1
|
Bouyahya A, Balahbib A, Khalid A, Makeen HA, Alhazmi HA, Albratty M, Hermansyah A, Ming LC, Goh KW, El Omari N. Clinical applications and mechanism insights of natural flavonoids against type 2 diabetes mellitus. Heliyon 2024; 10:e29718. [PMID: 38694079 PMCID: PMC11061711 DOI: 10.1016/j.heliyon.2024.e29718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024] Open
Abstract
Diabetes is a complex disease that affects a large percentage of the world's population, and it is associated with several risk factors. Self-management poses a significant challenge, but natural sources have shown great potential in providing effective glucose reducing solutions. Flavonoids, a class of bioactive substances found in different natural sources including medicinal plants, have emerged as promising candidates in this regard. Indeed, several flavonoids, including apigenin, arbutin, catechins, and cyanidin, have demonstrated remarkable anti-diabetic properties. The clinical effectiveness of these flavonoids is linked to their potential to decrease blood glucose concentration and increase insulin concentration. Thus, the regulation of certain metabolic pathways such as glycolysis and neoglycogenesis has also been demonstrated. In vitro and in vivo investigations revealed different mechanisms of action related to flavonoid compounds at subcellular, cellular, and molecular levels. The main actions reside in the activation of glycolytic signaling pathways and the inhibition of signaling that promotes glucose synthesis and storage. In this review, we highlight the clinical efficiency of natural flavonoids as well as the molecular mechanisms underlying this effectiveness.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115 Surabaya, Indonesia
| | - Abdelaali Balahbib
- High Institute of Nursing Professions and Health Techniques of Errachidia, Errachidia, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia
- Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box: 2424, Khartoum-11111, Sudan
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A. Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Postal Code 45142, Jazan, Saudi Arabia
| | - Andi Hermansyah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115 Surabaya, Indonesia
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, 60115 Surabaya, Indonesia
- School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| |
Collapse
|
2
|
Feng W, Xu Y, Su S, Yu F, Li J, Jia R, Song C, Li H, Xu P, Tang Y. Transcriptomic analysis of hydrogen peroxide-induced liver dysfunction in Cyprinus carpio: Insights into protein synthesis and metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170393. [PMID: 38280587 DOI: 10.1016/j.scitotenv.2024.170393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
Hydrogen peroxide (H2O2), a prevalent reactive oxygen species (ROS) found in natural aquatic environments, has garnered significant attention for its potential toxicity in fish. However, the molecular mechanisms underlying this toxicity are not yet comprehensively understood. This study aimed to assess H2O2-induced liver dysfunction in common carp (Cyprinus carpio) and elucidate the underlying molecular mechanisms via biochemical and transcriptomic analyses. Common carp were divided into normal control (NC) and H2O2-treated groups (1 mM H2O2), the latter of which was exposed to H2O2 for 1 h per day over a period of 14 days. Serum biochemical analyses indicated that exposure to H2O2 resulted in moderate liver damage, characterized by elevated alanine aminotransferase (ALT) activity and lowered albumin (Alb) level. Concurrently, H2O2 exposure induced oxidative stress and modified the hepatic metabolic enzyme levels. Transcriptome analysis highlighted that 1358 and 1188 genes were significantly downregulated and upregulated, respectively, in the H2O2-treated group. These differentially expressed genes (DEGs) were significantly enriched in protein synthesis and a variety of metabolic functions such as peptide biosynthetic processes, protein transport, ribonucleoprotein complex biogenesis, oxoacid metabolic processes, and tricarboxylic acid metabolic processes. Dysregulation of protein synthesis is principally associated with the downregulation of three specific pathways: ribosome biogenesis, protein export, and protein processing in the endoplasmic reticulum (ER). Furthermore, metabolic abnormalities were primarily characterized by inhibition of the citrate cycle (TCA) and fatty acid biosynthesis. Significantly, anomalies in both protein synthesis and metabolic function may be linked to aberrant regulation of the insulin signaling pathway. These findings offer innovative insights into the mechanisms underlying H2O2 toxicity in aquatic animals, contributing to the assessment of ecological risks.
Collapse
Affiliation(s)
- Wenrong Feng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yuanfeng Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shengyan Su
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Fan Yu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jianlin Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Rui Jia
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Changyou Song
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Hongxia Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongkai Tang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
3
|
Lee SR, Directo D. Fish Oil Supplementation with Resistance Exercise Training Enhances Physical Function and Cardiometabolic Health in Postmenopausal Women. Nutrients 2023; 15:4516. [PMID: 37960168 PMCID: PMC10650161 DOI: 10.3390/nu15214516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Menopause is a condition associated with an increased risk of dysregulation in cardiovascular and metabolic health among older women. While fish oil (FO) has garnered great attention for its health-enhancing properties, its potential for enhancing cardiometabolic health in this demographic remains to be established. The purpose of this study was to determine the clinical efficacy of an 8 wk administration of FO combined with programmed resistance exercise training (RET) on physical function and risk factors associated with cardiometabolic health in healthy older women. Twenty, healthy, older women were randomly assigned to one of the two experimental groups: resistance training with placebo (RET-PL) or RET with fish oil (RET-FO). Physical function, blood pressure (BP), triglyceride (TG), and systemic inflammation and oxidative stress biomarkers were assessed before and after the intervention. Statistical significance was set at p ≤ 0.05. Physical function was greatly enhanced in both RET and RET-FO. Handgrip strength substantially increased only in RET-FO. RET-FO exhibited significant decreases in BP, TG, inflammatory cytokines (TNF-α and IL-6), and oxidative stress (MDA and 8-OHdG) levels, while no detectable changes were found in RET-PL. Our findings indicate that FO administration during 8 wks of RET appears to enhance muscle function and lower risk factors linked to cardiometabolic disorders in postmenopausal women.
Collapse
Affiliation(s)
- Sang-Rok Lee
- Department of Kinesiology, New Mexico State University, Las Cruces, NM 88003, USA;
| | | |
Collapse
|
4
|
Zhang Q, Song S, Jiang R, Zhang J, Na L. Protective effect of manganese treatment on insulin resistance in HepG2 hepatocytes. NUTR HOSP 2023; 40:746-754. [PMID: 37409718 DOI: 10.20960/nh.04521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
Introduction Objectives: manganese (Mn) is closely related to type 2 diabetes mellitus and insulin resistance (IR), but the exact mechanism is unclear. This study aimed to explore the regulatory effects and mechanism of Mn on IR using hepatocyte IR model induced by high palmitate (PA), high glucose (HG) or insulin. Methods: HepG2 cells were exposed to PA (200 μM), HG (25 mM) or insulin (100 nM) respectively, alone or with 5 μM Mn for 24 hours. The expression of key proteins in insulin signaling pathway, intracellular glycogen content and glucose accumulation, reactive oxygen species (ROS) level and Mn superoxide dismutase (MnSOD) activity were detected. Results: compared with control group, the expression of phosphorylated protein kinase B (Akt), glycogen synthase kinase-3β (GSK-3β) and forkhead box O1 (FOXO1) in the three IR groups was declined, and this decrease was reversed by Mn. The reduction of intracellular glycogen content and increase in glucose accumulation in IR groups were also inhibited by Mn. Additionally, the production of ROS was increased in IR models, compared with normal control group, while Mn reduced the excessive production of ROS induced by PA, HG or insulin. However, Mn did not alter the activity of MnSOD in the three IR models. Conclusion: this study demonstrated that Mn treatment can improve IR in hepatocytes. The mechanism is probably by reducing the level of intracellular oxidative stress, enhancing the activity of Akt/GSK-3β/FOXO1 signal pathway, promoting glycogen synthesis, and inhibiting gluconeogenesis.
Collapse
Affiliation(s)
| | - Shili Song
- Linping District Center for Disease Control and Prevention
| | - Ruyue Jiang
- Publich Health College. Harbin Medical University
| | - Jingyi Zhang
- College of Public Health. Shanghai University of Medicine and Health Sciences
| | - Lixin Na
- Collaborative Innovation Center. Shanghai University of Medicine and Health Sciences
| |
Collapse
|
5
|
Sabari SS, Balasubramani K, Iyer M, Sureshbabu HW, Venkatesan D, Gopalakrishnan AV, Narayanaswamy A, Senthil Kumar N, Vellingiri B. Type 2 Diabetes (T2DM) and Parkinson's Disease (PD): a Mechanistic Approach. Mol Neurobiol 2023:10.1007/s12035-023-03359-y. [PMID: 37118323 PMCID: PMC10144908 DOI: 10.1007/s12035-023-03359-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/19/2023] [Indexed: 04/30/2023]
Abstract
Growing evidence suggest that there is a connection between Parkinson's disease (PD) and insulin dysregulation in the brain, whilst the connection between PD and type 2 diabetes mellitus (T2DM) is still up for debate. Insulin is widely recognised to play a crucial role in neuronal survival and brain function; any changes in insulin metabolism and signalling in the central nervous system (CNS) can lead to the development of various brain disorders. There is accumulating evidence linking T2DM to PD and other neurodegenerative diseases. In fact, they have a lot in common patho-physiologically, including insulin dysregulation, oxidative stress resulting in mitochondrial dysfunction, microglial activation, and inflammation. As a result, initial research should focus on the role of insulin and its molecular mechanism in order to develop therapeutic outcomes. In this current review, we will look into the link between T2DM and PD, the function of insulin in the brain, and studies related to impact of insulin in causing T2DM and PD. Further, we have also highlighted the role of various insulin signalling pathway in both T2DM and PD. We have also suggested that T2DM-targeting pharmacological strategies as potential therapeutic approach for individuals with cognitive impairment, and we have demonstrated the effectiveness of T2DM-prescribed drugs through current PD treatment trials. In conclusion, this investigation would fill a research gap in T2DM-associated Parkinson's disease (PD) with a potential therapy option.
Collapse
Affiliation(s)
- S Sri Sabari
- Department of Zoology, School of Basic Sciences, Stem Cell and Regenerative Medicine/Translational Research, Central University of Punjab (CUPB), Bathinda, 151401, Punjab, India
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Kiruthika Balasubramani
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, 641021, Tamil Nadu, India
| | - Harysh Winster Sureshbabu
- Department of Zoology, School of Basic Sciences, Stem Cell and Regenerative Medicine/Translational Research, Central University of Punjab (CUPB), Bathinda, 151401, Punjab, India
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Dhivya Venkatesan
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632 014, India
| | - Arul Narayanaswamy
- Department of Zoology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Nachimuthu Senthil Kumar
- Department of Biotechnology, Mizoram University (A Central University), Aizawl, 796004, Mizoram, India
| | - Balachandar Vellingiri
- Department of Zoology, School of Basic Sciences, Stem Cell and Regenerative Medicine/Translational Research, Central University of Punjab (CUPB), Bathinda, 151401, Punjab, India.
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
6
|
Li H, Ren J, Li Y, Wu Q, Wei J. Oxidative stress: The nexus of obesity and cognitive dysfunction in diabetes. Front Endocrinol (Lausanne) 2023; 14:1134025. [PMID: 37077347 PMCID: PMC10107409 DOI: 10.3389/fendo.2023.1134025] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/02/2023] [Indexed: 04/05/2023] Open
Abstract
Obesity has been associated with oxidative stress. Obese patients are at increased risk for diabetic cognitive dysfunction, indicating a pathological link between obesity, oxidative stress, and diabetic cognitive dysfunction. Obesity can induce the biological process of oxidative stress by disrupting the adipose microenvironment (adipocytes, macrophages), mediating low-grade chronic inflammation, and mitochondrial dysfunction (mitochondrial division, fusion). Furthermore, oxidative stress can be implicated in insulin resistance, inflammation in neural tissues, and lipid metabolism disorders, affecting cognitive dysfunction in diabetics.
Collapse
Affiliation(s)
- Huimin Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Ren
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Yusi Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Wu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Wei
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Alqudah A, Athamneh RY, Qnais E, Gammoh O, Oqal M, AbuDalo R, Alshaikh HA, AL-Hashimi N, Alqudah M. The Emerging Importance of Cirsimaritin in Type 2 Diabetes Treatment. Int J Mol Sci 2023; 24:ijms24065749. [PMID: 36982822 PMCID: PMC10059674 DOI: 10.3390/ijms24065749] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Cirsimaritin is a dimethoxy flavon that has different biological activities such as antiproliferative, antimicrobial, and antioxidant activities. This study aims to investigate the anti-diabetic effects of cirsimaritin in a high-fat diet and streptozotocin-(HFD/STZ)-induced rat model of type 2 diabetes mellitus (T2D). Rats were fed HFD, followed by a single low dose of STZ (40 mg/kg). HFD/STZ diabetic rats were treated orally with cirsimaritin (50 mg/kg) or metformin (200 mg/kg) for 10 days before terminating the experiment and collecting plasma, soleus muscle, adipose tissue, and liver for further downstream analysis. Cirsimaritin reduced the elevated levels of serum glucose in diabetic rats compared to the vehicle control group (p < 0.001). Cirsimaritin abrogated the increase in serum insulin in the treated diabetic group compared to the vehicle control rats (p < 0.01). The homeostasis model assessment of insulin resistance (HOMA-IR) was decreased in the diabetic rats treated with cirsimaritin compared to the vehicle controls. The skeletal muscle and adipose tissue protein contents of GLUT4 (p < 0.01 and p < 0.05, respectively) and pAMPK-α1 (p < 0.05) were upregulated following treatment with cirsimaritin. Cirsimaritin was able to upregulate GLUT2 and AMPK protein expression in the liver (p < 0.01, <0.05, respectively). LDL, triglyceride, and cholesterol were reduced in diabetic rats treated with cirsimaritin compared to the vehicle controls (p < 0.001). Cirsimaritin reduced MDA, and IL-6 levels (p < 0.001), increased GSH levels (p < 0.001), and reduced GSSG levels (p < 0.001) in diabetic rats compared to the vehicle control. Cirsimaritin could represent a promising therapeutic agent to treat T2D.
