1
|
Yang C, Qiu H, Lv M, Yang J, Wu K, Huang J, Jiang Q. Gastrodin protects endothelial cells against high glucose-induced injury through up-regulation of PPARβ and alleviation of nitrative stress. Microvasc Res 2023; 148:104531. [PMID: 36963481 DOI: 10.1016/j.mvr.2023.104531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 03/26/2023]
Abstract
In diabetes mellitus (DM), high glucose can result in endothelial cell injury, and then lead to diabetic vascular complications. Gastrodin, as the mainly components of Chinese traditional herb Tianma (Gastrodia elata Bl.), has been widely used for cardiovascular diseases. However, the known of the effect of gastrodin on endothelial cell injury is still limited. In this study, we aimed to investigate the effect and possible mechanism of gastrodin on high glucose-injured human umbilical vein endothelial cells (HUVEC). High glucose (30 mmol/L) treatment caused HUVEC injury. After gastrodin (0.1, 1, 10 μmol/L) treatment, compared with the high glucose group, the cell proliferation ability increased in a dose-dependent manner. Meanwhile, gastrodin (10 μmol/L) up-regulated the mRNA and protein expressions of PPARβ and eNOS, decreased the expressions of iNOS, also reduced the protein expression of 3-nitrotyrosine, and lowed the level of ONOO-, increased NO content. Both the PPARβ antagonist GSK0660 (1 μmol/L) and the eNOS inhibitor L-NAME (10 μmol/L) were able to block the above effects of gastrodin. In conclusion, gastrodin protectes vascular endothelial cells from high glucose injury, which may be, at least partly, mediated by up-regulating the expression of PPARβ and negatively regulating nitrative stress.
Collapse
Affiliation(s)
- Chuang Yang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Hongmei Qiu
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Mingqi Lv
- Experimental Teaching Management Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Junxia Yang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Ke Wu
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Jiajun Huang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Qingsong Jiang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
2
|
Marques P, Villarroel-Vicente C, Collado A, García A, Vila L, Duplan I, Hennuyer N, Garibotto F, Enriz RD, Dacquet C, Staels B, Piqueras L, Cortes D, Sanz MJ, Cabedo N. Anti-inflammatory effects and improved metabolic derangements in ob/ob mice by a newly synthesized prenylated benzopyran with pan-PPAR activity. Pharmacol Res 2023; 187:106638. [PMID: 36586645 DOI: 10.1016/j.phrs.2022.106638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND PURPOSE Selective peroxisome proliferator-activated receptors (PPARs) are widely used to treat metabolic complications; however, the limited effect of PPARα agonists on glucose metabolism and the adverse effects associated with selective PPARγ activators have stimulated the development of novel pan-PPAR agonists to treat metabolic disorders. Here, we synthesized a new prenylated benzopyran (BP-2) and evaluated its PPAR-activating properties, anti-inflammatory effects and impact on metabolic derangements. EXPERIMENTAL APPROACH BP-2 was used in transactivation assays to evaluate its agonism to PPARα, PPARβ/δ and PPARγ. A parallel-plate flow chamber was employed to investigate its effect on TNFα-induced leukocyte-endothelium interactions. Flow cytometry and immunofluorescence were used to determine its effects on the expression of endothelial cell adhesion molecules (CAMs) and chemokines and p38-MAPK/NF-κB activation. PPARs/RXRα interactions were determined using a gene silencing approach. Analysis of its impact on metabolic abnormalities and inflammation was performed in ob/ob mice. KEY RESULTS BP-2 displayed strong PPARα activity, with moderate and weak activity against PPARβ/δ and PPARγ, respectively. In vitro, BP-2 reduced TNFα-induced endothelial ICAM-1, VCAM-1 and fractalkine/CX3CL1 expression, suppressed mononuclear cell arrest via PPARβ/δ-RXRα interactions and decreased p38-MAPK/NF-κB activation. In vivo, BP-2 improved the circulating levels of glucose and triglycerides in ob/ob mice, suppressed T-lymphocyte/macrophage infiltration and proinflammatory markers in the liver and white adipose tissue, but increased the expression of the M2-like macrophage marker CD206. CONCLUSION AND IMPLICATIONS BP-2 emerges as a novel pan-PPAR lead candidate to normalize glycemia/triglyceridemia and minimize inflammation in metabolic disorders, likely preventing the development of further cardiovascular complications.
