1
|
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Hetta HF, Saad HM, Batiha GES. A Mutual Nexus Between Epilepsy and α-Synuclein: A Puzzle Pathway. Mol Neurobiol 2024; 61:10198-10215. [PMID: 38703341 DOI: 10.1007/s12035-024-04204-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
Alpha-synuclein (α-Syn) is a specific neuronal protein that regulates neurotransmitter release and trafficking of synaptic vesicles. Exosome-associated α-Syn which is specific to the central nervous system (CNS) is involved in the pathogenesis of epilepsy. Therefore, this review aimed to elucidate the possible link between α-Syn and epilepsy, and how it affects the pathophysiology of epilepsy. A neurodegenerative protein such as α-Syn is implicated in the pathogenesis of epilepsy. Evidence from preclinical and clinical studies revealed that upregulation of α-Syn induces progressive neuronal dysfunctions through induction of oxidative stress, neuroinflammation, and inhibition of autophagy in a vicious cycle with subsequent development of severe epilepsy. In addition, accumulation of α-Syn in epilepsy could be secondary to the different cellular alterations including oxidative stress, neuroinflammation, reduction of brain-derived neurotrophic factor (BDNF) and progranulin (PGN), and failure of the autophagy pathway. However, the mechanism of α-Syn-induced-epileptogenesis is not well elucidated. Therefore, α-Syn could be a secondary consequence of epilepsy. Preclinical and clinical studies are warranted to confirm this causal relationship.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran University, Najran, Kingdom of Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, M.B.Ch.B, FRCP, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Jabir Ibn Hayyan Medical University, Al-Ameer Qu, P.O. Box 13, Kufa, Najaf, Iraq
| | - Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt.
| |
Collapse
|
2
|
Liang LP, Sri Hari A, Day BJ, Patel M. Pharmacological elevation of glutathione inhibits status epilepticus-induced neuroinflammation and oxidative injury. Redox Biol 2024; 73:103168. [PMID: 38714094 PMCID: PMC11087235 DOI: 10.1016/j.redox.2024.103168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/09/2024] Open
Abstract
Glutathione (GSH) is a major endogenous antioxidant, and its depletion has been observed in several brain diseases including epilepsy. Previous studies in our laboratory have shown that dimercaprol (DMP) can elevate GSH via post-translational activation of glutamate cysteine ligase (GCL), the rate limiting GSH biosynthetic enzyme and inhibit neuroinflammation in vitro. Here we determined 1) the role of cysteamine as a new mechanism by which DMP increases GSH biosynthesis and 2) its ability to inhibit neuroinflammation and neuronal injury in the rat kainate model of epilepsy. DMP depleted cysteamine in a time- and concentration-dependent manner in a cell free system. To guide the in vivo administration of DMP, its pharmacokinetic profile was determined in the plasma, liver, and brain. The results confirmed DMP's ability to cross the blood-brain-barrier. Treatment of rats with DMP (30 mg/kg) depleted cysteamine in the liver and hippocampus that was associated with increased GCL activity in these tissues. GSH levels were significantly increased (20 %) in the hippocampus 1 h after 30 mg/kg DMP administration. Following DMP (30 mg/kg) administration once daily, a marked attenuation of GSH depletion was seen in the SE model. SE-induced inflammatory markers including cytokine release, microglial activation, and neuronal death were significantly attenuated in the hippocampus with DMP treatment. Taken together, these results highlight the importance of restoring redox status with rescue of GSH depletion by DMP in post epileptogenic insults.
Collapse
Affiliation(s)
- Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ashwini Sri Hari
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Brian J Day
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Medicine, National Jewish Health, Denver, CO, 80202, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
3
|
Saadat M, Dahmardeh N, Sheikhbahaei F, Mokhtari T. Therapeutic potential of thymoquinone and its nanoformulations in neuropsychological disorders: a comprehensive review on molecular mechanisms in preclinical studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3541-3564. [PMID: 38010395 DOI: 10.1007/s00210-023-02832-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Thymoquinone (THQ) and its nanoformulation (NFs) have emerged as promising candidates for the treatment of neurological diseases due to their diverse pharmacological properties, which include anti-inflammatory, antioxidant, and neuroprotective effects. In this study, we conducted an extensive search across reputable scientific websites such as PubMed, ScienceDirect, Scopus, and Google Scholar to gather relevant information. The antioxidant and anti-inflammatory properties of THQ have been observed to enhance the survival of neurons in affected areas of the brain, leading to significant improvements in behavioral and motor dysfunctions. Moreover, THQ and its NFs have demonstrated the capacity to restore antioxidant enzymes and mitigate oxidative stress. The primary mechanism underlying THQ's antioxidant effects involves the regulation of the Nrf2/HO-1 signaling pathway. Furthermore, THQ has been found to modulate key components of inflammatory signaling pathways, including toll-like receptors (TLRs), nuclear factor-κB (NF-κB), interleukin 6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα), thereby exerting anti-inflammatory effects. This comprehensive review explores the various beneficial effects of THQ and its NFs on neurological disorders and provides insights into the underlying mechanisms involved.
Collapse
Affiliation(s)
- Maryam Saadat
- Department of Anatomical Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Narjes Dahmardeh
- Department of Anatomical Sciences, Faculty of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Fatemeh Sheikhbahaei
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Tahmineh Mokhtari
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei, People's Republic of China
| |
Collapse
|
4
|
Sri Hari A, Banerji R, Liang LP, Fulton RE, Huynh CQ, Fabisiak T, McElroy PB, Roede JR, Patel M. Increasing glutathione levels by a novel posttranslational mechanism inhibits neuronal hyperexcitability. Redox Biol 2023; 67:102895. [PMID: 37769522 PMCID: PMC10539966 DOI: 10.1016/j.redox.2023.102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Glutathione (GSH) depletion, and impaired redox homeostasis have been observed in experimental animal models and patients with epilepsy. Pleiotropic strategies that elevate GSH levels via transcriptional regulation have been shown to significantly decrease oxidative stress and seizure frequency, increase seizure threshold, and rescue certain cognitive deficits. Whether elevation of GSH per se alters neuronal hyperexcitability remains unanswered. We previously showed that thiols such as dimercaprol (DMP) elevate GSH via post-translational activation of glutamate cysteine ligase (GCL), the rate limiting GSH biosynthetic enzyme. Here, we asked if elevation of cellular GSH by DMP altered neuronal hyperexcitability in-vitro and in-vivo. Treatment of primary neuronal-glial cerebrocortical cultures with DMP elevated GSH and inhibited a voltage-gated potassium channel blocker (4-aminopyridine, 4AP) induced neuronal hyperexcitability. DMP increased GSH in wildtype (WT) zebrafish larvae and significantly attenuated convulsant pentylenetetrazol (PTZ)-induced acute 'seizure-like' swim behavior. DMP treatment increased GSH and inhibited convulsive, spontaneous 'seizure-like' swim behavior in the Dravet Syndrome (DS) zebrafish larvae (scn1Lab). Furthermore, DMP treatment significantly decreased spontaneous electrographic seizures and associated seizure parameters in scn1Lab zebrafish larvae. We investigated the role of the redox-sensitive mammalian target of rapamycin (mTOR) pathway due to the presence of several cysteine-rich proteins and their involvement in regulating neuronal excitability. Treatment of primary neuronal-glial cerebrocortical cultures with 4AP or l-buthionine-(S,R)-sulfoximine (BSO), an irreversible inhibitor of GSH biosynthesis, significantly increased mTOR complex I (mTORC1) activity which was rescued by pre-treatment with DMP. Furthermore, BSO-mediated GSH depletion oxidatively modified the tuberous sclerosis protein complex (TSC) consisting of hamartin (TSC1), tuberin (TSC2), and TBC1 domain family member 7 (TBC1D7) which are critical negative regulators of mTORC1. In summary, our results suggest that DMP-mediated GSH elevation by a novel post-translational mechanism can inhibit neuronal hyperexcitability both in-vitro and in-vivo and a plausible link is the redox sensitive mTORC1 pathway.
Collapse
Affiliation(s)
- Ashwini Sri Hari
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Rajeswari Banerji
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ruth E Fulton
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Christopher Quoc Huynh
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Timothy Fabisiak
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Pallavi Bhuyan McElroy
- The Janssen Pharmaceutical Companies of Johnson & Johnson, Greater Philadelphia Area, Horsham, PA, 19044, USA
| | - James R Roede
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
5
|
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Alexiou A, Papadakis M, Saad HM, Batiha GES. Autophagy and autophagy signaling in Epilepsy: possible role of autophagy activator. Mol Med 2023; 29:142. [PMID: 37880579 PMCID: PMC10598971 DOI: 10.1186/s10020-023-00742-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Autophagy is an explicit cellular process to deliver dissimilar cytoplasmic misfolded proteins, lipids and damaged organelles to the lysosomes for degradation and elimination. The mechanistic target of rapamycin (mTOR) is the main negative regulator of autophagy. The mTOR pathway is involved in regulating neurogenesis, synaptic plasticity, neuronal development and excitability. Exaggerated mTOR activity is associated with the development of temporal lobe epilepsy, genetic and acquired epilepsy, and experimental epilepsy. In particular, mTOR complex 1 (mTORC1) is mainly involved in epileptogenesis. The investigation of autophagy's involvement in epilepsy has recently been conducted, focusing on the critical role of rapamycin, an autophagy inducer, in reducing the severity of induced seizures in animal model studies. The induction of autophagy could be an innovative therapeutic strategy in managing epilepsy. Despite the protective role of autophagy against epileptogenesis and epilepsy, its role in status epilepticus (SE) is perplexing and might be beneficial or detrimental. Therefore, the present review aims to revise the possible role of autophagy in epilepsy.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran university, Najran, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, Wien, 1030, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt.
| |
Collapse
|
6
|
Santibáñez A, Jiménez-Ferrer E, Angulo-Bejarano PI, Sharma A, Herrera-Ruiz M. Coriandrum sativum and Its Utility in Psychiatric Disorders. Molecules 2023; 28:5314. [PMID: 37513187 PMCID: PMC10385770 DOI: 10.3390/molecules28145314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/12/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The negative impact on worldwide social well-being by the increasing rate of psychiatric diseases has led to a continuous new drug search. Even though the current therapeutic options exert their activity on multiple neurological targets, these have various adverse effects, causing treatment abandonment. Recent research has shown that Coriandrum sativum offers a rich source of metabolites, mainly terpenes and flavonoids, as useful agents against central nervous system disorders, with remarkable in vitro and in vivo activities on models related to these pathologies. Furthermore, studies have revealed that some compounds exhibit a chemical interaction with γ-aminobutyric acid, 5-hydroxytryptamine, and N-methyl-D-aspartate receptors, which are key components in the pathophysiology associated with psychiatric and neurological diseases. The current clinical evaluations of standardized extracts of C. sativum are scarce; however, one or more of its compounds represents an area of opportunity to test the efficacy of the plant as an anxiolytic, antidepressant, antiepileptic, or sleep enhancer. For this, the aim of the review was based on the pharmacological activities offered by the compounds identified and isolated from coriander and the processes involved in achieving their effect. In addition, lines of technological research, like molecular docking and nanoparticles, are proposed for the future development of phytomedicines, based on the bioactive molecules of C. sativum, for the treatment of psychiatric and neurological disorders addressed in the present study.
Collapse
Affiliation(s)
- Anislada Santibáñez
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1 Col Centro, Xochitepec 62790, Morelos, Mexico
- Plant Innovation Lab, Tecnologico de Monterrey, School of Engineering and Sciences, Centro de Bioingeniería, Av. Epigmenio González No. 500, San Pablo 76130, Queretaro, Mexico
| | - Enrique Jiménez-Ferrer
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1 Col Centro, Xochitepec 62790, Morelos, Mexico
| | - Paola Isabel Angulo-Bejarano
- Plant Innovation Lab, Tecnologico de Monterrey, School of Engineering and Sciences, Centro de Bioingeniería, Av. Epigmenio González No. 500, San Pablo 76130, Queretaro, Mexico
| | - Ashutosh Sharma
- Plant Innovation Lab, Tecnologico de Monterrey, School of Engineering and Sciences, Centro de Bioingeniería, Av. Epigmenio González No. 500, San Pablo 76130, Queretaro, Mexico
| | - Maribel Herrera-Ruiz
- Centro de Investigación Biomédica del Sur, Instituto Mexicano del Seguro Social, Argentina No. 1 Col Centro, Xochitepec 62790, Morelos, Mexico
| |
Collapse
|
7
|
Geng Y, Wang Z, Zhou J, Zhu M, Liu J, James TD. Recent progress in the development of fluorescent probes for imaging pathological oxidative stress. Chem Soc Rev 2023. [PMID: 37190785 DOI: 10.1039/d2cs00172a] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Oxidative stress is closely related to the physiopathology of numerous diseases. Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) are direct participants and important biomarkers of oxidative stress. A comprehensive understanding of their changes can help us evaluate disease pathogenesis and progression and facilitate early diagnosis and drug development. In recent years, fluorescent probes have been developed for real-time monitoring of ROS, RNS and RSS levels in vitro and in vivo. In this review, conventional design strategies of fluorescent probes for ROS, RNS, and RSS detection are discussed from three aspects: fluorophores, linkers, and recognition groups. We introduce representative fluorescent probes for ROS, RNS, and RSS detection in cells, physiological/pathological processes (e.g., Inflammation, Drug Induced Organ Injury and Ischemia/Reperfusion Injury etc.), and specific diseases (e.g., neurodegenerative diseases, epilepsy, depression, diabetes and cancer, etc.). We then highlight the achievements, current challenges, and prospects for fluorescent probes in the pathophysiology of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Yujie Geng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jiaying Zhou
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Mingguang Zhu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jiang Liu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
8
|
Massey N, Vasanthi SS, Samidurai M, Gage M, Rao N, Meyer C, Thippeswamy T. 1400 W, a selective inducible nitric oxide synthase inhibitor, mitigates early neuroinflammation and nitrooxidative stress in diisopropylfluorophosphate-induced short-term neurotoxicity rat model. Front Mol Neurosci 2023; 16:1125934. [PMID: 37008784 PMCID: PMC10064070 DOI: 10.3389/fnmol.2023.1125934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
Organophosphate nerve agent (OPNA) exposure induces acute and long-term neurological deficits. OPNA exposure at sub-lethal concentrations induces irreversible inhibition of acetylcholinesterase and cholinergic toxidrome and develops status epilepticus (SE). Persistent seizures have been associated with increased production of ROS/RNS, neuroinflammation, and neurodegeneration. A total of 1400W is a novel small molecule, which irreversibly inhibits inducible nitric oxide synthase (iNOS) and has been shown to effectively reduce ROS/RNS generation. In this study, we investigated the effects of 1400W treatment for a week or two weeks at 10 mg/kg or 15 mg/kg per day in the rat diisopropylfluorophosphate (DFP) model. 1400W significantly reduced the number of microglia, astroglia, and NeuN+FJB positive cells compared to the vehicle in different regions of the brain. 1400W also significantly reduced nitrooxidative stress markers and proinflammatory cytokines in the serum. However, neither of the two concentrations of 1400W for two weeks of treatment had any significant effect on epileptiform spike rate and spontaneous seizures during the treatment period in mixed sex cohorts, males, or females. No significant sex differences were found in response to DFP exposure or 1400W treatment. In conclusion, 1400W treatment at 15 mg/kg per day for two weeks was more effective in significantly reducing DFP-induced nitrooxidative stress, neuroinflammatory and neurodegenerative changes.
