1
|
Chennupati R, Solga I, Wischmann P, Dahlmann P, Celik FG, Pacht D, Şahin A, Yogathasan V, Hosen MR, Gerdes N, Kelm M, Jung C. Chronic anemia is associated with systemic endothelial dysfunction. Front Cardiovasc Med 2023; 10:1099069. [PMID: 37234375 PMCID: PMC10205985 DOI: 10.3389/fcvm.2023.1099069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Background In acute myocardial infarction and heart failure, anemia is associated with adverse clinical outcomes. Endothelial dysfunction (ED) is characterized by attenuated nitric oxide (NO)-mediated relaxation responses which is poorly studied in chronic anemia (CA). We hypothesized that CA is associated with ED due to increased oxidative stress in the endothelium. Methods CA was induced by repeated blood withdrawal in male C57BL/6J mice. Flow-Mediated Dilation (FMD) responses were assessed in CA mice using ultrasound-guided femoral transient ischemia model. Tissue organ bath was used to assess vascular responsiveness of aortic rings from CA mice, and in aortic rings incubated with red blood cells (RBCs) from anemic patients. In the aortic rings from anemic mice, the role of arginases was assessed using either an arginase inhibitor (Nor-NOHA) or genetic ablation of arginase 1 in the endothelium. Inflammatory changes in plasma of CA mice were examined by ELISA. Expression of endothelial NO synthase (eNOS), inducible NO synthase (iNOS), myeloperoxidase (MPO), 3-Nitrotyrosine levels, and 4-Hydroxynonenal (4-HNE) were assessed either by Western blotting or immunohistochemistry. The role of reactive oxygen species (ROS) in ED was assessed in the anemic mice either supplemented with N-Acetyl cysteine (NAC) or by in vitro pharmacological inhibition of MPO. Results The FMD responses were diminished with a correlation to the duration of anemia. Aortic rings from CA mice showed reduced NO-dependent relaxation compared to non-anemic mice. RBCs from anemic patients attenuated NO-dependent relaxation responses in murine aortic rings compared to non-anemic controls. CA results in increased plasma VCAM-1, ICAM-1 levels, and an increased iNOS expression in aortic vascular smooth muscle cells. Arginases inhibition or arginase1 deletion did not improve ED in anemic mice. Increased expression of MPO and 4-HNE observed in endothelial cells of aortic sections from CA mice. NAC supplementation or inhibition of MPO improved relaxation responses in CA mice. Conclusion Chronic anemia is associated with progressive endothelial dysfunction evidenced by activation of the endothelium mediated by systemic inflammation, increased iNOS activity, and ROS production in the arterial wall. ROS scavenger (NAC) supplementation or MPO inhibition are potential therapeutic options to reverse the devastating endothelial dysfunction in chronic anemia.
Collapse
Affiliation(s)
- Ramesh Chennupati
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Isabella Solga
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Patricia Wischmann
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Paul Dahlmann
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Feyza Gül Celik
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Daniela Pacht
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Aslıhan Şahin
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Vithya Yogathasan
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Mohammad Rabiul Hosen
- Department of Internal Medicine II, HeartCenter Bonn, University Hospital Bonn, Bonn, Germany
| | - Norbert Gerdes
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Malte Kelm
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christian Jung
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
2
|
PDE-Mediated Cyclic Nucleotide Compartmentation in Vascular Smooth Muscle Cells: From Basic to a Clinical Perspective. J Cardiovasc Dev Dis 2021; 9:jcdd9010004. [PMID: 35050214 PMCID: PMC8777754 DOI: 10.3390/jcdd9010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases are important causes of mortality and morbidity worldwide. Vascular smooth muscle cells (SMCs) are major components of blood vessels and are involved in physiologic and pathophysiologic conditions. In healthy vessels, vascular SMCs contribute to vasotone and regulate blood flow by cyclic nucleotide intracellular pathways. However, vascular SMCs lose their contractile phenotype under pathological conditions and alter contractility or signalling mechanisms, including cyclic nucleotide compartmentation. In the present review, we focus on compartmentalized signaling of cyclic nucleotides in vascular smooth muscle. A deeper understanding of these mechanisms clarifies the most relevant axes for the regulation of vascular tone. Furthermore, this allows the detection of possible changes associated with pathological processes, which may be of help for the discovery of novel drugs.
Collapse
|
3
|
Sahebnasagh A, Saghafi F, Negintaji S, Hu T, Shabani-Boroujeni M, Safdari M, Ghaleno HR, Miao L, Qi Y, Wang M, Liao P, Sureda A, Simal-Gándara J, Nabavi SM, Xiao J. Nitric Oxide and Immune Responses in Cancer: Searching for New Therapeutic Strategies. Curr Med Chem 2021; 29:1561-1595. [PMID: 34238142 DOI: 10.2174/0929867328666210707194543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/05/2021] [Accepted: 05/15/2021] [Indexed: 02/08/2023]
Abstract
In recent years, there has been an increasing interest in understanding the mysterious functions of nitric oxide (NO) and how this pleiotropic signaling molecule contributes to tumorigenesis. This review attempts to expose and discuss the information available on the immunomodulatory role of NO in cancer and recent approaches to the role of NO donors in the area of immunotherapy. To address the goal, the following databases were searched to identify relevant literature concerning empirical evidence: The Cochrane Library, Pubmed, Medline, EMBASE from 1980 through March 2020. Valuable attempts have been made to develop distinctive NO-based cancer therapy. Although the data do not allow generalization, the evidence seems to indicate that low / moderate levels may favor tumorigenesis while higher levels would exert anti-tumor effects. In this sense, the use of NO donors could have an important therapeutic potential within immunotherapy, although there are still no clinical trials. The emerging understanding of NO-regulated immune responses in cancer may help unravel the recent features of this "double-edged sword" in cancer physiological and pathologic processes and its potential use as a therapeutic agent for cancer treatment. In short, in this review, we discuss the complex cellular mechanism in which NO, as a pleiotropic signaling molecule, participates in cancer pathophysiology. We also debate the dual role of NO in cancer and tumor progression, and clinical approaches for inducible nitric oxide synthase (iNOS) based therapy against cancer.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sina Negintaji
- Student Research Committee, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tingyan Hu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Mojtaba Shabani-Boroujeni
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hassan Rezai Ghaleno
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Lingchao Miao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yaping Qi
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN 47907, United States
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road. Hong Kong, China
| | - Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Jesus Simal-Gándara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| |
Collapse
|
4
|
Ezrokhi M, Zhang Y, Luo S, Cincotta AH. Time-of-Day-Dependent Effects of Bromocriptine to Ameliorate Vascular Pathology and Metabolic Syndrome in SHR Rats Held on High Fat Diet. Int J Mol Sci 2021; 22:ijms22116142. [PMID: 34200262 PMCID: PMC8201259 DOI: 10.3390/ijms22116142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 12/31/2022] Open
Abstract
The treatment of type 2 diabetes patients with bromocriptine-QR, a unique, quick release micronized formulation of bromocriptine, improves glycemic control and reduces adverse cardiovascular events. While the improvement of glycemic control is largely the result of improved postprandial hepatic glucose metabolism and insulin action, the mechanisms underlying the drug's cardioprotective effects are less well defined. Bromocriptine is a sympatholytic dopamine agonist and reduces the elevated sympathetic tone, characteristic of metabolic syndrome and type 2 diabetes, which potentiates elevations of vascular oxidative/nitrosative stress, known to precipitate cardiovascular disease. Therefore, this study investigated the impact of bromocriptine treatment upon biomarkers of vascular oxidative/nitrosative stress (including the pro-oxidative/nitrosative stress enzymes of NADPH oxidase 4, inducible nitric oxide (iNOS), uncoupled endothelial nitric oxide synthase (eNOS), the pro-inflammatory/pro-oxidative marker GTP cyclohydrolase 1 (GTPCH 1), and the pro-vascular health enzyme, soluble guanylate cyclase (sGC) as well as the plasma level of thiobarbituric acid reactive substances (TBARS), a circulating marker of systemic oxidative stress), in hypertensive SHR rats held on a high fat diet to induce metabolic syndrome. Inasmuch as the central nervous system (CNS) dopaminergic activities both regulate and are regulated by CNS circadian pacemaker circuitry, this study also investigated the time-of-day-dependent effects of bromocriptine treatment (10 mg/kg/day at either 13 or 19 h after the onset of light (at the natural waking time or late during the activity period, respectively) among animals held on 14 h daily photoperiods for 16 days upon such vascular biomarkers of vascular redox state, several metabolic syndrome parameters, and mediobasal hypothalamic (MBH) mRNA expression levels of neuropeptides neuropeptide Y (NPY) and agouti-related protein (AgRP) which regulate the peripheral fuel metabolism and of mRNA expression of other MBH glial and neuronal cell genes that support such metabolism regulating neurons in this model system. Such bromocriptine treatment at ZT 13 improved (reduced) biomarkers of vascular oxidative/nitrosative stress including plasma TBARS level, aortic NADPH oxidase 4, iNOS and GTPCH 1 levels, and improved other markers of coupled eNOS function, including increased sGC protein level, relative to controls. However, bromocriptine treatment at ZT 19 produced no improvement in either coupled eNOS function or sGC protein level. Moreover, such ZT 13 bromocriptine treatment reduced several metabolic syndrome parameters including fasting insulin and leptin levels, as well as elevated systolic and diastolic blood pressure, insulin resistance, body fat store levels and liver fat content, however, such effects of ZT 19 bromocriptine treatment were largely absent versus control. Finally, ZT 13 bromocriptine treatment reduced MBH NPY and AgRP mRNA levels and mRNA levels of several MBH glial cell/neuronal genes that code for neuronal support/plasticity proteins (suggesting a shift in neuronal structure/function to a new metabolic control state) while ZT 19 treatment reduced only AgRP, not NPY, and was with very little effect on such MBH glial cell genes expression. These findings indicate that circadian-timed bromocriptine administration at the natural circadian peak of CNS dopaminergic activity (that is diminished in insulin resistant states), but not outside this daily time window when such CNS dopaminergic activity is naturally low, produces widespread improvements in biomarkers of vascular oxidative stress that are associated with the amelioration of metabolic syndrome and reductions in MBH neuropeptides and gene expressions known to facilitate metabolic syndrome. These results of such circadian-timed bromocriptine treatment upon vascular pathology provide potential mechanisms for the observed marked reductions in adverse cardiovascular events with circadian-timed bromocriptine-QR therapy (similarly timed to the onset of daily waking as in this study) of type 2 diabetes subjects and warrant further investigations into related mechanisms and the potential application of such intervention to prediabetes and metabolic syndrome patients as well.
