1
|
Rosa D, Elya B, Hanafi M, Khatib A, Budiarto E, Nur S, Surya MI. Investigation of alpha-glucosidase inhibition activity of Artabotrys sumatranus leaf extract using metabolomics, machine learning and molecular docking analysis. PLoS One 2025; 20:e0313592. [PMID: 39752479 PMCID: PMC11698457 DOI: 10.1371/journal.pone.0313592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/27/2024] [Indexed: 01/06/2025] Open
Abstract
One way to treat diabetes mellitus type II is by using α-glucosidase inhibitor, that will slow down the postprandial glucose intake. Metabolomics analysis of Artabotrys sumatranus leaf extract was used in this research to predict the active compounds as α-glucosidase inhibitors from this extract. Both multivariate statistical analysis and machine learning approaches were used to improve the confidence of the predictions. After performance comparisons with other machine learning methods, random forest was chosen to make predictive model for the activity of the extract samples. Feature importance analysis (using random feature permutation and Shapley score calculation) was used to identify the predicted active compound as the important features that influenced the activity prediction of the extract samples. The combined analysis of multivariate statistical analysis and machine learning predicted 9 active compounds, where 6 of them were identified as mangiferin, neomangiferin, norisocorydine, apigenin-7-O-galactopyranoside, lirioferine, and 15,16-dihydrotanshinone I. The activities of norisocorydine, apigenin-7-O-galactopyranoside, and lirioferine as α-glucosidase inhibitors have not yet reported before. Molecular docking simulation, both to 3A4A (α-glucosidase enzyme from Saccharomyces cerevisiae, usually used in bioassay test) and 3TOP (a part of α-glucosidase enzyme in human gut) showed strong to very strong binding of the identified predicted active compounds to both receptors, with exception of neomangiferin which only showed strong binding to 3TOP receptor. Isolation based on bioassay guided fractionation further verified the metabolomics prediction by succeeding to isolate mangiferin from the extract, which showed strong α-glucosidase activity when subjected to bioassay test. The correlation analysis also showed a possibility of 3 groups in the predicted active compounds, which might be related to the biosynthesis pathway (need further research for verification). Another result from correlation analysis was that in general the α-glucosidase inhibition activity in the extract had strong correlation to antioxidant activity, which was also reflected in the predicted active compounds. Only one predicted compound had very low positive correlation to antioxidant activity.
Collapse
Affiliation(s)
- Dela Rosa
- Department of Pharmacy, Faculty of Pharmacy, Indonesia University, Depok, Indonesia
- Department of Pharmacy, Faculty of Health Science, Pelita Harapan University, Tangerang, Indonesia
| | - Berna Elya
- Department of Pharmacy, Faculty of Pharmacy, Indonesia University, Depok, Indonesia
| | - Muhammad Hanafi
- Chemistry Research Centre, National Research and Innovation Agency, Science and Technology Research Centre, Serpong, Indonesia
| | - Alfi Khatib
- Department of Pharmaceutical Chemistry, Kulliyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Eka Budiarto
- Department of Information Technology, Faculty of Engineering and Information Technology, Swiss German University, Tangerang, Indonesia
| | - Syamsu Nur
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Almarisah Madani University, Makasar, Indonesia
| | - Muhammad Imam Surya
- Research Centre for Plant Conservation, Botanic Gardens and Forestry, National Research and Innovation Agency, Bogor, Indonesia
| |
Collapse
|
2
|
Zhong L, Yang J, Syed JN, Zhang Y, Tian Y, Fu X. Alpha-Glucosidase Inhibitors in Aging and Aging-Related Diseases: Clinical Applications and Relevant Mechanisms. Aging Dis 2025:AD.2024.1477. [PMID: 39751859 DOI: 10.14336/ad.2024.1477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Aging is a complex and universal process marked by gradual functional declines at the cellular and tissue levels, often leading to a range of aging-related diseases such as diabetes, cardiovascular diseases, and cancer. Delaying the aging process can help prevent, slow down, and alleviate the severity of these various conditions, enhancing overall health and well-being. Alpha-glucosidase inhibitors (AGIs) are a class of widely used antidiabetic drugs that inhibit alpha-glucosidase in the small intestinal mucosa, delaying carbohydrate absorption and reducing postprandial hyperglycemia. Beyond their roles in diabetes treatment, AGIs have shown potential in extending lifespan and effectively treating aging-related diseases by modulating oxidative stress, gut microbiota, inflammatory responses, and nutrient-sensing pathways. This review summarizes recent advancements in the application of AGIs for preventing and treating aging and aging-related diseases, with a focus on their mechanisms and roles in these processes.
Collapse
Affiliation(s)
- Ling Zhong
- Department of Endocrinology and Metabolism, Department of Biotherapy, Laboratory of Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jielin Yang
- Department of Translational Medicine, The Hospital for Sick Children, Toronto, ON M5S 1A1, Canada
| | - Jibran Nehal Syed
- Department of Translational Medicine, The Hospital for Sick Children, Toronto, ON M5S 1A1, Canada
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Department of Biotherapy, Laboratory of Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Department of Biotherapy, Laboratory of Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
3
|
Wang M, Guo W, Ke Z, Mao H, Lv J, Qi L, Wang J. Inhibitory mechanisms of galloylated forms of theaflavins on α-glucosidase. Int J Biol Macromol 2025:139324. [PMID: 39755321 DOI: 10.1016/j.ijbiomac.2024.139324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Theaflavins, oxidation product of tea polyphenols, have demonstrated significant inhibitory effects on α-glucosidase, which is beneficial in alleviating hyperglycemia. This study found that the inhibition of four monomers of theaflavins on α-glucosidase was related to the presence of the galloyl moiety (GM), with IC50 values ranging from TFDG (0.26 mg/mL) < TF3'G (0.33 mg/mL) < TF3G (0.39 mg/mL) ≪ TF (3.26 mg/mL). The multi-spectroscopic analyses revealed that theaflavin monomers changed the microenvironment around aromatic amino acid residues and conformation of α-glucosidase, with the hierarchy being TFDG > TF3'G > TF3G > TF. The binding of theaflavins with α-glucosidase was confirmed by differential scanning calorimetry (DSC), isothermal titration calorimetry (ITC), molecular docking and molecular dynamics simulations analysis. It was confirmed that theaflavins can form stable complexes with α-glucosidase, and that hydrogen bonding and van der Waals forces play important roles in the binding of theaflavins to α-glucosidase. The strongest binding affinity was observed between TFDG and the enzyme's active site, which corresponded with its enzyme activity inhibition ability. The study suggests that GM substitution plays a crucial role in enhancing the binding of theaflavins to α-glucosidase, thereby inducing greater conformational changes and leading to a stronger inhibitory effect on α-glucosidase.
Collapse
Affiliation(s)
- Mengting Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Wenwen Guo
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China; College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhijian Ke
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| | - Haiguang Mao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
| | - Jimin Lv
- Xianghu Laboratory, Hangzhou 311231, China
| | - Lili Qi
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| | - Jinbo Wang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China.
| |
Collapse
|
4
|
Khademian A, Halimi M, Azarbad R, Alaedini AH, Noori M, Dastyafteh N, Mojtabavi S, Faramarzi MA, Mohammadi-Khanaposhtani M, Mahdavi M. Quinoline-thiosemicarbazone-1,2,3-triazole-acetamide derivatives as new potent α-glucosidase inhibitors. Sci Rep 2024; 14:30876. [PMID: 39730503 DOI: 10.1038/s41598-024-81668-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/28/2024] [Indexed: 12/29/2024] Open
Abstract
In this work, a novel series of quinoline-thiosemicarbazone-1,2,3-triazole-aceamide derivatives 10a-n as new potent α-glucosidase inhibitors was designed, synthesized, and evaluated. All the synthesized derivatives 10a-n were more potent than acarbose (positive control). Representatively, (E)-2-(4-(((3-((2-Carbamothioylhydrazineylidene)methyl)quinolin-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)-N-phenethylacetamide (10n), as the most potent entry, with IC50 = 48.4 µM was 15.5-times more potent than acarbose. According to kinetic study, compound 10n was a competitive inhibitor against α-glucosidase. This compound formed the desired interactions with important residues of the binding pocket of α-glucosidase with favorable binding energy in the molecular docking and molecular dynamics. Compounds 10n, 10e, and 10 g as the most potent compounds among the synthesized compounds were evaluated in term of pharmacokinetics and toxicity via online servers. These evaluations predicted that compounds 10n, 10e, and 10 g had good pharmacokinetic properties and toxicity profile.
Collapse
Affiliation(s)
- Aynaz Khademian
- Biomedical and Microbial Advanced Technologies (BMAT) Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Halimi
- Department of Biology, Islamic Azad University, Babol BranchBabol, Iran
| | - Reza Azarbad
- Biomedical and Microbial Advanced Technologies (BMAT) Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Milad Noori
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Dastyafteh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Uuh Narvaez JJ, Guerrero-Analco JA, Monribot-Villanueva JL, Vidal-Limon A, Melgar Lalanne G, Herrera RR, Segura Campos MR. Bixa orellana (Bixaceae) seeds as a potential source of bioactive compounds for modulating postprandial hyperglycemia. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39707803 DOI: 10.1002/jsfa.14085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND α-Amylase (α-AMY) and α-glucosidase (α-GLU) inhibitors are important for controlling postprandial hyperglycemia (PHG). Bixa orellana (annatto) reported inhibitory activity against these enzymes because of its bioactive compound content. However, an understanding of its inhibitory mechanisms and metabolic profile is necessary to establish its therapeutic potential. The present study aimed to elucidate the inhibitory mechanisms of B. orellana extract (BOE) on α-AMY and α-GLU, identify and quantify its bioactive compounds using metabolomics (untargeted and targeted) analyses, and evaluate their interactions through in silico approaches. RESULTS BOE exhibited IC50 values of 37.75 and 47.06 mg mL-1 for α-AMY and α-GLU, respectively, indicating mixed and competitive inhibition types. Thirty-six putative compounds were identified by untargeted metabolomics, mainly fatty acids (dethiobiotin, occidentalol, palmitic acid, norbixin, among others). The most significant biosynthetic pathways included secondary metabolites (unclassified), unsaturated fatty acids, phenylpropanoids and flavonoid metabolism. Eighteen compounds were identified and quantified by the targeted analysis, such as l-phenylalanine, gallic acid, protocatechuic acid and naringenin. In silico studies highlighted xanthoangelol, norbixin, myricetin and 26-hydroxybrassinolide as key compounds with the highest binding affinities to enzyme active sites. CONCLUSION BOE effectively inhibited α-AMY and α-GLU, with gallic acid, naringenin, xanthoangelol, norbixin and 26-hydroxybrassinolide identified as key bioactive contributors. These findings provide molecular evidence of the inhibitory mechanisms of BOE and support its potential for PHG management and diabetes control. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - José A Guerrero-Analco
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Juan Luis Monribot-Villanueva
- Laboratorio de Química de Productos Naturales, Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Abraham Vidal-Limon
- Laboratorio de Ecología Química, Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C., Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | | | | | | |
Collapse
|
6
|
Méndez López LF, González Llerena JL, Vázquez Rodríguez JA, Medellín Guerrero AB, González Martínez BE, Solís Pérez E, López-Cabanillas Lomelí M. Dietary Modulation of the Immune System. Nutrients 2024; 16:4363. [PMID: 39770983 PMCID: PMC11676904 DOI: 10.3390/nu16244363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Recent insights into the influence of nutrition on immune system components have driven the development of dietary strategies targeting the prevention and management of major metabolic-inflammatory diseases. This review summarizes the bidirectional relationship between nutrition and immunocompetence, beginning with an overview of immune system components and their functions. It examines the effects of nutritional status, dietary patterns, and food bioactives on systemic inflammation, immune cell populations, and lymphoid tissues, as well as their associations with infectious and chronic disease pathogenesis. The mechanisms by which key nutrients influence immune constituents are delineated, focusing on vitamins A, D, E, C, and B, as well as minerals including zinc, iron, and selenium. Also highlighted are the immunomodulatory effects of polyunsaturated fatty acids as well as bioactive phenolic compounds and probiotics, given their expanding relevance. Each section addresses the implications of nutritional and nutraceutical interventions involving these nutrients within the broader context of major infectious, metabolic, and inflammatory diseases. This review further underscores that, while targeted nutrient supplementation can effectively restore immune function to optimal levels, caution is necessary in certain cases, as it may increase morbidity in specific diseases. In other instances, dietary counseling should be integrated to ensure that therapeutic goals are achieved safely and effectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Manuel López-Cabanillas Lomelí
- Universidad Autónoma de Nuevo León, Facultad de Salud Pública y Nutrición, Centro de Investigación en Nutrición y Salud Pública, Monterrey 64460, México; (L.F.M.L.)
