1
|
Ren X, Cai S, Zhong Y, Tang L, Xiao M, Li S, Zhu C, Li D, Mou H, Fu X. Marine-Derived Fucose-Containing Carbohydrates: Review of Sources, Structure, and Beneficial Effects on Gastrointestinal Health. Foods 2024; 13:3460. [PMID: 39517244 PMCID: PMC11545675 DOI: 10.3390/foods13213460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/12/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Fucose, fucose-containing oligosaccharides, and fucose-containing polysaccharides have been widely applied in the fields of food and medicine, including applications in Helicobacter pylori eradication and renal function protection. Fucose-containing carbohydrates (FCCs) derived from marine organisms such as seaweed, invertebrates, microalgae, fungi, and bacteria have garnered growing attention due to their diverse bioactivities and potential therapeutic applications. Marine-derived FCCs characterized by high fucose residue content and extensive sulfate substitution, including fucoidan, fucosylated chondroitin sulfate, and fucose-rich microbial exopolysaccharides, have demonstrated significant potential in promoting gastrointestinal health. This review describes the unique structural features of FCCs and summarizes their health benefits, including regulation of gut microbiota, modulation of microbial metabolism, anti-adhesion activities against H. pylori and gut pathogens, protection against inflammatory injuries, and anti-tumor activities. Additionally, this review discusses the structural characteristics that influence the functional properties and the limitations related to the activity research and preparation processes of FCCs, providing a balanced perspective on the application potential and challenges of FCCs with specific structures for the regulation of gastrointestinal health and diseases.
Collapse
|
2
|
McKinnie LJ, Cummins SF, Zhao M. Identification of Incomplete Annotations of Biosynthesis Pathways in Rhodophytes Using a Multi-Omics Approach. Mar Drugs 2023; 22:3. [PMID: 38276641 PMCID: PMC10817344 DOI: 10.3390/md22010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Rhodophytes (red algae) are an important source of natural products and are, therefore, a current research focus in terms of metabolite production. The recent increase in publicly available Rhodophyte whole genome and transcriptome assemblies provides the resources needed for in silico metabolic pathway analysis. Thus, this study aimed to create a Rhodophyte multi-omics resource, utilising both genomes and transcriptome assemblies with functional annotations to explore Rhodophyte metabolism. The genomes and transcriptomes of 72 Rhodophytes were functionally annotated and integrated with metabolic reconstruction and phylogenetic inference, orthology prediction, and gene duplication analysis to analyse their metabolic pathways. This resource was utilised via two main investigations: the identification of bioactive sterol biosynthesis pathways and the evolutionary analysis of gene duplications for known enzymes. We report that sterol pathways, including campesterol, β-sitosterol, ergocalciferol and cholesterol biosynthesis pathways, all showed incomplete annotated pathways across all Rhodophytes despite prior in vivo studies showing otherwise. Gene duplication analysis revealed high rates of duplication of halide-associated haem peroxidases in Florideophyte algae, which are involved in the biosynthesis of drug-related halogenated secondary metabolites. In summary, this research revealed trends in Rhodophyte metabolic pathways that have been under-researched and require further functional analysis. Furthermore, the high duplication of haem peroxidases and other peroxidase enzymes offers insight into the potential drug development of Rhodophyte halogenated secondary metabolites.
Collapse
Affiliation(s)
- Lachlan J. McKinnie
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QSL 4558, Australia; (L.J.M.); (S.F.C.)
- School of Science, Technology, and Engineering, University of the Sunshine Coast, Maroochydore, QSL 4558, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QSL 4558, Australia
| | - Scott F. Cummins
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QSL 4558, Australia; (L.J.M.); (S.F.C.)
- School of Science, Technology, and Engineering, University of the Sunshine Coast, Maroochydore, QSL 4558, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QSL 4558, Australia
| | - Min Zhao
- Seaweed Research Group, University of the Sunshine Coast, Maroochydore, QSL 4558, Australia; (L.J.M.); (S.F.C.)
- School of Science, Technology, and Engineering, University of the Sunshine Coast, Maroochydore, QSL 4558, Australia
| |
Collapse
|
3
|
Imran M, Iqbal A, Badshah SL, Ahmad I, Shami A, Ali B, Alatawi FS, Alatawi MS, Mostafa YS, Alamri SA, Alalwiat AA, Bajaber MA. Exploring the hidden treasures of Nitella hyalina: a comprehensive study on its biological compounds, nutritional profile, and unveiling its antimicrobial, antioxidative, and hypoglycemic properties. World J Microbiol Biotechnol 2023; 39:345. [PMID: 37843704 DOI: 10.1007/s11274-023-03795-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Macroalgae has the potential to be a precious resource in food, pharmaceutical, and nutraceutical industries. Therefore, the present study was carried out to identify and quantify the phyco-chemicals and to assess the nutritional profile, antimicrobial, antioxidant, and anti-diabetic properties of Nitella hyalina extracts. Nutritional composition revealed0.05 ± 2.40% ash content, followed by crude protein (24.66 ± 0.95%), crude fat (17.66 ± 1.42%), crude fiber (2.17 ± 0.91%), moisture content (15.46 ± 0.48%) and calculated energy value (173.50 ± 2.90 Kcal/100 g). 23 compounds were identified through GC-MS analysis in ethyl acetate extract, with primary compounds being Palmitic acid, methyl ester, (Z)-9-Hexadecenoic acid, methyl ester, and Methyl tetra decanoate. Whereas 15 compounds were identified in n-butanol extract, with the major compounds being Tetra decanoic acid, 9-hexadecanoic acid, Methyl pentopyranoside, and undecane. FT-IR spectroscopy confirmed the presence of alcoholic phenol, saturated aliphatic compounds, lipids, carboxylic acid, carbonyl, aromatic components, amine, alkyl halides, alkene, and halogen compounds. Moreover, n-butanol contains 1.663 ± 0.768 mg GAE/g, of total phenolic contents (TPC,) and 2.050 ± 0.143 QE/g of total flavonoid contents (TFC), followed by ethyl acetate extract, i.e. 1.043 ± 0.961 mg GAE/g and 1.730 ± 0.311 mg QE/g respectively. Anti-radical scavenging effect in a range of 34.55-46.35% and 35.39-41.79% was measured for n-butanol and ethyl acetate extracts, respectively. Antimicrobial results declared that n-butanol extract had the highest growth inhibitory effect, followed by ethyl acetate extract. Pseudomonas aeruginosa was reported to be the most susceptible strain, followed by Staphylococcus aureus and Escherichia coli, while Candida albicans showed the least inhibition at all concentrations. In-vivo hypoglycemic study revealed that both extracts exhibited dose-dependent activity. Significant hypoglycemic activity was observed at a dose of 300 mg/kg- 1 after 6 h i.e. 241.50 ± 2.88, followed by doses of 200 and 100 mg/kg- 1 (245.17 ± 3.43 and 250.67 ± 7.45, respectively) for n-butanol extract. In conclusion, the macroalgae demonstrated potency concerning antioxidant, antimicrobial, and hypoglycemic properties.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Botany, Islamia College University Peshawar, Peshawar, 25120, Pakistan
| | - Arshad Iqbal
- Department of Botany, Islamia College University Peshawar, Peshawar, 25120, Pakistan.
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120, Pakistan
- Department of Civil and Environmental Engineering, University of Toledo, Toledo, OH, 43606, USA
| | - Imtiaz Ahmad
- Department of Botany, Bacha Khan University, Charsadda, KP, 24460, Pakistan
| | - Ashwag Shami
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fatema Suliman Alatawi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Mohsen Suliman Alatawi
- Department of Pediatrics, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 11481, Saudi Arabia
| | - Yasser S Mostafa
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Saad A Alamri
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Ahlam A Alalwiat
- Chemistry Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Majed A Bajaber
- Chemistry Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| |
Collapse
|
4
|
Zang L, Baharlooeian M, Terasawa M, Shimada Y, Nishimura N. Beneficial effects of seaweed-derived components on metabolic syndrome via gut microbiota modulation. Front Nutr 2023; 10:1173225. [PMID: 37396125 PMCID: PMC10311452 DOI: 10.3389/fnut.2023.1173225] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/10/2023] [Indexed: 07/04/2023] Open
Abstract
Metabolic syndrome comprises a group of conditions that collectively increase the risk of abdominal obesity, diabetes, atherosclerosis, cardiovascular diseases, and cancer. Gut microbiota is involved in the pathogenesis of metabolic syndrome, and microbial diversity and function are strongly affected by diet. In recent years, epidemiological evidence has shown that the dietary intake of seaweed can prevent metabolic syndrome via gut microbiota modulation. In this review, we summarize the current in vivo studies that have reported the prevention and treatment of metabolic syndrome via seaweed-derived components by regulating the gut microbiota and the production of short-chain fatty acids. Among the surveyed related articles, animal studies revealed that these bioactive components mainly modulate the gut microbiota by reversing the Firmicutes/Bacteroidetes ratio, increasing the relative abundance of beneficial bacteria, such as Bacteroides, Akkermansia, Lactobacillus, or decreasing the abundance of harmful bacteria, such as Lachnospiraceae, Desulfovibrio, Lachnoclostridium. The regulated microbiota is thought to affect host health by improving gut barrier functions, reducing LPS-induced inflammation or oxidative stress, and increasing bile acid production. Furthermore, these compounds increase the production of short-chain fatty acids and influence glucose and lipid metabolism. Thus, the interaction between the gut microbiota and seaweed-derived bioactive components plays a critical regulatory role in human health, and these compounds have the potential to be used for drug development. However, further animal studies and human clinical trials are required to confirm the functional roles and mechanisms of these components in balancing the gut microbiota and managing host health.