Collapse
Affiliation(s)
- Abdelrahim Alqudah
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
- Correspondence:
| | - Rabaa Y. Athamneh
- Department of Medical Laboratory Sciences, Faculty of Allied Science, Zarqa University, Zarqa 13110, Jordan
| | - Esam Qnais
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13133, Jordan
| | - Omar Gammoh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Muna Oqal
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Rawan AbuDalo
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | | | - Nabil AL-Hashimi
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Mohammad Alqudah
- Physiology Department, School of Medicine and Biomedical Sciences, Arabian Gulf University, Manama 26671, Bahrain
| |
Collapse
|
8
|
Chan YM, Shariff ZM, Chin YS, Ghazali SS, Lee PY, Chan KS. Associations of alkaline water with metabolic risks, sleep quality, muscle strength: A cross-sectional study among postmenopausal women. PLoS One 2022; 17:e0275640. [PMID: 36315555 PMCID: PMC9621423 DOI: 10.1371/journal.pone.0275640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/20/2022] [Indexed: 11/05/2022] Open
Abstract
Much has been claimed on the health benefits of alkaline water including metabolic syndrome (MetS) and its features with scarcity of scientific evidence. Methods: This cross-sectional comparative study was conducted to determine whether regular consumption of alkaline water confers health advantage on blood metabolites, anthropometric measures, sleep quality and muscle strength among postmenopausal women. A total of 304 community-dwelling postmenopausal women were recruited with comparable proportion of regular drinkers of alkaline water and non-drinkers. Participants were ascertained on dietary intake, lifestyle factors, anthropometric and biochemical measurements. Diagnosis of MetS was made according to Joint Interim Statement definition. A total of 47.7% of the participants met MS criteria, with a significant lower proportion of MetS among the alkaline water drinkers. The observed lower fasting plasma glucose (F(1,294) = 24.20, p = 0.025, partial η2 = 0.435), triglyceride/high-density lipoprotein concentration ratio (F(1,294) = 21.06, p = 0.023, partial η2 = 0.360), diastolic blood pressure (F(1,294) = 7.85, p = 0.046, partial η2 = 0.258) and waist circumference (F(1,294) = 9.261, p = 0.038, partial η2 = 0.263) in the alkaline water drinkers could be considered as favourable outcomes of regular consumption of alkaline water. In addition, water alkalization improved duration of sleep (F(1,294) = 32.05, p = 0.007, partial η2 = 0.451) and handgrip strength F(1,294) = 27.51, p = 0.011, partial η2 = 0.448). Low density lipoprotein cholesterol concentration (F(1,294) = 1.772, p = 0.287, partial η2 = 0.014), body weight (F(1,294) = 1.985, p = 0.145, partial η2 = 0.013) and systolic blood pressure (F(1,294) = 1.656, p = 0.301, partial η2 = 0.010) were comparable between the two different water drinking behaviours. In conclusion, drinking adequate of water is paramount for public health with access to good quality drinking water remains a critical issue. While consumption of alkaline water may be considered as a source of easy-to implement lifestyle to modulate metabolic features, sleep duration and muscle strength, further studies are warranted for unravelling the precise mechanism of alkaline water consumption on the improvement and prevention of MetS and its individual features, muscle strength and sleep duration as well as identification of full spectrum of individuals that could benefit from its consumption.
Collapse
Affiliation(s)
- Yoke Mun Chan
- Faculty of Medicine and Health Sciences, Department of Dietetics, Universiti Putra Malaysia (UPM), Serdang, Malaysia
- Faculty of Medicine and Health Sciences, Research Center of Excellence Nutrition and Non-Communicable Diseases, Universiti Putra Malaysia (UPM), Serdang, Malaysia
- Malaysian Research Institute on Ageing, Universiti Putra Malaysia, Serdang, Malaysia
- * E-mail:
| | - Zalilah Mohd Shariff
- Faculty of Medicine and Health Sciences, Department of Nutrition, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Yit Siew Chin
- Faculty of Medicine and Health Sciences, Research Center of Excellence Nutrition and Non-Communicable Diseases, Universiti Putra Malaysia (UPM), Serdang, Malaysia
- Faculty of Medicine and Health Sciences, Department of Nutrition, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Sazlina Shariff Ghazali
- Faculty of Medicine and Health Sciences, Department of Family Medicine, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| | - Ping Yein Lee
- Faculty of Medicine, UMeHealth Unit, Universiti Malaya (UM), Kuala Lumpur, Malaysia
| | - Kai Sze Chan
- Faculty of Medicine and Health Sciences, Department of Dietetics, Universiti Putra Malaysia (UPM), Serdang, Malaysia
| |
Collapse
|
9
|
Barbosa H, Ramadan W, Matzenbacher dos Santos J, Benite-Ribeiro SA. Effects of Physical Exercise on Mitochondrial Biogenesis of Skeletal Muscle Modulated by Histones Modifications in Type 2 Diabetes. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.10095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epigenetic modification in skeletal muscle induced by environmental factors seems to modulate several metabolic pathways that underlie Type 2 Diabetes Mellitus (T2DM) development. Mitochondrial biogenesis is an important process for maintaining lipid metabolism homeostasis, as well as epigenetic modifications in proteins that regulate this pathway have been observed in the skeletal muscle of T2DM subjects. Moreover, physical exercise affects several metabolic pathways attenuating metabolic deregulation observed in T2DM. The pathways that regulate mitochondrial homeostasis are one of the key components for understanding such physical exercise beneficial effects. Thus, in this study, we investigate the epigenetic mechanisms underlying mitochondrial biogenesis in the skeletal muscle in T2DM, focusing on histone modifications and the possible mechanisms by which physical exercise delay or inhibit T2DM onset. The results indicate that exercise promotes improvements in cellular metabolism through increasing enzymes of the antioxidant system, AMPK and ATP-citrate lyase activity, Acetyl-CoA concentration, and enhancing the acetylation of histones. A key mediator of mitochondrial biogenesis such as peroxisome proliferator-activated receptor γ coactivator-1α (PGC1) seems to be upregulated by exercise in T2DM and such factor positively regulates the skeletal muscle mitochondrial biogenesis, which improves energy metabolism and glucose homeostasis inhibiting or delaying insulin resistance and further T2DM.
Collapse
|
10
|
Memon B, Elsayed AK, Bettahi I, Suleiman N, Younis I, Wehedy E, Abou-Samra AB, Abdelalim EM. iPSCs derived from insulin resistant offspring of type 2 diabetic patients show increased oxidative stress and lactate secretion. Stem Cell Res Ther 2022; 13:428. [PMID: 35987697 PMCID: PMC9392338 DOI: 10.1186/s13287-022-03123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 08/05/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The genetic factors associated with insulin resistance (IR) are not well understood. Clinical studies on first-degree relatives of type 2 diabetic (T2D) patients, which have the highest genetic predisposition to T2D, have given insights into the role of IR in T2D pathogenesis. Induced pluripotent stem cells (iPSCs) are excellent tools for disease modeling as they can retain the genetic imprint of the disease. Therefore, in this study, we aimed to investigate the genetic perturbations associated with insulin resistance (IR) in the offspring of T2D parents using patient-specific iPSCs.
Methods
We generated iPSCs from IR individuals (IR-iPSCs) that were offspring of T2D parents as well as from insulin-sensitive (IS-iPSCs) individuals. We then performed transcriptomics to identify key dysregulated gene networks in the IR-iPSCs in comparison to IS-iPSCs and functionally validated them.
Results
Transcriptomics on IR-iPSCs revealed dysregulated gene networks and biological processes indicating that they carry the genetic defects associated with IR that may lead to T2D. The IR-iPSCs had increased lactate secretion and a higher phosphorylation of AKT upon stimulation with insulin. IR-iPSCs have increased cellular oxidative stress indicated by a high production of reactive oxygen species and higher susceptibility to H2O2 -induced apoptosis.
Conclusions
IR-iPSCs generated from offspring of diabetic patients confirm that oxidative stress and increased lactate secretion, associated with IR, are inherited in this population, and may place them at a high risk of T2D. Overall, our IR-iPSC model can be employed for T2D modeling and drug screening studies that target genetic perturbations associated with IR in individuals with a high risk for T2D.
Collapse
|
11
|
Romeh GH, El-Safty FENAH, El-Mehi AES, Faried MA. Antioxidant, anti-inflammatory, and anti-fibrotic properties of olive leaf extract protect against L-arginine induced chronic pancreatitis in the adult male albino rat. Anat Cell Biol 2022; 55:205-216. [PMID: 35773220 PMCID: PMC9256495 DOI: 10.5115/acb.21.187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/09/2021] [Accepted: 03/21/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic pancreatitis (CP) is an inflammatory disease affects the pancreas with upcoming fibrosis and notable parenchymal destruction. CP poses a high risk for pancreatic carcinoma. The present study aimed to investigate, for the first time up to our knowledge, the effect of olive leaf extract on L-arginine induced CP with referral to some of its underlying mechanisms. Forty adult male albino rats were divided equally into four groups; control, olive leaf extract treated (200 mg/kg orally once daily), CP group (300 mg L-arginine/100 g body weight intraperitoneally, once daily for 3 weeks then every 3 days for the subsequent 3 weeks), and CP treated with olive leaf extract group. At the end of the experiment, body weight, serum glucose, serum insulin, homeostatic model assessment of insulin resistance (HOMA-IR), serum amylase and lipase as well as tissue superoxide dismutase (SOD), and malondialdehyde (MDA) levels were assessed. Pancreatic tissues were subjected to histological and immuno-histochemical studies. The CP group revealed significant decrease in body weight and increase in serum glucose, serum insulin, HOMA-IR score, serum amylase, and serum lipase levels. Significant increase in MDA level and decrease in SOD level were detected. Marked degenerative changes and fibrosis were detected. Upregulation of alpha smooth muscle actin (α-SMA), transforming growth factor beta (TGF-β), caspase-3, and interleukin-6 (IL-6) immunoreactions were implicated in CP pathogenesis. Olive leaf extract alleviated all the examined parameters via its-antioxidant, anti-inflammatory, and anti-fibrotic properties. Olive leaf extract can protect against CP and restore pancreatic functions.
Collapse
Affiliation(s)
- Ghada Hamed Romeh
- Department of Human Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | | | - Abeer El-Said El-Mehi
- Department of Human Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Manar Ali Faried
- Department of Human Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| |
Collapse
|
12
|
Singh S, Bansal A, Singh V, Chopra T, Poddar J. Flavonoids, alkaloids and terpenoids: a new hope for the treatment of diabetes mellitus. J Diabetes Metab Disord 2022; 21:941-950. [PMID: 35673446 PMCID: PMC9167359 DOI: 10.1007/s40200-021-00943-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/24/2021] [Indexed: 01/11/2023]
Abstract
Diabetes mellitus is a metabolic syndrome characterized by a hyperglycemic state and multi-organ failure. Millions of people worldwide are suffering from this deadly disease taking a hit on their pocket and mental health in the name of its treatment. Modern medical practices with new technological advancements and discoveries have made revolutionary changes in the treatment. But, unfortunately, Glucose-lowering drugs used have many accompanying effects such as chronic vascular disease, renal malfunction, liver disease and, many skin problems. These complications have made us think about alternative treatments for diabetes with minimum or no side effects. Nowadays, in addition to modern medicine, herbal treatment has been suggested to treat diabetes mellitus. These herbal medicines contain biological macromolecules such as flavonoids, Terpenoids, glycosides, and alkaloids, which show versatile anti-diabetic effects. These phytochemicals are generally considered safe, and naturally occurring compounds have a potential role in preventing or controlling diabetes mellitus. The underlying mechanism of their anti-diabetic effects includes improvement in insulin secretion, decrease in insulin resistance, enhanced liver glycogen synthesis, antioxidant and anti-inflammatory activities. In this review, we have focused on the mechanism of various phytochemicals targeting hyperglycemia and its underlying pathogenesis.