Collapse
Affiliation(s)
- Patrice Marques
- Department of Pharmacology, University of Valencia, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Carlos Villarroel-Vicente
- Department of Pharmacology, University of Valencia, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Aida Collado
- Department of Pharmacology, University of Valencia, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Ainhoa García
- Department of Pharmacology, University of Valencia, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Laura Vila
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Isabelle Duplan
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U-1011-EGID, F-59000 Lille, France
| | - Nathalie Hennuyer
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U-1011-EGID, F-59000 Lille, France
| | - Francisco Garibotto
- Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis-IMIBIO-SL-CONICET, Chacabuco 917-5700, San Luis, Argentina
| | - Ricardo D Enriz
- Faculty of Chemistry, Biochemistry and Pharmacy, National University of San Luis-IMIBIO-SL-CONICET, Chacabuco 917-5700, San Luis, Argentina
| | | | - Bart Staels
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U-1011-EGID, F-59000 Lille, France
| | - Laura Piqueras
- Department of Pharmacology, University of Valencia, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; CIBERDEM-Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute, Madrid, Spain
| | - Diego Cortes
- Department of Pharmacology, University of Valencia, Valencia, Spain.
| | - María-Jesús Sanz
- Department of Pharmacology, University of Valencia, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain; CIBERDEM-Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute, Madrid, Spain.
| | - Nuria Cabedo
- Department of Pharmacology, University of Valencia, Valencia, Spain; Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain.
| |
Collapse
|
3
|
Liu J, Du X, Yao Q, Jiang T, Cui Q, Xie X, Zhao Z, Lai B, Wang N, Xiao L. Procyanidin B2 ameliorates endothelial dysfunction induced by nicotine via the induction of tetrahydrobiopterin synthesis. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
4
|
Jakubiak GK, Cieślar G, Stanek A. Nitrotyrosine, Nitrated Lipoproteins, and Cardiovascular Dysfunction in Patients with Type 2 Diabetes: What Do We Know and What Remains to Be Explained? Antioxidants (Basel) 2022; 11:antiox11050856. [PMID: 35624720 PMCID: PMC9137700 DOI: 10.3390/antiox11050856] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus (DM) is a strong risk factor for the development of cardiovascular diseases (CVDs), which are the most important cause of morbidity and mortality in the population of patients living with DM. DM is associated with lipid metabolism disorders characterized by a decrease in the high-density lipoprotein blood concentration, an increase in the triglyceride blood concentration, and the presence of modified lipoproteins not routinely measured in clinical practice. Nitrated lipoproteins are produced by the nitration of the tyrosyl residues of apolipoproteins by myeloperoxidase. There is some evidence from the research conducted showing that nitrated lipoproteins may play a role in the development of cardiovascular dysfunction, but this issue requires further investigation. It was found that the nitration of HDL particles was associated with a decrease in caspase-3 and paraoxonase-1 activity, as well as a decrease in the activity of cholesterol transport via ABCA1, which reduces the protective effect of HDL particles on the cardiovascular system. Less information has been collected about the role of nitrated LDL particles. Thus far, much more information has been obtained on the relationship of nitrotyrosine expression with the presence of cardiovascular risk factors and the development of cardiovascular dysfunction. The purpose of this paper is to provide an extensive review of the literature and to present the most important information on the current state of knowledge on the association between nitrotyrosine and nitrated lipoproteins with dysfunction of the cardiovascular system, especially in patients living with DM. Moreover, directions for future research in this area were discussed.
