight water-soluble active ingredients and hydrophilic macromolecules. This study aimed to discuss the synergistic effect of Platycodon grandiflorus polysaccharide (PGP) and platycodin D (PD) in PG decoction against chronic bronchitis (CB) and the mechanism underlying. A series of PGP, PD, and PGD + PD suspensions were administrated to CB model rats, on the levels of whole animal and in situ intestinal segment with or without mesenteric lymphatic vessels ligation. It exhibited that PGP exhibited synergistic effects with PD, on improving the histopathological abnormity, mucus secretion excess, and immunological imbalance in lung of CB model rat, closely associated with its modulations on the mucosal immunity status in small intestine. The polysaccharide macromolecules in PG decoction or leaching solution should be responsible for the modulation of pulmonary immune state, possibly through the common mucosal immune between small intestine and lung. These results might be a new perspective that illustrates the classical theory of “the lung and intestine are related” in traditional Chinese medicine.
Collapse
Affiliation(s)
- Yang Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qingqing Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Rongrong Ren
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Qingqing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Guiming Yan
- School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Provincial Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, China
- *Correspondence: Dengke Yin, ; Ye Yang,
| | - Mingyan Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- School of Nursing, Anhui University of Chinese Medicine, Hefei, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
- *Correspondence: Dengke Yin, ; Ye Yang,
| |
Collapse
|
6
|
Protective Effects of Platycodin D3 on Airway Remodeling and Inflammation via Modulating MAPK/NF-κB Signaling Pathway in Asthma Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1612829. [PMID: 35990822 PMCID: PMC9385299 DOI: 10.1155/2022/1612829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/06/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
Background Asthma is a disease with airway hyperresponsive and airway inflammation. Platycodin D is a triterpenoid saponin extracted from Platycodon grandiflorus root, which has various pharmacological activities. The study mainly explored the effects of platycodin D3 (PD3) in airway remodeling and inflammation of asthma. Methods The ovalbumin (OVA)-induced asthma mice were given PD3 (20 mg/kg, 40 mg/kg, and 80 mg/kg) in different groups. The asthma mice administrated with dexamethasone (DXM) were enrolled as the positive control group, and the normal control mice and asthma model mice separately received the same volume of saline. Mouse airway lung dynamic compliance (Cdyn) and total airway resistance (RL) were measured by the EMKA animal lung function analysis system. The inflammation factor levels were estimated by ELISA. Histopathological changes were tested by HE and PAS staining. The protein and phosphorylation levels of NF-κBp65, p38, ERK1/2, and JNK1/2 were detected by Western blot. Results In asthmatic mice, PD3 enhanced the airway Cdyn and decreased RL to improve the airway hyperreactivity and alleviated the pathological injury of lung tissues. In addition, PD3 could reduce the infiltration of inflammatory cells in BALF and suppress the levels of eotaxin, IL-4, IL-5, IL-13, IFN-γ, and IgE. Furthermore, PD3 treatment inhibited the phosphorylation of NF-κBp65, p38, ERK1/2, and JNK1/2 proteins in asthma mice. Conclusion PD3 treatment alleviated the airway remodeling and inflammation in asthmatic mice, which might be related to downregulating the phosphorylated proteins in the MAPK/NF-κB signaling pathway.
Collapse
|
7
|
Chang X, Li J, Ju M, Yu H, Zha L, Peng H, Wang J, Peng D, Gui S. Untargeted metabolomics approach reveals the tissue-specific markers of balloon flower root (Platycodi Radix) using UPLC-Q-TOF/MS. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Li W, Yang HJ. Phenolic Constituents from Platycodon grandiflorum Root and Their Anti-Inflammatory Activity. Molecules 2021; 26:4530. [PMID: 34361683 PMCID: PMC8348564 DOI: 10.3390/molecules26154530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Six lignols (1-6), including two new compounds (+)-(7R,8R)-palmitoyl alatusol D (1) and (+)-(7R,8R)-linoleyl alatusol D (2), along with four phenolics (7-10), a neolignan (11), three alkyl aryl ether-type lignans (12-14), two furofuran-type lignans (15-16), three benzofuran-type lignans (17-19), a tetrahydrofuran-type lignan (20), and a dibenzylbutane-type lignan (21) were isolated from the ethyl acetate-soluble fraction of the methanol extract of Platycodon grandiflorum (Jacq.) A. DC. root. The chemical structures of the obtained compounds were elucidated via high-resolution mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy analyses. The obtained spectroscopic data agreed well with literature. Among the isolated compounds, eighteen (1-7 and 11-21) were isolated from P. grandiflorum and the Campanulaceae family for the first time. This is the first report on lignol and lignan components of P. grandiflorum. The anti-inflammatory effects of the isolated compounds were examined in terms of their ability to inhibit the production of pro-inflammatory cytokines IL-6, IL-12 p40, and TNF-α in lipopolysaccharide-stimulated murine RAW264.7 macrophage cells. Nine compounds (4-6, 12, and 15-19) exhibited inhibitory effects on IL-12 p40 production, eleven compounds (1-6, 12, 15-17, and 19) exhibited inhibitory activity on IL-6 production, and eleven compounds (1-6 and 15-19) exhibited inhibitory effects against TNF-α. These results warrant further investigation into the potential anti-inflammatory activity and general benefits of the phenolic constituents of P. grandiflorum root.
Collapse
Affiliation(s)
- Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine, Daegu 41062, Korea;
| | | |
Collapse
|
9
|
Kim TY, Jeon S, Jang Y, Gotina L, Won J, Ju YH, Kim S, Jang MW, Won W, Park MG, Pae AN, Han S, Kim S, Lee CJ. Platycodin D, a natural component of Platycodon grandiflorum, prevents both lysosome- and TMPRSS2-driven SARS-CoV-2 infection by hindering membrane fusion. Exp Mol Med 2021; 53:956-972. [PMID: 34035463 PMCID: PMC8143993 DOI: 10.1038/s12276-021-00624-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 02/04/2023] Open
Abstract
An ongoing pandemic of coronavirus disease 2019 (COVID-19) is now the greatest threat to global public health. Herbal medicines and their derived natural products have drawn much attention in the treatment of COVID-19, but the detailed mechanisms by which natural products inhibit SARS-CoV-2 have not been elucidated. Here, we show that platycodin D (PD), a triterpenoid saponin abundant in Platycodon grandiflorum (PG), a dietary and medicinal herb commonly used in East Asia, effectively blocks the two main SARS-CoV-2 infection routes via lysosome- and transmembrane protease serine 2 (TMPRSS2)-driven entry. Mechanistically, PD prevents host entry of SARS-CoV-2 by redistributing membrane cholesterol to prevent membrane fusion, which can be reinstated by treatment with a PD-encapsulating agent. Furthermore, the inhibitory effects of PD are recapitulated by the pharmacological inhibition or gene silencing of NPC1, which is mutated in patients with Niemann-Pick type C (NPC) displaying disrupted membrane cholesterol distribution. Finally, readily available local foods or herbal medicines containing PG root show similar inhibitory effects against SARS-CoV-2 infection. Our study proposes that PD is a potent natural product for preventing or treating COVID-19 and that briefly disrupting the distribution of membrane cholesterol is a potential novel therapeutic strategy for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Tai Young Kim
- grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126 Republic of Korea
| | - Sangeun Jeon
- grid.418549.50000 0004 0494 4850Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Youngho Jang
- grid.37172.300000 0001 2292 0500Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Lizaveta Gotina
- grid.35541.360000000121053345Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792 Republic of Korea ,grid.412786.e0000 0004 1791 8264Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Joungha Won
- grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126 Republic of Korea ,grid.37172.300000 0001 2292 0500Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Yeon Ha Ju
- grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126 Republic of Korea ,grid.412786.e0000 0004 1791 8264IBS School, University of Science and Technology, Daejeon, Republic of Korea ,grid.412786.e0000 0004 1791 8264Neuroscience Program, University of Science and Technology, Daejeon, Republic of Korea
| | - Sunpil Kim
- grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126 Republic of Korea ,grid.222754.40000 0001 0840 2678KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841 Republic of Korea
| | - Minwoo Wendy Jang
- grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126 Republic of Korea ,grid.222754.40000 0001 0840 2678KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841 Republic of Korea
| | - Woojin Won
- grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126 Republic of Korea ,grid.222754.40000 0001 0840 2678KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841 Republic of Korea
| | - Mingu Gordon Park
- grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126 Republic of Korea ,grid.222754.40000 0001 0840 2678KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841 Republic of Korea
| | - Ae Nim Pae
- grid.35541.360000000121053345Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792 Republic of Korea ,grid.412786.e0000 0004 1791 8264Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Sunkyu Han
- grid.37172.300000 0001 2292 0500Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Seungtaek Kim
- grid.418549.50000 0004 0494 4850Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - C. Justin Lee
- grid.410720.00000 0004 1784 4496Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126 Republic of Korea ,grid.222754.40000 0001 0840 2678KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
10
|
Kim TY, Jeon S, Jang Y, Gotina L, Won J, Ju YH, Kim S, Jang MW, Won W, Park MG, Pae AN, Han S, Kim S, Lee CJ. Platycodin D, a natural component of Platycodon grandiflorum, prevents both lysosome- and TMPRSS2-driven SARS-CoV-2 infection by hindering membrane fusion. Exp Mol Med 2021; 53:956-972. [PMID: 34035463 DOI: 10.1101/2020.12.22.423909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 05/18/2023] Open
Abstract
An ongoing pandemic of coronavirus disease 2019 (COVID-19) is now the greatest threat to global public health. Herbal medicines and their derived natural products have drawn much attention in the treatment of COVID-19, but the detailed mechanisms by which natural products inhibit SARS-CoV-2 have not been elucidated. Here, we show that platycodin D (PD), a triterpenoid saponin abundant in Platycodon grandiflorum (PG), a dietary and medicinal herb commonly used in East Asia, effectively blocks the two main SARS-CoV-2 infection routes via lysosome- and transmembrane protease serine 2 (TMPRSS2)-driven entry. Mechanistically, PD prevents host entry of SARS-CoV-2 by redistributing membrane cholesterol to prevent membrane fusion, which can be reinstated by treatment with a PD-encapsulating agent. Furthermore, the inhibitory effects of PD are recapitulated by the pharmacological inhibition or gene silencing of NPC1, which is mutated in patients with Niemann-Pick type C (NPC) displaying disrupted membrane cholesterol distribution. Finally, readily available local foods or herbal medicines containing PG root show similar inhibitory effects against SARS-CoV-2 infection. Our study proposes that PD is a potent natural product for preventing or treating COVID-19 and that briefly disrupting the distribution of membrane cholesterol is a potential novel therapeutic strategy for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Tai Young Kim
- Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Sangeun Jeon
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea
| | - Youngho Jang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Lizaveta Gotina
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Joungha Won
- Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yeon Ha Ju
- Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126, Republic of Korea
- IBS School, University of Science and Technology, Daejeon, Republic of Korea
- Neuroscience Program, University of Science and Technology, Daejeon, Republic of Korea
| | - Sunpil Kim
- Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Minwoo Wendy Jang
- Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Woojin Won
- Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Mingu Gordon Park
- Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Sunkyu Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam, Republic of Korea.