Collapse
|
5
|
Zhao J, Nakahira K, Kimura A, Kyotani Y, Yoshizumi M. Upregulation of iNOS Protects Cyclic Mechanical Stretch-Induced Cell Death in Rat Aorta Smooth Muscle Cells. Int J Mol Sci 2020; 21:E8660. [PMID: 33212839 PMCID: PMC7698365 DOI: 10.3390/ijms21228660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/06/2020] [Accepted: 11/14/2020] [Indexed: 01/09/2023] Open
Abstract
Aortic dissection and aneurysm are associated with abnormal hemodynamic loads originating from hypertension. Our previous study demonstrated that cyclic mechanical stretch (CMS, mimicked hypertension) caused the death of rat aortic smooth muscle cells (RASMCs) in a mitogen activated-protein kinases (MAPKs)-dependent manner. The current study investigated the effects of inducible nitric oxide synthase (iNOS) on CMS-induced RASMC death. cDNA microarrays for CMS-treated RASMCs showed that iNOS expression levels were increased in response to CMS. Real-time polymerase chain reaction (PCR) analysis demonstrated that this increase was p38 MAPK (p38)-dependent. NO production was also increased. This increase could be inhibited by p38 and iNOS inhibitors. Thus, CMS-induced iNOS synthesized NO. CMS-induced cell death in RASMCs was increased by the iNOS inhibitor but abrogated by the long-acting NO donor DETA-NONOate. Increased iNOS expression was confirmed in the abdominal aortic constriction mouse model. Signal transducers and activators of transcription 1 (STAT1) was activated in stretched RASMCs, and iNOS expression and NO production were inhibited by the STAT1 inhibitor nifuroxazide. Our findings suggest that RASMCs were protected by iNOS from CMS-stimulated cell death through the STAT1 and p38 signal pathways independently.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Aorta/enzymology
- Gene Expression Regulation, Enzymologic
- Male
- Mechanotransduction, Cellular
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/enzymology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/enzymology
- Nitric Oxide Synthase Type II/biosynthesis
- Rats
- Rats, Sprague-Dawley
- Stress, Mechanical
- Up-Regulation
Collapse
Affiliation(s)
- Jing Zhao
- Department of Pharmacology, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara 634-8521, Japan; (K.N.); (Y.K.); (M.Y.)
| | - Kiichi Nakahira
- Department of Pharmacology, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara 634-8521, Japan; (K.N.); (Y.K.); (M.Y.)
| | - Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan;
| | - Yoji Kyotani
- Department of Pharmacology, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara 634-8521, Japan; (K.N.); (Y.K.); (M.Y.)
| | - Masanori Yoshizumi
- Department of Pharmacology, Nara Medical University School of Medicine, 840 Shijo-Cho, Kashihara 634-8521, Japan; (K.N.); (Y.K.); (M.Y.)
| |
Collapse
|
6
|
Topchieva LV, Balan OV, Korneva VA, Malysheva IE, Pankrasheva KA. The Nitric Oxide Metabolite Level and NOS2 and NOS3 Gene Transcripts in Patients with Essential Arterial Hypertension. BIOL BULL+ 2020. [DOI: 10.1134/s1062359020010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Liu H, Ma S, Xia H, Lou H, Zhu F, Sun L. Anti-inflammatory activities and potential mechanisms of phenolic acids isolated from Salvia miltiorrhiza f. alba roots in THP-1 macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2018; 222:201-207. [PMID: 29751125 DOI: 10.1016/j.jep.2018.05.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The roots of Salvia miltiorrhiza f. alba (Lamiaceae) (RSMA) are used as the Danshen, a traditional Chinese medicine, to treat the vascular diseases at local clinics, especially for the remedy of thromboangiitis obliterans (TAO) more than 100 years. Phenolic acids are one of the major effective constituents of RSMA, and some studies have linked phenolic acids with anti-inflammatory functions. AIM OF THE STUDY The purpose of this research was to isolate phenolic acids from RSMA and investigate their anti-inflammatory effects and potential mechanisms. MATERIALS AND METHODS Nine already known compounds were obtained from RSMA. Their structures were elucidated through the spectroscopic analysis and comparing the reported data. The anti-inflammatory effects and potential mechanisms were investigated in LPS-stimulated THP-1 cells, using salvianolic acid B (SalB) as the positive control. The enzyme-linked immunosorbent assays (ELISA) were used to determine the secretory protein levels of interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). And quantitative real-time polymerase chain reaction (qRT-PCR) was used to analyze the mRNA levels of these inflammatory cytokines. The expression of TLR4, p65, p-p65, IκBα, and p-IκBα were measured using western blot. RESULTS All these compounds, except for rosmarinic acid (5) and isosalvianolic acid (6) for IL-6 protein levels, rosmarinic acid-o-β-D-glucopyranoside (3) for IL-6 mRNA, and rosmarinic acid-o-β-D-glucopyranoside (3), rosmarinic acid (5) and isosalvianolic acid (6) for TNF-α mRNA levels, remarkably inhibited the production of TNF-α, IL-1β, and IL-6 at the concentration of 5 and 25 μM in the mRNA and protein levels. Lithospermic acid (7) showed the strongest inhibitory effect among them and was similar to that of SalB. In particular, lithospermic acid (7) and SalB markedly downregulated the expressions of TLR4, p-p65, and p-IκBα induced by LPS in THP-1 macrophages. CONCLUSIONS All the phenolic acids displayed anti-inflammatory properties and the potential mechanisms involved the TLR4/NF-κB signal pathway. Results of this study indicate that phenolic acids may be effective constituents of RSMA to treat vascular diseases associated with inflammation.
Collapse
Affiliation(s)
- Haimei Liu
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Shuli Ma
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Hongrui Xia
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Hongxiang Lou
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Faliang Zhu
- Department of Immunology, School of Medicine, Shandong University, Jinan 250012, PR China
| | - Longru Sun
- Department of Natural Products Chemistry, Key Lab of Chemical Biology (MOE), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
8
|
Ginkgetin ameliorates experimental atherosclerosis in rats. Biomed Pharmacother 2018; 102:510-516. [PMID: 29579712 DOI: 10.1016/j.biopha.2018.03.107] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/17/2018] [Accepted: 03/17/2018] [Indexed: 11/20/2022] Open
Abstract
Atherosclerosis is a common disease seriously detrimental to human health. Natural products are important sources of therapeutic candidates for atherosclerosis. We here evaluated the effects of ginkgetin on experimental atherosclerosis in rats and explored the underlying mechanisms. Atherosclerosis was induced by high-fat diet for 12 weeks combined with single intraperitoneal injection of vitamin D3 in rats. The atherosclerotic rats were then treated with ginkgetin at 25, 50 and 100 mg/kg/d or simvastatin at 2 mg/kg/d for 8 weeks. Blood and thoracic aortas were collected for analyses of histopathology, lipid deposition, serum biochemistry, matrix metalloproteinases (MMPs), and nitric oxide (NO)/NO synthase (NOS) system. We found that ginkgetin improved thoracic aortic intima structure, reduced intima-media thickness and intima/media ratio, and attenuated lipid deposition in aorta of atherosclerotic rats. Ginkgetin also decreased the serum levels of total cholesterol, triglyceride and low-density lipoprotein cholesterol, but restored the serum levels of high-density lipoprotein cholesterol in atherosclerotic rats. Additionally, ginkgetin reduced the mRNA and protein expression of MMP-2 and MMP-9 in thoracic aortas of rats with atherosclerosis. Further examinations showed that ginkgetin increased the NO and NOS levels in serum and thoracic aortas. Ginkgetin also unregulated the expression of endothelial NOS and downregulated the expression of inducible NOS at both mRNA and protein levels in thoracic aortas of atherosclerotic rats. Altogether, ginkgetin showed therapeutic effects on experimental atherosclerosis associated with improving lipid profile and modulating the MMPs and NO/NOS systems in rats. Ginkgetin could be a promising candidate for the treatment of atherosclerosis.
Collapse
|
9
|
Impact of meal fatty acid composition on postprandial lipaemia, vascular function and blood pressure in postmenopausal women. Nutr Res Rev 2018; 31:193-203. [DOI: 10.1017/s0954422418000033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractCVD are the leading cause of death in women globally, with ageing associated with progressive endothelial dysfunction and increased CVD risk. Natural menopause is characterised by raised non-fasting TAG concentrations and impairment of vascular function compared with premenopausal women. However, the mechanisms underlying the increased CVD risk after women have transitioned through the menopause are unclear. Dietary fat is an important modifiable risk factor relating to both postprandial lipaemia and vascular reactivity. Meals rich in SFA and MUFA are often associated with greater postprandial TAG responses compared with those containing n-6 PUFA, but studies comparing their effects on vascular function during the postprandial phase are limited, particularly in postmenopausal women. The present review aimed to evaluate the acute effects of test meals rich in SFA, MUFA and n-6 PUFA on postprandial lipaemia, vascular reactivity and other CVD risk factors in postmenopausal women. The systematic search of the literature identified 778 publications. The impact of fat-rich meals on postprandial lipaemia was reported in seven relevant studies, of which meal fat composition was compared in one study described in three papers. An additional study determined the impact of a high-fat meal on vascular reactivity. Although moderately consistent evidence suggests detrimental effects of high-fat meals on postprandial lipaemia in postmenopausal (than premenopausal) women, there is insufficient evidence to establish the impact of meals of differing fat composition. Furthermore, there is no robust evidence to conclude the effect of meal fatty acids on vascular function or blood pressure. In conclusion, there is an urgent requirement for suitably powered robust randomised controlled trials to investigate the impact of meal fat composition on postprandial novel and established CVD risk markers in postmenopausal women, an understudied population at increased cardiometabolic risk.
Collapse
|
10
|
Wynne BM, Labazi H, Lima VV, Carneiro FS, Webb RC, Tostes RC, Giachini FR. Mesenteric arteries from stroke-prone spontaneously hypertensive rats exhibit an increase in nitric-oxide-dependent vasorelaxation. Can J Physiol Pharmacol 2018; 96:719-727. [PMID: 29430946 DOI: 10.1139/cjpp-2017-0477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The endothelium is crucial for the maintenance of vascular tone by releasing several vasoactive substances, including nitric oxide (NO). Systemic mean arterial pressure is primarily regulated by the resistance vasculature, which has been shown to exhibit increased vascular reactivity, and decreased vasorelaxation during hypertension. Here, we aimed to determine the mechanism for mesenteric artery vasorelaxation of the stroke-prone spontaneously hypertensive rat (SHRSP). We hypothesized that endothelial NO synthase (eNOS) is upregulated in SHRSP vessels, increasing NO production to compensate for the endothelial dysfunction. Concentration-response curves to acetylcholine (ACh) were performed in second-order mesenteric arteries; we observed decreased relaxation responses to ACh (maximum effect elicited by the agonist) as compared with Wistar-Kyoto (WKY) controls. Vessels from SHRSP incubated with Nω-nitro-l-arginine methyl ester and (or) indomethacin exhibited decreased ACh-mediated relaxation, suggesting a primary role for NO-dependent relaxation. Vessels from SHRSP exhibited a significantly decreased relaxation response with inducible NO synthase (iNOS) inhibition, as compared with WKY vessels. Western blot analysis showed increased total phosphorylated NF-κB, and phosphorylated and total eNOS in SHRSP vessels. Overall, these data suggest a compensatory role for NO by increased eNOS activation. Moreover, we believe that iNOS, although increasing NO bioavailability to compensate for decreased relaxation, leads to a cycle of further endothelial dysfunction in SHRSP mesenteric arteries.