Collapse
|
9
|
Pearson-Smith JN, Fulton R, Huynh CQ, Figueroa AG, Huynh GB, Liang LP, Gano LB, Michel CR, Reisdorph N, Reisdorph R, Fritz KS, Verdin E, Patel M. Neuronal SIRT3 Deletion Predisposes to Female-Specific Alterations in Cellular Metabolism, Memory, and Network Excitability. J Neurosci 2023; 43:1845-1857. [PMID: 36759193 PMCID: PMC10010453 DOI: 10.1523/jneurosci.1259-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/14/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Mitochondrial dysfunction is an early event in the pathogenesis of neurologic disorders and aging. Sirtuin 3 (SIRT3) regulates mitochondrial function in response to the cellular environment through the reversible deacetylation of proteins involved in metabolism and reactive oxygen species detoxification. As the primary mitochondrial deacetylase, germline, or peripheral tissue-specific deletion of SIRT3 produces mitochondrial hyperacetylation and the accelerated development of age-related diseases. Given the unique metabolic demands of neurons, the role of SIRT3 in the brain is only beginning to emerge. Using mass spectrometry-based acetylomics, high-resolution respirometry, video-EEG, and cognition testing, we report targeted deletion of SIRT3 from select neurons in the cortex and hippocampus produces altered neuronal excitability and metabolic dysfunction in female mice. Targeted deletion of SIRT3 from neuronal helix-loop-helix 1 (NEX)-expressing neurons resulted in mitochondrial hyperacetylation, female-specific superoxide dismutase-2 (SOD2) modification, increased steady-state superoxide levels, metabolic reprogramming, altered neuronal excitability, and working spatial memory deficits. Inducible neuronal deletion of SIRT3 likewise produced female-specific deficits in spatial working memory. Together, the data demonstrate that deletion of SIRT3 from forebrain neurons selectively predisposes female mice to deficits in mitochondrial and cognitive function.SIGNIFICANCE STATEMENT Mitochondrial SIRT3 is an enzyme shown to regulate energy metabolism and antioxidant function, by direct deacetylation of proteins. In this study, we show that neuronal SIRT3 deficiency renders female mice selectively vulnerable to impairment in redox and metabolic function, spatial memory, and neuronal excitability. The observed sex-specific effects on cognition and neuronal excitability in female SIRT3-deficient mice suggest that mitochondrial dysfunction may be one factor underlying comorbid neuronal diseases, such as Alzheimer's disease and epilepsy. Furthermore, the data suggest that SIRT3 dysfunction may predispose females to age-related metabolic and cognitive impairment.
Collapse
Affiliation(s)
- Jennifer N Pearson-Smith
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Ruth Fulton
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Christopher Q Huynh
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Anna G Figueroa
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Gia B Huynh
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Li-Ping Liang
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Lindsey B Gano
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Cole R Michel
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Nichole Reisdorph
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Richard Reisdorph
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Kristofer S Fritz
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Eric Verdin
- Buck Institute for Aging, Novato, California 94945
| | - Manisha Patel
- School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|
10
|
Kato Y, Yokokura M, Iwabuchi T, Murayama C, Harada T, Goto T, Tamayama T, Kameno Y, Wakuda T, Kuwabara H, Benner S, Senju A, Tsukada H, Nishizawa S, Ouchi Y, Yamasue H. Lower Availability of Mitochondrial Complex I in Anterior Cingulate Cortex in Autism: A Positron Emission Tomography Study. Am J Psychiatry 2022; 180:277-284. [PMID: 36069020 DOI: 10.1176/appi.ajp.22010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Mitochondrial dysfunction has been implicated in the pathophysiology of autism spectrum disorder (ASD) in previous studies of postmortem brain or peripheral samples. The authors investigated whether and where mitochondrial dysfunction occurs in the living brains of individuals with ASD and to identify the clinical correlates of detected mitochondrial dysfunction. METHODS This case-control study used positron emission tomography (PET) with 2-tert-butyl-4-chloro-5-{6-[2-(2-[18F]fluoroethoxy)-ethoxy]-pyridin-3-ylmethoxy}-2H-pyridazin-3-one ([18F]BCPP-EF), a radioligand that binds to the mitochondrial electron transport chain complex I, to examine the topographical distribution of mitochondrial dysfunction in living brains of individuals with ASD. Twenty-three adult males with high-functioning ASD, with no psychiatric comorbidities and free of psychotropic medication, and 24 typically developed males with no psychiatric diagnoses, matched with the ASD group on age, parental socioeconomic background, and IQ, underwent [18F]BCPP-EF PET measurements. Individuals with mitochondrial disease were excluded by clinical evaluation and blood tests for abnormalities in lactate and pyruvate levels. RESULTS Among the brain regions in which mitochondrial dysfunction has been reported in postmortem studies of autistic brains, participants with ASD had significantly decreased [18F]BCPP-EF availability specifically in the anterior cingulate cortex compared with typically developed participants. The regional specificity was revealed by a significant interaction between diagnosis and brain regions. Moreover, the lower [18F]BCPP-EF availability in the anterior cingulate cortex was significantly correlated with the more severe ASD core symptom of social communication deficits. CONCLUSIONS This study provides direct evidence to link in vivo brain mitochondrial dysfunction with ASD pathophysiology and its communicational deficits. The findings support the possibility that mitochondrial electron transport chain complex I is a novel therapeutic target for ASD core symptoms.
Collapse
Affiliation(s)
- Yasuhiko Kato
- Department of Psychiatry (Kato, Yokokura, Murayama, Goto, Tamayama, Kameno, Wakuda, Kuwabara, Benner, Yamasue), United Graduate School of Child Development (Yokokura, Iwabuchi, Harada, Kameno, Kuwabara, Senju, Yamasue), Research Center for Child Mental Development (Iwabuchi, Harada, Senju), and Department of Biofunctional Imaging (Ouchi), Hamamatsu University School of Medicine, Hamamatsu, Japan; Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan (Tsukada); Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan (Nishizawa, Ouchi)
| | - Masamichi Yokokura
- Department of Psychiatry (Kato, Yokokura, Murayama, Goto, Tamayama, Kameno, Wakuda, Kuwabara, Benner, Yamasue), United Graduate School of Child Development (Yokokura, Iwabuchi, Harada, Kameno, Kuwabara, Senju, Yamasue), Research Center for Child Mental Development (Iwabuchi, Harada, Senju), and Department of Biofunctional Imaging (Ouchi), Hamamatsu University School of Medicine, Hamamatsu, Japan; Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan (Tsukada); Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan (Nishizawa, Ouchi)
| | - Toshiki Iwabuchi
- Department of Psychiatry (Kato, Yokokura, Murayama, Goto, Tamayama, Kameno, Wakuda, Kuwabara, Benner, Yamasue), United Graduate School of Child Development (Yokokura, Iwabuchi, Harada, Kameno, Kuwabara, Senju, Yamasue), Research Center for Child Mental Development (Iwabuchi, Harada, Senju), and Department of Biofunctional Imaging (Ouchi), Hamamatsu University School of Medicine, Hamamatsu, Japan; Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan (Tsukada); Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan (Nishizawa, Ouchi)
| | - Chihiro Murayama
- Department of Psychiatry (Kato, Yokokura, Murayama, Goto, Tamayama, Kameno, Wakuda, Kuwabara, Benner, Yamasue), United Graduate School of Child Development (Yokokura, Iwabuchi, Harada, Kameno, Kuwabara, Senju, Yamasue), Research Center for Child Mental Development (Iwabuchi, Harada, Senju), and Department of Biofunctional Imaging (Ouchi), Hamamatsu University School of Medicine, Hamamatsu, Japan; Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan (Tsukada); Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan (Nishizawa, Ouchi)
| | - Taeko Harada
- Department of Psychiatry (Kato, Yokokura, Murayama, Goto, Tamayama, Kameno, Wakuda, Kuwabara, Benner, Yamasue), United Graduate School of Child Development (Yokokura, Iwabuchi, Harada, Kameno, Kuwabara, Senju, Yamasue), Research Center for Child Mental Development (Iwabuchi, Harada, Senju), and Department of Biofunctional Imaging (Ouchi), Hamamatsu University School of Medicine, Hamamatsu, Japan; Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan (Tsukada); Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan (Nishizawa, Ouchi)
| | - Takafumi Goto
- Department of Psychiatry (Kato, Yokokura, Murayama, Goto, Tamayama, Kameno, Wakuda, Kuwabara, Benner, Yamasue), United Graduate School of Child Development (Yokokura, Iwabuchi, Harada, Kameno, Kuwabara, Senju, Yamasue), Research Center for Child Mental Development (Iwabuchi, Harada, Senju), and Department of Biofunctional Imaging (Ouchi), Hamamatsu University School of Medicine, Hamamatsu, Japan; Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan (Tsukada); Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan (Nishizawa, Ouchi)
| | - Taishi Tamayama
- Department of Psychiatry (Kato, Yokokura, Murayama, Goto, Tamayama, Kameno, Wakuda, Kuwabara, Benner, Yamasue), United Graduate School of Child Development (Yokokura, Iwabuchi, Harada, Kameno, Kuwabara, Senju, Yamasue), Research Center for Child Mental Development (Iwabuchi, Harada, Senju), and Department of Biofunctional Imaging (Ouchi), Hamamatsu University School of Medicine, Hamamatsu, Japan; Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan (Tsukada); Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan (Nishizawa, Ouchi)
| | - Yosuke Kameno
- Department of Psychiatry (Kato, Yokokura, Murayama, Goto, Tamayama, Kameno, Wakuda, Kuwabara, Benner, Yamasue), United Graduate School of Child Development (Yokokura, Iwabuchi, Harada, Kameno, Kuwabara, Senju, Yamasue), Research Center for Child Mental Development (Iwabuchi, Harada, Senju), and Department of Biofunctional Imaging (Ouchi), Hamamatsu University School of Medicine, Hamamatsu, Japan; Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan (Tsukada); Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan (Nishizawa, Ouchi)
| | - Tomoyasu Wakuda
- Department of Psychiatry (Kato, Yokokura, Murayama, Goto, Tamayama, Kameno, Wakuda, Kuwabara, Benner, Yamasue), United Graduate School of Child Development (Yokokura, Iwabuchi, Harada, Kameno, Kuwabara, Senju, Yamasue), Research Center for Child Mental Development (Iwabuchi, Harada, Senju), and Department of Biofunctional Imaging (Ouchi), Hamamatsu University School of Medicine, Hamamatsu, Japan; Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan (Tsukada); Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan (Nishizawa, Ouchi)
| | - Hitoshi Kuwabara
- Department of Psychiatry (Kato, Yokokura, Murayama, Goto, Tamayama, Kameno, Wakuda, Kuwabara, Benner, Yamasue), United Graduate School of Child Development (Yokokura, Iwabuchi, Harada, Kameno, Kuwabara, Senju, Yamasue), Research Center for Child Mental Development (Iwabuchi, Harada, Senju), and Department of Biofunctional Imaging (Ouchi), Hamamatsu University School of Medicine, Hamamatsu, Japan; Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan (Tsukada); Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan (Nishizawa, Ouchi)
| | - Seico Benner
- Department of Psychiatry (Kato, Yokokura, Murayama, Goto, Tamayama, Kameno, Wakuda, Kuwabara, Benner, Yamasue), United Graduate School of Child Development (Yokokura, Iwabuchi, Harada, Kameno, Kuwabara, Senju, Yamasue), Research Center for Child Mental Development (Iwabuchi, Harada, Senju), and Department of Biofunctional Imaging (Ouchi), Hamamatsu University School of Medicine, Hamamatsu, Japan; Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan (Tsukada); Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan (Nishizawa, Ouchi)
| | - Atsushi Senju
- Department of Psychiatry (Kato, Yokokura, Murayama, Goto, Tamayama, Kameno, Wakuda, Kuwabara, Benner, Yamasue), United Graduate School of Child Development (Yokokura, Iwabuchi, Harada, Kameno, Kuwabara, Senju, Yamasue), Research Center for Child Mental Development (Iwabuchi, Harada, Senju), and Department of Biofunctional Imaging (Ouchi), Hamamatsu University School of Medicine, Hamamatsu, Japan; Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan (Tsukada); Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan (Nishizawa, Ouchi)
| | - Hideo Tsukada
- Department of Psychiatry (Kato, Yokokura, Murayama, Goto, Tamayama, Kameno, Wakuda, Kuwabara, Benner, Yamasue), United Graduate School of Child Development (Yokokura, Iwabuchi, Harada, Kameno, Kuwabara, Senju, Yamasue), Research Center for Child Mental Development (Iwabuchi, Harada, Senju), and Department of Biofunctional Imaging (Ouchi), Hamamatsu University School of Medicine, Hamamatsu, Japan; Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan (Tsukada); Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan (Nishizawa, Ouchi)
| | - Sadahiko Nishizawa
- Department of Psychiatry (Kato, Yokokura, Murayama, Goto, Tamayama, Kameno, Wakuda, Kuwabara, Benner, Yamasue), United Graduate School of Child Development (Yokokura, Iwabuchi, Harada, Kameno, Kuwabara, Senju, Yamasue), Research Center for Child Mental Development (Iwabuchi, Harada, Senju), and Department of Biofunctional Imaging (Ouchi), Hamamatsu University School of Medicine, Hamamatsu, Japan; Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan (Tsukada); Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan (Nishizawa, Ouchi)
| | - Yasuomi Ouchi
- Department of Psychiatry (Kato, Yokokura, Murayama, Goto, Tamayama, Kameno, Wakuda, Kuwabara, Benner, Yamasue), United Graduate School of Child Development (Yokokura, Iwabuchi, Harada, Kameno, Kuwabara, Senju, Yamasue), Research Center for Child Mental Development (Iwabuchi, Harada, Senju), and Department of Biofunctional Imaging (Ouchi), Hamamatsu University School of Medicine, Hamamatsu, Japan; Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan (Tsukada); Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan (Nishizawa, Ouchi)
| | - Hidenori Yamasue
- Department of Psychiatry (Kato, Yokokura, Murayama, Goto, Tamayama, Kameno, Wakuda, Kuwabara, Benner, Yamasue), United Graduate School of Child Development (Yokokura, Iwabuchi, Harada, Kameno, Kuwabara, Senju, Yamasue), Research Center for Child Mental Development (Iwabuchi, Harada, Senju), and Department of Biofunctional Imaging (Ouchi), Hamamatsu University School of Medicine, Hamamatsu, Japan; Central Research Laboratory, Hamamatsu Photonics K.K., Hamamatsu, Japan (Tsukada); Hamamatsu Medical Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan (Nishizawa, Ouchi)
| |
Collapse
|
11
|
Abstract
The brain is a highly energy-demanding organ and requires bioenergetic adaptability to balance normal activity with pathophysiological fuelling of spontaneous recurrent seizures, the hallmark feature of the epilepsies. Recurrent or prolonged seizures have long been known to permanently alter neuronal circuitry and to cause excitotoxic injury and aberrant inflammation. Furthermore, pathological changes in bioenergetics and metabolism are considered downstream consequences of epileptic seizures that begin at the synaptic level. However, as we highlight in this Review, evidence is also emerging that primary derangements in cellular or mitochondrial metabolism can result in seizure genesis and lead to spontaneous recurrent seizures. Basic and translational research indicates that the relationships between brain metabolism and epileptic seizures are complex and bidirectional, producing a vicious cycle that compounds the deleterious consequences of seizures. Metabolism-based treatments such as the high-fat, antiseizure ketogenic diet have become mainstream, and metabolic substrates and enzymes have become attractive molecular targets for seizure prevention and recovery. Moreover, given that metabolism is crucial for epigenetic as well as inflammatory changes, the idea that epileptogenesis can be both negatively and positively influenced by metabolic changes is rapidly gaining ground. Here, we review evidence that supports both pathophysiological and therapeutic roles for brain metabolism in epilepsy.
