1
|
Raz M, Bagherzadeh-Kasmani F, Karimi-Torshizi MA, Ghazaghi M, Mokhtarpour A, Mehri M. Boosting antioxidant defense and enhancing product quality by biochar and probiotics under chronic aflatoxicosis in quails. Poult Sci 2025; 104:105183. [PMID: 40273683 PMCID: PMC12051563 DOI: 10.1016/j.psj.2025.105183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025] Open
Abstract
Aflatoxins, particularly aflatoxin B1 (AFB1), are potent mycotoxins adversely affecting poultry performance, health, and product quality. Mitigation strategies are critical for poultry productivity. This study assessed the efficacy of Prosopis farcta biochar and Lactobacillus fermentum in mitigating AFB1-induced toxicity in quails, with a focus on performance, antioxidant status, and product quality. Two experiments were conducted with quails during growing (7-35 days) and laying (70-98 days) periods under five dietary treatments: Negative Control (basal diet), Positive Control (AFB1-contaminated diet), and AFB1 diets supplemented with Mycofix Plus, biochar, or biochar combined with L. fermentum. Growth performance, antioxidant status, meat and egg quality, and liver enzyme activity were evaluated. AFB1 significantly impaired performance, reduced meat and egg quality, and elevated oxidative stress and liver enzymes (P < 0.01). Supplementation with biochar, particularly in combination with L. fermentum, significantly alleviated these effects, improving body weight, glutathione peroxidase activity, and reducing malondialdehyde and liver enzyme levels (P < 0.01). Biochar and its combination with L. fermentum effectively mitigated aflatoxicosis in quails, enhancing health and productivity metrics. Integrating biochar and L. fermentum in poultry diets is a promising approach to managing mycotoxin challenges, improving economic and product quality outcomes in poultry systems.
Collapse
Affiliation(s)
- Majid Raz
- Department of Animal Science, College of Agriculture, University of Zabol, Zabol 98661-5538, Iran
| | | | | | - Mahmoud Ghazaghi
- Department of Animal Science, College of Agriculture, University of Zabol, Zabol 98661-5538, Iran
| | - Amir Mokhtarpour
- Special Domestic Animals Institute, Research Institute of Zabol, Zabol, Iran
| | - Mehran Mehri
- Department of Animal Science, College of Agriculture, University of Zabol, Zabol 98661-5538, Iran
| |
Collapse
|
2
|
Pascari X, Teixido-Orries I, Molino F, Marin S, Ramos AJ. Assessing the in vitro efficiency in adsorbing mycotoxins of a tri-octahedral bentonite with potential application in aquaculture feed. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025; 42:503-516. [PMID: 39903870 DOI: 10.1080/19440049.2025.2459234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/11/2024] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
The use of mycotoxin binders in feed products is currently the most efficient method to mitigate the harmful effects of mycotoxins. The unprecedented growth of aquaculture in recent years has led to an increased use of plant-based ingredients in fish feeds, thereby raising the risk of mycotoxin exposure. This study investigates the in vitro adsorption efficiency of a tri-octahedral bentonite against aflatoxin B1 (AFB1), zearalenone (ZEN), and fumonisin B1 (FB1) in simulated gastric (pH = 1.2) and intestinal (pH = 6.8) fluids at 25 °C, the usual body temperature in aquaculture fish species. The binder was highly effective, removing over 98% of AFB1 from both media. FB1 was completely adsorbed at pH = 1.2, while its adsorption at pH = 6.8 reached a maximum of 46.3%. ZEN binding was consistent across both pH levels, ranging from 56.1% to 69.7%. Nine equilibrium isotherm functions were fitted to the experimental data to elucidate the adsorption mechanisms. A Sips model isotherm best characterized AFB1 adsorption in simulated gastric fluid, whereas that of ZEN was best described by the Freundlich model. In simulated intestinal fluid (pH = 6.8), monolayer adsorption described by the Langmuir model provided the best fit for all three mycotoxins.
Collapse
Affiliation(s)
- Xenia Pascari
- Department of Food Technology, Engineering and Science, AGROTECNIO-CERCA Center, University of Lleida, Lleida, Spain
| | - Irene Teixido-Orries
- Department of Food Technology, Engineering and Science, AGROTECNIO-CERCA Center, University of Lleida, Lleida, Spain
| | - Francisco Molino
- Department of Food Technology, Engineering and Science, AGROTECNIO-CERCA Center, University of Lleida, Lleida, Spain
| | - Sonia Marin
- Department of Food Technology, Engineering and Science, AGROTECNIO-CERCA Center, University of Lleida, Lleida, Spain
| | - Antonio J Ramos
- Department of Food Technology, Engineering and Science, AGROTECNIO-CERCA Center, University of Lleida, Lleida, Spain
| |
Collapse
|
3
|
Alqhtani AH, Al Sulaiman AR, Abudabos AE. Evaluating the effectiveness of Toxfin and Novasil as dietary aflatoxin-binding agents in broilers for sustaining hepatic antioxidant capacity and intestinal health status during aflatoxin B 1 exposure. Mycotoxin Res 2025; 41:25-35. [PMID: 39367956 DOI: 10.1007/s12550-024-00567-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
To assess the efficacy of Toxfin and Novasil as aflatoxin-binding agents in broilers exposed to aflatoxin B1 (AFB1) from 11 to 30 days, 288 mixed-sex Ross 308 broiler chickens were randomly allocated to four dietary groups: control feed, control feed + 0.25 mg/kg AFB1, AFB1 feed + 0.3% Toxfin, and AFB1 feed + 0.3% Novasil. The evaluation encompassed growth performance for the grower (11-20 days), finisher (21-30 days), and overall (11-30 days) phases, carcass characteristics, serum biochemical components, liver function enzymes, hepatic antioxidant capacity, AFB1 residue in the liver and kidney, and ileal morphology at 30 days, and apparent nutrient digestibility during 29-30 days. Exposure to AFB1 significantly resulted in reduced growth efficiency, lowered carcass yields, liver hypertrophy, impaired metabolic and hepatic functions, liver oxidative stress, disrupted ileum architecture, diminished nutrient digestibility, and accumulated AFB1 in the liver and kidney. Conversely, supplementation of Toxfin or Novasil significantly augmented body weight gain (BWG) and reduced feed conversion ratio (FCR) during the finisher and overall phases, elevated BWG in the grower phase, heightened levels of glucose, hepatic protein, and glutathione peroxidase, declined malondialdehyde content, improved apparent metabolizable energy, and lowered AFB1 residues in the liver and kidney. Furthermore, Toxfin inclusion significantly reduced FCR during the grower phase, enhanced European production efficiency factor during the grower and overall phases, augmented dressing percentage, declined proportional liver weight, elevated concentrations of total protein, albumin, and total antioxidant capacity, heightened villus surface area, and boosted crude protein digestibility. To conclude, incorporating 0.3% Toxfin into broilers' feeds confers a more effectual safeguard than Novasil against the deleterious consequences of AFB1 exposure.
Collapse
Affiliation(s)
- Abdulmohsen H Alqhtani
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | - Ali R Al Sulaiman
- Environmental Protection Technologies Institute, Sustainability and Environment Sector, King Abdulaziz City for Science and Technology, P.O. Box 6086, 11442, Riyadh, Saudi Arabia
| | - Ala E Abudabos
- Department of Agriculture, School of Agriculture and Applied Sciences, Alcorn State University, 1000 ASU Drive, Lorman, MS, 39096-7500, USA.
| |
Collapse
|
4
|
Carrasco-Sánchez V, Laurie VF, Muñoz-Vera M, Castro RI. Holocellulose from a Winemaking By-Product to Develop a Biopolymeric System for Bacterial Immobilization: Adsorption of Ochratoxin A in Wine Model Solutions (Box-Behnken Design). Toxins (Basel) 2025; 17:26. [PMID: 39852979 PMCID: PMC11768956 DOI: 10.3390/toxins17010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/26/2024] [Accepted: 01/01/2025] [Indexed: 01/26/2025] Open
Abstract
Significant agro-industrial waste is produced during the winemaking process, including grape stalks, which are a rich source of the valuable biopolymer holocellulose that can be utilized for biotechnological processes. The purpose of this study was to delignify grape stalks in order to extract holocellulose. Then Lactobacillus plantarum (LP) was immobilized in the interstitial spaces of holocellulose and then coated with natural polymers (chitosan, Ch; and alginate, Al) to create the Holo-LP/Ch/Al complex. A physicochemical analysis of the system revealed strong bacterial immobilization and stability. The efficiency of the complex in adsorbing ochratoxin A (OTA) from wine model solutions was assessed using a Box-Behnken design under various pH, time, and concentration conditions. The results showed that at pH 3.0, 75.39 min, and a complex concentration of 43.82 mg mL-1, the best OTA removal (53.68%) took place. Because of its physicochemical interactions, the complex showed improved OTA adsorption in acidic environments. This study demonstrates the potential of biopolymeric systems based on holocellulose for reducing mycotoxin contamination in beverages and stabilizing bacterial cells. These results offer a viable way to increase food safety and value winemaking by-products.
Collapse
Affiliation(s)
- Verónica Carrasco-Sánchez
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Chile
- Centro de Nanomedicina, Diagnóstico & Desarrollo de Fármacos, Universidad de Talca, Talca 3460000, Chile
| | - V. Felipe Laurie
- Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile;
| | - Marcelo Muñoz-Vera
- Construction Multidisciplinary Research Group, Facultad de Arquitectura, Construcción y Medio Ambiente, Universidad Autónoma de Chile, Talca 3460000, Chile;
| | - Ricardo Ignacio Castro
- Multidisciplinary Agroindustry Research Laboratory, Carrera de Ingeniería en Construcción, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Talca 3460000, Chile
| |
Collapse
|
5
|
Medianeira de Lima Schlösser L, Stracke Pfingsten Franco D, Alves Sarturi J, Rosa da Silva C, Fabris Laber I, Tonial Simões C, Mallmann CA. Evaluation of mycotoxin binders against deoxynivalenol and fumonisin B 1 using isotherm models and linear equations. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2025; 42:117-130. [PMID: 39565638 DOI: 10.1080/19440049.2024.2430281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024]
Abstract
This study was conducted to evaluate the adsorbent characteristics of two mycotoxin binders (BBAc - composed of bentonite, β-glucans, and activated charcoal, and SepHt - composed of heat-treated sepiolite) against deoxynivalenol (DON) and fumonisin B1 (FB1) using Brunaeur-Emmett-Teller, Dubinin-Radushkevich, Freundlich, and Langmuir isotherm models and linear regression equations. Both products were tested in vitro at 0.5% with increasing levels of DON or FB1 (0.5-10 mg L-1) using solutions of pH 3 and pH 6 and analysed by LC-MS/MS. FB1 adsorption rates were not different between the products (p > 0.05) at pH 3 and pH 6. At a DON concentration of 1 mg L-1, BBAc had higher (p < 0.05) adsorption rates than SepHt. For DON, the Freundlich model had the best fit with BBAc at pH 3 and 6, and the Langmuir model with SepHt at both pHs. For FB1, the Freundlich model had the best fit with BBAc and SepHt at pH 3, and the Langmuir model with both products at pH 6. All the linear regression equations had lower R2 than the isotherm models. Therefore, the adsorption isotherm models provided more informative and reliable data for the mycotoxins and mycotoxin binders tested herein.
Collapse
Affiliation(s)
| | | | - Janine Alves Sarturi
- Laboratory of Mycotoxicological Analyses, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Cristiane Rosa da Silva
- Laboratory of Mycotoxicological Analyses, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Isadora Fabris Laber
- Laboratory of Mycotoxicological Analyses, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Cristina Tonial Simões
- Laboratory of Mycotoxicological Analyses, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Carlos Augusto Mallmann
- Laboratory of Mycotoxicological Analyses, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
6
|
Oladele JO, Wang M, Rivenbark KJ, Phillips TD. Application and efficacy of beidellite clay for the adsorption and detoxification of deoxynivalenol (vomitoxin). EMERGING CONTAMINANTS 2024; 10:100390. [PMID: 40276486 PMCID: PMC12021442 DOI: 10.1016/j.emcon.2024.100390] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
The incidence of mycotoxin occurrence throughout the entire lifespan of some agricultural products could be due to climatic conditions and environmental factors (including high temperature, drought, and heavy rainfall) that enhance growth of fungi. Deoxynivalenol (DON) which is also referred to as vomitoxin is a mycotoxin produced from many Fusarium species. DON ranks high among the prominent mycotoxins in cereal products and is a ubiquitous toxin in livestock feeds. DON's adverse effects present major health challenges in both livestock and humans. The use of natural sorbents including smectite clays, is an economically feasible strategy to mitigate mycotoxin toxicities. Previous studies have demonstrated the potential of edible clays as protective components of human food and animal feed to alleviate toxicity associated with short-term exposure to mycotoxins including DON. Hence, this study was designed to investigate the sorption mechanisms of DON onto the binding surfaces of beidellite clay, assessing essential binding parameters such as enthalpy, free energy, binding capacity, affinity, and plateau surface density. These markers were used to predict availability of DON under the experimental conditions. Furthermore, the protection of beidellite clay against DON-induced toxicity was carried out using living organisms susceptible to DON toxicity, including Hydra vulgaris and Lemna minor. These studies investigated the dose-dependent detoxification of DON by 0.05-2 % inclusion of beidellite. Beidellite exhibited more than 75 % protection in Lemna minor and 53 % in Hydra vulgaris validating that this clay is effective in detoxifying DON. During emergencies, or after disasters, inclusion of edible clay like beidellite in food, water or capsules could reduce bioavailability of DON and halt potential exposures to humans and animals.