Collapse
Affiliation(s)
- Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, Japan
- Mie University Zebrafish Research Center, Mie University, Tsu, Mie, Japan
| | - Maedeh Baharlooeian
- Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | | | - Yasuhito Shimada
- Mie University Zebrafish Research Center, Mie University, Tsu, Mie, Japan
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Mie, Japan
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie, Japan
- Mie University Zebrafish Research Center, Mie University, Tsu, Mie, Japan
| |
Collapse
|
5
|
Nagahawatta DP, Liyanage NM, Jayawardhana HHACK, Jayawardena TU, Lee HG, Heo MS, Jeon YJ. Eckmaxol Isolated from Ecklonia maxima Attenuates Particulate-Matter-Induced Inflammation in MH-S Lung Macrophage. Mar Drugs 2022; 20:766. [PMID: 36547913 PMCID: PMC9785775 DOI: 10.3390/md20120766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Airborne particulate matter (PM) originating from industrial processes is a major threat to the environment and health in East Asia. PM can cause asthma, collateral lung tissue damage, oxidative stress, allergic reactions, and inflammation. The present study was conducted to evaluate the protective effect of eckmaxol, a phlorotannin isolated from Ecklonia maxima, against PM-induced inflammation in MH-S macrophage cells. It was found that PM induced inflammation in MH-S lung macrophages, which was inhibited by eckmaxol treatment in a dose-dependent manner (21.0−84.12 µM). Eckmaxol attenuated the expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in PM-induced lung macrophages. Subsequently, nitric oxide (NO), prostaglandin E-2 (PGE-2), and pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) were downregulated. PM stimulated inflammation in MH-S lung macrophages by activating Toll-like receptors (TLRs), nuclear factor-kappa B (NF-κB), and mitogen-activated protein kinase (MAPK) pathways. Eckmaxol exhibited anti-inflammatory properties by suppressing the activation of TLRs, downstream signaling of NF-κB (p50 and p65), and MAPK pathways, including c-Jun N-terminal kinase (JNK) and p38. These findings suggest that eckmaxol may offer substantial therapeutic potential in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- D. P. Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Jeju Self-Governing Province, Republic of Korea
| | - N. M. Liyanage
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Jeju Self-Governing Province, Republic of Korea
| | - H. H. A. C. K. Jayawardhana
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Jeju Self-Governing Province, Republic of Korea
| | - Thilina U. Jayawardena
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Jeju Self-Governing Province, Republic of Korea
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada
| | - Hyo-Geun Lee
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Jeju Self-Governing Province, Republic of Korea
| | - Moon-Soo Heo
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Jeju Self-Governing Province, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 63243, Jeju Self-Governing Province, Republic of Korea
- Marine Science Institute, Jeju National University, Jeju 63333, Jeju Self-Governing Province, Republic of Korea
| |
Collapse
|
6
|
Guo J, Shi F, Sun M, Ma F, Li Y. Antioxidant and aflatoxin B1 adsorption properties of Eucheuma cottonii insoluble dietary fiber. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Seaweed Phenolics as Natural Antioxidants, Aquafeed Additives, Veterinary Treatments and Cross-Linkers for Microencapsulation. Mar Drugs 2022; 20:md20070445. [PMID: 35877738 PMCID: PMC9319038 DOI: 10.3390/md20070445] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
Driven by consumer demand and government policies, synthetic additives in aquafeed require substitution with sustainable and natural alternatives. Seaweeds have been shown to be a sustainable marine source of novel bioactive phenolic compounds that can be used in food, animal and aqua feeds, or microencapsulation applications. For example, phlorotannins are a structurally unique polymeric phenolic group exclusively found in brown seaweed that act through multiple antioxidant mechanisms. Seaweed phenolics show high affinities for binding proteins via covalent and non-covalent bonds and can have specific bioactivities due to their structures and associated physicochemical properties. Their ability to act as protein cross-linkers means they can be used to enhance the rheological and mechanical properties of food-grade delivery systems, such as microencapsulation, which is a new area of investigation illustrating the versatility of seaweed phenolics. Here we review how seaweed phenolics can be used in a range of applications, with reference to their bioactivity and structural properties.
Collapse
|
8
|
Costa MM, Lopes PA, Assunção JMP, Alfaia CMRPM, Coelho DFM, Mourato MP, Pinto RMA, Lordelo MM, Prates JAM. Combined effects of dietary Laminaria digitata with alginate lyase on plasma metabolites and hepatic lipid, pigment and mineral composition of broilers. BMC Vet Res 2022; 18:153. [PMID: 35477456 PMCID: PMC9044652 DOI: 10.1186/s12917-022-03250-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/18/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The Laminaria digitata is an abundant macroalga and a sustainable feedstock for poultry nutrition. L. digitata is a good source of essential amino acids, carbohydrates and vitamins, including A, D, E, and K, as well as triacylglycerols and minerals, in particular iron and calcium. However, the few studies available in the literature with broilers document the application of this macroalga as a dietary supplement rather than a feed ingredient. No study has addressed up until now the effects of a high-level incorporation (> 2% in the diet) of L. digitata on plasma biochemical markers and hepatic lipid composition, as well as minerals and pigments profile in the liver of broilers. Our experimental design included one hundred and twenty Ross 308 male birds contained in 40 wired-floor cages and distributed to the following diets at 22 days of age (n = 10) for 15 days: 1) a corn-soybean basal diet (Control); 2) the basal diet plus 15% of L. digitata (LA); 3) the basal diet plus 15% of L. digitata with 0.005% of Rovabio® Excel AP (LAR); and 4) the basal diet plus 15% of L. digitata with 0.01% of the recombinant CAZyme, alginate lyase (LAE). RESULTS L. digitata compromised birds' growth performance by causing a reduction in final body weight. It was found an increase in hepatic n-3 and n-6 fatty acids, in particular C18:2n-6, C18:3n-6, C20:4n-6, C20:5n-3, C22:5n-3 and C22:6n-3 with the addition of the macroalga, with or without feed enzymes, to the broiler diets. Also, the beneficial C18:3n-3 fatty acid was increased by combining L. digitata and commercial Rovabio® Excel AP compared to the control diet. The sum of SFA, MUFA and the n-6/n-3 PUFA ratio were decreased by L. digitata, regardless the addition of exogenous enzymes. β-carotene was enhanced by L. digitata, individually or combined with CAZymes, being also responsible for a positive increase in total pigments. Macrominerals, in particular phosphorous and sulphur, were increased in the liver of broilers fed L. digitata individually relative to the control. For microminerals, copper, iron and the correspondent sum were consistently elevated in the liver of broilers fed L. digitata, individually or combined with exogenous CAZymes. The powerful discriminant analysis tool based on the hepatic characterization revealed a good separation between the control group and L. digitata diets but failed to discriminate the addition of feed enzymes. CONCLUSIONS Overall, this study highlights the value of L. digitata as a feed ingredient for the poultry industry. Moreover, we can conclude that the effect of L. digitata overpowers the effect of feed enzymes, both the Rovabio® Excel AP and the alginate lyase. Having in mind the negative effects observed on birds' performance, our main recommendation at this stage is to restraint L. digitata incorporation level in forthcoming nutritional studies.
Collapse
Affiliation(s)
- Mónica Mendes Costa
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Paula Alexandra Lopes
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - José Miguel Pestana Assunção
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Cristina Maria Riscado Pereira Mateus Alfaia
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Diogo Francisco Maurício Coelho
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| | - Miguel Pedro Mourato
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Rui Manuel Amaro Pinto
- iMed.UL, Faculdade de Farmácia, Universidade de Lisboa, Avenida Professor Gama Pinto, 1649-003 Lisbon, Portugal
- JCS, Laboratório de Análises Clínicas Dr. Joaquim Chaves, Avenida General Norton de Matos, 1495-148 Miraflores, Algés, Portugal
| | - Maria Madalena Lordelo
- LEAF - Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - José António Mestre Prates
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Avenida da Universidade Técnica, Pólo Universitário do Alto da Ajuda, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisbon, Portugal
| |
Collapse
|
9
|
A Comparative Study of the Fatty Acids and Monosaccharides of Wild and Cultivated Ulva sp. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is a need to find new possible raw food sources with interesting nutritional values. One of the most unexploited sources are seaweeds. Thus, Ulva sp. is a green edible seaweed that shows a high growth rate in nature and can support drastic abiotic changes, such as temperature and salinity. This work aims to determine the main nutritional compounds, fatty acids (FAs) and monosaccharides profiles of Ulva sp. (collected from Mondego estuary, Portugal), to identify the potential of this seaweed as a food source. The present study also highlights the potential of controlled and semi-controlled cultivation systems in Ulva sp. profiles. The results showed that the controlled cultivation systems had higher essential FA and monosaccharide content than the semi-controlled cultivation systems. However, they are in some cases identical to wild individuals of Ulva sp., supporting that cultivation of Ulva sp. can be a key for food safety. It is crucial to control the associated risks of contamination that can occur in wild specimens.
Collapse
|
10
|
Costa M, Cardoso C, Afonso C, Bandarra NM, Prates JAM. Current knowledge and future perspectives of the use of seaweeds for livestock production and meat quality: a systematic review. J Anim Physiol Anim Nutr (Berl) 2021; 105:1075-1102. [PMID: 33660883 DOI: 10.1111/jpn.13509] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 01/09/2021] [Accepted: 01/17/2021] [Indexed: 12/12/2022]
Abstract
The effects of dietary macroalgae, or seaweeds, on growth performance and meat quality of livestock animal species are here reviewed. Macroalgae are classified into Phaeophyceae (brown algae), Rhodophyceae (red algae) and Chlorophyceae (green algae). The most common macroalga genera used as livestock feedstuffs are: Ascophyllum, Laminaria and Undaria for brown algae; Ulva, Codium and Cladophora for green algae; and Pyropia, Chondrus and Palmaria for red algae. Macroalgae are rich in many nutrients, including bioactive compounds, such as soluble polysaccharides, with some species being good sources of n-3 and n-6 polyunsaturated fatty acids. To date, the incorporation of macroalgae in livestock animal diets was shown to improve growth and meat quality, depending on the alga species, dietary level and animal growth stage. Generally, Ascophyllum nodosum can increase average daily gain (ADG) in ruminant and pig mostly due to its prebiotic activity in animal's gut. A. nodosum also enhances marbling score, colour uniformity and redness, and can decrease saturated fatty acids in ruminant meats. Laminaria sp., mainly Laminaria digitata, increases ADG and feed efficiency, and improves the antioxidant potential of pork. Ulva sp., and its mixture with Codium sp., was shown to improve poultry growth at up to 10% feed. Therefore, seaweeds are promising sustainable alternatives to corn and soybean as feed ingredients, thus attenuating the current competition among food-feed-biofuel industries. In addition, macroalgae can hinder eutrophication and participate in bioremediation. However, some challenges need to be overcome, such as the development of large-scale and cost-effective algae production methods and the improvement of algae digestibility by monogastric animals. The dietary inclusion of Carbohydrate-Active enZymes (CAZymes) could allow for the degradation of recalcitrant macroalga cell walls, with an increase of nutrients bioavailability. Overall, the use of macroalgae as feedstuffs is a promising strategy for the development of a more sustainable livestock production.