Collapse
|
12
|
Alshabi AM, Shaikh IA, Asdaq SMB. The antiepileptic potential of Vateria indica Linn in experimental animal models: Effect on brain GABA levels and molecular mechanisms. Saudi J Biol Sci 2022; 29:3600-3609. [PMID: 35844388 PMCID: PMC9280234 DOI: 10.1016/j.sjbs.2022.02.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Ali Mohamed Alshabi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, Saudi Arabia
- Corresponding author at: Department of Clinical Pharmacy, College of Pharmacy, Najran University, P.O Box: 1988, Zip Code: 55461, Najran, Saudi Arabia.
| | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | | |
Collapse
|
13
|
García-Rodríguez D, Giménez-Cassina A. Ketone Bodies in the Brain Beyond Fuel Metabolism: From Excitability to Gene Expression and Cell Signaling. Front Mol Neurosci 2021; 14:732120. [PMID: 34512261 PMCID: PMC8429829 DOI: 10.3389/fnmol.2021.732120] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Ketone bodies are metabolites that replace glucose as the main fuel of the brain in situations of glucose scarcity, including prolonged fasting, extenuating exercise, or pathological conditions such as diabetes. Beyond their role as an alternative fuel for the brain, the impact of ketone bodies on neuronal physiology has been highlighted by the use of the so-called “ketogenic diets,” which were proposed about a century ago to treat infantile seizures. These diets mimic fasting by reducing drastically the intake of carbohydrates and proteins and replacing them with fat, thus promoting ketogenesis. The fact that ketogenic diets have such a profound effect on epileptic seizures points to complex biological effects of ketone bodies in addition to their role as a source of ATP. In this review, we specifically focus on the ability of ketone bodies to regulate neuronal excitability and their effects on gene expression to respond to oxidative stress. Finally, we also discuss their capacity as signaling molecules in brain cells.
Collapse
Affiliation(s)
- Darío García-Rodríguez
- Department of Molecular Biology, Centro de Biología Molecular "Severo Ochoa" (CBMSO UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Alfredo Giménez-Cassina
- Department of Molecular Biology, Centro de Biología Molecular "Severo Ochoa" (CBMSO UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
14
|
Zummo L, Vitale AM, Caruso Bavisotto C, De Curtis M, Garbelli R, Giallonardo AT, Di Bonaventura C, Fanella M, Conway de Macario E, Cappello F, Macario AJL, Marino Gammazza A. Molecular Chaperones and miRNAs in Epilepsy: Pathogenic Implications and Therapeutic Prospects. Int J Mol Sci 2021; 22:ijms22168601. [PMID: 34445306 PMCID: PMC8395327 DOI: 10.3390/ijms22168601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is a pathologic condition with high prevalence and devastating consequences for the patient and its entourage. Means for accurate diagnosis of type, patient monitoring for predicting seizures and follow up, and efficacious treatment are desperately needed. To improve this adverse outcome, miRNAs and the chaperone system (CS) are promising targets to understand pathogenic mechanisms and for developing theranostics applications. miRNAs implicated in conditions known or suspected to favor seizures such as neuroinflammation, to promote epileptic tolerance and neuronal survival, to regulate seizures, and others showing variations in expression levels related to seizures are promising candidates as useful biomarkers for diagnosis and patient monitoring, and as targets for developing novel therapies. Components of the CS are also promising as biomarkers and as therapeutic targets, since they participate in epileptogenic pathways and in cytoprotective mechanisms in various epileptogenic brain areas, even if what they do and how is not yet clear. The data in this review should help in the identification of molecular targets among the discussed miRNAs and CS components for research aiming at understanding epileptogenic mechanisms and, subsequently, develop means for predicting/preventing seizures and treating the disease.
Collapse
Affiliation(s)
- Leila Zummo
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Department of Neurology and Stroke Unit, A.R.N.A.S. Ospedale Civico—Di Cristina Benfratelli, 90127 Palermo, Italy
| | - Alessandra Maria Vitale
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Marco De Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.D.C.); (R.G.)
| | - Rita Garbelli
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy; (M.D.C.); (R.G.)
| | - Anna Teresa Giallonardo
- Department of Human Neurosciences “Sapienza”, University of Rome, 00185 Rome, Italy; (A.T.G.); (C.D.B.); (M.F.)
- Policlinico Umberto I, 00161 Rome, Italy
| | - Carlo Di Bonaventura
- Department of Human Neurosciences “Sapienza”, University of Rome, 00185 Rome, Italy; (A.T.G.); (C.D.B.); (M.F.)
- Policlinico Umberto I, 00161 Rome, Italy
| | - Martina Fanella
- Department of Human Neurosciences “Sapienza”, University of Rome, 00185 Rome, Italy; (A.T.G.); (C.D.B.); (M.F.)
- Policlinico Umberto I, 00161 Rome, Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA;
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
| | - Alberto J. L. Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy;
- Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD 21202, USA;
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, Section of Human Anatomy, University of Palermo, 90127 Palermo, Italy; (L.Z.); (A.M.V.); (C.C.B.); (F.C.)
- Correspondence:
| |
Collapse
|
15
|
Wang M, Zhang X, Jia W, Zhang C, Boczek T, Harding M, Liu Y, Li M, Zhang S, Lei S, Zhang D, Guo F. Circulating glutathione peroxidase and superoxide dismutase levels in patients with epilepsy: A meta-analysis. Seizure 2021; 91:278-286. [PMID: 34252880 DOI: 10.1016/j.seizure.2021.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 01/26/2023] Open
Abstract
PURPOSE Glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) are assessed as oxidative stress markers to determine the impact of oxidation on the levels of GSH-Px and SOD in patients with epilepsy (PWE) and healthy controls. METHODS A meta-analysis was completed on twenty-nine published studies. A total of 636 PWE and 665 healthy controls, 303 PWE and 191 controls, and 22 PWE and 22 controls were included to study GSH-Px levels in erythrocytes, serum and plasma, respectively. For SOD studies, there were 610 PWE and 680 controls, 464 PWE and 382 controls, and 62 PWE with 77 controls for erythrocytes, serum and plasma, respectively. RESULTS Meta-analysis showed that the erythrocyte SOD level was significantly lower in PWE than in healthy controls (SMD =-1.96; 95% CI [-2.93, -0.99]; P<0.0001). Moreover, the meta-analysis demonstrated that in serum and plasma, SOD levels in PWE were significantly lower than those in healthy controls (SMD =-1.47; 95% CI [-2.47, -0.48]; P<0.0001). Erythrocyte GSH-Px levels had a tendency to decrease in PWE compared with healthy controls (SMD =-0.31; 95% CI [-1.48, 0.85]; P=0.598), but the results showed no significant difference. CONCLUSION Our results showed reduced SOD levels in erythrocytes, serum and plasma in PWE, which may be an indicator of oxidative damage in epilepsy. This is the first meta-analysis of circulating GSH-Px and SOD levels in PWE and healthy controls.
Collapse
Affiliation(s)
- Mengmeng Wang
- Sleep Medical Center, Shengjing Hospital, China Medical University, Shenyang 110022, Liaoning province, China
| | - Xiaohong Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning province, China
| | - Wanying Jia
- Department of Pharmacy, Chi Feng City Hospital, Inner Mongolia Province, Chifeng 024000, China
| | - Congcong Zhang
- Department of Neurosurgery, Chengyang people's Hospital, Qingdao 266109, Shandong Province, China
| | - Tomasz Boczek
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, 94305, California, USA
| | | | - Yudan Liu
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning, China
| | - Ming Li
- Department of Neurology, the fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning province, China
| | - Shiqi Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning province, China
| | - Shuai Lei
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning province, China
| | - Dongfang Zhang
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning province, China.
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning province, China.
| |
Collapse
|
16
|
The protective effect of hydroxylated fullerene pretreatment on pilocarpine-induced status epilepticus. Brain Res 2021; 1764:147468. [PMID: 33831409 DOI: 10.1016/j.brainres.2021.147468] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 12/30/2022]
Abstract
Status epilepticus (SE) is a neurological emergency. The pathological hallmark of neuronal damage after epileptic seizures could be the chain reaction of oxygen free radicals. Hydroxylated fullerenes (HFs) are novel and effective free radical scavengers, which play an important role in various neurological diseases. However, whether they have a protective effect against epileptic seizures remains elusive. Our study explores the effect of pretreatment with HFs in different doses (0.5, 5, and 10 mg/kg) on SEmodels induced by pilocarpine (PILO). The results suggest that HFs have a protective effect on SE in a dose-dependent manner. HFs significantly reduce the incidence of SE, prolong the latency to SE, reduce the malondialdehyde (MDA) levels, and increase the glutathione (GSH) and superoxide dismutase (SOD) levels. In addition, HFs significantly raise the expression of B-cell lymphoma-2 (Bcl-2) and reduce the expression of Bcl-2-associated X protein (Bax). We found that expressions of nuclear NF-E2-related factor 2 (nNrf2), heme oxygenase-1 (HO-1) and NADPH: quinone oxidoreductase-1 (NQO1) were upregulated 24 h after the onset of SE, but the increase was not enough to combat oxidative stress damage, nor to attenuate lipid peroxidation and apoptosis. The expressions of these proteins in HFs pretreatment groups increased more significantly than those in the epilepsy (EP) group, which effectively reduced lipid peroxidation and apoptosis in the hippocampus. In summary, these findings highlight that HFs pretreatment has a protective effect against PILO-induced SE in rats. It may relieve oxidative stress damage by activating the Nrf2-ARE signaling pathway. It provides evidence that fullerene derivatives may have therapeutic potential for epileptic seizures.
Collapse
|
17
|
Sharma S, Tiarks G, Haight J, Bassuk AG. Neuropathophysiological Mechanisms and Treatment Strategies for Post-traumatic Epilepsy. Front Mol Neurosci 2021; 14:612073. [PMID: 33708071 PMCID: PMC7940684 DOI: 10.3389/fnmol.2021.612073] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of death in young adults and a risk factor for acquired epilepsy. Severe TBI, after a period of time, causes numerous neuropsychiatric and neurodegenerative problems with varying comorbidities; and brain homeostasis may never be restored. As a consequence of disrupted equilibrium, neuropathological changes such as circuit remodeling, reorganization of neural networks, changes in structural and functional plasticity, predisposition to synchronized activity, and post-translational modification of synaptic proteins may begin to dominate the brain. These pathological changes, over the course of time, contribute to conditions like Alzheimer disease, dementia, anxiety disorders, and post-traumatic epilepsy (PTE). PTE is one of the most common, devastating complications of TBI; and of those affected by a severe TBI, more than 50% develop PTE. The etiopathology and mechanisms of PTE are either unknown or poorly understood, which makes treatment challenging. Although anti-epileptic drugs (AEDs) are used as preventive strategies to manage TBI, control acute seizures and prevent development of PTE, their efficacy in PTE remains controversial. In this review, we discuss novel mechanisms and risk factors underlying PTE. We also discuss dysfunctions of neurovascular unit, cell-specific neuroinflammatory mediators and immune response factors that are vital for epileptogenesis after TBI. Finally, we describe current and novel treatments and management strategies for preventing PTE.