| |
Collapse
|
7
|
Hafez Ghoran S, Abdjan MI, Kristanti AN, Aminah NS. Insights into in vitro and in silico studies of α-glucosidase inhibitors isolated from the leaves of Grewia optiva (Malvaceae). Int J Biol Macromol 2024; 287:138590. [PMID: 39667462 DOI: 10.1016/j.ijbiomac.2024.138590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/23/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
α-Glucosidase plays a critical role in glucose metabolism by breaking down complex carbohydrates into simpler sugars for intestinal absorption. Due to the side effects of current α-glucosidase inhibitors, there is increasing interest in exploring alternative therapeutic options. Inspired by the traditional uses of Grewia optiva J.R.Drumm. ex Burret (Malvaceae family) as an anti-diabetic herb, we isolated gnaphaffine A (1), a cyclic glycosylated homolignan, together with kaempferol derivatives (trans-tiliroside 2, cis-tiliroside 3, and astragalin 4) from the ethyl acetate fraction. In vitro antioxidant assays revealed that 1 exhibited anti-DPPH• and anti-ABTS+• activity (IC50 of 39.42 and 52.84 μg/mL, respectively), comparable to ascorbic acid (IC50 of 43.34 and 47.56 μg/mL, respectively). Moreover, 1 demonstrated a seven-fold stronger inhibition of α-glucosidase activity than acarbose (IC50 of 8.2 and 57.8 μg/mL, respectively). Importantly, 1 was non-toxic to AC16 normal cardiomyocyte cell lines. Computational analyses identified two key factors contributing to the α-glucosidase inhibitory activity of 1: (a) hydrogen bonding interactions with catalytic residues (E277 and D352) and (b) a calculated ∆Gbind of -51.20 kcal/mol. Furthermore, 3 showed the most favorable in silico binding profile, with the highest ∆Gbind (-55.89 kcal/mol) and higher hydrogen bond occupancy compared to 1 and 2. These findings suggest that 1 and 3 may serve as promising lead compounds for the development of new α-glucosidase drugs.
Collapse
Affiliation(s)
- Salar Hafez Ghoran
- Postdoc Fellow Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Kampus C, Jl. Mulyorejo, Surabaya 60115, Indonesia.
| | - Muhammad Ikhlas Abdjan
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Alfinda Novi Kristanti
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; Biotechnology of Tropical Medicinal Plants Research Center, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Nanik Siti Aminah
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia; Biotechnology of Tropical Medicinal Plants Research Center, Universitas Airlangga, Surabaya 60115, Indonesia.
| |
Collapse
|
8
|
Kumari S, Saini R, Bhatnagar A, Mishra A. Exploring plant-based alpha-glucosidase inhibitors: promising contenders for combatting type-2 diabetes. Arch Physiol Biochem 2024; 130:694-709. [PMID: 37767958 DOI: 10.1080/13813455.2023.2262167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
OBJECTIVE This systematic review aimed to provide comprehensive details on the α-G inhibitory potential of various bioactive compounds derived from natural sources. METHODS A comprehensive literature search was conducted using various databases and search engines, including Science Direct, Google Scholar, SciFinder, Web of Science, and PubMed until May, 2023. RESULTS AND CONCLUSIONS The enzyme alpha-glucosidase (α-G) is found in the brush border epithelium of the small intestine and consists of duplicated glycoside hydrolase (GH31) domain. It involves the conversion of disaccharides and oligosaccharides into monosaccharides by acting on alpha (1 → 4) and (1 → 6) linked glucose residue. Once absorbed, glucose enters the bloodstream and elevates postprandial glucose, which is associated with the development of type 2 Diabetes (T2D). Epidemic obesity, cardiovascular disease, and nephropathy are linked to T2D. Traditional medicinal plants with α-G inhibitory potential are commonly used to treat T2D due to the adverse effects of currently used α-G inhibitors miglitol, acarbose, and voglibose. Various bioactive compounds derived from natural sources, including lupenone, Wilforlide A, Baicalein, Betulinic acid, Ursolic acid, Oleanolic acid, Katononic acid, Carnosol, Hypericin, Astilbin, lupeol, betulonic acid, Fagomine, Lactucaxanthin, Erythritol, GP90-1B, Procyanidins, Galangin, and vomifoliol retain α-G inhibitory potential for regulating hyperglycaemia.
Collapse
Affiliation(s)
- Sonali Kumari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Ravi Saini
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Aditi Bhatnagar
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
9
|
Li ZR, Jia RB, Mo Y, Wang H, Luo D, Zhou C, Zhao M. Comparative Study on the Antioxidative Effects and α-Glucosidase Inhibitory Potential In Vitro among Ellagic Acid and Its Metabolites Urolithins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39565047 DOI: 10.1021/acs.jafc.4c06542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The current study compared the radical scavenging and α-glucosidase inhibition potentials of ellagic acid (EA) and its metabolites, urolithins (Uros), and further explored the structure-activity relationship. The outcomes indicated that urolithin M5 (Uro-M5), EA, and urolithin M6 (Uro-M6) exhibited superior 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity; EA and urolithin D (Uro-D) expressed better ABTS scavenging ability, and EA and Uro-M5 showed preferable α-glucosidase inhibition activity. The results of CD spectra and fluorescence spectral analysis explained the interaction between Uros and α-glucosidase. Correlation analysis indicated that hydroxyl groups were crucial for the antioxidative effect, while C-8 OH contributed greatly to the α-glucosidase inhibition activity. Quantum mechanical analysis showed that both EA and Uros exhibited strong electrophilic properties. These comparative results showed a biological discrepancy between Uros and provided essential information for exploring the bioactive application of EA as a functional ingredient or dietary supplement.
Collapse
Affiliation(s)
- Zhao-Rong Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| | - Rui-Bo Jia
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yurong Mo
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Haozheng Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Donghui Luo
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chunxia Zhou
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China
| |
Collapse
|
10
|
Elmi A, Zengin G, Said MA, Gil-Ortiz R, Caprioli G, Piatti D, Spina R, Chtita S, Ricciutelli M, Abdoul-Latif FM, Laurain-Mattar D. Antioxidant, Enzyme and Molecular Docking Tyrosinase Inhibitory Activities of Major Polyphenols in Boscia coriacea Graells, Grewia erythraea (Schweinf.) Chiov., Ochradenus baccatus Delile, and Orthosiphon pallidus Royle Ex Benth. Chem Biodivers 2024:e202402498. [PMID: 39564698 DOI: 10.1002/cbdv.202402498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
Boscia coriacea Graells (BC), Grewia erythraea (Schweinf.) Chiov. (GE), Ochradenus baccatus Delile (OB), and Orthosiphon pallidus Royle ex Benth. (OP) are medicinal plants used in Djibouti. They were evaluated to determine their total phenolic content (TPC), flavonoid content (TFC), and phytochemical profile using HPLC-MS/MS. Additionally, their antioxidant capacity was assessed through five various methods. Enzymatic activities were also measured, focusing on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), α-amylase, α-glucosidase, and tyrosinase. OP extract had the highest TPC and exhibited the best antioxidant capacity, whereas OB and BC extracts had the highest TFC. Twenty-seven compounds were identified and quantified by LCMS. GE extract demonstrated the highest AChE activity, whereas OP extract had the highest BChE activity. BC was most active against α-amylase and α-glucosidase, and only GE and OP extracts showed tyrosinase inhibition in vitro. In silico analysis, the compounds were optimized and docked to the human tyrosinase-related protein 1 using AutoDock Vina, with absorption, distribution, metabolism, and elimination to evaluate their suitability based on key therapeutic criteria. Chlorogenic, neochlorogenic, gallic acids, and quercetin emerged as promising tyrosinase inhibitors. These plants can be a viable source in the prevention and treatment related to tyrosinase enzyme inhibition.
Collapse
Affiliation(s)
- Abdirahman Elmi
- Medicinal Research Institute, Centre d'Etudes et de Recherche de Djibouti, IRM-CERD, Djibouti City, Djibouti
| | - Gokhan Zengin
- Physiology and Biochemistry Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Mohamed A Said
- Medicinal Research Institute, Centre d'Etudes et de Recherche de Djibouti, IRM-CERD, Djibouti City, Djibouti
| | | | - Giovanni Caprioli
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Camerino, Italy
| | - Diletta Piatti
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Samir Chtita
- Laboratory of Process and Environmental Engineering, Faculty of Sciences and Technics of Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco
| | - Massimo Ricciutelli
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Camerino, Italy
| | - Fatouma M Abdoul-Latif
- Medicinal Research Institute, Centre d'Etudes et de Recherche de Djibouti, IRM-CERD, Djibouti City, Djibouti
| | | |
Collapse
|
11
|
Dang HH, Doan MD, Dang TN, Nguyen THA, Phuong TT, Vu Van T, Nguyen Ngoc H, Nguyen HT. LC-MS/MS analysis and α-glucosidase inhibitory effect of majonoside R2 in Vietnamese ginseng ( Panax vietnamensis Ha & Grushv.). Nat Prod Res 2024:1-7. [PMID: 39560108 DOI: 10.1080/14786419.2024.2429124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024]
Abstract
Majonoside R2 (MR2), the principal saponin of Vietnamese ginseng (Panax vietnamensis Ha & Grushv.), has the unique structure of ocotillol-type dammarane and showed remarkable biological activities. This paper deals with the new findings in the chemical analysis MR2 by the tandem LC-MS/MS and, especially, its inhibitory activities on α-glucosidase for diabetic management. The developed LC-MS/MS method revealed advantages of high selectivity with specific mass transition from precursor [M + H]+ ion (m/z 784.4) into product ion (m/z 475.1), high sensitivity (calibration range: 5-250 ppb; LOD: 1.5 ppb; LOQ: 5.0 ppb), and high accuracy to support further pharmaceutical analysis of MR2. MR2 and its aglycone ocotillol relatively showed certain inhibitory effects on α-glucosidase in vitro with the IC50 values of 353.05 and 219.64 µg/mL and supported by molecular docking analysis, in which MR2 and ocotillol could play as allosteric inhibitors with high binding affinity (-7.8 and -8.1 kcal/mol) evidenced by bonding interactions.
Collapse
Affiliation(s)
| | - Manh Dung Doan
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot, DakLak, Vietnam
| | - Thi Ngan Dang
- University of Medicine and Pharmacy, Vietnam National University, Hanoi (VNU), Cau Giay, Hanoi, Vietnam
| | - Thi Hoang Anh Nguyen
- University of Medicine and Pharmacy, Vietnam National University, Hanoi (VNU), Cau Giay, Hanoi, Vietnam
| | - Thien Thuong Phuong
- Division of Biotechnology, Vietnam-Korea Institute of Science and Technology, Hoa Lac High Tech Park, Hanoi, Vietnam
| | - Tuan Vu Van
- Faculty of Pharmacy, PHENIKAA University, Hanoi, Vietnam
| | | | | |
Collapse
|
12
|
Peytam F, Hosseini FS, Fathimolladehi R, Nayeri MJD, Moghadam MS, Bayati B, Norouzbahari M, Foroumadi R, Bonyasi F, Divsalar R, Mojtabavi S, Faramarzi MA, Tehrani MB, Firoozpour L, Foroumadi A. Design, synthesis, and evaluation of novel substituted imidazo[1,2-c]quinazoline derivatives as potential α-glucosidase inhibitors with bioactivity and molecular docking insights. Sci Rep 2024; 14:27507. [PMID: 39528585 PMCID: PMC11555253 DOI: 10.1038/s41598-024-78878-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
α-Glucosidase inhibitors are important in the treatment of type 2 diabetes by regulating blood glucose levels and reducing carbohydrate absorption. The present study focuses on identifying new inhibitors bearing imidazo[1,2-c]quinazoline backbone through multi-step synthesis. The inhibitory potencies of the novel derivatives were tested against Saccharomyces cerevisiae α-glucosidase, revealing IC50 values ranging from 50.0 ± 0.12 µM to 268.25 ± 0.09 µM. Among them, 2-(4-(((2,3-diphenylimidazo[1,2-c]quinazolin-5-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)-N-(2-methoxyphenyl)acetamide (19e) and 2-(4-((benzo[4,5]imidazo[1,2-c]quinazolin-6-ylthio)methyl)-1H-1,2,3-triazol-1-yl)-N-(2-methoxyphenyl)acetamide (27e) emerged as the most potent inhibitors and were further investigated in various assessments. Finally, molecular docking studies were performed to reveal the crucial binding interactions and to confirm the results obtained from structure-activity relationship (SAR) analysis.