| | - C Justin Lee
- Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon, 34126, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
11
|
Taha HR, Al-Sawalha NA, Alzoubi KH, Khabour OF. Effect of E-Cigarette aerosol exposure on airway inflammation in a murine model of asthma. Inhal Toxicol 2020; 32:503-511. [PMID: 33297792 DOI: 10.1080/08958378.2020.1856238] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The popularity of electronic cigarettes (E-Cigs) smoking is increasing worldwide including patients with asthma. In this study, the effects of E-Cigs aerosol exposure on airway inflammation in an allergen-driven murine model of asthma were investigated. MATERIALS AND METHODS Balb/c mice were randomly assigned to; control group (received fresh air, Ovalbumin (Ova) sensitization and saline challenge), E-Cig group (received E-Cig aerosol, Ova sensitization, and saline challenge), Ova S/C group (received fresh air, Ova sensitization and Ova challenge) and E-Cig + Ova S/C group. Bronchoalveolar lavage fluid (BALF) and lung tissue were evaluated for inflammatory cells and inflammatory mediators, respectively. RESULTS Exposure to E-Cig aerosol significantly increased the number of all types of inflammatory cells in BALF (p < 0.05). Further, E-Cig aerosol reduced levels of transforming growth factor (TGF)-β1 and matrix metalloproteinase (MMP)-2 in lung tissue homogenate (p < 0.05). Combined E-Cig aerosol and Ova S/C increased the airway recruitment of inflammatory cells, especially neutrophils, eosinophils, and lymphocytes (p < 0.05), increased the level of interleukin (IL)-13, and reduced the level of TGF-β1 (p < 0.05). CONCLUSIONS E-Cig aerosol exposure induced airway inflammation in both control mice and allergen-driven murine model of asthma. The inflammatory response induced by E-Cig was slightly higher in allergen-driven murine model of asthma than in healthy animals.
Collapse
Affiliation(s)
- Huda R Taha
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid Jordan
| | - Nour A Al-Sawalha
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid Jordan
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid Jordan
| | - Omar F Khabour
- Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
12
|
The Effect of Different Water Extracts from Platycodon grandiflorum on Selected Factors Associated with Pathogenesis of Chronic Bronchitis in Rats. Molecules 2020; 25:molecules25215020. [PMID: 33138217 PMCID: PMC7662589 DOI: 10.3390/molecules25215020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to assess the activity of extracts from Platycodon grandiflorum A. DC (PG) in a model of chronic bronchitis in rats. The research was carried out on three water extracts: E1 – from roots of field cultivated PG; E2 – from biotransformed roots of PG; E3 – from callus of PG. The extracts differed in saponins and inulin levels—the highest was measured in E3 and the lowest in E1. Identification of secondary metabolites was performed using two complementary LC-MS systems. Chronic bronchitis was induced by sodium metabisulfite (a source of SO2). Animals were treated with extracts for three weeks (100 mg/kg, intragastrically) and endothelial growth factor (VEGF), transforming growth factors (TGF-β1, -β2, -β3), and mucin 5AC (MUC5AC) levels were determined in bronchoalveolar lavage fluid, whereas C reactive protein (CRP) level was measured in serum. Moreover, mRNA expression were assessed in bronchi and lungs. In SO2-exposed rats, an elevation of the CRP, TGF-β1, TGF-β2, VEGF, and mucin was found, but the extracts’ administration mostly reversed this phenomenon, leading to control values. The results showed a strong anti-inflammatory effect of the extracts from PG.
Collapse
|
13
|
Kim SR, Park EJ, Dusabimana T, Je J, Jeong K, Yun SP, Kim HJ, Cho KM, Kim H, Park SW. Platycodon grandiflorus Fermented Extracts Attenuate Endotoxin-Induced Acute Liver Injury in Mice. Nutrients 2020; 12:nu12092802. [PMID: 32933130 PMCID: PMC7551015 DOI: 10.3390/nu12092802] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
Endotoxin-induced acute liver injury is mediated by an excessive inflammatory response, hepatocellular oxidative stress, and apoptosis. Traditional medicinal plants have been used to treat various disorders. Platycodon grandifloras (PG) has been shown to be beneficial in relieving cough and asthma and to have anti-tumor, anti-inflammatory, anti-diabetic activities. The pharmacological action of PG is mainly due to saponins, flavonoids, phenolic, and other compounds. However, raw PG exhibits some side effects at high doses. Here, we extracted raw PG with varying fermentation methods and examined its anti-inflammatory effect and associated signaling kinases in Raw264.7 cells. Then, we investigated the effect of fermented black PG (FBPG) on endotoxin-induced liver injury. Mice were administered FBPG orally at 1 h before the lipopolysaccharide and D-galactosamine (LPS/GalN) injection and sacrificed after 5 h. Black PG (BPG) and FBPG showed a significant reduction in pro-inflammatory cytokines and extracellular nitric oxide (NO); p-38 and ERK signaling was involved in reducing inducible NO synthase in Raw264.7 cells. Consistently, FBPG attenuates LPS/GalN-induced liver injury; plasma ALT and AST, hepatic necrosis, pro-inflammatory cytokines, apoptosis, and lipid peroxidation were all reduced. In conclusion, PG extracts, particularly FBPG, play anti-inflammatory, antioxidant, and anti-apoptotic roles, alleviating endotoxin-induced acute liver injury. Processing raw PG into FBPG extract may be clinically useful by improving the pharmacologically active ingredients and reducing the required dosage.
Collapse
Affiliation(s)
- So Ra Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
| | - Eun Jung Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
| | - Theodomir Dusabimana
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
| | - Jihyun Je
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
| | - Kyuho Jeong
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
| | - Kye Man Cho
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Korea;
| | - Hwajin Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Correspondence: (H.K.); (S.W.P.); Tel.: +82-55-772-8070 (H.K.); +82-55-772-8073 (S.W.P.)
| | - Sang Won Park
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Korea; (S.R.K.); (E.J.P.); (T.D.); (J.J.); (K.J.); (S.P.Y.); (H.J.K.)
- Department of Convergence Medical Sciences, Institute of Health Sciences, Gyeongsang National University Graduate School, Jinju 52727, Korea
- Correspondence: (H.K.); (S.W.P.); Tel.: +82-55-772-8070 (H.K.); +82-55-772-8073 (S.W.P.)
| |
Collapse
|
14
|
Lee S, Han EH, Lim MK, Lee SH, Yu HJ, Lim YH, Kang S. Fermented Platycodon grandiflorum Extracts Relieve Airway Inflammation and Cough Reflex Sensitivity In Vivo. J Med Food 2020; 23:1060-1069. [PMID: 32758004 DOI: 10.1089/jmf.2019.4595] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Platycodon grandiflorum (PG) has been extensively utilized as an herb to relieve phlegm. In this study, the effects of PG root extracts on airway inflammation and cough reflex were investigated, especially using fermented PG extracts (FPE) to increase an active compound, platycodin D by fermentation. FPE significantly reduced the numbers of eosinophils and total cells in the bronchoalveolar lavage fluid (BALF) obtained from lipopolysaccharide/ovalbumin (LPS/OVA)-induced asthma mice versus those of vehicle control. Moreover, in the BALF and the serum, FPE significantly reduced the concentration of IL-17E, a proinflammatory cytokine that causes TH2 immunity, including eosinophil amplification. It was also demonstrated that FPE might relieve inflammations through histological analysis of the lung separated from each mouse. Furthermore, in cough reflex guinea pigs induced by citric acid treatment, FPE treatment significantly reduced the number of coughs versus that of vehicle control, and consequently decreased cough reflex sensitivity. In addition, the total cell number and eosinophils significantly decreased in the BALF obtained from each guinea pig versus that of vehicle control. In in vitro study, pretreatment with FPE in LPS-stimulated RAW264.7 cells significantly reduced the levels of proinflammatory cytokines such as TNF-α, IL-6, and IL-1β, and inducible nitric oxide synthases (iNOS). Therefore, we demonstrated that FPE relieved airway inflammation and cough reflex sensitivity in vivo, and exhibited anti-inflammatory effects through suppression of iNOS and several proinflammatory cytokines. These findings suggest that FPE might have a beneficial effect on respiratory health, and may be useful as a functional food to prevent respiratory diseases.
Collapse
Affiliation(s)
- Soyeon Lee
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea.,Department of Research & Development, Koreaeundan Healthcare Co. Ltd., Ansan, Gyeonggido, Korea
| | - Eun Hye Han
- Department of Research & Development, Koreaeundan Healthcare Co. Ltd., Ansan, Gyeonggido, Korea.,Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul, Korea
| | - Mi-Kyung Lim
- Department of Research & Development, Koreaeundan Co., Seongnam, Gyeonggido, Korea
| | - Sang-Ho Lee
- Department of Research & Development, Koreaeundan Healthcare Co. Ltd., Ansan, Gyeonggido, Korea.,Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul, Korea
| | - Heui Jong Yu
- Research & Development Center, SKbioland Co., Ltd., Ansan, Gyeonggido, Korea
| | - Young Hee Lim
- Department of Integrated Biomedical and Life Sciences, College of Health Science, Korea University, Seoul, Korea
| | - Seongman Kang
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| |
Collapse
|
15
|
Bioactive platycodins from Platycodonis Radix: Phytochemistry, pharmacological activities, toxicology and pharmacokinetics. Food Chem 2020; 327:127029. [PMID: 32450486 DOI: 10.1016/j.foodchem.2020.127029] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/28/2022]
Abstract
Platycodonis Radix, the root of Platycodon grandiflorum (Jacq.) A. DC., is a well-known edible herbal medicine. It is a common vegetable used for the preparation of side dish, kimchi, dessert, and tea. Besides, it has been used to treat respiratory disease including cough, excessive phlegm, and sore throat for a long history. In the past decades, the bioactive components and the pharmacological activities of Platycodonis Radix have been widely investigated. Thereinto, platycodins, the oleanane-type triterpenoid saponins were demonstrated to be the main bioactive components in Platycodonis Radix, and more than 70 platycodins have been identified up to date. This paper mainly reviewed the phytochemistry, pharmacological activities (apophlegmatic, anti-tussive, anti-inflammatory, anti-cancer, anti-obesity, anti-diabetic, immunomodulatory, cardiovascular protective, and hepatoprotective activities, etc.), toxicology and pharmacokinetics of platycodins isolated from Platycodonis Radix, aiming to promote further investigation on therapeutic potential of these platycodins.