Collapse
Affiliation(s)
- Shaunik Sharma
- Medical Laboratories, Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Grant Tiarks
- Medical Laboratories, Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Joseph Haight
- Medical Laboratories, Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| | - Alexander G Bassuk
- Medical Laboratories, Department of Pediatrics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
18
|
Nesari A, Mansouri MT, Khodayar MJ, Rezaei M. Preadministration of high-dose alpha-tocopherol improved memory impairment and mitochondrial dysfunction induced by proteasome inhibition in rat hippocampus. Nutr Neurosci 2021; 24:119-129. [PMID: 31084475 DOI: 10.1080/1028415x.2019.1601888] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objective: The ubiquitin-proteasome system plays a key role in memory consolidation. Proteasome inhibition and free radical-induced neural damage were implicated in neurodegenerative states. In this study, it was tested whether alpha-tocopherol (αT) in low and high doses could improve the long-term memory impairment induced by proteasome inhibition and protects against hippocampal oxidative stress. Methods: Alpha-tocopherol (αT) (60, 200 mg/kg, i.p. for 5 days) was administered to rats with memory deficit and hippocampal oxidative stress induced by bilateral intra-hippocampal injection of lactacystin (32 ng/μl) and mitochondrial evaluations were performed for improvement assessments. Results: The results showed that lactacystin significantly reduced the passive avoidance memory performance and increased the level of malondialdehyde (MDA), reactive oxygen species (ROS) and diminished the mitochondrial membrane potential (MMP) in the rat hippocampus. Furthermore, Intraperitoneal administration of αT significantly increased the passive avoidance memory, glutathione content and reduced ROS, MDA levels and impaired MMP. Conclusions: The results suggested that αT has neuroprotective effects against lactacystin-induced oxidative stress and memory impairment via the enhancement of hippocampal antioxidant capacity and concomitant mitochondrial sustainability. This finding shows a way to prevent and also to treat neurodegenerative diseases associated with mitochondrial impairment.
Collapse
Affiliation(s)
- Ali Nesari
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Taghi Mansouri
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Anesthesiology, Irving Medical Center, Columbia University, New York, NY, USA
| | - Mohammad Javad Khodayar
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Rezaei
- Toxicology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
19
|
Khamse S, Haftcheshmeh SM, Sadr SS, Roghani M, Kamalinejad M, Moghaddam PM, Golchoobian R, Ebrahimi F. The potential neuroprotective roles of olive leaf extract in an epilepsy rat model induced by kainic acid. Res Pharm Sci 2021; 16:48-57. [PMID: 33953774 PMCID: PMC8074804 DOI: 10.4103/1735-5362.305188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 07/05/2020] [Accepted: 12/27/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Epilepsy is recognized as a chronic neurologic disease. Increasing evidence has addressed the antioxidant and anti-inflammatory roles of olive leaf extract (OLE) in neurodegenerative diseases. So, the current study aimed to investigate the neuroprotective roles of OLE in epilepsy. EXPERIMENTAL APPROACH Forty rats were divided into 4 groups including a control group, sham group, kainic acid (KA) group, and KA + OLE group. KA (4 μg/rat) was injected intrahippocampal, and OLE (300 mg/kg) was orally administrated for 4 weeks. Animals were sacrificed, and their hippocampi were isolated. KA- induced seizure activity was recorded. Oxidative stress index was assessed by measuring its indicators including malondialdehyde (MDA), nitrite, nitrate, and glutathione (GSH) as well as the catalase (CAT) activity. The supernatant concentration of tumor necrosis factor-α (TNF-α) and the apoptosis rate in neurons were measured. FINDINGS/RESULTS Treatment with OLE significantly reduced the seizure score. OLE decreased oxidative stress index by reducing the concentration of MDA, nitrite, and nitrate as well as increasing the level of GSH. OLE had a significant anti-apoptotic effect on neurons. However, CAT activity and the level of TNF-α were not affected. CONCLUSION AND IMPLICATIONS Our findings indicated neuroprotective properties of OLE, which is mainly mediated by its antioxidant and anti-apoptotic effects, therefore, could be considered as a valuable therapeutic supplement for epilepsy.
Collapse
Affiliation(s)
- Safoura Khamse
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | | | - Seyed Shahabeddin Sadr
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, I.R. Iran
| | - Mohammad Kamalinejad
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| | - Parvane Mohseni Moghaddam
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Ravieh Golchoobian
- Cellular and Molecular Research Institute, Babol University of Medical Sciences, Babol, I.R. Iran
| | - Fatemeh Ebrahimi
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, I.R. Iran
| |
Collapse
|
20
|
Andreasen M, Nedergaard S. Effect of acute mitochondrial dysfunction on hyperexcitable network activity in rat hippocampus in vitro. Brain Res 2020; 1751:147193. [PMID: 33157100 DOI: 10.1016/j.brainres.2020.147193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 11/15/2022]
Abstract
Metabolic stress imposed by epileptic seizures can result in mitochondrial dysfunction, believed to act as positive feedback on epileptogenesis and seizure susceptibility. As the mechanism behind this positive feedback is unclear, the aim of the present study was to investigate the causal link between acute mitochondrial dysfunction and increased seizure susceptibility in hyperexcitable hippocampal networks. Following the induction of spontaneous interictal-like discharges, acute selective pharmacological blockade of either of the mitochondrial respiratory complexes (MRC) I-IV induced seizure-like events (SLE) in 78-100% of experiments. A similar result was obtained by uncoupling the oxidative phosphorylation (OXPHOS) but not by selective blockade of MRCV (ATP synthase) which did not induce SLE. The reactive oxygen species (ROS) scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (tempol, 2 mM) significantly reduced the proconvulsant effect of blocking MRCI but did not reduce the proconvulsant effect of OXPHOS uncoupling. These findings indicate that acute mitochondrial dysfunction can lead to a convulsive state within a short timeframe, and that increased ROS production makes substantial contribution to such induction in addition to other mitochondrial related factors, which appears to be independent of changes in ROS and ATP production.
Collapse
Affiliation(s)
- Mogens Andreasen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.
| | - Steen Nedergaard
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
21
|
Olowe R, Sandouka S, Saadi A, Shekh-Ahmad T. Approaches for Reactive Oxygen Species and Oxidative Stress Quantification in Epilepsy. Antioxidants (Basel) 2020; 9:E990. [PMID: 33066477 PMCID: PMC7602129 DOI: 10.3390/antiox9100990] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress (OS) and excessive reactive oxygen species (ROS) production have been implicated in many neurological pathologies, including acute seizures and epilepsy. Seizure-induced damage has been demonstrated both in vitro and in several in vivo seizure and epilepsy models by direct determination of ROS, and by measuring indirect markers of OS. In this manuscript, we review the current reliable methods for quantifying ROS-related and OS-related markers in pre-clinical and clinical epilepsy studies. We first provide pieces of evidence for the involvement of different sources of ROS in epilepsy. We then discuss general methods and assays used for the ROS measurements, mainly superoxide anion, hydrogen peroxide, peroxynitrite, and hydroxyl radical in in vitro and in vivo studies. In addition, we discuss the role of these ROS and markers of oxidative injury in acute seizures and epilepsy pre-clinical studies. The indirect detection of secondary products of ROS such as measurements of DNA damage, lipid peroxidation, and protein oxidation will also be discussed. This review also discusses reliable methods for the assessment of ROS, OS markers, and their by-products in epilepsy clinical studies.
Collapse
Affiliation(s)
| | | | | | - Tawfeeq Shekh-Ahmad
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel; (R.O.); (S.S.); (A.S.)
| |
Collapse
|
22
|
Oxidative Stress, a Crossroad Between Rare Diseases and Neurodegeneration. Antioxidants (Basel) 2020; 9:antiox9040313. [PMID: 32326494 PMCID: PMC7222183 DOI: 10.3390/antiox9040313] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/06/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is an imbalance between production and accumulation of oxygen reactive species and/or reactive nitrogen species in cells and tissues, and the capacity of detoxifying these products, using enzymatic and non-enzymatic components, such as glutathione. Oxidative stress plays roles in several pathological processes in the nervous system, such as neurotoxicity, neuroinflammation, ischemic stroke, and neurodegeneration. The concepts of oxidative stress and rare diseases were formulated in the eighties, and since then, the link between them has not stopped growing. The present review aims to expand knowledge in the pathological processes associated with oxidative stress underlying some groups of rare diseases: Friedreich’s ataxia, diseases with neurodegeneration with brain iron accumulation, Charcot-Marie-Tooth as an example of rare neuromuscular disorders, inherited retinal dystrophies, progressive myoclonus epilepsies, and pediatric drug-resistant epilepsies. Despite the discrimination between cause and effect may not be easy on many occasions, all these conditions are Mendelian rare diseases that share oxidative stress as a common factor, and this may represent a potential target for therapies.
Collapse
|
23
|
NMR-based metabolomics in pediatric drug resistant epilepsy - preliminary results. Sci Rep 2019; 9:15035. [PMID: 31636291 PMCID: PMC6803684 DOI: 10.1038/s41598-019-51337-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/16/2019] [Indexed: 12/14/2022] Open
Abstract
Epilepsy in children is the most frequent, heterogeneous and difficult to classify chronic neurologic condition with the etiology found in 35–40% of patients. Our aim is to detect the metabolic differences between the epileptic children and the children with no neurological abnormalities in order to define the metabolic background for therapy monitoring. The studied group included 28 epilepsy patients (median age 12 months) examined with a diagnostic protocol including EEG, videoEEG, 24-hour-EEG, tests for inborn errors of metabolism, chromosomal analysis and molecular study. The reference group consisted of 20 patients (median age 20 months) with no neurological symptoms, no development delay nor chronic diseases. 1H-NMR serum spectra were acquired on 400 MHz spectrometer and analyzed using multivariate and univariate approach with the application of correction for age variation. The epilepsy group was characterized by increased levels of serum N-acetyl-glycoproteins, lactate, creatine, glycine and lipids, whereas the levels of citrate were decreased as compared to the reference group. Choline, lactate, formate and dimethylsulfone were significantly correlated with age. NMR-based metabolomics could provide information on the dynamic metabolic processes in drug-resistant epilepsy yielding not only disease-specific biomarkers but also profound insights into the disease course, treatment effects or drug toxicity.
Collapse
|
24
|
Fernandes MJS, Carletti CO, Sierra de Araújo LF, Santos RC, Reis J. Respiratory gases, air pollution and epilepsy. Rev Neurol (Paris) 2019; 175:604-613. [PMID: 31519304 DOI: 10.1016/j.neurol.2019.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/29/2022]
Abstract
A growing number of studies have shown that exposure to air pollutants such as particulate matter and gases can cause cardiovascular, neurodegenerative and psychiatric diseases. The severity of the changes depends on several factors such as exposure time, age and gender. Inflammation has been considered as one of the main factors associated with the generation of these diseases. Here we present some cellular mechanisms activated by air pollution that may represent risk factors for epilepsy and drug resistance associated to epilepsy.
Collapse
Affiliation(s)
- M J S Fernandes
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - C O Carletti
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - L F Sierra de Araújo
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - R C Santos
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J Reis
- Service de Neurologie, Centre Hospitalier Universitaire, Hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg, France
| |
Collapse
|
25
|
Ramírez-Expósito MJ, Mayas MD, Carrera-González MP, Martínez-Martos JM. Gender Differences in the Antioxidant Response to Oxidative Stress in Experimental Brain Tumors. Curr Cancer Drug Targets 2019; 19:641-654. [DOI: 10.2174/1568009618666181018162549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/13/2018] [Accepted: 09/15/2018] [Indexed: 01/16/2023]
Abstract
Background:Brain tumorigenesis is related to oxidative stress and a decreased response of antioxidant defense systems. As it is well known that gender differences exist in the incidence and survival rates of brain tumors, it is important to recognize and understand the ways in which their biology can differ.Objective:To analyze gender differences in redox status in animals with chemically-induced brain tumors.Methods:Oxidative stress parameters, non-enzyme and enzyme antioxidant defense systems are assayed in animals with brain tumors induced by transplacental N-ethyl-N-nitrosourea (ENU) administration. Both tissue and plasma were analyzed to know if key changes in redox imbalance involved in brain tumor development were reflected systemically and could be used as biomarkers of the disease.Results:Several oxidative stress parameters were modified in tumor tissue of male and female animals, changes that were not reflected at plasma level. Regarding antioxidant defense system, only glutathione (GSH) levels were decreased in both brain tumor tissue and plasma. Superoxide dismutase (SOD) and catalase (CAT) activities were decreased in brain tumor tissue of male and female animals, but plasma levels were only altered in male animals. However, different protein and mRNA expression patterns were found for both enzymes. On the contrary, glutathione peroxidase (GPx) activity showed increased levels in brain tumor tissue without gender differences, being protein and gene expression also increased in both males and female animals. However, these changes in GPx were not reflected at plasma level.Conclusion:We conclude that brain tumorigenesis was related to oxidative stress and changes in brain enzyme and non-enzyme antioxidant defense systems with gender differences, whereas plasma did not reflect the main redox changes that occur at the brain level.