Collapse
Affiliation(s)
- Sukhpal Singh
- Department of Biochemistry and Central Research Cell, M.M. Institute of Medical Sciences and Research, University Research Fellow, Maharishi Markandeswar (Deemed to be University, Mullana, Ambala, 133207 India
| | - Abhishek Bansal
- Department of Biochemistry, Government Medical College, RAJOURI, Rajouri, Jammu and Kashmir 185135 India
| | - Vikramjeet Singh
- Kalpana Chawla Government Medical College, Karnal, Haryana India
| | - Tanya Chopra
- Department Of Biochemistry and Central Research Cell, M.M. Institute of Medical Sciences and Research, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 India
| | - Jit Poddar
- Department of Microbiology, RG Kar Medical College & Hospital, Kolkata, West Bengal 700003 India
| |
Collapse
|
13
|
LUO W, Liu F, QI X, DONG G. Research progress of konjac dietary fibre in the prevention and treatment of diabetes. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.23322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Wanyu LUO
- Shandong Traditional Chinese Medicine University, China; Qingdao Chengyang District Yuhe Tang Chinese Medicine clinic, China
| | - Fanghua Liu
- Qingdao Chengyang District Yuhe Tang Chinese Medicine clinic, China
| | - Xin QI
- Guang’anmen Hospital of China Academy of Chinese Medical Sciences, China
| | | |
Collapse
|
14
|
Kostopoulou E, Kalaitzopoulou E, Papadea P, Skipitari M, Rojas Gil AP, Spiliotis BE, Georgiou CD. Oxidized lipid-associated protein damage in children and adolescents with type 1 diabetes mellitus: New diagnostic/prognostic clinical markers. Pediatr Diabetes 2021; 22:1135-1142. [PMID: 34633133 DOI: 10.1111/pedi.13271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/21/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (DM1), a chronic metabolic disorder of autoimmune origin, has been associated with oxidative stress (OS), which plays a central role in the onset, progression, and long-term complications of DM1. The markers of OS lipid peroxidation products, lipid hydroperoxides (LOOH), and also malondialdehyde (MDA) and thiobarbituric reactive substances (TBARS) that oxidatively modify proteins (Pr) (i.e., PrMDA and PrTBARS, respectively), have been associated with DM2, DM1, diabetic neuropathy, and microalbuminuria. OBJECTIVE/SUBJECTS Here, we investigated LOOH, PrMDA and PrTBARS in 50 children and adolescents with DM1 and 21 controls. RESULTS The novel OS marker PrTBARS was assessed for the first time in children and adolescents with DM1. LOOH and the pair PrMDA/PrTBARS, representing early and late peroxidation stages, respectively, are found to be significantly higher (130%, 50/90%, respectively, at p < 0.001) in patients with DM1 compared to controls. The studied OS parameters did not differ with age, age at diagnosis, sex, duration of DM1, presence of recent ketosis/ketoacidosis, or mode of treatment. CONCLUSIONS We propose that LOOH, PrMDA and the new marker PrTBARS could serve as potential diagnostic clinical markers for identifying OS in children and adolescents with DM1, and may, perhaps, hold promise as a prognostic tool for future complications associated with the disease.
Collapse
Affiliation(s)
- Eirini Kostopoulou
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Patras School of Medicine, Patras, Greece
| | | | | | | | - Andrea Paola Rojas Gil
- Faculty of Health Sciences, Department of Nursing, University of Peloponnese, Tripoli, Greece
| | - Bessie E Spiliotis
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, University of Patras School of Medicine, Patras, Greece
| | | |
Collapse
|
15
|
Demir Pektas S, Cinar N, Pektas G, Akbaba G, Kara A, Hancer HS, Demircioglu Duman D, Neselioglu S, Erel O, Yazgan Aksoy D. Thiol/disulfide homeostasis and its relationship with insulin resistance in patients with rosacea. J Cosmet Dermatol 2021; 21:2655-2661. [PMID: 34564928 DOI: 10.1111/jocd.14477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Rosacea is a chronic inflammatory cutaneous disease that can be associated with cardiometabolic disorders. Oxidative stress is included in the pathogenesis of rosacea, and thiol-disulfide homeostasis (TDH) acts as antioxidants. OBJECTIVE To evaluate the TDH and metabolic parameters in patients with rosacea. MATERIAL AND METHODS A total of 42 rosacea patients and 50 controls participated in this prospective study. Demographic data, clinical entities, anthropometric measurements, and laboratory findings were recorded. Additionally, TDH was measured by an automated spectrophotometric method. RESULTS Rosacea patients had greater body mass index values (27.9 ± 5.2 kg/m² vs. 23 ± 1.4 kg/m², p < 0.001), waist-hip ratios (0.87 ± 0.1 vs. 0.77 ± 0.8, p < 0.001), and insulin resistance (3.0 ± 2.0 vs. 1.3 ± 0.5, p < 0.001) compared with controls. Disulfide levels, the disulfide/native thiol ratio (DNTR), and the disulfide/total thiol ratio (DTTR) were increased (p < 0.05) in rosacea patients. Native thiol and total thiol levels and the native/total thiol ratio (NTTR) were decreased in rosacea patients (p < 0.05). Different rosacea subtypes had no effect on oxidative stress markers. The duration of illness and insulin resistance values significantly correlated with DNTR and DTTR in the rosacea group (p < 0.05). CONCLUSION Rosacea has a metabolic milieu with increased oxidative stress and insulin resistance.
Collapse
Affiliation(s)
- Suzan Demir Pektas
- Department of Dermatology, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| | - Nese Cinar
- Department of Endocrinology and Metabolic Diseases, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| | - Gokhan Pektas
- Department of Internal Medicine, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| | - Gulhan Akbaba
- Department of Endocrinology and Metabolic Diseases, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| | - Ahmet Kara
- Department of Family Medicine, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| | | | | | - Salim Neselioglu
- Department of Biochemistry, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - Ozcan Erel
- Department of Biochemistry, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | | |
Collapse
|
16
|
Bakour M, Hammas N, Laaroussi H, Ousaaid D, Fatemi HEL, Aboulghazi A, Soulo N, Lyoussi B. Moroccan Bee Bread Improves Biochemical and Histological Changes of the Brain, Liver, and Kidneys Induced by Titanium Dioxide Nanoparticles. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6632128. [PMID: 34258274 PMCID: PMC8249149 DOI: 10.1155/2021/6632128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022]
Abstract
Titanium dioxide nanoparticles (TiO2) were used in various fields such as food industry, cosmetics, medicine, and agriculture. Despite the many advantages of nanotechnology, the adverse effects of nanoparticles are inevitable. The present study was conducted to evaluate the protective effect of bee bread on titanium dioxide (TiO2) nanoparticle toxicity. Male rats were randomly divided into four groups: Group 1 received daily by gavage (10 mL/kg bw) of distilled water, Group 2 received bee bread ethanolic extract (100 mg/kg bw), Group 3 received TiO2 (100 mg/kg bw) and distilled water (10 mL/kg bw), and Group 4 received TiO2 (100 mg/kg bw) and bee bread ethanolic extract (100 mg/kg bw). All treatments were given daily by gavage during 30 days. At the end of the experiment period, blood samples were collected to analyze fasting blood glucose, lipid profile (TC, TG, LDL-C, HDL-C, and VLDL-C), liver enzymes (AST, ALT, and LDH), total protein, urea, albumin, creatinine, sodium, potassium, and chloride ions. In addition, histological examinations of the kidneys, liver, and brain were investigated. The results showed that the subacute administration of TiO2 alone (100 mg/kg bw) had induced hyperglycemia (309 ± 5 mg/dL) and elevation of hepatic enzyme levels, accompanied by a change in both lipid profile and renal biomarkers as well as induced congestion and dilatation in the hepatic central vein and congestion in kidney and brain tissues. However, the cotreatment with bee bread extract restored these biochemical parameters and attenuated the deleterious effects of titanium nanoparticles on brain, liver, and kidney functions which could be due to its rich content on functional molecules. The findings of this paper could make an important contribution to the field of using bee bread as a detoxifying agent against titanium dioxide nanoparticles and other xenobiotics.
Collapse
Affiliation(s)
- Meryem Bakour
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Nawal Hammas
- Laboratory of Biomedical and Translational Research, Faculty of Medicine and Pharmacy, University Sidi Mohamed Ben Abdellah, 30000 Fez, Morocco
- Department of Pathology, University Hospital Hassan II, 30000 Fez, Morocco
| | - Hassan Laaroussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Driss Ousaaid
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Hinde EL Fatemi
- Laboratory of Biomedical and Translational Research, Faculty of Medicine and Pharmacy, University Sidi Mohamed Ben Abdellah, 30000 Fez, Morocco
- Department of Pathology, University Hospital Hassan II, 30000 Fez, Morocco
| | - Abderrazak Aboulghazi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Najoua Soulo
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| | - Badiaa Lyoussi
- Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mahraz, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| |
Collapse
|
17
|
Dong G, Li Y, Zhao Q, Pang B, Qi X, Wei J, Hou W. Effects of diabetes on the development of radiation pneumonitis. Respir Res 2021; 22:160. [PMID: 34030688 PMCID: PMC8147083 DOI: 10.1186/s12931-021-01754-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Radiation pneumonia (RP) is a common adverse reaction to radiation therapy in patients with chest tumors. Recent studies have shown that diabetes mellitus (DM), which can cause systemic multisystem damage, specifically targets lungs, and the incidence of RP in patients with a history of diabetes is higher than that in other patients with tumors who have undergone radiotherapy. DM is an important risk factor for RP in tumor patients undergoing RT, and patients with DM should be treated with caution. This article reviews research on the clinical aspects, as well as the mechanism, of the effects of diabetes on RP and suggests future research needed to reduce RP.
Collapse
Affiliation(s)
- Guangtong Dong
- Department of Endocrinology, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, 6 Floors of Inpatients Building, 5 Beixiange Street, Xicheng, Beijing, 100053, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuxiao Li
- Department of Oncology, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, 7 Floors of Inpatients Building, 5 Beixiange Street, Xicheng, Beijing, 100053, China
| | - Qiyao Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Pang
- Department of Endocrinology, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, 6 Floors of Inpatients Building, 5 Beixiange Street, Xicheng, Beijing, 100053, China
| | - Xin Qi
- Department of Oncology, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, 7 Floors of Inpatients Building, 5 Beixiange Street, Xicheng, Beijing, 100053, China
| | - Junping Wei
- Department of Endocrinology, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, 6 Floors of Inpatients Building, 5 Beixiange Street, Xicheng, Beijing, 100053, China.
| | - Wei Hou
- Department of Oncology, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, 7 Floors of Inpatients Building, 5 Beixiange Street, Xicheng, Beijing, 100053, China.
| |
Collapse
|
18
|
Benite-Ribeiro SA, Rodrigues VADL, Machado MRF. Food intake in early life and epigenetic modifications of pro-opiomelanocortin expression in arcuate nucleus. Mol Biol Rep 2021; 48:3773-3784. [PMID: 33877530 DOI: 10.1007/s11033-021-06340-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
The prevalence of obesity is increasing in nowadays societies and, despite being a multifactorial disease, it has a significant correlation with food intake. The control of food intake is performed by neurons of the arcuate nucleus of the hypothalamus (ARC), which secret orexigenic and anorexigenic neuropeptides, such as proopiomelanocortin (POMC), under stimulation of, e.g., ghrelin, insulin, and leptin. Insulin, uses inositol 1,4,5-trisphosphate/serine-threonine kinase (IP3/Akt) pathways and stimulates the exclusion of (Forkhead box protein O1) FOXO1 from the nucleus and thereby does the inactivation of the inhibition of POMC expression, while Leptin stimulates signal transducer and activator of transcription 3 (STAT3) phosphorylation and POMC expression. Epigenetic modifications of the synthesis of these neuropeptides can lead to an increased caloric intake, which, in turn, is an important risk factor for obesity and its comorbidities. Epigenetic modifications are reversible, so the search for epigenetic targets has significant scientific and therapeutic appeal. In this review, we synthesize the effect of food intake on the epigenetic modifications of Neuropeptide Y and Pro-opiomelanocortin of ARC and its relationships with obesity development and comorbidities. We found that there is no consensus on the methylation of neuropeptides when the evaluations are carried out in different promoters. Based on reports carried on in the early life in laboratory animals, which is the timeline that the vast majority of author used to study this topic, chronic inflammation, defects in insulin and leptin signaling may be linked to changes occurring in the phosphoinositide 3-kinase/Akt (PI3K/Akt) and/or STAT3/SOCS3 (cytokine signaling 3) pathways. In its turn, the epigenetic modifications related to increased food intake and reduced energy expenditure may be associated with PI3K/Akt and STAT3/SOCS3 signaling disruption and Pro-opiomelanocortin expression.
Collapse
Affiliation(s)
- Sandra Aparecida Benite-Ribeiro
- Ciências Biológicas, Federal University of Jataí (UFJ), Rodovia 364, Km 195, nº 3800, Jataí, Goiás, CEP 75801-615, Brasil.