Collapse
Affiliation(s)
- Fariba Peytam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Sadat Hosseini
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Fathimolladehi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahdis Sadeghi Moghadam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Bahareh Bayati
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Norouzbahari
- Faculty of Pharmacy, Final International University, Catalkoy, Kyrenia via Mersin 10 Turkey, Turkish Republic of Northern Cyprus
| | - Roham Foroumadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Bonyasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ruzbehan Divsalar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Barazandeh Tehrani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Loghman Firoozpour
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
13
|
Yuan LL, Wang Y, Wang GK, Liu JK. Nine New Glycosylated Compounds from the Leaves of the Medicinal Plant Malus hupehensis. Molecules 2024; 29:5269. [PMID: 39598658 PMCID: PMC11596612 DOI: 10.3390/molecules29225269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Nine new compounds (1-9), including four dihydrochalcone glycosides, two dibenzofuran glycosides, and two biphenyl glycosides, were isolated from the leaves of the medicinal plant Malus hupehensis collected in Shennongjia Forestry District (Hubei, China). Their structures were elucidated by comprehensive spectroscopic techniques, including HRESIMS and NMR spectra. All compounds were tested by preliminary biological evaluation for their α-glucosidase inhibitory and NO production activities. Compound 4 was found to show significant inhibitory activity against NO production in LPS-activated RAW 264.7 macrophage cells with an IC50 value of 29.60 μM, and compounds 3 and 4 were found to exhibit potent α-glucosidase inhibition with IC50 values of 44.17 and 60.15 μM, respectively. This work represents the first report of the diverse glycosides from the plant Malus hupehensis. It expands our understanding of the secondary metabolites of this medicinal plant and lays the foundation for the study of the bioactive principles of the ethnic hypoglycemic medicinal plant.
Collapse
Affiliation(s)
- Lin-Lin Yuan
- Anhui Province Key Laboratory of Bioactive Natural Products, School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, China;
| | - Yi Wang
- Genpact, 1155 Avenue of the Americas 4th Fl, New York, NY 10036, USA;
| | - Guo-Kai Wang
- Anhui Province Key Laboratory of Bioactive Natural Products, School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, China;
| | - Ji-Kai Liu
- Anhui Province Key Laboratory of Bioactive Natural Products, School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, China;
| |
Collapse
|
14
|
Zhang Y, Yu X, Li J, Liang B, Sun J, Min X, Xiong Z, Chen WH, Xu X. Design, synthesis and biological evaluation of novel betulinic acid derivatives containing 1,2,4-triazole-derived schiff bases as α-glucosidase inhibitors. J Mol Struct 2024; 1315:138889. [DOI: 10.1016/j.molstruc.2024.138889] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Frumuzachi O, Rohn S, Mocan A. Fermented black chokeberry (Aronia melanocarpa (Michx.) Elliott) products - A systematic review on the composition and current scientific evidence of possible health benefits. Food Res Int 2024; 196:115094. [PMID: 39614570 DOI: 10.1016/j.foodres.2024.115094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/18/2024] [Accepted: 09/12/2024] [Indexed: 12/01/2024]
Abstract
Black chokeberry (Aronia melanocarpa (Michx.) Elliott) is recognized for its potential health benefits, largely attributed to its high phenolic content. However, many phenolic compounds possess a low bioavailability, potentially limiting their beneficial effects. Fermentation of chokeberry has been proposed as a method to improve bioavailability, bioactive composition, sensory qualities, and nutritional value. This systematic review provides an overview of fermented chokeberry products, including compound composition, sensory attributes, and health benefits observed in in vivo and in vitro studies. While sensory evaluations highlighted diverse flavour profiles and acceptability, human intervention studies suggested potential benefits for glucose-dependent insulinotropic peptide increase. Animal models indicated anti-obesity and immunomodulatory properties, while in vitro studies demonstrate antioxidant, anti-melanogenesis, and anti-diabetic effects. Despite some promising findings in human and animal trials, challenges such as participant adherence and dosing inconsistencies force further protocol improvements. Through continuous scientific research, fermented chokeberry products may emerge as functional foods contributing to human health.
Collapse
Affiliation(s)
- Oleg Frumuzachi
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania.
| | - Sascha Rohn
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania; Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| |
Collapse
|
16
|
Fan S, Liu Q, Du Q, Zeng X, Wu Z, Pan D, Tu M. Multiple roles of food-derived bioactive peptides in the management of T2DM and commercial solutions: A review. Int J Biol Macromol 2024; 279:134993. [PMID: 39181375 DOI: 10.1016/j.ijbiomac.2024.134993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Type 2 diabetes mellitus (T2DM), a disease that threatens public health worldwide and can cause a series of irreversible complications, has been a major concern. Although the treatment based on hypoglycemic drugs is effective, its side effects should not be ignored, which has led to an urgent need for developing new hypoglycemic drugs. Bioactive peptides with antidiabetic effects obtained from food proteins have become a research hotspot as they are safer and with higher specificity than traditional hypoglycemic drugs. Here, we reviewed antidiabetic peptides that have the ability to inhibit key enzymes (α-glucosidase, α-amylase, and DPP-IV) in T2DM, the hypoglycemic mechanisms and structure-activity relationships were summarized, some antidiabetic peptides that improve insulin resistance and reverse gut microbiota and their metabolites were overviewed, the bitterness of antidiabetic peptides was predicted in silico, proposed solutions to the current challenges encountered in the development of antidiabetic peptide drugs, and provided an outlook on the future focus of commercial production. It provides a reference for the application of food-derived antidiabetic peptides.
Collapse
Affiliation(s)
- Shuo Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Qirui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; Zhejiang Key Laboratory of Food Microbiology and Nutritional Health, Hangzhou 310018, China.
| |
Collapse
|
17
|
Kaya B, Acar Çevik U, Çiftçi B, Duran HE, Türkeş C, Işık M, Bostancı HE, Kaplancıklı ZA, Beydemir Ş. Synthesis, α-Glucosidase, α-Amylase, and Aldol Reductase Inhibitory Activity with Molecular Docking Study of Novel Imidazo[1,2- a]pyridine Derivatives. ACS OMEGA 2024; 9:42905-42914. [PMID: 39464438 PMCID: PMC11500159 DOI: 10.1021/acsomega.4c05619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024]
Abstract
Inhibition ofaldose reductase (AR), α-glycosidase (α-GLY), and α-amylase (α-AMY) are some of the essential targets in diabetes mellitus (DM). Here, a series of imidazo[1,2-a]pyridine-based 1,3,4-thiadiazole derivatives (8a-k) were successfully synthesized and characterized using 1H NMR, 13C NMR, and HRMS spectroscopic techniques. The inhibition effects of the synthesized derivatives against AR, α-GLY, and α-AMY were evaluated using both in vitro and in silico methods. In vitro studies revealed that the derivatives (8a-k) showed significant inhibition activity. The results showed that the novel derivatives (8a-k) demonstrated potential inhibitory activity, with K I values covering the following ranges: 23.47 ± 2.40 to 139.60 ± 13.33 nM for AR and 6.09 ± 0.37 to 119.80 ± 12.31 μM for α-GLY, with IC50 values 81.14 to 153.51 μM for α-AMY. Furthermore, many of these compounds exhibited high inhibition activity, while some of them showed higher potency than the reference compounds. Molecular docking of the target compounds was carried out in the active sites of AR (PDB ID: 4JIR) and α-GLY (PDB ID: 5NN8).
Collapse
Affiliation(s)
- Betül Kaya
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Zonguldak Bulent Ecevit University, 67600 Zonguldak, Turkey
| | - Ulviye Acar Çevik
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Bilge Çiftçi
- Vocational
School of Health Services, Bilecik Şeyh
Edebali University, 11230 Bilecik, Turkey
| | - Hatice Esra Duran
- Department
of Medical Biochemistry, Faculty of Medicine, Kafkas University, 36100 Kars, Turkey
| | - Cüneyt Türkeş
- Department
of Biochemistry, Faculty of Pharmacy, Erzincan
Binali Yıldırım University, 24002 Erzincan, Turkey
| | - Mesut Işık
- Department
of Bioengineering, Faculty of Engineering, Bilecik Şeyh Edebali University, 11230 Bilecik, Turkey
| | - Hayrani Eren Bostancı
- Department
of Biochemistry, Faculty of Pharmacy, Sivas
Cumhuriyet University, 58140 Sivas, Turkey
| | - Zafer Asım Kaplancıklı
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey
| | - Şükrü Beydemir
- Department
of Biochemistry, Faculty of Pharmacy, Anadolu
University, 26470 Eskişehir, Turkey
| |
Collapse
|
18
|
Bunyakitcharoen A, Taychaworaditsakul W, Sireeratawong S, Chansakaow S. Anti-Hyperglycemic Effects of Thai Herbal Medicines. PLANTS (BASEL, SWITZERLAND) 2024; 13:2862. [PMID: 39458809 PMCID: PMC11511234 DOI: 10.3390/plants13202862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/01/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
This study aims to investigate selected medicinal plants' anti-oxidative and antihyperglycemic activities to develop an effective remedy for lowering blood glucose levels and/or reducing diabetes complications. Thai medicinal plants, reported to have blood sugar-lowering effects, were selected for the study: Coccinia grandis, Gymnema inodorum, Gynostemma pentaphyllum, Hibiscus sabdariffa, Momordica charantia, Morus alba, and Zingiber officinale. Each species was extracted by Soxhlet's extraction using ethanol as solvent. The ethanolic crude extract of each species was then evaluated for its phytochemicals, anti-oxidant, and antihyperglycemic activities. The results showed that the extract of Z. officinale gave the highest values of total phenolic and total flavonoid content (167.95 mg gallic acid equivalents (GAE)/g and 81.70 mg CE/g, respectively). Anti-oxidant activity was determined using DPPH and ABTS radical scavenging activity. Among the ethanolic extracts, Z. officinale exhibited the highest anti-oxidant activity with IC50 values of 19.16 and 8.53 µg/mL, respectively. The antihyperglycemic activity was assessed using α-glucosidase inhibitory and glucose consumption activities. M. alba and G. pentaphyllum demonstrated the highest α-glucosidase inhibitory activity among the ethanolic extracts, with IC50 values of 134.40 and 329.97 µg/mL, respectively. Z. officinale and H. sabdariffa showed the highest percentage of glucose consumption activity in induced insulin-resistant HepG2 cells at a concentration of 50 µg/mL with 145.16 and 107.03%, respectively. The results from α-glucosidase inhibitory and glucose consumption activities were developed as an effective antihyperglycemic remedy. Among the remedies tested, the R1 remedy exhibited the highest potential for reducing blood glucose levels, with an IC50 value of 122.10 µg/mL. Therefore, the R1 remedy should be further studied for its effects on animals.
Collapse
Affiliation(s)
- Athit Bunyakitcharoen
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | | | - Seewaboon Sireeratawong
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Clinical Research Center for Food and Herbal Product Trials and Development (CR-FAH), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sunee Chansakaow
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
19
|
Singh H, Mishra AK, Mohanto S, Kumar A, Mishra A, Amin R, Darwin CR, Emran TB. A recent update on the connection between dietary phytochemicals and skin cancer: emerging understanding of the molecular mechanism. Ann Med Surg (Lond) 2024; 86:5877-5913. [PMID: 39359831 PMCID: PMC11444613 DOI: 10.1097/ms9.0000000000002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024] Open
Abstract
Constant exposure to harmful substances from both inside and outside the body can mess up the body's natural ways of keeping itself in balance. This can cause severe skin damage, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. However, plant-derived compounds found in fruits and vegetables have been shown to protect against skin cancer-causing free radicals and other harmful substances. It has been determined that these dietary phytochemicals are effective in preventing skin cancer and are widely available, inexpensive, and well-tolerated. Studies have shown that these phytochemicals possess anti-inflammatory, antioxidant, and antiangiogenic properties that can aid in the prevention of skin cancers. In addition, they influence crucial cellular processes such as angiogenesis and cell cycle control, which can halt the progression of skin cancer. The present paper discusses the benefits of specific dietary phytochemicals found in fruits and vegetables, as well as the signaling pathways they regulate, the molecular mechanisms involved in the prevention of skin cancer, and their drawbacks.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | | | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Ruhul Amin
- Faculty of Pharmaceutical Science, Assam downtown University, Panikhaiti, Gandhinagar, Guwahati, Assam
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
20
|
Chang XQ, Yue RS. Therapeutic Potential of Luteolin for Diabetes Mellitus and Its Complications. Chin J Integr Med 2024:10.1007/s11655-024-3917-z. [PMID: 39302570 DOI: 10.1007/s11655-024-3917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/22/2024]
Abstract
The global prevalence of diabetes mellitus (DM) and its complications has been showing an upward trend in the past few decades, posing an increased economic burden to society and a serious threat to human life and health. Therefore, it is urgent to investigate the effectiveness of complementary and alternative therapies for DM and its complications. Luteolin is a kind of polyphenol flavonoid with widely existence in some natural resources, as a safe dietary supplement, it has been widely studied and reported in the treatment of DM and its complications. This review demonstrates the therapeutic potential of luteolin in DM and its complications, and elucidates the action mode of luteolin at the molecular level. It is characterized by anti-inflammatory, antioxidant, and neuroprotective effects. In detail, luteolin can not only improve endothelial function, insulin resistance and β-cell dysfunction, but also inhibit the activities of dipeptidyl peptidase-4 and α-glucosidase. However, due to the low water solubility and oral bioavailability of luteolin, its application in the medical field is limited. Therefore, great importance should be attached to the joint application of luteolin with current advanced science and technology. And more high-quality human clinical studies are needed to clarify the effects of luteolin on DM patients.