Collapse
Affiliation(s)
| | - María Dolores Mayas
- Department of Health Sciences, Faculty of Health Sciences, University of Jaen, Jaen, Spain
| | | | | |
Collapse
|
26
|
Pauletti A, Terrone G, Shekh-Ahmad T, Salamone A, Ravizza T, Rizzi M, Pastore A, Pascente R, Liang LP, Villa BR, Balosso S, Abramov AY, van Vliet EA, Del Giudice E, Aronica E, Patel M, Walker MC, Vezzani A. Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain 2019; 142:e39. [PMID: 31145451 PMCID: PMC6598637 DOI: 10.1093/brain/awz130] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/17/2017] [Accepted: 03/26/2017] [Indexed: 01/07/2023] Open
Abstract
Epilepsy therapy is based on antiseizure drugs that treat the symptom, seizures, rather than the disease and are ineffective in up to 30% of patients. There are no treatments for modifying the disease-preventing seizure onset, reducing severity or improving prognosis. Among the potential molecular targets for attaining these unmet therapeutic needs, we focused on oxidative stress since it is a pathophysiological process commonly occurring in experimental epileptogenesis and observed in human epilepsy. Using a rat model of acquired epilepsy induced by electrical status epilepticus, we show that oxidative stress occurs in both neurons and astrocytes during epileptogenesis, as assessed by measuring biochemical and histological markers. This evidence was validated in the hippocampus of humans who died following status epilepticus. Oxidative stress was reduced in animals undergoing epileptogenesis by a transient treatment with N-acetylcysteine and sulforaphane, which act to increase glutathione levels through complementary mechanisms. These antioxidant drugs are already used in humans for other therapeutic indications. This drug combination transiently administered for 2 weeks during epileptogenesis inhibited oxidative stress more efficiently than either drug alone. The drug combination significantly delayed the onset of epilepsy, blocked disease progression between 2 and 5 months post-status epilepticus and drastically reduced the frequency of spontaneous seizures measured at 5 months without modifying the average seizure duration or the incidence of epilepsy in animals. Treatment also decreased hippocampal neuron loss and rescued cognitive deficits. Oxidative stress during epileptogenesis was associated with de novo brain and blood generation of high mobility group box 1 (HMGB1), a neuroinflammatory molecule implicated in seizure mechanisms. Drug-induced reduction of oxidative stress prevented HMGB1 generation, thus highlighting a potential novel mechanism contributing to therapeutic effects. Our data show that targeting oxidative stress with clinically used drugs for a limited time window starting early after injury significantly improves long-term disease outcomes. This intervention may be considered for patients exposed to potential epileptogenic insults.
Collapse
Affiliation(s)
- Alberto Pauletti
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
| | - Gaetano Terrone
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
| | - Tawfeeq Shekh-Ahmad
- 2 Department of Clinical and Experimental Epilepsy, University College
London, UK
| | - Alessia Salamone
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
| | - Teresa Ravizza
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
| | - Massimo Rizzi
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
| | - Anna Pastore
- 3 Metabolomics and Proteomics Unit, ‘Bambino Gesù’ Children’s Hospital,
IRCCS, Rome, Italy
| | - Rosaria Pascente
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
| | - Li-Ping Liang
- 4 Department of Pharmaceutical Sciences, University of Colorado Denver,
Aurora, Colorado, USA
| | - Bianca R Villa
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
| | - Silvia Balosso
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
| | - Andrey Y Abramov
- 2 Department of Clinical and Experimental Epilepsy, University College
London, UK
| | - Erwin A van Vliet
- 5 Department of (Neuro)Pathology, Academic Medical Center, University of
Amsterdam, The Netherlands
| | - Ennio Del Giudice
- 6 Department of Translational Medical Sciences, Section of Pediatrics,
Federico II University, Naples, Italy
| | - Eleonora Aronica
- 5 Department of (Neuro)Pathology, Academic Medical Center, University of
Amsterdam, The Netherlands
- 7 Stichting Epilepsie Instellingen Nederland, Amsterdam, The
Netherlands
| | - Manisha Patel
- 4 Department of Pharmaceutical Sciences, University of Colorado Denver,
Aurora, Colorado, USA
| | - Matthew C Walker
- 2 Department of Clinical and Experimental Epilepsy, University College
London, UK
| | - Annamaria Vezzani
- 1 Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche
Mario Negri, Milan, Italy
- Correpondence to: Annamaria Vezzani, PhD Department of Neuroscience
IRCCS-Istituto di Ricerche Farmacologiche Mario Negri Via G. La Masa 19, 20156 Milano,
Italy E-mail:
| |
Collapse
|
27
|
Ebrahimi F, Sadr SS, Roghani M, Khamse S, Mohammadian Haftcheshmeh S, Navid Hamidi M, Mohseni-Moghaddam P, Zamani E. Assessment of the protective effect of KN-93 drug in systemic epilepsy disorders induced by pilocarpine in male rat. J Cell Biochem 2019; 120:15906-15914. [PMID: 31074121 DOI: 10.1002/jcb.28864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/05/2019] [Accepted: 02/14/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIMS Epileptic seizures occur as a consequence of a sudden imbalance between the stimuli and inhibitors within the network of cortical neurons in favor of the stimulus. One of the drugs that induce epilepsy is pilocarpine. Systemic injection of pilocarpine affects on muscarinic receptors. Increasing evidence has addressed the implication of KN-93 by blocking Ca2+ /calmodulin-dependent protein kinase II (CaMKII), suppressing oxidative stress and inflammation, and also reducing neuron decay. So, we aimed to evaluate the potential preventive effects of KN-93 in systemic epilepsy disorders induced by pilocarpine. MATERIALS AND METHODS In this animal study, male rats were divided into five groups including treatment group (KN-93 with the dose of 5 mM/10 µL dimethyl sulfoxide (DMSO) before inducing epilepsy by 380 mg/kg pilocarpine) KN-93 group (received 5 mM KN-93), control group, epilepsy group (received 380 mg/kg pilocarpine Intraperitoneal), and sham group (received 10 µL DMSO). Oxidative stress was assessed by measuring its indicators including the concentration of malondialdehyde (MDA), nitrite, glutathione (GSH), as well as the antioxidant activity of catalase. In addition, serum levels of proinflammatory mediators including tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were determined. RESULTS Pretreatment with KN-93 significantly reduced oxidative stress index by reducing the concentration of MDA, nitrite, and increasing the level of GSH. In addition, low concentrations of TNF-α and IL-1β were observed in hippocampus supernatant of KN-93 pretreated rats in comparison with the pilocarpine groups. Moreover, administration of KN-93 improved neuronal density and attenuated the seizure activity and behavior. CONCLUSIONS Overall, our findings suggest that KN-93 can effectively suppress oxidative stress and inflammation. Furthermore, KN-93 is able to attenuate seizure behaviors by preventing its effects on neuron loss, so, it is valuable for the treatment of epileptic seizures.
Collapse
Affiliation(s)
- Fatemeh Ebrahimi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Shahabeddin Sadr
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Roghani
- Department of Physiology, School of Medicine, Shahed University and Medicinal Plant Research Center, Tehran, Iran
| | - Safoura Khamse
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Mohammadian Haftcheshmeh
- Department of Medical Immunology, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojdeh Navid Hamidi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Elham Zamani
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Antiepileptic Effects of Protein-Rich Extract from Bombyx batryticatus on Mice and Its Protective Effects against H 2O 2-Induced Oxidative Damage in PC12 Cells via Regulating PI3K/Akt Signaling Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7897584. [PMID: 31198493 PMCID: PMC6526569 DOI: 10.1155/2019/7897584] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/15/2019] [Indexed: 02/08/2023]
Abstract
Bombyx batryticatus is a known traditional Chinese medicine (TCM) utilized to treat convulsions, epilepsy, cough, asthma, headaches, and purpura in China for thousands of years. This study is aimed at investigating the antiepileptic effects of protein-rich extracts from Bombyx batryticatus (BBPs) on seizure in mice and exploring the protective effects of BBPs against H2O2-induced oxidative stress in PC12 cells and their underlying mechanisms. Maximal electroshock-induced seizure (MES) and pentylenetetrazole- (PTZ-) induced seizure in mice and the histological analysis were carried out to evaluate the antiepileptic effects of BBPs. The cell viability of PC12 cells stimulated by H2O2 was determined by MTT assay. The apoptosis and ROS levels of H2O2-stimulated PC12 cells were determined by flow cytometry analysis. Furthermore, the levels of malondialdehyde (MDA), superoxide dismutase (SOD), lactate dehydrogenase (LDH), and glutathione (GSH) in PC12 cells were assayed by ELISA and expressions of caspase-3, caspase-9, Bax, Bcl-2, PI3K, Akt, and p-Akt were evaluated by Western blotting and quantitative real-time polymerase chain reaction (RT-qPCR) assays. The results revealed that BBPs exerted significant antiepileptic effects on mice. In addition, BBPs increased the cell viability of H2O2-stimulated PC12 cells and reduced apoptotic cells and ROS levels in H2O2-stimulated PC12 cells. By BBPs treatments, the levels of MDA and LDH were reduced and the levels of SOD and GSH-Px were increased in H2O2-stimulated PC12 cells. Moreover, BBPs upregulated the expressions of PI3K, Akt, p-Akt, and Bcl-2, whereas they downregulated the expressions of caspase-9, caspase-3, and Bax in H2O2-stimulated PC12 cells. These findings suggested that BBPs possessed potential antiepileptic effects on MES and PTZ-induced seizure in mice and protective effects on H2O2-induced oxidative stress in PC12 cells by exerting antioxidative and antiapoptotic effects via PI3K/Akt signaling pathways.
Collapse
|
29
|
Liang LP, Pearson-Smith JN, Huang J, McElroy P, Day BJ, Patel M. Neuroprotective Effects of AEOL10150 in a Rat Organophosphate Model. Toxicol Sci 2019; 162:611-621. [PMID: 29272548 DOI: 10.1093/toxsci/kfx283] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Prolonged seizure activity or status epilepticus (SE) is one of the most critical manifestations of organophosphate exposure. Previous studies in our laboratory have demonstrated that oxidative stress is a critical mediator of SE-induced neuronal injury. The goal of this study was to determine if diisopropylflurorphoshate (DFP) exposure in rats resulted in oxidative stress and whether scavenging reactive oxygen species attenuated DFP-induced neurotoxicity. DFP treatment increased indices of oxidative stress in a time- and region- dependent manner. Neuronal loss measured by Fluoro-Jade B staining was significantly increased in the hippocampus, piriform cortex and amygdala following DFP. Similarly, levels of the proinflammatory cytokines, particularly TNF-α, IL-6, and KC/GRO were significantly increased in the piriform cortex and in the hippocampus following DFP treatment. The catalytic antioxidant AEOL10150, when treatment was initiated 5 min after DFP-induced SE, significantly attenuated indices of oxidative stress, neuroinflammation and neuronal damage. This study suggests that catalytic antioxidant treatment may be useful as a novel therapy to attenuate secondary neuronal injury following organophosphate exposure.
Collapse
Affiliation(s)
- Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado
| | | | - Jie Huang
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Pallavi McElroy
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado
| | - Brian J Day
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado.,Department of Medicine, National Jewish Health, Denver, Colorado
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
30
|
Talari HR, Bahrami M, Ardestani AT, Bahmani F, Famili P, Asemi Z. Effects of Folate Supplementation on Carotid Intima-Media Thickness, Biomarkers of Inflammation, and Oxidative Stress in Carbamazepine-Treated Epileptic Children. Int J Prev Med 2019; 10:4. [PMID: 30774838 PMCID: PMC6360991 DOI: 10.4103/ijpvm.ijpvm_152_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 11/02/2018] [Indexed: 11/05/2022] Open
Abstract
Background: This study was conducted to assess the effects of folate supplementation on carotid intima-media thickness (CIMT), biomarkers of inflammation, and oxidative stress in carbamazepine-treated epileptic children. Methods: This randomized, double-blind, placebo-controlled trial was carried out in 54 epileptic children aged 2–12 years old receiving carbamazepine monotherapy. Participants were randomly allocated into two groups to receive either 5 mg folate supplements or placebo (n = 27 in each group) for 12 weeks. Results: After the 12-week intervention, compared with the placebo, folate supplementation resulted in a significant reduction in plasma homocysteine (Hcy) (changes from baseline − 2.1 ± 2.5 vs. +0.1 ± 0.4 μmol/L, P < 0.001), serum high-sensitivity C-reactive protein (hs-CRP) (changes from baseline − 1.5 ± 3.5 vs. +0.4 ± 1.4 mg/L, P = 0.01), a significant increase in plasma nitric oxide (NO) (changes from baseline + 1.9 ± 5.8 vs. −2.0 ± 6.4 μmol/L, P = 0.02), and total antioxidant capacity (TAC) concentrations (changes from baseline + 88.6 ± 116.0 vs. +1.8 ± 77.4 mmol/L, P = 0.002). We did not observe any significant effects in mean levels of left and right CIMT, maximum levels of left and right CIMT, and total glutathione (GSH) and malondialdehyde (MDA) levels following the supplementation of folate compared with the placebo. Conclusions: Overall, folate supplementation at a dosage of 5 mg/day for 12 weeks among epileptic children receiving carbamazepine had beneficial effects on Hcy, hs-CRP, NO, and TAC levels, but did not affect CIMT, and GSH and MDA levels.