- Pós-Graduação de Ciências Aplicadas À Saúde, Federal University of Jataí (UFJ), Rodovia 364, Km 195, nº 3800, Jataí, Goiás, CEP 75801-615, Brasil.
- Pós-Graduação em Biociência Animal, Federal University of Jataí (UFJ), Rodovia 364, Km 195, nº 3800, Jataí, Goiás, CEP 75801-615, Brasil.
| | - Valkíria Alves de Lima Rodrigues
- Pós-Graduação de Ciências Aplicadas À Saúde, Federal University of Jataí (UFJ), Rodovia 364, Km 195, nº 3800, Jataí, Goiás, CEP 75801-615, Brasil
| | - Mônica Rodrigues Ferreira Machado
- Pós-Graduação em Biociência Animal, Federal University of Jataí (UFJ), Rodovia 364, Km 195, nº 3800, Jataí, Goiás, CEP 75801-615, Brasil
| |
Collapse
|
19
|
Tozour J, Hughes F, Carrier A, Vieau D, Delahaye F. Prenatal Hyperglycemia Exposure and Cellular Stress, a Sugar-Coated View of Early Programming of Metabolic Diseases. Biomolecules 2020; 10:E1359. [PMID: 32977673 PMCID: PMC7598660 DOI: 10.3390/biom10101359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
Worldwide, the number of people with diabetes has quadrupled since 1980 reaching 422 million in 2014 (World Health Organization). This distressing rise in diabetes also affects pregnant women and thus, in regard to early programming of adult diseases, creates a vicious cycle of metabolic dysfunction passed from one generation to another. Metabolic diseases are complex and caused by the interplay between genetic and environmental factors. High-glucose exposure during in utero development, as observed with gestational diabetes mellitus (GDM), is an established risk factor for metabolic diseases. Despite intense efforts to better understand this phenomenon of early memory little is known about the molecular mechanisms associating early exposure to long-term diseases risk. However, evidence promotes glucose associated oxidative stress as one of the molecular mechanisms able to influence susceptibility to metabolic diseases. Thus, we decided here to further explore the relationship between early glucose exposure and cellular stress in the context of early development, and focus on the concept of glycemic memory, its consequences, and sexual dimorphic and epigenetic aspects.
Collapse
Affiliation(s)
- Jessica Tozour
- Department of Obstetrics and Gynecology, NYU Winthrop Hospital, Mineola, NY 11501, USA;
| | - Francine Hughes
- Obstetrics & Gynecology and Women’s Health, Division of Maternal-Fetal Medicine, Montefiore Medical Center/Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Arnaud Carrier
- Institut Pasteur de Lille, U1283-UMR 8199 EGID, Université de Lille, Inserm, CNRS, CHU Lille, F-59000 Lille, France;
| | - Didier Vieau
- BiologyDepartment, LilNCog Lille Neurosciences and Cognition U 1172, Université de Lille, Inserm, CHU Lille, F-59000 Lille, France;
| | - Fabien Delahaye
- Institut Pasteur de Lille, U1283-UMR 8199 EGID, Université de Lille, Inserm, CNRS, CHU Lille, F-59000 Lille, France;
| |
Collapse
|
20
|
Ibrahim S, Harris-Kawano A, Haider I, Mirmira RG, Sims EK, Anderson RM. A novel Cre-enabled tetracycline-inducible transgenic system for tissue-specific cytokine expression in the zebrafish: CETI-PIC3. Dis Model Mech 2020; 13:dmm042556. [PMID: 32457041 PMCID: PMC7328138 DOI: 10.1242/dmm.042556] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/17/2020] [Indexed: 01/21/2023] Open
Abstract
Maladaptive signaling by pro-inflammatory cytokines (PICs), such as TNFα, IL1β and IFNɣ, can activate downstream signaling cascades that are implicated in the development and progression of multiple inflammatory diseases. Despite playing critical roles in pathogenesis, the availability of in vivo models in which to model tissue-specific induction of PICs is limited. To bridge this gap, we have developed a novel multi-gene expression system dubbed Cre-enabled and tetracycline-inducible transgenic system for conditional, tissue-specific expression of pro-inflammatory cytokines (CETI-PIC3). This binary transgenic system permits the stoichiometric co-expression of proteins Tumor necrosis factor a (Tnfa), Interleukin-1 beta (Il1b) and Interferon gamma (Ifng1), and H2B-GFP fluorescent reporter in a dose-dependent manner. Furthermore, cytokine misexpression is enabled only in tissue domains that can be defined by Cre recombinase expression. We have validated this system in zebrafish using an insulin:cre line. In doubly transgenic fish, quantitative real-time polymerase chain reaction demonstrated increased expression levels of tnfa, il1b and ifng1 mRNA. Moreover, specific expression in pancreatic β cells was demonstrated by both Tnfa immunofluorescence and GFP fluorescence. Cytokine-overexpressing islets elicited specific responses: β cells exhibited increased expression of genes associated with reactive oxidative species-mediated stress and endoplasmic reticulum stress, surveilling and infiltrating macrophages were increased, and β cell death was promoted. This powerful and versatile model system can be used for modeling, analysis and therapy development of diseases with an underlying inflammatory etiology.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sara Ibrahim
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Arianna Harris-Kawano
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Isra Haider
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Raghavendra G Mirmira
- Departments of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Emily K Sims
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ryan M Anderson
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Kovler Diabetes Center and Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
21
|
ÇETİNER Ö, RAKICIOĞLU N. Hiperglisemi, Oksidatif Stres ve Tip 2 Diyabette Oksidatif Stres Belirteçlerinin Tanımlanması. ACTA ACUST UNITED AC 2020. [DOI: 10.25048/tudod.638744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Banerjee A, Das D, Paul R, Roy S, Bhattacharjee A, Prasad SK, Banerjee O, Mukherjee S, Maji BK. Altered composition of high-lipid diet may generate reactive oxygen species by disturbing the balance of antioxidant and free radicals. J Basic Clin Physiol Pharmacol 2020; 31:/j/jbcpp.ahead-of-print/jbcpp-2019-0141/jbcpp-2019-0141.xml. [PMID: 32229664 DOI: 10.1515/jbcpp-2019-0141] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Background In the present era, obesity is increasing rapidly, and high dietary intake of lipid could be a noteworthy risk factor for the occasion of obesity, as well as nonalcoholic fatty liver disease, which is the independent risk factor for type 2 diabetes and cardiovascular disease. For a long time, high-lipid diet (HLD) in "fast food" is turning into part of our everyday life. So, we were interested in fulfilling the paucity of studies by means of preliminary evaluation of these three alternative doses of HLD on a rat model and elucidating the possible mechanism of these effects and divulging the most alarming dose. Methods Thirty-two rats were taken, and of these, 24 were fed with HLD in three distinctive compositions of edible coconut oil and vanaspati ghee in a ratio of 2:3, 3:2 and 1:1 (n = 8), orally through gavage at a dose of 10 mL/kg body weight for a period of 28 days, whereas the other eight were selected to comprise the control group. Results After completion of the experiment, followed by analysis of data it was revealed that hyperlipidemia with increased liver and cardiac marker enzymes, are associated with hepatocellular injury and cardiac damage. The data also supported increased proinflammatory cytokines such as interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α). As oxidative stress parameter increased in both liver and heart, there is also an increased in TNF-α due to an increased expression of inducible nitric oxide (NO) synthase, which led to a high production of NO. Moreover, HLD treatment explicitly weakens reasonability of hepatocytes and cardiomyocytes conceivably through G0/G1 or S stage capture or perhaps by means of enlistment of sub-G0/G1 DNA fragmentation and a sign of apoptosis. Conclusions Based on the outcomes, it tends to be inferred that consequences of the present examination uncovered HLD in combination of 2:3 applies most encouraging systemic damage by reactive oxygen species generation and hyperlipidemia and necroapoptosis of the liver and heart. Hence, outcome of this study may help to formulate health care strategy and warns about the food habit in universal population regarding the use of hydrogenated and saturated fats (vanaspati ghee) in diet.
Collapse
Affiliation(s)
- Arnab Banerjee
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Debasmita Das
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Rajarshi Paul
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Sandipan Roy
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Ankita Bhattacharjee
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Shilpi Kumari Prasad
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Oly Banerjee
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Sandip Mukherjee
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India
| | - Bithin Kumar Maji
- Department of Physiology (UG and PG), Serampore College, 9 William Carey Road, Serampore, Hooghly-712201, West Bengal, India, Phone: +91-9433509890
| |
Collapse
|
23
|
Molecular Mechanisms Linking Oxidative Stress and Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8609213. [PMID: 32215179 PMCID: PMC7085395 DOI: 10.1155/2020/8609213] [Citation(s) in RCA: 303] [Impact Index Per Article: 75.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/07/2019] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is the most prevalent metabolic disorder characterized by chronic hyperglycemia and an inadequate response to circulatory insulin by peripheral tissues resulting in insulin resistance. Insulin resistance has a complex pathophysiology, and it is contributed to by multiple factors including oxidative stress. Oxidative stress refers to an imbalance between free radical production and the antioxidant system leading to a reduction of peripheral insulin sensitivity and contributing to the development of T2DM via several molecular mechanisms. In this review, we present the molecular mechanisms by which the oxidative milieu contributes to the pathophysiology of insulin resistance and diabetes mellitus.
Collapse
|
24
|
Yan F, Li N, Yue Y, Wang C, Zhao L, Evivie SE, Li B, Huo G. Screening for Potential Novel Probiotics With Dipeptidyl Peptidase IV-Inhibiting Activity for Type 2 Diabetes Attenuation in vitro and in vivo. Front Microbiol 2020; 10:2855. [PMID: 31998245 PMCID: PMC6965065 DOI: 10.3389/fmicb.2019.02855] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/25/2019] [Indexed: 01/04/2023] Open
Abstract
Diabetes has become the second most severe disease to human health. Probiotics are important for maintaining gastrointestinal homeostasis and energy balance and have been demonstrated to play a positive role in the prevention and treatment of metabolic syndromes, such as obesity, inflammation, dyslipidemia, and hyperglycemia. The objective of this study was to screen potential antidiabetic strains in vitro and evaluate its effects in vivo. For the in vitro section, dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant activities of 14 candidate Lactobacillus spp. strains were tested. Then hydrophobicity and acid and bile salt tolerance assays were determined. The most promising in vitro strain was further evaluated for its antidiabetic properties in vivo using type 2 diabetes mice induced by high-fat diet and intraperitoneal injection of streptozotocin (STZ). The reference strain for this study was Lactobacillus rhamnosus GG. Results showed that cell-free excretory supernatants and cell-free extracts of Lactobacillus acidophilus KLDS1.0901 had better DPP-IV inhibitory activity, antioxidative activities, and biological characteristics than other strains. At the end of the treatment, we found that L. acidophilus KLDS1.0901 administration decreased the levels of fasting blood glucose (FBG), glycosylated hemoglobin, insulin in serum and AUCglucose, and increased the level of glucagon-like peptide 1 in serum compared with diabetic mice (p < 0.05). Moreover, L. acidophilus KLDS1.0901 supplementation increased the activities of superoxide dismutase, glutathione peroxidase, the level of glutathione, and reduced the level of malondialdehyde in serum. These results indicated that L. acidophilus KLDS1.0901 could be used as a potential antidiabetic strain; its application as food supplement and drug ingredient is thus recommended.
Collapse
Affiliation(s)
- Fenfen Yan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China.,Food College, Northeast Agricultural University, Harbin, China
| | - Na Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China.,Food College, Northeast Agricultural University, Harbin, China
| | - Yingxue Yue
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China.,Food College, Northeast Agricultural University, Harbin, China
| | - Chengfeng Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China.,Food College, Northeast Agricultural University, Harbin, China
| | - Li Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China.,Food College, Northeast Agricultural University, Harbin, China
| | - Smith Etareri Evivie
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China.,Food Science and Human Nutrition Unit, Department of Animal Science, University of Benin, Benin City, Nigeria
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China.,Food College, Northeast Agricultural University, Harbin, China
| | - Guicheng Huo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China.,Food College, Northeast Agricultural University, Harbin, China
| |
Collapse
|
25
|
Sokolova M, Ranheim T, Louwe MC, Halvorsen B, Yndestad A, Aukrust P. NLRP3 Inflammasome: A Novel Player in Metabolically Induced Inflammation-Potential Influence on the Myocardium. J Cardiovasc Pharmacol 2019; 74:276-284. [PMID: 31584530 DOI: 10.1097/fjc.0000000000000704] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metabolic and immune systems are among the most fundamental requirements for survival. Many metabolic and immune response pathways or nutrient- and pathogen-sensing systems are evolutionarily conserved throughout species. As a result, the immune response and metabolic regulation are highly integrated and the proper function of each is dependent on the other. This interaction between metabolic disturbances and the immune system has been most extensively studied in disorders related to obesity such as insulin resistance, type 2 diabetes, and nonalcoholic fatty liver disease. Metabolically induced inflammation seems also to play a role in the development and progression of atherosclerosis including its complications such as myocardial infarction (MI) and post-MI remodeling. There are several lines of evidence suggesting that NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a sensor of metabolic stress linking metabolic disturbances to inflammation. Here, we will discuss the role of the NLRP3 inflammasome in the pathogenesis of obesity and diabetes, 2 important risk factors for atherosclerosis and MI. We will also discuss the role of NLRP3 inflammasome in the interaction between metabolic disturbances and myocardial inflammation during MI and during metabolically induced myocardial remodeling.