Collapse
Affiliation(s)
- Brandi M Wynne
- a Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.,b Department of Medicine, Nephrology, Emory University, Atlanta, GA 30322, USA
| | - Hicham Labazi
- a Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.,c Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Victor V Lima
- a Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.,d Institute of Biological Sciences and Health, Federal University of Mato Grosso - Barra do Garças - MT - Brazil; 78600-000
| | - Fernando S Carneiro
- a Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.,e Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; 14049-900
| | - R Clinton Webb
- a Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Rita C Tostes
- a Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.,e Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil; 14049-900
| | - Fernanda R Giachini
- a Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.,d Institute of Biological Sciences and Health, Federal University of Mato Grosso - Barra do Garças - MT - Brazil; 78600-000
| |
Collapse
|
11
|
Phytanic acid attenuates insulin-like growth factor-1 activity via nitric oxide-mediated γ-secretase activation in rat aortic smooth muscle cells: possible implications for pathogenesis of infantile Refsum disease. Pediatr Res 2017; 81:531-536. [PMID: 27886192 DOI: 10.1038/pr.2016.258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 10/09/2016] [Indexed: 01/26/2023]
Abstract
BACKGROUND Infantile Refsum disease (IRD), a peroxisomal disease with defective phytanic acid oxidation, causes neurological impairment and development delay. Insulin-like growth factor-1 (IGF-1) regulates child development and to understand molecular mechanism(s) of IRD, we examined the effect of phytanic acid (PA) on IGF-1 activity. METHODS Bromodeoxyuridine (BrdU) incorporation was measured in rat aortic smooth muscle cell (SMC) cultures following treatment with fetal bovine serum (FBS), basic fibroblast growth factor (bFGF), platelet-derived growth factor (PDGF) or IGF-1 in the absence or presence of PA. Gene expression and protein contents of IGF-1 receptor (IGF-1R) and PDGF receptor (PDGFR) were examined using quantitative PCR and western blotting. RESULTS PA inhibited mitogenic activities of FBS, PDGF and IGF-1 with more pronounced effect on IGF-1-induced bromodeoxyuridine (BrdU) incorporation. Palmitic acid or lignoceric acids did not inhibit IGF-1 activity. PA had no effect on PDGFR mRNA/protein levels but markedly increased IGF-1R mRNA levels. PA and nitric oxide (NO) markedly decreased IGF-1R protein. L-NAME, a NO synthase inhibitor and DAPT, a γ-secretase inhibitor, alleviated PA-induced decrease in IGF-1R protein. Both PA and NO donor increased γ-secretase activity which was alleviated by L-NAME. CONCLUSION This study demonstrates that PA attenuates IGF-1 activity possibly through IGF-1R impairment and NO-mediated modulation of γ-secretase activity.
Collapse
|
12
|
Jiang D, Yang Y, Li D. Lipopolysaccharide induced vascular smooth muscle cells proliferation: A new potential therapeutic target for proliferative vascular diseases. Cell Prolif 2017; 50. [PMID: 28150467 DOI: 10.1111/cpr.12332] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 12/30/2016] [Indexed: 12/12/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) proliferation is involved in vascular atherosclerosis and restenosis. Recent studies have demonstrated that lipopolysaccharide (LPS) promotes VSMCs proliferation, but the signalling pathways which are involved are not completely understood. The purpose of this review was to summarize the existing knowledge of the role and molecular mechanisms involved in controlling VSMCs proliferation stimulated by LPS and mediated by toll-like receptor 4 (TLR4) signalling pathways. Moreover, the potential inhibitors of TLR4 signalling for VSMCs proliferation in proliferative vascular diseases are discussed.
Collapse
Affiliation(s)
- Dehua Jiang
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu Yang
- Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
13
|
Kalous KS, Wynia-Smith SL, Olp MD, Smith BC. Mechanism of Sirt1 NAD+-dependent Protein Deacetylase Inhibition by Cysteine S-Nitrosation. J Biol Chem 2016; 291:25398-25410. [PMID: 27756843 PMCID: PMC5207242 DOI: 10.1074/jbc.m116.754655] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/04/2016] [Indexed: 11/06/2022] Open
Abstract
The sirtuin family of proteins catalyze the NAD+-dependent deacylation of acyl-lysine residues. Humans encode seven sirtuins (Sirt1-7), and recent studies have suggested that post-translational modification of Sirt1 by cysteine S-nitrosation correlates with increased acetylation of Sirt1 deacetylase substrates. However, the mechanism of Sirt1 inhibition by S-nitrosation was unknown. Here, we show that Sirt1 is transnitrosated and inhibited by the physiologically relevant nitrosothiol S-nitrosoglutathione. Steady-state kinetic analyses and binding assays were consistent with Sirt1 S-nitrosation inhibiting binding of both the NAD+ and acetyl-lysine substrates. Sirt1 S-nitrosation correlated with Zn2+ release from the conserved sirtuin Zn2+-tetrathiolate and a loss of α-helical structure without overall thermal destabilization of the enzyme. Molecular dynamics simulations suggested that Zn2+ loss due to Sirt1 S-nitrosation results in repositioning of the tetrathiolate subdomain away from the rest of the catalytic domain, thereby disrupting the NAD+ and acetyl-lysine-binding sites. Sirt1 S-nitrosation was reversed upon exposure to the thiol-based reducing agents, including physiologically relevant concentrations of the cellular reducing agent glutathione. Reversal of S-nitrosation resulted in full restoration of Sirt1 activity only in the presence of Zn2+, consistent with S-nitrosation of the Zn2+-tetrathiolate as the primary source of Sirt1 inhibition upon S-nitrosoglutathione treatment.
Collapse
Affiliation(s)
- Kelsey S Kalous
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Sarah L Wynia-Smith
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Michael D Olp
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Brian C Smith
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
14
|
Dhaunsi GS, Alsaeid M, Akhtar S. Phytanic acid activates NADPH oxidase through transactivation of epidermal growth factor receptor in vascular smooth muscle cells. Lipids Health Dis 2016; 15:105. [PMID: 27287039 PMCID: PMC4902935 DOI: 10.1186/s12944-016-0273-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 06/07/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phytanic acid (PA) has been implicated in development of cancer and its defective metabolism is known to cause life-threatening conditions, such as Refsum disease, in children. To explore molecular mechanisms of phytanic acid-induced cellular pathology, we investigated its effect on NADPH oxidase (NOX) and epidermal growth factor receptor (EGFR) in rat aortic smooth muscle cells (RASMC). METHODS Smooth muscle cells were isolated from rat aortae using enzymic digestion with collagenase and elastase. Cultured RASMC were treated with varying concentrations (0.5-10 μg/ml) of phytanic acid in the presence/absence of fetal bovine serum (FBS) and/or EGFR inhibitor, AG1478. Following treatment with experimental agents, NOX activity was assayed in RASMC cultures by luminescence method. Gene expression of NOX-1 and p47phox was assessed using RT-PCR. NOX-1, p47phox and, total EGFR protein and its phosphorylated form were measured by Western blotting. RESULTS Treatment of RASMC with supraphysiological concentrations (>2.5 μg/ml) of PA significantly (p < 0.01) increased the NOX activity. PA also significantly increased gene/protein expression of NOX-1 and p47phox whereas p22phox and p67phox remained unaffected. Interestingly, PA (2.5-10 μg/ml) markedly (2-3 folds) increased the total and phosphorylated EGFR. Treatment of cells with EGFR inhibitor, AG1478, significantly blocked the PA-induced enhancement of NOX activity. CONCLUSIONS Our findings that PA transactivates EGFR and induces NOX activity in vascular smooth muscle cells provide new insights into molecular mechanisms of PA's role in cancer and Refsum disease.
Collapse
Affiliation(s)
- Gursev S Dhaunsi
- Departments of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait.
| | - Mayra Alsaeid
- Departments of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Saghir Akhtar
- Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
15
|
Nassi A, Malorgio F, Tedesco S, Cignarella A, Gaion RM. Upregulation of inducible NO synthase by exogenous adenosine in vascular smooth muscle cells activated by inflammatory stimuli in experimental diabetes. Cardiovasc Diabetol 2016; 15:32. [PMID: 26879172 PMCID: PMC4754884 DOI: 10.1186/s12933-016-0349-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/02/2016] [Indexed: 01/19/2023] Open
Abstract
Background Adenosine has been shown to induce nitric oxide (NO) production via inducible NO synthase (iNOS) activation in vascular smooth muscle cells (VSMCs). Although this is interpreted as a beneficial vasodilating pathway in vaso-occlusive disorders, iNOS is also involved in diabetic vascular dysfunction. Because the turnover of and the potential to modulate iNOS by adenosine in experimental diabetes have not been explored, we hypothesized that both the adenosine system and control of iNOS function are impaired in VSMCs from streptozotocin-diabetic rats. Methods Male Sprague–Dawley rats were injected with streptozotocin once to induce diabetes. Aortic VSMCs from diabetic and nondiabetic rats were isolated, cultured and exposed to lipopolysaccharide (LPS) plus a cytokine mix for 24 h in the presence or absence of (1) exogenous adenosine and related compounds, and/or (2) pharmacological agents affecting adenosine turnover. iNOS functional expression was determined by immunoblotting and NO metabolite assays. Concentrations of adenosine, related compounds and metabolites thereof were assayed by HPLC. Vasomotor responses to adenosine were determined in endothelium-deprived aortic rings. Results Treatment with adenosine-degrading enzymes or receptor antagonists increased iNOS formation in activated VSMCs from nondiabetic and diabetic rats. Following treatment with the adenosine transport inhibitor NBTI, iNOS levels increased in nondiabetic but decreased in diabetic VSMCs. The amount of secreted NO metabolites was uncoupled from iNOS levels in diabetic VSMCs. Addition of high concentrations of adenosine and its precursors or analogues enhanced iNOS formation solely in diabetic VSMCs. Exogenous adenosine and AMP were completely removed from the culture medium and converted into metabolites. A tendency towards elevated inosine generation was observed in diabetic VSMCs, which were also less sensitive to CD73 inhibition, but inosine supplementation did not affect iNOS levels. Pharmacological inhibition of NOS abolished adenosine-induced vasorelaxation in aortic tissues from diabetic but not nondiabetic animals. Conclusions Endogenous adenosine prevented cytokine- and LPS-induced iNOS activation in VSMCs. By contrast, supplementation with adenosine and its precursors or analogues enhanced iNOS levels in diabetic VSMCs. This effect was associated with alterations in exogenous adenosine turnover. Thus, overactivation of the adenosine system may foster iNOS-mediated diabetic vascular dysfunction.
Collapse
Affiliation(s)
- Alberto Nassi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy. .,Transplant Immunology Unit, Padua University Hospital, Padova, Italy.
| | - Francesca Malorgio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| | - Serena Tedesco
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| | | | - Rosa Maria Gaion
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
16
|
Fu J, Chen YF, Zhao X, Creighton JR, Guo Y, Hage FG, Oparil S, Xing DD. Targeted delivery of pulmonary arterial endothelial cells overexpressing interleukin-8 receptors attenuates monocrotaline-induced pulmonary vascular remodeling. Arterioscler Thromb Vasc Biol 2014; 34:1539-47. [PMID: 24790141 DOI: 10.1161/atvbaha.114.303821] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Interleukin-8 (IL-8) receptors IL8RA and IL8RB (IL8RA/B) on neutrophil membranes bind to IL-8 with high affinity and play a critical role in neutrophil recruitment to sites of injury and inflammation. This study tested the hypothesis that administration of rat pulmonary arterial endothelial cells (ECs) overexpressing IL8RA/B can accelerate the adhesion of ECs to the injured lung and inhibit monocrotaline-induced pulmonary inflammation, arterial thickening and hypertension, and right ventricular hypertrophy. APPROACH AND RESULTS The treatment groups included 10-week-old ovariectomized Sprague-Dawley rats that received subcutaneous injection of PBS (vehicle), a single injection of monocrotaline (monocrotaline alone, 60 mg/kg, SC), monocrotaline followed by intravenous transfusion of ECs transduced with the empty adenoviral vector (null-EC), and monocrotaline followed by intravenous transfusion of ECs overexpressing IL8RA/B (1.5 × 10(6) cells/rat). Two days or 4 weeks after monocrotaline treatment, endothelial nitric oxide synthase, inducible nitric oxide synthase, cytokine-induced neutrophil chemoattractant-2β (IL-8 equivalent in rat), and monocyte chemoattractant protein-1 expression, neutrophil and macrophage infiltration into pulmonary arterioles, and arteriolar and alveolar morphology were measured by histological and immunohistochemical techniques. Proinflammatory cytokine/chemokine protein levels were measured by Multiplex rat-specific magnetic bead-based sandwich immunoassay in total lung homogenates. Transfusion of ECs overexpressing IL8RA/B significantly reduced monocrotaline-induced neutrophil infiltration and proinflammatory mediator (IL-8, monocyte chemoattractant protein-1, inducible nitric oxide synthase, cytokine-induced neutrophil chemoattractant, and macrophage inflammatory protein-2) expression in lungs and pulmonary arterioles and alveoli, pulmonary arterial pressure, and pulmonary arterial and right ventricular hypertrophy and remodeling. CONCLUSIONS These provocative findings suggest that targeted delivery of ECs overexpressing IL8RA/B is effective in repairing the injured pulmonary vasculature.