Collapse
Affiliation(s)
- Hamid Reza Talari
- Department of Radiology, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Mansour Bahrami
- Department of Radiology, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Ahmad Talebian Ardestani
- Department of Pediatrics, School of Medicine, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Fereshteh Bahmani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Peyman Famili
- Department of Radiology, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| |
Collapse
|
31
|
Yusuf M, Khan M, Robaian MA, Khan RA. Biomechanistic insights into the roles of oxidative stress in generating complex neurological disorders. Biol Chem 2018; 399:305-319. [PMID: 29261511 DOI: 10.1515/hsz-2017-0250] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022]
Abstract
Neurological diseases like Alzheimer's disease, epilepsy, parkinsonism, depression, Huntington's disease and amyotrophic lateral sclerosis prevailing globally are considered to be deeply influenced by oxidative stress-based changes in the biochemical settings of the organs. The excess oxygen concentration triggers the production of reactive oxygen species, and even the intrinsic antioxidant enzyme system, i.e. SOD, CAT and GSHPx, fails to manage their levels and keep them under desirable limits. This consequently leads to oxidation of protein, lipids and nucleic acids in the brain resulting in apoptosis, proteopathy, proteasomes and mitochondrion dysfunction, glial cell activation as well as neuroinflammation. The present exploration deals with the evidence-based mechanism of oxidative stress towards development of key neurological diseases along with the involved biomechanistics and biomaterials.
Collapse
Affiliation(s)
- Mohammad Yusuf
- College of Pharmacy, Taif University, Taif-Al-Haweiah 21974, Saudi Arabia
| | - Maria Khan
- College of Pharmacy, Taif University, Taif-Al-Haweiah 21974, Saudi Arabia
| | - Majed A Robaian
- College of Pharmacy, Taif University, Taif-Al-Haweiah 21974, Saudi Arabia
| | - Riaz A Khan
- Medicinal Chemistry Department, Qassim University, Qassim 51452, Saudi Arabia
- Department of Chemistry, MRIU, Faridabad, HR 121 001, India
| |
Collapse
|
32
|
Furtado D, Björnmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the Blood-Brain Barrier: The Role of Nanomaterials in Treating Neurological Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801362. [PMID: 30066406 DOI: 10.1002/adma.201801362] [Citation(s) in RCA: 368] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/09/2018] [Indexed: 05/24/2023]
Abstract
Therapies directed toward the central nervous system remain difficult to translate into improved clinical outcomes. This is largely due to the blood-brain barrier (BBB), arguably the most tightly regulated interface in the human body, which routinely excludes most therapeutics. Advances in the engineering of nanomaterials and their application in biomedicine (i.e., nanomedicine) are enabling new strategies that have the potential to help improve our understanding and treatment of neurological diseases. Herein, the various mechanisms by which therapeutics can be delivered to the brain are examined and key challenges facing translation of this research from benchtop to bedside are highlighted. Following a contextual overview of the BBB anatomy and physiology in both healthy and diseased states, relevant therapeutic strategies for bypassing and crossing the BBB are discussed. The focus here is especially on nanomaterial-based drug delivery systems and the potential of these to overcome the biological challenges imposed by the BBB. Finally, disease-targeting strategies and clearance mechanisms are explored. The objective is to provide the diverse range of researchers active in the field (e.g., material scientists, chemists, engineers, neuroscientists, and clinicians) with an easily accessible guide to the key opportunities and challenges currently facing the nanomaterial-mediated treatment of neurological diseases.
Collapse
Affiliation(s)
- Denzil Furtado
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Mattias Björnmalm
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Department of Materials, Department of Bioengineering, and the Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Scott Ayton
- Melbourne Dementia Research Centre, The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Ashley I Bush
- Melbourne Dementia Research Centre, The Florey Institute for Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3052, Australia
- Cooperative Research Center for Mental Health, Parkville, Victoria, 3052, Australia
| | - Kristian Kempe
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
33
|
Abstract
There is a resurgence of interest in the role of metabolism in epilepsy. Long considered ancillary and acknowledged only in the context of clinical application of ketogenic diets, metabolic control of epilepsy is gaining momentum and mainstream interest among researchers. A metabolic paradigm for epilepsy rests upon known perturbations in three major interconnected metabolic nodes and therapeutic targets therefrom (i.e., glycolysis, mitochondria, and redox balance).
Collapse
|
34
|
Gano LB, Liang LP, Ryan K, Michel CR, Gomez J, Vassilopoulos A, Reisdorph N, Fritz KS, Patel M. Altered mitochondrial acetylation profiles in a kainic acid model of temporal lobe epilepsy. Free Radic Biol Med 2018; 123:116-124. [PMID: 29778462 PMCID: PMC6082368 DOI: 10.1016/j.freeradbiomed.2018.05.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
Abstract
Impaired bioenergetics and oxidative damage in the mitochondria are implicated in the etiology of temporal lobe epilepsy, and hyperacetylation of mitochondrial proteins has recently emerged as a critical negative regulator of mitochondrial functions. However, the roles of mitochondrial acetylation and activity of the primary mitochondrial deacetylase, SIRT3, have not been explored in acquired epilepsy. We investigated changes in mitochondrial acetylation and SIRT3 activity in the development of chronic epilepsy in the kainic acid rat model of TLE. Hippocampal measurements were made at 48 h, 1 week and 12 weeks corresponding to the acute, latent and chronic stages of epileptogenesis. Assessment of hippocampal bioenergetics demonstrated a ≥ 27% decrease in the ATP/ADP ratio at all phases of epileptogenesis (p < 0.05), whereas cellular NAD+ levels were decreased by ≥ 41% in the acute and latent time points (p < 0.05), but not in chronically epileptic rats. In spontaneously epileptic rats, we found decreased protein expression of SIRT3 and a 60% increase in global mitochondrial acetylation, as well as enhanced acetylation of the known SIRT3 substrates MnSOD, Ndufa9 of Complex I and IDH2 (all p < 0.05), suggesting SIRT3 dysfunction in chronic epilepsy. Mass spectrometry-based acetylomics investigation of hippocampal mitochondria demonstrated a 79% increase in unique acetylated proteins from rats in the chronic phase vs. controls. Pathway analysis identified numerous mitochondrial bioenergetic pathways affected by mitochondrial acetylation. These results suggest SIRT3 dysfunction and aberrant protein acetylation may contribute to mitochondrial dysfunction in chronic epilepsy.
Collapse
Affiliation(s)
- Lindsey B Gano
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Li-Ping Liang
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristen Ryan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cole R Michel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joe Gomez
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Athanassios Vassilopoulos
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristofer S Fritz
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Manisha Patel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
35
|
Zhu X, Dong J, Han B, Huang R, Zhang A, Xia Z, Chang H, Chao J, Yao H. Neuronal Nitric Oxide Synthase Contributes to PTZ Kindling Epilepsy-Induced Hippocampal Endoplasmic Reticulum Stress and Oxidative Damage. Front Cell Neurosci 2017; 11:377. [PMID: 29234274 PMCID: PMC5712337 DOI: 10.3389/fncel.2017.00377] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is one of the most common chronic neurological disorders which provoke progressive neuronal degeneration. Endoplasmic reticulum (ER) stress has recently been recognized as pivotal etiological factors contributing to epilepsy-induced neuronal damage. However, the specific contribution of epilepsy made to ER stress remains largely elusive. Here we use pentylenetetrazole (PTZ) kindling, a chronic epilepsy model, to identify neuronal nitric oxide synthase (nNOS) as a signaling molecule triggering PTZ kindling epilepsy-induced ER stress and oxidative damage. By genetic deletion of nNOS gene, we further demonstrated that nNOS acts through peroxynitrite, an important member of reactive nitrogen species, to trigger hippocampal ER stress and oxidative damage in the PTZ-kindled mice. Our findings thus define a specific mechanism for chronic epilepsy-induced ER stress and oxidative damage, and identify a potential therapeutic target for neuroprotection in chronic epilepsy patients.
Collapse
Affiliation(s)
- Xinjian Zhu
- Department of Pharmacology, Medical School, Southeast University, Nanjing, China
| | - Jingde Dong
- Department of Geriatric Neurology, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Bing Han
- Department of Pharmacology, Medical School, Southeast University, Nanjing, China
| | - Rongrong Huang
- Department of Pharmacology, Medical School, Southeast University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School, Southeast University, Nanjing, China
| | - Zhengrong Xia
- Analysis and Test Center, Nanjing Medical University, Nanjing, China
| | - Huanhuan Chang
- Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Jie Chao
- Department of Physiology, Medical School, Southeast University, Nanjing, China
| | - Honghong Yao
- Department of Pharmacology, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
36
|
Manual acupuncture improves parameters associated with oxidative stress and inflammation in PTZ-induced kindling in mice. Neurosci Lett 2017; 661:33-40. [PMID: 28947384 DOI: 10.1016/j.neulet.2017.09.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 01/25/2023]
Abstract
The use of acupuncture in the treatment of central nervous system (CNS) disorders is an age-old practice. Although only a few studies have proved its efficacy, evidence has indicated the use of acupuncture to treat different types of seizures. Therefore, the present study aimed to evaluate the effect of manual acupuncture (MAC) using the chemical kindling model. The role of MAC in oxidative stress and inflammation after pentylenetetrazole (PTZ)-induced kindling was investigated by measuring reactive oxygen species (ROS) production, superoxide dismutase (SOD), and catalase (CAT) activities, nitrite content, and deoxyribonucleic acid (DNA) damage in cerebral cortex. Mice received PTZ (60mg/kgs.c.) once every three days for 16days, totaling six treatments. MAC was applied at acupoint GV20 daily during the entire experimental protocol. Diazepam (DZP) (2mg/kg) was used as positive control. Also, we evaluated the MAC effect associated with DZP (MAC/DZP) at a low dose (0.15mg/kg). The results demonstrated that MAC or MAC/DZP were not able to reduce significantly seizure occurrence or to increase the latency to the first seizure during treatment. MAC/DZP promoted a difference in the first latency to seizure only on the third day. PTZ-induced kindling caused significant neuronal injury, oxidative stress, increased DNA damage, nitric oxide production, and expression of the pro-inflammatory Tumor Necrosis Factor-α (TNF-α). These effects were reversed by treatment with MAC or MAC/DZP. These results indicated that the stimulation of acupoint GV20 by MAC showed no potential antiepileptogenic effect in the model used, although it greatly promoted neuronal protection, which may result from antioxidant and anti-inflammatory effects observed here.
Collapse
|
37
|
Pauletti A, Terrone G, Shekh-Ahmad T, Salamone A, Ravizza T, Rizzi M, Pastore A, Pascente R, Liang LP, Villa BR, Balosso S, Abramov AY, van Vliet EA, Del Giudice E, Aronica E, Antoine DJ, Patel M, Walker MC, Vezzani A. Targeting oxidative stress improves disease outcomes in a rat model of acquired epilepsy. Brain 2017; 140:1885-1899. [PMID: 28575153 DOI: 10.1093/brain/awx117] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/26/2017] [Indexed: 12/31/2022] Open
Abstract
Epilepsy therapy is based on antiseizure drugs that treat the symptom, seizures, rather than the disease and are ineffective in up to 30% of patients. There are no treatments for modifying the disease-preventing seizure onset, reducing severity or improving prognosis. Among the potential molecular targets for attaining these unmet therapeutic needs, we focused on oxidative stress since it is a pathophysiological process commonly occurring in experimental epileptogenesis and observed in human epilepsy. Using a rat model of acquired epilepsy induced by electrical status epilepticus, we show that oxidative stress occurs in both neurons and astrocytes during epileptogenesis, as assessed by measuring biochemical and histological markers. This evidence was validated in the hippocampus of humans who died following status epilepticus. Oxidative stress was reduced in animals undergoing epileptogenesis by a transient treatment with N-acetylcysteine and sulforaphane, which act to increase glutathione levels through complementary mechanisms. These antioxidant drugs are already used in humans for other therapeutic indications. This drug combination transiently administered for 2 weeks during epileptogenesis inhibited oxidative stress more efficiently than either drug alone. The drug combination significantly delayed the onset of epilepsy, blocked disease progression between 2 and 5 months post-status epilepticus and drastically reduced the frequency of spontaneous seizures measured at 5 months without modifying the average seizure duration or the incidence of epilepsy in animals. Treatment also decreased hippocampal neuron loss and rescued cognitive deficits. Oxidative stress during epileptogenesis was associated with de novo brain and blood generation of disulfide high mobility group box 1 (HMGB1), a neuroinflammatory molecule implicated in seizure mechanisms. Drug-induced reduction of oxidative stress prevented disulfide HMGB1 generation, thus highlighting a potential novel mechanism contributing to therapeutic effects. Our data show that targeting oxidative stress with clinically used drugs for a limited time window starting early after injury significantly improves long-term disease outcomes. This intervention may be considered for patients exposed to potential epileptogenic insults.
Collapse
Affiliation(s)
- Alberto Pauletti
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Gaetano Terrone
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Tawfeeq Shekh-Ahmad
- Department of Clinical and Experimental Epilepsy, University College London, UK
| | - Alessia Salamone
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Teresa Ravizza
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Massimo Rizzi
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Anna Pastore
- Metabolomics and Proteomics Unit, 'Bambino Gesù' Children's Hospital, IRCCS, Rome, Italy
| | - Rosaria Pascente
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Li-Ping Liang
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, USA
| | - Bianca R Villa
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Silvia Balosso
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Andrey Y Abramov
- Department of Clinical and Experimental Epilepsy, University College London, UK
| | - Erwin A van Vliet
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, The Netherlands
| | - Ennio Del Giudice
- Department of Translational Medical Sciences, Section of Pediatrics, Federico II University, Naples, Italy
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Academic Medical Center, University of Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland, Amsterdam, The Netherlands
| | - Daniel J Antoine
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado, USA
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, University College London, UK
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| |
Collapse
|
38
|
Scavenging reactive oxygen species inhibits status epilepticus-induced neuroinflammation. Exp Neurol 2017; 298:13-22. [PMID: 28822838 DOI: 10.1016/j.expneurol.2017.08.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/26/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023]
Abstract
Inflammation has been identified as an important mediator of seizures and epileptogenesis. Understanding the mechanisms underlying seizure-induced neuroinflammation could lead to the development of novel therapies for the epilepsies. Reactive oxygen species (ROS) are recognized as mediators of seizure-induced neuronal damage and are known to increase in models of epilepsies. ROS are also known to contribute to inflammation in several disease states. We hypothesized that ROS are key modulators of neuroinflammation i.e. pro-inflammatory cytokine production and microglial activation in acquired epilepsy. The role of ROS in modulating seizure-induced neuroinflammation was investigated in the pilocarpine model of temporal lobe epilepsy (TLE). Pilocarpine-induced status epilepticus (SE) resulted in a time-dependent increase in pro-inflammatory cytokine production in the hippocampus and piriform cortex. Scavenging ROS with a small-molecule catalytic antioxidant decreased SE-induced pro-inflammatory cytokine production and microglial activation, suggesting that ROS contribute to SE-induced neuroinflammation. Scavenging ROS also attenuated phosphorylation of ribosomal protein S6, the downstream target of the mammalian target of rapamycin (mTOR) pathway indicating that this pathway might provide one mechanistic link between SE-induced ROS production and inflammation. Together, these results demonstrate that ROS contribute to SE-induced cytokine production and antioxidant treatment may offer a novel approach to control neuroinflammation in epilepsy.