Collapse
Affiliation(s)
- Mónica Costa
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Carlos Cardoso
- DivAV - Division of Aquaculture and Upgrading, Portuguese Institute for the Sea and Atmosphere, Lisbon, Portugal
| | - Cláudia Afonso
- DivAV - Division of Aquaculture and Upgrading, Portuguese Institute for the Sea and Atmosphere, Lisbon, Portugal
| | - Narcisa M Bandarra
- DivAV - Division of Aquaculture and Upgrading, Portuguese Institute for the Sea and Atmosphere, Lisbon, Portugal
| | - José A M Prates
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
11
|
Fernandes T, Cordeiro N. Microalgae as Sustainable Biofactories to Produce High-Value Lipids: Biodiversity, Exploitation, and Biotechnological Applications. Mar Drugs 2021; 19:md19100573. [PMID: 34677472 PMCID: PMC8540142 DOI: 10.3390/md19100573] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/04/2022] Open
Abstract
Microalgae are often called “sustainable biofactories” due to their dual potential to mitigate atmospheric carbon dioxide and produce a great diversity of high-value compounds. Nevertheless, the successful exploitation of microalgae as biofactories for industrial scale is dependent on choosing the right microalga and optimum growth conditions. Due to the rich biodiversity of microalgae, a screening pipeline should be developed to perform microalgal strain selection exploring their growth, robustness, and metabolite production. Current prospects in microalgal biotechnology are turning their focus to high-value lipids for pharmaceutic, nutraceutic, and cosmetic products. Within microalgal lipid fraction, polyunsaturated fatty acids and carotenoids are broadly recognized for their vital functions in human organisms. Microalgal-derived phytosterols are still an underexploited lipid resource despite presenting promising biological activities, including neuroprotective, anti-inflammatory, anti-cancer, neuromodulatory, immunomodulatory, and apoptosis inductive effects. To modulate microalgal biochemical composition, according to the intended field of application, it is important to know the contribution of each cultivation factor, or their combined effects, for the wanted product accumulation. Microalgae have a vital role to play in future low-carbon economy. Since microalgal biodiesel is still costly, it is desirable to explore the potential of oleaginous species for its high-value lipids which present great global market prospects.
Collapse
Affiliation(s)
- Tomásia Fernandes
- Laboratory of Bioanalysis, Biomaterials, and Biotechnology (LB3), Faculty of Exact Sciences and Engineering, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal
| | - Nereida Cordeiro
- Laboratory of Bioanalysis, Biomaterials, and Biotechnology (LB3), Faculty of Exact Sciences and Engineering, University of Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal
- Correspondence:
| |
Collapse
|
12
|
Fernandes T, Ferreira A, Cordeiro N. Comparative lipidomic analysis of Chlorella stigmatophora and Hemiselmis cf. andersenii in response to nitrogen-induced changes. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Chakraborty K, Dhara S, Mani AE. Ulvapyrone, a pyrone-linked benzochromene from sea lettuce Ulva lactuca Linnaeus (family Ulvaceae): newly described anti-inflammatory agent attenuates arachidonate 5-lipoxygenase. Nat Prod Res 2021; 36:4114-4124. [PMID: 34542363 DOI: 10.1080/14786419.2021.1976173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Green marine macroalgae, particularly Ulva lactuca, is an essential constituent of the cuisines in many Asian countries. The present work aims to separate a bioactive pyrone attached benzochromene analogue, named as ulvapyrone from the organic extract of U. lactuca, followed by its structural characterisation as 2-{(6a'-hydroxyethyl-4'-methyltetrahydro-2H-pyran-2'-one)-6'-yl}-4-methyl-7-ethylacetate-8-hydroxy-7, 8-dihydrobenzo [de]chromene. Ulvapyrone exhibited prospective inhibition property against arachidonate 5-lipoxygenase (IC50 ∼1 mg mL-1) comparable to that demonstrated by ibuprofen (IC50 0.9 mg mL-1), which connoted its anti-inflammatory activity. The studied benzochromene exhibited promising antioxidant potential (IC50 0.5-0.6 mg mL-1), which further reinforced its attenuation property against 5-lipoxygenase. Bioactivities of ulvapyrone were linearly correlated with electronic parameter (topological polar surface area ∼102) along with less binding energy (-8.22 kcal mol-1) with the allosteric site of 5-lipoxygenase. In silico predictions of physicochemical parameters along with absorption, distribution, metabolism and excretion could recognise the acceptable oral bioavailability of ulvapyrone.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Central Marine Fisheries Research Institute, Ernakulam North, Cochin, Kerala, India
| | - Shubhajit Dhara
- Central Marine Fisheries Research Institute, Ernakulam North, Cochin, Kerala, India
| | | |
Collapse
|
14
|
Berneira LM, de Santi II, da Silva CC, Venzke D, Colepicolo P, Vaucher RDA, Dos Santos MAZ, de Pereira CMP. Bioactivity and composition of lipophilic metabolites extracted from Antarctic macroalgae. Braz J Microbiol 2021; 52:1275-1285. [PMID: 33835420 PMCID: PMC8324660 DOI: 10.1007/s42770-021-00475-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/26/2021] [Indexed: 10/21/2022] Open
Abstract
Macroalgae comprise a vast group of aquatic organisms known for their richness in phytochemicals. In this sense, the lipophilic profile of five Antarctic seaweed species was characterized by chromatographic and spectroscopic analysis and their antioxidant and antimicrobial potential was evaluated. Results showed there were 31 lipophilic substances, mainly fatty acids (48.73 ± 0.77 to 331.91 ± 10.79 mg.Kg-1), sterols (14.74 ± 0.74 to 321.25 ± 30.13 mg.Kg-1), and alcohols (13.07 ± 0.04 to 91.87 ± 30.07 mg.Kg-1). Moreover, Desmarestia confervoides had strong antioxidant activity, inhibiting 86.03 ± 1.47% of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical at 1 mg.mL-1. Antimicrobial evaluation showed that extracts from Ulva intestinalis, Curdiea racovitzae, and Adenocystis utricularis inhibited the growth of Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923), and Salmonella typhimurium (ATCC 14028) from concentrations of 1.5 to 6 mg.mL-1. Therefore, the evaluated brown, red, and green macroalgae contained several phytochemicals with promising biological activities that could be applied in the pharmaceutical, biotechnological, and food industries.
Collapse
Affiliation(s)
- Lucas M Berneira
- Center of Chemical, Pharmaceutical and Food Sciences, Lipidomic and Bio-Organic Laboratory, Bioforensic Research Group, Federal University of Pelotas, Eliseu Maciel St., s/n, Pelotas, RS, 96900-010, Brazil
| | - Ivandra I de Santi
- Center of Chemical, Pharmaceutical and Food Sciences, Lipidomic and Bio-Organic Laboratory, Bioforensic Research Group, Federal University of Pelotas, Eliseu Maciel St., s/n, Pelotas, RS, 96900-010, Brazil
| | - Caroline C da Silva
- Center of Chemical, Pharmaceutical and Food Sciences, Lipidomic and Bio-Organic Laboratory, Bioforensic Research Group, Federal University of Pelotas, Eliseu Maciel St., s/n, Pelotas, RS, 96900-010, Brazil
| | - Dalila Venzke
- Center of Chemical, Pharmaceutical and Food Sciences, Lipidomic and Bio-Organic Laboratory, Bioforensic Research Group, Federal University of Pelotas, Eliseu Maciel St., s/n, Pelotas, RS, 96900-010, Brazil
| | - Pio Colepicolo
- Department of Biochemistry, Institute of Chemistry, State University of São Paulo, Lineu Prestes Av., 748, São Paulo, SP, 05508-000, Brazil
| | - Rodrigo de A Vaucher
- Center of Chemical, Pharmaceutical and Food Sciences, Biochemistry Research and Molecular Biology of Microorganisms Laboratory, Federal University of Pelotas, Eliseu Maciel St., s/n, Pelotas, RS, 96900-010, Brazil
| | - Marco A Z Dos Santos
- Center of Chemical, Pharmaceutical and Food Sciences, Lipidomic and Bio-Organic Laboratory, Bioforensic Research Group, Federal University of Pelotas, Eliseu Maciel St., s/n, Pelotas, RS, 96900-010, Brazil
| | - Claudio M P de Pereira
- Center of Chemical, Pharmaceutical and Food Sciences, Lipidomic and Bio-Organic Laboratory, Bioforensic Research Group, Federal University of Pelotas, Eliseu Maciel St., s/n, Pelotas, RS, 96900-010, Brazil.
| |
Collapse
|
15
|
Identification and quantification of dicarboxylic fatty acids in head tissue of farmed Nile tilapia (Oreochromis niloticus). Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractNile tilapia (Oreochromis niloticus) was grown in Bangladesh with four different feeding treatments as part of a project that aims to produce fish in a cost-effective way for low-income consumers in developing countries. Fillet and head tissue was analysed because both tissues were destined for human consumption. Gas chromatography with mass spectrometry (GC/MS) analyses of transesterified fatty acid methyl ester extracts indicated the presence of ~ 50 fatty acids. Major fatty acids in fillet and head tissue were palmitic acid and oleic acid. Both linoleic acid and polyunsaturated fatty acids with three or more double bonds were presented in quantities > 10% of total fatty acids in fillet, but lower in head tissue. Erucic acid levels were below the newly proposed tolerable daily intake in the European Union, based on the consumption of 200 g fillet per day. Moreover, further analysis produced evidence for the presence of the dicarboxylic fatty acid azelaic acid (nonanedioic acid, Di9:0) in head tissue. To verify this uncommon finding, countercurrent chromatography was used to isolate Di9:0 and other dicarboxylic acids from a technical standard followed by its quantification. Di9:0 contributed to 0.4–1.3% of the fatty acid profile in head tissue, but was not detected in fillet. Fish fed with increasing quantities of flaxseed indicated that linoleic acid was the likely precursor of Di9:0 in the head tissue samples.