Collapse
|
16
|
Serra DS, Araujo RS, Oliveira MLM, Cavalcante FSA, Leal-Cardoso JH. Lung injury caused by occupational exposure to particles from the industrial combustion of cashew nut shells: a mice model. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2020; 76:1-11. [PMID: 32048551 DOI: 10.1080/19338244.2020.1726269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cashew nut shells (CNS) is already used in the energy matrix of some industries. However, it is necessary to know the harmful health effects generated by exposure to pollutants of its combustion, especially in the workers exposed to industrial pollutants. In addition, it is known that the incidence of asthma grows among workers in industries, and due to its previously reported biological effects of anethole, these will also be objects of the present study. We used 64 Balb/C mice, randomly divided into eight groups. Groups were sensitized and challenged with saline or ovalbumin, then subjected to intranasal instillation of 30 µg PM4.0 (occupational exposure) from the combustion of CNS or saline, and then were subsequently treated with oral anethole 300 mg/kg or 0.1% Tween 80. Our results serve as a starting point for the development of public policies for the prevention of diseases in workers that are exposed to the pollutants coming from industries.
Collapse
Affiliation(s)
- D S Serra
- Science and Technology Center, State University of Ceará, Fortaleza-Ceará, Brazil
| | - R S Araujo
- Department of Chemistry and Environment, Federal Institute of Ceará, Ceará, Brazil
| | - M L M Oliveira
- Science and Technology Center, State University of Ceará, Fortaleza-Ceará, Brazil
| | - F S A Cavalcante
- Science and Technology Center, State University of Ceará, Fortaleza-Ceará, Brazil
| | - J H Leal-Cardoso
- Ceará, Institute of Biomedical Sciences State University of Ceará, Ceará, Brazil
| |
Collapse
|
17
|
Choi JH, Kim SM, Lee GH, Jin SW, Lee HS, Chung YC, Jeong HG. Platyconic Acid A, Platycodi Radix-Derived Saponin, Suppresses TGF-1-induced Activation of Hepatic Stellate Cells via Blocking SMAD and Activating the PPAR Signaling Pathway. Cells 2019; 8:cells8121544. [PMID: 31795488 PMCID: PMC6952772 DOI: 10.3390/cells8121544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023] Open
Abstract
Platycodi radix is a widely sold health food worldwide, which contains numerous phytochemicals that are beneficial to health. Previously, we reported that saponin from the roots of Platycodi radix-derived saponin inhibited toxicant-induced liver diseases. Nevertheless, the inhibitory effect of platyconic acid A (PA), the active component of Platycodi radix-derived saponin, on the anti-fibrotic activity involving the SMAD pathway remains unclear. We investigated the inhibitory effects of PA on TGF-β1-induced activation of hepatic stellate cells (HSCs). PA inhibited TGF-β1-enhanced cell proliferation, as well as expression of α-SMA and collagen Iα1 in HSC-T6 cells. PA suppressed TGF-β1-induced smad2/3 phosphorylation and smad binding elements 4 (SBE4) luciferase activity. Reversely, PA restored TGF-β1-reduced expression of smad7 and peroxisome proliferator-activated receptor (PPAR)γ. PA also repressed TGF-β1-induced phosphorylation of Akt and MAPKs. In summary, the results suggest that the inhibitory effect of PA on HSCs occurs through the blocking of SMAD-dependent and SMAD-independent pathways, leading to the suppression of α-SMA and collagen Iα1 expression.
Collapse
Affiliation(s)
- Jae Ho Choi
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (J.H.C.); (S.M.K.); (G.H.L.); (S.W.J.)
| | - Seul Mi Kim
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (J.H.C.); (S.M.K.); (G.H.L.); (S.W.J.)
| | - Gi Ho Lee
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (J.H.C.); (S.M.K.); (G.H.L.); (S.W.J.)
| | - Sun Woo Jin
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (J.H.C.); (S.M.K.); (G.H.L.); (S.W.J.)
| | - Hyun Sun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang 28116, Korea;
| | - Young Chul Chung
- Department of Food and Medicine, College of Public Health and Natural Science, International University of Korea, Jinju 52833, Korea;
| | - Hye Gwang Jeong
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon 34134, Korea; (J.H.C.); (S.M.K.); (G.H.L.); (S.W.J.)
- Correspondence: ; Tel.: +82-42-821-5936
| |
Collapse
|
18
|
Ding W, Zhang J, Wu SC, Zhang S, Christie P, Liang P. Responses of the grass Paspalum distichum L. to Hg stress: A proteomic study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109549. [PMID: 31408818 DOI: 10.1016/j.ecoenv.2019.109549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 05/19/2023]
Abstract
Paspalum distichum L. was tested to evaluate its ability to phytoremediate mercury (Hg) contaminated soil over a 60-d period by analysis of the total Hg concentrations in roots and leaves. Hg concentration in Hg-contamination soil decreased by 70.0 μg g-1 after 60 day of grass cultivation and Hg was readily taken up by the roots (4.51 ± 1.90 μg g-1) rather than the leaves (0.35 ± 0.02 μg g-1). In addition, a comparative proteomic study was performed to unravel the protein expression involved in the Hg stress response in P. distichum L. A total of 49 proteins were classified as differentially proteins in the roots by the 'top three' proteomic analysis, of which 32 were up-regulated and 17 down-regulated in response to Hg stress. These changed proteins were classified by gene ontology analysis into five complex molecular functions involving photosynthesis and energy metabolism (31%), oxidative stress (14%), protein folding (16%), sulfur compound metabolism (10%), metal binding, and ion transport (29%). Moreover, the protein expression patterns were consistent with the metabolism pathway results. Overall, the results contribute to our understanding of the molecular mechanisms of the Hg response in P. distichum and we propose a theoretical basis for the phytoremediation of Hg-contaminated soils.
Collapse
Affiliation(s)
- Wen Ding
- School of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, Zhejiang Province, 311300, China
| | - Jin Zhang
- Zhejiang Province Key Laboratory of Recycling and Eco-Treatment of Waste Biomass, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Sheng-Chun Wu
- School of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, Zhejiang Province, 311300, China
| | - Su Zhang
- School of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, Zhejiang Province, 311300, China
| | - Peter Christie
- School of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, Zhejiang Province, 311300, China
| | - Peng Liang
- School of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, Zhejiang Province, 311300, China.
| |
Collapse
|
19
|
Lin SC, Shi LS, Ye YL. Advanced Molecular Knowledge of Therapeutic Drugs and Natural Products Focusing on Inflammatory Cytokines in Asthma. Cells 2019; 8:cells8070685. [PMID: 31284537 PMCID: PMC6678278 DOI: 10.3390/cells8070685] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
Asthma is a common respiratory disease worldwide. Cytokines play a crucial role in the immune system and the inflammatory response to asthma. Abnormal cytokine expression may lead to the development of asthma, which may contribute to pathologies of this disease. As cytokines exhibit pleiotropy and redundancy characteristics, we summarized them according to their biologic activity in asthma development. We classified cytokines in three stages as follows: Group 1 cytokines for the epithelial environment stage, Group 2 cytokines for the Th2 polarization stage, and Group 3 cytokines for the tissue damage stage. The recent cytokine-targeting therapy for clinical use (anti-cytokine antibody/anti-cytokine receptor antibody) and traditional medicinal herbs (pure compounds, single herb, or natural formula) have been discussed in this review. Studies of the Group 2 anti-cytokine/anti-cytokine receptor therapies are more prominent than the studies of the other two groups. Anti-cytokine antibodies/anti-cytokine receptor antibodies for clinical use can be applied for patients who did not respond to standard treatments. For traditional medicinal herbs, anti-asthmatic bioactive compounds derived from medicinal herbs can be divided into five classes: alkaloids, flavonoids, glycosides, polyphenols, and terpenoids. However, the exact pathways targeted by these natural compounds need to be clarified. Using relevant knowledge to develop more comprehensive strategies may provide appropriate treatment for patients with asthma in the future.
Collapse
Affiliation(s)
- Sheng-Chieh Lin
- Division of Allergy, Asthma and Immunology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei 23561, Taiwan
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Li-Shian Shi
- Department of Biotechnology, National Formosa University, Yunlin 63201, Taiwan
| | - Yi-Ling Ye
- Department of Biotechnology, National Formosa University, Yunlin 63201, Taiwan.
| |
Collapse
|
20
|
Lin PY, Chu CH, Chang FY, Huang YW, Tsai HJ, Yao TC. Trends and prescription patterns of traditional Chinese medicine use among subjects with allergic diseases: A nationwide population-based study. World Allergy Organ J 2019; 12:100001. [PMID: 30937136 PMCID: PMC6439402 DOI: 10.1016/j.waojou.2018.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/15/2018] [Accepted: 11/01/2018] [Indexed: 12/20/2022] Open
Abstract
Background The alarmingly rising prevalence of allergic diseases has led to substantial healthcare and economic burdens worldwide. The integrated use of traditional Chinese medicines (TCM) and Western medicines has been common in treating subjects with allergic diseases in clinical practice in Taiwan. However, limited studies have been conducted to evaluate long-term trends and prescription patterns of TCM use among subjects with allergic diseases. Thus, we conducted a nationwide population-based study to characterize TCM use among subjects with allergic diseases. Methods A total of 241,858 subjects with diagnosed atopic dermatitis, asthma or allergic rhinitis in the period of 2003–2012 were identified from the National Health Insurance Research Database (NHIRD) in Taiwan and included in this study. We assessed trends and prescribed patterns related to TCM (both single herbs and herbal formulas) among the study subjects over the 10-year study period. Results The overall proportions of TCM use were 30.5%, 29.0% and 45.7% in subjects with atopic dermatitis, asthma and allergic rhinitis, respectively. We found increasing trends of TCM use among subjects having atopic dermatitis and asthma, with annual increase of 0.91% and 0.38%, respectively, over the 10-year study period while the proportion remained steadily high (from 46.6% in 2003 to 46.3% in 2012) among subjects having allergic rhinitis. Moreover, the number of hospitalization due to allergic diseases in TCM users was significantly smaller than that in non TCM users for all three allergic diseases. Conclusion A notable proportion (30%–50%) of subjects with allergic diseases in Taiwan has used TCM, with the highest proportion of TCM use found in subjects with allergic rhinitis, whereas increasing trends of TCM use are found among subjects with atopic dermatitis and asthma, respectively. Our results suggest that TCM use may help reduce the severe episodes of allergic diseases necessitating hospitalizations.