Collapse
Affiliation(s)
- Johnson O. Oladele
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Meichen Wang
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Kelly J. Rivenbark
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Timothy D. Phillips
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
7
|
Jafari AM, Golmakani A, Jafari AM. Physicochemical characterization and cytotoxicity assessment of sodium dodecyl sulfate (SDS) modified chitosan (SDSCS) before and after removal of aflatoxins (AFs) as a potential mycotoxin Binder. Toxicol Rep 2024; 13:101836. [PMID: 39691817 PMCID: PMC11650310 DOI: 10.1016/j.toxrep.2024.101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/21/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
Aflatoxins in food and feed with prominent toxic effects have jeopardized public health for decades. This investigation intends to explore synthesized SDS-modified chitosan as new generation of binder for removal of aflatoxin using a straightforward ionic cross-linking approach. The primary objective of this technique was to enhance affinity and adsorption capability of SDSCS towards aflatoxins. In this context, physicochemical properties of SDSCS characterized with advanced analytical techniques such as scanning electron microscope (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FT-IR) before and after removal of aflatoxin. In this study, effect of the pH on the adsorption of aflatoxins (6ppb) indicated that the increase in SDSCS concentration from low (0.5) to high (2 %) resulted in an increase of about 80 %, 78 % and 81 % in the adsorption percentage of AFB1, AFG1, and AFB2 & AFG2, respectively. FT-IR analysis showed the intramolecular interactions of the amine groups of chitosan and sulfate group of SDS formed a stable complex in the removal of aflatoxin that verified with appearance of three new additional peaks at 1323.50, 984.34 and 603.42 cm-1. Notably, SEM images revealed that the porous SDSCS network was filled with aflatoxin molecules supported with EDS findings. Also, in vitro cytotoxicity assessments demonstrated that SDSCS protected HepG2 cells against cytotoxic effect caused by aflatoxin (5 µM) in a concentration-dependent manner compared to the control (p<0.01). Collectively, the adsorption mechanism may involve attraction of anionic aflatoxin molecule into the interconnected pores of SDSCS complex with numerous cationic active site via hydrogen bond and van der waals force.
Collapse
Affiliation(s)
| | - Asma Golmakani
- Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Amir Moghaddam Jafari
- Department of Basic Sciences, Faculty of Veterinary Medicine , Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
8
|
Bonerba E, Manfredi A, Dimuccio MM, Lorusso P, Pandiscia A, Terio V, Di Pinto A, Panseri S, Ceci E, Bozzo G. Ochratoxin A in Poultry Supply Chain: Overview of Feed Occurrence, Carry-Over, and Pathognomonic Lesions in Target Organs to Promote Food Safety. Toxins (Basel) 2024; 16:487. [PMID: 39591242 PMCID: PMC11598023 DOI: 10.3390/toxins16110487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin produced by fungi species belonging to the genera Aspergillus spp. and Penicillium spp. The proliferation of OTA-producing fungal species may occur due to inadequate practices during both the pre-harvest and post-harvest stages of feed. Consequently, poultry species may be exposed to high concentrations of this mycotoxin that can be transferred to animal tissues due to its carry-over, reaching dangerous concentrations in meat and meat products. Therefore, this review aims to propose a comprehensive overview of the effects of OTA on human health, along with data from global studies on the prevalence and concentrations of this mycotoxin in avian feeds, as well as in poultry meat, edible offal, and eggs. Moreover, the review examines significant gross and histopathological lesions in the kidneys and livers of poultry linked to OTA exposure. Finally, the key methods for OTA prevention and decontamination of feed are described.
Collapse
Affiliation(s)
- Elisabetta Bonerba
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| | - Alessio Manfredi
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| | - Michela Maria Dimuccio
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| | - Patrizio Lorusso
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| | - Annamaria Pandiscia
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| | - Valentina Terio
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| | - Angela Di Pinto
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| | - Sara Panseri
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell’ Università 6, 26900 Lodi, Italy;
| | - Edmondo Ceci
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| | - Giancarlo Bozzo
- Department of Veterinary Medicine, University of Bari Aldo Moro, Provincial Road to Casamassima km 3, 70100 Valenzano, Italy; (E.B.); (M.M.D.); (P.L.); (A.P.); (V.T.); (A.D.P.); (E.C.); (G.B.)
| |
Collapse
|
9
|
García-García FA, Cristiani-Urbina E, Morales-Barrera L, Rodríguez-Peña ON, Hernández-Portilla LB, Campos JE, Flores-Ortíz CM. Study of Bacillus cereus as an Effective Multi-Type A Trichothecene Inactivator. Microorganisms 2024; 12:2236. [PMID: 39597625 PMCID: PMC11596695 DOI: 10.3390/microorganisms12112236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Type A trichothecenes are common mycotoxins in stored cereal grains, where co-contamination is likely to occur. Seeking new microbiological options capable of inactivating more than one type A trichothecene, this study aimed to analyze facultative anaerobe bacteria isolated from broiler proventriculus. For this purpose, type A trichothecenes were produced in vitro, and a facultative anaerobic bacterial consortium was obtained from a broiler's proventriculus. Then, the most representative bacterial strains were purified, and trichothecene inactivating assays were performed. Finally, the isolate with the greatest capacity to remove all tested mycotoxins was selected for biosorption assays. The results showed that when the consortium was tested, neosolaniol (NEO) was the most degraded mycotoxin (64.55%; p = 0.008), followed by HT-2 toxin (HT-2) (22.96%; p = 0.008), and T-2 toxin (T-2) (20.84%; p = 0.014). All isolates were bacillus-shaped and Gram-positive, belonging to the Bacillus and Lactobacillus genera, of which B. cereus was found to remove T-2 (28.35%), HT-2 (32.84%), and NEO (27.14%), where biosorption accounted for 86.10% in T-2, 35.59% in HT-2, and 68.64% in NEO. This study is the first to prove the capacity of B. cereus as an effective inactivator and binder of multi-type A trichothecenes.
Collapse
Affiliation(s)
- Fernando Abiram García-García
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico; (F.A.G.-G.); (L.B.H.-P.)
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico;
| | - Eliseo Cristiani-Urbina
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico;
| | - Liliana Morales-Barrera
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico;
| | - Olga Nelly Rodríguez-Peña
- Laboratorio de Biogeoquímica, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico;
| | - Luis Barbo Hernández-Portilla
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico; (F.A.G.-G.); (L.B.H.-P.)
| | - Jorge E. Campos
- Laboratorio de Bioquímica Molecular, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico;
| | - Cesar Mateo Flores-Ortíz
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico; (F.A.G.-G.); (L.B.H.-P.)
- Laboratorio de Fisiología Vegetal, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico
| |
Collapse
|
10
|
Wu C, Song J, Liu X, Zhang Y, Zhou Z, Thomas DG, Wu B, Yan X, Li J, Zhang R, Wu F, Cheng C, Pu X, Wang X. Effect of iron-manganese oxide on the degradation of deoxynivalenol in feed and enhancement of growth performance and intestinal health in weaned piglets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117246. [PMID: 39490105 DOI: 10.1016/j.ecoenv.2024.117246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Deoxynivalenol (DON), a prevalent and highly toxic mycotoxin in animal feed, poses significant risks to livestock health and productivity. This study evaluates the effectiveness of iron-manganese oxide (Fe/Mn oxides) in degrading DON. The DON degradation rate of Fe/Mn oxide reached 98.46 % in a controlled solution under specific conditions (0.2 % concentration, 37-85 °C, pH 6-7, 1-minute reaction time). When applied to actual feed, it reduced DON levels by approximately 49.3 % and remained stable in simulated gastrointestinal environments of weaned piglets. A 28-day trial involving 48 weaned piglets assessed the impacts of Fe/Mn oxides on health and growth. Results indicated that piglets consuming contaminated feed without the treatment exhibited reduced growth and compromised gut integrity, which were significantly mitigated by the addition of Fe/Mn oxides. Therefore, Fe/Mn oxides effectively reduce DON in feed and alleviate adverse health effects in piglets, making them a viable option to enhance safety and performance in mycotoxin-prone environments.
Collapse
Affiliation(s)
- Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 611130, China
| | - Jingping Song
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 611130, China
| | - Xinyue Liu
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuwei Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 611130, China
| | - Ziyun Zhou
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 611130, China
| | - David G Thomas
- School of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North 4442, New Zealand
| | - Bing Wu
- Chelota Biotechnology Co., Ltd., Guanghan, Deyang, Sichuan 618302, China
| | - Xinru Yan
- Chelota Biotechnology Co., Ltd., Guanghan, Deyang, Sichuan 618302, China
| | - Jian Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 611130, China
| | - Ruinan Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 611130, China
| | - Fali Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan 611130, China
| | - Chuanmin Cheng
- Sichuan Provincial Feed Work Station, Chengdu, Sichuan 610041, China
| | - Xiang Pu
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Xianxiang Wang
- College of Science, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
11
|
González-Jartín JM, de Castro Alves L, Piñeiro Y, Alfonso A, Alvariño R, Gomez MG, Vieytes MR, Rivas J, Botana LM. Magnetic nanostructured agents for the mitigation of mycotoxins and cyanotoxins in the food chain. Food Chem 2024; 456:140004. [PMID: 38870813 DOI: 10.1016/j.foodchem.2024.140004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Natural toxins, such as mycotoxins and cyanotoxins, can contaminate food and feed, leading to toxicity in humans and animals. This study focused on using nine magnetic nanostructured agents to remove the main types of toxins. Initially, the efficacy of these materials was evaluated in water solutions, revealing that composites with sizes below 3 mm, containing magnetite, activated carbon, esterified pectin, and sodium alginate, removed up to 90% of mycotoxins and cyanotoxins with an adsorption of 873 ng/g. The application of the nanostructures was then assessed in beer, milk, Distillers Dried Grains with Solubles and water contaminated with cyanobacteria. The presence of matrix slightly decreases the adsorption capacity for some toxins. The maximum toxin removal capacity was calculated with cyanotoxins, composites achieved a removal of up to 0.12 mg/g, while nanocomposites (15 μm) reached 36.6 mg/g. Therefore, these findings point out the potential for using nanotechnology in addressing natural toxins contamination.
Collapse
Affiliation(s)
- Jesús M González-Jartín
- Departamento de Farmacología, Facultad de Farmacia, IDIS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Lisandra de Castro Alves
- Departamento de Física Aplicada, Facultad de Física, Insituto de Materiales iMATUS e Instituto de Investigación Sanitaria (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Y Piñeiro
- Departamento de Física Aplicada, Facultad de Física, Insituto de Materiales iMATUS e Instituto de Investigación Sanitaria (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Amparo Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidade de Santiago de Compostela, 27002, Lugo, Spain.
| | - Rebeca Alvariño
- Departamento de Fisiología, Facultad de Veterinaria, IDIS, Universidade de Santiago de Compostela, 27002, Lugo, Spain.
| | - Manuel González Gomez
- Departamento de Física Aplicada, Facultad de Física, Insituto de Materiales iMATUS e Instituto de Investigación Sanitaria (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, IDIS, Universidade de Santiago de Compostela, 27002, Lugo, Spain.
| | - J Rivas
- Departamento de Física Aplicada, Facultad de Física, Insituto de Materiales iMATUS e Instituto de Investigación Sanitaria (IDIS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, IDIS, Universidade de Santiago de Compostela, 27002, Lugo, Spain.
| |
Collapse
|
12
|
Quesada-Vázquez S, Codina Moreno R, Della Badia A, Castro O, Riahi I. Promising Phytogenic Feed Additives Used as Anti-Mycotoxin Solutions in Animal Nutrition. Toxins (Basel) 2024; 16:434. [PMID: 39453210 PMCID: PMC11511298 DOI: 10.3390/toxins16100434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Mycotoxins are a major threat to animal and human health, as well as to the global feed supply chain. Among them, aflatoxins, fumonisins, zearalenone, T-2 toxins, deoxynivalenol, and Alternaria toxins are the most common mycotoxins found in animal feed, with genotoxic, cytotoxic, carcinogenic, and mutagenic effects that concern the animal industry. The chronic negative effects of mycotoxins on animal health and production and the negative economic impact on the livestock industry make it crucial to develop and implement solutions to mitigate mycotoxins. In this review, we summarize the current knowledge of the mycotoxicosis effect in livestock animals as a result of their contaminated diet. In addition, we discuss the potential of five promising phytogenics (curcumin, silymarin, grape pomace, olive pomace, and orange peel extracts) with demonstrated positive effects on animal performance and health, to present them as potential anti-mycotoxin solutions. We describe the composition and the main promising characteristics of these bioactive compounds that can exert beneficial effects on animal health and performance, and how these phytogenic feed additives can help to alleviate mycotoxins' deleterious effects.