Collapse
|
39
|
Patel M, McElroy PB. Mitochondrial Dysfunction in Parkinson’s Disease. OXIDATIVE STRESS AND REDOX SIGNALLING IN PARKINSON’S DISEASE 2017. [DOI: 10.1039/9781782622888-00061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative disorders where oxidative stress and mitochondrial dysfunction have been implicated as etiological factors. Mitochondria are the major producers of reactive oxygen species (ROS) that can have damaging effects to cellular macromolecules leading to neurodegeneration. The most compelling evidence for the role of mitochondria in the pathogenesis of PD has been derived from toxicant-induced models of parkinsonism. Over the years, epidemiological studies have suggested a link between exposure to environmental toxins such as pesticides and the risk of developing PD. Data from human and experimental studies involving the use of chemical agents like paraquat, diquat, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, rotenone and maneb have provided valuable insight into the underlying mitochondrial mechanisms contributing to PD and associated neurodegeneration. In this review, we have discussed the role of mitochondrial ROS and dysfunction in the pathogenesis of PD with a special focus on environmental agent-induced parkinsonism. We have described the various mitochondrial mechanisms by which such chemicals exert neurotoxicity, highlighting some landmark epidemiological and experimental studies that support the role of mitochondrial ROS and oxidative stress in contributing to these effects. Finally, we have discussed the significance of these studies in understanding the mechanistic underpinnings of PD-related dopaminergic neurodegeneration.
Collapse
Affiliation(s)
- Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus Aurora CO 80045 USA
| | - Pallavi Bhuyan McElroy
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus Aurora CO 80045 USA
| |
Collapse
|
40
|
MDH2 is an RNA binding protein involved in downregulation of sodium channel Scn1a expression under seizure condition. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1492-1499. [PMID: 28433711 DOI: 10.1016/j.bbadis.2017.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/31/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022]
Abstract
Voltage-gated sodium channel α-subunit type I (NaV1.1, encoded by SCN1A gene) plays a critical role in the excitability of brain. Downregulation of SCN1A expression is associated with epilepsy, a common neurological disorder characterized by recurrent seizures. Here we reveal a novel role of malate dehydrogenase 2 (MDH2) in the posttranscriptional regulation of SCN1A expression under seizure condition. We identified that MDH2 was an RNA binding protein that could bind two of the four conserved regions in the 3' UTRs of SCN1A. We further showed that knockdown of MDH2 or inactivation of MDH2 activity in HEK-293 cells increased the reporter gene expression through the 3' UTR of SCN1A, and MDH2 overexpression decreased gene expression by affecting mRNA stability. In the hippocampus of seizure mice, the upregulation of MDH2 expression contributed to the decrease of the NaV1.1 levels at posttranscriptional level. In addition, we showed that the H2O2 levels increased in the hippocampus of the seizure mice, and H2O2 could promote the binding of MDH2 to the binding sites of Scn1a gene, whereas β-mercaptoethanol decreased the binding capability, indicating an important effect of the seizure-induced oxidation on the MDH2-mediated downregulation of Scn1a expression. Taken together, these data suggest that MDH2, functioning as an RNA-binding protein, is involved in the posttranscriptional downregulation of SCN1A expression under seizure condition.
Collapse
|
41
|
Shakeel S, Rehman MU, Tabassum N, Amin U, Mir MUR. Effect of Naringenin (A naturally occurring flavanone) Against Pilocarpine-induced Status Epilepticus and Oxidative Stress in Mice. Pharmacogn Mag 2017. [PMID: 28479741 DOI: 10.4103/0973-1296.20397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Epilepsy is a disorder of the central nervous system characterized by recurrent seizures. It is a very common disease in which approximately 30% of patients do not respond favourably to treatment with anticonvulsants. Oxidative stress is associated with neuronal damage arising from epileptic seizures. The present study investigated the effects of naringenin in pilocarpine-induced epilepsy in mice. Naringenin, one of the most frequently occurring flavanone in citrus fruits, was evaluated for its shielding effect against the pilocarpine induced behavioural, oxidative and histopathological alterations in rodent model of epilepsy. METHODOLOGY Epilepsy was induced by giving pilocarpine (300mg/kg) and sodium valproate (300mg/kg) was given as standard anti-epileptic drug Pilocarpine was administered (300 mg /kg body weight) intraperitoneally to the mice on 15th day while naringenin was administered orally (20 and 40 mg/kg body weight) for 15 days prior to administration of pilocarpine. RESULTS The intraperitoneal administration of pilocarpine enhanced lipid peroxidation, caused reduction in antioxidant enzymes, viz., catalase, superoxide dismutase and glutathione reductase. Treatment of mice orally with naringenin (20 mg/kg body weight and 40 mg/kg body weight) resulted in a significant decrease in lipid peroxidation. There was significant recovery of glutathione content and all the antioxidant enzymes studied. Also in case of behavioural parameters studied, naringenin showed decrease in seizure severity. All these changes were supported by histological observations, which revealed excellent improvement in neuronal damage. CONCLUSION The higher dose of naringenin was more potent in our study and was comparable to the standard drug (sodium valproate) in effectiveness. SUMMARY Naringenin ameliorated the development of ROS formation in hippocamus.Naringenin helped in recovery of antioxidant enzymes.Naringenin decreased seizure severity.Naringenin treatment reduced lipid peroxidation. Abbreviations used: 6-OHDA: 6-hydroxydopamine, AED: Anti epileptic drugs, AIDS: Acquired immune deficiency syndrome, ANOVA: Analysis of variance, ATP: Adenosine triphosphate, CA: Cornu ammonis, CAT: Catalase, DG: Dentate gyrus, EDTA: Ethylenediamine tetra acetic acid, GR: Glutathione reductase, GSH: Glutathione reduced, HCl: Hydrochloric acid, IL-1β: Interleukin 1 beta, LPO: Lipid peroxidation, MDA: Malondialdehyde, NADPH: Nicotinamide adenine dinucleotide phosphate, PMS: post mitochondrial supernatant, SE: Status epilepticus, SEM: Standard error of the mean, SOD Superoxide dismutase, TBA: Thiobarbituric acid, TBARS: Thiobarbituric acid reactive substance, TLE: Temporal lobe epilepsy, TNF-α: Tumor necrosis factor alpha.
Collapse
Affiliation(s)
- Sheeba Shakeel
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir, India
| | - Muneeb U Rehman
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sheri Kashmir University of Agricultural Science and Technology-Kashmir (SKUAST-K), Srinagar, Jammu and Kashmir, India
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir, India
| | - Umar Amin
- Division of Veterinary Pathology, Faculty of Veterinary Sciences and Animal Husbandry, Sheri Kashmir University of Agricultural Science and Technology-Kashmir (SKUAST-K), Srinagar, Jammu and Kashmir, India
| | - Manzoor Ur Rahman Mir
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sheri Kashmir University of Agricultural Science and Technology-Kashmir (SKUAST-K), Srinagar, Jammu and Kashmir, India
| |
Collapse
|
42
|
Shakeel S, Rehman MU, Tabassum N, Amin U, Mir MUR. Effect of Naringenin (A naturally occurring flavanone) Against Pilocarpine-induced Status Epilepticus and Oxidative Stress in Mice. Pharmacogn Mag 2017; 13:S154-S160. [PMID: 28479741 PMCID: PMC5407108 DOI: 10.4103/0973-1296.203977] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/19/2016] [Indexed: 02/04/2023] Open
Abstract
Background: Epilepsy is a disorder of the central nervous system characterized by recurrent seizures. It is a very common disease in which approximately 30% of patients do not respond favourably to treatment with anticonvulsants. Oxidative stress is associated with neuronal damage arising from epileptic seizures. The present study investigated the effects of naringenin in pilocarpine-induced epilepsy in mice. Naringenin, one of the most frequently occurring flavanone in citrus fruits, was evaluated for its shielding effect against the pilocarpine induced behavioural, oxidative and histopathological alterations in rodent model of epilepsy. Methodology: Epilepsy was induced by giving pilocarpine (300mg/kg) and sodium valproate (300mg/kg) was given as standard anti-epileptic drug Pilocarpine was administered (300 mg /kg body weight) intraperitoneally to the mice on 15th day while naringenin was administered orally (20 and 40 mg/kg body weight) for 15 days prior to administration of pilocarpine. Results: The intraperitoneal administration of pilocarpine enhanced lipid peroxidation, caused reduction in antioxidant enzymes, viz., catalase, superoxide dismutase and glutathione reductase. Treatment of mice orally with naringenin (20 mg/kg body weight and 40 mg/kg body weight) resulted in a significant decrease in lipid peroxidation. There was significant recovery of glutathione content and all the antioxidant enzymes studied. Also in case of behavioural parameters studied, naringenin showed decrease in seizure severity. All these changes were supported by histological observations, which revealed excellent improvement in neuronal damage. Conclusion: The higher dose of naringenin was more potent in our study and was comparable to the standard drug (sodium valproate) in effectiveness. SUMMARY Naringenin ameliorated the development of ROS formation in hippocamus. Naringenin helped in recovery of antioxidant enzymes. Naringenin decreased seizure severity. Naringenin treatment reduced lipid peroxidation.
Abbreviations used: 6-OHDA: 6-hydroxydopamine, AED: Anti epileptic drugs, AIDS: Acquired immune deficiency syndrome, ANOVA: Analysis of variance, ATP: Adenosine triphosphate, CA: Cornu ammonis, CAT: Catalase, DG: Dentate gyrus, EDTA: Ethylenediamine tetra acetic acid, GR: Glutathione reductase, GSH: Glutathione reduced, HCl: Hydrochloric acid, IL-1β: Interleukin 1 beta, LPO: Lipid peroxidation, MDA: Malondialdehyde, NADPH: Nicotinamide adenine dinucleotide phosphate, PMS: post mitochondrial supernatant, SE: Status epilepticus, SEM: Standard error of the mean, SOD Superoxide dismutase, TBA: Thiobarbituric acid, TBARS: Thiobarbituric acid reactive substance, TLE: Temporal lobe epilepsy, TNF-α: Tumor necrosis factor alpha
Collapse
Affiliation(s)
- Sheeba Shakeel
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir, India
| | - Muneeb U Rehman
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sheri Kashmir University of Agricultural Science and Technology-Kashmir (SKUAST-K), Srinagar, Jammu and Kashmir, India
| | - Nahida Tabassum
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal Srinagar, Jammu and Kashmir, India
| | - Umar Amin
- Division of Veterinary Pathology, Faculty of Veterinary Sciences and Animal Husbandry, Sheri Kashmir University of Agricultural Science and Technology-Kashmir (SKUAST-K), Srinagar, Jammu and Kashmir, India
| | - Manzoor Ur Rahman Mir
- Molecular Biology Laboratory, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sheri Kashmir University of Agricultural Science and Technology-Kashmir (SKUAST-K), Srinagar, Jammu and Kashmir, India
| |
Collapse
|
43
|
Liu G, Wang J, Deng XH, Ma PS, Li FM, Peng XD, Niu Y, Sun T, Li YX, Yu JQ. The Anticonvulsant and Neuroprotective Effects of Oxysophocarpine on Pilocarpine-Induced Convulsions in Adult Male Mice. Cell Mol Neurobiol 2017; 37:339-349. [PMID: 27481234 DOI: 10.1007/s10571-016-0411-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 07/26/2016] [Indexed: 11/29/2022]
Abstract
Epilepsy is one of the prevalent and major neurological disorders, and approximately one-third of the individuals with epilepsy experience seizures that do not respond well to available medications. We investigated whether oxysophocarpine (OSC) had anticonvulsant and neuroprotective property in the pilocarpine (PILO)-treated mice. Thirty minutes prior to the PILO injection, the mice were administrated with OSC (20, 40, and 80 mg/kg) once. Seizures and electroencephalography (EEG) were observed, and then the mice were killed for Nissl and Fluoro-jade B (FJB) staining. The oxidative stress was measured at 24 h after convulsion. Western blot analysis was used to examine the expressions of the Bax, Bcl-2, and Caspase-3. In this study, we found that pretreatment with OSC (40, 80 mg/kg) significantly delayed the onset of the first convulsion and status epilepticus (SE) and reduced the incidence of SE and mortality. Analysis of EEG recordings revealed that OSC (40, 80 mg/kg) significantly reduced epileptiform discharges. Furthermore, Nissl and FJB staining showed that OSC (40, 80 mg/kg) attenuated the neuronal cell loss and degeneration in hippocampus. In addition, OSC (40, 80 mg/kg) attenuated the changes in the levels of Malondialdehyde (MDA) and strengthened glutathione peroxidase and catalase activity in the hippocampus. Western blot analysis showed that OSC (40, 80 mg/kg) significantly decreased the expressions of Bax, Caspase-3 and increased the expression of Bcl-2. Collectively, the findings of this study indicated that OSC exerted anticonvulsant and neuroprotective effects on PILO-treated mice. The beneficial effects should encourage further studies to investigate OSC as an adjuvant in epilepsy, both to prevent seizures and to protect neurons in brain.