Collapse
|
5
|
Xiao L, Wang N. PPAR-δ: A key nuclear receptor in vascular function and remodeling. J Mol Cell Cardiol 2022; 169:1-9. [DOI: 10.1016/j.yjmcc.2022.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/29/2022] [Accepted: 04/25/2022] [Indexed: 12/08/2022]
|
6
|
Yang C, Xue L, Wu Y, Li S, Zhou S, Yang J, Jiang C, Ran J, Jiang Q. PPARβ down-regulation is involved in high glucose-induced endothelial injury via acceleration of nitrative stress. Microvasc Res 2022; 139:104272. [PMID: 34699845 DOI: 10.1016/j.mvr.2021.104272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
Endothelial injury plays a vital role in vascular lesions from diabetes mellitus (DM). Therapeutic targets against endothelial damage may provide critical venues for the treatment of diabetic vascular diseases. Peroxisome proliferator-activated receptor β (PPARβ) is a crucial regulator in DM and its complications. However, the molecular signal mediating the roles of PPARβ in DM-induced endothelial dysfunction is not fully understood. The impaired endothelium-dependent relaxation and destruction of the endothelium structures appeared in high glucose incubated rat aortic rings. A high glucose level significantly decreased the expression of PPARβ and endothelial nitric oxide synthase (eNOS) at the mRNA and protein levels, and reduced the concentration of nitric oxide (NO), which occurred in parallel with an increase in the expression of inducible nitric oxide synthase (iNOS) and 3-nitrotyrosine. The effect of high glucose was inhibited by GW0742, a PPARβ agonist. Both GSK0660 (PPARβ antagonist) and NG-nitro-l-arginine-methyl ester (NOS inhibitor) could reverse the protective effects of GW0742. These results suggest that the activation of nitrative stress may, at least in part, mediate the down-regulation of PPARβ in high glucose-impaired endothelial function in rat aorta. PPARβ-nitrative stress may hold potential in treating vascular complications from DM.
Collapse
Affiliation(s)
- Chuang Yang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Lai Xue
- Clinical Pharmacy, Jiangyou People's Hospital, Sichuan 621700, PR China
| | - Yang Wu
- Cardiovascular Center, the Seventh Affiliated Hospital of Sun Yat-sen University, Guangdong 518107, PR China
| | - Siman Li
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Shangjun Zhou
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Junxia Yang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Chengyan Jiang
- Department of Endocrinology, the First People's Hospital of Zunyi, Guizhou 563000, PR China
| | - Jianhua Ran
- Department of Anatomy, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China.
| | - Qingsong Jiang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Key Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
7
|
Byrne NJ, Rajasekaran NS, Abel ED, Bugger H. Therapeutic potential of targeting oxidative stress in diabetic cardiomyopathy. Free Radic Biol Med 2021; 169:317-342. [PMID: 33910093 PMCID: PMC8285002 DOI: 10.1016/j.freeradbiomed.2021.03.046] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023]
Abstract
Even in the absence of coronary artery disease and hypertension, diabetes mellitus (DM) may increase the risk for heart failure development. This risk evolves from functional and structural alterations induced by diabetes in the heart, a cardiac entity termed diabetic cardiomyopathy (DbCM). Oxidative stress, defined as the imbalance of reactive oxygen species (ROS) has been increasingly proposed to contribute to the development of DbCM. There are several sources of ROS production including the mitochondria, NAD(P)H oxidase, xanthine oxidase, and uncoupled nitric oxide synthase. Overproduction of ROS in DbCM is thought to be counterbalanced by elevated antioxidant defense enzymes such as catalase and superoxide dismutase. Excess ROS in the cardiomyocyte results in further ROS production, mitochondrial DNA damage, lipid peroxidation, post-translational modifications of proteins and ultimately cell death and cardiac dysfunction. Furthermore, ROS modulates transcription factors responsible for expression of antioxidant enzymes. Lastly, evidence exists that several pharmacological agents may convey cardiovascular benefit by antioxidant mechanisms. As such, increasing our understanding of the pathways that lead to increased ROS production and impaired antioxidant defense may enable the development of therapeutic strategies against the progression of DbCM. Herein, we review the current knowledge about causes and consequences of ROS in DbCM, as well as the therapeutic potential and strategies of targeting oxidative stress in the diabetic heart.
Collapse
Affiliation(s)
- Nikole J Byrne
- Division of Cardiology, Medical University of Graz, Graz, Austria
| | - Namakkal S Rajasekaran
- Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology, Birmingham, AL, USA; Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA; Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - E Dale Abel
- Fraternal Order of Eagles Diabetes Research Center, Division of Endocrinology and Metabolism, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, USA
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, Graz, Austria.