Collapse
Affiliation(s)
| | | | | | | | - Insaf Riahi
- Bionte Nutrition, 43204 Reus, Spain; (S.Q.-V.); (R.C.M.); (A.D.B.)
| |
Collapse
|
13
|
Zhen H, Hu Y, Xiong K, Li M, Jin W. The occurrence and biological control of zearalenone in cereals and cereal-based feedstuffs: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1344-1359. [PMID: 39102376 DOI: 10.1080/19440049.2024.2385713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 07/21/2024] [Indexed: 08/07/2024]
Abstract
Zearalenone, a prominent mycotoxin produced by Fusarium spp., ubiquitously contaminates cereal grains and animal feedstuffs. The thermal stability of zearalenone creates serious obstacles for traditional removal methods, which may introduce new safety issues, or reducing nutritional quality. In contrast, biological technologies provide appealing benefits such as easy to apply and effective, with low toxicity byproducts. Thus, this review aims to describe the occurrence of zearalenone in cereals and cereal-based feedstuffs in the recent 5 years, outline the rules and regulations regarding zearalenone in the major countries, and discuss the recent developments of biological methods for controlling zearalenone in cereals and cereal-based feedstuffs. In addition, this article also reviews the application and the development trend of biological strategies for removal zearalenone in cereals and cereal-based feedstuffs.
Collapse
Affiliation(s)
- Hongmin Zhen
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, China
| | - Yumeng Hu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, China
| | - Ke Xiong
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing, China
| | - Mengmeng Li
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, China
| | - Wen Jin
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, China
| |
Collapse
|
14
|
López-Rodríguez C, Verheecke-Vaessen C, Strub C, Fontana A, Schorr-Galindo S, Medina A. Reduction in Ochratoxin A Occurrence in Coffee: From Good Practices to Biocontrol Agents. J Fungi (Basel) 2024; 10:590. [PMID: 39194915 DOI: 10.3390/jof10080590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin mainly produced by Aspergillus section Circumdati and section Nigri across the coffee chain. OTA is nephrotoxic and is a threat to human health. This review summarizes current knowledge on how to reduce OTA concentration in coffee from farm to cup. After a brief introduction to the OTA occurrence in coffee, current good management practices are introduced. The core of this review focuses on biocontrol and microbial decontamination by lactic acid bacteria, yeasts and fungi, and their associated enzymes currently reported in the literature. Special attention is given to publications closest to in vivo applications of biocontrol agents and microbial OTA adsorption or degradation agents. Finally, this review provides an opinion on which future techniques to promote within the coffee supply chain.
Collapse
Affiliation(s)
- Claudia López-Rodríguez
- Magan Centre of Applied Mycology, Cranfield University, Cranfield MK43 0AL, UK
- Qualisud, University of Montpellier, CIRAD, Institut Agro, IRD, Avignon University, University of La Réunion, 34095 Montpellier, France
| | | | - Caroline Strub
- Qualisud, University of Montpellier, CIRAD, Institut Agro, IRD, Avignon University, University of La Réunion, 34095 Montpellier, France
| | - Angélique Fontana
- Qualisud, University of Montpellier, CIRAD, Institut Agro, IRD, Avignon University, University of La Réunion, 34095 Montpellier, France
| | - Sabine Schorr-Galindo
- Qualisud, University of Montpellier, CIRAD, Institut Agro, IRD, Avignon University, University of La Réunion, 34095 Montpellier, France
| | - Angel Medina
- Magan Centre of Applied Mycology, Cranfield University, Cranfield MK43 0AL, UK
| |
Collapse
|
15
|
Godoy AC, Ziemniczak HM, Fantini-Hoag L, da Silva WV, Ferreira ACV, Saturnino KC, Neu DH, Gandra JR, de Padua Pereira U, Honorato CA. The effects of probiotic-based additives on aflatoxin intoxication in Piaractus mesopotamicus: a study of liver histology and metabolic performance. Vet Res Commun 2024; 48:2281-2294. [PMID: 38739261 DOI: 10.1007/s11259-024-10409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
Mycotoxins, produced by fungi, can contaminate fish food and harm their health. Probiotics enhance immune balance and primarily function in the animal intestine. This study aimed to assess aflatoxin's impact on Piaractus mesopotamicus and explore probiotic-based additive (PBA) benefits in mitigating these effects, focusing on antioxidant activity, biochemical indices, and hepatic histopathology. Two experiments were conducted using P. mesopotamicus fry. The first experimental assay tested various levels of aflatoxin B1 (0.0, 25.0, 50.0, 100.0, 200.0, and 400.0 µg kg-1) over a 10-day period. The second experimental assay examined the efficacy of the probiotic (supplemented at 0.20%) in diets with different levels of aflatoxin B1 (0.0, 25.0, and 400.0 µg kg-1) for 15 days. At the end of each assay, the fish underwent a 24-hour fasting period, and the survival rate was recorded. Six liver specimens from each treatment group were randomly selected for metabolic indicator assays, including superoxide dismutase, catalase, alanine aminotransferase, aspartate aminotransferase, and albumin. Additionally, histopathological analysis was performed on six specimens. The initial study discovered that inclusion rates above 25.0 µg kg-1 resulted in decreased activity of AST (aspartate aminotransferase), ALT (alanine aminotransferase), ALB (albumin), CAT (catalase), and SOD (superoxide dismutase), accompanied by liver histopathological lesions. In the second study, the inclusion of PBA in diets contaminated with AFB1 improved the activity of AST and ALT up to 25.0 µg kg-1 of AFB1, with no histopathological lesions observed. The study demonstrated the hepatoprotective effects of PBA in diets contaminated with AFB1. The enzyme activity and hepatic histopathology were maintained, indicating a reduction in damage caused by high concentrations of AFB1 (400.0 µg kg-1 of AFB1). The adverse effects of AFB1 on biochemical and histopathological parameters were observed from 25.0 µg kg-1 onwards. Notably, PBA supplementation enhanced enzymatic activity at a concentration of 25 µg kg-1 of AFB1 and mitigated the effects at 400.0 µg kg-1 of AFB1. The use of PBAs in pacu diets is highly recommended as they effectively neutralize the toxic effects of AFB1 when added to diets containing 25.0 µg kg-1 AFB1. Dietary inclusion of aflatoxin B1 at a concentration of 25.0 µg kg-1 adversely affects the liver of Piaractus mesopotamicus (Pacu). However, the addition of a probiotic-based additive (PBA) to the diets containing this concentration of aflatoxin neutralized its toxic effects. Therefore, the study recommends the use of PBAs in Pacu diets to mitigate the adverse effects of aflatoxin contamination.
Collapse
Affiliation(s)
- Antonio Cesar Godoy
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, 79804970, Dourados, Mato Grosso do Sul, Brazil.
| | - Henrique M Ziemniczak
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, 79804970, Dourados, Mato Grosso do Sul, Brazil
| | - Leticia Fantini-Hoag
- School of Fisheries, Aquaculture and Aquatic Science, Auburn University, 203 Swingle Hall, 36849, Auburn, AL, United States of America
| | - Welinton V da Silva
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, 79804970, Dourados, Mato Grosso do Sul, Brazil
| | - Annye C V Ferreira
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, 79804970, Dourados, Mato Grosso do Sul, Brazil
| | - Klaus C Saturnino
- Instituto de Desenvolvimento Agrário e Regional Quadra Sete (Fl.31), Universidade Federal do Sul e Sudeste Do Pará, Rua Nova Marabá, 68507590, Marabá, Pará, Brazil
| | - Dacley H Neu
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, 79804970, Dourados, Mato Grosso do Sul, Brazil
| | - Jeferson R Gandra
- Instituto de Desenvolvimento Agrário, Universidade Federal de Jataí, BR 364 km 195, Setor Parque Industrial nº 3800, 75801615, Jataí, Goiás, Brazil
| | - Ulisses de Padua Pereira
- Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid 445 Km, 86057970, Londrina, Paraná, Brazil
| | - Claucia A Honorato
- Faculdade de Ciências Agrárias, Universidade Federal da Grande Dourados, Rodovia Dourados - Itahum, km 12, 79804970, Dourados, Mato Grosso do Sul, Brazil
| |
Collapse
|
16
|
Abudabos AE, Aljumaah RS, Alabdullatif AA, Al Sulaiman AR, Hakmi Z, Alharthi AS. Effectiveness of Hydrated Sodium Calcium Aluminosilicates and Discarded Date Pits as Dietary Adsorbents for Aflatoxin B1 in Enhancing Broiler Chicken Productive Performance, Hepatic Function, and Intestinal Health. Animals (Basel) 2024; 14:2124. [PMID: 39061586 PMCID: PMC11274099 DOI: 10.3390/ani14142124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The research aimed to evaluate how effective hydrated sodium calcium aluminosilicates (HSCASs) and discarded date pits (DDPs) are as dietary adsorbents for aflatoxin B1 (AFB1) in enhancing the performance and health of broiler chickens aged 16 to 30 days. A total of 240 Ross 308 straight-run broilers were randomly allocated into four dietary groups, each with 10 replicates: a control diet, a control diet with 1000 ppb AFB1, an AFB1-contaminated diet with 0.5% HSCAS, and an AFB1-contaminated diet with 4% DDP. Incorporating HSCASs or DDPs into the AFB1-contaminated diet resulted in significant improvements across various parameters, involving increased body weight, improved feed conversion ratio, higher dressing percentage, decreased relative weights of kidney and spleen, elevated serum levels of total protein, globulin, and glucose, reduced serum alanine aminotransferase activity, and heightened hepatic protein concentration and glutathione peroxidase activity, along with diminished hepatic malondialdehyde content and glutamic oxaloacetic transaminase activity. Moreover, both supplements led to increased ileal villus height and surface area, enhanced apparent nitrogen-corrected metabolizable energy digestibility, and decreased AFB1 residues in the liver and kidney. Moreover, the dietary inclusion of DDPs significantly decreased relative liver weight, raised serum albumin concentration, lowered serum alkaline phosphatase activity, enhanced hepatic total antioxidant capacity level, and augmented ileal villus width. Conversely, the dietary addition of HSCASs significantly heightened apparent crude protein digestibility. In conclusion, the inclusion of HSCASs and DDPs in AFB1-contaminated diets can mitigate the toxic effects of AFB1 on broiler chickens, with DDPs exhibiting additional advantages in optimizing liver function and gut morphology.
Collapse
Affiliation(s)
- Ala E. Abudabos
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia (A.R.A.S.); (Z.H.)
- Department of Agriculture, School of Agriculture and Applied Sciences, Alcorn State University, 1000 ASU Drive, Lorman, MI 39096-7500, USA
| | - Riyadh S. Aljumaah
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia (A.R.A.S.); (Z.H.)
| | - Abdulaziz A. Alabdullatif
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia (A.R.A.S.); (Z.H.)
| | - Ali R. Al Sulaiman
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia (A.R.A.S.); (Z.H.)
- Environmental Protection Technologies Institute, Sustainability and Environment Sector, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Zafar Hakmi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia (A.R.A.S.); (Z.H.)
| | - Abdulrahman S. Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia (A.R.A.S.); (Z.H.)
| |
Collapse
|
17
|
Rahim Abro M, Rashid N, Khanoranga, Siddique Z. In-vivo evaluation of the adverse effects of ochratoxin A on broiler chicken health and adsorption efficacy of indigenous and commercial clay of Balochistan, Pakistan. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:833-845. [PMID: 38771562 DOI: 10.1080/19440049.2024.2354491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Mycotoxins in animal feed pose health risks and economic losses, but using various adsorbent types could potentially protect animals from mycotoxicosis. The study aimed to assess the effect of OTA on the health of broiler chickens and to envisage the ameliorative potential of clay adsorbents. The objectives of this in vivo study were to investigate the effects of OTA on productivity, biochemical parameters, fecal residues, and the preventive effects of indigenous and commercial clay of Balochistan as adsorbents to alleviate the adverse effects of exposure. Male broiler chickens (n = 160) were treated with 400 μg/kg OTA and 0.5 g/kg clay adsorbent for 42 days, with feed and water available in an ad libitum manner. The amount of OTA in diet and fecal residues was assessed through HPLC. The administration of OTA in the diet, resulted in a significant (p < 0.05) decrease in the average daily gain (ADG) and average daily feed intake (ADFI) while increasing the feed conversion ratio (FCR) as compared to the control group. Furthermore, no significant (p > 0.05) differences were found between the weight gain of broiler chickens fed without OTA (positive control) and that of chickens fed adsorbent. The group given a diet containing OTA without adsorbents as compared to the control and adsorbent-supplemented group has shown a significant (p < 0.05) increase in the relative weight of the liver, kidney, gizzard, and proventriculus while decreasing the relative weight of the spleen and bursa of Fabricius. Alterations in the levels of serum total protein (TP), cholesterol (CHL), serum urea (SU), enzymatic activity (aspartate aminotransferase (AST) and alanine transaminase (ALT)), and creatinine were observed in the OTA-intoxicated and adsorbent-supplemented groups as compared to the control group. Adsorbent supplementation resulted in a significantly (p < 0.05) higher OTA content in the faeces. It can be concluded from the results of this study, that OTA intoxication negatively affects the health of broiler chickens, and the clay of Balochistan has shown effective adsorption potential against OTA.