Collapse
Affiliation(s)
- Jinyan Fu
- From the Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine (J.F., Y.-F.C., X.Z., Y.G., F.G.H., S.O., D.D.X.) and Department of Anesthesiology, University of Alabama at Birmingham (J.R.C.); Department of Biochemistry and the Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Xinjiang, China (J.F.); and Section of Cardiology, Birmingham Veteran's Administration Medical Center, AL (F.G.H.)
| | - Yiu-Fai Chen
- From the Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine (J.F., Y.-F.C., X.Z., Y.G., F.G.H., S.O., D.D.X.) and Department of Anesthesiology, University of Alabama at Birmingham (J.R.C.); Department of Biochemistry and the Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Xinjiang, China (J.F.); and Section of Cardiology, Birmingham Veteran's Administration Medical Center, AL (F.G.H.)
| | - Xiangmin Zhao
- From the Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine (J.F., Y.-F.C., X.Z., Y.G., F.G.H., S.O., D.D.X.) and Department of Anesthesiology, University of Alabama at Birmingham (J.R.C.); Department of Biochemistry and the Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Xinjiang, China (J.F.); and Section of Cardiology, Birmingham Veteran's Administration Medical Center, AL (F.G.H.)
| | - Judy R Creighton
- From the Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine (J.F., Y.-F.C., X.Z., Y.G., F.G.H., S.O., D.D.X.) and Department of Anesthesiology, University of Alabama at Birmingham (J.R.C.); Department of Biochemistry and the Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Xinjiang, China (J.F.); and Section of Cardiology, Birmingham Veteran's Administration Medical Center, AL (F.G.H.)
| | - Yuanyuan Guo
- From the Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine (J.F., Y.-F.C., X.Z., Y.G., F.G.H., S.O., D.D.X.) and Department of Anesthesiology, University of Alabama at Birmingham (J.R.C.); Department of Biochemistry and the Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Xinjiang, China (J.F.); and Section of Cardiology, Birmingham Veteran's Administration Medical Center, AL (F.G.H.)
| | - Fadi G Hage
- From the Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine (J.F., Y.-F.C., X.Z., Y.G., F.G.H., S.O., D.D.X.) and Department of Anesthesiology, University of Alabama at Birmingham (J.R.C.); Department of Biochemistry and the Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Xinjiang, China (J.F.); and Section of Cardiology, Birmingham Veteran's Administration Medical Center, AL (F.G.H.)
| | - Suzanne Oparil
- From the Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine (J.F., Y.-F.C., X.Z., Y.G., F.G.H., S.O., D.D.X.) and Department of Anesthesiology, University of Alabama at Birmingham (J.R.C.); Department of Biochemistry and the Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Xinjiang, China (J.F.); and Section of Cardiology, Birmingham Veteran's Administration Medical Center, AL (F.G.H.)
| | - Daisy D Xing
- From the Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine (J.F., Y.-F.C., X.Z., Y.G., F.G.H., S.O., D.D.X.) and Department of Anesthesiology, University of Alabama at Birmingham (J.R.C.); Department of Biochemistry and the Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Xinjiang, China (J.F.); and Section of Cardiology, Birmingham Veteran's Administration Medical Center, AL (F.G.H.).
| |
Collapse
|
17
|
Cojocaru E, Filip N, Ungureanu C, Filip C, Danciu M. Effects of Valine and Leucine on Some Antioxidant Enzymes in Hypercholesterolemic Rats. Health (London) 2014. [DOI: 10.4236/health.2014.617266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Eghbalzadeh K, Brixius K, Bloch W, Brinkmann C. Skeletal muscle nitric oxide (NO) synthases and NO-signaling in "diabesity"--what about the relevance of exercise training interventions? Nitric Oxide 2013; 37:28-40. [PMID: 24368322 DOI: 10.1016/j.niox.2013.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/30/2013] [Accepted: 12/17/2013] [Indexed: 12/30/2022]
Abstract
Type 2 diabetes mellitus associated with obesity, or "diabesity", coincides with an altered nitric oxide (NO) metabolism in skeletal muscle. Three isoforms of nitric oxide synthase (NOS) exist in human skeletal muscle tissue. Both neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS) are constitutively expressed under physiological conditions, producing low levels of NO, while the inducible nitric oxide synthase (iNOS) is strongly up-regulated only under pathophysiological conditions, excessively increasing NO concentrations. Due to chronic inflammation, overweight/obese type 2 diabetic patients exhibit up-regulated protein contents of iNOS and concomitant elevated amounts of NO in skeletal muscle. Low muscular NO levels are important for attaining an adequate cellular redox state--thereby maintaining metabolic integrity--while high NO levels are believed to destroy cellular components and to disturb metabolic processes, e.g., through strongly augmented posttranslational protein S-nitrosylation. Physical training with submaximal intensity has been shown to attenuate inflammatory profiles and iNOS protein contents in the long term. The present review summarizes signaling pathways which induce iNOS up-regulation under pathophysiological conditions and describes molecular mechanisms by which high NO concentrations are likely to contribute to triggering skeletal muscle insulin resistance and to reducing mitochondrial capacity during the development and progression of type 2 diabetes. Based on this information, it discusses the beneficial effects of regular physical exercise on the altered NO metabolism in the skeletal muscle of overweight/obese type 2 diabetic subjects, thus unearthing new perspectives on training strategies for this particular patient group.
Collapse
Affiliation(s)
- Kaveh Eghbalzadeh
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Germany
| | - Klara Brixius
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Germany
| | - Christian Brinkmann
- Department of Molecular and Cellular Sport Medicine, Institute of Cardiovascular Research and Sport Medicine, German Sport University Cologne, Germany.
| |
Collapse
|
19
|
Advances in therapeutic interventions targeting the vascular and lymphatic endothelium in inflammatory bowel disease. Curr Opin Gastroenterol 2013; 29:608-13. [PMID: 24100721 DOI: 10.1097/mog.0b013e328365d37c] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The review summarizes the current knowledge of the roles played by the vascular and lymphatic endothelium throughout the gut in the pathogenesis of inflammatory bowel disease (IBD) and gives an update on emerging strategies targeting both vasculatures. RECENT FINDINGS Enormous efforts have been made to understand the mechanisms underlining the origin, development and maintenance of intestinal chronic inflammation. In particular, new studies focused their attention on the role played by the microvascular and lymphatic endothelium in the pathogenesis of IBD. During inflammation, whereas the microvasculature is responsible for the entry and distribution of immune cells in the mucosa, the lymphatic system controls leukocyte exit, bacterial clearance and edema absorption. The study of these events, which are aberrant during chronic inflammation, has resulted in the identification and validation of several targets for the treatment of experimental colitis, some of which have translated into effective treatments for patients with IBD. SUMMARY Although much attention has been paid to the microvascular endothelium and to antiangiogenic therapies, specific studies on the lymphatic vasculature and its functions in IBD are still at the initial stage, and other molecular mechanisms, genes, molecules and new pathways must definitely be explored.
Collapse
|
20
|
Bhattacharya I, Drägert K, Albert V, Contassot E, Damjanovic M, Hagiwara A, Zimmerli L, Humar R, Hall MN, Battegay EJ, Haas E. Rictor in perivascular adipose tissue controls vascular function by regulating inflammatory molecule expression. Arterioscler Thromb Vasc Biol 2013; 33:2105-11. [PMID: 23868942 DOI: 10.1161/atvbaha.112.301001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Perivascular adipose tissue (PVAT) wraps blood vessels and modulates vasoreactivity by secretion of vasoactive molecules. Mammalian target of rapamycin complex 2 (mTORC2) has been shown to control inflammation and is expressed in adipose tissue. In this study, we investigated whether adipose-specific deletion of rictor and thereby inactivation of mTORC2 in PVAT may modulate vascular function by increasing inflammation in PVAT. APPROACH AND RESULTS Rictor, an essential mTORC2 component, was deleted specifically in mouse adipose tissue (rictor(ad-/-)). Phosphorylation of mTORC2 downstream target Akt at Serine 473 was reduced in PVAT from rictor(ad-/-) mice but unaffected in aortic tissue. Ex vivo functional analysis of thoracic aortae revealed increased contractions and impaired dilation in rings with PVAT from rictor(ad-/-) mice. Adipose rictor knockout increased gene expression and protein release of interleukin-6, macrophage inflammatory protein-1α, and tumor necrosis factor-α in PVAT as shown by quantitative real-time polymerase chain reaction and Bioplex analysis for the cytokines in the conditioned media, respectively. Moreover, gene and protein expression of inducible nitric oxide synthase was upregulated without affecting macrophage infiltration in PVAT from rictor(ad-/-) mice. Inhibition of inducible nitric oxide synthase normalized vascular reactivity in aortic rings from rictor(ad-/-) mice with no effect in rictor(fl/fl) mice. Interestingly, in perivascular and epididymal adipose depots, high-fat diet feeding induced downregulation of rictor gene expression. CONCLUSIONS Here, we identify mTORC2 as a critical regulator of PVAT-directed protection of normal vascular tone. Modulation of mTORC2 activity in adipose tissue may be a potential therapeutic approach for inflammation-related vascular damage.