Collapse
Affiliation(s)
- Marina Sokolova
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Trine Ranheim
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, The Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mieke C Louwe
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, The Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
26
|
Gastaldelli A, Cusi K. From NASH to diabetes and from diabetes to NASH: Mechanisms and treatment options. JHEP Rep 2019; 1:312-328. [PMID: 32039382 PMCID: PMC7001557 DOI: 10.1016/j.jhepr.2019.07.002] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/14/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
The worldwide prevalence of non-alcoholic fatty liver disease (NAFLD) is estimated to have reached 25% or more in adults. NAFLD is prevalent in obese individuals, but may also affect non-obese insulin-resistant individuals. NAFLD is associated with a 2- to 3-fold increased risk of developing type 2 diabetes (T2D), which may be higher in patients with more severe liver disease - fibrosis increases this risk. In NAFLD, not only the close association with obesity, but also the impairment of many metabolic pathways, including decreased hepatic insulin sensitivity and insulin secretion, increase the risk of developing T2D and related comorbidities. Conversely, patients with diabetes have a higher prevalence of steatohepatitis, liver fibrosis and end-stage liver disease. Genetics and mechanisms involving dysfunctional adipose tissue, lipotoxicity and glucotoxicity appear to play a role. In this review, we discuss the altered pathophysiological mechanisms that underlie the development of T2D in NAFLD and vice versa. Although there is no approved therapy for the treatment of NASH, we discuss pharmacological agents currently available to treat T2D that could potentially be useful for the management of NASH.
Collapse
Affiliation(s)
- Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Kenneth Cusi
- Division of Endocrinology, Diabetes and Metabolism, The University of Florida, and Malcom Randall Veterans Administration Medical Center, Gainesville, Florida
| |
Collapse
|
27
|
Jasmin, Jaitak V. A Review on Molecular Mechanism of Flavonoids as Antidiabetic Agents. Mini Rev Med Chem 2019; 19:762-786. [DOI: 10.2174/1389557519666181227153428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023]
Abstract
The development of drugs possessing anti-diabetic activities is a long pursued goal in drug
discovery. It has been shown that deregulated insulin mediated signaling, oxidative stress, obesity, and
β-cell dysfunction are the main factors responsible for the disease. With the advent of new and more
powerful screening assays and prediction tools, the idea of a drug that can effectively treat diabetes by
targeting different pathways has re-bloomed. Current anti-diabetic therapy is based on synthetic drugs
that very often have side effects. For this reason, there is an instantaneous need to develop or search
new alternatives. Recently, more attention is being paid to the study of natural products. Their huge
advantage is that they can be ingested in everyday diet. Here, we discuss various causes, putative targets,
and treatment strategies, mechanistic aspects as well as structural features with a particular focus
on naturally occurring flavonoids as promising starting points for anti-diabetic led development.
Collapse
Affiliation(s)
- Jasmin
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda (Pb.) 151001, India
| | - Vikas Jaitak
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda (Pb.) 151001, India
| |
Collapse
|
28
|
Mu L, Li R, Lai Y, Zhao Y, Qiao J. Adipose insulin resistance is associated with cardiovascular risk factors in polycystic ovary syndrome. J Endocrinol Invest 2019; 42:541-548. [PMID: 30206805 DOI: 10.1007/s40618-018-0949-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/22/2018] [Indexed: 12/28/2022]
Abstract
PURPOSE The effects of adipose insulin resistance on cardiovascular risk factors in polycystic ovary syndrome (PCOS) remain largely unknown. We aimed to investigate associations between adipose insulin resistance and cardiovascular risk factors in PCOS. METHODS A total of 207 PCOS and 47 non-PCOS women were recruited from a large reproductive medicine center in this cross-sectional study. The PCOS diagnosis was based on the Rotterdam Criteria. The subjects received a standard oral glucose tolerance test. Adipose insulin resistance was evaluated using a validated index (adipose-IR = fasting insulin × free fatty acid concentrations). RESULTS The women with PCOS showed a higher adipose-IR index, and the adipose-IR index was tightly associated with the blood pressure, glucose and lipid parameters. A total of 98.0% of the women with PCOS in the highest adipose-IR quartile showed cardiovascular risk factors (obesity, hypertension, glucose intolerance or dyslipidemia), and this percentage was significantly higher than the percentage of those in the lowest quartile (32.7%). In addition, the percentages of women with three (31.4%) and four (13.7%) cardiovascular risk factors were significantly elevated in the highest adipose-IR quartile. The multivariable logistic regression analysis indicated that each 1-SD increment in the adipose-IR index resulted in higher risks of obesity (OR = 3.18, 95% CI = 2.12-4.76), hypertension (OR = 1.89, 95% CI = 1.31-2.73), glucose intolerance (OR = 2.45, 95% CI = 1.73-3.48), and dyslipidemia (OR = 2.18, 95% CI = 1.57-3.01). The C-reactive protein (CRP) level was positively associated with the adipose-IR index in women with PCOS (r = 0.45, P < 0.001). CONCLUSIONS The adipose-IR index was associated with cardiovascular risk factors in women with PCOS. Chronic inflammation may induce insulin resistance in the adipose tissue of women with PCOS.
Collapse
Affiliation(s)
- L Mu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, No. 49 North HuaYuan Road, HaiDian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
| | - R Li
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, No. 49 North HuaYuan Road, HaiDian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Y Lai
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, No. 49 North HuaYuan Road, HaiDian District, Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Y Zhao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, No. 49 North HuaYuan Road, HaiDian District, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China.
| | - J Qiao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, No. 49 North HuaYuan Road, HaiDian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
29
|
Baptista VIDA, Quintana HT, Lazzarin MC, Benfato ID, De Carvalho FP, Le Sueur-Maluf L, De Oliveira CAM, Baptista JDS, De Oliveira F. Short time insulin treatment post burn improves elastic-collagen rearrangement and reepithelization. Connect Tissue Res 2019; 60:230-239. [PMID: 29929404 DOI: 10.1080/03008207.2018.1484916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Extensive burn may cause acute resistance to insulin, which accentuates hypermetabolism, impairs glucose metabolism, immune dysfunction and risks of sepsis. To minimize these effects, insulin is used as a treatment. The purpose was to analyze the collagen-elastic arrangement effects of insulin on the burned skin. Wistar rats were assigned in groups: control (C); control with insulin (C + I); scald burn injury (SBI); and SBI with insulin (SBI+ I). SBI were submitted to 45% total body surface area burn and the insulin-treated groups received insulin (5 UI/Kg/day) for 4 or 14 days (d). Insulin levels, glucose tolerance test and HOMA index were determined. The skin sections were analyzed for histophatological and morphoquantitative data. Histopathological findings showed increased reepithelization of SBI+ I and formation of a new muscle layer after 14 days. In the collagen-elastic arrangement, insulin for 4 days increased the volume fraction (Vv) of thin collagen and elastic fibers. After 14 days, independently of injury, insulin decreased the elastic fibers. Insulin was able to reverse damages in the collagen-elastic rearrangement and stimulate reepithelization after 4 days. Untreated scald-burned animals showed higher Vv of thick collagen after 4 days, while those treated had a higher Vv of thin collagen. The Vv of elastic fibers was increased in SBI+ I for 4 days. In conclusion, insulin treatment was able to stimulate reepithelization. It also reversed the damages to the collagen-elastic arrangement in the scald-burned group, improving the organization of thin collagen and increasing the Vv of elastic fibers in the injured group treated with insulin for a short time, that is, for 4 days.
Collapse
Affiliation(s)
| | | | - Mariana Cruz Lazzarin
- a Department of Biosciences , Federal University of São Paulo, UNIFESP , SP , Brazil
| | - Izabelle Dias Benfato
- a Department of Biosciences , Federal University of São Paulo, UNIFESP , SP , Brazil
| | | | | | | | | | - Flavia De Oliveira
- a Department of Biosciences , Federal University of São Paulo, UNIFESP , SP , Brazil
| |
Collapse
|
30
|
Shawky NM, Shehatou GSG, Suddek GM, Gameil NM. Comparison of the effects of sulforaphane and pioglitazone on insulin resistance and associated dyslipidemia, hepatosteatosis, and endothelial dysfunction in fructose-fed rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 66:43-54. [PMID: 30597379 DOI: 10.1016/j.etap.2018.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
The purpose of this work was to compare the influences of sulforaphane (SFN) to those of the standard insulin sensitizer pioglitazone (PIO) on high fructose diet (HFrD)-induced insulin resistance, dyslipidemia, hepatosteatosis, and vascular dysfunction in rats. Male Sprague Dawley rats (150-200 g) were fed on a standard diet (control) or a high fructose diet (HFrD, 60% w/w fructose) for 60 days. From day 16, two subgroups of HFrD-fed rats received either SFN (0.5 mg/kg/day, orally) or PIO (5 mg/kg/day, orally) along with HFrD until the end of the experiment. Fructose-fed rats showed significant decreases in food intake, body weight and feeding efficiency; effects that were not altered by either treatment. Data from insulin tolerance test (ITT), oral glucose tolerance test (OGTT), and HOMA-IR and HOMA-β indices demonstrated impaired insulin sensitivity and glucose utilization in HFrD-fed rats. SFN and PIO treatments significantly reduced OGTTAUC (Glass's Delta values = 1.12 and 0.84, respectively), decreased ITTAUC (Glass's Delta values = 1.05 and 0.71, respectively), significantly diminished HOMA-IR index (by 55.6% and 77.6%, respectively), and increased HOMA-β value (by 1.8 and 1.3 fold, respectively) compared to the HFrD rats. Moreover, SFN and PIO ameliorated hepatic oxidative stress and reduced serum levels of C-reactive protein and lactate dehydrogenase in HFrD-fed rats. Furthermore, SFN and PIO administrations improved insulin resistance-associated heaptosteatosis and enhanced vascular responsiveness to acetylcholine-induced relaxations. However, only SFN was able to enhance serum HDL-C levels in HFrD group. These finding suggests that SFN elicited insulin-sensitizing, hepatoprotective, and vasculoprotective effects in HFrD insulin-resistant rats that were comparable to those exerted by PIO.
Collapse
Affiliation(s)
- Noha M Shawky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - George S G Shehatou
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Nariman M Gameil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
31
|
Maslov LN, Naryzhnaya NV, Boshchenko AA, Popov SV, Ivanov VV, Oeltgen PR. Is oxidative stress of adipocytes a cause or a consequence of the metabolic syndrome? JOURNAL OF CLINICAL AND TRANSLATIONAL ENDOCRINOLOGY 2018; 15:1-5. [PMID: 30479968 PMCID: PMC6240632 DOI: 10.1016/j.jcte.2018.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 01/17/2023]
Abstract
Metabolic syndrome is accompanied by oxidative stress in animals and humans. The main source of ROS in experimental metabolic syndrome is NADPH oxidase and possibly adipocyte mitochondria. It is now documented that oxidative stress induces insulin resistance of adipocytes and increases secretion of leptin, MCP-1, IL-6, and TNF-α by adipocytes. It was established that oxidative stress induces a decrease in adiponectin production by adipocytes. It has also been shown that obesity itself can induce oxidative stress. Oxidative stress can cause an alteration of intracellular signaling in adipocytes that apparently leads to the formation of insulin resistance of adipocytes. Chronic stress, glucocorticoids, mineralocorticoids, angiotensin-II, TNF-α also play an important role in the pathogenesis of oxidative stress of adipocytes. Oxidative stress is not only a consequence of metabolic syndrome, but also a reason and a foundational link in the pathogenesis of the metabolic syndrome.
Collapse
Affiliation(s)
- Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Natalia V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Alla A Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - Sergey V Popov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | | | - Peter R Oeltgen
- Department of Pathology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
32
|
Sokolova M, Sahraoui A, Høyem M, Øgaard J, Lien E, Aukrust P, Yndestad A, Ranheim T, Scholz H. NLRP3 inflammasome mediates oxidative stress-induced pancreatic islet dysfunction. Am J Physiol Endocrinol Metab 2018; 315:E912-E923. [PMID: 30016155 DOI: 10.1152/ajpendo.00461.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Inflammasomes are multiprotein inflammatory platforms that induce caspase-1 activation and subsequently interleukin (IL)-1β and IL-18 processing. The NLRP3 inflammasome is activated by different forms of oxidative stress, and, based on the central role of IL-1β in the destruction of pancreatic islets, it could be related to the development of diabetes. We therefore investigated responses in wild-type C57Bl/6 (WT) mice, NLRP3-/- mice, and mice deficient in apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) after exposing islets to short-term hypoxia or alloxan-induced islet damage. NLRP3-deficient islets compared with WT islets had preserved function ex vivo and were protected against hypoxia-induced cell death. Furthermore, NLRP3 and ASC-deficient mice were protected against oxidative stress-induced diabetes caused by repetitive low-dose alloxan administration, and this was associated with reduced β-cell death and reduced macrophage infiltration. This suggests that the beneficial effect of NLRP3 inflammasome deficiency on oxidative stress-mediated β-cell damage could involve reduced macrophage infiltration and activation. To support the role of macrophage activation in alloxan-induced diabetes, we injected WT mice with liposomal clodronate, which causes macrophage depletion before induction of a diabetic phenotype by alloxan treatment, resulting in improved glucose homeostasis in WT mice. We show here that the NLRP3 inflammasome acts as a mediator of hypoxia and oxidative stress in insulin-producing cells, suggesting that inhibition of the NLRP3 inflammasome could have beneficial effects on β-cell preservation.