Collapse
Affiliation(s)
- Mustafa Rahim Abro
- Department of Nutrition and Toxicology, Center for Advanced Studies Vaccinology and Biotechnology, University of Balochistan, Quetta, Pakistan
| | - Nadeem Rashid
- Department of Nutrition and Toxicology, Center for Advanced Studies Vaccinology and Biotechnology, University of Balochistan, Quetta, Pakistan
| | - Khanoranga
- Department of Environmental Science, Sardar Bhadur khan women's University Quetta, Balochistan, Pakistan
| | - Zainab Siddique
- Department of Zoology, Sardar Bhadur khan women's University Quetta, Balochistan, Pakistan
| |
Collapse
|
18
|
Niamnuy C, Sungsinchai S, Jarernsamrit P, Devahastin S, Chareonpanich M. Synthesis and characterization of aluminosilicate and zinc silicate from sugarcane bagasse fly ash for adsorption of aflatoxin B1. Sci Rep 2024; 14:14562. [PMID: 38914625 PMCID: PMC11196643 DOI: 10.1038/s41598-024-65158-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Sugarcane bagasse fly ash, a residual product resulting from the incineration of biomass to generate power and steam, is rich in SiO2. Sodium silicate is a fundamental material for synthesizing highly porous silica-based adsorbents to serve circular practices. Aflatoxin B1 (AFB1), a significant contaminant in animal feeds, necessitates the integration of adsorbents, crucial for reducing aflatoxin concentrations during the digestive process of animals. This research aimed to synthesize aluminosilicate and zinc silicate derived from sodium silicate based on sugarcane bagasse fly ash, each characterized by a varied molar ratio of aluminum (Al) to silicon (Si) and zinc (Zn) to silicon (Si), respectively. The primary focus of this study was to evaluate their respective capacities for adsorbing AFB1. It was revealed that aluminosilicate exhibited notably superior AFB1 adsorption capabilities compared to zinc silicate and silica. Furthermore, the adsorption efficacy increased with higher molar ratios of Al:Si for aluminosilicate and Zn:Si for zinc silicate. The N2 confirmed AFB1 adsorption within the pores of the adsorbent. In particular, the aluminosilicate variant with a molar ratio of 0.08 (Al:Si) showcased the most substantial AFB1 adsorption capacity, registering at 88.25% after an in vitro intestinal phase. The adsorption ability is directly correlated with the presence of surface acidic sites and negatively charged surfaces. Notably, the kinetics of the adsorption process were best elucidated through the application of the pseudo-second-order model, effectively describing the behavior of both aluminosilicate and zinc silicate in adsorbing AFB1.
Collapse
Affiliation(s)
- Chalida Niamnuy
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand.
- Center for Advanced Studies in Nanotechnology and Its Applications in Chemical, Food and Agricultural Industries, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand.
| | - Sirada Sungsinchai
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Prapaporn Jarernsamrit
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha U-Tid Road, Tungkru, Bangkok, 10140, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, 10300, Thailand
| | - Metta Chareonpanich
- Department of Chemical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
- Center for Advanced Studies in Nanotechnology and Its Applications in Chemical, Food and Agricultural Industries, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
19
|
Żybura A, Jedziniak P. The efficiency of mycotoxin binding by sorbents in the in vitro model using a naturally contaminated animal feed. J Vet Res 2024; 68:233-240. [PMID: 38947151 PMCID: PMC11210358 DOI: 10.2478/jvetres-2024-0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/22/2024] [Indexed: 07/02/2024] Open
Abstract
Introduction The productivity of domestic animals and the safety of food products derived from them are jeopardised by mycotoxins in animal feed. To control them, feed additives are used, which limit the absorption of mycotoxins in the gastrointestinal tract of animals by binding to them. The study aimed to evaluate the effectiveness of a new in vitro model in experiments on the binding of mycotoxins from buffers and contaminated feed and to confirm the effect of a single sorbent or mixture in binding them. Material and Methods Nine mineral sorbents were tested for their efficiency binding eight mycotoxins. Two in vitro experiments were conducted to indicate the mycotoxin-binding capacity of sorbents, each specifying a buffer with one of two different pH levels reflecting gastrointestinal conditions (pH 3.5 and 7.0). The first investigated the sorbent with only the buffer and mycotoxin standards, while the second did so with the sorbent, buffer and feed naturally contaminated with mycotoxins (deoxynivalenol, zearalenone, and ochratoxin A). Results The sorption was significantly lower in the trial with feed. In the first experiment at gastric pH (pH 3.5), activated charcoal bound deoxynivalenol and sepiolite bound zearalenone at 70% and 96%, respectively, whereas in the second experiment with feed, the binding was only 3% and 6%. Conclusion The study underlines the challenge of finding a feed additive that would work comprehensively, binding all mycotoxins regulated by law.
Collapse
Affiliation(s)
- Adrianna Żybura
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, 24-100Puławy, Poland
| | - Piotr Jedziniak
- Department of Pharmacology and Toxicology, National Veterinary Research Institute, 24-100Puławy, Poland
| |
Collapse
|
20
|
Lombó M, Giommi C, Zarantoniello M, Chemello G. A Pretty Kettle of Fish: A Review on the Current Challenges in Mediterranean Teleost Reproduction. Animals (Basel) 2024; 14:1597. [PMID: 38891644 PMCID: PMC11171123 DOI: 10.3390/ani14111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The Mediterranean region is facing several environmental changes and pollution issues. Teleosts are particularly sensitive to these challenges due to their intricate reproductive biology and reliance on specific environmental cues for successful reproduction. Wild populations struggle with the triad of climate change, environmental contamination, and overfishing, which can deeply affect reproductive success and population dynamics. In farmed species, abiotic factors affecting reproduction are easier to control, whereas finding alternatives to conventional diets for farmed teleosts is crucial for enhancing broodstock health, reproductive success, and the sustainability of the aquaculture sector. Addressing these challenges involves ongoing research into formulating specialized diets, optimizing feeding strategies, and developing alternative and sustainable feed ingredients. To achieve a deeper comprehension of these challenges, studies employing model species have emerged as pivotal tools. These models offer advantages in understanding reproductive mechanisms due to their well-defined physiology, genetic tractability, and ease of manipulation. Yet, while providing invaluable insights, their applicability to diverse species remains constrained by inherent variations across taxa and oversimplification of complex environmental interactions, thus limiting the extrapolation of the scientific findings. Bridging these gaps necessitates multidisciplinary approaches, emphasizing conservation efforts for wild species and tailored nutritional strategies for aquaculture, thereby fostering sustainable teleost reproduction in the Mediterranean.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, 24071 León, Spain
| | - Christian Giommi
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| | - Matteo Zarantoniello
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
| | - Giulia Chemello
- Department of Life and Environmental Sciences (DiSVA), Università Politecnica delle Marche, 60131 Ancona, Italy; (M.L.); (C.G.)
- INBB—Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy
| |
Collapse
|
21
|
Murtaza B, Li X, Nawaz MY, Saleemi MK, Li G, Jin B, Wang L, Xu Y. Toxicodynamic of combined mycotoxins: MicroRNAs and acute-phase proteins as diagnostic biomarkers. Compr Rev Food Sci Food Saf 2024; 23:e13338. [PMID: 38629461 DOI: 10.1111/1541-4337.13338] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/18/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
Mycotoxins, ubiquitous contaminants in food, present a global threat to human health and well-being. Mitigation efforts, such as the implementation of sound agricultural practices, thorough food processing, and the advancement of mycotoxin control technologies, have been instrumental in reducing mycotoxin exposure and associated toxicity. To comprehensively assess mycotoxins and their toxicodynamic implications, the deployment of effective and predictive strategies is imperative. Understanding the manner of action, transformation, and cumulative toxic effects of mycotoxins, moreover, their interactions with food matrices can be gleaned through gene expression and transcriptome analyses at cellular and molecular levels. MicroRNAs (miRNAs) govern the expression of target genes and enzymes that play pivotal roles in physiological, pathological, and toxicological responses, whereas acute phase proteins (APPs) exert regulatory control over the metabolism of therapeutic agents, both endogenously and posttranscriptionally. Consequently, this review aims to consolidate current knowledge concerning the regulatory role of miRNAs in the initiation of toxicological pathways by mycotoxins and explores the potential of APPs as biomarkers following mycotoxin exposure. The findings of this research highlight the potential utility of miRNAs and APPs as indicators for the detection and management of mycotoxins in food through biological processes. These markers offer promising avenues for enhancing the safety and quality of food products.
Collapse
Affiliation(s)
- Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, China
- Dalian SEM Bioengineering Technology Co., Ltd, Dalian, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | | | | | - Gen Li
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Bowen Jin
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Yongping Xu
- School of Bioengineering, Dalian University of Technology, Dalian, China
- Dalian SEM Bioengineering Technology Co., Ltd, Dalian, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
22
|
Nava-Ramírez MJ, Maguey-González JA, Gómez-Rosales S, Hernández-Ramírez JO, Latorre JD, Du X, López-Coello C, Hargis BM, Téllez-Isaías G, Vázquez-Durán A, Méndez-Albores A. Efficacy of powdered alfalfa leaves to ameliorate the toxic effects of aflatoxin B 1 in turkey poults. Mycotoxin Res 2024; 40:269-277. [PMID: 38421516 PMCID: PMC11043150 DOI: 10.1007/s12550-024-00527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
This experiment was conducted to determine the effect of an adsorbent material based on powdered alfalfa leaves added in the aflatoxin B1 (AFB1)-contaminated diet of turkey poults on production parameters, blood cell count, serum biochemistry, liver enzymes, and liver histology. For this purpose, three hundred and fifty female Nicholas-700 poults were randomly assigned into five treatments: (1) Control, AFB1-free diet; (2) AF, diet contaminated with 250 ng AFB1/g; (3) Alfalfa, AFB1-free diet + 0.5% (w/w) adsorbent; (4) AF+alfalfa, diet contaminated with 250 ng AFB1/g + 0.5% (w/w) adsorbent, and (5) AF+ yeast cell wall (YCW), diet contaminated with 250 ng AFB1/g + 0.5% (w/w) of yeast cell wall (a commercial mycotoxin binder used as reference material). The in vivo efficacy of powdered alfalfa leaves was assessed during a 28-day period. In general, the addition of powdered alfalfa leaves in the AFB1-free diet gave the best performance results (body weight, body weight gain, and feed intake) and improved the values of total protein, glucose, calcium, creatinine, and blood urea nitrogen. Moreover, the addition of powdered alfalfa leaves in the AFB1-contaminated diet enhanced body weight and body weight gain and significantly reduced the feed intake, compared to the AF and AF+YCW groups. Additionally, significant alterations in serum parameters were observed in poults intoxicated with the AFB1, compared to the Control group. Furthermore, typical histopathological lesions were observed in the liver of the AF group, which were significantly ameliorated with the addition of powdered alfalfa leaves. Conclusively, these results pointed out that low inclusion of powdered alfalfa leaves in the contaminated feed counteracted the adverse effects of AFB1 in turkey poults.
Collapse
Affiliation(s)
- M J Nava-Ramírez
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli, 54714, Mexico
| | - J A Maguey-González
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - S Gómez-Rosales
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento Animal (CENID-INIFAP), Km 1 Carretera a Colon Ajuchitlán, Querétaro, 76280, Mexico
| | - J O Hernández-Ramírez
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli, 54714, Mexico
| | - J D Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Xiangwei Du
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - C López-Coello
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, 04510, Mexico
| | - B M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - G Téllez-Isaías
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, 72701, USA
| | - A Vázquez-Durán
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli, 54714, Mexico
| | - A Méndez-Albores
- Unidad de Investigación Multidisciplinaria L14 (Alimentos, Micotoxinas, y Micotoxicosis), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán Izcalli, 54714, Mexico.
| |
Collapse
|
23
|
Khan R, Anwar F, Ghazali FM. A comprehensive review of mycotoxins: Toxicology, detection, and effective mitigation approaches. Heliyon 2024; 10:e28361. [PMID: 38628751 PMCID: PMC11019184 DOI: 10.1016/j.heliyon.2024.e28361] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 04/19/2024] Open
Abstract
Mycotoxins, harmful compounds produced by fungal pathogens, pose a severe threat to food safety and consumer health. Some commonly produced mycotoxins such as aflatoxins, ochratoxin A, fumonisins, trichothecenes, zearalenone, and patulin have serious health implications in humans and animals. Mycotoxin contamination is particularly concerning in regions heavily reliant on staple foods like grains, cereals, and nuts. Preventing mycotoxin contamination is crucial for a sustainable food supply. Chromatographic methods like thin layer chromatography (TLC), gas chromatography (GC), high-performance liquid chromatography (HPLC), and liquid chromatography coupled with a mass spectrometer (LC/MS), are commonly used to detect mycotoxins; however, there is a need for on-site, rapid, and cost-effective detection methods. Currently, enzyme-linked immunosorbent assays (ELISA), lateral flow assays (LFAs), and biosensors are becoming popular analytical tools for rapid detection. Meanwhile, preventing mycotoxin contamination is crucial for food safety and a sustainable food supply. Physical, chemical, and biological approaches have been used to inhibit fungal growth and mycotoxin production. However, new strains resistant to conventional methods have led to the exploration of novel strategies like cold atmospheric plasma (CAP) technology, polyphenols and flavonoids, magnetic materials and nanoparticles, and natural essential oils (NEOs). This paper reviews recent scientific research on mycotoxin toxicity, explores advancements in detecting mycotoxins in various foods, and evaluates the effectiveness of innovative mitigation strategies for controlling and detoxifying mycotoxins.