Collapse
Affiliation(s)
- Pei-Ying Lin
- Division of Internal Medicine and Pediatrics, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Hui Chu
- School of Traditional Chinese Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Fang-Yu Chang
- School of Traditional Chinese Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ya-Wen Huang
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Maioli, Taiwan
| | - Hui-Ju Tsai
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Maioli, Taiwan
| | - Tsung-Chieh Yao
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan.,Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan.,Community Medicine Research Center, Chang Gung Memorial Hospital at Keelung, Keelung, Taiwan
| |
Collapse
|
21
|
Park HY, Shin JH, Boo HO, Gorinstein S, Ahn YG. Discrimination of Platycodon grandiflorum and Codonopsis lanceolata using gas chromatography-mass spectrometry-based metabolomics approach. Talanta 2019; 192:486-491. [DOI: 10.1016/j.talanta.2018.09.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 01/25/2023]
|
22
|
Yang ST, Lin YR, Wu MY, Chiang JH, Yang PS, Hsia TC, Yen HR. Utilization of Chinese medicine for respiratory discomforts by patients with a medical history of tuberculosis in Taiwan. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:313. [PMID: 30497462 PMCID: PMC6267063 DOI: 10.1186/s12906-018-2377-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 11/15/2018] [Indexed: 11/27/2022]
Abstract
Background Tuberculosis (TB) is one of the world’s major communicable infectious diseases, and it still imposes a great health burden in developing countries. The development of drug-resistant TB during the treatment increases the treatment complexity, and the long-term pulmonary complications after completing treatment raise the epidemic health burden. This study intended to investigate the utilization of Chinese medicine (CM) for respiratory symptoms by patients with a medical history of TB in Taiwan. Methods We analyzed a cohort of one million individuals who were randomly selected from the National Health Insurance Research Database in Taiwan. The inclusion criteria of patients (n = 7905) with history of TB (ICD-9-CM codes 010–018 and A02) were: (1) TB diagnosed between January 1, 1997 and December 31, 2010 (2) 18 years old or over (3) Clinical records for at least 2 months with complete demographic information (4) Record of treatment with first-line TB medication prescriptions. CM users for conditions other than respiratory discomforts (n = 3980) were excluded. Finally, a total of 3925 TB patients were categorized as: CM users for respiratory discomforts (n = 2051) and non-CM users (n = 1874). Results Among the 3925 subjects, 2051 (52.25%) were CM users, and 1874 (44.753%) were non-CM users. Female patients and those who were younger (18–39 y/o) and who lived in urbanized areas relatively tended to be CM users (p < .0001). Most of the CM users (1944, 94.78%) received Chinese medicines. The most commonly prescribed herbal formulas and single herbs were Xiao-Qing-Long-Tang and Radix Platycodonis (Jie-Geng), respectively. The core pattern of Chinese medicines for TB patients consisted of Ma-Xing-Gan-Shi-Tang, Bulbus Fritillariae Thunbergii (Bei-Mu), Radix Platycodonis (Jie-Geng) and Semen Armeniacae (Xing-Ren). Conclusions The use of CM is popular among patients with a medical history of TB complicated with long-term respiratory discomforts in Taiwan. Further pharmacological investigations and clinical trials are required.
Collapse
|
23
|
Wang ZX, Zhang YX, Zeng YL, Li X, Chen Z, Luo JM, Zhang Y, Zhang YL, Qiao YJ. Discovery of TAS2R14 Agonists from Platycodon grandiflorum Using Virtual Screening and Affinity Screening Based on a Novel TAS2R14-Functionalized HEMT Sensor Combined with UPLC-MS Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11663-11671. [PMID: 30259737 DOI: 10.1021/acs.jafc.8b04455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
TAS2R14 is of great potential as a therapeutic target against asthma, and the discovery of TAS2R14 agonists can be very valuable for treating this disease. Herein, we developed a strategy using virtual screening and affinity screening based on a fabricated biosensor combined with UPLC-MS analysis to screen TAS2R14 agonists from Platycodon grandiflorum. By ligand-based virtual screening, 16 best-fit candidates were yielded. A novel TAS2R14-functionalized high-electron-mobility transistor (HEMT) sensor was applied to detect and fish out the potential TAS2R14 agonists from P. grandiflorum extracts. Those components captured by the immobilized TAS2R14 were eluted and characterized on UPLC-QTOF MS. As a result, six potential TAS2R14 agonists were screened out and identified. Among them, platycodin L was confirmed to be a special agonist of TAS2R14 for the first time and had an EC50 of 15.03 ± 1.15 μM via intracellular calcium mobilization assay ( n = 6). The results indicated that the proposed strategy was efficient to discover TAS2R14 agonists from the herb directly.
Collapse
Affiliation(s)
- Zhi-Xin Wang
- Key Laboratory of TCM Information Engineering of State Administration of Traditional Chinese Medicine , Beijing University of Chinese Medicine , Beijing 102488 , P. R. China
| | - Yu-Xin Zhang
- Key Laboratory of TCM Information Engineering of State Administration of Traditional Chinese Medicine , Beijing University of Chinese Medicine , Beijing 102488 , P. R. China
| | - Yan-Ling Zeng
- Key Laboratory of TCM Information Engineering of State Administration of Traditional Chinese Medicine , Beijing University of Chinese Medicine , Beijing 102488 , P. R. China
| | - Xi Li
- Key Laboratory of TCM Information Engineering of State Administration of Traditional Chinese Medicine , Beijing University of Chinese Medicine , Beijing 102488 , P. R. China
| | - Zhao Chen
- Key Laboratory of TCM Information Engineering of State Administration of Traditional Chinese Medicine , Beijing University of Chinese Medicine , Beijing 102488 , P. R. China
| | - Jia-Ming Luo
- Key Laboratory of Semiconductor Materials Science , Chinese Academy of Sciences , Beijing 100083 , P. R. China
| | - Yang Zhang
- Key Laboratory of Semiconductor Materials Science , Chinese Academy of Sciences , Beijing 100083 , P. R. China
| | - Yan-Ling Zhang
- Key Laboratory of TCM Information Engineering of State Administration of Traditional Chinese Medicine , Beijing University of Chinese Medicine , Beijing 102488 , P. R. China
| | - Yan-Jiang Qiao
- Key Laboratory of TCM Information Engineering of State Administration of Traditional Chinese Medicine , Beijing University of Chinese Medicine , Beijing 102488 , P. R. China
| |
Collapse
|
24
|
Lee HY, Lee GH, Kim HK, Chae HJ. Platycodi Radix and its active compounds ameliorate against house dust mite-induced allergic airway inflammation and ER stress and ROS by enhancing anti-oxidation. Food Chem Toxicol 2018; 123:412-423. [PMID: 30399386 DOI: 10.1016/j.fct.2018.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/30/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022]
Abstract
Allergic airway inflammation is an increasing global health problem, and novel strategies to prevent or ameliorate the condition are needed. The endoplasmic reticulum (ER) is involved in protein synthesis and maturation, and is a susceptible to sub-organelle stress including inflammation and ROS-amplifying signaling. Here, the effects of Platycodi Radix extracts (PRE) on house dust mite (HDM) extract (Dematophagoides pteronyssius)-induced asthma were investigated. Following 50, 100, or 200 mg/kg-PRE-treatment, the infiltration of inflammatory cells, ER stress, and NF-κB signaling were controlled. The expression of inflammatory cytokines and mucin5AC was also inhibited in the presence of PRE. Consistently, in the HDM-exposed human bronchial epithelial cells, ER stress and its associated ROS were significantly increased along with NF-κB signaling, which was also attenuated by PRE and its components. This study suggests that PRE might be useful as a therapeutic/preventive agent in HDM-associated allergic airway inflammation. ER stress and its associated ROS signaling involved in inflammation provide additional mechanistic insight into the underlying molecular mechanism.
Collapse
Affiliation(s)
- Hwa-Young Lee
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180, Republic of Korea
| | - Geum-Hwa Lee
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180, Republic of Korea
| | - Hye-Kyung Kim
- College of Pharmacy, Kyungsung University, Busan, Republic of Korea
| | - Han-Jung Chae
- Department of Pharmacology and New Drug Development Institute, Chonbuk National University Medical School, Jeonju, Chonbuk, 561-180, Republic of Korea.
| |
Collapse
|
25
|
Park M, Park SY, Lee HJ, Kim CE. A Systems-Level Analysis of Mechanisms of Platycodon grandiflorum Based on A Network Pharmacological Approach. Molecules 2018; 23:E2841. [PMID: 30388815 PMCID: PMC6278259 DOI: 10.3390/molecules23112841] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/23/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Platycodon grandiflorum (PG) is widely used in Asia for its various beneficial effects. Although many studies were conducted to understand the molecular mechanisms of PG, it is still unclear how the combinations of multiple ingredients work together to exert its therapeutic effects. The aim of the present study was to provide a comprehensive review of the systems-level mechanisms of PG by adopting network pharmacological analysis. We constructed a compound⁻target⁻disease network for PG using experimentally validated and machine-leaning-based prediction results. Each target of the network was analyzed based on previously known pharmacological activities of PG. Gene ontology analysis revealed that the majority of targets were related to cellular and metabolic processes, responses to stimuli, and biological regulation. In pathway enrichment analyses of targets, the terms related to cancer showed the most significant enrichment and formed distinct clusters. Degree matrix analysis for target⁻disease associations of PG suggested the therapeutic potential of PG in various cancers including hepatocellular carcinoma, gastric cancer, prostate cancer, small-cell lung cancer, and renal cell carcinoma. We expect that network pharmacological approaches will provide an understanding of the systems-level mechanisms of medicinal herbs and further develop their therapeutic potentials.
Collapse
Affiliation(s)
- Musun Park
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Sa-Yoon Park
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Korea.
| | - Chang-Eop Kim
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| |
Collapse
|
26
|
Zhao LC, Liu Y, Wang Z, Tang N, Leng J, Zheng B, Liu YY, Li W. Liquid Chromatography/Mass Spectrometry Analysis and Hepatoprotective Effect of Steamed Platycodi Radix on Acute Alcohol-induced Liver Injury. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.952.962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Wang C, Zhang N, Wang Z, Qi Z, Zheng B, Li P, Liu J. Rapid characterization of chemical constituents of Platycodon grandiflorum and its adulterant Adenophora stricta by UPLC-QTOF-MS/MS. JOURNAL OF MASS SPECTROMETRY : JMS 2017; 52:643-656. [PMID: 28686313 DOI: 10.1002/jms.3967] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/20/2017] [Accepted: 07/02/2017] [Indexed: 06/07/2023]
Abstract
Platycodon grandiflorum (PG) is extensively used for treating cough, excessive phlegm, sore throat, bronchitis and asthma, whereas Adenophora stricta (AS) is commonly used to reduce phlegm, clear lung and tonify stomach. Due to similar appearances, PG is sometimes adulterated with cheap AS so as to gain profits. And this will inevitably result in different pharmacological property. In order to further clarify the differences in the chemical composition of these two Chinese herbs, the ultra-high performance liquid chromatography combined with quadrupole time-of-flight tandem mass spectrometry coupled with UNIFI platform was used to establish a reliable, simple, sensitive and rapid analytical method. Seventy-five compounds, including triterpenoid saponins, organic acids, flavonoids, steroids, phenols, etc., were identified from PG based on MSE data and retention time under the optimized conditions. Meanwhile, 57 compounds including triterpenoid saponins, organic acids, steroids, phenols, alkaloids, etc. were identified from AS. Among all the identified compounds, there were only 14 common components (mainly organic acids) existing in two herbs, and most of the other chemical compositions are totally different between the two herbs. Based on the results, AS cannot substitute for PG. In addition, PG adulterated with AS will lead a poor efficacy in clinical application. In addition, the systematic comparison of similarities and differences between two Chinese herbs will provide reliable characterization profiles to clarify the pharmacological fundamental substances.