Collapse
Affiliation(s)
- Xiao-Qin Chang
- Endocrinology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Ren-Song Yue
- Endocrinology Department, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
21
|
Monroy-García IN, Carranza-Rosales P, Carranza-Torres IE, Castro-Ochoa LD, González-Villasana V, Islas-Rubio AR, Viveros-Valdez E. Antioxidant and Biological Activity of Mexican Madroño Fruit ( Arbutus arizonica). Foods 2024; 13:2982. [PMID: 39335909 PMCID: PMC11431782 DOI: 10.3390/foods13182982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The fruit of the Mexican madroño (Arbutus arizonica) has been consumed since pre-Columbian times by North American tribes and native groups in Mexico. Despite this, reports on its chemical composition and biological activity are limited. This work aims to determine the antioxidant, antiproliferative, and digestive enzyme inhibition activities of the methanol amberlite-retained extract of Mexican madroño. Results showed that madroño fruit is rich in antioxidants: DPPH (EC50 = 0.89 ± 0.03 mg/mL), TEAC (1078 ± 4.9 μM/g), and hemolysis inhibition (IC50 = 358.07 μg/mL), with high phenolic and flavonoid content at 15.92 ± 3.2 mg GAE/g and 4.33 ± 0.3 mg CA/g, respectively. Using analytical chromatography, gallic acid, vanillic acid, chlorogenic acid, ferulic acid, quercetin, and rutin were quantified. The extract also showed α-glucosidase inhibition (IC50 = 3.1 ± 0.17 mg/mL), but no inhibition against α-amylase and lipase (>5 mg/mL), while showing antiproliferative activity against HeLa, HT-29, and MCF-7 cancer cell lines. These results point towards an interesting potential for the fruit of the A. arizonica as chemopreventive and hold potential for elaborating functional foods.
Collapse
Affiliation(s)
- Imelda N. Monroy-García
- Departamento de Ingeniería Química y Bioquímica, Tecnológico Nacional de México, Instituto Tecnológico de Los Mochis, Juan de Dios Bátiz y 20 de Noviembre, Los Mochis 81259, Sinaloa, Mexico; (I.N.M.-G.); (L.D.C.-O.)
- Coordinacion de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. Gustavo Enrique Astiazaran Rosas #46, Hermosillo 83304, Sonora, Mexico;
| | - Pilar Carranza-Rosales
- Centro de Investigación Biomédica de Noreste, Instituto Mexicano del Seguro Social, Calle Jesús Dionisio González #501, Monterrey 64720, Nuevo León, Mexico; (P.C.-R.); (I.E.C.-T.)
| | - Irma Edith Carranza-Torres
- Centro de Investigación Biomédica de Noreste, Instituto Mexicano del Seguro Social, Calle Jesús Dionisio González #501, Monterrey 64720, Nuevo León, Mexico; (P.C.-R.); (I.E.C.-T.)
- Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba S/N, San Nicolás de los Garza 66450, Nuevo León, Mexico;
| | - Lelie Denisse Castro-Ochoa
- Departamento de Ingeniería Química y Bioquímica, Tecnológico Nacional de México, Instituto Tecnológico de Los Mochis, Juan de Dios Bátiz y 20 de Noviembre, Los Mochis 81259, Sinaloa, Mexico; (I.N.M.-G.); (L.D.C.-O.)
| | - Vianey González-Villasana
- Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba S/N, San Nicolás de los Garza 66450, Nuevo León, Mexico;
| | - Alma Rosa Islas-Rubio
- Coordinacion de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. Gustavo Enrique Astiazaran Rosas #46, Hermosillo 83304, Sonora, Mexico;
| | - Ezequiel Viveros-Valdez
- Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba S/N, San Nicolás de los Garza 66450, Nuevo León, Mexico;
| |
Collapse
|
22
|
Zumaidar Z, Asmilia N, Saudah S, Husnah M. In Vitro Alpha-Glucosidase Inhibitory Effect of Etlingera Elatior Ethanol Extract Growing in Gayo Highland, Aceh Province, Indonesia. F1000Res 2024; 13:489. [PMID: 39429642 PMCID: PMC11487234 DOI: 10.12688/f1000research.149029.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/22/2024] Open
Abstract
Background The prevalence of diabetes mellitus (DM) is increasing overtime, potentially leading to various severe health complications and mortality. Despite therapeutic agents have currently been developed, unexpected adverse effects are inevitable. Hence, safe and effective medications such as those of plant origin are critical to prevent unexpected complication in DM sufferers. Etlingera elatior has been widely used as spice and traditional medicine to treat diabetes in Aceh Province, Indonesia. However, study regarding α-glucosidase inhibitory effect of E. elatior growing in Gayo highlands, Aceh, Indonesia, is completely lacking. The aim of this study was to evaluate in vitro α-glucosidase inhibitory effect of E. elatior ethanol extracts (EEEE) growing in Gayo highlands, Aceh Province, Indonesia. Methods Antioxidant activity was determined using DPPH procedure, whereas α-glucosidase inhibition assay was carried out using spectrophotometric method. Data analysis was performed using One-Way Analysis of Variance (ANOVA), followed by Duncan's multiple range test at α=0.05. Results Phytochemical analysis revealed the presence of total phenolic (TPC), total flavonoid (TFC), and total tannin (TTC) content in all E. elatior plant parts, in which the highest TPC was found in the stem (158.38 GAE/g), whereas the highest TFC and TTC was obtained in the rhizome extracts. The extract of fruit showed the strongest antioxidant activities, followed by the stem and leaf, with IC 50 of 2.381 μg/mL, 6.966 μg/mL, and 19.365 μg/mL, respectively. All E. elatior extracts revealed a significant inhibitory activity against α-glucosidase at the concentration of 500 μg/mL, in which the stem extract showed the most effective α-glucosidase inhibitory effect with IC 50 value of 5.15 μg/mL, suggesting its promising potential as antidiabetic agent. Conclusions This study highlights E. elatior potency as a novel source of antioxidant and natural antidiabetic compounds that are useful for the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Zumaidar Zumaidar
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Nuzul Asmilia
- Clinical Laboratory, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | - Saudah Saudah
- Faculty of Teacher Training and Education, Universitas Serambi Mekkah, Banda Aceh, Aceh, 23245, Indonesia
| | - Milda Husnah
- Graduate School of Mathematics and Applied Science, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| |
Collapse
|
23
|
Rauf A, AlOmar TS, Rashid U, Ahmad Z, Kanwal S, Almasoud N, Muhammad N, Anyanwu M, Gianoncelli A, Ribaudo G. Dinaphthodiospyrol H: a natural α-glucosidase inhibibitor extracted from Diospyros kaki L.f. Nat Prod Res 2024:1-5. [PMID: 39229854 DOI: 10.1080/14786419.2024.2397725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
The roots of Diospyro kaki L.f., known for their anti-inflammatory, antimicrobial and antidiabetic properties, are the source of dimeric naphthoquinones, including dinaphthodiospyrol H. α-Glucosidase is an enzyme involved in regulation of blood glucose levels and its inhibition helps in the control of the postprandial hyperglycaemia. In this study, an in vitro evaluation of dinaphthodiospyrol H was carried out and the compound inhibited α-glucosidase with an IC50 value of 57.38 ± 0.87 µg/mL, revealing a significant potential that supports the traditional application of D. kaki in the treatment of diabetes mellitus. Additionally, computational studies, including docking and molecular dynamics, were used to investigate ligand-target complex and showed that the compound targets the same site with which acarbose interacts. Overall, the findings provide new basis to translate the traditional use of D. kaki into modern medicinal chemistry.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Swabi, Anbar, Pakistan
| | - Taghrid S AlOmar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | - Zubair Ahmad
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Swabi, Anbar, Pakistan
| | - Sofia Kanwal
- Department of Chemistry, COMSATS University Islamabad, Islamabad, Pakistan
| | - Najla Almasoud
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Naveed Muhammad
- Department of Pharmacy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Margrate Anyanwu
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Alessandra Gianoncelli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
24
|
Liang L, Liu X, Shao J, Shen J, Yao Y, Huang X, Cai G, Guo Y, Gong J. Identification of Potential α-Glucosidase Inhibitors from American Ginseng Processed Products by UHPLC-Q-Orbitrap/MS and Molecular Docking. FOOD BIOPHYS 2024; 19:688-700. [DOI: 10.1007/s11483-024-09860-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/13/2024] [Indexed: 01/03/2025]
|
25
|
Sun J, Xiao D, Lang M, Xu X. Novel sulfonyl hydrazide based β-carboline derivatives as potential α-glucosidase inhibitors: design, synthesis, and biological evaluation. Mol Divers 2024:10.1007/s11030-024-10943-4. [PMID: 39141208 DOI: 10.1007/s11030-024-10943-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024]
Abstract
A series of novel sulfonyl hydrazide based β-carboline derivatives (SX1-SX32) were designed and synthesized, and their structures were characterized on NMR and HRMS. Their α-glucosidase inhibitory screening results found that compounds (SX1-SX32) presented potential α-glucosidase inhibitory: IC50 values being 2.12 ± 0.33-19.37 ± 1.49 μM. Compound SX29 with a para-phenyl (IC50: 2.12 ± 0.33 μM) presented the strongest activity and was confirmed as a noncompetitive inhibitor. Fluorescence spectra, CD spectra and molecular docking were conducted to describe the inhibition mechanism of SX29 against α-glucosidase. Cells cytotoxicity indicated SX29 (0-32 μM) had no cytotoxicity on 293T cells. In particular, in vivo experiments revealed that oral administration of SX29 could regulate hyperglycemia and glucose tolerance of diabetic mice. These achieved findings indicated that sulfonyl hydrazide based β-carboline derivatives bore promising potential for discovering new α-glucosidase inhibitors with hypoglycemic activity.
Collapse
Affiliation(s)
- Jinping Sun
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Di Xiao
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Ming Lang
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| | - Xuetao Xu
- School of Pharmacy and Food Engineering & Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
26
|
Ramadaini T, Sumiwi SA, Febrina E. The Anti-Diabetic Effects of Medicinal Plants Belonging to the Liliaceae Family: Potential Alpha Glucosidase Inhibitors. Drug Des Devel Ther 2024; 18:3595-3616. [PMID: 39156483 PMCID: PMC11330250 DOI: 10.2147/dddt.s464100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024] Open
Abstract
Background Diabetes mellitus is a complex metabolic disorder that has an enormous impact on people's quality of life and health. Although there is no doubt about the effectiveness of oral hypoglycemic agents combined with lifestyle management in controlling diabetes, no individual has ever been reported to have been completely cured of the disease. Globally, many medicinal plants have been used for the management of diabetes in various traditional systems of medicine. A deep look in the literature has revealed that the Liliaceae family have been poorly investigated for their antidiabetic activity and phytochemical studies. In this review, we summarize medicinal plants of Liliaceae utilized in the management of type II diabetes mellitus (T2DM) by inhibition of α-glucosidase enzyme and phytochemical content. Methods The literature search was conducted using databases including PubMed, ScienceDirect, and Google Scholar to find the significant published articles about Liliaceae plants utilized in the prevention and treatment of antidiabetics. Data were filtered to the publication period from 2013 to 2023, free full text and only English articles were included. The keywords were Liliaceae OR Alliaceae OR Amaryllidaceae AND Antidiabetic OR α-glucosidase. Results Six medicinal plants such as Allium ascalonicum, Allium cepa, Allium sativum, Aloe ferox, Anemarrhena asphodeloides, and Eremurus himalaicus are summarized. Phytochemical and α-glucosidase enzymes inhibition by in vitro, in vivo, and human studies are reported. Conclusion Plants of Liliaceae are potential as medicine herbs to regulating PPHG and prevent the progression of T2DM and its complication. In silico study, clinical application, and toxicity evaluation are needed to be investigated in the future.