Collapse
Affiliation(s)
- Rahim Khan
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Farinazleen Mohamad Ghazali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, UPM, Serdang, Malaysia
| |
Collapse
|
24
|
Sun Z, You Y, Xu H, You Y, He W, Wang Z, Li A, Xia Y. Food-Grade Expression of Two Laccases in Pichia pastoris and Study on Their Enzymatic Degradation Characteristics for Mycotoxins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38600054 DOI: 10.1021/acs.jafc.4c00521] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Mycotoxin contamination poses substantial health risks to humans and animals. In this study, the two laccases PpLac1 and AoLac2 from Pleurotus pulmonarius and Aspergillus oryzae were selected and heterologously expressed in Pichia pastoris in a food-grade manner to detoxify aflatoxin B1 (AFB1), zearalenone (ZEN), and deoxynivalenol (DON). Both laccases exhibited degradation activity toward these three mycotoxins, while the efficiency of these for DON was relatively low. Therefore, molecular docking between these laccases and DON was conducted to analyze their potential interaction mechanisms. Furthermore, the degradation conditions of AFB1 and ZEN by the two laccases were optimized, and the optimal degradation rates for AFB1 and ZEN by PpLac1 reached 78.51 and 78.90%, while those for AFB1 and ZEN by AoLac2 reached 72.27 and 80.60%, respectively. The laccases PpLac1 and AoLac2 successfully transformed AFB1 and ZEN into the compounds AFQ1 and 15-OH-ZEN, which were 90 and 98% less toxic than the original compounds, respectively. Moreover, the culture supernatants demonstrated effective mycotoxin degradation results for AFB1 and ZEN in contaminated feed samples. The residual levels of AFB1 and ZEN in all samples ranged from 6.61 to 8.72 μg/kg and 3.44 to 98.15 μg/kg, respectively, and these levels were below the limit set by the European Union standards. All of the results in this study indicated that the two laccases have excellent application potential in the feed industry.
Collapse
Affiliation(s)
- Zhen Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yingxin You
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Huidong Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yang You
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wenjing He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Aitao Li
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yu Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
25
|
Tassis P, Raj J, Floros D, Mittas N, Ntarampa N, Farkas H, Polizopoulou Z, Vasilievic M. Efficacy of a multicomponent binding agent against combined exposure to zearalenone and ochratoxin A in weaned pigs. Front Vet Sci 2024; 11:1357723. [PMID: 38511191 PMCID: PMC10951055 DOI: 10.3389/fvets.2024.1357723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/09/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction The study aimed to evaluate the efficacy of a novel multicomponent substance against combined exposure to the mycotoxins zearalenone (ZEN) and ochratoxin A (OTA) in weaned piglets. Methods In total, 60 piglets at the age of 28 days were equally allocated to four experimental groups (A-D), consisting of eight female and seven male piglets each (15 animals per group, for a total trial duration of 42 days). Animals from group A received typical weaner feed without mycotoxins or the test product [multicomponent mycotoxin detoxifying agent (MMDA)]. Group B animals received the same weaner feed contaminated with 0.992 mg ZEN/kg feed and 0.531 mg OTA/kg feed without the addition of the MMDA. Animals in group C received the same contaminated feed as group B with the addition of 1.5 g MMDA/kg feed, whereas group D received the same feed as group B with the inclusion of 3 g MMDA/kg feed. Clinical signs and performance parameters [body weight (BW), average daily weight gain (ADWG), and feed conversion ratio (FCR)] were evaluated, while mycotoxin residues were also assessed in the liver and kidney tissues. Results Findings showed improved FCR in the group that received the greatest dose of the test product (3 g MMDA/kg feed) compared to the group that received the lower dose (1.5 g MMDA/kg feed). A few hematological and biochemical parameters were slightly altered, predominantly within normal limits. The residue analysis demonstrated a reduction of OTA in liver samples, a-ZEL in the liver and total tested samples, and a total of ZEN and metabolite contents in all samples of the group that received the greatest MMDA dose in comparison to the group that received the toxins without the addition of the test product. Discussion Therefore, a positive effect of the MMDA at the greatest dosage regime on reducing bioavailability and tissue deposition of ZEN and OTA, with a particularly positive effect on FCR in weaned pigs, is suggested under concurrent ZEN and OTA exposure in vivo.
Collapse
Affiliation(s)
- Panagiotis Tassis
- Farm Animals Clinic, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Jog Raj
- Patent Co, DOO., Mišićevo, Serbia
| | - Dimitrios Floros
- Farm Animals Clinic, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Mittas
- Hephaestus Laboratory, Department of Chemistry, School of Science, International Hellenic University, Kavala, Greece
| | - Niki Ntarampa
- Farm Animals Clinic, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Zoe Polizopoulou
- Diagnostic Laboratory, School of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
26
|
D'Ascanio V, Greco D, Abbasciano M, Avantaggiato G. Optimization and in-house validation of the analytical procedure for official control of bentonites as aflatoxin inactivators. Food Chem 2024; 432:137198. [PMID: 37657335 DOI: 10.1016/j.foodchem.2023.137198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/14/2023] [Accepted: 08/16/2023] [Indexed: 09/03/2023]
Abstract
In Europe, bentonites are allowed as feed additives for aflatoxin mitigation (1m558) provided they have specific mineralogical characteristics and an aflatoxin-binding capacity (BCAfB1) above 90%. BCAfB1 is determined by an official adsorption assay using an aflatoxin solution (4 mg/L) in acetate buffer (pH 5.0) and a bentonite at 0.02% (w/v). To date, the robustness of this method has not been investigated. In this work, we addressed this challenge and performed a robustness study by analyzing six bentonite samples that met the mineralogical requirements for claim code 1 m558. Leading factors selected for robustness testing were (1) preparation mode of bentonite suspension, (2) residual amount of acetonitrile in the test trial, (3) acetate buffer concentration, (4) incubation time, and (5) centrifugation. It was statistically evinced that factors 2 and 5 affected the results. Due to its weakness, the method excluded 4 out of six bentonites to be marketed in EU, being BCAfB1 < 90%. A new protocol was developed by keeping the main experimental parameters of the official assay and was in-house validated. This protocol yielded BCAfB1 > 90% for all test bentonites and showed satisfactory precisions with a RSDI of 3.4% and HorRat < 2. Its validity was proven by the isotherm approach, comparing Langmuir adsorption parameters with BCAfB1 values. Application of the protocol to bentonites other than montmorillonite was demonstrated.
Collapse
Affiliation(s)
- Vito D'Ascanio
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy
| | - Donato Greco
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy
| | - Mariagrazia Abbasciano
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy
| | - Giuseppina Avantaggiato
- Institute of Sciences of Food Productions (ISPA), National Research Council (CNR), 70126 Bari, Italy.
| |
Collapse
|
27
|
Murtaza B, Wang L, Li X, Nawaz MY, Saleemi MK, Khatoon A, Yongping X. Recalling the reported toxicity assessment of deoxynivalenol, mitigating strategies and its toxicity mechanisms: Comprehensive review. Chem Biol Interact 2024; 387:110799. [PMID: 37967807 DOI: 10.1016/j.cbi.2023.110799] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
Mycotoxins frequently contaminate a variety of food items, posing significant concerns for both food safety and public health. The adverse consequences linked to poisoning from these substances encompass symptoms such as vomiting, loss of appetite, diarrhea, the potential for cancer development, impairments to the immune system, disruptions in neuroendocrine function, genetic damage, and, in severe cases, fatality. The deoxynivalenol (DON) raises significant concerns for both food safety and human health, particularly due to its potential harm to vital organs in the body. It is one of the most prevalent fungal contaminants found in edible items used by humans and animals globally. The presence of harmful mycotoxins, including DON, in food has caused widespread worry. Altered versions of DON have arisen as possible risks to the environment and well-being, as they exhibit a greater propensity to revert back to the original mycotoxins. This can result in the buildup of mycotoxins in both animals and humans, underscoring the pressing requirement for additional investigation into the adverse consequences of these modified mycotoxins. Furthermore, due to the lack of sufficient safety data, accurately evaluating the risk posed by modified mycotoxins remains challenging. Our review study delves into conjugated forms of DON, exploring its structure, toxicity, control strategies, and a novel animal model for assessing its toxicity. Various toxicities, such as acute, sub-acute, chronic, and cellular, are proposed as potential mechanisms contributing to the toxicity of conjugated forms of DON. Additionally, the study offers an overview of DON's toxicity mechanisms and discusses its widespread presence worldwide. A thorough exploration of the health risk evaluation associated with conjugated form of DON is also provided in this discussion.
Collapse
Affiliation(s)
- Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| | - Lili Wang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China
| | - Xiaoyu Li
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China
| | | | | | - Aisha Khatoon
- Department of Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Xu Yongping
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China; Center for Food Safety of Animal Origin, Ministry of Education, Dalian University of Technology, Dalian, 116600, China.
| |
Collapse
|
28
|
Fatima A, Zaheer T, Pal K, Abbas RZ, Akhtar T, Ali S, Mahmood MS. Zinc Oxide Nanoparticles Significant Role in Poultry and Novel Toxicological Mechanisms. Biol Trace Elem Res 2024; 202:268-290. [PMID: 37060542 DOI: 10.1007/s12011-023-03651-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/27/2023] [Indexed: 04/16/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have involved a lot of consideration owing to their distinctive features. The ZnO NPs can be described as particularly synthesized mineral salts via nanotechnology, varying in size from 1 to 100 nm, while zinc oxide (ZnO), it is an inorganic substrate of zinc (Zn). The Zn is a critical trace element necessary for various biological and physiological processes in the body. Studies have revealed ZnO NPs' efficient immuno-modulatory, growth-promoting, and antimicrobial properties in poultry birds. They offer increased bioavailability as compared to their traditional sources, producing better results in terms of productivity and welfare and consequently reducing ecological harm in the poultry sector. However, they have also been reported for their toxicological effects, which are size, shape, concentration, and exposure route dependent. The investigations done so far have yielded inconsistent results, therefore, a lot of additional studies and research are required to clarify the harmful consequences of ZnO NPs and to bring them to a logical end. This review explores an overview of efficient possible role of ZnO NPs, while comparing them with other nutritional Zn sources, in the poultry industry, primarily as dietary supplements that effect the growth, health, and performance of the birds. In addition to the anti-bacterial mechanisms of ZnO NPs and their promising role as antifungal, and anti-colloidal agent, this paper also covers the toxicological mechanisms of ZnO NPs and their consequent toxicological hazards to vital organs and the reproductive system of poultry birds.
Collapse
Affiliation(s)
- Arjmand Fatima
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Tean Zaheer
- Institute of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Kaushik Pal
- University Center for Research and Development (UCRD), Department of Physics, Chandigarh University, Mohali, Gharuan, Punjab, 140413, India.
| | - Rao Zahid Abbas
- Institute of Parasitology, University of Agriculture, Faisalabad, Pakistan.
| | - Tayyaba Akhtar
- KBCMA College of Veterinary and Animal Sciences, Sub-Campus UVAS-Lahore, Narowal, Pakistan
| | - Sultan Ali
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
29
|
Mastanjević K, Kovačević D, Nešić K, Krstanović V, Habschied K. Traditional Meat Products-A Mycotoxicological Review. Life (Basel) 2023; 13:2211. [PMID: 38004351 PMCID: PMC10671907 DOI: 10.3390/life13112211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Traditional meat products are commonly produced in small family businesses. However, big industries are also involved in the production of this kind of product, especially since a growing number of consumers crave the traditional taste and aromas. The popularization of original and organic products has resulted in a return to traditional production methods. Traditional meat products are produced worldwide. However, in such (domesticated) conditions there is a potential danger for mycotoxin contamination. This review aims to present the sources of mycotoxins in traditional meat products, the most common mycotoxins related to such meat products, and future prospects regarding the suppression of their occurrence. Special attention should be paid to reducing the transfer of mycotoxins via the food chain from animal feed to animals to humans (stable-to-table principle), which is also described in this review. Other sources of mycotoxins (spices, environment, etc.) should also be monitored for mycotoxins in traditional production. The importance of monitoring and regulating mycotoxins in meat products, especially in traditional meat products, is slowly being recognized by the institutions and hopefully, in the future, can deliver legally regulated limits for such products. This is especially important since meat products are available to the general population and can seriously affect human health.