Collapse
Affiliation(s)
- Cuizhu Wang
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun, 130021, China
| | - Nanqi Zhang
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun, 130021, China
| | - Zhenzhou Wang
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun, 130021, China
| | - Zeng Qi
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun, 130021, China
| | - Bingzhen Zheng
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun, 130021, China
| | - Pingya Li
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun, 130021, China
| | - Jinping Liu
- Research Center of Natural Drug, School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun, 130021, China
| |
Collapse
|
28
|
Wang C, Zhang N, Wang Z, Qi Z, Zhu H, Zheng B, Li P, Liu J. Nontargeted Metabolomic Analysis of Four Different Parts of Platycodon grandiflorum Grown in Northeast China. Molecules 2017; 22:E1280. [PMID: 28769024 PMCID: PMC6152411 DOI: 10.3390/molecules22081280] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/25/2017] [Accepted: 07/29/2017] [Indexed: 02/08/2023] Open
Abstract
Platycodonis radix is extensively used for treating cough, excessive phlegm, sore throat, bronchitis and asthma in the clinic. Meanwhile, the stems, leaves and seeds of Platycodon grandiflorum (PG) have some pharmaceutical activities such as anti-inflammation and anti-oxidation effects, etc. These effects must be caused by the different metabolites in various parts of herb. In order to profile the different parts of PG, the ultra-high performance liquid chromatography combined with quadrupole time-of- flight mass spectrometry (UPLC-QTOF-MSE) coupled with UNIFI platform and multivariate statistical analyses was used in this study. Consequently, for the constituent screening, 73, 42, 35, 44 compounds were characterized from the root, stem, leaf and seed, respectively. The stem, leaf and seed contain more flavonoids but few saponins that can be easily discriminated in the root. For the metabolomic analysis, 15, 5, 7, 11 robust biomarkers enabling the differentiation among root, stem, leaf and seed, were discovered. These biomarkers can be used for rapid identification of four different parts of PG grown in northeast China.
Collapse
Affiliation(s)
- Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
- National and Local Joint Engineering Research Center for Ginseng Innovative Drugs Development, Western Chaoyang Road 45, Changchun 130021, China.
| | - Nanqi Zhang
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
- National and Local Joint Engineering Research Center for Ginseng Innovative Drugs Development, Western Chaoyang Road 45, Changchun 130021, China.
| | - Zhenzhou Wang
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
- National and Local Joint Engineering Research Center for Ginseng Innovative Drugs Development, Western Chaoyang Road 45, Changchun 130021, China.
| | - Zeng Qi
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
- National and Local Joint Engineering Research Center for Ginseng Innovative Drugs Development, Western Chaoyang Road 45, Changchun 130021, China.
| | - Hailin Zhu
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
- National and Local Joint Engineering Research Center for Ginseng Innovative Drugs Development, Western Chaoyang Road 45, Changchun 130021, China.
| | - Bingzhen Zheng
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
- National and Local Joint Engineering Research Center for Ginseng Innovative Drugs Development, Western Chaoyang Road 45, Changchun 130021, China.
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
- National and Local Joint Engineering Research Center for Ginseng Innovative Drugs Development, Western Chaoyang Road 45, Changchun 130021, China.
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
- National and Local Joint Engineering Research Center for Ginseng Innovative Drugs Development, Western Chaoyang Road 45, Changchun 130021, China.
| |
Collapse
|
29
|
Shin JH, Ahn YG, Jung JH, Woo SH, Kim HH, Gorinstein S, Boo HO. Identification and Characterization of Diploid and Tetraploid in Platycodon grandiflorum. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2017; 72:13-19. [PMID: 28032246 DOI: 10.1007/s11130-016-0589-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Platycodon grandiflorum (PG), a species of herbaceous flowering perennial plant of the family Campanulaceae, has been used as a traditional oriental medicine for bronchitis, asthma, pulmonary tuberculosis, diabetes, hepatic fibrosis, bone disorders and many others similar diseases and as a food supplement. For the primary profiling of PG gas chromatography coupled with high resolution - time of flight mass spectrometry (GC/HR-TOF MS) was used as an analytical tool. A comparison of optimal extraction of metabolites was carried out with a number of solvents [hexane, methylene chloride, methanol, ethanol, methanol: ethanol (70:30, v:v)]. In extracts with methanol: ethanol (70:30 v:v) were detected higher amounts of metabolites than with other solvents. Principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) plots showed significant differences between the diploid and tetraploid metabolite profiles. Extracts of tetraploid showed higher amounts of amino acids, while extracts of diploid contained more organic acids and sugars. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Jeoung-Hwa Shin
- Seoul Center, Korea Basic Science Institute, Anam-ro, Seongbuk-gu, Seoul, 02855, Republic of Korea
| | - Yun Gyong Ahn
- Western Seoul Center, Korea Basic Science Institute, Bugahyeon-ro, Seodaemun-gu, Seoul, 03760, South Korea
| | - Ju-Hee Jung
- Seoul Center, Korea Basic Science Institute, Anam-ro, Seongbuk-gu, Seoul, 02855, Republic of Korea
| | - Sun-Hee Woo
- Department of Crop Science, Chungbuk National University, Cheongju, 28644, South Korea
| | - Hag-Hyun Kim
- Faculty of Food Nutrition and Cookery, Woosong Information College, Daejeon, 34606, South Korea
| | - Shela Gorinstein
- Institute for Drug Research, School of Pharmacy, The Hebrew University, Hadassah Medical School, 91120, Jerusalem, Israel.
| | - Hee-Ock Boo
- PHYTO M&F Co. Ltd., BI Center, GIST, Gwangju, 61005, South Korea.
| |
Collapse
|
30
|
Choi JH, Han Y, Kim YA, Jin SW, Lee GH, Jeong HM, Lee HS, Chung YC, Lee YC, Kim EJ, Lee KY, Jeong HG. Platycodin D Inhibits Osteoclastogenesis by Repressing the NFATc1 and MAPK Signaling Pathway. J Cell Biochem 2016; 118:860-868. [PMID: 27739107 DOI: 10.1002/jcb.25763] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/12/2016] [Indexed: 12/29/2022]
Abstract
Platycodon grandiflorum root-derived saponins (Changkil saponins, CKS) are reported to have many pharmacological activities. In our latest research, CKS was proven to have a significant osteogenic effect. However, the detail molecular mechanism of CKS on osteoclastic differentiation has not been fully investigated. Administration of CKS considerably reduced OVX-induced bone loss, and ameliorated the reduction in plasma levels of alkaline phosphatase, calcium, and phosphorus observed in OVX mice. CKS also repressed the deterioration of bone trabecular microarchitecture. Interestingly, platycodin D, the most abundant and major pharmacological constituent of triterpenoid CKS, inhibited receptor activator of NF-κB ligand (RANKL)-induced activation of NF-κB, and ERK and p38 MAPK, ultimately repressing osteoclast differentiation. OVX-induced bone turnover was attenuated by CKS, possibly via repression of osteoclast differentiation by platycodin D, the active component of CKS. Platycodin D can be regarded as an antiosteoporotic candidate for treatment of osteoporosis diseases. J. Cell. Biochem. 118: 860-868, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jae Ho Choi
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Younho Han
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | - Yong An Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Sun Woo Jin
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Gi Ho Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Hyung Min Jeong
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | - Hyun Sun Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Young Chul Chung
- Department of Food Science, International University of Korea, Jinju, Republic of Korea
| | - Young Chun Lee
- Jangsaeng Doraji Research Institute of Biotechnology, Jangsaeng Doraji Co., Ltd., Jinju, Republic of Korea
| | - Eun Ju Kim
- Jangsaeng Doraji Research Institute of Biotechnology, Jangsaeng Doraji Co., Ltd., Jinju, Republic of Korea
| | - Kwang Youl Lee
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | - Hye Gwang Jeong
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
31
|
Shamshuddin NSS, Mohd Zohdi R. Gelam honey attenuates ovalbumin-induced airway inflammation in a mice model of allergic asthma. J Tradit Complement Med 2016; 8:39-45. [PMID: 29321987 PMCID: PMC5755958 DOI: 10.1016/j.jtcme.2016.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/12/2016] [Accepted: 08/31/2016] [Indexed: 12/25/2022] Open
Abstract
Allergic asthma is a chronic inflammatory disorder of the pulmonary airways. Gelam honey has been proven to possess anti-inflammatory property with great potential to treat an inflammatory condition. However, the effect of ingestion of Gelam honey on allergic asthma has never been studied. This study aimed to investigate the efficacy of Gelam honey on the histopathological changes in the lungs of a mice model of allergic asthma. Forty-two Balb/c mice were divided into seven groups: control, I, II, III, IV, V and VI group. All groups except the control were sensitized and challenged with ovalbumin. Mice in groups I, II, III, IV, and V were given honey at a dose of 10% (v/v), 40% (v/v) and 80% (v/v), dexamethasone 3 mg/kg, and phosphate buffered saline (vehicle) respectively, orally once a day for 5 days of the challenged period. Mice were sacrificed 24 h after the last OVA challenged and the lungs were evaluated for histopathological changes by light microscopy. All histopathological parameters such as epithelium thickness, the number of mast cell and mucus expression in Group III significantly improved when compared to Group VI except for subepithelial smooth muscle thickness (p < 0.05). In comparing Group III and IV, all the improvements in histopathological parameters were similar. Also, Gelam honey showed a significant (p < 0.05) reduction in inflammatory cell infiltration and beta-hexosaminidase level in bronchoalveolar lavage fluid. In conclusion, we demonstrated that administration of high concentration of Gelam honey alleviates the histopathological changes of mice model of allergic asthma.