Collapse
Affiliation(s)
- Indranil Bhattacharya
- Research Unit, Division of Internal Medicine, University Hospital of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dahboul F, Leroy P, Maguin Gate K, Boudier A, Gaucher C, Liminana P, Lartaud I, Pompella A, Perrin-Sarrado C. Endothelial γ-glutamyltransferase contributes to the vasorelaxant effect of S-nitrosoglutathione in rat aorta. PLoS One 2012; 7:e43190. [PMID: 22984412 PMCID: PMC3439434 DOI: 10.1371/journal.pone.0043190] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 07/20/2012] [Indexed: 11/28/2022] Open
Abstract
S-nitrosoglutathione (GSNO) involved in storage and transport of nitric oxide (•NO) plays an important role in vascular homeostasis. Breakdown of GSNO can be catalyzed by γ-glutamyltransferase (GGT). We investigated whether vascular GGT influences the vasorelaxant effect of GSNO in isolated rat aorta. Histochemical localization of GGT and measurement of its activity were performed by using chromogenic substrates in sections and in aorta homogenates, respectively. The role of GGT in GSNO metabolism was evaluated by measuring GSNO consumption rate (absorbance decay at 334 nm), •NO release was visualized and quantified with the fluorescent probe 4,5-diaminofluorescein diacetate. The vasorelaxant effect of GSNO was assayed using isolated rat aortic rings (in the presence or absence of endothelium). The role of GGT was assessed by stimulating enzyme activity with cosubstrate glycylglycine, as well as using two independent inhibitors, competitive serine borate complex and non-competitive acivicin. Specific GGT activity was histochemically localized in the endothelium. Consumption of GSNO and release of free •NO decreased and increased in presence of serine borate complex and glycylglycine, respectively. In vasorelaxation experiments with endothelium-intact aorta, the half maximal effective concentration of GSNO (EC50 = 3.2±0.5.10−7 M) increased in the presence of the two distinct GGT inhibitors, serine borate complex (1.6±0.2.10−6 M) and acivicin (8.3±0.6.10−7 M), while it decreased with glycylglycine (4.7±0.9.10−8 M). In endothelium-denuded aorta, EC50 for GSNO alone increased to 2.3±0.3.10−6 M, with no change in the presence of serine borate complex. These data demonstrate the important role of endothelial GGT activity in mediating the vasorelaxant effect of GSNO in rat aorta under physiological conditions. Because therapeutic treatments based on GSNO are presently under development, this endothelium-dependent mechanism involved in the vascular effects of GSNO should be taken into account in a pharmacological perspective.
Collapse
Affiliation(s)
- Fatima Dahboul
- EA3452 CITHEFOR “Drug targets, formulation and preclinical assessment”, Faculté de Pharmacie, Université de Lorraine, Nancy, France
| | - Pierre Leroy
- EA3452 CITHEFOR “Drug targets, formulation and preclinical assessment”, Faculté de Pharmacie, Université de Lorraine, Nancy, France
| | - Katy Maguin Gate
- EA3452 CITHEFOR “Drug targets, formulation and preclinical assessment”, Faculté de Pharmacie, Université de Lorraine, Nancy, France
| | - Ariane Boudier
- EA3452 CITHEFOR “Drug targets, formulation and preclinical assessment”, Faculté de Pharmacie, Université de Lorraine, Nancy, France
| | - Caroline Gaucher
- EA3452 CITHEFOR “Drug targets, formulation and preclinical assessment”, Faculté de Pharmacie, Université de Lorraine, Nancy, France
| | - Patrick Liminana
- EA3452 CITHEFOR “Drug targets, formulation and preclinical assessment”, Faculté de Pharmacie, Université de Lorraine, Nancy, France
| | - Isabelle Lartaud
- EA3452 CITHEFOR “Drug targets, formulation and preclinical assessment”, Faculté de Pharmacie, Université de Lorraine, Nancy, France
| | - Alfonso Pompella
- EA3452 CITHEFOR “Drug targets, formulation and preclinical assessment”, Faculté de Pharmacie, Université de Lorraine, Nancy, France
| | - Caroline Perrin-Sarrado
- EA3452 CITHEFOR “Drug targets, formulation and preclinical assessment”, Faculté de Pharmacie, Université de Lorraine, Nancy, France
- * E-mail:
| |
Collapse
|
22
|
Goodwill AG, Frisbee JC. Oxidant stress and skeletal muscle microvasculopathy in the metabolic syndrome. Vascul Pharmacol 2012; 57:150-9. [PMID: 22796585 DOI: 10.1016/j.vph.2012.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/19/2012] [Accepted: 07/04/2012] [Indexed: 01/22/2023]
Abstract
The evolution of the metabolic syndrome in afflicted individuals is, in part, characterized by the development of a severely pro-oxidant state within the vasculature. It has been previously demonstrated by many investigators that this increasingly pro-oxidant state can have severe negative implications for many relevant processes within the vasculature, including the coordination of dilator/constrictor tone or reactivity, the structural adaptations of the vascular wall or distal networks, as well as the integrated regulation of perfusion resistance across and throughout the vascular networks. The purpose of this review article is to present the different sources of oxidant stress within the setting of the metabolic syndrome, the available mechanism for attempts at regulation and the vascular outcomes associated with this condition. It is anticipated that this overview will help readers and investigators to more effectively design experiments and interpret their results within the extremely complicated setting of metabolic syndrome.
Collapse
Affiliation(s)
- Adam G Goodwill
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | | |
Collapse
|
23
|
Godfrey V, Martin AL, Struthers AD, Lyles GA. Effects of aldosterone and related steroids on LPS-induced increased expression of inducible NOS in rat aortic smooth muscle cells. Br J Pharmacol 2012; 164:2003-14. [PMID: 21649641 DOI: 10.1111/j.1476-5381.2011.01523.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Expression of inducible NOS (iNOS) is important in certain inflammatory diseases. We determined if the hormone aldosterone, a mineralocorticoid receptor (MR) agonist, affects LPS activation of iNOS expression in rat aortic smooth muscle cells (RASMC). EXPERIMENTAL APPROACH Cultured RASMC were treated with LPS, with or without agonists/antagonists of steroid receptors. iNOS expression was determined by nitrite assays on culture medium removed from treated cells and by immunoblotting of cell protein extracts. KEY RESULTS LPS (1 µg·mL(-1) ) increased nitrite and iNOS protein above that in control (untreated) cells. These effects of LPS were reduced by aldosterone (0.1-10 µM). The MR antagonists, eplerenone (10 µM) and spironolactone (10 or 50 µM), did not inhibit these actions of 1 µM aldosterone, but the latter were prevented by 10 µM mifepristone, a glucocorticoid (GR) and progestogen receptor (PR) antagonist. Mifepristone also prevented the reduction of LPS-induced nitrite increase produced by 1 µM dexamethasone (GR agonist) and 10 µM progesterone (PR agonist). Spironolactone (10-50 µM) by itself decreased LPS-induced increases in nitrite and iNOS protein. Mifepristone (10 µM) partially reversed these effects of 10 µM spironolactone, but not those of 50 µM; the effects of 50 µM spironolactone were also unchanged when mifepristone was increased to 50 µM. CONCLUSIONS AND IMPLICATIONS This pharmacological profile suggests that aldosterone, and possibly 10 µM spironolactone, use mechanisms that are dependent on PR and/or GR, but not MR, to inhibit iNOS induction in RASMC. With 50 µM spironolactone, other inhibitory mechanisms requiring further investigation may become predominant.
Collapse
Affiliation(s)
- V Godfrey
- Division of Medical Sciences, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | | | | | | |
Collapse
|
24
|
Prakash J, Kodanko JJ. Synthesis, Characterization, and Glutathionylation of Cobalamin Model Complexes [Co(N4PyCO2Me)Cl]Cl2 and [Co(Bn-CDPy3)Cl]Cl2. Inorg Chem 2012; 51:2689-98. [DOI: 10.1021/ic2026736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jai Prakash
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit,
Michigan 48202, United States
| | - Jeremy J. Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit,
Michigan 48202, United States
| |
Collapse
|
25
|
Kassab A, Piwowar A. Cell oxidant stress delivery and cell dysfunction onset in type 2 diabetes. Biochimie 2012; 94:1837-48. [PMID: 22333037 DOI: 10.1016/j.biochi.2012.01.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 01/25/2012] [Indexed: 01/18/2023]
Abstract
Most known pathways of diabetic complications involve oxidative stress. The mitochondria electron transport chain is a significant source of reactive oxygen species (ROS) in insulin secretory cells, insulin peripheral sensitive cells and endothelial cells. Elevated intracellular glucose level induces tricarboxylic acid cycle electron donor overproduction and mitochondrial proton gradient increase leading to an increase in electron transporter lifetime. Subsequently, the electrons leaked combine with respiratory oxygen (O(2)) resulting in superoxide anion ((•)O(2)(-)) production. Advanced glycation end products derive ROS via interaction with their receptors. Elevated diacylglycerol and ROS activate the protein kinase C pathway which, in turn, activates NADPH oxidases. A vicious circle of pathway derived ROS installs. Pathologic pathways induced ROS are activated and persistent though glycemia returns to normal due to hyperglycemia memory. Endothelial nitric oxide synthase may produce both superoxide anion ((•)O(2)(-)) and nitric oxide (NO) leading to peroxynitrite ((•)ONOO(-)) generation. Homocysteine is also implicated in oxidative stress pathogenesis. In this paper we have highlighted the pathologic mechanisms of ROS on atherosclerosis, renal dysfunction, retina dysfunction and nerve dysfunction in type 2 diabetes. Cell oxidant stress delivery have pivotal role in cell dysfunction onset and progression of angiopathies but an early introduction of good glycemic control may protect cells more efficiently than antioxidants.
Collapse
Affiliation(s)
- Asma Kassab
- Biochemistry Laboratory, CHU Farhat Hached, Sousse, Tunisia.
| | | |
Collapse
|
26
|
DelgadoRoche L, FragaPerez F, BequerViart M, HernandezMatos Y. Lipofundin 20% induces hyperlipidemia and oxidative stress in male Sprague Dawley rats. Vet World 2012. [DOI: 10.5455/vetworld.2012.133-137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
27
|
Abstract
Reactive oxygen species (ROS) are a group of molecules produced in the cell through metabolism of oxygen. Endogenous ROS such as hydrogen peroxide (H2O2) have long been recognised as destructive molecules. The well-established roles they have in the phagosome and genomic instability has led to the characterisation of these molecules as non-specific agents of destruction. Interestingly, there is a growing body of literature suggesting a less sinister role for this Jekyll and Hyde molecule. It is now evident that at lower physiological levels, H2O2 can act as a classical intracellular signalling molecule regulating kinase-driven pathways. The newly discovered biological functions attributed to ROS include proliferation, migration, anoikis, survival and autophagy. Furthermore, recent advances in detection and quantification of ROS-family members have revealed that the diverse functions of ROS can be determined by the subcellular source, location and duration of these molecules within the cell. In light of this confounding paradox, we will examine the factors and circumstances that determine whether H2O2 acts in a pro-survival or deleterious manner.
Collapse
|
28
|
Delgado Roche L, Acosta Medina E, Fraga Pérez Á, Bécquer Viart MA, Soto López Y, Falcón Cama V, Vázquez López AM, Martínez-Sánchez G, Fernández-Sánchez E. Lipofundin-induced hyperlipidemia promotes oxidative stress and atherosclerotic lesions in new zealand white rabbits. Int J Vasc Med 2011; 2012:898769. [PMID: 21977325 PMCID: PMC3184413 DOI: 10.1155/2012/898769] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/21/2011] [Accepted: 07/23/2011] [Indexed: 01/21/2023] Open
Abstract
Atherosclerosis represents a major cause of death in the world. It is known that Lipofundin 20% induces atherosclerotic lesions in rabbits, but its effects on serum lipids behaviour and redox environment have not been addressed. In this study, New Zealand rabbits were treated with 2 mL/kg of Lipofundin for 8 days. Then, redox biomarkers and serum lipids were determined spectrophotometrically. On the other hand, the development of atherosclerotic lesions was confirmed by eosin/hematoxylin staining and electron microscopy. At the end of the experiment, total cholesterol, triglycerides, cholesterol-LDL, and cholesterol-HDL levels were significantly increased. Also, a high index of biomolecules damage, a disruption of both enzymatic and nonenzymatic defenses, and a reduction of nitric oxide were observed. Our data demonstrated that Lipofundin 20% induces hyperlipidemia, which promotes an oxidative stress state. Due to the importance of these phenomena as risk factors for atherogenesis, we suggest that Lipofundin induces atherosclerosis mainly through these mechanisms.