| |
Collapse
|
8
|
Yao W, Wang K, Wang X, Li X, Dong J, Zhang Y, Ding X. Icariin ameliorates endothelial dysfunction in type 1 diabetic rats by suppressing ER stress via the PPARα/Sirt1/AMPKα pathway. J Cell Physiol 2021; 236:1889-1902. [PMID: 32770555 DOI: 10.1002/jcp.29972] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Icariin (ICA), as a flavonoid glycoside, is associated with the improvement of vascular complications in diabetes. However, its protective mechanisms remain to be well-established. Here, we tested the hypothesis that ICA attenuates vascular endothelial dysfunction by inhibiting endoplasmic reticulum (ER) stress in type 1 diabetes. In streptozotocin-induced diabetic rats, ICA positively affected acetylcholine-induced vasodilation and phenylephrine-induced vasoconstriction in aortas. ICA treatment significantly attenuated ER stress in diabetic rats and high-glucose induced human umbilical vein endothelial cells. Incubation with ICA in vitro attenuated vascular reactivity in diabetic rats, which was blocked by the ER stress inducer, and peroxisome proliferator-activated receptor α (PPARα), sirtuin1 (Sirt1), or AMP-activated protein kinase-α (AMPKα) inhibitors. Western blot showed that ICA activated the PPARα/Sirt1/AMPKα pathway, which contributed to reducing ER stress and activating endothelial nitric oxide synthase in vivo and vitro. Our results implicate that ICA normalizes ER stress to attenuate endothelial dysfunction by the regulation of the PPARα/Sirt1/AMPKα pathway.
Collapse
Affiliation(s)
- Wenhui Yao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kai Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiniao Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xinran Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jieyan Dong
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yusheng Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
9
|
Van Hove L, Kim KR, Arrick DM, Mayhan WG. A cannabinoid type 2 (CB2) receptor agonist augments NOS-dependent responses of cerebral arterioles during type 1 diabetes. Microvasc Res 2021; 133:104077. [PMID: 32979391 PMCID: PMC7704564 DOI: 10.1016/j.mvr.2020.104077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 11/19/2022]
Abstract
While activation of cannabinoid (CB2) receptors has been shown to be neuroprotective, no studies have examined whether this neuroprotection is directed at cerebral arterioles and no studies have examined whether activation of CB2 receptors can rescue cerebrovascular dysfunction during a chronic disease state such as type 1 diabetes (T1D). Our goal was to test the hypothesis that administration of a CB2 agonist (JWH-133) would improve impaired endothelial (eNOS)- and neuronal (nNOS)-dependent dilation of cerebral arterioles during T1D. In vivo diameter of cerebral arterioles in nondiabetic and T1D rats was measured in response to an eNOS-dependent agonist (adenosine 5'-diphosphate; ADP), an nNOS-dependent agonist (N-methyl-d-aspartate; NMDA), and an NOS-independent agonist (nitroglycerin) before and 1 h following JWH-133 (1 mg/kg IP). Dilation of cerebral arterioles to ADP and NMDA was greater in nondiabetic than in T1D rats. Treatment with JWH-133 increased responses of cerebral arterioles to ADP and NMDA in both nondiabetic and T1D rats. Responses of cerebral arterioles to nitroglycerin were similar between nondiabetic and T1D rats, and JWH-133 did not influence responses to nitroglycerin in either group. The restoration in responses to the agonists by JWH-133 could be inhibited by treatment with a specific inhibitor of CB2 receptors (AM-630; 3 mg/kg IP). Thus, activation of CB2 receptors can potentiate reactivity of cerebral arterioles during physiologic and pathophysiologic states. We speculate that treatment with CB2 receptor agonists may have potential therapeutic benefits for the treatment of cerebral vascular diseases via a mechanism that can increase cerebral blood flow.
Collapse
MESH Headings
- Animals
- Arterioles/drug effects
- Arterioles/enzymology
- Brain/blood supply
- Cannabinoid Receptor Agonists/pharmacology
- Cannabinoids/pharmacology
- Cerebrovascular Disorders/enzymology
- Cerebrovascular Disorders/physiopathology
- Cerebrovascular Disorders/prevention & control
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/physiopathology
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 1/physiopathology
- Male
- Nitric Oxide Synthase Type I/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/metabolism
- Signal Transduction
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
- Rats
Collapse
Affiliation(s)
- Lauren Van Hove
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD 57069, United States of America
| | - Kirsten R Kim
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD 57069, United States of America
| | - Denise M Arrick
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD 57069, United States of America
| | - William G Mayhan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, SD 57069, United States of America.