Collapse
Affiliation(s)
| | - Rozaini Mohd Zohdi
- Faculty of Pharmacy, Universiti Teknologi Mara (UiTM), 40450 Shah Alam, Selangor, Malaysia.,Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), 40450 Shah Alam, Selangor, Malaysia
| |
Collapse
|
32
|
Kuan Leong P, Leung HY, Man Chan W, Chen J, Zhu H, Ning J, Yang Y, Wah Ma C, Ming Ko K. An Herbal Formula (GPC) Suppresses the Releases of Pro-Inflammatory Effectors in Lipopolysaccharide/Peptidoglycan-Activated RAW264.7 Macrophages and Reduces the Extent of Chemical-Induced Acute/Chronic Inflammation in Rodents. Chin Med 2016. [DOI: 10.4236/cm.2016.74015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
33
|
Boo HO, Kim YS, Kim HH, Kwon SJ, Woo SH. Evaluation of Cytotoxicity, Antimicrobial and Antioxidant Enzyme Activity of Diploid and Tetraploid Platycodon grandiflorum. ACTA ACUST UNITED AC 2015. [DOI: 10.7740/kjcs.2015.60.2.239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Zhang L, Wang Y, Yang D, Zhang C, Zhang N, Li M, Liu Y. Platycodon grandiflorus - an ethnopharmacological, phytochemical and pharmacological review. JOURNAL OF ETHNOPHARMACOLOGY 2015; 164:147-61. [PMID: 25666431 DOI: 10.1016/j.jep.2015.01.052] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Platycodon grandiflorus (Jacq.) A. DC., the sole species in genus Platycodon A. DC. (Campanulaceae) has a long history of use as a traditional herbal medicine for the treatments of cough, phlegm, sore throat, lung abscess, chest pain, dysuria, and dysentery. As a legal medicine and dietary supplement, it is also frequently used as an ingredient in health foods and vegetable dishes. The aim of this review is to provide up-to-date information on the botanical characterization and distribution, ethnopharmacology, phytochemistry, pharmacology, and toxicity of Platycodon grandiflorus based on literature published in recent years. It will build a foundation for further study of the mechanism of action and the development of better therapeutic agents and healthy products from Platycodon grandiflorus. MATERIAL AND METHODS All of the available information on Platycodon grandiflorus was collected via electronic search (using PubMed, SciFinder Scholar, CNKI, TPL (www.theplantlist.org), Google Scholar, Baidu Scholar, and Web of Science). RESULTS A comprehensive analysis of the literature obtained through the above-mentioned sources confirmed that ethno-medical uses of Platycodon grandiflorus have been recorded in China, Japan, Mongolia, and Korea for thousands of years. A phytochemical investigation revealed that this product contains steroidal saponins, flavonoids, polyacetylenes, sterols, phenolics, and other bioactive compounds. Crude extracts and pure compounds isolated from Platycodon grandiflorus exhibited significant anti-inflammatory and immunostimulatory effects. They also showed valuable bioactive effects, such as anti-tumor, anti-oxidant, anti-diabetic, anti-obesity, hepatoprotective and cardiovascular system effects, among others. CONCLUSIONS In light of its long traditional use and the modern phytochemical and pharmacological studies summarized here, Platycodon grandiflorus has been demonstrated to show a strong potential for therapeutic and health-maintaining uses. Both the extracts and chemical components isolated from the plant showed a wide range of biological activities. Thus, more studies on the pharmacological mechanisms of its main active compounds (e.g., platycodin D, D2) need to be conducted. In addition, as one of the most popular traditional herbal medicines, clinical studies of the main therapeutic aspects, toxicity and adverse effects of Platycodon grandiflorus will also undoubtedly be the focus of future investigation.
Collapse
Affiliation(s)
- Le Zhang
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Yingli Wang
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Dawei Yang
- Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Chunhong Zhang
- Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Na Zhang
- Baotou Medical College, Baotou, Inner Mongolia 014060, China
| | - Minhui Li
- Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; Baotou Medical College, Baotou, Inner Mongolia 014060, China.
| | - Yanze Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Beijing 100193, China.
| |
Collapse
|
35
|
Choi JH, Jin SW, Kim HG, Choi CY, Lee HS, Ryu SY, Chung YC, Hwang YJ, Um YJ, Jeong TC, Jeong HG. Saponins, especially platyconic acid A, from Platycodon grandiflorum reduce airway inflammation in ovalbumin-induced mice and PMA-exposed A549 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:1468-1476. [PMID: 25590691 DOI: 10.1021/jf5043954] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We investigated the inhibitory effects of Platycodon grandiflorum root-derived saponins (Changkil saponins: CKS) on ovalbumin-induced airway inflammation in mice. CKS suppressed leukocytes number, IgE, Th1/Th2 cytokines, and MCP-1 chemokine secretion in bronchoalveolar lavage fluid. Also, ovalbumin-increased MUC5AC, MMP-2/9, and TIMP-1/-2 mRNA expression, NF-κB activation, leukocytes recruitment, and mucus secretion were inhibited by CKS treatment. Moreover, the active component of CKS, platyconic acid A (PA), suppressed PMA-induced MUC5AC mRNA expression (from 2.1 ± 0.2 to 1.1 ± 0.1) by inhibiting NF-κB activation (from 2.3 ± 0.2 to 1.2 ± 0.1) via Akt (from 3.7 ± 0.3 to 2.1 ± 0.2) (p < 0.01) in A549 cells. Therefore, we demonstrate that CKS or PA suppressed the development of respiratory inflammation, hyperresponsiveness, and remodeling by reducing allergic responses, and they may be potential herbal drugs for allergen-induced respiratory disease prevention.
Collapse
Affiliation(s)
- Jae Ho Choi
- Department of Toxicology, College of Pharmacy, Chungnam National University , Daejeon 305-764, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Assessment of Platycodon grandiflorum germplasm resources from northern Anhui province based on ISSR analysis. Mol Biol Rep 2014; 41:8195-201. [PMID: 25200435 DOI: 10.1007/s11033-014-3721-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
Based on genetic diversity analysis with ISSR-PCR, this study was to access the germplasm resources of Platycodon grandiflorum in northern Anhui province. Ten primers that could produce more distinct and repeatable bands were used for ISSR-PCR. Statistic analysis was conducted by POPGENE v. 1.32, Arlequin3.l, NTSYS-pc version 2.1. (1) Seventy-four polymorphic bands (76.29 %) out of a total of 97 were generated from 105 individuals in five populations. (2) Shannon index of diversity ranged from 0.307 to 0.260, diversity at species level was 0.3581, which means superior genetic diversity. (3) Genetic diversity across all the populations revealed by AMOVA indicated that 86.02 % occurred within populations. (4) The Fst value was 0.1398, indicating a intermediate genetic differentiation among populations. (5) Dendrogram relationship illustrated genetic distance was correlated with geographic distance. ISSR markers can be used for studying genetic diversity of P. grandiflorum. Degradation of populations doesn't happen in northern Anhui province, bank of germplasm preservation should be established for cultivation of excellent variety of P. grandiflorum.
Collapse
|
37
|
Huang XP, Tao EX, Feng ZQ, Yang ZL, Zhang WF. Inhibitory effect of sihuangxiechai decoction on ovalbumin-induced airway inflammation in Guinea pigs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:965429. [PMID: 25101137 PMCID: PMC4101944 DOI: 10.1155/2014/965429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/20/2014] [Accepted: 05/27/2014] [Indexed: 11/17/2022]
Abstract
The aim of this study was to investigate the effect of sihuangxiechai decoction on asthmatic Guinea pig model which was sensitized by intraperitoneal (i.p.) injection of ovalbumin (OVA) and challenged by OVA inhalation to induce chronic airway inflammation. Differential cell counts of cytospins were performed after staining with Giemsa solution. The quantity of leukocytes and its classification in bronchoalveolar lavage fluid (BALF) and blood were evaluated by blood cell analyzer and microscope. Histological analysis of the lung was performed by hematoxylin and eosin (H&E) staining. The levels of interleukin-4 (IL-4) and tumor necrosis factor-alpha (TNF-α) in BALF and serum were detected by radioimmunoassay (RIA). The total number of leukocytes in BALF and blood has no significant difference between Sihuangxiechaitang decoction treated group and dexamethasone (DXM) treated group but was significantly lower than those of asthma group. The percentage of eosinophils in lung tissues of sihuangxiechai decoction treated group was significantly lower than that of asthma group. The results demonstrated that the levels of IL-4 and TNF-α in the sihuangxiechai decoction treated group were significantly reduced compared with the asthma group. In conclusion, these findings demonstrate that sihuangxiechai decoction has a protective effect on OVA-induced asthma in reducing airway inflammation and airway hyperresponsiveness (AHR) in a Guinea pig model and may be useful as an adjuvant therapy for the treatment of bronchial asthma.
Collapse
Affiliation(s)
- Xue Ping Huang
- Department of Radiology, Affiliated Hospital of Weifang Medical University, No. 2428, Yuhe Street, Weifang, Shandong 261031, China
| | - En Xue Tao
- Universtiy Hospital of Weifang Medical University, Weifang, Shandong 261053, China
| | - Zhan Qin Feng
- College of Pharmacy and Biological Science, Weifang Medical University, No. 7166, Baotong West Street, Weifang, Shandong 261053, China
| | - Zhao Lu Yang
- Department of Radiology, Affiliated Hospital of Weifang Medical University, No. 2428, Yuhe Street, Weifang, Shandong 261031, China
| | - Wei Fen Zhang
- College of Pharmacy and Biological Science, Weifang Medical University, No. 7166, Baotong West Street, Weifang, Shandong 261053, China
| |
Collapse
|
38
|
Huang TP, Liu PH, Lien ASY, Yang SL, Chang HH, Yen HR. Characteristics of traditional Chinese medicine use in children with asthma: a nationwide population-based study. Allergy 2013; 68:1610-3. [PMID: 24117783 DOI: 10.1111/all.12273] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2013] [Indexed: 11/28/2022]
Abstract
Asthma is a chronic inflammatory airway disease accounting for severe morbidity and mortality in children. To determine the characteristics of traditional Chinese medicine (TCM) used to treat pediatric asthma, we conducted a nationwide population-based study by analyzing a cohort of one million randomly sampled patients from the beneficiaries of the National Health Insurance Program in Taiwan from 2002 to 2010. Children under 18 years of age with newly diagnosed asthma (ICD-9-CM code: 493, N = 45 833) were enrolled, and 57.95% (N = 26 585) of them had used TCM. The number of TCM users was significantly more than that of non-TCM users in school-age children. The most commonly prescribed TCM formula is Ding-chuan-tang, or Xing-ren (Semen Armeniacae Amarum) for the single herb. Our study is the first to reveal characteristics and prescription patterns of the use of TCM in children with asthma. Further research is needed to elucidate the efficacy and safety of these Chinese herbal products.