Collapse
Affiliation(s)
- Livan Delgado Roche
- Center of Studies for Research and Biological Evaluations, Pharmacy and Food Science College, University of Havana, PO. Box 13 600, La Coronela, La Lisa, Havana 13600, Cuba
| | - Emilio Acosta Medina
- Center of Studies for Research and Biological Evaluations, Pharmacy and Food Science College, University of Havana, PO. Box 13 600, La Coronela, La Lisa, Havana 13600, Cuba
| | - Ángela Fraga Pérez
- Center of Studies for Research and Biological Evaluations, Pharmacy and Food Science College, University of Havana, PO. Box 13 600, La Coronela, La Lisa, Havana 13600, Cuba
| | - María A. Bécquer Viart
- Center of Studies for Research and Biological Evaluations, Pharmacy and Food Science College, University of Havana, PO. Box 13 600, La Coronela, La Lisa, Havana 13600, Cuba
| | - Yosdel Soto López
- Department of Antibody Engineering, Center of Molecular Immunology, Havana 11600, Cuba
| | - Viviana Falcón Cama
- Department of Electron Microscopy, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba
| | - Ana M. Vázquez López
- Department of Antibody Engineering, Center of Molecular Immunology, Havana 11600, Cuba
| | | | - Eduardo Fernández-Sánchez
- Center of Studies for Research and Biological Evaluations, Pharmacy and Food Science College, University of Havana, PO. Box 13 600, La Coronela, La Lisa, Havana 13600, Cuba
| |
Collapse
|
29
|
Wang XP, Chen YG, Qin WD, Zhang W, Wei SJ, Wang J, Liu FQ, Gong L, An FS, Zhang Y, Chen ZY, Zhang MX. Arginase I Attenuates Inflammatory Cytokine Secretion Induced by Lipopolysaccharide in Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2011; 31:1853-60. [DOI: 10.1161/atvbaha.111.229302] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Inflammation plays an important role in atherosclerosis. Arginase I (Arg I) promotes the proliferation of vascular smooth muscle cells; however, the effect of Arg I on inflammation remains unknown. The present study investigated the role of Arg I in inflammation in vitro and in vivo.
Methods and Results—
Quantitative reverse transcription–polymerase chain reaction and Western blot analysis demonstrated that Arg I inhibited tumor necrosis factor-α production induced by lipopolysaccharide in human aortic smooth muscle cells. Inducible nitric oxide synthase substrate competition and nuclear factor-κB activation were main contributors to lipopolysaccharide-mediated inflammatory cytokine generation. However, Arg I could attenuate the function of inducible nitric oxide synthase and inhibit the subsequent nuclear factor-κB activation, leading to inhibition of tumor necrosis factor-α generation. Furthermore, upregulation of Arg I significantly decreased macrophage infiltration and inflammation in atherosclerotic plaque of rabbits, whereas downregulation of Arg I aggravated these adverse effects.
Conclusion—
The results indicate the antiinflammatory effects of Arg I and suggest an unexpected beneficial role of Arg I in inflammatory disease.
Collapse
Affiliation(s)
- Xu-ping Wang
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Qilu Hospital, Jinan, Shandong, China (X.-p.W., Y.-g.C., W.-d.Q., W.Z., S.-j.W., J.W., F.S.A., Y.Z., M.-X.Z.); Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China (F.Q.L., L.G.); Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University
| | - Yu-guo Chen
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Qilu Hospital, Jinan, Shandong, China (X.-p.W., Y.-g.C., W.-d.Q., W.Z., S.-j.W., J.W., F.S.A., Y.Z., M.-X.Z.); Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China (F.Q.L., L.G.); Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University
| | - Wei-dong Qin
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Qilu Hospital, Jinan, Shandong, China (X.-p.W., Y.-g.C., W.-d.Q., W.Z., S.-j.W., J.W., F.S.A., Y.Z., M.-X.Z.); Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China (F.Q.L., L.G.); Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University
| | - Wei Zhang
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Qilu Hospital, Jinan, Shandong, China (X.-p.W., Y.-g.C., W.-d.Q., W.Z., S.-j.W., J.W., F.S.A., Y.Z., M.-X.Z.); Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China (F.Q.L., L.G.); Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University
| | - Shu-jian Wei
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Qilu Hospital, Jinan, Shandong, China (X.-p.W., Y.-g.C., W.-d.Q., W.Z., S.-j.W., J.W., F.S.A., Y.Z., M.-X.Z.); Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China (F.Q.L., L.G.); Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University
| | - Juan Wang
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Qilu Hospital, Jinan, Shandong, China (X.-p.W., Y.-g.C., W.-d.Q., W.Z., S.-j.W., J.W., F.S.A., Y.Z., M.-X.Z.); Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China (F.Q.L., L.G.); Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University
| | - Fu Qiang Liu
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Qilu Hospital, Jinan, Shandong, China (X.-p.W., Y.-g.C., W.-d.Q., W.Z., S.-j.W., J.W., F.S.A., Y.Z., M.-X.Z.); Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China (F.Q.L., L.G.); Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University
| | - Lei Gong
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Qilu Hospital, Jinan, Shandong, China (X.-p.W., Y.-g.C., W.-d.Q., W.Z., S.-j.W., J.W., F.S.A., Y.Z., M.-X.Z.); Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China (F.Q.L., L.G.); Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University
| | - Feng Shuang An
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Qilu Hospital, Jinan, Shandong, China (X.-p.W., Y.-g.C., W.-d.Q., W.Z., S.-j.W., J.W., F.S.A., Y.Z., M.-X.Z.); Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China (F.Q.L., L.G.); Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University
| | - Yun Zhang
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Qilu Hospital, Jinan, Shandong, China (X.-p.W., Y.-g.C., W.-d.Q., W.Z., S.-j.W., J.W., F.S.A., Y.Z., M.-X.Z.); Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China (F.Q.L., L.G.); Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University
| | - Zhe-Yu Chen
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Qilu Hospital, Jinan, Shandong, China (X.-p.W., Y.-g.C., W.-d.Q., W.Z., S.-j.W., J.W., F.S.A., Y.Z., M.-X.Z.); Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China (F.Q.L., L.G.); Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University
| | - Ming-Xiang Zhang
- From the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Shandong University, Qilu Hospital, Jinan, Shandong, China (X.-p.W., Y.-g.C., W.-d.Q., W.Z., S.-j.W., J.W., F.S.A., Y.Z., M.-X.Z.); Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China (F.Q.L., L.G.); Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University
| |
Collapse
|
30
|
Soskić SS, Dobutović BD, Sudar EM, Obradović MM, Nikolić DM, Djordjevic JD, Radak DJ, Mikhailidis DP, Isenović ER. Regulation of Inducible Nitric Oxide Synthase (iNOS) and its Potential Role in Insulin Resistance, Diabetes and Heart Failure. Open Cardiovasc Med J 2011; 5:153-63. [PMID: 21792376 PMCID: PMC3141344 DOI: 10.2174/1874192401105010153] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 05/30/2011] [Accepted: 05/31/2011] [Indexed: 02/08/2023] Open
Abstract
Nitric oxide synthases (NOS) are the enzymes responsible for nitric oxide (NO) generation. NO is a reactive oxygen species as well as a reactive nitrogen species. It is a free radical which mediates several biological effects. It is clear that the generation and actions of NO under physiological and pathophysiological conditions are regulated and extend to almost every cell type and function within the circulation. In mammals 3 distinct isoforms of NOS have been identified: neuronal NOS (nNOS), inducible NOS (iNOS) and endothelial NOS (eNOS). The important isoform in the regulation of insulin resistance (IR) is iNOS. Understanding the molecular mechanisms regulating the iNOS pathway in normal and hyperglycemic conditions would help to explain some of vascular abnormalities observed in type 2 diabetes mellitus (T2DM). Previous studies have reported increased myocardial iNOS activity and expression in heart failure (HF). This review considers the recent animal studies which focus on the understanding of regulation of iNOS activity/expression and the role of iNOS agonists as potential therapeutic agents in treatment of IR, T2DM and HF.
Collapse
Affiliation(s)
- Sanja S Soskić
- Laboratory for Radiobiology and Molecular Genetics, Institute "Vinča", University of Belgrade, Serbia
| | - Branislava D Dobutović
- Laboratory for Radiobiology and Molecular Genetics, Institute "Vinča", University of Belgrade, Serbia
| | - Emina M Sudar
- Laboratory for Radiobiology and Molecular Genetics, Institute "Vinča", University of Belgrade, Serbia
| | - Milan M Obradović
- Laboratory for Radiobiology and Molecular Genetics, Institute "Vinča", University of Belgrade, Serbia
| | - Dragana M Nikolić
- Laboratory for Radiobiology and Molecular Genetics, Institute "Vinča", University of Belgrade, Serbia
| | - Jelena D Djordjevic
- Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, P.O.Box S2 Republic of Serbia
| | - Djordje J Radak
- Department of Vascular Surgery, Dedinje Cardiovascular Institute, Belgrade University School of Medicine, Belgrade, Serbia
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry (Vascular Disease Prevention Clinics), Royal Free campus, University College London Medical School, University College London (UCL), Pond Street, London NW3 2QG, UK
| | - Esma R Isenović
- Laboratory for Radiobiology and Molecular Genetics, Institute "Vinča", University of Belgrade, Serbia
| |
Collapse
|
31
|
Shi R, Hu C, Yuan Q, Yang T, Peng J, Li Y, Bai Y, Cao Z, Cheng G, Zhang G. Involvement of vascular peroxidase 1 in angiotensin II-induced vascular smooth muscle cell proliferation. Cardiovasc Res 2011; 91:27-36. [PMID: 21292788 PMCID: PMC3112017 DOI: 10.1093/cvr/cvr042] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 11/15/2022] Open
Abstract
AIMS Vascular peroxidase 1 (VPO1) is a newly identified haem-containing peroxidase that catalyses the oxidation of a variety of substrates by hydrogen peroxide (H(2)O(2)). Considering the well-defined effects of H(2)O(2) on the vascular remodelling during hypertension, and that VPO1 can utilize H(2)O(2) generated from co-expressed NADPH oxidases to catalyse peroxidative reactions, the aims of this study were to determine the potential role of VPO1 in vascular remodelling during hypertension. METHODS AND RESULTS The vascular morphology and the expression of VPO1 in arterial tissues of spontaneously hypertensive rats and Wistar-Kyoto rats were assessed. The VPO1 expression was significantly increased concomitantly with definite vascular remodelling assessed by evaluating the media thickness, lumen diameter, media thickness-to-lumen diameter ratio and mean nuclear area in artery media in spontaneously hypertensive rats. In addition, in cultured rat aortic smooth muscle cells we found that the angiotensin II-mediated cell proliferation was inhibited by knockdown of VPO1 using small hairpin RNA. Moreover, the NADPH oxidase inhibitor, apocynin, and the hydrogen peroxide scavenger, catalase, but not the ERK1/2 inhibitor, PD98059, attenuated angiotensin II-mediated up-regulation of VPO1 and generation of hypochlorous acid. CONCLUSION VPO1 is a novel regulator of vascular smooth muscle cell proliferation via NADPH oxidase-H(2)O(2)-VPO1-hypochlorous acid-ERK1/2 pathways, which may contribute to vascular remodelling in hypertension.