| |
Collapse
|
10
|
O'Connell TD, Mason RP, Budoff MJ, Navar AM, Shearer GC. Mechanistic insights into cardiovascular protection for omega-3 fatty acids and their bioactive lipid metabolites. Eur Heart J Suppl 2020; 22:J3-J20. [PMID: 33061864 PMCID: PMC7537803 DOI: 10.1093/eurheartj/suaa115] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Patients with well-controlled low-density lipoprotein cholesterol levels, but persistent high triglycerides, remain at increased risk for cardiovascular events as evidenced by multiple genetic and epidemiologic studies, as well as recent clinical outcome trials. While many trials of low-dose ω3-polyunsaturated fatty acids (ω3-PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) have shown mixed results to reduce cardiovascular events, recent trials with high-dose ω3-PUFAs have reignited interest in ω3-PUFAs, particularly EPA, in cardiovascular disease (CVD). REDUCE-IT demonstrated that high-dose EPA (4 g/day icosapent-ethyl) reduced a composite of clinical events by 25% in statin-treated patients with established CVD or diabetes and other cardiovascular risk factors. Outcome trials in similar statin-treated patients using DHA-containing high-dose ω3 formulations have not yet shown the benefits of EPA alone. However, there are data to show that high-dose ω3-PUFAs in patients with acute myocardial infarction had reduced left ventricular remodelling, non-infarct myocardial fibrosis, and systemic inflammation. ω3-polyunsaturated fatty acids, along with their metabolites, such as oxylipins and other lipid mediators, have complex effects on the cardiovascular system. Together they target free fatty acid receptors and peroxisome proliferator-activated receptors in various tissues to modulate inflammation and lipid metabolism. Here, we review these multifactorial mechanisms of ω3-PUFAs in view of recent clinical findings. These findings indicate physico-chemical and biological diversity among ω3-PUFAs that influence tissue distributions as well as disparate effects on membrane organization, rates of lipid oxidation, as well as various receptor-mediated signal transduction pathways and effects on gene expression.
Collapse
Affiliation(s)
- Timothy D O'Connell
- Department of Integrative Biology and Physiology, University of Minnesota, 3-141 CCRB, 2231 6th Street SE, Minneapolis, MN 55414, USA
| | - Richard Preston Mason
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Matthew J Budoff
- Cardiovascular Division, Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ann Marie Navar
- Cardiovascular Division, Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - Gregory C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, 110 Chandlee Laboratory, University Park, PA 16802, USA
| |
Collapse
|
11
|
Ma X, Zhang J, Wu Z, Wang X. Chicoric acid attenuates hyperglycemia-induced endothelial dysfunction through AMPK-dependent inhibition of oxidative/nitrative stresses. J Recept Signal Transduct Res 2020; 41:378-392. [PMID: 32900249 DOI: 10.1080/10799893.2020.1817076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Endothelial dysfunction is a driving force during the development and progression of cardiovascular complications in diabetes. Targeting endothelial injury may be an attractive avenue for the management of diabetic vascular disorders. Chicoric acid is reported to confer antioxidant and anti-inflammatory properties in various diseases including diabetes. However, the role and mechanism of chicoric acid in hyperglycemia-induced endothelial damage are not well understood. METHODS In the present study, human umbilical vein endothelial cells (HUVECs) were incubated with high glucose/high fat (HG + HF) to induce endothelial cell injury. RESULTS We found that exposure of HUVECs to HG + HF medium promoted the release of cytochrome c (cytc) from mitochondrion into the cytoplasm, stimulated the cleavage of caspase-3 and poly ADP-ribose-polymerase (PARP), then inducing cell apoptosis, the effects that were prevented by administration of chicoric acid. Besides, we found that chicoric acid diminished HG + HF-induced phosphorylation and degradation of IκBα, and subsequent p65 NFκB nuclear translocation, thereby contributing to its anti-inflammatory effects in HUVECs. We also confirmed that chicoric acid mitigated oxidative/nitrative stresses under HG + HF conditions. Studies aimed at exploring the underlying mechanisms found that chicoric acid activated the AMP-activated protein kinase (AMPK) signaling pathway to attenuate HG + HF-triggered injury in HUVECs as AMPK inhibitor Compound C or silencing of AMPKα1 abolished the beneficial effects of chicoric acid in HUVECs. CONCLUSION Collectively, chicoric acid is likely protected against diabetes-induced endothelial dysfunction by activation of the AMPK signaling pathway. Chicoric acid could be a novel candidate for the treatment of the diabetes-associated vascular endothelial injury.