Collapse
Affiliation(s)
- Gang Liu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, 750004, China
| | - Jing Wang
- Department of Pharmacology, Ningxia Medical University, Yinchuan, 750004, China
| | - Xian-Hua Deng
- Department of Pharmacology, Ningxia Medical University, Yinchuan, 750004, China
| | - Peng-Sheng Ma
- Department of Pharmacology, Ningxia Medical University, Yinchuan, 750004, China
| | - Feng-Mei Li
- Department of Pharmacology, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiao-Dong Peng
- Department of Pharmacology, Ningxia Medical University, Yinchuan, 750004, China
| | - Yang Niu
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Tao Sun
- Ningxia Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750004, China
| | - Yu-Xiang Li
- College of Nursing, Ningxia Medical University, Yinchuan, 750004, China.
| | - Jian-Qiang Yu
- Department of Pharmacology, Ningxia Medical University, Yinchuan, 750004, China.
- Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
44
|
McElroy PB, Sri Hari A, Day BJ, Patel M. Post-translational Activation of Glutamate Cysteine Ligase with Dimercaprol: A NOVEL MECHANISM OF INHIBITING NEUROINFLAMMATION IN VITRO. J Biol Chem 2017; 292:5532-5545. [PMID: 28202547 DOI: 10.1074/jbc.m116.723700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 01/25/2017] [Indexed: 11/06/2022] Open
Abstract
Neuroinflammation and oxidative stress are hallmarks of various neurological diseases. However, whether and how the redox processes control neuroinflammation is incompletely understood. We hypothesized that increasing cellular glutathione (GSH) levels would inhibit neuroinflammation. A series of thiol compounds were identified to elevate cellular GSH levels by a novel approach (i.e. post-translational activation of glutamate cysteine ligase (GCL), the rate-limiting enzyme in GSH biosynthesis). These small thiol-containing compounds were examined for their ability to increase intracellular GSH levels in a murine microglial cell line (BV2), of which dimercaprol (2,3-dimercapto-1-propanol (DMP)) was found to be the most effective compound. DMP increased GCL activity and decreased LPS-induced production of pro-inflammatory cytokines and inducible nitric-oxide synthase induction in BV2 cells in a concentration-dependent manner. The ability of DMP to elevate GSH levels and attenuate LPS-induced pro-inflammatory cytokine production was inhibited by buthionine sulfoximine, an inhibitor of GCL. DMP increased the expression of GCL holoenzyme without altering the expression of its subunits or Nrf2 target proteins (NQO1 and HO-1), suggesting a post-translational mechanism. DMP attenuated LPS-induced MAPK activation in BV2 cells, suggesting the MAPK pathway as the signaling mechanism underlying the effect of DMP. Finally, the ability of DMP to increase GSH via GCL activation was observed in mixed cerebrocortical cultures and N27 dopaminergic cells. Together, the data demonstrate a novel mechanism of GSH elevation by post-translational activation of GCL. Post-translational activation of GCL offers a novel targeted approach to control inflammation in chronic neuronal disorders associated with impaired adaptive responses.
Collapse
Affiliation(s)
- Pallavi B McElroy
- From the Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045 and
| | - Ashwini Sri Hari
- From the Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045 and
| | - Brian J Day
- the Department of Medicine, National Jewish Health, Denver, Colorado 80206
| | - Manisha Patel
- From the Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045 and
| |
Collapse
|
45
|
Juárez-Rebollar D, Alonso-Vanegas M, Nava-Ruíz C, Buentello-García M, Yescas-Gómez P, Díaz-Ruíz A, Rios C, Méndez-Armenta M. Immunohistochemical study of Metallothionein in patients with temporal lobe epilepsy. J Clin Neurosci 2017; 39:87-90. [PMID: 28087193 DOI: 10.1016/j.jocn.2016.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022]
Abstract
Epilepsy is characterized by spontaneous recurrent seizures and temporal lobe epilepsy (TLE) is the most common serious neurological example of acquired and frequent epilepsy. Oxidative stress is recognized as playing a contributing role in several neurological disorders, and most recently have been implicated in acquired epilepsies. The MTs occur in several brain regions and may serve as neuroprotective proteins against reactive oxygen species causing oxidative damage and stress. The main aim of this work was to describe the immunohistochemical localization of MT in the specimens derived from the patients affected by TLE. Histopathological examination showed NeuN, GFAP and MT immunopositive cells that were analyzed for determinate in hippocampal and parietal cortex samples. An increase in the reactive gliosis associated with increased MT expression was observed in patients with TLE.
Collapse
Affiliation(s)
- Daniel Juárez-Rebollar
- Lab. Neuropatología Experimental, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico
| | - Mario Alonso-Vanegas
- Subdirección de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico
| | - Concepción Nava-Ruíz
- Lab. Neuropatología Experimental, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico
| | - Masao Buentello-García
- Subdirección de Neurocirugía, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico
| | - Petra Yescas-Gómez
- Depto. Neurogenética, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico
| | - Araceli Díaz-Ruíz
- Dpto. Neuroquímica, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico
| | - Camilo Rios
- Dpto. Neuroquímica, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico
| | - Marisela Méndez-Armenta
- Lab. Neuropatología Experimental, Instituto Nacional de Neurología y Neurocirugía MVS, Mexico.
| |
Collapse
|
46
|
Dominiak A, Wilkaniec A, Wroczyński P, Adamczyk A. Selenium in the Therapy of Neurological Diseases. Where is it Going? Curr Neuropharmacol 2016; 14:282-99. [PMID: 26549649 PMCID: PMC4857624 DOI: 10.2174/1570159x14666151223100011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 08/20/2015] [Accepted: 09/16/2015] [Indexed: 12/19/2022] Open
Abstract
Selenium (34Se), an antioxidant trace element, is an important regulator of brain function. These beneficial properties that Se possesses are attributed to its ability to be incorporated into selenoproteins as an amino acid. Several selenoproteins are expressed in the brain, in which some of them, e.g. glutathione peroxidases (GPxs), thioredoxin reductases (TrxRs) or selenoprotein P (SelP), are strongly involved in antioxidant defence and in maintaining intercellular reducing conditions. Since increased oxidative stress has been implicated in neurological disorders, including Parkinson’s disease, Alzheimer’s disease, stroke, epilepsy and others, a growing body of evidence suggests that Se depletion followed by decreased activity of Se-dependent enzymes may be important factors connected with those pathologies. Undoubtedly, the remarkable progress that has been made in understanding the biological function of Se in the brain has opened up new potential possibilities for the treatment of neurological diseases by using Se as a potential drug. However, further research in the search for optimal Se donors is necessary in order to achieve an effective and safe therapeutic income.
Collapse
Affiliation(s)
| | - Anna Wilkaniec
- Department of Cellular Signaling, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland.
| | | | | |
Collapse
|
47
|
Lin GW, Lu P, Zeng T, Tang HL, Chen YH, Liu SJ, Gao MM, Zhao QH, Yi YH, Long YS. GAPDH-mediated posttranscriptional regulations of sodium channel Scn1a and Scn3a genes under seizure and ketogenic diet conditions. Neuropharmacology 2016; 113:480-489. [PMID: 27816501 DOI: 10.1016/j.neuropharm.2016.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 01/12/2023]
Abstract
Abnormal expressions of sodium channel SCN1A and SCN3A genes alter neural excitability that are believed to contribute to the pathogenesis of epilepsy, a long-term risk of recurrent seizures. Ketogenic diet (KD), a high-fat and low-carbohydrate treatment for difficult-to-control (refractory) epilepsy in children, has been suggested to reverse gene expression patterns. Here, we reveal a novel role of GAPDH on the posttranscriptional regulation of mouse Scn1a and Scn3a expressions under seizure and KD conditions. We show that GAPDH binds to a conserved region in the 3' UTRs of human and mouse SCN1A and SCN3A genes, which decreases and increases genes' expressions by affecting mRNA stability through SCN1A 3' UTR and SCN3A 3' UTR, respectively. In seizure mice, the upregulation and phosphorylation of GAPDH enhance its binding to the 3' UTR, which lead to downregulation of Scn1a and upregulation of Scn3a. Furthermore, administration of KD generates β-hydroxybutyric acid which rescues the abnormal expressions of Scn1a and Scn3a by weakening the GAPDH's binding to the element. Taken together, these data suggest that GAPDH-mediated expression regulation of sodium channel genes may be associated with epilepsy and the anticonvulsant action of KD.
Collapse
Affiliation(s)
- Guo-Wang Lin
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Ping Lu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Tao Zeng
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Hui-Ling Tang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Yong-Hong Chen
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Shu-Jing Liu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Mei-Mei Gao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Qi-Hua Zhao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Yong-Hong Yi
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China
| | - Yue-Sheng Long
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou 501260, China.
| |
Collapse
|
48
|
Walker LE, Janigro D, Heinemann U, Riikonen R, Bernard C, Patel M. WONOEP appraisal: Molecular and cellular biomarkers for epilepsy. Epilepsia 2016; 57:1354-62. [PMID: 27374986 DOI: 10.1111/epi.13460] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2016] [Indexed: 12/21/2022]
Abstract
Peripheral biomarkers have myriad potential uses for treatment, prediction, prognostication, and pharmacovigilance in epilepsy. To date, no single peripheral biomarker has demonstrated proven effectiveness, although multiple candidates are in development. In this review, we discuss the major areas of focus including inflammation, blood-brain barrier dysfunction, redox alterations, metabolism, hormones and growth factors.
Collapse
Affiliation(s)
- Lauren E Walker
- Wolfson Centre for Personalised Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Damir Janigro
- Flocel, Inc., Case Western Reserve University Cleveland, Cleveland, Ohio, U.S.A
| | - Uwe Heinemann
- Neuroscience Research Center Charité, Berlin, Germany
| | - Raili Riikonen
- University of Kuopio, University of Eastern Finland, Kuopio, Finland
| | | | - Manisha Patel
- Department of Pharmaceutical Science, University of Colorado, Aurora, Colorado, U.S.A
| |
Collapse
|
49
|
Pearson JN, Patel M. The role of oxidative stress in organophosphate and nerve agent toxicity. Ann N Y Acad Sci 2016; 1378:17-24. [PMID: 27371936 DOI: 10.1111/nyas.13115] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/03/2016] [Accepted: 05/05/2016] [Indexed: 01/06/2023]
Abstract
Organophosphate (OP) nerve agents exert their toxicity through inhibition of acetylcholinesterase. The excessive stimulation of cholinergic receptors rapidly causes neuronal damage, seizures, death, and long-term neurological impairment in those that survive. Owing to the lethality of organophosphorus agents and the growing risk they pose, medical interventions that prevent OP toxicity and the delayed injury response are much needed. Studies have shown that oxidative stress occurs in models of subacute, acute, and chronic exposure to OP agents. Key findings of these studies include alterations in mitochondrial function and increased free radical-mediated injury, such as lipid peroxidation. This review focuses on the role of reactive oxygen species in OP neurotoxicity and its dependence on seizure activity. Understanding the sources, mechanisms, and pathological consequences of OP-induced oxidative stress can lead to the development of rational therapies for treating toxic exposures.
Collapse
Affiliation(s)
| | - Manisha Patel
- Neuroscience Program. .,Department of Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
50
|
Mao YT, Goh E, Churilov L, McIntosh A, Ren YF, O'Brien TJ, Davis S, Dong Q, Yan B, Kwan P. White Matter Hyperintensities on Brain Magnetic Resonance Imaging in People with Epilepsy: A Hospital-Based Study. CNS Neurosci Ther 2016; 22:758-63. [PMID: 27265831 DOI: 10.1111/cns.12571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 12/01/2022] Open
Abstract
AIMS We aim to explore whether people with epilepsy have increased white matter hyperintensities (WMHs). METHODS Eligible patients were categorized into newly diagnosed epilepsy (NE) and chronic epilepsy (CE); the latter were subdivided to those treated with enzyme-inducing antiepileptic drugs (EIAEDs) with or without non-enzyme-inducing antiepileptic drugs (NEIAEDs) and those with NEIAEDs only. WMHs were measured using age-related white matter changes (ARWMC) scale and compared between patients and healthy control group. Higher scores indicate greater WMH changes. The strengths of associations were estimated as incidence rate ratios (IRRs) with 95% confidence interval (CI). RESULTS A total of 217 patients were included in the analysis, of whom 67 had NE, 45 had CE treated with NEIAEDs, and 105 had CE treated with EIAEDs. Age was positively associated with ARWMC score (IRR per year, 1.03; 95%CI, 1.03-1.04, P < 0.001). Compared with the healthy control group (n = 23), all patient groups had higher ARWMC score (P < 0.05). The difference was greatest in patients receiving EIAEDs (IRR, 2.13; 95%CI, 1.22-3.70, P = 0.007). CONCLUSIONS WMHs tended to be observed in people with epilepsy, especially in those treated with EIAEDs. People with epilepsy with white matter changes should be evaluated for stroke risk, particularly if they are receiving EIAEDs.
Collapse
Affiliation(s)
- Yi-Ting Mao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Enid Goh
- Departments of Medicine and Neurology, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Vic, Australia
| | - Leonid Churilov
- Florey Institute of Neuroscience and Mental Health, Melbourne, Vic, Australia.,School of Mathematical and Geospatial Sciences, RMIT University, Melbourne, Vic, Australia
| | - Anne McIntosh
- Melbourne Brain Centre, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Vic, Australia.,The Epilepsy Research Centre, Austin Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Yi-Fan Ren
- Departments of Medicine and Neurology, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Vic, Australia
| | - Terence J O'Brien
- Departments of Medicine and Neurology, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Vic, Australia.,Melbourne Brain Centre, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Vic, Australia
| | - Stephen Davis
- Departments of Medicine and Neurology, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Vic, Australia.,Melbourne Brain Centre, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Vic, Australia
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bernard Yan
- Melbourne Brain Centre, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Vic, Australia
| | - Patrick Kwan
- Melbourne Brain Centre, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Vic, Australia
| |
Collapse
|