Collapse
MESH Headings
- Analysis of Variance
- Angiotensin II/metabolism
- Animals
- Aorta, Thoracic/enzymology
- Aorta, Thoracic/pathology
- Cell Proliferation/drug effects
- Cells, Cultured
- Disease Models, Animal
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Free Radical Scavengers/pharmacology
- Hydrogen Peroxide/metabolism
- Hypertension/enzymology
- Hypertension/pathology
- Hypochlorous Acid/metabolism
- Male
- Mesenteric Arteries/enzymology
- Mesenteric Arteries/pathology
- Mitogen-Activated Protein Kinase 1/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 3/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- NADPH Oxidases/antagonists & inhibitors
- NADPH Oxidases/metabolism
- Peroxidase/genetics
- Peroxidase/metabolism
- RNA Interference
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Signal Transduction
- Time Factors
- Peroxidasin
Collapse
Affiliation(s)
- Ruizheng Shi
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Changping Hu
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Qiong Yuan
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Tianlun Yang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jun Peng
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Yuanjian Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Yongping Bai
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zehong Cao
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Guangjie Cheng
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Guogang Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
32
|
Xu S, Zhi H, Hou X, Jiang B. Angiotensin II modulates interleukin-1β-induced inflammatory gene expression in vascular smooth muscle cells via interfering with ERK-NF-κB crosstalk. Biochem Biophys Res Commun 2011; 410:543-8. [PMID: 21683058 DOI: 10.1016/j.bbrc.2011.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 06/01/2011] [Indexed: 01/08/2023]
Abstract
Angiotensin II is implicated in cardiovascular diseases, which is associated with a role in increasing vascular inflammation. The present study investigated how angiotensin II modulates vascular inflammatory signaling and expression of inducible nitric oxide synthase (iNOS) and vascular cell adhesion molecule (VCAM)-1. In cultured rat aortic vascular smooth muscle cells (VSMCs), angiotensin II suppressed interleukin-1β-induced prolonged phosphorylation of extracellular signal-regulated kinase (ERK) and ribosomal S6 kinase (RSK)-1, and nuclear translocation of nuclear factor (NF)-κB, leading to decreased iNOS but enhanced VCAM-1 expression, associated with an up-regulation of mitogen-activated protein kinase phosphatase-1 expression. Knock-down of RSK1 selectively down regulated interleukin-1β-induced iNOS expression without influencing VCAM-1 expression. In vivo experiments showed that interleukin-1β, iNOS, and VCAM-1 expression were detectable in the aortic arches of both wild-type and apolipoprotein E-deficient (ApoE(-/-)) mice. VCAM-1 and iNOS expression were higher in ApoE(-/-) than in wild type mouse aortic arches. Angiotensin II infusion (3.2 mg/kg/day, for 6 days, via subcutaneous osmotic pump) in ApoE(-/-) mice enhanced endothelial and adventitial VCAM-1 and iNOS expression, but reduced medial smooth muscle iNOS expression associated with reduced phosphorylation of ERK and RSK-1. These results indicate that angiotensin II can differentially modulate inflammatory gene expression in aortic smooth muscle cells through influencing ERK-NF-κB crosstalk, which may contribute to angiotensin II-induced inflammatory disorders related to cardiovascular diseases.
Collapse
Affiliation(s)
- Shanqin Xu
- Vascular Biology Unit, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
33
|
Yung LM, Wong WT, Tian XY, Leung FP, Yung LH, Chen ZY, Yao X, Lau CW, Huang Y. Inhibition of renin-angiotensin system reverses endothelial dysfunction and oxidative stress in estrogen deficient rats. PLoS One 2011; 6:e17437. [PMID: 21479266 PMCID: PMC3066200 DOI: 10.1371/journal.pone.0017437] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 02/04/2011] [Indexed: 11/18/2022] Open
Abstract
Background Estrogen deficiency increases the cardiovascular risks in postmenopausal women. Inhibition of the renin-angiotensin system (RAS) and associated oxidative stress confers a cardiovascular protection, but the role of RAS in estrogen deficiency-related vascular dysfunction is unclear. The present study investigates whether the up-regulation of RAS and associated oxidative stress contributes to the development of endothelial dysfunction during estrogen deficiency in ovariectomized (OVX) rats. Methodology/Principal Findings Adult female rats were ovariectomized with and without chronic treatment with valsartan and enalapril. Isometric force measurement was performed in isolated aortae. The expression of RAS components was determined by immunohistochemistry and Western blotting method while ROS accumulation in the vascular wall was evaluated by dihydroethidium fluorescence. Ovariectomy increased the expression of angiotensin-converting enzyme (ACE), angiotensin II type 1 receptor (AT1R), NAD(P)H oxidase, and nitrotyrosine in the rat aorta. An over-production of angiotensin II and ROS was accompanied by decreased phosphorylation of eNOS at Ser1177 in OVX rat aortae. These pathophysiological changes were closely coupled with increased oxidative stress and decreased nitric oxide bioavailability, culminating in markedly impaired endothelium-dependent relaxations. Furthermore, endothelial dysfunction and increased oxidative stress in aortae of OVX rats were inhibited or reversed by chronic RAS inhibition with enalapril or valsartan. Conclusions/Significance The novel findings highlight a significant therapeutic benefit of RAS blockade in the treatment of endothelial dysfunction-related vascular complications in postmenopausal states.
Collapse
Affiliation(s)
- Lai Ming Yung
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing Tak Wong
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao Yu Tian
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Fung Ping Leung
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lai Hang Yung
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhen Yu Chen
- Department of Biochemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoqiang Yao
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Wai Lau
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|
34
|
Cromer WE, Mathis JM, Granger DN, Chaitanya GV, Alexander JS. Role of the endothelium in inflammatory bowel diseases. World J Gastroenterol 2011; 17:578-93. [PMID: 21350707 PMCID: PMC3040330 DOI: 10.3748/wjg.v17.i5.578] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/29/2010] [Accepted: 07/06/2010] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are a complex group of diseases involving alterations in mucosal immunity and gastrointestinal physiology during both initiation and progressive phases of the disease. At the core of these alterations are endothelial cells, whose continual adjustments in structure and function coordinate vascular supply, immune cell emigration, and regulation of the tissue environment. Expansion of the endothelium in IBD (angiogenesis), mediated by inflammatory growth factors, cytokines and chemokines, is a hallmark of active gut disease and is closely related to disease severity. The endothelium in newly formed or inflamed vessels differs from that in normal vessels in the production of and response to inflammatory cytokines, growth factors, and adhesion molecules, altering coagulant capacity, barrier function and blood cell recruitment in injury. This review examines the roles of the endothelium in the initiation and propagation of IBD pathology and distinctive features of the intestinal endothelium contributing to these conditions.
Collapse
|
35
|
Han DW, Jung DY, Park JC, Cho HH, Hyon SH, Han DK. Underlying mechanism for suppression of vascular smooth muscle cells by green tea polyphenol EGCG released from biodegradable polymers for stent application. J Biomed Mater Res A 2011; 95:424-33. [PMID: 20648542 DOI: 10.1002/jbm.a.32870] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Epigallocatechin-3-O-gallate (EGCG), the predominant catechin from tea, is known to exert a variety of cardiovascular beneficial effects by affecting the activity of receptor and signal transduction kinases. In this study, we investigated the suppressive effects of EGCG released from biodegradable poly(L-lactide-co-ε-caprolactone, PLCL) films on the proliferation, cell cycle progression and matrix metalloproteinase-2 (MMP-2) expression of vascular smooth muscle cells (VSMCs). The involvement of phosphorylated Akt (pAkt) and nuclear factor-κB (pNF-κB) as well as the internalization of EGCG into VSMCs was also examined as underlying mechanisms for EGCG-mediated VSMC inhibition. The proliferation of canine aortic SMCs (CASMCs) on EGCG-releasing PLCL (E-PLCL) was significantly inhibited. The culture of CASMCs on E-PLCL resulted in induction of cell cycle arrest at G(0)/G(1) phase and inactivation of pAkt, leading to subsequent apoptosis. Active MMP-2 expression was directly lowered by EGCG released from E-PLCL and indirectly inhibited by the EGCG-mediated suppression of pNF-κB. We also observed the incorporation of fluorescein isothiocyanate-conjugated EGCG into the cytoplasm of CASMCs and its further nuclear translocation, which could lead to the interruption of the exogenous signals directed to genes responsible for cellular responses of CASMCs. Taken together, the attenuated responses of VSMCs to E-PLCL were shown to be mediated through the suppression of pNF-κB, pAkt and each subsequent target genes or proteins by EGCG incorporated into the cells.
Collapse
Affiliation(s)
- Dong-Wook Han
- Department of Nanomedical Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 609-735, Korea.
| | | | | | | | | | | |
Collapse
|
36
|
Winkelmann BR, von Holt K, Unverdorben M. Smoking and atherosclerotic cardiovascular disease: Part I: atherosclerotic disease process. Biomark Med 2010; 3:411-28. [PMID: 20477486 DOI: 10.2217/bmm.09.32] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The normal endothelium inhibits platelet and leukocyte adhesion to the vascular surface maintaining a balance of profibrinolytic and prothrombotic activity. Endothelial function is assessed largely as endothelium-dependent vasomotion, partly based on the assumption that impaired endothelium-dependent vasodilation reflects the alteration of important endothelial functions. Atherosclerotic risk factors, such as hypercholesterolemia, hypertension, diabetes and smoking, are associated with endothelial dysfunction. In the diseased endothelium, the balance between pro- and antithrombotic, pro- and anti-inflammatory, pro- and antiadhesive or pro- and antioxidant effects shifts towards a proinflammatory, prothrombotic, pro-oxidative and proadhesive phenotype of the endothelium. A common mechanism underlying endothelial dysfunction is related to the increased vascular production of reactive oxygen species. Recent studies suggest that inflammation per se, and C-reactive protein in particular, may contribute directly to endothelial dysfunction. The loss of endothelial integrity is a hallmark of atherosclerosis and the causal possible link between each individual risk factor, the development of atherosclerosis and the subsequent clinical events, such as myocardial infarction or stroke.
Collapse
|
37
|
Croatt AJ, Grande JP, Hernandez MC, Ackerman AW, Katusic ZS, Nath KA. Characterization of a model of an arteriovenous fistula in the rat: the effect of L-NAME. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:2530-41. [PMID: 20363917 DOI: 10.2353/ajpath.2010.090649] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Vascular access dysfunction contributes to the mortality of patients undergoing chronic hemodialysis. The present study analyzed the changes that evolve in a femoral arteriovenous fistula in the rat. The venous segment of this model exhibited, at 1 week, activation of pro-inflammatory transcription factors and up-regulation of pro-inflammatory, proliferative, procoagulant, and profibrotic genes; and at 4 weeks, the venous segment displayed neointimal hyperplasia, smooth muscle proliferation, and thrombus formation. These changes were accompanied by endothelial (e) nitric oxide synthase (NOS) and inducible (i) NOS up-regulation. The administration of NG-nitro-L-arginine methyl ester, an inhibitor of NOS activity, increased venous neointimal hyperplasia and pro-inflammatory gene expression (monocyte chemoattractant protein-1 and cytokine-induced neutrophil chemoattractant-1), increased systolic blood pressure, and decreased blood flow through the fistula. In another hypertensive model, the rat subtotal nephrectomy model, venous neointimal hyperplasia in the arteriovenous fistula was also exacerbated. We conclude that this arteriovenous fistula model recapitulates the salient features observed in dysfunctional, hemodialysis arteriovenous fistulas, and that venous neointimal hyperplasia is exacerbated when this model is superimposed in two different models of systemic hypertension. Since the uremic milieu contains increased amounts of asymmetric dimethylarginine, we speculate that such accumulation of this endogenous inhibitor of NOS, by virtue of its pressor or nitric oxide-depleting effects, or a combination thereof, may contribute to the limited longevity of arteriovenous fistulas used for hemodialysis.