Collapse
Affiliation(s)
- T.-P. Huang
- Department of Traditional Chinese Medicine; Center for Traditional Chinese Medicine; Chang Gung Memorial Hospital; Taoyuan Taiwan
- Graduate Institute of Traditional Chinese Medicine; School of Traditional Chinese Medicine; Chang Gung University; Taoyuan Taiwan
| | - P.-H. Liu
- Clinical Informatics and Medical Statistics Research Center; College of Medicine; Chang Gung University; Taoyuan Taiwan
| | - A. S.-Y. Lien
- School of Nursing; College of Medicine; Chang Gung University; Taoyuan Taiwan
| | - S.-L. Yang
- Department of Traditional Chinese Medicine; Center for Traditional Chinese Medicine; Chang Gung Memorial Hospital; Taoyuan Taiwan
- Graduate Institute of Traditional Chinese Medicine; School of Traditional Chinese Medicine; Chang Gung University; Taoyuan Taiwan
| | - H.-H. Chang
- Department of Traditional Chinese Medicine; Center for Traditional Chinese Medicine; Chang Gung Memorial Hospital; Taoyuan Taiwan
- Graduate Institute of Traditional Chinese Medicine; School of Traditional Chinese Medicine; Chang Gung University; Taoyuan Taiwan
| | - H.-R. Yen
- Department of Traditional Chinese Medicine; Center for Traditional Chinese Medicine; Chang Gung Memorial Hospital; Taoyuan Taiwan
- Graduate Institute of Traditional Chinese Medicine; School of Traditional Chinese Medicine; Chang Gung University; Taoyuan Taiwan
- Chinese Herbal Medicine Research Team; Healthy Aging Research Center; Chang Gung University; Taoyuan Taiwan
- Research Center for Traditional Chinese Medicine; Department of Chinese Medicine and Department of Medical Research; China Medical University Hospital; Taichung Taiwan
- School of Chinese Medicine; China Medical University; Taichung Taiwan
| |
Collapse
|
39
|
Chen HY, Lin YH, Thien PF, Chang SC, Chen YC, Lo SS, Yang SH, Chen JL. Identifying core herbal treatments for children with asthma: implication from a chinese herbal medicine database in taiwan. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:125943. [PMID: 24066007 PMCID: PMC3771466 DOI: 10.1155/2013/125943] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/24/2013] [Indexed: 01/09/2023]
Abstract
Asthma is one of the most common allergic respiratory diseases around the world and places great burden on medical payment. Chinese herbal medicine (CHM) is commonly used for Taiwanese children to control diseases. The aim of this study is to analyze the CHM prescriptions for asthmatic children by using a nationwide clinical database. The National Health Insurance Research Database (NHIRD) was used to perform this study. Medical records from 1997 to 2009 with diagnosis with asthma made for children aged 6 to 18 were included into the analysis. Association rule mining and social network analysis were used to analyze the prevalence of single CHM and its combinations. Ma-Xing-Gan-Shi-Tang (MXGST) was the most commonly used herbal formula (HF) (20.2% of all prescriptions), followed by Xiao-Qing-Long-Tang (13.1%) and Xing-Su-San (12.8%). Zhe Bei Mu is the most frequently used single herb (SH) (14.6%), followed by Xing Ren (10.7%). MXGST was commonly used with Zhe Bei Mu (3.5%) and other single herbs capable of dispelling phlegm. Besides, MXGST was the core formula to relieve asthma. Further studies about efficacy and drug safety are needed for the CHM commonly used for asthma based on the result of this study.
Collapse
Affiliation(s)
- Hsing-Yu Chen
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, No. 123, Dinghu Road, Gueishan, Taoyuan 33378, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, No. 259, Wen Hwa 1st Road, Gueishan, Taoyuan 33302, Taiwan
| | - Yi-Hsuan Lin
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, No. 123, Dinghu Road, Gueishan, Taoyuan 33378, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, No. 259, Wen Hwa 1st Road, Gueishan, Taoyuan 33302, Taiwan
| | - Peck-Foong Thien
- Department of Medical Research and Education, National Yang-Ming University Hospital, No. 152, Xin Min Road, I-Lan 26042, Taiwan
| | - Shih-Chieh Chang
- Division of Chest Medicine, Department of Internal Medicine, National Yang-Ming University Hospital, No. 152, Xin Min Road, I-Lan 26042, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei 112, Taiwan
| | - Yu-Chun Chen
- Department of Medical Research and Education, National Yang-Ming University Hospital, No. 152, Xin Min Road, I-Lan 26042, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei 112, Taiwan
- Institute of Hospital and Health Care Administration, School of Medicine, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei 112, Taiwan
| | - Su-Shun Lo
- Faculty of Medicine, School of Medicine, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei 112, Taiwan
| | - Sien-Hung Yang
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, No. 123, Dinghu Road, Gueishan, Taoyuan 33378, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, No. 259, Wen Hwa 1st Road, Gueishan, Taoyuan 33302, Taiwan
| | - Jiun-Liang Chen
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, No. 123, Dinghu Road, Gueishan, Taoyuan 33378, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, No. 259, Wen Hwa 1st Road, Gueishan, Taoyuan 33302, Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, No. 155, Section 2, Linong Street, Taipei 112, Taiwan
| |
Collapse
|
40
|
Boo HO, Shin JH, Kim YS, Park HJ, Kim HH, Kwon SJ, Woo SH. Comparative Antioxidant Enzyme Activity of Diploid and Tetraploid Platycodon grandiflorum by Different Drying Methods. ACTA ACUST UNITED AC 2013. [DOI: 10.7732/kjpr.2013.26.3.389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Platycodi Radix attenuates dimethylnitrosamine-induced liver fibrosis in rats by inducing Nrf2-mediated antioxidant enzymes. Food Chem Toxicol 2013; 56:231-9. [PMID: 23485615 DOI: 10.1016/j.fct.2013.02.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 02/01/2013] [Accepted: 02/14/2013] [Indexed: 11/20/2022]
Abstract
The purpose of this study was to investigate the anti-fibrotic effects of the aqueous extract of the Platycodi Radix root (Changkil: CK) on dimethylnitrosamine (DMN)-induced liver fibrosis in rats. DMN treatment for 4 weeks led to marked liver fibrosis as assessed by serum biochemistry, histopathological examination, and hepatic lipid peroxidation and collagen content. CK significantly inhibited DMN-induced increases in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, fibrosis score, and hepatic malondialdehyde and collagen content. CK also inhibited DMN-induced reductions in rat body and liver weights. Reverse transcription polymerase chain reaction (RT-PCR) and western blot analyses revealed that CK inhibited DMN-induced increases in matrix metalloproteinase-13 (MMP-13), tissue inhibitor of metalloproteinase-1 (TIMP-1), and tumor necrosis factor-α (TNF-α) mRNA, and collagen type I and α-smooth muscle actin protein. DMN-induced cyclooxygenase-2 (COX-2) expression and nuclear factor-kappa B (NF-κB) activation was reduced by CK treatment. Furthermore, CK induced activation of nuclear erythroid 2-related factor 2 (Nrf2)-mediated antioxidant enzymes such as γ-glutamylcysteine synthetase (γ-GCS), heme oxygenase-1 (HO-1), NAD(P)H quinone oxidoreductase 1 (NQO1), and glutathione-S-transferase (GST) in HepG2 cells. These results demonstrated that CK attenuates DMN-induced liver fibrosis through the activation of Nrf2-mediated antioxidant enzymes.
Collapse
|
42
|
Hwang YP, Choi JH, Kim HG, Lee HS, Chung YC, Jeong HG. Saponins from Platycodon grandiflorum inhibit hepatic lipogenesis through induction of SIRT1 and activation of AMP-activated protein kinase in high-glucose-induced HepG2 cells. Food Chem 2013; 140:115-23. [PMID: 23578622 DOI: 10.1016/j.foodchem.2013.02.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/10/2013] [Accepted: 02/12/2013] [Indexed: 12/16/2022]
Abstract
Saponins from the roots of Platycodon grandiflorum (Changkil saponins, CKS) have antioxidant and hepatoprotective properties. This study investigated the effects of CKS on AMP-activated protein kinase (AMPK) activation and hepatic lipogenesis in HepG2 cells. CKS suppressed high-glucose-induced lipid accumulation and inhibited high-glucose-induced fatty acid synthase (FAS) and sterol regulatory element binding protein-1c (SREBP-1c) expression in HepG2 cells. Moreover, the use of a pharmacological AMPK inhibitor revealed that AMPK is essential for the suppression of SREBP-1c expression in CKS-treated cells. Finally, the activation of calcium/calmodulin-dependent kinase kinase β (CaMKKβ) and SIRT1 was necessary for CKS-enhanced activation of AMPK. These results indicate that CKS prevents lipid accumulation in HepG2 cells by blocking the expression of SREBP-1c and FAS through SIRT1 and CaMKKβ/AMPK activation. Using CKS to target AMPK activation may provide a promising approach for the prevention lipogenesis.
Collapse
Affiliation(s)
- Yong Pil Hwang
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
43
|
Kim MS, Kim WG, Chung HS, Park BW, Ahn KS, Kim JJ, Bae H. Improvement of atopic dermatitis-like skin lesions by Platycodon grandiflorum fermented by Lactobacillus plantarum in NC/Nga mice. Biol Pharm Bull 2012; 35:1222-9. [PMID: 22863917 DOI: 10.1248/bpb.b110504] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atopic dermatitis (AD) is characterized as a multi-factorial inflammatory skin disease that has been increasing worldwide. Previously, we demonstrated that FPG, which is Platycodon grandiflorum (PG) fermented by Lactobacillus plantarum (LP), increases the level of interferon (IFN)-gamma in mouse splenocytes in vitro. In this study, we investigated the effects of FPG in an animal model of AD, with a particular emphasis on its effects on T helper (Th)1 and Th2 immune responses. To assess the potential use of FPG for the inhibition of AD, we established a model of AD-like skin lesions in NC/Nga mice. Immunoglobulin isotypes (Igs) and Th1/Th2 cytokines in the sera and spleens of AD-like mice were examined. In addition, histological examination was also performed. AD symptoms in skin lesions improved following oral administration of FPG. IgE secretion was significantly down-regulated, and this was accompanied by decreased levels of interleukin (IL)-4 and IgG1 and increased serum levels of IL-12p40 and IgG2a in FPG-treated animals. In splenocytes, the production of the Th1 cytokines IL-12p40 and IFN-gamma was up-regulated, while the levels of the Th2 cytokines IL-4 and 5 were down-regulated by FPG treatment. These results suggest that FPG inhibits the development of AD-like skin lesions in NC/Nga mice by suppressing the Th2 cell response and increasing the Th1 cell responses. Our results indicate that FPG is safe and effective for the prevention of AD-like skin lesions.
Collapse
Affiliation(s)
- Min-Soo Kim
- Research Institute of Atopy and Immunity, CombiMed Co., Ltd., Seocho-gu, Seoul 137–070, South Korea
| | | | | | | | | | | | | |
Collapse
|
44
|
Long-Term Consumption of Platycodi Radix Ameliorates Obesity and Insulin Resistance via the Activation of AMPK Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:759143. [PMID: 22829857 PMCID: PMC3398669 DOI: 10.1155/2012/759143] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 05/10/2012] [Accepted: 05/17/2012] [Indexed: 01/16/2023]
Abstract
This study was designed to evaluate the effects and mechanism of Platycodi radix, having white balloon flower (Platycodon grandiflorum for. albiflorum (Honda) H. Hara) on obesity and insulin resistance. The extracts of Platycodi radix with white balloon flower were tested in cultured cells and administered into mice on a high-fat diet. The Platycodi radix activated the AMPK/ACC phosphorylation in C2C12 myotubes and also suppressed adipocyte differentiation in 3T3-L1 cells. In experimental animal, it suppressed the weight gain of obese mice and ameliorated obesity-induced insulin resistance. It also reduced the elevated circulating mediators, including triglyceride (TG), T-CHO, leptin, resistin, and monocyte chemotactic protein (MCP)-1 in obesity. As shown in C2C12 myotubes, the administration of Platycodi radix extracts also recovered the AMPK/ACC phosphorylation in the muscle of obese mice. These results suggest that Platycodi radix with white balloon flower ameliorates obesity and insulin resistance in obese mice via the activation of AMPK/ACC pathways and reductions of adipocyte differentiation.