Collapse
Affiliation(s)
- Marina Sokolova
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway
- Institute of Clinical Medicine, University of Oslo , Oslo , Norway
- K.G. Jebsen Inflammation Research Center, University of Oslo , Oslo , Norway
| | - Afaf Sahraoui
- Institute of Clinical Medicine, University of Oslo , Oslo , Norway
- Institute for Surgical Research and Section for Transplantation Surgery, Oslo University Hospital , Oslo , Norway
| | - Merete Høyem
- Institute for Surgical Research and Section for Transplantation Surgery, Oslo University Hospital , Oslo , Norway
| | - Jonas Øgaard
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway
| | - Egil Lien
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway
- Institute of Clinical Medicine, University of Oslo , Oslo , Norway
- K.G. Jebsen Inflammation Research Center, University of Oslo , Oslo , Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital , Oslo , Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway
- Institute of Clinical Medicine, University of Oslo , Oslo , Norway
- K.G. Jebsen Inflammation Research Center, University of Oslo , Oslo , Norway
| | - Trine Ranheim
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Norway
- Institute of Clinical Medicine, University of Oslo , Oslo , Norway
- K.G. Jebsen Inflammation Research Center, University of Oslo , Oslo , Norway
| | - Hanne Scholz
- Institute of Clinical Medicine, University of Oslo , Oslo , Norway
- Institute for Surgical Research and Section for Transplantation Surgery, Oslo University Hospital , Oslo , Norway
| |
Collapse
|
33
|
Onyango AN. Cellular Stresses and Stress Responses in the Pathogenesis of Insulin Resistance. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4321714. [PMID: 30116482 PMCID: PMC6079365 DOI: 10.1155/2018/4321714] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/18/2018] [Indexed: 12/14/2022]
Abstract
Insulin resistance (IR), a key component of the metabolic syndrome, precedes the development of diabetes, cardiovascular disease, and Alzheimer's disease. Its etiological pathways are not well defined, although many contributory mechanisms have been established. This article summarizes such mechanisms into the hypothesis that factors like nutrient overload, physical inactivity, hypoxia, psychological stress, and environmental pollutants induce a network of cellular stresses, stress responses, and stress response dysregulations that jointly inhibit insulin signaling in insulin target cells including endothelial cells, hepatocytes, myocytes, hypothalamic neurons, and adipocytes. The insulin resistance-inducing cellular stresses include oxidative, nitrosative, carbonyl/electrophilic, genotoxic, and endoplasmic reticulum stresses; the stress responses include the ubiquitin-proteasome pathway, the DNA damage response, the unfolded protein response, apoptosis, inflammasome activation, and pyroptosis, while the dysregulated responses include the heat shock response, autophagy, and nuclear factor erythroid-2-related factor 2 signaling. Insulin target cells also produce metabolites that exacerbate cellular stress generation both locally and systemically, partly through recruitment and activation of myeloid cells which sustain a state of chronic inflammation. Thus, insulin resistance may be prevented or attenuated by multiple approaches targeting the different cellular stresses and stress responses.
Collapse
Affiliation(s)
- Arnold N. Onyango
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000, Nairobi 00200, Kenya
| |
Collapse
|
34
|
New mechanistic insights on the metabolic-disruptor role of chlorpyrifos in apoE mice: a focus on insulin- and leptin-signalling pathways. Arch Toxicol 2018; 92:1717-1728. [DOI: 10.1007/s00204-018-2174-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/31/2018] [Indexed: 01/08/2023]
|
35
|
Gallic Acid Alleviates Hypertriglyceridemia and Fat Accumulation via Modulating Glycolysis and Lipolysis Pathways in Perirenal Adipose Tissues of Rats Fed a High-Fructose Diet. Int J Mol Sci 2018; 19:ijms19010254. [PMID: 29342975 PMCID: PMC5796201 DOI: 10.3390/ijms19010254] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 11/16/2022] Open
Abstract
This study investigated the ameliorative effect of gallic acid (GA) on hypertriglyceridemia and fat accumulation in perirenal adipose tissues of high-fructose diet (HFD)-induced diabetic rats. The previous results showed that orally administered GA (30 mg/kg body weight) for four weeks significantly reduced the levels of plasma glucose and triglyceride (TG) in HFD rats. GA also markedly decreased the perirenal adipose tissues weight of HFD rats in present study (p < 0.05). Western blot assay indicated that GA restored expression of insulin signaling-related proteins, such as insulin receptor (IR), protein kinase C-zeta (PKC-ζ), and glucose transporter-4 (GLUT4) in the perirenal adipose tissues of HFD rats. Moreover, GA enhanced expression of glycolysis-related proteins, such as phosphofructokinase (PFK) and pyruvate kinase (PK), and increased the expression of lipolysis-related proteins, such as adipose triglyceride lipase (ATGL), which is involved in lipolysis in the perirenal adipose tissues of HFD rats. This study revealed that GA may alleviate hypertriglyceridemia and fat accumulation through enhancing glycolysis and lipolysis pathways in perirenal adipose tissues of HFD rats. These findings also suggest the potential of GA in preventing the progression of diabetes mellitus (DM) complications.
Collapse
|
36
|
Lee YL, Li WC, Tsai TH, Chiang HY, Ting CT. Body mass index and cholesterol level predict surgical outcome in patients with hepatocellular carcinoma in Taiwan - a cohort study. Oncotarget 2017; 7:22948-59. [PMID: 27027345 PMCID: PMC5008414 DOI: 10.18632/oncotarget.8312] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/06/2016] [Indexed: 12/18/2022] Open
Abstract
Curative surgical resection (CSR) remains the most effective therapeutic intervention for patients with hepatocellular carcinoma (HCC); however, frequent post-surgical recurrence leads to high cancer related mortality. This study aimed to clarify the role of body mass index (BMI) and serum cholesterol level in predicting post-surgical outcomes in HCC patients after CSR. A total of 484 HCC patients including 213 BMIhigh and 271 BMIlow patients were included. Overall survival (OS) and recurrence-free survival (RFS) rates were examined in patients with differential BMI and serum cholesterol level. The analysis showed that significant different 1-, 3- and 5-year cumulative OS rates (P-value=0.015) and RFS rate (P-value=0.010) between BMIlow and BMIhigh patients. Further analysis in groups with differential serum cholesterol levels among BMIlow and BMIhigh patients indicated that the BMIlow/Chollow patients exhibited the significant lower cumulative OS and RFS rates in comparison with the remaining subjects (P-value=0.007 and 0.039 for OS and RFS rates, respectively). In conclusion, the coexistence of low BMI and low serum cholesterol level could serve as prognostic factors to predict post-operative outcomes in HCC patients undergoing surgical hepatectomy.
Collapse
Affiliation(s)
- Ya-Ling Lee
- Institute of Public Health and Community Medicine Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Dentistry, Taipei City Hospital, Taipei, Taiwan.,Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Wan-Chun Li
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan.,Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Tung-Hu Tsai
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan.,Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-Yu Chiang
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Chin-Tsung Ting
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Gastrointestinal Surgery, Department of Surgery, Ren-Ai Branch, Taipei City Hospital, Taipei, Taiwan
| |
Collapse
|
37
|
Dornas WC, Cardoso LM, Silva M, Machado NLS, Chianca DA, Alzamora AC, Lima WG, Lagente V, Silva ME. Oxidative stress causes hypertension and activation of nuclear factor-κB after high-fructose and salt treatments. Sci Rep 2017; 7:46051. [PMID: 28397867 PMCID: PMC5387393 DOI: 10.1038/srep46051] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 02/15/2017] [Indexed: 02/07/2023] Open
Abstract
There is evidence that diets rich in salt or simple sugars as fructose are associated with abnormalities in blood pressure regulation. However, the mechanisms underlying pathogenesis of salt- and fructose-induced kidney damage and/or consequent hypertension yet remain largely unexplored. Here, we tested the role of oxidative state as an essential factor along with high salt and fructose treatment in causing hypertension. Fischer male rats were supplemented with a high-fructose diet (20% in water) for 20 weeks and maintained on high-salt diet (8%) associate in the last 10 weeks. Fructose-fed rats exhibited a salt-dependent hypertension accompanied by decrease in renal superoxide dismutase activity, which is the first footprint of antioxidant inactivation by reactive oxygen species (ROS). Metabolic changes and the hypertensive effect of the combined fructose-salt diet (20 weeks) were markedly reversed by a superoxide scavenger, Tempol (10 mg/kg, gavage); moreover, Tempol (50 mM) potentially reduced ROS production and abolished nuclear factor-kappa B (NF-κB) activation in human embryonic kidney HEK293 cells incubated with L-fructose (30 mM) and NaCl (500 mosmol/kg added). Taken together, our data suggested a possible role of oxygen radicals and ROS-induced activation of NF-κB in the fructose- and salt-induced hypertension associated with the progression of the renal disease.
Collapse
Affiliation(s)
- Waleska C Dornas
- Research in Biological Sciences - NUPEB, Universidade Federal de Ouro Preto, Minas Gerais, Brasil.,UMR991, INSERM, Université de Rennes 1, Rennes, France
| | - Leonardo M Cardoso
- Research in Biological Sciences - NUPEB, Universidade Federal de Ouro Preto, Minas Gerais, Brasil.,Department of Biological Sciences, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Minas Gerais, Brasil
| | - Maísa Silva
- Research in Biological Sciences - NUPEB, Universidade Federal de Ouro Preto, Minas Gerais, Brasil
| | - Natália L S Machado
- Research in Biological Sciences - NUPEB, Universidade Federal de Ouro Preto, Minas Gerais, Brasil
| | - Deoclécio A Chianca
- Research in Biological Sciences - NUPEB, Universidade Federal de Ouro Preto, Minas Gerais, Brasil.,Department of Biological Sciences, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Minas Gerais, Brasil
| | - Andréia C Alzamora
- Research in Biological Sciences - NUPEB, Universidade Federal de Ouro Preto, Minas Gerais, Brasil.,Department of Biological Sciences, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Minas Gerais, Brasil
| | - Wanderson G Lima
- Research in Biological Sciences - NUPEB, Universidade Federal de Ouro Preto, Minas Gerais, Brasil.,Department of Biological Sciences, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Minas Gerais, Brasil
| | | | - Marcelo E Silva
- Research in Biological Sciences - NUPEB, Universidade Federal de Ouro Preto, Minas Gerais, Brasil.,Department of Foods, Escola de Nutrição, Universidade Federal de Ouro Preto, Minas Gerais, Brasil
| |
Collapse
|
38
|
She Y, Jiang L, Zheng L, Zuo H, Chen M, Sun X, Li Q, Geng C, Yang G, Jiang L, Liu X. The role of oxidative stress in DNA damage in pancreatic β cells induced by di-(2-ethylhexyl) phthalate. Chem Biol Interact 2017; 265:8-15. [DOI: 10.1016/j.cbi.2017.01.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 01/10/2017] [Accepted: 01/19/2017] [Indexed: 02/02/2023]
|
39
|
Vergoni B, Cornejo PJ, Gilleron J, Djedaini M, Ceppo F, Jacquel A, Bouget G, Ginet C, Gonzalez T, Maillet J, Dhennin V, Verbanck M, Auberger P, Froguel P, Tanti JF, Cormont M. DNA Damage and the Activation of the p53 Pathway Mediate Alterations in Metabolic and Secretory Functions of Adipocytes. Diabetes 2016; 65:3062-74. [PMID: 27388216 DOI: 10.2337/db16-0014] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/01/2016] [Indexed: 11/13/2022]
Abstract
Activation of the p53 pathway in adipose tissue contributes to insulin resistance associated with obesity. However, the mechanisms of p53 activation and the effect on adipocyte functions are still elusive. Here we found a higher level of DNA oxidation and a reduction in telomere length in adipose tissue of mice fed a high-fat diet and an increase in DNA damage and activation of the p53 pathway in adipocytes. Interestingly, hallmarks of chronic DNA damage are visible at the onset of obesity. Furthermore, injection of lean mice with doxorubicin, a DNA damage-inducing drug, increased the expression of chemokines in adipose tissue and promoted its infiltration by proinflammatory macrophages and neutrophils together with adipocyte insulin resistance. In vitro, DNA damage in adipocytes increased the expression of chemokines and triggered the production of chemotactic factors for macrophages and neutrophils. Insulin signaling and effect on glucose uptake and Glut4 translocation were decreased, and lipolysis was increased. These events were prevented by p53 inhibition, whereas its activation by nutlin-3 reproduced the DNA damage-induced adverse effects. This study reveals that DNA damage in obese adipocytes could trigger p53-dependent signals involved in alteration of adipocyte metabolism and secretory function leading to adipose tissue inflammation, adipocyte dysfunction, and insulin resistance.