Collapse
|
16
|
Sustainable Large-Scale Aquaculture of the Northern Hemisphere Sea Lettuce, Ulva fenestrata, in an Off-Shore Seafarm. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2021. [DOI: 10.3390/jmse9060615] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The growing world population demands an increase in sustainable resources for biorefining. The opening of new farm grounds and the cultivation of extractive species, such as marine seaweeds, increases worldwide, aiming to provide renewable biomass for food and non-food applications. The potential for European large-scale open ocean farming of the commercial green seaweed crop Ulva is not yet fully realized. Here we conducted manipulative cultivation experiments in order to investigate the effects of hatchery temperature (10 and 15 °C), nutrient addition (PES and 3xPES) and swarmer density (500 and 10,000 swarmers ml−1) on the biomass yield and biochemical composition (fatty acid, protein, carbohydrate, pigment and phenolic content) of off-shore cultivated Ulva fenestrata in a Swedish seafarm. High seedling densities were optimal for the growth of this northern hemisphere crop strain and significantly increased the mean biomass yield by ~84% compared to low seedling densities. Variations of nutrients or changes in temperature levels during the hatchery phase were not necessary to increase the subsequent growth in an open-water seafarm, however effects of the factors on the thallus habitus (thallus length/width) were observed. We found no significant effect of the environmental factors applied in the hatchery on the total fatty acid or crude protein content in the off-shore cultivated Ulva. However, low seedling density and low temperature increased the total carbohydrate content and furthermore, high temperature in combination with high nutrient levels decreased the pigment content (chlorophyll a, b, carotenoids). Low temperature in combination with high nutrient levels increased the phenolic content. Our study confirms the successful and sustainable potential for large-scale off-shore cultivation of the Scandinavian crop U. fenestrata. We conclude that high seedling density in the hatchery is most important for increasing the total biomass yield of sea-farmed U. fenestrata, and that changing temperature or addition of nutrients overall does not have a large effect on the biochemical composition. To summarize, our study contributes novel insights into the large-scale off-shore cultivation potential of northern hemisphere U. fenestrata and underpins suitable pre-treatments during the hatchery phase of seedlings to facilitate a successful and cost-efficient large-scale rope cultivation.
Collapse
|
17
|
Pereira AG, Fraga-Corral M, Garcia-Oliveira P, Lourenço-Lopes C, Carpena M, Prieto MA, Simal-Gandara J. The Use of Invasive Algae Species as a Source of Secondary Metabolites and Biological Activities: Spain as Case-Study. Mar Drugs 2021; 19:178. [PMID: 33805184 PMCID: PMC8064379 DOI: 10.3390/md19040178] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
In the recent decades, algae have proven to be a source of different bioactive compounds with biological activities, which has increased the potential application of these organisms in food, cosmetic, pharmaceutical, animal feed, and other industrial sectors. On the other hand, there is a growing interest in developing effective strategies for control and/or eradication of invasive algae since they have a negative impact on marine ecosystems and in the economy of the affected zones. However, the application of control measures is usually time and resource-consuming and not profitable. Considering this context, the valorization of invasive algae species as a source of bioactive compounds for industrial applications could be a suitable strategy to reduce their population, obtaining both environmental and economic benefits. To carry out this practice, it is necessary to evaluate the chemical and the nutritional composition of the algae as well as the most efficient methods of extracting the compounds of interest. In the case of northwest Spain, five algae species are considered invasive: Asparagopsis armata, Codium fragile, Gracilaria vermiculophylla, Sargassum muticum, and Grateulopia turuturu. This review presents a brief description of their main bioactive compounds, biological activities, and extraction systems employed for their recovery. In addition, evidence of their beneficial properties and the possibility of use them as supplement in diets of aquaculture animals was collected to illustrate one of their possible applications.
Collapse
Affiliation(s)
- Antia G. Pereira
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.G.P.); (M.F.-C.); (P.G.-O.); (C.L.-L.); (M.C.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Maria Fraga-Corral
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.G.P.); (M.F.-C.); (P.G.-O.); (C.L.-L.); (M.C.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Paula Garcia-Oliveira
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.G.P.); (M.F.-C.); (P.G.-O.); (C.L.-L.); (M.C.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Catarina Lourenço-Lopes
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.G.P.); (M.F.-C.); (P.G.-O.); (C.L.-L.); (M.C.)
| | - Maria Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.G.P.); (M.F.-C.); (P.G.-O.); (C.L.-L.); (M.C.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.G.P.); (M.F.-C.); (P.G.-O.); (C.L.-L.); (M.C.)
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain; (A.G.P.); (M.F.-C.); (P.G.-O.); (C.L.-L.); (M.C.)
| |
Collapse
|
18
|
Saini RK, Mahomoodally MF, Sadeer NB, Keum YS, Rr Rengasamy K. Characterization of nutritionally important lipophilic constituents from brown kelp Ecklonia radiata (C. Ag.) J. Agardh. Food Chem 2021; 340:127897. [PMID: 32871355 DOI: 10.1016/j.foodchem.2020.127897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/08/2020] [Accepted: 08/18/2020] [Indexed: 12/15/2022]
Abstract
This research study presents information for the first time on the nutritionally relevant lipophilic compounds obtained from Ecklonia radiata, a poorly studied brown kelp. The major lipophilic compounds were analyzed utilizing liquid chromatography (LC)-tandem mass spectrometry (MS/MS) and gas chromatography (GC)-mass spectrometry (MS). The LC-MS/MS results revealed the presence of eight major lipophilic compounds, including sterols, carotenoids, vitamin E, and phylloquinone (vitamin K1). Quantitative analysis showed that fucosterol was the most predominant phytosterol in the fronds and stipes of E. radiata. The carotenoids (all-E)-fucoxanthin and (all-E)-β-carotene were present in higher yield. In terms of vitamin E, α-tocopherol was identified as the main tocol. The coenzyme, phylloquinone, important for protein synthesis, was also identified in E. radiata. GC-MS identified 13 fatty acids with palmitic (C16:0) and oleic acid (C18:1n9c) present in the highest quantities. To our knowledge, this is the first report on E. radiata, and the valuable data presented herein can be used as a baseline for developing novel nutraceuticals.
Collapse
Affiliation(s)
- Ramesh Kumar Saini
- Department of Crop Science, Konkuk University, Seoul 143-701, Republic of Korea
| | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Department of Health Sciences, Faculty of Science, University of Mauritius, 230 Réduit, Mauritius
| | - Nabeelah Bibi Sadeer
- Department of Health Sciences, Faculty of Science, University of Mauritius, 230 Réduit, Mauritius
| | - Young-Soo Keum
- Department of Crop Science, Konkuk University, Seoul 143-701, Republic of Korea
| | - Kannan Rr Rengasamy
- Bionanotechnology Research Group, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
19
|
Martins M, Oliveira R, Coutinho JA, Faustino MAF, Neves MGP, Pinto DC, Ventura SP. Recovery of pigments from Ulva rigida. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Anti-angiogenesis and apoptogenic potential of the brown marine alga, Chnoospora minima. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00039-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Algae being one of the dominant organisms in nature can provide best opportunity for the discovery of new anti-cancer drugs. The aim of the present study was to investigate the anti-cancer and anti-angiogenic potential of the brown marine alga Chnoospora minima.
Result
The methanol extract of C. minima and its bioactive fraction (CF4) have highly significant cytotoxic effects to HepG2, HeLa and MCF-7 cancer cell lines. The fraction’s ability to induce apoptosis in the cancer cells was evidenced by increased caspase activity (caspase-3, 7 and 10), DNA fragmentation pattern and upregulated expressions of Bax and p53 genes. The bioactive fraction was not toxic to human peripheral lymphocytes. HPLC, ESI-MS and GC-MS analysis of CF4 fraction indicated the presence of the compound hexadecanoic acid which might be responsible for the observed anti-cancer activity of C. minima. The methanol extract of C. minima exhibited anti-angiogenic effects on chick embryos.
Conclusion
It can be concluded that fraction, CF4, from C. minima is a promising source of an anti-cancer lead molecule.
Collapse
|
21
|
Fernandes T, Cordeiro N. Hemiselmis andersenii and Chlorella stigmatophora As New Sources of High-value Compounds: A Lipidomic Approach. JOURNAL OF PHYCOLOGY 2020; 56:1493-1504. [PMID: 32683702 DOI: 10.1111/jpy.13042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
To unlock the potential of Chlorella stigmatophora (Trebouxiophyceae, Chlorophyta) and Hemiselmis andersenii (Cryptophyceae, Cryptophyta) as natural reactors for biotechnological exploitation, their lipophilic extracts were characterized using Fourier Transform Infrared spectroscopy with Attenuated Total Reflectance (FTIR-ATR) and Gas Chromatography-Mass Spectrometry (GC-MS) before and after alkaline hydrolysis. The GC-MS analysis enabled the identification of 62 metabolites-namely fatty acids (27), aliphatic alcohols (17), monoglycerides (7), sterols (4), and other compounds (7). After alkaline hydrolysis, monounsaturated fatty acids increased by as much as 87%, suggesting that the esterified compounds were mainly neutral lipids. Hemiselmis andersenii yielded the highest Σω3/Σω6 ratio (7.26), indicating that it is a good source of ω3 fatty acids, in comparison to C. stigmatophora (Σω3/Σω6 = 1.24). Both microalgae presented significant amounts of aliphatic alcohols (6.81-10.95 mg · g dw-1 ), which are recognized by their cholesterol-lowering properties. The multivariate analysis allowed visualization of the chemical divergence among H. andersenii lipophilic extracts before and after alkaline hydrolysis, as well as species-specific differences. Chlorella stigmatophora showed to be a valuable source of essential fatty acids for nutraceuticals, whereas H. andersenii, due to its high chemical diversity, seems to be suitable for different fields of application.
Collapse
Affiliation(s)
- Tomásia Fernandes
- Faculty of Sciences and Engineering, University of Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208, Matosinhos, Portugal
| | - Nereida Cordeiro
- Faculty of Sciences and Engineering, University of Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208, Matosinhos, Portugal
| |
Collapse
|
22
|
Jayawardena TU, Sanjeewa KKA, Nagahawatta DP, Lee HG, Lu YA, Vaas APJP, Abeytunga DTU, Nanayakkara CM, Lee DS, Jeon YJ. Anti-Inflammatory Effects of Sulfated Polysaccharide from Sargassum Swartzii in Macrophages via Blocking TLR/NF-Κb Signal Transduction. Mar Drugs 2020; 18:E601. [PMID: 33260666 PMCID: PMC7760840 DOI: 10.3390/md18120601] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 02/07/2023] Open
Abstract
This study involves enzymatic extraction of fucoidan from Sargassum swartzii and further purification via ion-exchange chromatography. The chemical and molecular characteristics of isolated fucoidan is evaluated concerning its anti-inflammatory potential in RAW 264.7 macrophages under LPS induced conditions. Structural properties of fucoidan were assessed via FTIR and NMR spectroscopy. NO production stimulated by LPS was significantly declined by fucoidan. This was witnessed to be achieved via fucoidan acting on mediators such as iNOS and COX-2 including pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β), with dose dependent down-regulation. Further, the effect is exhibited by the suppression of TLR mediated MyD88, IKK complex, ultimately hindering NF-κB and MAPK activation, proposing its therapeutic applications in inflammation related disorders. The research findings provide an insight in relation to the sustainable utilization of fucoidan from marine brown algae S. swartzii as a potent anti-inflammatory agent in the nutritional, pharmaceutical, and cosmeceutical sectors.