Collapse
|
45
|
Choi JH, Han EH, Park BH, Kim HG, Hwang YP, Chung YC, Lee YC, Jeong HG. Platycodi Radix suppresses development of atopic dermatitis-like skin lesions. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 33:446-452. [PMID: 22407167 DOI: 10.1016/j.etap.2012.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/31/2012] [Accepted: 02/05/2012] [Indexed: 05/31/2023]
Abstract
Platycodi Radix has been used to treat chronic diseases, such as bronchitis, asthma, and hyperlipidemia. In this study, we examined the effect of an aqueous extract, Changkil (CK), from the root of Platycodi Radix on 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD)-like skin lesions. Administration of CK onto DNCB-induced AD-like skin lesions in NC/Nga mice ameliorated lesion intensity scores, levels of IgE, thymus and activation-regulated chemokine (TARC), TNF-α, and IL-4 in serum and ears. In contrast, CK increased level of the immunosuppressive cytokine IL-10. Histopathological examination showed reduced thickness of the epidermis/dermis and dermal infiltration of inflammatory cells in the ears. CK also suppressed TNF-α/IFN-γ-induced mRNA expression and production of TARC in HaCaT cells. CK exerts beneficial effects on AD symptoms, suggesting that CK is an effective potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Jae Ho Choi
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Lee MY, Ahn KS, Lim HS, Yuk JE, Kwon OK, Lee KY, Lee HK, Oh SR. Tiarellic acid attenuates airway hyperresponsiveness and inflammation in a murine model of allergic asthma. Int Immunopharmacol 2011; 12:117-24. [PMID: 22085848 DOI: 10.1016/j.intimp.2011.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 10/26/2011] [Accepted: 10/31/2011] [Indexed: 01/06/2023]
Abstract
Asthma is a persistent inflammatory disease characterized by airway obstruction and hyperresponsiveness in association with airway inflammation. In the current research, we studied the anti-inflammatory and anti-asthmatic effects of tiarellic acid (TA) isolated from Tiarella polyphylla, based on asthmatic parameters, such as immunoglobulin E (IgE) level, cytokine release, eosinophilia, airway hyperresponsiveness (AHR), reactive oxygen species (ROS) and mucus hypersecretion, in an ovalbumin (OVA)-sensitized/challenged mouse model. TA significantly inhibited increases in IgE, levels of ROS and T helper cytokines, such as interleukin (IL)-4, IL-5, TNF-α, and IL-13, in bronchoalveolar lavage fluid (BALF), and effectively suppressed airway hyperresponsiveness, eosinophilia, and mucus hypersecretion in the asthmatic mouse model. In addition, we found that administration of TA attenuated ovalbumin-induced increases in NF-κB activity in lungs. The efficacy of TA was comparable to that of montelukast, a currently available anti-asthmatic drug. Our results support the utility of TA as a herbal medicine for asthma treatment and may have application in the development of anti-inflammatory and anti-asthmatic drugs.
Collapse
Affiliation(s)
- Mee-Young Lee
- Herbal Medicine EBM Research Center, Korea Institute of Oriental Medicine, Exporo 483, Yusung, Daejeon 305-811, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Hwang YP, Kim HG, Choi JH, Han EH, Kwon KI, Lee YC, Choi JM, Chung YC, Jeong TC, Jeong HG. Saponins from the roots of Platycodon grandiflorum suppress ultraviolet A-induced matrix metalloproteinase-1 expression via MAPKs and NF-κB/AP-1-dependent signaling in HaCaT cells. Food Chem Toxicol 2011; 49:3374-82. [PMID: 22005258 DOI: 10.1016/j.fct.2011.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 09/30/2011] [Accepted: 10/02/2011] [Indexed: 02/02/2023]
Abstract
Saponins from the roots of Platycodon grandiflorum (CKS) have been shown to exhibit many pharmacological activities, including anti-cancer and anti-inflammatory activities and antioxidant effects. However, anti-skin photoaging effects of CKS have not yet been reported. In this study, we investigated the protective effects of CKS against UVA damage on immortalized human keratinocytes (HaCaT). We then explored the inhibitory effects of CKS on UVA-induced MMP-1 and investigated the molecular mechanism underlying those effects. CKS increased the cell viability and inhibited reactive oxygen species (ROS) production in HaCaT cells exposed to UVA irradiation. Pre-treatment of HaCaT cells with CKS inhibited UVA-induced production of MMP-1 and MMP-9. In addition, CKS decreased UVA-induced expression of the inflammatory cytokines IL-1β and IL-6. Western blot analysis further revealed that CKS markedly suppressed the enhancement of collagen degradation in UVA-exposed HaCaT cells. CKS also suppressed UVA-induced activation of NF-κB or c-Jun and c-Fos, and the phosphorylation of MAPKs, which are upstream modulators of NF-κB and AP-1.
Collapse
Affiliation(s)
- Yong Pil Hwang
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Choi JH, Hwang YP, Han EH, Kim HG, Park BH, Lee HS, Park BK, Lee YC, Chung YC, Jeong HG. Inhibition of acrolein-stimulated MUC5AC expression by Platycodon grandiflorum root-derived saponin in A549 cells. Food Chem Toxicol 2011; 49:2157-66. [PMID: 21664222 DOI: 10.1016/j.fct.2011.05.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 05/25/2011] [Accepted: 05/26/2011] [Indexed: 12/20/2022]
Abstract
Mucin overproduction is a hallmark of chronic airway diseases such as chronic obstructive pulmonary disease. In this study, we investigated the inhibition of acrolein-induced expression of mucin 5, subtypes A and C (MUC5AC) by Changkil saponin (CKS) in A549 cells. Acrolein, a known toxin in tobacco smoke and an endogenous mediator of oxidative stress, increases the expression of airway MUC5AC, a major component of airway mucus. CKS, a Platycodon grandiflorum root-derived saponin, inhibited acrolein-induced MUC5AC expression and activity, through the suppression of NF-κB activation. CKS also repressed acrolein-induced phosphorylation of ERK1/2, JNK1/2, and p38MAPK, which are upstream signaling molecules that control MUC5AC expression. In addition, the MAPK inhibitors PD98059 (ERK1/2), SP600125 (JNK1/2), and SB203580 (p38 MAPK), and a PKC delta inhibitor (rottlerin; PKCδ) inhibited acrolein-induced MUC5AC expression and activity. CKS repressed acrolein-induced phosphorylation of PKCδ. Moreover, a reactive oxygen species (ROS) inhibitor, N-acetylcysteine, inhibited acrolein-induced MUC5AC expression and activity through the suppression of PKCδ and MAPK activation, and CKS repressed acrolein-induced ROS production. These results suggest that CKS suppresses acrolein-induced MUC5AC expression by inhibiting the activation of NF-κB via ROS-PKCδ-MAPK signaling.
Collapse
Affiliation(s)
- Jae Ho Choi
- Department of Toxicology, College of Pharmacy, Chungnam National University, 220 Gung-dong, Daejeon 305-764, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Alleviation of OVA-induced airway inflammation by flowers of Inula japonica in a murine model of asthma. Biosci Biotechnol Biochem 2011; 75:871-6. [PMID: 21597181 DOI: 10.1271/bbb.100787] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The flowers of Inula japonica (Inulae Flos) have long been used in traditional medicine for treating inflammatory diseases. The effects on OVA-induced asthmatic mice of an Inulae Flos extract (IFE) were evaluated in this study. The anti-asthmatic effects of IFE were determined by observing eosinophil recruitment, airway hyper-responsiveness (AHR), Th2 cytokine and IgE levels, and lung histopathology. The IFE treatment effectively reduced the percentage of eosinophils and Th2 cytokines in the bronchoalveolar lavage fluid (BALF) when compared to the levels in OVA-induced mice. IFE also suppressed AHR induced by aerosolized methacholine in OVA-induced mice. The results of the histopathological studies indicate that inflammatory cell infiltration and mucus hypersecretion were both inhibited by the IFE administration when compared to the effect on OVA-induced mice. The IFE treatment also suppressed the serum IgE levels and decreased Th2 cytokines in the supernatant of cultured splenocytes. These results suggest that IFE may have therapeutic potential against asthma.
Collapse
|
50
|
Brugiolo ASS, Alves CCDS, Gouveia ACC, Dias AT, Rodrigues MF, Pacífico LGG, Aarestrup BJV, Machado MA, Domingues R, Teixeira HC, Gameiro J, Ferreira AP. Effects of aqueous extract of Echinodorus grandiflorus on the immune response in ovalbumin-induced pulmonary allergy. Ann Allergy Asthma Immunol 2011; 106:481-8. [PMID: 21624747 DOI: 10.1016/j.anai.2011.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 11/24/2010] [Accepted: 01/11/2011] [Indexed: 01/12/2023]
Abstract
BACKGROUND Asthma is a disease characterized by intermittent obstruction of the airways and chronic inflammation that affects approximately 300 million people worldwide. The immune response in asthma is predominantly T(H)2, with high levels of total and allergen-specific IgE and bronchial eosinophilia. Asthma treatment is aimed at controlling the disease, and the drugs used currently have systemic adverse effects and generally are not effective in difficult-to-control cases. OBJECTIVE To investigate the effect of aqueous extract of Echinodorus grandiflorus, a plant used in folk medicine for its diuretic and anti-inflammatory properties, in a model of pulmonary allergy. METHODS BALB/c mice were intraperitoneally sensitized and nasally challenged with ovalbumin. Aqueous extract and dexamethasone treatments (0.1 mL/d per mouse) were initiated on day 32 and concluded on day 40. Eight hours after the last challenge evaluations, of serum, bronchoalveolar lavage, and lung tissue were performed. RESULTS Oral treatment with the extract markedly reduced the number of total cells and eosinophils in bronchoalveolar lavage. The eosinophil peroxidase activity in lung tissue, the levels of ovalbumin-specific IgE in serum, the levels of CCL11, and the gene expression of interleukin 4 and interleukin 13 in lung tissue were also lower after treatment. CONCLUSIONS These results suggest that the aqueous extract of E grandiflorus is able to modulate allergic pulmonary inflammation and may be useful as a potential therapeutic agent for asthma.
Collapse
Affiliation(s)
- Alessa Sin Singer Brugiolo
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|