Collapse
Affiliation(s)
- Tiara Ramadaini
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jatinangor, Indonesia
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jatinangor, Indonesia
| | - Ellin Febrina
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Jatinangor, Indonesia
| |
Collapse
|
27
|
Ashmawy NS, Nilofar N, Zengin G, Eldahshan OA. Metabolic profiling and enzyme inhibitory activity of the essential oil of citrus aurantium fruit peel. BMC Complement Med Ther 2024; 24:262. [PMID: 38987702 PMCID: PMC11238441 DOI: 10.1186/s12906-024-04505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/20/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Bitter orange (Citrus aurantium) is a fruiting shrub native to tropical and subtropical countries around the world and cultivated in many regions due to its nutraceutical value. The current study investigated the metabolic profiling and enzyme inhibitory activities of volatile constituents derived from the C. aurantium peel cultivated in Egypt by three different extraction methods. METHODS The volatile chemical constituents of the peel of C. aurantium were isolated using three methods; steam distillation (SD), hydrodistillation (HD), and microwave-assisted hydrodistillation (MAHD), and then were investigated by GC-MS. The antioxidant potential was evaluated by different assays such as DPPH, ABTS, FRAP, CUPRAC, and phosphomolybdenum and metal chelating potential. Moreover, the effect of enzyme inhibition of the three essential oils was tested using BChE, AChE, tyrosinase, glucosidase, as well as amylase assays. RESULTS A total of six compounds were detected by GC/MS analysis. The major constituent obtained by all three extraction methods was limonene (98.86% by SD, 98.68% by HD, and 99.23% by MAHD). Differences in the composition of the compounds of the three oils were observed. The hydrodistillation technique has yielded the highest number of compounds, notably two oxygenated monoterpenes: linalool (0.12%) and α-terpineol acetate (0.1%). CONCLUSION In our study differences in the extraction methods of C. aurantium peel oils resulted in differences in the oils' chemical composition. Citrus essential oils and their components showed potential antioxidant, anticholinesterase, antimelanogenesis, and antidiabetic activities. The presence of linalool and α-terpineol acetate may explain the superior activity observed for the oil isolated by HD in both radical scavenging and AChE inhibition assays, as well as in the enzyme inhibition assays.
Collapse
Affiliation(s)
- Naglaa S Ashmawy
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, P.O. Box 4184, Ajman, United Arab Emirates
| | - Nilofar Nilofar
- Department of Biology, Science Faculty, Selcuk University Campus, Konya, Turkey
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", Università degli Studi "Gabriele d'Annunzio", via dei Vestini 31, Chieti, 66100, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University Campus, Konya, Turkey
| | - Omayma A Eldahshan
- Pharmacognosy Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
- Center of Drug Discovery Research and Development, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
28
|
Li Y, Liu H, Wang S, Fang W, Jiang X, Zhang G, Zhao Y. Fast screening of α-glucosidase inhibitors from Ginkgo biloba leaf by using α-glucosidase immobilized on magnetic metal-organic framework. J Sep Sci 2024; 47:e2400342. [PMID: 39031453 DOI: 10.1002/jssc.202400342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/22/2024]
Abstract
In this study, a ligand fishing method for the screening of α-glucosidase inhibitors from Ginkgo biloba leaf was established for the first time using α-glucosidase immobilized on the magnetic metal-organic framework. The immobilized α-glucosidase exhibited enhanced resistance to temperature and pH, as well as good thermal stability and reusability. Two ligands, namely quercitrin and quercetin, were screened from Ginkgo biloba leaf and identified by ultra-high performance liquid chromatography-tandem mass spectrometry. The half-maximal inhibitory concentration values for quercitrin and quercetin were determined to be 105.69 ± 0.39 and 83.49 ± 0.79 µM, respectively. Molecular docking further confirmed the strong inhibitory effect of these two ligands. The proposed approach in this study demonstrates exceptional efficiency in the screening of α-glucosidase inhibitors from complex natural medicinal plants, thus exhibiting significant potential for the discovery of antidiabetic compounds.
Collapse
Affiliation(s)
- Yue Li
- School of Science, Xihua University, Chengdu, China
| | - Hongmei Liu
- School of Science, Xihua University, Chengdu, China
| | - Sikai Wang
- School of Science, Xihua University, Chengdu, China
| | - Wei Fang
- School of Science, Xihua University, Chengdu, China
| | - Xinxin Jiang
- School of Science, Xihua University, Chengdu, China
| | - Guoqi Zhang
- School of Science, Xihua University, Chengdu, China
| | - Yan Zhao
- School of Science, Xihua University, Chengdu, China
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua University, Chengdu, China
| |
Collapse
|
29
|
Lauko K, Nesterowicz M, Trocka D, Dańkowska K, Żendzian-Piotrowska M, Zalewska A, Maciejczyk M. Novel Properties of Old Propranolol-Assessment of Antiglycation Activity through In Vitro and In Silico Approaches. ACS OMEGA 2024; 9:27559-27577. [PMID: 38947802 PMCID: PMC11209686 DOI: 10.1021/acsomega.4c03025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 07/02/2024]
Abstract
Hypertension has earned the "silent killer" nickname since it may lead to a number of comorbidities, including diabetes and cardiovascular diseases. Oxidative stress and protein glycation play vital roles in the pathogenesis of hypertension. Several studies have shown that they profoundly account for vascular dysfunction, endothelial damage, and disruption of blood pressure regulatory mechanisms. Of particular note are advanced glycation end products (AGEs). AGEs alter vascular tissues' functional and mechanical properties by binding to receptors for advanced glycation end products (RAGE), stimulating inflammation and free radical-mediated pathways. Propranolol, a nonselective beta-adrenergic receptor antagonist, is one of the most commonly used drugs to treat hypertension and cardiovascular diseases. Our study is the first to analyze propranolol's effects on protein glycoxidation through in vitro and in silico approaches. Bovine serum albumin (BSA) was utilized to evaluate glycoxidation inhibition by propranolol. Propranolol (1 mM) and BSA (0.09 mM) were incubated with different glycating (0.5 M glucose, fructose, and galactose for 6 days and 2.5 mM glyoxal and methylglyoxal for 12 h) or oxidizing agents (chloramine T for 1 h). Biomarkers of protein glycation (Amadori products (APs), β-amyloid (βA), and advanced glycation end products (AGEs)), protein glycoxidation (dityrosine (DT), kynurenine (KYN), and N-formylkynurenine (NFK)), protein oxidation (protein carbonyls (PCs), and advanced oxidation protein products (AOPPs)) were measured by means of colorimetric and fluorimetric methods. The scavenging of reactive oxygen species (hydrogen peroxide, hydroxyl radical, and nitric oxide) and the antioxidant capacity (2,2-diphenyl-1-picrylhydrazyl radical and ferrous ion chelating (FIC) assays)) of propranolol were also evaluated. Additionally, in silico docking was performed to showcase propranolol's interaction with BSA, glycosides, and AGE/RAGE pathway proteins. The products of protein glycation (↓APs, ↓βA, ↓AGEs), glycoxidation (↓DT, ↓KYN, ↓NFK), and oxidation (↓PCs, ↓AOPPs) prominently decreased in the BSA samples with both glycating/oxidizing factors and propranolol. The antiglycoxidant properties of propranolol were similar to those of aminoguanidine, a known protein oxidation inhibitor, and captopril, which is an established antioxidant. Propranolol showed a potent antioxidant activity in the FIC and H2O2 scavenging assays, comparable to aminoguanidine and captopril. In silico analysis indicated propranolol's antiglycative properties during its interaction with BSA, glycosidases, and AGE/RAGE pathway proteins. Our results confirm that propranolol may decrease protein oxidation and glycoxidation in vitro. Additional studies on human and animal models are vital for in vivo verification of propranolol's antiglycation activity, as this discovery might hold the key to the prevention of diabetic complications among cardiology-burdened patients.
Collapse
Affiliation(s)
- Kamil
Klaudiusz Lauko
- ‘Biochemistry
of Civilisation Diseases’ Students’ Scientific Club
at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Miłosz Nesterowicz
- ‘Biochemistry
of Civilisation Diseases’ Students’ Scientific Club
at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Daria Trocka
- ‘Biochemistry
of Civilisation Diseases’ Students’ Scientific Club
at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Karolina Dańkowska
- ‘Biochemistry
of Civilisation Diseases’ Students’ Scientific Club
at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Małgorzata Żendzian-Piotrowska
- Department of Hygiene, Epidemiology and
Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| | - Anna Zalewska
- Independent Laboratory of Experimental
Dentistry, Medical University of Bialystok, 24a M. Sklodowskiej-Curie Street , Bialystok 15-274, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and
Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok 15-233, Poland
| |
Collapse
|
30
|
Bürck M, Ramos SDP, Braga ARC. Enhancing the Biological Effects of Bioactive Compounds from Microalgae through Advanced Processing Techniques: Pioneering Ingredients for Next-Generation Food Production. Foods 2024; 13:1811. [PMID: 38928753 PMCID: PMC11202531 DOI: 10.3390/foods13121811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
The heightened interest in healthy dietary practices and the preference for fresh, minimally processed foods with reduced additives have witnessed a significant surge among consumers. Within this context, bioactive compounds have garnered attention as potent agents offering beneficial biological effects when integrated into food formulations. Nevertheless, the efficacy of these bioactive compounds in product development encounters numerous challenges during various processing and storage stages due to their inherent instability. Addressing these limitations necessitates exploring novel technological approaches tailored explicitly to the application of bioactive compounds in food production. These approaches should not only focus on preserving the bioactive compounds within food matrices but also on retaining the sensory attributes (color, taste, and aroma) of the final food products. The impact of microalgae and their bioactive compounds on human health and well-being has been extensively reported in the literature. However, there is still a gap regarding the processing and stability of microalgal bioactive compounds to improve their application in the food industry. The main goal of the present work is to point out how to overcome technological challenges in enhancing the stability of bioactive compounds from microalgae for optimal food applications.
Collapse
Affiliation(s)
- Monize Bürck
- Postgraduation Program in Nutrition, Universidade Federal de São Paulo (UNIFESP), São Paulo 04023-900, SP, Brazil;
- Nutrition and Food Service Research Center, Universidade Federal de São Paulo (UNIFESP), Santos 11015-020, SP, Brazil
| | - Sergiana dos Passos Ramos
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Santos 11015-020, SP, Brazil;
| | - Anna Rafaela Cavalcante Braga
- Department of Biosciences, Universidade Federal de São Paulo (UNIFESP), Santos 11015-020, SP, Brazil;
- Department of Chemical Engineering, Universidade Federal de São Paulo (UNIFESP), Diadema 04021-001, SP, Brazil
| |
Collapse
|
31
|
Zheng M, Chen S, Liu Y, He Y. α-Glucosidase inhibitory activities of constituents from Psidium guajava leaves. Nat Prod Res 2024; 38:2040-2043. [PMID: 37506309 DOI: 10.1080/14786419.2023.2238113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/19/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Psidium guajava is a plant of the Myrtaceae with various pharmacological activity. In this study, the water extract and the isolated compounds from guava leaves were evaluated for in vitro α-glucosidase inhibition using spectrophotometric method. Ellagic acid, quercetin, quercetin-3-O-glucuronide, avicularin, isoquercitrin, and quercetin-3-galactoside showed α-glucosidase inhibitory activity, and their IC50 value were 25.0, 41.0, 53.5, 46.9, 60.0 and 72.1 μg/mL, respectively compared with the positive control acarbose (IC50 49.2 μg/mL). This study could provide a theoretical basis for the application of Psidium guajava in the treatment of hyperglycemia.
Collapse
Affiliation(s)
- Muxin Zheng
- Guangdong Pharmaceutical University, Zhongshan, China
| | - Shenghao Chen
- Guangdong Pharmaceutical University, Zhongshan, China
| | - Yi Liu
- Guangdong Pharmaceutical University, Zhongshan, China
| | - Yang He
- Guangdong Pharmaceutical University, Zhongshan, China
- Guangdong Cosmetics Engineering & Technology Research Center, Zhongshan, China
- Macau University of Science and Technology, Macau, China
| |
Collapse
|
32
|
Huang G, Huang Y, Sun Y, Lu T, Cao Q, Chen X. Characterization of kombucha prepared from black tea and coffee leaves: A comparative analysis of physiochemical properties, bioactive components, and bioactivities. J Food Sci 2024; 89:3430-3444. [PMID: 38638068 DOI: 10.1111/1750-3841.17027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/08/2024] [Accepted: 02/24/2024] [Indexed: 04/20/2024]
Abstract
The utilization of coffee leaves in kombucha production has intrigued researchers; however, the lack of understanding regarding the characteristics of coffee leaf kombucha (CK) and its differentiation from black tea kombucha (BK) has impeded its application in the beverage industry. Therefore, this study aimed to characterize and compare the physiochemical properties, phytochemical compositions, antioxidant activity, and α-glucosidase inhibitory ability of kombucha prepared from the leaves of Coffea arabica (CK) and black tea (Camellia sinensis, BK) and their extracts (CT and BT). After fermentation, pH and the contents of total sugars, reducing sugars, and free amino acids of BK and CK were decreased, whereas the levels of total acids and organic acids, such as gluconic, lactic, and acetic acid were increased. Notably, the concentration of vitamin C in CK was 48.9% higher than that in BK. HPLC analysis exhibited that 5-caffeoylquinic acid in CT was significantly decreased by 48.0% in CK, whereas the levels of 3-caffeoylquinic acid and 4-caffeoylquinic acid were significantly increased after fermentation. The content of caffeine was significantly (p < 0.05) reduced by 9.5% and 22.0% in BK and CK, respectively, whereas the theobromine level was significantly increased in CK. Notably, CK has superior total phenolic and flavonoid contents and antioxidant activity than BK, whereas BK possesses higher α-glucosidase inhibitory capacity. Electronic nose analysis demonstrated that sulfur-containing organics were the main volatiles in both kombuchas, and fermentation significantly increased their levels. Our study indicates that coffee leaves are a promising resource for preparing kombucha. PRACTICAL APPLICATION: This article investigates the differences in physicochemical properties, bioactive constituents, antioxidant activity, and α-glucosidase inhibitory activity of kombucha preparation from black tea and coffee leaves. We have found that after fermentation BK had brighter soup color and higher α-glucosidase inhibitory capacity, whereas CK had higher levels of total phenols, flavonoids, vitamin C, and antioxidants and lower contents of sugars. This study provides valuable information for the preparation of CK with high-quality attributes and antioxidant activity.