Collapse
Affiliation(s)
- Krešimir Mastanjević
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.M.); (D.K.); (V.K.)
| | - Dragan Kovačević
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.M.); (D.K.); (V.K.)
| | - Ksenija Nešić
- Food and Feed Department, Institute of Veterinary Medicine of Serbia, Smolućska 11, 11070 Beograd, Serbia;
| | - Vinko Krstanović
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.M.); (D.K.); (V.K.)
| | - Kristina Habschied
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (K.M.); (D.K.); (V.K.)
| |
Collapse
|
30
|
Aoyanagi MMDCC, Budiño FEL, Raj J, Vasiljević M, Ali S, Ramalho LNZ, Ramalho FS, Corassin CH, Ghantous GF, de Oliveira CAF. Efficacy of Two Commercially Available Adsorbents to Reduce the Combined Toxic Effects of Dietary Aflatoxins, Fumonisins, and Zearalenone and Their Residues in the Tissues of Weaned Pigs. Toxins (Basel) 2023; 15:629. [PMID: 37999492 PMCID: PMC10675588 DOI: 10.3390/toxins15110629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Mycotoxins present a significant health concern within the animal-feed industry, with profound implications for the pig-farming sector. The objective of this study was to evaluate the efficacy of two commercial adsorbents, an organically modified clinoptilolite (OMC) and a multicomponent mycotoxin detoxifying agent (MMDA), to ameliorate the combined adverse effects of dietary aflatoxins (AFs: sum of AFB1, AFB2, AFG1, and AFG2), fumonisins (FBs), and zearalenone (ZEN) at levels of nearly 0.5, 1.0, and 1.0 mg/kg, on a cohort of cross-bred female pigs (N = 24). Pigs were randomly allocated into six experimental groups (control, mycotoxins (MTX) alone, MTX + OMC 1.5 kg/ton, MTX + OMC 3.0 kg/ton, MTX + MMDA 1.5 kg/ton, and MTX + MMDA 3.0 kg/ton), each consisting of four individuals, and subjected to a dietary regimen spanning 42 days. The administration of combined AFs, FBs, and ZEN reduced the body-weight gain and increased the relative weight of the liver, while there was no negative influence observed on the serum biochemistry of animals. The supplementation of OMC and MMDA ameliorated the toxic effects, as observed in organ histology, and provided a notable reduction in residual AFs, FBs, and ZEN levels in the liver and kidneys. Moreover, the OMC supplementation was able to reduce the initiation of liver carcinogenesis without any hepatotoxic side effects. These findings demonstrate that the use of OMC and MMDA effectively mitigated the adverse effects of dietary AFs, FBs, and ZEN in piglets. Further studies should explore the long-term protective effects of the studied adsorbent supplementation to optimize mycotoxin management strategies in pig-farming operations.
Collapse
Affiliation(s)
- Micheli Midori de Cerqueira Costa Aoyanagi
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.M.d.C.C.A.); (S.A.); (C.H.C.)
| | - Fábio Enrique Lemos Budiño
- Department of Agriculture and Food Supply of the São Paulo State, Institute of Animal Science and Pastures, Nova Odessa 13460-000, SP, Brazil;
| | - Jog Raj
- Patent Co., DOO., Vlade Ćetkovića 1A, 24211 Mišićevo, Serbia; (J.R.); (M.V.)
| | - Marko Vasiljević
- Patent Co., DOO., Vlade Ćetkovića 1A, 24211 Mišićevo, Serbia; (J.R.); (M.V.)
| | - Sher Ali
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.M.d.C.C.A.); (S.A.); (C.H.C.)
| | - Leandra Naira Zambelli Ramalho
- Department of Pathology and Legal Medicine, School of Medicine at Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040-900, SP, Brazil; (L.N.Z.R.); (F.S.R.)
| | - Fernando Silva Ramalho
- Department of Pathology and Legal Medicine, School of Medicine at Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto 14040-900, SP, Brazil; (L.N.Z.R.); (F.S.R.)
| | - Carlos Humberto Corassin
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.M.d.C.C.A.); (S.A.); (C.H.C.)
| | - Giovana Fumes Ghantous
- Department of Basic Sciences, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Pirassununga 13635-900, SP, Brazil;
| | - Carlos Augusto Fernandes de Oliveira
- Department of Food Engineering, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga 13635-900, SP, Brazil; (M.M.d.C.C.A.); (S.A.); (C.H.C.)
| |
Collapse
|
31
|
Papatsiros VG, Eliopoulos C, Voulgarakis N, Arapoglou D, Riahi I, Sadurní M, Papakonstantinou GI. Effects of a Multi-Component Mycotoxin-Detoxifying Agent on Oxidative Stress, Health and Performance of Sows. Toxins (Basel) 2023; 15:580. [PMID: 37756006 PMCID: PMC10537862 DOI: 10.3390/toxins15090580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
This in vivo study aimed to investigate the effects of a multi-component mycotoxin-detoxifying agent, containing clays (bentonite, sepiolite), phytogenic feed additives (curcumin, silymarin) and postbiotics (yeast cell wall, hydrolyzed yeast) on the antioxidant capacity, health and reproductive performance of pregnant and lactating sows challenged by mycotoxins. Eighty (80) primiparous sows (mean age 366 ± 3 days) per each of the two trial farms were divided into two groups in each farm: a) T1 (control group): 40 sows received the contaminated feed and b) T2 group (experimental group): 40 sows received the contaminated feed plus the mycotoxin-detoxifying agent, one month before farrowing until the end of the lactation period. Thiobarbituric acid reactive substances (TBARS), protein carbonyls (CARBS) and total antioxidant capacity (TAC) were evaluated as biomarkers of oxidative stress. Clinical and reproductive parameters were recorded. Our results indicate that the administration of a multi-component mycotoxin-detoxifying agent's administration in sow feed has beneficial effects on oxidative stress biomarkers and can improve sows' health and performance.
Collapse
Affiliation(s)
- Vasileios G. Papatsiros
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece;
| | - Christos Eliopoulos
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-Demeter (HAO-Demeter), 14123 Athens, Greece; (C.E.); (D.A.)
| | - Nikolaos Voulgarakis
- Clinic of Medicine, Faculty of Veterinary Medicine, University of Thessaly, 43100 Karditsa, Greece;
| | - Dimitrios Arapoglou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization-Demeter (HAO-Demeter), 14123 Athens, Greece; (C.E.); (D.A.)
| | - Insaf Riahi
- BIŌNTE Animal Nutrition, 43204 Reus, Spain; (I.R.); (M.S.)
| | | | | |
Collapse
|
32
|
Ochieng PE, Croubels S, Kemboi D, Okoth S, De Baere S, Cavalier E, Kang'ethe E, Faas J, Doupovec B, Gathumbi J, Douny C, Scippo ML, Lindahl JF, Antonissen G. Effects of Aflatoxins and Fumonisins, Alone or in Combination, on Performance, Health, and Safety of Food Products of Broiler Chickens, and Mitigation Efficacy of Bentonite and Fumonisin Esterase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13462-13473. [PMID: 37655855 DOI: 10.1021/acs.jafc.3c01733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The current study evaluated the effects of feeding diets contaminated with aflatoxin B1 (AFB1), fumonisins (FBs), or both on the performance and health of broiler chickens and the safety of their food products as well as the efficacy of bentonite and fumonisin esterase to mitigate the effects of these mycotoxins under conditions representative for sub-Saharan Africa (SSA). Four hundred one-day-old Cobb 500 broiler chickens were randomly assigned to 20 treatments with either a control diet, a diet with moderate AFB1 (60 μg/kg feed) or high AFB1 (220 μg/kg feed), or FBs (17,430 μg FB1+FB2/kg feed), alone or in combination, a diet containing AFB1 (either 60 or 220 μg/kg) and/or FBs (17,430 μg FB1+FB2/kg) and bentonite or fumonisin esterase or both, or a diet with bentonite or fumonisin esterase only. The experimental diets were given to the birds from day 1 to day 35 of age, and the effects of the different treatments on production performance were assessed by feed intake (FI), body weight gain (BWG), and feed conversion ratio (FCR). Possible health effects were evaluated through blood biochemistry, organ weights, mortality, liver gross pathological changes, and vaccine response. Residues of aflatoxins (AFB1, B2, G1, G2, M1 and M2) were determined in plasma, muscle, and liver tissues using validated UHPLC-MS/MS methods. The results obtained indicated that broiler chickens fed high AFB1 alone had poor FCR when compared to a diet with both high AFB1 and FBs (p = 0.0063). Serum total protein and albumin from birds fed FBs only or in combination with moderate or high AFB1 or detoxifiers increased when compared to the control (p < 0.05). Liver gross pathological changes were more pronounced in birds fed contaminated diets when compared to birds fed the control or diets supplemented with mycotoxin detoxifiers. The relative weight of the heart was significantly higher in birds fed high AFB1 and FBs when compared to the control or high AFB1 only diets (p < 0.05), indicating interactions between the mycotoxins. Inclusion of bentonite in AFB1-contaminated diets offered a protective effect on the change in weights of the liver, heart and spleen (p < 0.05). Residues of AFB1 were detected above the limit of quantification (max: 0.12 ± 0.03 μg/kg) in liver samples only, from birds fed a diet with high AFB1 only or with FBs or the detoxifiers. Supplementing bentonite into these AFB1-contaminated diets reduced the levels of the liver AFB1 residues by up to 50%. Bentonite or fumonisin esterase, alone, did not affect the performance and health of broiler chickens. Thus, at the doses tested, both detoxifiers were safe and efficient for use as valid means of counteracting the negative effects of AFB1 and FBs as well as transfer of AFB1 to food products (liver) of broiler chickens.
Collapse
Affiliation(s)
- Phillis Emelda Ochieng
- Department of Food Sciences, Laboratory of Food Analysis, Faculty of Veterinary Medicine, University of Liège, Liège 4000, Belgium
- Department of Pathobiology, Pharmacology and Zoological Medicine, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Siska Croubels
- Department of Pathobiology, Pharmacology and Zoological Medicine, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - David Kemboi
- Department of Pathobiology, Pharmacology and Zoological Medicine, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
- Department of Animal Science, Chuka University, P.O. Box 109, 00625 Chuka, Kenya
| | - Sheila Okoth
- Department of Biology, Faculty of Science and Technology, University of Nairobi, P.O. Box 30197, 00100 Nairobi, Kenya
| | - Siegrid De Baere
- Department of Pathobiology, Pharmacology and Zoological Medicine, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, University Hospital of Liège, Liège 4000, Belgium
| | | | | | | | - James Gathumbi
- Department of Veterinary Pathology, Microbiology, and Parasitology, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, 00100 Nairobi, Kenya
| | - Caroline Douny
- Department of Food Sciences, Laboratory of Food Analysis, Faculty of Veterinary Medicine, University of Liège, Liège 4000, Belgium
| | - Marie-Louise Scippo
- Department of Food Sciences, Laboratory of Food Analysis, Faculty of Veterinary Medicine, University of Liège, Liège 4000, Belgium
| | - Johanna F Lindahl
- International Livestock Research Institute (ILRI), P.O. Box 30709, 00100 Nairobi, Kenya
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala SE-751 05, Sweden
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - Gunther Antonissen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Laboratory of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
- Chair Poultry Health Sciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| |
Collapse
|
33
|
Damiano S, Longobardi C, Ferrara G, Piscopo N, Riccio L, Russo V, Meucci V, De Marchi L, Esposito L, Florio S, Ciarcia R. Oxidative Status and Histological Evaluation of Wild Boars' Tissues Positive for Zearalenone Contamination in the Campania Region, Southern Italy. Antioxidants (Basel) 2023; 12:1748. [PMID: 37760051 PMCID: PMC10525666 DOI: 10.3390/antiox12091748] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Zearalenone (ZEN) is a mycotoxin produced by fungi belonging to the genera Fusarium spp. and commonly found in feed and food. It is frequently related to reproductive disorders in farm animals and, occasionally, to hyperestrogenic syndromes in humans. Nowadays, knowledge about ZEN effects on wild boars (Sus scrofa) is extremely scarce, despite the fact that they represent one of the most hunted game species in Italy. The aim of this study was to investigate how ZEN affects the liver, kidney, and muscle oxidative status and morphology of wild boars hunted in various locations throughout the province of Avellino, Campania Region, Southern Italy, during the 2021-2022 hunting season. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities, as well as the malondialdehyde (MDA) levels, were assessed by colorimetric assays; tissue morphology was evaluated by hematoxylin-eosin and Masson's stains. Our data showed that ZEN contamination might result in oxidative stress (OS) and some histopathological alterations in wild boars' livers and kidneys rather than in muscles, emphasizing the importance of developing a wildlife monitoring and management strategy for dealing not only with the problem of ZEN but the surveillance of mycotoxins in general.
Collapse
Affiliation(s)
- Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| | - Consiglia Longobardi
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| | - Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| | - Nadia Piscopo
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| | - Lorenzo Riccio
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| | - Valeria Russo
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| | - Valentina Meucci
- Department of Veterinary Science, University of Pisa, 56122 Pisa, Italy;
| | - Lucia De Marchi
- Department of Veterinary Science, University of Pisa, 56122 Pisa, Italy;
| | - Luigi Esposito
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| | - Salvatore Florio
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Napoli, Italy; (S.D.); (C.L.); (G.F.); (L.R.); (V.R.); (L.E.); (S.F.); (R.C.)
| |
Collapse
|
34
|
Tu Y, Liu S, Cai P, Shan T. Global distribution, toxicity to humans and animals, biodegradation, and nutritional mitigation of deoxynivalenol: A review. Compr Rev Food Sci Food Saf 2023; 22:3951-3983. [PMID: 37421323 DOI: 10.1111/1541-4337.13203] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 07/10/2023]
Abstract
Deoxynivalenol (DON) is one of the main types of B trichothecenes, and it causes health-related issues in humans and animals and imposes considerable challenges to food and feed safety globally each year. This review investigates the global hazards of DON, describes the occurrence of DON in food and feed in different countries, and systematically uncovers the mechanisms of the various toxic effects of DON. For DON pollution, many treatments have been reported on the degradation of DON, and each of the treatments has different degradation efficacies and degrades DON by a distinct mechanism. These treatments include physical, chemical, and biological methods and mitigation strategies. Biodegradation methods include microorganisms, enzymes, and biological antifungal agents, which are of great research significance in food processing because of their high efficiency, low environmental hazards, and drug resistance. And we also reviewed the mechanisms of biodegradation methods of DON, the adsorption and antagonism effects of microorganisms, and the different chemical transformation mechanisms of enzymes. Moreover, nutritional mitigation including common nutrients (amino acids, fatty acids, vitamins, and microelements) and plant extracts was discussed in this review, and the mitigation mechanism of DON toxicity was elaborated from the biochemical point of view. These findings help explore various approaches to achieve the best efficiency and applicability, overcome DON pollution worldwide, ensure the sustainability and safety of food processing, and explore potential therapeutic options with the ability to reduce the deleterious effects of DON in humans and animals.