Collapse
Affiliation(s)
- Bastien Vergoni
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| | - Pierre-Jean Cornejo
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| | - Jérôme Gilleron
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| | - Mansour Djedaini
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| | - Franck Ceppo
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| | - Arnaud Jacquel
- Université Côte d'Azur, C3M, Nice, France INSERM, UMR 1065, C3M, Team 2 Cell Death, Differentiation and Cancer, Nice, France
| | - Gwennaelle Bouget
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| | - Clémence Ginet
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| | - Teresa Gonzalez
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France INSERM, UMR 1062, Nutrition, Obesity and Risk of Thrombosis, Marseille, France
| | - Julie Maillet
- CNRS, UMR 8199, Lille Pasteur Institute, Lille, France Lille University, Lille, France European Genomic Institute for Diabetes, Lille, France
| | - Véronique Dhennin
- CNRS, UMR 8199, Lille Pasteur Institute, Lille, France Lille University, Lille, France European Genomic Institute for Diabetes, Lille, France
| | - Marie Verbanck
- CNRS, UMR 8199, Lille Pasteur Institute, Lille, France Lille University, Lille, France European Genomic Institute for Diabetes, Lille, France
| | - Patrick Auberger
- Université Côte d'Azur, C3M, Nice, France INSERM, UMR 1065, C3M, Team 2 Cell Death, Differentiation and Cancer, Nice, France
| | - Philippe Froguel
- CNRS, UMR 8199, Lille Pasteur Institute, Lille, France Lille University, Lille, France European Genomic Institute for Diabetes, Lille, France Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, U.K
| | - Jean-François Tanti
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| | - Mireille Cormont
- INSERM, UMR 1065, C3M, Team 7 Molecular and Cellular Physiopathology of Obesity and Diabetes, Nice, France Université Côte d'Azur, C3M, Nice, France
| |
Collapse
|
40
|
Pierre N, Appriou Z, Gratas-Delamarche A, Derbré F. From physical inactivity to immobilization: Dissecting the role of oxidative stress in skeletal muscle insulin resistance and atrophy. Free Radic Biol Med 2016; 98:197-207. [PMID: 26744239 DOI: 10.1016/j.freeradbiomed.2015.12.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/23/2015] [Accepted: 12/24/2015] [Indexed: 12/16/2022]
Abstract
In the literature, the terms physical inactivity and immobilization are largely used as synonyms. The present review emphasizes the need to establish a clear distinction between these two situations. Physical inactivity is a behavior characterized by a lack of physical activity, whereas immobilization is a deprivation of movement for medical purpose. In agreement with these definitions, appropriate models exist to study either physical inactivity or immobilization, leading thereby to distinct conclusions. In this review, we examine the involvement of oxidative stress in skeletal muscle insulin resistance and atrophy induced by, respectively, physical inactivity and immobilization. A large body of evidence demonstrates that immobilization-induced atrophy depends on the chronic overproduction of reactive oxygen and nitrogen species (RONS). On the other hand, the involvement of RONS in physical inactivity-induced insulin resistance has not been investigated. This observation outlines the need to elucidate the mechanism by which physical inactivity promotes insulin resistance.
Collapse
Affiliation(s)
- Nicolas Pierre
- EA1274 Laboratory "Movement, Sport and Health Sciences" M2S, Rennes 2 University - ENS Rennes, Bruz, France
| | - Zephyra Appriou
- EA1274 Laboratory "Movement, Sport and Health Sciences" M2S, Rennes 2 University - ENS Rennes, Bruz, France
| | - Arlette Gratas-Delamarche
- EA1274 Laboratory "Movement, Sport and Health Sciences" M2S, Rennes 2 University - ENS Rennes, Bruz, France
| | - Frédéric Derbré
- EA1274 Laboratory "Movement, Sport and Health Sciences" M2S, Rennes 2 University - ENS Rennes, Bruz, France.
| |
Collapse
|
41
|
Jha SK, Jha NK, Kumar D, Ambasta RK, Kumar P. Linking mitochondrial dysfunction, metabolic syndrome and stress signaling in Neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2016; 1863:1132-1146. [PMID: 27345267 DOI: 10.1016/j.bbadis.2016.06.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/13/2022]
Abstract
Mounting evidence suggests a link between metabolic syndrome (MetS) such as diabetes, obesity, non-alcoholic fatty liver disease in the progression of Alzheimer's disease (AD), Parkinson's disease (PD) and other neurodegenerative diseases (NDDs). For instance, accumulated Aβ oligomer is enhancing neuronal Ca2+ release and neural NO where increased NO level in the brain through post translational modification is modulating the level of insulin production. It has been further confirmed that irrespective of origin; brain insulin resistance triggers a cascade of the neurodegeneration phenomenon which can be aggravated by free reactive oxygen species burden, ER stress, metabolic dysfunction, neuorinflammation, reduced cell survival and altered lipid metabolism. Moreover, several studies confirmed that MetS and diabetic sharing common mechanisms in the progression of AD and NDDs where mitochondrial dynamics playing a critical role. Any mutation in mitochondrial DNA, exposure of environmental toxin, high-calorie intake, homeostasis imbalance, glucolipotoxicity is causative factors for mitochondrial dysfunction. These cumulative pleiotropic burdens in mitochondria leads to insulin resistance, increased ROS production; enhanced stress-related enzymes that is directly linked MetS and diabetes in neurodegeneration. Since, the linkup mechanism between mitochondrial dysfunction and disease phenomenon of both MetS and NDDs is quite intriguing, therefore, it is pertinent for the researchers to identify and implement the therapeutic interventions for targeting MetS and NDDs. Herein, we elucidated the pertinent role of MetS induced mitochondrial dysfunction in neurons and their consequences in NDDs. Further, therapeutic potential of well-known biomolecules and chaperones to target altered mitochondria has been comprehensively documented. This article is part of a Special Issue entitled: Oxidative Stress and Mitochondrial Quality in Diabetes/Obesity and Critical Illness Spectrum of Diseases - edited by P. Hemachandra Reddy.
Collapse
Affiliation(s)
- Saurabh Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Niraj Kumar Jha
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Dhiraj Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India.
| |
Collapse
|
42
|
Koh EJ, Kim KJ, Choi J, Jeon HJ, Seo MJ, Lee BY. Ginsenoside Rg1 suppresses early stage of adipocyte development via activation of C/EBP homologous protein-10 in 3T3-L1 and attenuates fat accumulation in high fat diet-induced obese zebrafish. J Ginseng Res 2015; 41:23-30. [PMID: 28123318 PMCID: PMC5223064 DOI: 10.1016/j.jgr.2015.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/19/2015] [Accepted: 12/04/2015] [Indexed: 01/11/2023] Open
Abstract
Background Ginsenoside Rg1 is a class of steroid glycoside and triterpene saponin in Panax ginseng. Many studies suggest that Rg1 suppresses adipocyte differentiation in 3T3-L1. However, the detail molecular mechanism of Rg1 on adipogenesis in 3T3-L1 is still not fully understood. Methods 3T3-L1 preadipocyte was used to evaluate the effect of Rg1 on adipocyte development in the differentiation in a stage-dependent manner in vitro. Oil Red O staining and Nile red staining were conducted to measure intracellular lipid accumulation and superoxide production, respectively. We analyzed the protein expression using Western blot in vitro. The zebrafish model was used to investigate whether Rg1 suppresses the early stage of fat accumulation in vivo. Results Rg1 decreased lipid accumulation in early-stage differentiation of 3T3-L1 compared with intermediate and later stages of adipocyte differentiation. Rg1 dramatically increased CAAT/enhancer binding protein (C/EBP) homologous protein-10 (CHOP10) and subsequently reduced the C/EBPβ transcriptional activity that prohibited the initiation of adipogenic marker expression as well as triglyceride synthase. Rg1 decreased the expression of extracellular signal-regulated kinase 1/2 and glycogen synthase kinase 3β, which are also essential for stimulating the expression of CEBPβ. Rg1 also reduced reactive oxygen species production because of the downregulated protein level of nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidase 4 (NOX4). While Rg1 increased the endogenous antioxidant enzymes, it also dramatically decreased the accumulation of lipid and triglyceride in high fat diet-induced obese zebrafish. Conclusion We demonstrated that Rg1 suppresses early-stage differentiation via the activation of CHOP10 and attenuates fat accumulation in vivo. These results indicate that Rg1 might have the potential to reduce body fat accumulation in the early stage of obesity.
Collapse
Affiliation(s)
- Eun-Jeong Koh
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Korea
| | - Kui-Jin Kim
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Korea
| | - Jia Choi
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Korea
| | - Hui Jeon Jeon
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Korea
| | - Min-Jung Seo
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Korea
| | - Boo-Yong Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Seongnam, Korea
| |
Collapse
|
43
|
Rizvi S, Raza ST, Siddiqi Z, Abbas S, Mahdi F. Association of Angiotensin-Converting Enzyme and Glutathione S-Transferase Gene Polymorphisms with Body Mass Index among Hypertensive North Indians. Sultan Qaboos Univ Med J 2015; 15:e477-85. [PMID: 26629373 DOI: 10.18295/squmj.2015.15.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/22/2015] [Accepted: 07/02/2015] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES This study aimed to examine the association of angiotensin-converting enzyme (ACE) and glutathione S-transferase (GST) gene polymorphisms with body mass index (BMI) in hypertensive North Indians. METHODS This case-control study was carried out between May 2013 and November 2014 at the Era's Lucknow Medical College & Hospital, Lucknow, India, and included 378 subjects divided into three groups. One group constituted 253 hypertensive individuals (sustained diastolic blood pressure of >90 mmHg and systolic blood pressure of >140 mmHg) who were subcategorised according to normal (<25 kg/m(2)) or high (≥25 kg/m(2)) BMI. The third group consisted of 125 age-, gender- and ethnically-matched normotensive controls with a normal BMI. Gene polymorphisms were evaluated by polymerase chain reaction. The genotypic and allelic frequency distribution among both groups were analysed. RESULTS A significant difference was found between GST theta 1-null and GST mu 1-positive genotype frequencies among the hypertensive overweight/obese individuals and controls (P = 0.014 and 0.033, respectively). However, no difference was observed in the frequency of ACE polymorphisms. ACE insertion/insertion genotype (P = 0.006), insertion and deletion alleles (P = 0.007 each) and GST theta 1-null and GST theta 1-positive genotypes (P = 0.006 each) were found to differ significantly between hypertensive cases and controls, regardless of BMI. CONCLUSION ACE and GST gene polymorphisms were not associated with BMI but were significantly associated with hypertension among the studied group of North Indians.
Collapse
Affiliation(s)
- Saliha Rizvi
- Departments of Biochemistry, Era's Lucknow Medical College & Hospital, Lucknow, India
| | - Syed T Raza
- Departments of Biochemistry, Era's Lucknow Medical College & Hospital, Lucknow, India
| | - Zeba Siddiqi
- Medicine, Era's Lucknow Medical College & Hospital, Lucknow, India
| | - Shania Abbas
- Departments of Biochemistry, Era's Lucknow Medical College & Hospital, Lucknow, India
| | - Farzana Mahdi
- Departments of Biochemistry, Era's Lucknow Medical College & Hospital, Lucknow, India
| |
Collapse
|
44
|
Ivanov VV, Shakhristova EV, Stepovaya EA, Nosareva OL, Fedorova TS, Ryazantseva NV, Novitsky VV. Effect of insulin, the glutathione system, and superoxide anion radical in modulation of lipolysis in adipocytes of rats with experimental diabetes. BIOCHEMISTRY (MOSCOW) 2015; 80:87-96. [PMID: 25754043 DOI: 10.1134/s0006297915010101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Spontaneous lipolysis was found to be increased in adipocytes of rats with alloxan-induced diabetes. In addition, isoproterenol-stimulated hydrolysis of triacylglycerols was inhibited against the background of oxidative stress and decreased redox-status of cells. A decrease in the ability of insulin to inhibit isoproterenol-stimulated lipolysis in adipocytes that were isolated from adipose tissue of rats with experimental diabetes was found, which shows a disorder in regulation of lipolysis in adipocytes by the hormone in alloxan-induced diabetes. Based on these findings, we concluded that there is an influence of reactive oxygen species, superoxide anion radical in particular, and redox potential of the glutathione system on molecular mechanisms of change in lipolysis intensity in rat adipocytes in alloxan-induced oxidative stress. Activation of spontaneous lipolysis under conditions of oxidative stress might be a reason for the high concentration of free fatty acids in blood plasma in experimental diabetes, and this may play a significant role in development of insulin resistance and appearance of complications of diabetes.