Collapse
Affiliation(s)
- Gongping Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Yuanyuan Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Yu Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Tingting Lu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Qingwei Cao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| | - Xiumin Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang, Jiangsu, P. R. China
| |
Collapse
|
33
|
Kaya S, Tatar-Yılmaz G, Aktar BSK, Emre EEO. Discovery of New Dual-Target Agents Against PPAR-γ and α-Glucosidase Enzymes with Molecular Modeling Methods: Molecular Docking, Molecular Dynamic Simulations, and MM/PBSA Analysis. Protein J 2024; 43:577-591. [PMID: 38642318 DOI: 10.1007/s10930-024-10196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2024] [Indexed: 04/22/2024]
Abstract
Type 2 diabetes mellitus (T2DM) has become a serious public health problem both in our country and worldwide, being the most prevalent type of diabetes. The combined use of drugs in the treatment of T2DM leads to serious side effects, including gastrointestinal problems, liver toxicity, hypoglycemia, and treatment costs. Hence, there has been a growing emphasis on drugs that demonstrate dual interactions. Several studies have suggested that dual-target agents for peroxisome proliferator-activated receptor-γ (PPAR-γ) and alpha-glucosidase (α-glucosidase) could be a potent approach for treating patients with diabetes. We aim to develop new antidiabetic agents that target PPAR-γ and α-glucosidase enzymes using molecular modeling techniques. These compounds show dual interactions, are more effective, and have fewer side effects. The molecular docking method was employed to investigate the enzyme-ligand interaction mechanisms of 159 newly designed compounds with target enzymes. Additionally, we evaluated the ADME properties and pharmacokinetic suitability of these compounds based on Lipinski and Veber's rules. Compound 70, which exhibited favorable ADME properties, demonstrated more effective binding energy with both PPAR-γ and α-glucosidase enzymes (-12,16 kcal/mol, -10.07 kcal/mol) compared to the reference compounds of Acetohexamide (-9.31 kcal/mol, -7.48 kcal/mol) and Glibenclamide (-11.12 kcal/mol, -8.66 kcal/mol). Further, analyses of MM/PBSA binding free energy and molecular dynamics (MD) simulations were conducted for target enzymes with compound 70, which exhibited the most favorable binding affinities with both enzymes. Based on this information, our study aims to contribute to the development of new dual-target antidiabetic agents with improved efficacy, reduced side effects, and enhanced reliability for diabetes treatment.
Collapse
Affiliation(s)
- Süleyman Kaya
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Gizem Tatar-Yılmaz
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| | - Bedriye Seda Kurşun Aktar
- Department of Hair Care and Beauty Services, Yeşilyurt Vocational School, Malatya Turgut Özal University, 44900, Malatya, Turkey
| | - Emine Elçin Oruç Emre
- Department of Chemistry, Faculty of Art and Sciences, Gaziantep University, Gaziantep, 27310, Turkey
| |
Collapse
|
34
|
Jiang TT, Zhai LL, Wang ZJ, Wang XY, Li JN, Zhai YJ, Li D, Han WB. Polyketides with α-glucosidase inhibitory and neuroprotective activities from Aspergillus versicolor associated with Pedicularis sylvatica. Org Biomol Chem 2024; 22:4179-4189. [PMID: 38716654 DOI: 10.1039/d4ob00316k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Aspergillus versicolor, an endophytic fungus associated with the herbal medicine Pedicularis sylvatica, produced four new polyketides, aspeversins A-D (1-2 and 5-6) and four known compounds, O-methylaverufin (2), aversin (3), varilactone A (7) and spirosorbicillinol A (8). Their structures were elucidated by extensive spectroscopic data analysis, and their absolute configurations were determined by calculated electronic circular dichroism (ECD) and Mo2(AcO)4-induced CD data. Compound 5 was found to exhibit α-glucosidase inhibitory activity with an IC50 value of 25.57 μM. An enzyme kinetic study indicated that 5 was a typical uncompetitive inhibitor toward α-glucosidase, which was supported by a molecular docking study. Moreover, compounds 1-3 and 5 also improved the cell viability of PC12 cells on a 1-methyl-4-phenylpyridinium (MPP+)-induced Parkinson's disease model, indicating their neuroprotective potential as antiparkinsonian agents.
Collapse
Affiliation(s)
- Ting-Ting Jiang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Liang-Liang Zhai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Zi-Jue Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Xin-Yu Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Jian-Nan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Yi-Jie Zhai
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Ding Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Wen-Bo Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
35
|
Mustafa NH, Jalil J, Leong KE, Jamal JA, Husain K. Phytochemical profile and diverse pharmacology of Garcinia celebica L. Heliyon 2024; 10:e30629. [PMID: 38742069 PMCID: PMC11089377 DOI: 10.1016/j.heliyon.2024.e30629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
Garcinia celebica L. syn. Garcinia hombroniana Pierre belongs to the family Clusiaceae, is indigenous to Southeast Asian countries. This review aims to provide updated, comprehensive and categorized information on the phytoconstituents and pharmacological effects of this species. The data collection mainly involved searches through databases named Scopus, Google Scholar, Pubmed and Springer Link. Approximately 100 phytochemicals were recorded in this review, with various classes of compounds such as triterpenoids, flavonoids, benzophenones, xanthones, depsidones and sterols identified. The most abundant compounds isolated belong to two chemical classes: triterpenoids and xanthones. Their extracts and pure compounds have been reported for their antibacterial, antiparasitic, hepatoprotective, antioxidant, antidiabetic, antituberculosis, antiplatelet aggregation, anti-neuraminidase and cholinesterase inhibitory activities. This review will provide a comprehensive understanding between the phytochemical components and its medicinal uses that may serve as a valuable resource for future drug development.
Collapse
Affiliation(s)
- Nor Hidayah Mustafa
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Kai En Leong
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Jamia Azdina Jamal
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Khairana Husain
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Dăescu AM, Nistor M, Nicolescu A, Pop R, Bunea A, Rugina D, Pintea A. Antioxidant, Enzyme Inhibitory, and Protective Effect of Amelanchier lamarckii Extract. PLANTS (BASEL, SWITZERLAND) 2024; 13:1347. [PMID: 38794418 PMCID: PMC11125170 DOI: 10.3390/plants13101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
The present study aimed to investigate the chemical content of Romanian juneberries (Amelanchier lamarckii), their effect on antioxidant and enzyme inhibition activities, and their bioaccessibility after simulated in-vitro digestion. In Amelanchier lamarckii extract (AME), 16 polyphenolic compounds were identified by LC-ESI+-MS analysis. The most representative compounds found in the extract were cyanidin-galactoside, 3,4-dihydroxy-5-methoxybenzoic acid, feruloylquinic acid, and kaempferol, all belonging to the anthocyanins, phenolic acids, and flavonols subclasses. The polyphenols of AME exert quenching abilities of harmful reactive oxygen species, as the CUPRAC antioxidant assay value was 323.99 µmol Trolox/g fruit (FW), whereas the FRAP antioxidant value was 4.10 μmol Fe2+/g fruit (FW). Enzyme inhibition assays targeting tyrosinase (IC50 = 8.843 mg/mL), α-glucosidase (IC50 = 14.03 mg/mL), and acetylcholinesterase (IC50 = 49.55 mg/mL) were used for a screening of AME's inhibitory potential against these key enzymes as a common approach for the discovery of potential antidiabetic, skin pigmentation, and neurodegenerative effects. The screening for the potential antidiabetic effects due to the α-glucosidase inhibition was performed in glucose-induced disease conditions in a human retinal pigmented epithelial cell experimental model, proving that AME could have protective potential. In conclusion, AME is a valuable source of phenolic compounds with promising antioxidant potential and metabolic disease-protective effects, warranting further investigation for its use in the nutraceutical and health industries.
Collapse
Affiliation(s)
- Adela Maria Dăescu
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (A.M.D.); (M.N.); (R.P.); (A.B.)
| | - Mădălina Nistor
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (A.M.D.); (M.N.); (R.P.); (A.B.)
| | - Alexandru Nicolescu
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania;
| | - Roxana Pop
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (A.M.D.); (M.N.); (R.P.); (A.B.)
| | - Andrea Bunea
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (A.M.D.); (M.N.); (R.P.); (A.B.)
| | - Dumitrita Rugina
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (A.M.D.); (M.N.); (R.P.); (A.B.)
| | - Adela Pintea
- Department of Chemistry and Biochemistry, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania; (A.M.D.); (M.N.); (R.P.); (A.B.)
| |
Collapse
|
37
|
Aryal D, Joshi S, Thapa NK, Chaudhary P, Basaula S, Joshi U, Bhandari D, Rogers HM, Bhattarai S, Sharma KR, Regmi BP, Parajuli N. Dietary phenolic compounds as promising therapeutic agents for diabetes and its complications: A comprehensive review. Food Sci Nutr 2024; 12:3025-3045. [PMID: 38726403 PMCID: PMC11077226 DOI: 10.1002/fsn3.3983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 05/12/2024] Open
Abstract
In the middle of an ever-changing landscape of diabetes care, precision medicine, and lifestyle therapies are becoming increasingly important. Dietary polyphenols are like hidden allies found in our everyday meals. These biomolecules, found commonly in fruits, vegetables, and various plant-based sources, hold revolutionary potential within their molecular structure in the way we approach diabetes and its intimidating consequences. There are currently numerous types of diabetes medications, but they are not appropriate for all patients due to limitations in dosages, side effects, drug resistance, a lack of efficacy, and ethnicity. Currently, there has been increased interest in practicing herbal remedies to manage diabetes and its related complications. This article aims to summarize the potential of dietary polyphenols as a foundation in the treatment of diabetes and its associated consequences. We found that most polyphenols inhibit enzymes linked to diabetes. This review outlines the potential benefits of selected molecules, including kaempferol, catechins, rosmarinic acid, apigenin, chlorogenic acid, and caffeic acid, in managing diabetes mellitus as these compounds have exhibited promising results in in vitro, in vivo, in silico, and some preclinical trials study. This encompassing exploration reveals the multifaceted impact of polyphenols not only in mitigating diabetes but also in addressing associated conditions like inflammation, obesity, and even cancer. Their mechanisms involve antioxidant functions, immune modulation, and proinflammatory enzyme regulation. Furthermore, these molecules exhibit anti-tumor activities, influence cellular pathways, and activate AMPK pathways, offering a less toxic, cost-effective, and sustainable approach to addressing diabetes and its complications.
Collapse
Affiliation(s)
- Dipa Aryal
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Soniya Joshi
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Nabin Kumar Thapa
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Pratiksha Chaudhary
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Sirjana Basaula
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Usha Joshi
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Damodar Bhandari
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Hannah M. Rogers
- Department of ChemistryFlorida Agricultural and Mechanical UniversityTallahasseeFloridaUSA
| | | | - Khaga Raj Sharma
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| | - Bishnu P. Regmi
- Department of ChemistryFlorida Agricultural and Mechanical UniversityTallahasseeFloridaUSA
| | - Niranjan Parajuli
- Biological Chemistry Lab, Central Department of ChemistryTribhuvan UniversityKathmanduNepal
| |
Collapse
|
38
|
Hu Y, Zhang Y, Cui X, Wang D, Hu Y, Wang C. Structure-function relationship and biological activity of polysaccharides from mulberry leaves: A review. Int J Biol Macromol 2024; 268:131701. [PMID: 38643920 DOI: 10.1016/j.ijbiomac.2024.131701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/12/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Mulberry (Latin name "Morus alba L.") is a perennial deciduous tree in the family of Moraceae, widely distributed around the world. In China, mulberry is mainly distributed in the south and the Yangtze River basin. Its leaves can be harvested 3-6 times a year, which has a great resource advantage. Mulberry leaves are regarded as the homology of medicine and food traditional Chinese medicine (TCM). Polysaccharides, as its main active ingredients, have various effects, such as antioxidant, hypoglycemic, hepatoprotective, and immunomodulatory. This review summarizes the research progress in the extraction, purification, structural characterization, and structure-function relationship of polysaccharides from mulberry leaves in the last decade, hoping to provide a reference for the subsequent development and market application of polysaccharides from mulberry leaves.