Collapse
Affiliation(s)
- Thilina U. Jayawardena
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (T.U.J.); (K.K.A.S.); (D.P.N.); (H.-G.L.); (Y.-A.L.)
| | - K. K. Asanka Sanjeewa
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (T.U.J.); (K.K.A.S.); (D.P.N.); (H.-G.L.); (Y.-A.L.)
| | - D. P. Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (T.U.J.); (K.K.A.S.); (D.P.N.); (H.-G.L.); (Y.-A.L.)
| | - Hyo-Geun Lee
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (T.U.J.); (K.K.A.S.); (D.P.N.); (H.-G.L.); (Y.-A.L.)
| | - Yu-An Lu
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (T.U.J.); (K.K.A.S.); (D.P.N.); (H.-G.L.); (Y.-A.L.)
| | - A. P. J. P. Vaas
- Department of Chemistry, University of Colombo, Colombo 3, Sri Lanka; (A.P.J.P.V.); (D.T.U.A.)
| | - D. T. U. Abeytunga
- Department of Chemistry, University of Colombo, Colombo 3, Sri Lanka; (A.P.J.P.V.); (D.T.U.A.)
| | - C. M. Nanayakkara
- Department of Plant Sciences, University of Colombo, Colombo 3, Sri Lanka;
| | - Dae-Sung Lee
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Seocheon 33362, Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (T.U.J.); (K.K.A.S.); (D.P.N.); (H.-G.L.); (Y.-A.L.)
- Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Korea
| |
Collapse
|
23
|
Pacheco D, Araújo GS, Cotas J, Gaspar R, Neto JM, Pereira L. Invasive Seaweeds in the Iberian Peninsula: A Contribution for Food Supply. Mar Drugs 2020; 18:E560. [PMID: 33207613 PMCID: PMC7697577 DOI: 10.3390/md18110560] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
The introduction of exotic organisms in marine ecosystems can lead to economic and ecological losses. Globally, seaweeds represent a significant part of these non-indigenous species (NIS), with 407 introduced algal species. Furthermore, the presence of NIS seaweeds has been reported as a major concern worldwide since the patterns of their potential invasion mechanisms and vectors are not yet fully understood. Currently, in the Iberian Peninsula, around 50 NIS seaweeds have been recorded. Some of these are also considered invasive due to their overgrowth characteristic and competition with other species. However, invasive seaweeds are suitable for industrial applications due to their high feedstock. Hence, seaweeds' historical use in daily food diet, allied to research findings, showed that macroalgae are a source of nutrients and bioactive compounds with nutraceutical properties. The main goal of this review is to evaluate the records of NIS seaweeds in the Iberian Peninsula and critically analyze the potential of invasive seaweeds application in the food industry.
Collapse
Affiliation(s)
- Diana Pacheco
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| | - Glacio Souza Araújo
- Federal Institute of Education, Science and Technology of Ceará–IFCE, Campus Aracati, CE 040, km 137,1, Aracati 62800-000, Ceará, Brazil;
| | - João Cotas
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| | - Rui Gaspar
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| | - João M. Neto
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| | - Leonel Pereira
- Department of Life Sciences, Marine and Environmental Sciences Centre (MARE), University of Coimbra, 3000-456 Coimbra, Portugal; (D.P.); (J.C.); (R.G.); (J.M.N.)
| |
Collapse
|
24
|
Laura AP, Múzquiz de la Garza AR, Elena PM, Gutiérrez-Uribe JA, Armando TC, Cruz-Suárez LE, Serna-Saldívar SO. Effects of Ecklonia arborea or Silvetia compressa algae intake on serum lipids and hepatic fat accumulation in Wistar rats fed hyperlipidic diets. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Cotas J, Leandro A, Pacheco D, Gonçalves AMM, Pereira L. A Comprehensive Review of the Nutraceutical and Therapeutic Applications of Red Seaweeds (Rhodophyta). Life (Basel) 2020; 10:E19. [PMID: 32110890 PMCID: PMC7151636 DOI: 10.3390/life10030019] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 12/15/2022] Open
Abstract
The red seaweed group (Rhodophyta) is one of the phyla of macroalgae, among the groups Phaeophyceae and Chlorophyta, brown and green seaweeds, respectively. Nowadays, all groups of macroalgae are getting the attention of the scientific community due to the bioactive substances they produce. Several macroalgae products have exceptional properties with nutraceutical, pharmacological, and biomedical interest. The main compounds studied are the fatty acids, pigments, phenols, and polysaccharides. Polysaccharides are the most exploited molecules, which are already widely used in various industries and are, presently, entering into more advanced applications from the therapeutic point of view. The focuses of this review are the red seaweeds' compounds, its proprieties, and its uses. Moreover, this work discusses new possible applications of the compounds of the red seaweeds.
Collapse
Affiliation(s)
- João Cotas
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Adriana Leandro
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Diana Pacheco
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| | - Ana M. M. Gonçalves
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
- Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Leonel Pereira
- MARE—Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-456 Coimbra, Portugal; (J.C.); (A.L.); (D.P.); (A.M.M.G.)
| |
Collapse
|
26
|
Belcour A, Girard J, Aite M, Delage L, Trottier C, Marteau C, Leroux C, Dittami SM, Sauleau P, Corre E, Nicolas J, Boyen C, Leblanc C, Collén J, Siegel A, Markov GV. Inferring Biochemical Reactions and Metabolite Structures to Understand Metabolic Pathway Drift. iScience 2020; 23:100849. [PMID: 32058961 PMCID: PMC6997860 DOI: 10.1016/j.isci.2020.100849] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 11/11/2019] [Accepted: 01/13/2020] [Indexed: 11/03/2022] Open
Abstract
Inferring genome-scale metabolic networks in emerging model organisms is challenged by incomplete biochemical knowledge and partial conservation of biochemical pathways during evolution. Therefore, specific bioinformatic tools are necessary to infer biochemical reactions and metabolic structures that can be checked experimentally. Using an integrative approach combining genomic and metabolomic data in the red algal model Chondrus crispus, we show that, even metabolic pathways considered as conserved, like sterols or mycosporine-like amino acid synthesis pathways, undergo substantial turnover. This phenomenon, here formally defined as "metabolic pathway drift," is consistent with findings from other areas of evolutionary biology, indicating that a given phenotype can be conserved even if the underlying molecular mechanisms are changing. We present a proof of concept with a methodological approach to formalize the logical reasoning necessary to infer reactions and molecular structures, abstracting molecular transformations based on previous biochemical knowledge.
Collapse
Affiliation(s)
- Arnaud Belcour
- Univ Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
| | - Jean Girard
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Méziane Aite
- Univ Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
| | - Ludovic Delage
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | | | | | - Cédric Leroux
- Sorbonne Université, CNRS, Plateforme METABOMER-Corsaire (FR2424), Station Biologique de Roscoff, Roscoff, France
| | - Simon M Dittami
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | | | - Erwan Corre
- Sorbonne Université, CNRS, Plateforme ABiMS (FR2424), Station Biologique de Roscoff, Roscoff, France
| | - Jacques Nicolas
- Univ Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
| | - Catherine Boyen
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Catherine Leblanc
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Jonas Collén
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Anne Siegel
- Univ Rennes, Inria, CNRS, IRISA, Equipe Dyliss, Rennes, France
| | - Gabriel V Markov
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), 29680 Roscoff, France.
| |
Collapse
|
27
|
Fernandes T, Martel A, Cordeiro N. Exploring Pavlova pinguis chemical diversity: a potentially novel source of high value compounds. Sci Rep 2020; 10:339. [PMID: 31941962 PMCID: PMC6962392 DOI: 10.1038/s41598-019-57188-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/19/2019] [Indexed: 11/09/2022] Open
Abstract
To uncover the potential of Pavlova pinguis J.C. Green as a natural source of value added compounds, its lipophilic extracts were studied before and after alkaline hydrolysis using gas chromatography-mass spectrometry (GC-MS). The GC-MS analysis of the lipophilic extracts showed a wide chemical diversity including 72 compounds distributed by fatty acids (29), sterols (14), fatty alcohols (13) and other lipophilic compounds (16). Fatty acids represented the main class of identified compounds presenting myristic, palmitic, palmitoleic and eicosapentaenoic acids as its main components. Through the ∑ω6/∑ω3 ratio (0.25) and sterol composition it was possible to observe that P. pinguis is a valuable source of ω3 fatty acids and stigmasterol (up to 43% of total sterols). After alkaline hydrolysis, fatty acids and fatty alcohols content increased by 32 and 14% respectively, in contrast to, monoglycerides which decreased by 84%. The long chain alcohols content enables the exploitation of this microalga as a source of these bioactive compounds. Smaller amounts of sugars and other compounds were also detected. The present study is a valuable reference to the metabolite characterization of P. pinguis and shows the potential of this microalga for nutraceutical and pharmaceutical industries.
Collapse
Affiliation(s)
- Tomásia Fernandes
- LB3, Faculty of Sciences and Engineering, University of Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal
| | - Antera Martel
- Banco Español de Algas (BEA), Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Nereida Cordeiro
- LB3, Faculty of Sciences and Engineering, University of Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal. .,CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208, Matosinhos, Portugal.
| |
Collapse
|
28
|
Charoensiddhi S, Abraham RE, Su P, Zhang W. Seaweed and seaweed-derived metabolites as prebiotics. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 91:97-156. [PMID: 32035602 DOI: 10.1016/bs.afnr.2019.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Seaweeds and their bioactive compounds, particularly polysaccharides and phenolics can be regarded as great dietary supplements with gut health benefits and prebiotics. These components are resistant to digestion by enzymes present in the human gastrointestinal tract, also selectively stimulate the growth of beneficial gut bacteria and the production of fermentation products such as short chain fatty acids. Commonly, the health benefits of seaweed components are assessed by including them in an in vitro anaerobic fermentation system containing human fecal inocula that mimics the environment of the human large bowel. Regarding to the complex interactions between dietary components, gastrointestinal physiological processes, and gut microbiota are difficult to model in vitro. Consequently it is important to follow up the promising in vitro results with in vivo animal or human testing. The aim of this chapter is to have a comprehensive review on the application of seaweeds and seaweed-derived metabolites as prebiotics, and understand the trends, gaps and future directions of both scientific and industrial developments. This work contributes to develop and expand new platform of seaweed utilization for higher-value products, particularly to functional food and nutraceutical industries in order to serve the social demand for health awareness and support economic development.