Collapse
Affiliation(s)
- V V Ivanov
- Siberian State Medical University, Tomsk, 634050, Russia.
| | | | | | | | | | | | | |
Collapse
|
45
|
Saponaro C, Gaggini M, Gastaldelli A. Nonalcoholic fatty liver disease and type 2 diabetes: common pathophysiologic mechanisms. Curr Diab Rep 2015; 15:607. [PMID: 25894944 DOI: 10.1007/s11892-015-0607-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an independent risk factor for advanced liver disease, type 2 diabetes (T2DM), and cardiovascular diseases. The prevalence of NAFLD in the general population is around 30 %, but it is up to three times higher in those with T2DM. Among people with obesity and T2DM, the NAFLD epidemic also is worsening. Therefore, it is important to identify early metabolic alterations and to prevent these diseases and their progression. In this review, we analyze the pathophysiologic mechanisms leading to NAFLD, particularly, those common to T2DM, such as liver and muscle insulin resistance. However, it is mainly adipose tissue insulin resistance that results in increased hepatic de novo lipogenesis, inflammation, and lipotoxicity. Although genetics predispose to NAFLD, an unhealthy lifestyle, including high-fat/high-sugar diets and low physical activity, increases the risk. In addition, alterations in gut microbiota and environmental chemical agents, acting as endocrine disruptors, may play a role.
Collapse
Affiliation(s)
- Chiara Saponaro
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, via Moruzzi 1, 56100, Pisa, Italy,
| | | | | |
Collapse
|
46
|
Jaiswal N, Maurya CK, Pandey J, Rai AK, Tamrakar AK. Fructose-induced ROS generation impairs glucose utilization in L6 skeletal muscle cells. Free Radic Res 2015; 49:1055-68. [PMID: 25968943 DOI: 10.3109/10715762.2015.1031662] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
High fructose consumption has implicated in insulin resistance and metabolic syndrome. Fructose is a highly lipogenic sugar that has intense metabolic effects in liver. Recent evidences suggest that fructose exposure to other tissues has substantial and profound metabolic consequences predisposing toward chronic conditions such as type 2 diabetes. Since skeletal muscle is the major site for glucose utilization, in the present study we define the effects of fructose exposure on glucose utilization in skeletal muscle cells. Upon fructose exposure, the L6 skeletal muscle cells displayed diminished glucose uptake, glucose transporter type 4 (GLUT4) translocation, and impaired insulin signaling. The exposure to fructose elevated reactive oxygen species (ROS) production in L6 myotubes, accompanied by activation of the stress/inflammation markers c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2), and degradation of inhibitor of NF-κB (IκBα). We found that fructose caused impairment of glucose utilization and insulin signaling through ROS-mediated activation of JNK and ERK1/2 pathways, which was prevented in the presence of antioxidants. In conclusion, our data demonstrate that exposure to fructose induces cell-autonomous oxidative response through ROS production leading to impaired insulin signaling and attenuated glucose utilization in skeletal muscle cells.
Collapse
Affiliation(s)
- N Jaiswal
- Division of Biochemistry, CSIR-Central Drug Research Institute , Lucknow, Uttar Pradesh , India
| | | | | | | | | |
Collapse
|
47
|
The modifying effect of vitamin C on the association between perfluorinated compounds and insulin resistance in the Korean elderly: a double-blind, randomized, placebo-controlled crossover trial. Eur J Nutr 2015; 55:1011-20. [PMID: 25939797 DOI: 10.1007/s00394-015-0915-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/25/2015] [Indexed: 01/09/2023]
Abstract
PURPOSE There is limited evidence whether environmental exposure to perfluorinated compounds (PFCs) affects insulin resistance (IR) and whether vitamin C intake protects against the adverse effect of PFCs. This study was carried out to investigate the effect of PFCs on IR through oxidative stress, and the effects of a 4-week consumption of vitamin C supplement compared placebo on development of IR by PFCs. METHODS For a double-blind, community-based, randomized, placebo-controlled crossover intervention of vitamin C, we assigned 141 elderly subjects to both vitamin C and placebo treatments for 4 weeks. We measured serum levels of PFCs to estimate PFC exposures and urinary levels of malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) for oxidative stress. We also measured levels of fasting glucose and insulin and derived the homeostatic model assessment (HOMA) index to assess IR. RESULTS Perfluorooctane sulfonate (PFOS) and perfluorododecanoic acid (PFDoDA) levels were found to be positively associated with HOMA index at the baseline and after placebo treatment. Risks of IR for the top decile of PFOS and PFDoDA exposures were significantly elevated compared with those with lower PFOS and PFDoDA exposures (both, P < 0.0001). However, the effects of PFOS and PFDoDA on HOMA disappeared after vitamin C supplementation (both, P > 0.30). Furthermore, PFOS and PFDoDA levels were also significantly associated with MDA and 8-OHdG levels, and MDA levels were positively associated with HOMA index. CONCLUSION PFOS and PFDoDA exposures were positively associated with IR and oxidative stress, and vitamin C supplementation protected against the adverse effects of PFOS and PFDoDA on IR.
Collapse
|
48
|
Ding Y, Fang H, Shang W, Xiao Y, Sun T, Hou N, Pan L, Sun X, Ma Q, Zhou J, Wang X, Zhang X, Cheng H. Mitoflash altered by metabolic stress in insulin-resistant skeletal muscle. J Mol Med (Berl) 2015; 93:1119-30. [PMID: 25908643 PMCID: PMC4589561 DOI: 10.1007/s00109-015-1278-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 12/20/2022]
Abstract
Abstract Central to bioenergetics and reactive oxygen species (ROS) signaling, the mitochondrion plays pivotal roles in the pathogenesis of metabolic diseases. Recent advances have shown that mitochondrial flash (“mitoflash”) visualized by the biosensor mt-cpYFP affords a frequency-coded, optical readout linked to mitochondrial ROS production and energy metabolism, at the resolution of a single mitochondrion. To investigate possible mitoflash responses to metabolic stress in insulin resistance (IR), we generated an mt-cpYFP-expressing db/db mouse model with the obesity and IR phenotypes unaltered. In conjunction with in vivo imaging of skeletal muscles, we uncovered a progressive increase of mitoflash frequency along with its morphological changes. Interestingly, enhanced mitochondrial networking occurred at 12 weeks of age, and this was followed by mitochondrial fragmentation at 34 weeks. Pioglitazone treatment normalized mitoflash frequency and morphology while restored mitochondrial respiratory function and insulin sensitivity in 12 weeks mt-cpYFP db/db mice. Mechanistic study revealed that the mitoflash remodeling was associated with altered expression of proteins involved in mitochondrial dynamics and quality control. These findings indicate that mitoflash activity may serve as an optical functional readout of the mitochondria, a robust and sensitive biomarker to gauge IR stresses and their amelioration by therapeutic interventions. Key message In vivo detection of mitochondrial flashes in mt-cpYFP-expressing db/db mouse. Mitoflash frequency increased progressively with disease development. Mitoflash morphology revealed a biphasic change in mitochondrial networking. Mitoflash abnormalities and mitochondrial defects are restored by pioglitazone. Mitoflash may serve as a unique biomarker to gauge metabolic stress in insulin resistance.
Electronic supplementary material The online version of this article (doi:10.1007/s00109-015-1278-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi Ding
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Huaqiang Fang
- Institute of Molecular Medicine, Peking University, Beijing, China.,State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Wei Shang
- Institute of Molecular Medicine, Peking University, Beijing, China.,State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Yao Xiao
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Tao Sun
- Institute of Molecular Medicine, Peking University, Beijing, China.,State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Ning Hou
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Lin Pan
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xueting Sun
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Qi Ma
- Institute of Molecular Medicine, Peking University, Beijing, China.,State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Jingsong Zhou
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, USA
| | - Xianhua Wang
- Institute of Molecular Medicine, Peking University, Beijing, China.,State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Xiuqin Zhang
- Institute of Molecular Medicine, Peking University, Beijing, China.
| | - Heping Cheng
- Institute of Molecular Medicine, Peking University, Beijing, China.,State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
49
|
Sharick J, Vazquez-Medina J, Ortiz R, Crocker D. Oxidative stress is a potential cost of breeding in male and female northern elephant seals. Funct Ecol 2015; 29:367-376. [PMID: 25983364 PMCID: PMC4429057 DOI: 10.1111/1365-2435.12330] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The trade-off between current reproductive effort and survival is a key concept of life history theory. A variety of studies support the existence of this trade-off but the underlying physiological mechanisms are not well-understood. Oxidative stress has been proposed as a potential mechanism underlying the observed inverse relationship between reproductive investment and lifespan. Prolonged fasting is associated with oxidative stress including increases in the production of reactive oxygen species, oxidative damage and inflammation.Northern elephant seals (NES) undergo prolonged fasts while maintaining high metabolic rates during breeding. We investigated NES of both sexes to assess oxidative stress associated with extended breeding fasts. We measured changes in the plasma activity or concentrations of markers for oxidative stress in 30 adult male and 33 adult female northern elephant seals across their 1-3 month breeding fasts. Markers assessed included a pro-oxidant enzyme, several antioxidant enzymes, markers for oxidative damage to lipids, proteins and DNA, and markers for systemic inflammation.Plasma xanthine oxidase (XO), a pro-oxidant enzyme that increases production of oxidative radicals, and several protective antioxidant enzymes increased over breeding in both sexes. Males showed increased oxidative damage to lipids and DNA and increased systemic inflammation, while oxidative damage to proteins declined across breeding. In contrast, females showed no oxidative damage to lipids or DNA or changes in inflammation, but showed increases in oxidative damage to proteins. XO activity, antioxidant enzymes, oxidative damage markers, and inflammatory markers were strongly correlated in males but these relationships were weaker or non-existent in females.NES provide evidence for oxidative stress as a physiological cost of reproduction in a capital breeding mammal. Both sexes strongly up-regulated antioxidant defenses during breeding. Despite this response, and in contrast to similar duration non-breeding fasts in previous studies on conspecifics, there was evidence of oxidative damage to tissues. These data demonstrate the utility of using plasma markers to examine oxidative stress but also suggest the necessity of measuring a broad suite of plasma markers to assess systemic oxidative stress.
Collapse
Affiliation(s)
- J.T. Sharick
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928
| | - J.P. Vazquez-Medina
- School of Natural Sciences, University of California, 5200 N. Lake Road, Merced, CA 95343
| | - R.M. Ortiz
- School of Natural Sciences, University of California, 5200 N. Lake Road, Merced, CA 95343
| | - D.E. Crocker
- Department of Biology, Sonoma State University, Rohnert Park, CA 94928
| |
Collapse
|
50
|
Boparai RK, Arum O, Miquet JG, Masternak MM, Bartke A, Khardori RK. Resistance to the Beneficial Metabolic Effects and Hepatic Antioxidant Defense Actions of Fibroblast Growth Factor 21 Treatment in Growth Hormone-Overexpressing Transgenic Mice. Int J Endocrinol 2015; 2015:282375. [PMID: 26089880 PMCID: PMC4451995 DOI: 10.1155/2015/282375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/28/2014] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) modulates a diverse range of biological functions, including glucose and lipid metabolism, adaptive starvation response, and energy homeostasis, but with limited mechanistic insight. FGF21 treatment has been shown to inhibit hepatic growth hormone (GH) intracellular signaling. To evaluate GH axis involvement in FGF21 actions, transgenic mice overexpressing bovine GH were used. Expectedly, in response to FGF21 treatment control littermates showed metabolic improvements whereas GH transgenic mice resisted most of the beneficial effects of FGF21, except an attenuation of the innate hyperinsulinemia. Since FGF21 is believed to exert its effects mostly at the transcriptional level, we analyzed and observed significant upregulation in expression of various genes involved in carbohydrate and lipid metabolism, energy homeostasis, and antioxidant defense in FGF21-treated controls, but not in GH transgenics. The resistance of GH transgenic mice to FGF21-induced changes underlines the necessity of normal GH signaling for the beneficial effects of FGF21.
Collapse
Affiliation(s)
- Ravneet K. Boparai
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9628, USA
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9636, USA
- Department of Biochemistry, Panjab University, Chandigarh 160014, India
| | - Oge Arum
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9628, USA
- *Oge Arum:
| | - Johanna G. Miquet
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9628, USA
- IQUIFIB, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Michal M. Masternak
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9628, USA
- Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Boulevard, Orlando, FL 32827, USA
- Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 15 Garbary Street, 61-866 Poznan, Poland
| | - Andrzej Bartke
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9628, USA
| | - Romesh K. Khardori
- Division of Endocrinology, Metabolism and Molecular Medicine, Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794-9636, USA
- Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, VA 23510, USA
| |
Collapse
|