Collapse
Affiliation(s)
- Anthony J Croatt
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Epidemiological studies have shown that advancing age is associated with an increased prevalence of cardiovascular disease (CVD). Vascular smooth muscle cells (VSMC) comprise the major arterial cell population, and changes in VSMC behavior, function, and redox status with age contribute to alterations in vascular remodeling and cell signaling. Over two decades of work on aged animal models provide support for age-related changes in VSMC and/or arterial tissues. Enhanced production of reactive oxygen species (ROS) and insufficient removal by scavenging systems are hallmarks of vascular aging. VSMC proliferation and migration are core processes in vascular remodeling and influenced by growth factors and signaling networks. The intrinsic link between gene regulation and aging often relates directly to transcription factors and their regulatory actions. Modulation of growth factor signaling leads to up- or downregulation of transcription factors that control expression of genes associated with VSMC proliferation, inflammation, and ROS production. Four major signaling pathways related to the transcription factors, AP-1, NF-kappaB, FoxO, and Nrf2, will be reviewed. Knowledge of age-related changes in signaling pathways in VSMC that lead to alterations in cell behavior and function consistent with disease progression may help in efforts to attenuate age-related CVD, such as atherosclerosis.
Collapse
Affiliation(s)
- Muyao Li
- Department of Medicine, University of Vermont College of Medicine, Burlington, 05405, USA
| | | |
Collapse
|
39
|
Trebak M, Ginnan R, Singer HA, Jourd'heuil D. Interplay between calcium and reactive oxygen/nitrogen species: an essential paradigm for vascular smooth muscle signaling. Antioxid Redox Signal 2010; 12:657-74. [PMID: 19719386 PMCID: PMC2861541 DOI: 10.1089/ars.2009.2842] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Signaling cascades initiated or regulated by calcium (Ca(2+)), reactive oxygen (ROS), and nitrogen (RNS) species are essential to diverse physiological and pathological processes in vascular smooth muscle. Stimuli-induced changes in intracellular Ca(2+) regulate the activity of primary ROS and RNS, producing enzymes including NADPH oxidases (Nox) and nitric oxide synthases (NOS). At the same time, alteration in intracellular ROS and RNS production reciprocates through redox-based post-translational modifications altering Ca(2+) signaling networks. These may include Ca(2+) pumps such as sarcoplasmic endoplasmic reticulum Ca(2+)-ATPase (SERCA), voltage-gated channels, transient receptor potential canonical (TRPC), melastatin2 (TRPM2), and ankyrin1 (TRPA1) channels, store operated Ca(2+) channels such as Orai1/stromal interaction molecule 1 (STIM1), and Ca(2+) effectors such as Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). In this review, we summarize and highlight current experimental evidence supporting the idea that cross-talk between Ca(2+) and ROS/RNS may represent a well-integrated signaling network in vascular smooth muscle.
Collapse
Affiliation(s)
- Mohamed Trebak
- Center for Cardiovascular Sciences, Albany Medical College, New York, USA
| | | | | | | |
Collapse
|
40
|
Abstract
The polyphenolic phytoalexin resveratrol (RSV) and its analogues have received tremendous attention over the past couple of decades because of a number of reports highlighting their benefits in vitro and in vivo in a variety of human disease models, including cardio- and neuroprotection, immune regulation, and cancer chemoprevention. These studies have underscored the high degree of diversity in terms of the signaling networks and cellular effector mechanisms that are affected by RSV. The activity of RSV has been linked to cell-surface receptors, membrane signaling pathways, intracellular signal-transduction machinery, nuclear receptors, gene transcription, and metabolic pathways. The promise shown by RSV has prompted heightened interest in studies aimed at translating these observations to clinical settings. In this review, we present a comprehensive account of the basic chemistry of RSV, its bioavailability, and its multiple intracellular target proteins and signaling pathways.
Collapse
Affiliation(s)
- Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore.
| | | |
Collapse
|
41
|
Birch CS, Brasch NE, McCaddon A, Williams JHH. A novel role for vitamin B(12): Cobalamins are intracellular antioxidants in vitro. Free Radic Biol Med 2009; 47:184-8. [PMID: 19409980 DOI: 10.1016/j.freeradbiomed.2009.04.023] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 04/14/2009] [Accepted: 04/22/2009] [Indexed: 01/29/2023]
Abstract
Oxidative stress is a feature of many chronic inflammatory diseases. Such diseases are associated with up-regulation of a vitamin B(12) (cobalamin) blood transport protein and its membrane receptor, suggesting a link between cobalamin and the cellular response to inflammation. The ability of cobalamin to regulate inflammatory cytokines suggests that it may have antioxidative properties. Here we show that cobalamins, including the novel thiolatocobalamins N-acetyl-l-cysteinylcobalamin and glutathionylcobalamin, are remarkably effective antioxidants in vitro. We also show that thiolatocobalamins have superior efficacy compared with other cobalamin forms, other cobalamins in combination with N-acetyl-l-cysteine (NAC) or glutathione (GSH), and NAC or GSH alone. Pretreatment of Sk-Hep-1 cells with thiolatocobalamins afforded robust protection (>90% cell survival) against exposure to 30 microM concentrations of the pro-oxidants homocysteine and hydrogen peroxide. The compounds inhibited intracellular peroxide production, maintained intracellular glutathione levels, and prevented apoptotic and necrotic cell death. Moreover, thiolatocobalamins are remarkably nontoxic in vitro at supraphysiological concentrations (>2 mM). Our results demonstrate that thiolatocobalamins act as powerful but benign antioxidants at pharmacological concentrations. Because inflammatory oxidative stress is a component of many conditions, including atherosclerosis, dementia, and trauma, their utility in treating such disorders merits further investigation.
Collapse
Affiliation(s)
- Catherine S Birch
- Chester Centre for Stress Research, University of Chester, Parkgate Road, Chester CH1 4BJ, UK
| | | | | | | |
Collapse
|
42
|
Zhao J, He Q, Cheng Y, Zhao B, Zhang Y, Zhang S, Miao J. A benzoxazine derivative induces vascular endothelial cell apoptosis in the presence of fibroblast growth factor-2 by elevating NADPH oxidase activity and reactive oxygen species levels. Toxicol In Vitro 2009; 23:1039-46. [PMID: 19539746 DOI: 10.1016/j.tiv.2009.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 05/22/2009] [Accepted: 06/12/2009] [Indexed: 11/30/2022]
Abstract
Previously, we found that 6,8-dichloro-2,3-dihydro-3-hydroxymethyl-1,4-benzoxazine (DBO) promoted apoptosis of human umbilical vascular endothelial cells (HUVECs) deprived of growth factors. In this study, we aimed to investigate the effect of DBO and its mechanism of action on angiogenesis and apoptosis of HUVECs in the presence of fibroblast growth factor-2 (FGF-2), which promotes angiogenesis and inhibits apoptosis in vivo and in vitro. DBO significantly inhibited capillary-like tube formation by promoting apoptosis of HUVECs in the presence of FGF-2 in vitro. Furthermore, DBO elevated the levels of reactive oxygen species (ROS) and nitric oxide (NO) and increased the activity of NADPH oxidase and inducible nitric oxide synthase (iNOS) in promoting apoptosis under this condition. Moreover, when NADPH oxidase was inhibited by its specific inhibitor, dibenziodolium chloride (DPI), DBO could not elevate ROS and NO levels in HUVECs. The data suggest that DBO is a new modulator of apoptosis in vitro, and it might function by increasing the activity of NADPH oxidase and iNOS, subsequently elevating the levels of ROS and NO in HUVECs. The findings of this study provide a new small molecule for investigating the FGF-2/NADPH oxidase/iNOS signaling pathway in apoptosis.
Collapse
Affiliation(s)
- Jing Zhao
- Institute of Developmental Biology, School of Life Science, Shandong University, Jinan 250100, China
| | | | | | | | | | | | | |
Collapse
|
43
|
Pendyala S, Usatyuk PV, Gorshkova IA, Garcia JG, Natarajan V. Regulation of NADPH oxidase in vascular endothelium: the role of phospholipases, protein kinases, and cytoskeletal proteins. Antioxid Redox Signal 2009; 11:841-60. [PMID: 18828698 PMCID: PMC2850292 DOI: 10.1089/ars.2008.2231] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The generation of reactive oxygen species (ROS) in the vasculature plays a major role in the genesis of endothelial cell (EC) activation and barrier function. Of the several potential sources of ROS in the vasculature, the endothelial NADPH oxidase family of proteins is a major contributor of ROS associated with lung inflammation, ischemia/reperfusion injury, sepsis, hyperoxia, and ventilator-associated lung injury. The NADPH oxidase in lung ECs has most of the components found in phagocytic oxidase, and recent studies show the expression of several homologues of Nox proteins in vascular cells. Activation of NADPH oxidase of nonphagocytic vascular cells is complex and involves assembly of the cytosolic (p47(phox), p67(phox), and Rac1) and membrane-associated components (Noxes and p22(phox)). Signaling pathways leading to NADPH oxidase activation are not completely defined; however, they do appear to involve the cytoskeleton and posttranslation modification of the components regulated by protein kinases, protein phosphatases, and phospholipases. Furthermore, several key components regulating NADPH oxidase recruitment, assembly, and activation are enriched in lipid microdomains to form a functional signaling platform. Future studies on temporal and spatial localization of Nox isoforms will provide new insights into the role of NADPH oxidase-derived ROS in the pathobiology of lung diseases.
Collapse
|
44
|
Mohri T, Sokabe M, Kyozuka K. Nitric oxide (NO) increase at fertilization in sea urchin eggs upregulates fertilization envelope hardening. Dev Biol 2008; 322:251-62. [PMID: 18694744 DOI: 10.1016/j.ydbio.2008.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2007] [Revised: 07/08/2008] [Accepted: 07/11/2008] [Indexed: 10/21/2022]
Abstract
Previous studies indicate that the nitric oxide (NO) increase at fertilization in sea urchin eggs is Ca(2+)-dependent and attributed to the late Ca(2+) rise. However, its role in fertilization still remains unclear. Simultaneous measurements of the activation current, by a single electrode voltage clamp, and NO, using the NO indicator DAF-FM, showed that the NO increase occurred at the time of peak current (t(p)) which corresponds to peak [Ca(2+)](i), suggesting that NO is not related to any other ionic changes besides [Ca(2+)](i). We measured O(2) consumption by a polarographic method to examine whether NO regulated a respiratory burst for protection as reported in other biological systems. Our results suggested NO increased O(2) consumption. The fluorescence of reduced pyridine nucleotides, NAD(P)H was measured in controls and when the NO increase was eliminated by PTIO, a NO scavenger. Surprisingly, PTIO decreased the rate of the fluorescence change and the late phase of increase in NAD(P)H was eliminated. PTIO also suppressed the production of H(2)O(2) and caused weak and high fertilization envelope (FE). Our results suggest that NO increase upregulates NAD(P)H and H(2)O(2) production and consolidates FE hardening by H(2)O(2).
Collapse
Affiliation(s)
- Tatsuma Mohri
- Division of Intracellular Metabolism, Department of Molecular Physiology, National Institute for Physiological Sciences, Okazaki, Japan.
| | | | | |
Collapse
|