Collapse
Affiliation(s)
- Suvimol Charoensiddhi
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, Thailand
| | - Reinu E Abraham
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Peng Su
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Wei Zhang
- Centre for Marine Bioproducts Development, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.
| |
Collapse
|
29
|
Santos SAO, Félix R, Pais ACS, Rocha SM, Silvestre AJD. The Quest for Phenolic Compounds from Macroalgae: A Review of Extraction and Identification Methodologies. Biomolecules 2019; 9:E847. [PMID: 31835386 PMCID: PMC6995553 DOI: 10.3390/biom9120847] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/12/2019] [Accepted: 11/25/2019] [Indexed: 12/16/2022] Open
Abstract
The current interest of the scientific community for the exploitation of high-value compounds from macroalgae is related to the increasing knowledge of their biological activities and health benefits. Macroalgae phenolic compounds, particularly phlorotannins, have gained particular attention due to their specific bioactivities, including antioxidant, antiproliferative, or antidiabetic. Notwithstanding, the characterization of macroalgae phenolic compounds is a multi-step task, with high challenges associated with their isolation and characterization, due to the highly complex and polysaccharide-rich matrix of macroalgae. Therefore, this fraction is far from being fully explored. In fact, a critical revision of the extraction and characterization methodologies already used in the analysis of phenolic compounds from macroalgae is lacking in the literature, and it is of uttermost importance to compile validated methodologies and discourage misleading practices. The aim of this review is to discuss the state-of-the-art of phenolic compounds already identified in green, red, and brown macroalgae, reviewing their structural classification, as well as critically discussing extraction methodologies, chromatographic separation techniques, and the analytical strategies for their characterization, including information about structural identification techniques and key spectroscopic profiles. For the first time, mass spectrometry data of phlorotannins, a chemical family quite exclusive of macroalgae, is compiled and discussed.
Collapse
Affiliation(s)
- Sónia A. O. Santos
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.S.P.); (A.J.D.S.)
| | - Rafael Félix
- On Leave MARE—Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-620 Peniche, Portugal;
| | - Adriana C. S. Pais
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.S.P.); (A.J.D.S.)
| | - Sílvia M. Rocha
- QOPNA/LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Armando J. D. Silvestre
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.S.P.); (A.J.D.S.)
| |
Collapse
|
30
|
Variation in Lipid Components from 15 Species of Tropical and Temperate Seaweeds. Mar Drugs 2019; 17:md17110630. [PMID: 31698797 PMCID: PMC6891767 DOI: 10.3390/md17110630] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
The present study describes the variation in lipid components from 15 species of seaweeds belonging to the Chlorophyta, Ochrophyta, and Rhodophyta phyla collected in tropical (Indonesia) and temperate (Japan) areas. Analyses were performed of multiple components, including chlorophylls, carotenoids, n-3 and n-6 polyunsaturated fatty acids (PUFAs), and alpha tocopherol (α-Toc). Chlorophyll (Chl) and carotenoid contents varied among phyla, but not with the sampling location. Chl a and b were the major chlorophylls in Chlorophyta. Chl a and Chl c were the main chlorophylls in Ochrophyta, while Chl a was the dominant chlorophylls in Rhodophyta. β-Carotene and fucoxanthin were detected as major seaweed carotenoids. The former was present in all species in a variety of ranges, while the latter was mainly found in Ochrophyta and in small quantities in Rhodophyta, but not in Chlorophyta. The total lipids (TL) content and fatty acids composition were strongly affected by sampling location. The TL and n-3 PUFAs levels tended to be higher in temperate seaweeds compared with those in tropical seaweeds. The major n-3 PUFAs in different phyla, namely, eicosapentaenoic acid (EPA) and stearidonic acid (SDA) in Ochrophyta, α-linolenic acid (ALA) and SDA in Chlorophyta, and EPA in Rhodophyta, accumulated in temperate seaweeds. Chlorophylls, their derivatives, and carotenoids are known to have health benefits, such as antioxidant activities, while n-3 PUFAs are known to be essential nutrients that positively influence human nutrition and health. Therefore, seaweed lipids could be used as a source of ingredients with health benefits for functional foods and nutraceuticals.
Collapse
|
31
|
Gomez-Zavaglia A, Prieto Lage MA, Jimenez-Lopez C, Mejuto JC, Simal-Gandara J. The Potential of Seaweeds as a Source of Functional Ingredients of Prebiotic and Antioxidant Value. Antioxidants (Basel) 2019; 8:antiox8090406. [PMID: 31533320 PMCID: PMC6770939 DOI: 10.3390/antiox8090406] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 12/11/2022] Open
Abstract
Two thirds of the world is covered by oceans, whose upper layer is inhabited by algae. This means that there is a large extension to obtain these photoautotrophic organisms. Algae have undergone a boom in recent years, with consequent discoveries and advances in this field. Algae are not only of high ecological value but also of great economic importance. Possible applications of algae are very diverse and include anti-biofilm activity, production of biofuels, bioremediation, as fertilizer, as fish feed, as food or food ingredients, in pharmacology (since they show antioxidant or contraceptive activities), in cosmeceutical formulation, and in such other applications as filters or for obtaining minerals. In this context, algae as food can be of help to maintain or even improve human health, and there is a growing interest in new products called functional foods, which can promote such a healthy state. Therefore, in this search, one of the main areas of research is the extraction and characterization of new natural ingredients with biological activity (e.g., prebiotic and antioxidant) that can contribute to consumers' well-being. The present review shows the results of a bibliographic survey on the chemical composition of macroalgae, together with a critical discussion about their potential as natural sources of new functional ingredients.
Collapse
Affiliation(s)
- Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA), CCT-CONICET La Plata, Calle 47 y 116, La Plata, Buenos Aires 1900, Argentina
| | - Miguel A Prieto Lage
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Science, University of Vigo - Ourense Campus, E32004 Ourense, Spain
| | - Cecilia Jimenez-Lopez
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Science, University of Vigo - Ourense Campus, E32004 Ourense, Spain
| | - Juan C Mejuto
- Department of Physical Chemistry, Faculty of Science, University of Vigo - Ourense Campus, E32004 Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Science, University of Vigo - Ourense Campus, E32004 Ourense, Spain.
| |
Collapse
|
32
|
|
33
|
Jerković I, Kranjac M, Marijanović Z, Šarkanj B, Cikoš AM, Aladić K, Pedisić S, Jokić S. Chemical Diversity of Codium bursa (Olivi) C. Agardh Headspace Compounds, Volatiles, Fatty Acids and Insight into Its Antifungal Activity. Molecules 2019; 24:molecules24050842. [PMID: 30818836 PMCID: PMC6429293 DOI: 10.3390/molecules24050842] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 11/16/2022] Open
Abstract
The focus of present study is on Codium bursa collected from the Adriatic Sea. C. bursa volatiles were identified by gas chromatography and mass spectrometry (GC-FID; GC-MS) after headspace solid-phase microextraction (HS-SPME), hydrodistillation (HD), and supercritical CO₂ extraction (SC-CO₂). The headspace composition of dried (HS-D) and fresh (HS-F) C. bursa was remarkably different. Dimethyl sulfide, the major HS-F compound was present in HS-D only as a minor constituent and heptadecane percentage was raised in HS-D. The distillate of fresh C. bursa contained heptadecane and docosane among the major compounds. After air-drying, a significantly different composition of the volatile oil was obtained with (E)-phytol as the predominant compound. It was also found in SC-CO₂ extract of freeze-dried C. bursa (FD-CB) as the major constituent. Loliolide (3.51%) was only identified in SC-CO₂ extract. Fatty acids were determined from FD-CB after derivatisation as methyl esters by GC-FID. The most dominant acids were palmitic (25.4%), oleic (36.5%), linoleic (11.6%), and stearic (9.0%). FD-CB H₂O extract exhibited better antifungal effects against Fusarium spp., while dimethyl sulfoxide (DMSO) extract was better for the inhibition of Penicillium expansum, Aspergillus flavus, and Rhizophus spp. The extracts showed relatively good antifungal activity, especially against P. expansum (for DMSO extract MIC50 was at 50 µg/mL).
Collapse
Affiliation(s)
- Igor Jerković
- Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia.
| | - Marina Kranjac
- Faculty of Chemistry and Technology, University of Split, 21000 Split, Croatia.
| | | | - Bojan Šarkanj
- Department of Food Technology, University Center Koprivnica, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia.
| | - Ana-Marija Cikoš
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia.
| | - Krunoslav Aladić
- Croatian Veterinary Institute, Branch-Veterinary Institute Vinkovci, Josipa Kozarca 24, 32100 Vinkovci, Croatia.
| | - Sandra Pedisić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Stela Jokić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia.
| |
Collapse
|
34
|
Torres P, Santos JP, Chow F, dos Santos DY. A comprehensive review of traditional uses, bioactivity potential, and chemical diversity of the genus Gracilaria (Gracilariales, Rhodophyta). ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.12.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Alves C, Silva J, Pinteus S, Gaspar H, Alpoim MC, Botana LM, Pedrosa R. From Marine Origin to Therapeutics: The Antitumor Potential of Marine Algae-Derived Compounds. Front Pharmacol 2018; 9:777. [PMID: 30127738 PMCID: PMC6089330 DOI: 10.3389/fphar.2018.00777] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/26/2018] [Indexed: 11/13/2022] Open
Abstract
Marine environment has demonstrated to be an interesting source of compounds with uncommon and unique chemical features on which the molecular modeling and chemical synthesis of new drugs can be based with greater efficacy and specificity for the therapeutics. Cancer is a growing public health threat, and despite the advances in biomedical research and technology, there is an urgent need for the development of new anticancer drugs. In this field, it is estimated that more than 60% of commercially available anticancer drugs are natural biomimetic inspired. Among the marine organisms, algae have revealed to be one of the major sources of new compounds of marine origin, including those exhibiting antitumor and cytotoxic potential. These compounds demonstrated ability to mediate specific inhibitory activities on a number of key cellular processes, including apoptosis pathways, angiogenesis, migration and invasion, in both in vitro and in vivo models, revealing their potential to be used as anticancer drugs. This review will focus on the bioactive molecules from algae with antitumor potential, from their origin to their potential uses, with special emphasis to the alga Sphaerococcus coronopifolius as a producer of cytotoxic compounds.