Collapse
Affiliation(s)
- Yexian Hu
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Yan Zhang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Xiaoao Cui
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Dongsheng Wang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China
| | - Yong Hu
- Agricultural Products Processing Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, PR China
| | - Chuyan Wang
- College of Biology, Food & Environment, Hefei University, Hefei 230601, PR China; Key Laboratory of Berry Processing and Resource Comprehensive Utilization, Hefei University, Hefei 230601, PR China.
| |
Collapse
|
39
|
Al Garni HA, El-Halawany AM, Koshak AE, Malebari AM, Alzain AA, Mohamed GA, Ibrahim SRM, El-Sayed NS, Abdallah HM. Potential antioxidant, α-glucosidase, butyrylcholinesterase and acetylcholinesterase inhibitory activities of major constituents isolated from Alpinia officinarum hance rhizomes: computational studies and in vitro validation. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:391-410. [PMID: 38769919 DOI: 10.1080/1062936x.2024.2352725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
Alpinia officinarum is a commonly used spice with proven folk uses in various traditional medicines. In the current study, six compounds were isolated from its rhizomes, compounds 1-3 were identified as diarylheptanoids, while 4-6 were identified as flavonoids and phenolic acids. The isolated compounds were subjected to virtual screening against α-glucosidase, butyrylcholinesterase (BChE), and acetylcholinesterase (AChE) enzymes to evaluate their potential antidiabetic and anti-Alzheimer's activities. Molecular docking and dynamics studies revealed that 3 exhibited a strong binding affinity to human a α- glucosidase crystal structure compared to acarbose. Furthermore, 2 and 5 demonstrated high potency against AChE. The virtual screening results were further supported by in vitro assays, which assessed the compounds' effects on α-glucosidase, cholinesterases, and their antioxidant activities. 5-Hydroxy-7-(4-hydroxy-3-methoxyphenyl)-1-phenylheptan-3-one (2) showed potent antioxidant effect in both ABTs and ORAC assays, while p-hydroxy cinnamic acid (6) was the most potent in the ORAC assay. In contrary, kaempferide (4) and galangin (5) showed the most potent effect in metal chelation assay. 5-Hydroxy-1,7-diphenylhepta-4,6-dien-3-one (3) and 6 revealed the most potent effect as α-glucosidase inhibitors where compound 3 showed more potent effect compared to acarbose. Galangin (5) revealed a higher selectivity to BChE, while 2 showed the most potent activity to (AChE).
Collapse
Affiliation(s)
- H A Al Garni
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A M El-Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - A E Koshak
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A M Malebari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A A Alzain
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, Wad Madani, Sudan
| | - G A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - S R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - N S El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - H M Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
40
|
He M, Tang S, Xu T, Yuan Y, Wu T, Pan S, Xu X. Acetylation of the polysaccharide from Houttuynia cordata rhizome and their α-glucosidase inhibition mechanism. J Food Sci 2024; 89:2672-2683. [PMID: 38602052 DOI: 10.1111/1750-3841.17000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/23/2024] [Accepted: 02/09/2024] [Indexed: 04/12/2024]
Abstract
In this study, the polysaccharide (RHCP) extracted from Houttuynia cordata rhizome was acetylated through the acetic anhydride method. The physicochemical properties of RHCP and its acetylated derivatives (Ac-RHCP) were determined by infrared spectra, scanning electron microscopy, and Congo red test. Meanwhile, the α-glucosidase inhibition mechanism of RHCP and Ac-RHCP was analyzed by inhibition kinetics, and circular dichroism and fluorescence spectroscopy. Ac-RHCP resulted in a more porous surface structure and 1.83-fold higher solubility compared with RHCP. At a concentration of 6 mg/mL, the α-glucosidase inhibition rate of Ac-RHCP was 75.40%, while that of RHCP was 44.68%. RHCP and Ac-RHCP inhibited α-glucosidase in a mixed-type manner, reduced the endogenous fluorescence of α-glucosidase, affected the microenvironment of amino acid residues, and changed the conformation of α-glucosidase. The study indicates that Ac-RHCP exhibits a certain level of α-glucosidase inhibition, demonstrating its potential as a functional food for glycemic control.
Collapse
Affiliation(s)
- Mengyao He
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shuxin Tang
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tingting Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanan Yuan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
41
|
Taibi M, Elbouzidi A, Haddou M, Baraich A, Loukili EH, Moubchir T, Allali A, Amine khoulati, Bellaouchi R, Asehraou A, Addi M, Salamatullah AM, Bourhia M, Siddique F, El Guerrouj B, Chaabane K. Phytochemical characterization and multifaceted bioactivity assessment of essential oil from Ptychotis verticillata Duby: Anti-diabetic, anti-tyrosinase, and anti-inflammatory activity. Heliyon 2024; 10:e29459. [PMID: 38699706 PMCID: PMC11063393 DOI: 10.1016/j.heliyon.2024.e29459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
The aim of this study is to explore the pharmacological properties of the essential oil derived from Ptychotis verticillata Duby (PVEO), a medicinal plant native to Morocco, focusing on its antidiabetic, anti-tyrosinase, and anti-inflammatory effects. Additionally, the study aims to characterize the phytochemical composition of PVEO and evaluate its potential as a natural therapeutic alternative for various health conditions. To achieve this, phytochemical analysis was conducted using gas chromatography-mass spectrometry (GC-MS). Furthermore, in vitro assessments were conducted to investigate PVEO's antidiabetic activity by inhibiting α-amylase, xanthine oxidase, and α-glucosidase. Tests were also undertaken to evaluate the anti-inflammatory effect of PVEO on RAW 264.7 cells stimulated by lipopolysaccharide (LPS), as well as its efficacy as an anti-tyrosinase agent and its lipoxygenase inhibition activity. The results of the phytochemical analysis revealed that PVEO is rich in terpene compounds, with percentages of 40.35 % γ-terpinene, 22.40 % carvacrol, and 19.77 % β-cymene. Moreover, in vitro evaluations demonstrated that PVEO exhibits significant inhibitory activity against α-amylase, xanthine oxidase, and α-glucosidase, indicating promising antidiabetic, and anti-gout potential. Furthermore, PVEO showed significant anti-tyrosinase activity, with an IC50 of 27.39 ± 0.44 μg/mL, and remarkable lipoxygenase inhibition (87.33 ± 2.6 %), suggesting its candidacy for dermatoprotection. Additionally, PVEO displayed a dose-dependent capacity to attenuate the production of NO and PGE2, two inflammatory mediators implicated in various pathologies, without compromising cellular viability. The findings of this study provide a solid foundation for future research on natural therapies and the development of new drugs, highlighting the therapeutic potential of PVEO in the treatment of gout, diabetes, pigmentation disorders, and inflammation.
Collapse
Affiliation(s)
- Mohamed Taibi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
- Centre de L’Oriental des Sciences et Technologies de L’Eau et de L’Environnement (COSTEE), Université Mohammed Premier, Oujda, 60000, Morocco
| | - Amine Elbouzidi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
- Euro-Mediterranean University of Fes (UEMF), Fes, Morocco
| | - Mounir Haddou
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
- Centre de L’Oriental des Sciences et Technologies de L’Eau et de L’Environnement (COSTEE), Université Mohammed Premier, Oujda, 60000, Morocco
| | - Abdellah Baraich
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda, 60000, Morocco
| | | | - Tarik Moubchir
- Polyvalent Team in Research and Development, Polydisciplinary Faculty of Beni Mellal (FPBM), University Sultan Moulay Slimane (USMS), Beni Mellal, 23000, Morocco
| | - Aimad Allali
- High Institute of Nursing Professions and Health Techniques Annex Taza, Fez, Morocco
| | - Amine khoulati
- Faculté de Médecine et de Pharmacie, Université Mohammed Premier, Oujda, 60000, Morocco
| | - Reda Bellaouchi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda, 60000, Morocco
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed First University, Boulevard Mohamed VI, B.P. 717, Oujda, 60000, Morocco
| | - Mohamed Addi
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
| | - Ahmad Mohammad Salamatullah
- Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, 11 P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, 80060, Agadir, Morocco
| | - Farhan Siddique
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Bouchra El Guerrouj
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
- Centre de L’Oriental des Sciences et Technologies de L’Eau et de L’Environnement (COSTEE), Université Mohammed Premier, Oujda, 60000, Morocco
| | - Khalid Chaabane
- Laboratoire d’Amélioration des Productions Agricoles, Biotechnologie et Environnement (LAPABE), Faculté des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
| |
Collapse
|
42
|
Cotas J, Lomartire S, Pereira L, Valado A, Marques JC, Gonçalves AMM. Seaweeds as Nutraceutical Elements and Drugs for Diabetes Mellitus: Future Perspectives. Mar Drugs 2024; 22:168. [PMID: 38667785 PMCID: PMC11051413 DOI: 10.3390/md22040168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetes mellitus is a chronic metabolic condition marked by high blood glucose levels caused by inadequate insulin synthesis or poor insulin use. This condition affects millions of individuals worldwide and is linked to a variety of consequences, including cardiovascular disease, neuropathy, nephropathy, and retinopathy. Diabetes therapy now focuses on controlling blood glucose levels through lifestyle changes, oral medicines, and insulin injections. However, these therapies have limits and may not successfully prevent or treat diabetic problems. Several marine-derived chemicals have previously demonstrated promising findings as possible antidiabetic medicines in preclinical investigations. Peptides, polyphenols, and polysaccharides extracted from seaweeds, sponges, and other marine species are among them. As a result, marine natural products have the potential to be a rich source of innovative multitargeted medications for diabetes prevention and treatment, as well as associated complications. Future research should focus on the chemical variety of marine creatures as well as the mechanisms of action of marine-derived chemicals in order to find new antidiabetic medicines and maximize their therapeutic potential. Based on preclinical investigations, this review focuses on the next step for seaweed applications as potential multitargeted medicines for diabetes, highlighting the bioactivities of seaweeds in the prevention and treatment of this illness.
Collapse
Affiliation(s)
- João Cotas
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (L.P.)
| | - Silvia Lomartire
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (L.P.)
| | - Leonel Pereira
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (L.P.)
| | - Ana Valado
- Polytechnic Institute of Coimbra, Coimbra Health School, Biomedical Laboratory Sciences, Rua 5 de Outubro—SM Bispo, Apartado 7006, 3046-854 Coimbra, Portugal;
- Research Centre for Natural Resources, Environment and Society—CERNAS, Escola Superior Agrária de Coimbra Bencanta, 3045-601 Coimbra, Portugal
| | - João Carlos Marques
- MARE—Marine and Environmental Sciences Centre/ARNET-Aquatic Research Network, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal;
| | - Ana M. M. Gonçalves
- Marine Resources, Conservation and Technology, Marine Algae Lab, CFE—Centre for Functional Ecology: Science for People & Planet, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal; (J.C.); (S.L.); (L.P.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
43
|
Wang H, Huang X, Pan Y, Zhang G, Tang S, Shao H, Jiao W. Synthesis and Biological Evaluation of New Dihydrofuro[3,2- b]piperidine Derivatives as Potent α-Glucosidase Inhibitors. Molecules 2024; 29:1179. [PMID: 38474691 DOI: 10.3390/molecules29051179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Inhibition of glycoside hydrolases has widespread application in the treatment of diabetes. Based on our previous findings, a series of dihydrofuro[3,2-b]piperidine derivatives was designed and synthesized from D- and L-arabinose. Compounds 32 (IC50 = 0.07 μM) and 28 (IC50 = 0.5 μM) showed significantly stronger inhibitory potency against α-glucosidase than positive control acarbose. The study of the structure-activity relationship of these compounds provides a new clue for the development of new α-glucosidase inhibitors.