Collapse
Affiliation(s)
- Xiaojuan Ma
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Junli Zhang
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Zejie Wu
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Xia Wang
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
12
|
Barbosa JE, Stockler-Pinto MB, da Cruz BO, da Silva ACT, Anjos JS, Mesquita CT, Mafra D, Cardozo LFMF. Nrf2, NF-κB and PPARβ/δ mRNA Expression Profile in Patients with Coronary Artery Disease. Arq Bras Cardiol 2019; 113:1121-1127. [PMID: 31340238 PMCID: PMC7021271 DOI: 10.5935/abc.20190125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/07/2019] [Accepted: 02/13/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Oxidative stress and inflammation are present in coronary artery disease (CAD) and are linked to the activation of the transcription nuclear factor kappa B (NF-κB). To attenuate these complications, transcription factors like nuclear factor erythroid 2-related factor 2 (Nrf2) and peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) can be activated to inhibit NF-κB. However, the available data on expression of NF-κB, Nrf2 and PPARβ/δ in CAD patients are limited. OBJECTIVE To evaluate the expression of the transcription factors NF-κB and Nrf2 and PPAR𝛽/𝛿 in CAD patients. METHODS Thirty-five patients (17 men, mean age 62.4 ? 7.55 years) with CAD and twelve patients (5 men, mean age 63.50 ? 11.46 years) without CAD were enrolled. Peripheral blood mononuclear cells (PBMCs) were isolated and processed for mRNA expression of Nrf2, NF-κB, NADPH: quinone oxidoreductase 1 (NQO1) and PPARβ/δ mRNAs using quantitative real-time polymerase chain reaction (qPCR). p < 0.05 was considered statistically significant. RESULTS There was no difference in the mRNA expressions of Nrf2 (1.35 ? 0.57), NF-κB (1.08 ? 0.50) or in the antioxidant enzyme NQO1 (1.05 ? 0.88) in the CAD group compared to the group without CAD (1.16 ? 0.76, 0.95 ? 0.33, 0.81 ? 0.55, respectively). However, PPARβ/δ was highest expressed in the CAD group (1.17 ? 0.86 vs. 0.56 ? 0.34, p = 0.008). CONCLUSION The main finding of this study was the PPARβ/δ being more expressed in the PBMC of patients with CAD compared to the control group, whereas no differences were observed in Nrf2 or NF-κB mRNA expressions.
Collapse
Affiliation(s)
- Jaqueline Ermida Barbosa
- Universidade Federal Fluminense - Programa de Pós-Graduação em Ciências Cardiovasculares, Niterói, RJ - Brazil
| | | | - Beatriz Oliveira da Cruz
- Universidade Federal Fluminense - Programa de Pós-Graduação em Ciências Cardiovasculares, Niterói, RJ - Brazil
| | - Ana Carla Tavares da Silva
- Universidade Federal Fluminense - Programa de Pós-Graduação em Ciências Cardiovasculares, Niterói, RJ - Brazil
| | - Juliana Saraiva Anjos
- Universidade Federal Fluminense - Programa de Pós-Graduação em Ciências Cardiovasculares, Niterói, RJ - Brazil
| | - Claudio Tinoco Mesquita
- Universidade Federal Fluminense - Programa de Pós-Graduação em Ciências Cardiovasculares, Niterói, RJ - Brazil
| | - Denise Mafra
- Universidade Federal Fluminense - Programa de Pós-Graduação em Ciências Cardiovasculares, Niterói, RJ - Brazil
| | - Ludmila F. M. F. Cardozo
- Universidade Federal Fluminense - Programa de Pós-Graduação em Ciências Cardiovasculares, Niterói, RJ - Brazil
| |
Collapse
|
13
|
Vezza T, Rodríguez-Nogales A, Algieri F, Garrido-Mesa J, Romero M, Sánchez M, Toral M, Martín-García B, Gómez-Caravaca AM, Arráez-Román D, Segura-Carretero A, Micol V, García F, Utrilla MP, Duarte J, Rodríguez-Cabezas ME, Gálvez J. The metabolic and vascular protective effects of olive (Olea europaea L.) leaf extract in diet-induced obesity in mice are related to the amelioration of gut microbiota dysbiosis and to its immunomodulatory properties. Pharmacol Res 2019; 150:104487. [PMID: 31610229 DOI: 10.1016/j.phrs.2019.104487] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/30/2019] [Accepted: 10/06/2019] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Many studies have showed the beneficial effects of the olive (Olea europaea) leaf extract (OLE) in experimental models of metabolic syndrome, which have been ascribed to the presence of phenolic compounds, like oleuropeoside. This study evaluated the effects of a chemically characterized OLE in high fat diet (HFD)-induced obesity in mice, describing the underlying mechanisms involved in the beneficial effects, with special attention to vascular dysfunction and gut microbiota composition. METHODS C57BL/6J mice were distributed in different groups: control, control-treated, obese