Collapse
Affiliation(s)
- Celso Alves
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal.,Biology Department, DoMar Doctoral Programme on Marine Science, Technology and Management, University of Aveiro, Aveiro, Portugal
| | - Joana Silva
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Susete Pinteus
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| | - Helena Gaspar
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal.,Faculty of Sciences, BioISI - Biosystems and Integrative Sciences Institute, University of Lisboa, Lisbon, Portugal
| | - Maria C Alpoim
- Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal.,Center of Investigation in Environment, Genetics and Oncobiology, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Luis M Botana
- Departament of Pharmacology, Faculty of Veterinary, University of Santiago de Compostela, Lugo, Spain
| | - Rui Pedrosa
- MARE - Marine and Environmental Sciences Centre, ESTM, Polytechnic Institute of Leiria, Peniche, Portugal
| |
Collapse
|
36
|
Ito M, Koba K, Hikihara R, Ishimaru M, Shibata T, Hatate H, Tanaka R. Analysis of functional components and radical scavenging activity of 21 algae species collected from the Japanese coast. Food Chem 2018; 255:147-156. [PMID: 29571460 DOI: 10.1016/j.foodchem.2018.02.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/25/2018] [Accepted: 02/13/2018] [Indexed: 11/26/2022]
Abstract
The functional chemical substances and the antioxidant activity of lipids in 21 marine algae along the Japanese coast were investigated. Principal component analysis was performed to detect any correlation between the chemical substances and algae phylum. Chlorophyta contained a high level of β-carotene. Rhodophyta contained high amounts of cholesterol, β-sitosterol, and saturated fatty acids. Phaeophyta were rich in fucosterol, α-tocopherol, fucoxanthin, and polyphenol. Phaeophyta algae also showed the highest antioxidant activity compared with other phylum. This suggests that Phaeophyta has the greatest potential to be used as a functional food. Consumption of the beneficial Phaeophyta species, such as Eisenia arborea Areschoug and Ecklonia cava Kjellman should be encouraged as not only as food products but also as nutraceuticals and dietary supplements. These beneficial ingredients should be encouraged to be studied in depth with the possibility to develop specific formulated products target to special consumer's population with added nutritional value.
Collapse
Affiliation(s)
- Meiko Ito
- Graduate School of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki 889-2192, Japan
| | - Kaisei Koba
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki 889-2192, Japan
| | - Risako Hikihara
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki 889-2192, Japan
| | - Mami Ishimaru
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki 889-2192, Japan
| | - Toshiyuki Shibata
- Graduate School of Bioresources, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan; Seaweed Biorefinery Research Center, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| | - Hideo Hatate
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki 889-2192, Japan
| | - Ryusuke Tanaka
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki 889-2192, Japan.
| |
Collapse
|
37
|
Characterization and in vitro evaluation of seaweed species as potential functional ingredients to ameliorate metabolic syndrome. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
38
|
Kurashov EA, Mitrukova GG, Krylova JV. Interannual Variability of Low-Molecular Metabolite Composition in Ceratophyllum demersum (Ceratophyllaceae) from a Floodplain Lake with a Changeable Trophic Status. CONTEMP PROBL ECOL+ 2018. [DOI: 10.1134/s1995425518020063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Alencar DBDE, Diniz JC, Rocha SAS, Pires-Cavalcante KMS, Lima RLDE, Sousa KCDE, Freitas JO, Bezerra RM, Baracho BM, Sampaio AH, Viana FA, Saker-Sampaio S. Fatty acid composition from the marine red algae Pterocladiella capillacea (S. G. Gmelin) Santelices & Hommersand 1997 and Osmundaria obtusiloba (C. Agardh) R. E. Norris 1991 and its antioxidant activity. AN ACAD BRAS CIENC 2018; 90:449-459. [PMID: 29424393 DOI: 10.1590/0001-3765201820160315] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/15/2016] [Indexed: 12/17/2022] Open
Abstract
This study evaluated the chemical composition and antioxidant activity of fatty acids from the marine red algae Pterocladiella capillacea (S. G. Gmelin) Santelices & Hommersand 1997 and Osmundaria obtusiloba (C. Agardh) R. E. Norris 1991. The gas chromatography mass spectrometry (GC-MS) identified nine fatty acids in the two species. The major fatty acids of P. capillacea and O. obtusiloba were palmitic acid, oleic acid, arachidonic acid and eicosapentaenoic acid. The DPPH radical scavenging capacity of fatty acids was moderate ranging from 25.90% to 29.97%. Fatty acids from P. capillacea (31.18%) had a moderate ferrous ions chelating activity (FIC), while in O. obtusiloba (17.17%), was weak. The ferric reducing antioxidant power (FRAP) of fatty acids from P. capillacea and O. obtusiloba was low. As for β-carotene bleaching (BCB), P. capillacea and O. obtusiloba showed a good activity. This is the first report of the antioxidant activities of fatty acids from the marine red algae P. capillacea and O. obtusiloba.
Collapse
Affiliation(s)
- Daniel B DE Alencar
- Departamento de Engenharia de Pesca, Laboratório de Produtos Naturais Marinhos, Universidade Federal do Ceará, Campus do Pici, Av. Mister Hull, s/n, Caixa Postal 6043, 60455-970 Fortaleza, CE, Brazil
| | - Jaécio C Diniz
- Departamento de Química, Laboratório de Cromatografia, Universidade do Estado do Rio Grande do Norte, Campus Universitário Central, Setor III, Rua Prof. Antônio Campos, s/n, 59633-010 Mossoró, RN, Brazil
| | - Simone A S Rocha
- Departamento de Química, Laboratório de Cromatografia, Universidade do Estado do Rio Grande do Norte, Campus Universitário Central, Setor III, Rua Prof. Antônio Campos, s/n, 59633-010 Mossoró, RN, Brazil
| | - Kelma M S Pires-Cavalcante
- Departamento de Engenharia de Pesca, Laboratório de Produtos Naturais Marinhos, Universidade Federal do Ceará, Campus do Pici, Av. Mister Hull, s/n, Caixa Postal 6043, 60455-970 Fortaleza, CE, Brazil
| | - Rebeca L DE Lima
- Departamento de Engenharia de Pesca, Laboratório de Produtos Naturais Marinhos, Universidade Federal do Ceará, Campus do Pici, Av. Mister Hull, s/n, Caixa Postal 6043, 60455-970 Fortaleza, CE, Brazil
| | - Karolina C DE Sousa
- Departamento de Engenharia de Pesca, Laboratório de Produtos Naturais Marinhos, Universidade Federal do Ceará, Campus do Pici, Av. Mister Hull, s/n, Caixa Postal 6043, 60455-970 Fortaleza, CE, Brazil
| | - Jefferson O Freitas
- Departamento de Engenharia de Pesca, Laboratório de Produtos Naturais Marinhos, Universidade Federal do Ceará, Campus do Pici, Av. Mister Hull, s/n, Caixa Postal 6043, 60455-970 Fortaleza, CE, Brazil
| | - Rayssa M Bezerra
- Departamento de Engenharia de Pesca, Laboratório de Produtos Naturais Marinhos, Universidade Federal do Ceará, Campus do Pici, Av. Mister Hull, s/n, Caixa Postal 6043, 60455-970 Fortaleza, CE, Brazil
| | - Bárbara M Baracho
- Departamento de Engenharia de Pesca, Laboratório de Produtos Naturais Marinhos, Universidade Federal do Ceará, Campus do Pici, Av. Mister Hull, s/n, Caixa Postal 6043, 60455-970 Fortaleza, CE, Brazil
| | - Alexandre H Sampaio
- Departamento de Engenharia de Pesca, Laboratório de Produtos Naturais Marinhos, Universidade Federal do Ceará, Campus do Pici, Av. Mister Hull, s/n, Caixa Postal 6043, 60455-970 Fortaleza, CE, Brazil
| | - Francisco A Viana
- Departamento de Química, Laboratório de Cromatografia, Universidade do Estado do Rio Grande do Norte, Campus Universitário Central, Setor III, Rua Prof. Antônio Campos, s/n, 59633-010 Mossoró, RN, Brazil
| | - Silvana Saker-Sampaio
- Departamento de Engenharia de Pesca, Laboratório de Produtos Naturais Marinhos, Universidade Federal do Ceará, Campus do Pici, Av. Mister Hull, s/n, Caixa Postal 6043, 60455-970 Fortaleza, CE, Brazil
| |
Collapse
|
40
|
The development of seaweed-derived bioactive compounds for use as prebiotics and nutraceuticals using enzyme technologies. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.10.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
41
|
Santos SAO, Trindade SS, Oliveira CSD, Parreira P, Rosa D, Duarte MF, Ferreira I, Cruz MT, Rego AM, Abreu MH, Rocha SM, Silvestre AJD. Lipophilic Fraction of Cultivated Bifurcaria bifurcata R. Ross: Detailed Composition and In Vitro Prospection of Current Challenging Bioactive Properties. Mar Drugs 2017; 15:md15110340. [PMID: 29104253 PMCID: PMC5706030 DOI: 10.3390/md15110340] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 10/19/2017] [Accepted: 10/23/2017] [Indexed: 01/22/2023] Open
Abstract
Macroalgae have been seen as an alternative source of molecules with promising bioactivities to use in the prevention and treatment of current lifestyle diseases. In this vein, the lipophilic fraction of short-term (three weeks) cultivated Bifurcaria bifurcata was characterized in detail by gas chromatography–mass spectrometry (GC-MS). B. bifurcata dichloromethane extract was composed mainly by diterpenes (1892.78 ± 133.97 mg kg−1 dry weight (DW)), followed by fatty acids, both saturated (550.35 ± 15.67 mg kg−1 DW) and unsaturated (397.06 ± 18.44 mg kg−1 DW). Considerable amounts of sterols, namely fucosterol (317.68 ± 26.11 mg kg−1 DW) were also found. In vitro tests demonstrated that the B. bifurcata lipophilic extract show antioxidant, anti-inflammatory and antibacterial activities (against both Gram-positive and Gram-negative bacteria), using low extract concentrations (in the order of µg mL−1). Enhancement of antibiotic activity of drug families of major clinical importance was observed by the use of B. bifurcata extract. This enhancement of antibiotic activity depends on the microbial strain and on the antibiotic. This work represents the first detailed phytochemical study of the lipophilic extract of B. bifurcata and is, therefore, an important contribution for the valorization of B. bifurcata macroalgae, with promising applications in functional foods, nutraceutical, cosmetic and biomedical fields.