Collapse
Affiliation(s)
- Haibo Wang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhejiang Hongyuan Pharmaceutical Co., Ltd., Linhai 317016, China
| | - Xiaojiang Huang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Pan
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqing Zhang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Senling Tang
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huawu Shao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Wei Jiao
- Natural Products Research Centre, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
44
|
Fernandes F, Martins R, Barbosa M, Valentão P. Algae-Based Supplements Claiming Weight Loss Properties: Authenticity Control and Scientific-Based Evidence on Their Effectiveness. Mar Drugs 2024; 22:123. [PMID: 38535464 PMCID: PMC10971825 DOI: 10.3390/md22030123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 01/03/2025] Open
Abstract
The worldwide prevalence of obesity impacts more than 600 million adults. Successfully managing weight is effective in reducing the risk of chronic diseases, but sustaining long-term weight loss remains a challenge. Although there are supplements based on algae that claim to aid in weight loss, there is a notable scarcity of scientific evidence supporting their effectiveness, and their regular consumption safety remains inadequately addressed. In this work, commercially available Arthrospira (Spirulina) platensis Gomont and/or Fucus vesiculosus L. supplements showed moderate capacity to inhibit the activity of carbohydrate-metabolizing enzymes, and to scavenge biologically relevant reactive species. IC25 values varying between 4.54 ± 0.81 and 66.73 ± 5.91 µg of dry extract/mL and between 53.74 ± 8.42 and 1737.96 ± 98.26 µg of dry extract/mL were obtained for α-glucosidase and aldose reductase, respectively. A weaker effect towards α-amylase activity was observed, with a maximum activity of the extracts not going beyond 33%, at the highest concentrations tested. Spirulina extracts showed generally better effects than those from F. vesiculosus. Similar results were observed concerning the antiradical capacity. In a general way, the extracts were able to intercept the in vitro-generated reactive species nitric oxide (•NO) and superoxide anion (O2•-) radicals, with better results for O2•-scavenging with the spirulina samples (IC25 values of 67.16 and 122.84 µg of dry extract/mL). Chemically, similar pigment profiles were observed between spirulina supplements and the authenticated counterpart. However, fucoxanthin, the chemotaxonomic marker of brown seaweeds, was not found in F. vesiculosus samples, pointing to the occurrence of a degradation phenomenon before, during, or after raw material processing. Our findings can contribute to providing data to allow regulatory entities (e.g., EFSA and FDA) to better rule these products in a way that can benefit society.
Collapse
Affiliation(s)
- Fátima Fernandes
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313 Porto, Portugal;
| | - Raquel Martins
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313 Porto, Portugal;
| | - Mariana Barbosa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| | - Patrícia Valentão
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.º 228, 4050-313 Porto, Portugal;
| |
Collapse
|
45
|
Naseem S, Fatima S, Ullah S, Khan A, Mali SN, Jawarkar RD, Syed A, Elgorban AM, Al-Harrasi A, Shafiq Z. Carbonylbis(hydrazine-1-carbothioamide) derivatives as a new class of α-glucosidase inhibitors and their mechanistic insights via molecular docking and dynamic simulations. Arch Pharm (Weinheim) 2024; 357:e2300604. [PMID: 38148299 DOI: 10.1002/ardp.202300604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/28/2023]
Abstract
In the past, efforts have been made to find a cure for diabetes, mainly evaluating new classes of compounds to explore their potency. In this study, we present the synthesis and evaluation of carbonylbis(hydrazine-1-carbothioamide) derivatives as potential α-glucosidase inhibitors, employing both in vivo and in silico investigations. The in vitro experiments revealed that all tested compounds were significantly potent for α-glucosidase inhibition, with the lead compound 3a displaying approximately 80 times higher activity than acarbose. To delve deeper, in silico induced fit docking, pharmacokinetics, and molecular dynamics studies were conducted. Significantly, compound 3a exhibited a docking score of -7.87 kcal/mol, surpassing acarbose, which had a docking score of -6.59 kcal/mol. The in silico ADMET indicated that most of the synthesized compounds have properties conducive to drug development. Molecular dynamics analysis demonstrated that, when the ligand 3a was coupled with the target 3TOP, Cα-RMSD backbone RMSD values below 2.4 Å and "Lig_fit_Prot" values below 2.7 Å were observed. QSAR analysis demonstrates that the "fOC8A" descriptor positively correlates with α-glucosidase inhibition activity, while "lipoplus_AbSA" positively contributes and "notringC_notringO_8B" negatively contributes to this activity.
Collapse
Affiliation(s)
- Saira Naseem
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Shamool Fatima
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saeed Ullah
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Suraj N Mali
- Department of Pharmaceutical Science and Technology, Birla Institute of Technology, Mesra, India
| | - Rahul D Jawarkar
- Department of Medicinal Chemistry and Drug Discovery, Dr. Rajendra Gode Institute of Pharmacy, Amravati, India
| | - Asad Syed
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Zahid Shafiq
- Department of Pharmaceutical & Medicinal Chemistry, Bonn, Germany
| |
Collapse
|
46
|
Jiang Y, Liu F, Zhang D, Fu X, Chen S, Wei M, Li Z, Lei H, Niu H. Identification of Novel -Glucosidase Inhibitors from Syzygium jambos (L.) Using Spectroscopy and Molecular Docking. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:73-82. [PMID: 38006459 DOI: 10.1007/s11130-023-01123-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 11/27/2023]
Abstract
Fruits of Syzygium jambos (L.) are recognized as a "food", exhibiting significant antidiabetic activities. However, the α-glucosidase inhibition of the components from Syzygium jambos (L.) have not yet been investigated. In this study, a total of 14 compounds were isolated from Syzygium jambos (L.) Alston, eight of which showed significant inhibitory effects on α-glucosidase, with IC50 values in the range of 0.011-0.665 mM. Notably, compounds 1-3 (IC50: 0.013, 0.011 and 0.030 mM, respectively) exhibited much stronger activity than acarbose (IC50: 2.329 ± 0.109 mM). The enzyme kinetics study indicated that compound 1 was an uncompetitive inhibitor, and compounds 2-8 were mixed-type inhibitors. Moreover, the interactions between compounds and α-glucosidase were investigated by molecular docking, which further revealed that the number of olefin double bonds and 2-COOH of heptadeca-phenols had a notable effect on the α-glucosidase inhibitory activity. This study demonstrated that Syzygium jambos (L.) fruit might serve as a functional food for the prevention of diabetes mellitus.
Collapse
Affiliation(s)
- Yao Jiang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Feifei Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiujuan Fu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Siwei Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Mei Wei
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhi Li
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Hui Lei
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Hong Niu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
47
|
Azmi A, Noori M, Khalili Ghomi M, Nazari Montazer M, Iraji A, Dastyafteh N, Oliyaei N, Khoramjouy M, Rezaei Z, Javanshir S, Mojtabavi S, Faramarzi MA, Asadi M, Faizi M, Mahdavi M. Alpha-glucosidase inhibitory and hypoglycemic effects of imidazole-bearing thioquinoline derivatives with different substituents: In silico, in vitro, and in vivo evaluations. Bioorg Chem 2024; 144:107106. [PMID: 38244380 DOI: 10.1016/j.bioorg.2024.107106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/29/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by high blood sugar levels. It was shown that modulating the activity of α-glucosidase, an enzyme involved in carbohydrate digestion and absorption, can improve blood sugar control and overall metabolic health in individuals with T2DM. As a result, in the current study, a series of imidazole bearing different substituted thioquinolines were designed and synthesized as α-glucosidase inhibitors. All derivatives exhibited significantly better potency (IC50 = 12.1 ± 0.2 to 102.1 ± 4.9 µM) compared to the standard drug acarbose (IC50 = 750.0 ± 5.0 µM). 8g as the most potent analog, indicating a competitive inhibition with Ki = 9.66 µM. Also, the most potent derivative was subjected to molecular docking and molecular dynamic simulation against α-glucosidase to determine its mode of action in the enzyme and study the complex's behavior over time. In vivo studies showed that 8g did not cause acute toxicity at 2000 mg/kg doses. Additionally, in a diabetic rat model, treatment with 8g significantly reduced fasting blood glucose levels and decreased blood glucose levels following sucrose loading compared to acarbose, a standard drug used for blood sugar control. The findings suggest that the synthesized compound 8g holds promise as an α-glucosidase inhibitor for improving blood sugar control and metabolic health.
Collapse
Affiliation(s)
- Anita Azmi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Noori
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Minoo Khalili Ghomi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nazari Montazer
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Navid Dastyafteh
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Najmeh Oliyaei
- Department of Food Science and Technology, School of Agriculture Shiraz University, Shiraz, Iran
| | - Mona Khoramjouy
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Rezaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Javanshir
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Asadi
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Science, Tehran, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
48
|
Erukainure OL, Chukwuma CI. Coconut ( Cocos nucifera (L.)) Water Improves Glucose Uptake with Concomitant Modulation of Antioxidant and Purinergic Activities in Isolated Rat Psoas Muscles. PLANTS (BASEL, SWITZERLAND) 2024; 13:665. [PMID: 38475510 DOI: 10.3390/plants13050665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
The present study investigated the effect of coconut water on glucose uptake and utilization, and metabolic activities linked to hyperglycemia in isolated rat psoas muscles. Coconut water was subjected to in vitro antioxidant and antidiabetic assays, which cover 2,2'-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, ferric reducing antioxidant power (FRAP), and inhibition of α-glucosidase and α-amylase activities. Psoas muscles were isolated from male Sprague Dawley rats and incubated with coconut water in the presence of glucose. Control consisted of muscles incubated with glucose only, while normal control consisted of muscles not incubated in coconut water and/or glucose. The standard antidiabetic drug was metformin. Incubation with coconut water led to a significant increase in muscle glucose uptake, with concomitant exacerbation of glutathione level, and SOD and catalase activities, while suppressing malondialdehyde level, and ATPase and E-NTDase activities. Coconut water showed significant scavenging activity against DPPH, and significantly inhibited α-glucosidase and α-amylase activities. LC-MS analysis of coconut water revealed the presence of ellagic acid, butin, quercetin, protocatechuic acid, baicalin, and silibinin. Molecular docking analysis revealed potent molecular interactions between the LC-MS-identified compounds, and AKT-2 serine and PI-3 kinase. These results indicate the potential of coconut water to enhance glucose uptake, while concomitantly improving antioxidative and purinergic activities. They also indicate the potential of coconut water to suppress postprandial hyperglycemia. These activities may be attributed to the synergistic effects of the LC-MS-identified compounds.
Collapse
Affiliation(s)
- Ochuko L Erukainure
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Chika I Chukwuma
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9301, South Africa
| |
Collapse
|
49
|
Sun X, Shi Y, Shi D, Tu Y, Liu L. Biological Activities of Secondary Metabolites from the Edible-Medicinal Macrofungi. J Fungi (Basel) 2024; 10:144. [PMID: 38392816 PMCID: PMC10890728 DOI: 10.3390/jof10020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Macrofungi are well-known as edible-medicinal mushrooms, which belong mostly to Basidiomycota, with a few from Ascomycota. In recent years, macrofungi have been recognized as a rich resource of structurally unique secondary metabolites, demonstrating a wide range of bioactivities, including anti-tumor, antioxidant, anti-inflammatory, antimicrobial, antimalarial, neuro-protective, hypoglycemic, and hypolipidemic activities. This review highlights over 270 natural products produced by 17 families of macrofungi covering 2017 to 2023, including their structures, bioactivities, and related molecular mechanisms.
Collapse
Affiliation(s)
- Xiaoqi Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongxiao Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yu Tu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Che G, Chen M, Li X, Xiao J, Liu L, Guo L. Effect of UV-A Irradiation on Bioactive Compounds Accumulation and Hypoglycemia-Related Enzymes Activities of Broccoli and Radish Sprouts. PLANTS (BASEL, SWITZERLAND) 2024; 13:450. [PMID: 38337982 PMCID: PMC10857714 DOI: 10.3390/plants13030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
In the present study, different intensities of UV-A were applied to compare their effects on growth, bioactive compounds and hypoglycemia-related enzyme activities in broccoli and radish sprouts. The growth of sprouts was decreased after UV-A irradiation. A total of 12 W of UV-A irradiation resulted in the highest content of anthocyanin, chlorophyll, polyphenol and ascorbic acid in broccoli and radish sprouts. The highest soluble sugar content was recorded in sprouts under 8 W of UV-A irradiation, while no significant difference was obtained in soluble protein content among different UV-A intensities. Furthermore, 12 W of UV-A irradiation induced the highest glucosinolate accumulation, especially glucoraphanin and glucoraphenin in broccoli and radish sprouts, respectively; thus, it enhanced sulforaphane and sulforaphene formation. The α-amylase, α-glucosidase and pancrelipase inhibitory rates of two kinds of sprouts were enhanced significantly after UV-A irradiation, indicating UV-A-irradiation-treated broccoli and radish sprouts have new prospects as hypoglycemic functional foods.
Collapse
Affiliation(s)
- Gongheng Che
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
| | - Mingmei Chen
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
| | - Xiaodan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Junxia Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Liang Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| | - Liping Guo
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (G.C.); (M.C.); (X.L.); (J.X.); (L.L.)
- Key Laboratory of Special Food Processing (Co-construction by Ministry and Province), Ministry of Agriculture Rural Affairs, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Technology Innovation Center of Special Food, Qingdao 266109, China
| |
Collapse
|