Collapse
Affiliation(s)
- Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
35
|
García-García FA, Cristiani-Urbina E, Morales-Barrera L, Rodríguez-Peña ON, Hernández-Portilla LB, Flores-Ortíz CM. Spectroscopic and Microestructural Evidence for T-2 Toxin Adsorption Mechanism by Natural Bentonite Modified with Organic Cations. Toxins (Basel) 2023; 15:470. [PMID: 37505739 PMCID: PMC10467078 DOI: 10.3390/toxins15070470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Aluminosilicates are adsorbents able to bind mycotoxins, and their chemical modification increases their affinity to adsorb low-polarity mycotoxins. To further investigate if the inclusion of salts in bentonite modifies its adsorptive capacity, we studied T-2 toxin adsorption in natural bentonite (NB) and when modified with quaternary ammonium salts differing in polarity and chain length: myristyl trimethyl ammonium bromide (B14), cetyl trimethyl ammonium bromide (B16) and benzyl dimethyl stearyl ammonium chloride (B18). The results showed that quaternary salts made bentonite: displace monovalent (Na+1, K+1) and divalent (Mg+2, Ca+2) ions; reduce its porosity; change its compaction and structure, becoming more crystalline and ordered; and modify the charge balance of sheets. T-2 adsorption was higher in all modified materials compared to NB (p ≤ 0.0001), and B16 (42.96%) better adsorbed T-2 compared to B18 (35.80%; p = 0.0066). B14 (38.40%) showed no differences compared to B16 and B18 (p > 0.05). We described the T-2 adsorption mechanism in B16, in which hydrogen bond interactions, Van der Waals forces and the replacement of the salt by T-2 were found. Our results showed that interaction types due to the inclusion in B16 might be more important than the hydrocarbon chain length to improve the adsorptive capacity of bentonite.
Collapse
Affiliation(s)
- Fernando Abiram García-García
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico; (F.A.G.-G.); (L.B.H.-P.)
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico; (E.C.-U.); (L.M.-B.)
| | - Eliseo Cristiani-Urbina
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico; (E.C.-U.); (L.M.-B.)
| | - Liliana Morales-Barrera
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Ciudad de México 07738, Mexico; (E.C.-U.); (L.M.-B.)
| | - Olga Nelly Rodríguez-Peña
- Laboratorio de Fisiología Vegetal, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico
| | - Luis Barbo Hernández-Portilla
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico; (F.A.G.-G.); (L.B.H.-P.)
| | - Cesar Mateo Flores-Ortíz
- Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico; (F.A.G.-G.); (L.B.H.-P.)
- Laboratorio de Fisiología Vegetal, Unidad de Biología, Tecnología y Prototipos (UBIPRO), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla 54090, Mexico
| |
Collapse
|
36
|
Mukhtar K, Nabi BG, Ansar S, Bhat ZF, Aadil RM, Khaneghah AM. Mycotoxins and consumers' awareness: Recent progress and future challenges. Toxicon 2023:107227. [PMID: 37454753 DOI: 10.1016/j.toxicon.2023.107227] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
While food shortages have become an important challenge, providing safe food resources is a point of interest on a global scale. Mycotoxins are secondary metabolites that are formed through various fungi species. They are mainly spread through diets such as food or beverages. About one quarter of the world's food is spoiled with mycotoxins. As this problem is not resolved, it represents a significant threat to global food security. Besides the current concerns regarding the contamination of food items by these metabolites, the lack of knowledge by consumers and their possible growth and toxin production attracted considerable attention. While globalization provides a favorite condition for some countries, food security still is challenging for most countries. There are various approaches to reducing the mycotoxigenic fungi growth and formation of mycotoxins in food, include as physical, chemical, and biological processes. The current article will focus on collecting data regarding consumers' awareness of mycotoxins. Furthermore, a critical overview and comparison among different preventative approaches to reduce risk by consumers will be discussed. Finally, the current effect of mycotoxins on global trade, besides future challenges faced by mycotoxin contamination on food security, will be discussed briefly.
Collapse
Affiliation(s)
- Kinza Mukhtar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Brera Ghulam Nabi
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sadia Ansar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | | | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland; Department of Technology of Chemistry, Azerbaijan State Oil and Industry University, Baku, Azerbaijan.
| |
Collapse
|
37
|
Abdel-Nasser A, Hathout AS, Badr AN, Barakat OS, Fathy HM. Extraction and characterization of bioactive secondary metabolites from lactic acid bacteria and evaluating their antifungal and antiaflatoxigenic activity. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 38:e00799. [PMID: 37206916 PMCID: PMC10189384 DOI: 10.1016/j.btre.2023.e00799] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
Aflatoxins are toxic carcinogens and mutagens formed by some moulds, specifically Aspergillus spp. Therefore, this study aimed to extract and identify bioactive secondary metabolites from Lactobacillus species, to evaluate their efficacy in reducing fungal growth and aflatoxin production and to investigate their toxicity. The bioactive secondary metabolites of Lactobacillus species showed variable degrees of antifungal activity, whereas L. rhamnosus ethyl acetate extract No. 5 exhibited the highest antifungal activity and, thus, was selected for further identification studies. Data revealed that L. rhamnosus ethyl acetate extract No. 5 produced various organic acids, volatile organic compounds and polyphenols, displayed antifungal activity against A. flavus, and triggered morphological changes in fungal conidiophores and conidiospores. L. rhamnosus ethyl acetate extract No. 5 at a 9 mg/mL concentration reduced AFB1 production by 99.98%. When the effect of L. rhamnosus ethyl acetate extract No. 5 on brine shrimp mortality was studied, the extract attained a 100% mortality at a concentration of 400 µg/mL, with an IC50 of 230 µg/mL. Meanwhile, a mouse bioassay was performed to assess the toxicity of L. rhamnosus ethyl acetate extract No. 5, whereas there were no harmful effects or symptoms in mice injected with L. rhamnosus ethyl acetate extract at concentrations of 1, 3, 5, 7, and 9 mg/kg body weight.
Collapse
Affiliation(s)
- Aya Abdel-Nasser
- Food Toxicology and Contaminants Department, National Research Centre, Egypt
| | - Amal S. Hathout
- Food Toxicology and Contaminants Department, National Research Centre, Egypt
- Corresponding author.
| | - Ahmed N. Badr
- Food Toxicology and Contaminants Department, National Research Centre, Egypt
| | - Olfat S. Barakat
- Agricultural Microbiology Department, Faculty of Agriculture, Cairo University, Egypt
| | - Hayam M. Fathy
- Agricultural Microbiology Department, Faculty of Agriculture, Cairo University, Egypt
| |
Collapse
|
38
|
Sanei S, Kasgari MB, Abedinzadeh F, Sasan AP, Hassani S, Karimi E, Oskoueian E, Jahromi MF. Microcapsules loaded with date seed extract and its inhibitory potential to modulate the toxic effects of mycotoxins in mice received mold-contaminated diet. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58654-58662. [PMID: 36991200 DOI: 10.1007/s11356-023-26640-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
Mycotoxins are the secondary fungal metabolites generally produced by wide range of fungi including aflatoxins (AF), ochratoxin A (OTA), fumonisins (FB), zearalenone (ZEN), and deoxynivalenol (DON). Nowadays, they are main concern to food and agricultural commodities due to undesirable health and socio-economic effect. This investigation was designed to synthesized microcapsules loaded the bioactive compounds of date seed and evaluated its inhibitory activities in mice received mold-contaminated diet. The finding revealed that the developed microcapsule is homogenous and mostly spherical with size of 2.58 μm with acceptable PDI of 0.21. The main phytochemical has been confirmed by HPLC analysis were xylose, fructose, mannose, glucose, and galactose with the respective values of 41.95%, 2.24%, 5.27%, and 0.169%. The in vivo analyses manifested that the mice received date seed microcapsules significantly (p < 0.05) improved the average daily weight gain, feed intake, liver enzymes (ALT, ALP, and AST), and lipid peroxidation values compare to mice group received mycotoxin-contaminated diet. Furthermore, encapsulation date seed bioactive compounds notably up-regulated the expression of GPx, SOD, IFN-γ, and IL-2 genes while down-regulated the iNOS gene. Consequently, the novel microcapsules loaded date seed is suggested to be considered as a promising mycotoxin inhibitor.
Collapse
Affiliation(s)
- Sogand Sanei
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Fatemeh Abedinzadeh
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Atena Poor Sasan
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Saeid Hassani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Ehsan Oskoueian
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
- Department of Research and Development, Arka Industrial Cluster, Mashhad, Iran
| | | |
Collapse
|
39
|
de Freitas JV, Godiya CB, Farinas CS, Ruotolo LAM. Adsorptive removal of aflatoxin B1 from simulated animal gastrointestinal tract using sugarcane bagasse fly ash. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1007/s43153-023-00314-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
40
|
Stefanović D, Marinković D, Trailović S, Vasiljević M, Farkaš H, Raj J, Tolimir N, Radulović S, Nešić V, Trailović JN, Petrujkić B. Evaluation of Effectiveness of a Novel Multicomponent Mycotoxins Detoxification Agent in the Presence of AFB1 and T-2 Toxin on Broiler Chicks. Microorganisms 2023; 11:microorganisms11030574. [PMID: 36985148 PMCID: PMC10051569 DOI: 10.3390/microorganisms11030574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
This experimental study was conducted to determine the ability of a novel mycotoxins detoxification agent (MR) at a concentration of 0.2% to reduce the toxicity of aflatoxin B1 (AFB1) or T-2 toxin, alone or in combination, and to examine its effect on performance, pathohistological changes (PH) and the residue of these toxins in the tissues of broiler chicks. A total of 96 broiler chicks were divided into eight equal groups: group C, which served as control (without any additives); group MR, which received the novel detoxification agent (supplemented with 0.2%); group E-I (0.1 mg AFB1/kg of diet); group E-II (0.1 mg AFB1/kg of diet + MR 0.2%); group E-III (0.5 mg T-2 toxin/kg of diet); group E-IV (0.5 mg T-2 toxin/kg of diet + 0.2% MR); group E-V (combination of 0.1 mg AFB1/kg, 0.5 mg T-2 toxin/kg of diet); and group E-VI (combination of 0.1 mg AFB1/kg, 0.5 mg T-2 toxin + 0.2% MR). Results indicate that feeds containing AFB1 and T-2 toxin, alone or in combination, adversely affected the health and performance of poultry. However, the addition of MR to diets containing AFB1 and T-2 toxin singly and in combination exerted a positive effect on body weight, feed intake, weight gain, feed efficiency and microscopic lesions in visceral organs. Residual concentration of AFB1 in liver samples was significantly (p < 0.05) decreased when chicks were fed diets supplemented with 0.2% of MR.
Collapse
Affiliation(s)
- Darko Stefanović
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Darko Marinković
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Saša Trailović
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia
| | | | - Hunor Farkaš
- Patent Co., DOO, Vlade Ćetkovića 1A, 24211 Mišićevo, Serbia
| | - Jog Raj
- Patent Co., DOO, Vlade Ćetkovića 1A, 24211 Mišićevo, Serbia
| | - Nataša Tolimir
- Institute for Science Application in Agriculture, 11000 Belgrade, Serbia
| | - Stamen Radulović
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Vladimir Nešić
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Jelena Nedeljković Trailović
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-113615436
| | - Branko Petrujkić
- Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobodjenja 18, 11000 Belgrade, Serbia
| |
Collapse
|
41
|
García-Calvo L, Rodríguez-Castro R, Ullán RV, Albillos SM, Fernández-Aguado M, Vicente CM, Degnes KF, Sletta H, Barreiro C. Penicillium chrysogenum as a fungal factory for feruloyl esterases. Appl Microbiol Biotechnol 2023; 107:691-717. [PMID: 36595038 DOI: 10.1007/s00253-022-12335-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 01/04/2023]
Abstract
Plant biomass is a promising substrate for biorefinery, as well as a source of bioactive compounds, platform chemicals, and precursors with multiple industrial applications. These applications depend on the hydrolysis of its recalcitrant structure. However, the effective biological degradation of plant cell walls requires several enzymatic groups acting synergistically, and novel enzymes are needed in order to achieve profitable industrial hydrolysis processes. In the present work, a feruloyl esterase (FAE) activity screening of Penicillium spp. strains revealed a promising candidate (Penicillium rubens Wisconsin 54-1255; previously Penicillium chrysogenum), where two FAE-ORFs were identified and subsequently overexpressed. Enzyme extracts were analyzed, confirming the presence of FAE activity in the respective gene products (PrFaeA and PrFaeB). PrFaeB-enriched enzyme extracts were used to determine the FAE activity optima (pH 5.0 and 50-55 °C) and perform proteome analysis by means of MALDI-TOF/TOF mass spectrometry. The studies were completed with the determination of other lignocellulolytic activities, an untargeted metabolite analysis, and upscaled FAE production in stirred tank reactors. The findings described in this work present P. rubens as a promising lignocellulolytic enzyme producer. KEY POINTS: • Two Penicillium rubens ORFs were first confirmed to have feruloyl esterase activity. • Overexpression of the ORFs produced a novel P. rubens strain with improved activity. • The first in-depth proteomic study of a P. rubens lignocellulolytic extract is shown.