Collapse
Affiliation(s)
- Sónia A O Santos
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Stephanie S Trindade
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Catia S D Oliveira
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Paula Parreira
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908 Beja, Portugal.
| | - Daniela Rosa
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908 Beja, Portugal.
| | - Maria F Duarte
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908 Beja, Portugal.
- ICAAM-Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Pólo da Mitra, 7006-554 Évora, Portugal.
| | - Isabel Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.
- FFUC-Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Maria T Cruz
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal.
- FFUC-Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Andreia M Rego
- ALGAplus-Prod. e Comerc. De Algas e Seus Derivados, Lda., 3830-196 Ílhavo, Portugal.
| | - Maria H Abreu
- ALGAplus-Prod. e Comerc. De Algas e Seus Derivados, Lda., 3830-196 Ílhavo, Portugal.
| | - Silvia M Rocha
- QOPNA and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Armando J D Silvestre
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
42
|
High-Performance Liquid Chromatography with Fluorescence Detection for Simultaneous Analysis of Phytosterols (Stigmasterol, β-Sitosterol, Campesterol, Ergosterol, and Fucosterol) and Cholesterol in Plant Foods. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0841-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Stranska-Zachariasova M, Kurniatanty I, Gbelcova H, Jiru M, Rubert J, Nindhia TGT, D'Acunto CW, Sumarsono SH, Tan MI, Hajslova J, Ruml T. Bioprospecting of Turbinaria Macroalgae as a Potential Source of Health Protective Compounds. Chem Biodivers 2017; 14. [DOI: 10.1002/cbdv.201600192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/01/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Milena Stranska-Zachariasova
- Department of Food Analysis and Nutrition; University of Chemistry and Technology, Prague; Technicka 3 166 28 Prague Czech Republic
| | - Isma Kurniatanty
- School of Life Sciences and Technology; Institut Teknologi Bandung; Jl. Tamansari 64 40116 Bandung Indonesia
| | - Helena Gbelcova
- Department of Biochemistry and Microbiology; University of Chemistry and Technology, Prague; Technicka 3 166 28 Prague Czech Republic
| | - Monika Jiru
- Department of Food Analysis and Nutrition; University of Chemistry and Technology, Prague; Technicka 3 166 28 Prague Czech Republic
| | - Josep Rubert
- Department of Food Analysis and Nutrition; University of Chemistry and Technology, Prague; Technicka 3 166 28 Prague Czech Republic
| | - Tjokorda Gde Tirta Nindhia
- Department of Mechanical Engineering; Engineering Faculty; Udayana University; Jimbaran, Bali 80361 Indonesia
| | - Cosimo Walter D'Acunto
- Department of Biochemistry and Microbiology; University of Chemistry and Technology, Prague; Technicka 3 166 28 Prague Czech Republic
| | - Sony Heru Sumarsono
- School of Life Sciences and Technology; Institut Teknologi Bandung; Jl. Tamansari 64 40116 Bandung Indonesia
| | - Marselina Irasonia Tan
- School of Life Sciences and Technology; Institut Teknologi Bandung; Jl. Tamansari 64 40116 Bandung Indonesia
| | - Jana Hajslova
- Department of Food Analysis and Nutrition; University of Chemistry and Technology, Prague; Technicka 3 166 28 Prague Czech Republic
| | - Tomas Ruml
- Department of Biochemistry and Microbiology; University of Chemistry and Technology, Prague; Technicka 3 166 28 Prague Czech Republic
| |
Collapse
|
44
|
Food-industry-effluent-grown microalgal bacterial flocs as a bioresource for high-value phycochemicals and biogas. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.05.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
45
|
Large-scale bioprospecting of cyanobacteria, micro- and macroalgae from the Aegean Sea. N Biotechnol 2016; 33:399-406. [PMID: 26902670 DOI: 10.1016/j.nbt.2016.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 11/21/2022]
Abstract
Marine organisms constitute approximately one-half of the total global biodiversity, being rich reservoirs of structurally diverse biofunctional components. The potential of cyanobacteria, micro- and macroalgae as sources of antimicrobial, antitumoral, anti-inflammatory, and anticoagulant compounds has been reported extensively. Nonetheless, biological activities of marine fauna and flora of the Aegean Sea have remained poorly studied when in comparison to other areas of the Mediterranean Sea. In this study, we screened the antimicrobial, antifouling, anti-inflammatory and anticancer potential of in total 98 specimens collected from the Aegean Sea. Ethanol extract of diatom Amphora cf capitellata showed the most promising antimicrobial results against Candida albicans while the extract of diatom Nitzschia communis showed effective results against Gram-positive bacterium, S. aureus. Extracts from the red alga Laurencia papillosa and from three Cystoseira species exhibited selective antiproliferative activity against cancer cell lines and an extract from the brown alga Dilophus fasciola showed the highest anti-inflammatory activity as measured in primary microglial and astrocyte cell cultures as well as by the reduction of proinflammatory cytokines. In summary, our study demonstrates that the Aegean Sea is a rich source of species that possess interesting potential for developing industrial applications.
Collapse
|
46
|
Seaweeds as Preventive Agents for Cardiovascular Diseases: From Nutrients to Functional Foods. Mar Drugs 2015; 13:6838-65. [PMID: 26569268 PMCID: PMC4663556 DOI: 10.3390/md13116838] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/16/2015] [Accepted: 10/30/2015] [Indexed: 12/11/2022] Open
Abstract
Being naturally enriched in key nutrients and in various health-promoting compounds, seaweeds represent promising candidates for the design of functional foods. Soluble dietary fibers, peptides, phlorotannins, lipids and minerals are macroalgae's major compounds that can hold potential in high-value food products derived from macroalgae, including those directed to the cardiovascular-health promotion. This manuscript revises available reported data focusing the role of diet supplementation of macroalgae, or extracts enriched in bioactive compounds from macroalgae origin, in targeting modifiable markers of cardiovascular diseases (CVDs), like dyslipidemia, oxidative stress, vascular inflammation, hypertension, hypercoagulability and activation of the sympathetic and renin-angiotensin systems, among others. At last, the review also describes several products that have been formulated with the use of whole macroalgae or extracts, along with their claimed cardiovascular-associated benefits.
Collapse
|
47
|
Kendel M, Wielgosz-Collin G, Bertrand S, Roussakis C, Bourgougnon N, Bedoux G. Lipid Composition, Fatty Acids and Sterols in the Seaweeds Ulva armoricana, and Solieria chordalis from Brittany (France): An Analysis from Nutritional, Chemotaxonomic, and Antiproliferative Activity Perspectives. Mar Drugs 2015; 13:5606-28. [PMID: 26404323 PMCID: PMC4584343 DOI: 10.3390/md13095606] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 08/07/2015] [Accepted: 08/14/2015] [Indexed: 12/15/2022] Open
Abstract
Lipids from the proliferative macroalgae Ulva armoricana (Chlorophyta) and Solieria chordalis (Rhodophyta) from Brittany, France, were investigated. The total content of lipids was 2.6% and 3.0% dry weight for U. armoricana and S. chordalis, respectively. The main fractions of S. chordalis were neutral lipids (37%) and glycolipids (38%), whereas U. armoricana contained mostly neutral lipids (55%). Polyunsaturated fatty acids (PUFA) represented 29% and 15% of the total lipids in U. armoricana and S. chordalis, respectively. In both studied algae, the phospholipids were composed of PUFA for 18%. In addition, PUFA were shown to represent 9% and 4.5% of glycolipids in U. armoricana and S. chordalis, respectively. The essential PUFA were 16:4n-3, 18:4n-3, 18:2n-3, 18:2n-6, and 22:6n-3 in U. armoricana, and 20:4n-6 and 20:5n-3 in S. chordalis. It is important to notice that six 2-hydroxy-, three 3-hydroxy-, and two monounsaturated hydroxy fatty acids were also identified and may provide a chemotaxonomic basis for algae. These seaweeds contained interesting compounds such as squalene, α-tocopherol, cholest-4-en-3-one and phytosterols. The antiproliferative effect was evaluated in vitro on human non-small-cell bronchopulmonary carcinoma line (NSCLC-N6) with an IC50 of 23 μg/mL for monogalactosyldiacylglycerols isolated from S. chordalis and 24 μg/mL for digalactosyldiacylglycerols from U. armoricana. These results confirm the potentialities of valorization of these two species in the fields of health, nutrition and chemotaxonomy.
Collapse
Affiliation(s)
- Melha Kendel
- University of South Brittany, EA 3884, LBCM, IUEM, F-56000 Vannes, France; E-Mails: (M.K.); (N.B.)
| | - Gaëtane Wielgosz-Collin
- Faculté des Sciences Pharmaceutiques et Biologiques, LUNAM, Université de Nantes, Groupe Mer-Molécules-Santé MMS, EA 2160, Institut Universitaire Mer et Littoral FR3473 CNRS, 9 Rue Bias, BP 53508, F-44035 Nantes Cedex 1, France; E-Mails: (G.W.-C.); (S.B.)
| | - Samuel Bertrand
- Faculté des Sciences Pharmaceutiques et Biologiques, LUNAM, Université de Nantes, Groupe Mer-Molécules-Santé MMS, EA 2160, Institut Universitaire Mer et Littoral FR3473 CNRS, 9 Rue Bias, BP 53508, F-44035 Nantes Cedex 1, France; E-Mails: (G.W.-C.); (S.B.)
| | - Christos Roussakis
- Faculté des Sciences Pharmaceutiques et Biologiques, LUNAM Université, Université de Nantes, IICIMED/ERATU-EA 1155 Cancer du Poumon et Cibles Moléculaires, 1 Rue Gaston Veil, BP 53508, F-44035 Nantes Cedex 01, France; E-Mail:
| | - Nathalie Bourgougnon
- University of South Brittany, EA 3884, LBCM, IUEM, F-56000 Vannes, France; E-Mails: (M.K.); (N.B.)
| | - Gilles Bedoux
- University of South Brittany, EA 3884, LBCM, IUEM, F-56000 Vannes, France; E-Mails: (M.K.); (N.B.)
| |
Collapse
|