Collapse
Affiliation(s)
- Laura García-Calvo
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
- Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7491, Trondheim, Norway
| | - Raquel Rodríguez-Castro
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
| | - Ricardo V Ullán
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain.
- mAbxience, Upstream Production, Parque Tecnológico de León, Julia Morros, S/N, Armunia, 24009, León, Spain.
| | - Silvia M Albillos
- Área de Bioquímica Y Biología Molecular, Departamento de Biotecnología Y Ciencia de los Alimentos, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Marta Fernández-Aguado
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
| | - Cláudia M Vicente
- INBIOTEC (Instituto de Biotecnología de León), Avda. Real 1 - Parque Científico de León, 24006, León, Spain
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077, Toulouse, France
| | - Kristin F Degnes
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands Vei 3 B, 7034, Trondheim, Norway
| | - Håvard Sletta
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Richard Birkelands Vei 3 B, 7034, Trondheim, Norway
| | - Carlos Barreiro
- Área de Bioquímica Y Biología Molecular, Departamento de Biología Molecular, Universidad de León, Campus de Vegazana, 24007, León, Spain.
| |
Collapse
|
42
|
Gab-Allah MA, Choi K, Kim B. Type B Trichothecenes in Cereal Grains and Their Products: Recent Advances on Occurrence, Toxicology, Analysis and Post-Harvest Decontamination Strategies. Toxins (Basel) 2023; 15:85. [PMID: 36828399 PMCID: PMC9963506 DOI: 10.3390/toxins15020085] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Type B trichothecenes (deoxynivalenol, nivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol) and deoxynivalenol-3-glucoside (DON-3G) are secondary toxic metabolites produced mainly by mycotoxigenic Fusarium fungi and have been recognized as natural contaminants in cereals and cereal-based foods. The latest studies have proven the various negative effects of type B trichothecenes on human health. Due to the widespread occurrence of Fusarium species, contamination by these mycotoxins has become an important aspect for public health and agro-food systems worldwide. Hence, their monitoring and surveillance in various foods have received a significant deal of attention in recent years. In this review, an up-to-date overview of the occurrence profile of major type B trichothecenes and DON-3G in cereal grains and their toxicological implications are outlined. Furthermore, current trends in analytical methodologies for their determination are overviewed. This review also covers the factors affecting the production of these mycotoxins, as well as the management strategies currently employed to mitigate their contamination in foods. Information presented in this review provides good insight into the progress that has been achieved in the last years for monitoring type B trichothecenes and DON-3G, and also would help the researchers in their further investigations on metabolic pathway analysis and toxicological studies of these Fusarium mycotoxins.
Collapse
Affiliation(s)
- Mohamed A. Gab-Allah
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
- Reference Materials Lab, National Institute of Standards, P.O. Box 136, Giza 12211, Egypt
| | - Kihwan Choi
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Byungjoo Kim
- Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Department of Bio-Analytical Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
43
|
Esmaeili Z, Hosseinzadeh Samani B, Nazari F, Rostami S, Nemati A. The green technology of cold plasma jet on the inactivation of
Aspergillus flavus
and the total aflatoxin level in pistachio and its quality properties. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zahra Esmaeili
- Department of Mechanical Engineering of Biosystem Shahrekord University Shahrekord Iran
| | | | - Firouzeh Nazari
- Food and Drug Affairs Iran University of Medical Sciences Tehran Iran
| | - Sajad Rostami
- Department of Mechanical Engineering of Biosystem Shahrekord University Shahrekord Iran
| | - Alireza Nemati
- Faculty of Agriculture, Department of Plant Protection Shahrekord University Shahrekord Iran
| |
Collapse
|
44
|
Alharthi AS, Al Sulaiman AR, Aljumaah RS, Alabdullatif AA, Ferronato G, Alqhtani AH, Al-Garadi MA, Al-sornokh H, Abudabos AM. The efficacy of bentonite and zeolite in reducing aflatoxin B1 toxicity on production performance and intestinal and hepatic health of broiler chickens. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2101389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Abdulrahman S. Alharthi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali R. Al Sulaiman
- National Center for Environmental Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Riyadh S. Aljumaah
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz A. Alabdullatif
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Giulia Ferronato
- Department of Civil Engineering, Architecture, Environment, Land Planning and Mathematics (DICATAM), Università degli Studi di Brescia, Brescia, Italy
| | - Abdulmohsen H. Alqhtani
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Maged A. Al-Garadi
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Hussien Al-sornokh
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Alaeldein M. Abudabos
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
45
|
Zhao C, Xie P, Jin J, Jin Q, Wang X. Kinetics, Thermodynamics and Mechanism of Enzymatic Degradation of Zearalenone in Degummed Corn Oil. Toxins (Basel) 2022; 15:19. [PMID: 36668839 PMCID: PMC9867155 DOI: 10.3390/toxins15010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
The kinetics and thermodynamics of the enzymatic degradation of zearalenone (ZEN) in degummed corn oil were investigated by analyzing the impacts of temperature, pH, ZEN hydrolase dosage and ZEN concentration on the initial reaction rate. The kinetic study found that the maximum reaction rate was 0.97 μmol × kg−1 min−1, the Michaelis constant (Km) was 11,476 μmol × kg−1 and the Michaelis equation was V = 0.97[S]/(11,476 + [S]). The thermodynamic study showed that the activation energy (Ea) was 70.37 kJ·mol−1, the activation enthalpy change of the reaction (ΔH) > 0, the free energy of activation (ΔG) > 0 and the activation entropy change (ΔS) < 0, indicating the reaction could not be spontaneous. The reaction mechanism of ZEN was studied by a hybrid quadrupole orbitrap mass spectrometer. It was found that ZEN first generated the intermediate G/L/D/W-ZEN+H2O, followed by generating the intermediate W-ZEN-H2O under the action of a degrading enzyme. Then, the lactone bond was opened to produce C18H24O6, and finally the decarboxylation product C17H24O4 formed automatically.
Collapse
Affiliation(s)
| | | | | | - Qingzhe Jin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | | |
Collapse
|
46
|
Abraham N, Chan ETS, Zhou T, Seah SYK. Microbial detoxification of mycotoxins in food. Front Microbiol 2022; 13:957148. [PMID: 36504774 PMCID: PMC9726736 DOI: 10.3389/fmicb.2022.957148] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/26/2022] [Indexed: 11/24/2022] Open
Abstract
Mycotoxins are toxic secondary metabolites produced by certain genera of fungi including but not limited to Fusarium, Aspergillus, and Penicillium. Their persistence in agricultural commodities poses a significant food safety issue owing to their carcinogenic, teratogenic, and immunosuppressive effects. Due to their inherent stability, mycotoxin levels in contaminated food often exceed the prescribed regulatory thresholds posing a risk to both humans and livestock. Although physical and chemical methods have been applied to remove mycotoxins, these approaches may reduce the nutrient quality and organoleptic properties of food. Microbial transformation of mycotoxins is a promising alternative for mycotoxin detoxification as it is more specific and environmentally friendly compared to physical/chemical methods. Here we review the biological detoxification of the major mycotoxins with a focus on microbial enzymes.
Collapse
Affiliation(s)
- Nadine Abraham
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada,Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Edicon Tze Shun Chan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Stephen Y. K. Seah
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada,*Correspondence: Stephen Y. K. Seah,
| |
Collapse
|
47
|
Mycotoxins and Essential Oils-From a Meat Industry Hazard to a Possible Solution: A Brief Review. Foods 2022; 11:foods11223666. [PMID: 36429263 PMCID: PMC9688991 DOI: 10.3390/foods11223666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
The preservation of food supplies has been humankind's priority since ancient times, and it is arguably more relevant today than ever before. Food sustainability and safety have been heavily prioritized by consumers, producers, and government entities alike. In this regard, filamentous fungi have always been a health hazard due to their contamination of the food substrate with mycotoxins. Additionally, mycotoxins are proven resilient to technological processing. This study aims to identify the main mycotoxins that may occur in the meat and meat products "Farm to Fork" chain, along with their effect on the consumers' health, and also to identify effective methods of prevention through the use of essential oils (EO). At the same time, the antifungal and antimycotoxigenic potential of essential oils was considered in order to provide an overview of the subject. Targeting the main ways of meat products' contamination, the use of essential oils with proven in vitro or in situ efficacy against certain fungal species can be an effective alternative if all the associated challenges are addressed (e.g., application methods, suitability for certain products, toxicity).
Collapse
|
48
|
Salihi EC, Berber B, İsanç K. Kinetic adsorption of drugs using carbon nanofibers in simulated gastric and intestinal fluids. INT J CHEM KINET 2022. [DOI: 10.1002/kin.21620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Elif Caliskan Salihi
- Faculty of Pharmacy Department of Basic Pharmaceutical Sciences Marmara University Istanbul Turkey
| | - Betül Berber
- Faculty of Pharmacy Department of Basic Pharmaceutical Sciences Marmara University Istanbul Turkey
| | - Kübra İsanç
- Faculty of Pharmacy Department of Basic Pharmaceutical Sciences Marmara University Istanbul Turkey
| |
Collapse
|
49
|
Tian F, Woo SY, Lee SY, Park SB, Im JH, Chun HS. Mycotoxins in soybean-based foods fermented with filamentous fungi: Occurrence and preventive strategies. Compr Rev Food Sci Food Saf 2022; 21:5131-5152. [PMID: 36084140 DOI: 10.1111/1541-4337.13032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 01/28/2023]
Abstract
Fermented soybean products are widely consumed worldwide, and their popularity is increasing. Filamentous fungi, such as Actinomucor, Aspergillus, Monascus, Mucor, Penicillium, Rhizopus, and Zymomonas, play critical roles in the fermentation processes of many soybean foods. However, besides producing essential enzymes for food fermentation, filamentous fungi can release undesirable or even toxic metabolites into the food. Mycotoxins are toxic secondary metabolites produced by certain filamentous fungi and may be detected during the food production process. Without effective prevention strategies, mycotoxin contamination in fermented soybean products poses a risk to human health. This review focused on the changes in mycotoxigenic fungal abundance and mycotoxin contamination at different stages during the production of soybean-based fermented foods, as well as effective strategies for preventing mycotoxin contamination in such products. Data from relevant studies demonstrated a tendency of change in the genera of mycotoxigenic fungi and types of mycotoxins (aflatoxins, alternariol, alternariol monomethyl ether, deoxynivalenol, fumonisins, ochratoxin A, rhizoxins, T-2 toxin, and zearalenone) present in the raw materials and the middle and final products. The applicability of traditional chemical and physical mitigation strategies and novel eco-friendly biocontrol approaches to prevent mycotoxin contamination in soybean-based fermented foods were discussed. The present review highlights the risks of mycotoxin contamination during the production of fermented soybean products and recommends promising strategies for eliminating mycotoxin contamination risk in soybean-based fermented foods.
Collapse
Affiliation(s)
- Fei Tian
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - So Young Woo
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Sang Yoo Lee
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Su Been Park
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Ju Hee Im
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Hyang Sook Chun
- Food Toxicology Laboratory, School of Food Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
50
|
Ndiaye S, Zhang M, Fall M, Ayessou NM, Zhang Q, Li P. Current Review of Mycotoxin Biodegradation and Bioadsorption: Microorganisms, Mechanisms, and Main Important Applications. Toxins (Basel) 2022; 14:729. [PMID: 36355979 PMCID: PMC9694041 DOI: 10.3390/toxins14110729] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 01/26/2023] Open
Abstract
Mycotoxins are secondary metabolites produced by fungi. Food/feed contamination by mycotoxins is a great threat to food safety. The contamination can occur along the food chain and can cause many diseases in humans and animals, and it also can cause economic losses. Many detoxification methods, including physical, chemical, and biological techniques, have been established to eliminate mycotoxins in food/feed. The biological method, with mycotoxin detoxification by microorganisms, is reliable, efficient, less costly, and easy to use compared with physical and chemical ones. However, it is important to discover the metabolite's toxicity resulting from mycotoxin biodegradation. These compounds can be less or more toxic than the parent. On the other hand, mechanisms involved in a mycotoxin's biological control remain still unclear. Mostly, there is little information about the method used by microorganisms to control mycotoxins. Therefore, this article presents an overview of the most toxic mycotoxins and the different microorganisms that have a mycotoxin detoxification ability. At the same time, different screening methods for degradation compound elucidation are given. In addition, the review summarizes mechanisms of mycotoxin biodegradation and gives some applications.
Collapse
Affiliation(s)
- Seyni Ndiaye
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratoire D’Analyses et D’Essai, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, Fann-Dakar 5085, Senegal
| | - Minhui Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Mouhamed Fall
- Key Laboratory of Agro-Products Processing, Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100193, China
| | - Nicolas M. Ayessou
- Laboratoire D’Analyses et D’Essai, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, Fann-Dakar 5085, Senegal
| | - Qi Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Peiwu Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|