and obese-treated with OLE (1, 10 and 25 mg/kg/day). Control mice received a standard diet, whereas obese mice were fed HFD. The treatment was followed for 5 weeks, and animal body weight periodically assessed. At the end of the treatment, metabolic plasma analysis (including lipid profile) as well as glucose and insulin levels were performed. The HFD-induced inflammatory status was studied in liver and fat, by determining the RNA expression of different inflammatory mediators by qPCR; also, different markers of intestinal epithelial barrier function were determined in colonic tissue by qPCR. Additionally, flow cytometry of immune cells from adipose tissue, endothelial dysfunction in aortic rings as well as gut microbiota composition were evaluated. Faecal microbiota transplantation (FMT) to antibiotic-treated mice fed with HFD was performed. RESULTS OLE administration reduced body weight gain, basal glycaemia and insulin resistance, and showed improvement in plasma lipid profile when compared with HFD-fed mice. The extract significantly ameliorated the HFD-induced altered expression of key adipogenic genes, like PPARs, adiponectin and leptin receptor, in adipose tissue. Furthermore, the extract reduced the RNA expression of Tnf-α, Il-1β, Il-6 in liver and adipose tissue, thus improving the tissue inflammatory status associated to obesity. The flow cytometry analysis in adipose tissue corroborated these observations. Additionally, the characterization of the colonic microbiota by sequencing showed that OLE administration was able to counteract the dysbiosis associated to obesity. The extract reversed the endothelial dysfunction observed in the aortic rings of obese mice. FMT from donors HFD-OLE to recipient mice fed an HFD prevented the development of obesity, glucose intolerance, insulin resistance and endothelial dysfunction. CONCLUSION OLE exerts beneficial effects in HFD-induced obesity in mice, which was associated to an improvement in plasma and tissue metabolic profile, inflammatory status, gut microbiota composition and vascular dysfunction.
Collapse
Affiliation(s)
- Teresa Vezza
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Alba Rodríguez-Nogales
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga-IBIMA, Málaga, Spain.
| | - Francesca Algieri
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain
| | - José Garrido-Mesa
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain
| | - Miguel Romero
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; CIBER-Enfermedades Cardiovasculares, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain
| | - Manuel Sánchez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; CIBER-Enfermedades Cardiovasculares, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain
| | - Marta Toral
- Gene Regulation in Cardiovascular Remodeling and Inflammation Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Beatriz Martín-García
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071, Granada, Spain; Research and Development Centre for Functional Food (CIDAF), PTS Granada, 18016, Granada, Spain
| | - Ana M Gómez-Caravaca
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071, Granada, Spain; Research and Development Centre for Functional Food (CIDAF), PTS Granada, 18016, Granada, Spain
| | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071, Granada, Spain; Research and Development Centre for Functional Food (CIDAF), PTS Granada, 18016, Granada, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avenida Fuentenueva s/n, 18071, Granada, Spain; Research and Development Centre for Functional Food (CIDAF), PTS Granada, 18016, Granada, Spain
| | - Vicente Micol
- CIBERobn, Instituto de Salud Carlos III (CB12/03/30038), Institute of Molecular and Cell Biology (IMCB), Miguel Hernández University (UMH), 03202, Elche, Alicante, Spain
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Clinical Microbiology Service, Hospital Universitario San Cecilio, Red de Investigación en SIDA, Granada, Spain
| | - María Pilar Utrilla
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Juan Duarte
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; CIBER-Enfermedades Cardiovasculares, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain
| | - María Elena Rodríguez-Cabezas
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Julio Gálvez
- CIBER-EHD, Department of Pharmacology, Center for Biomedical Research (CIBM), University of Granada, 18071, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
14
|
Hydrogen sulfide improves endothelial dysfunction in hypertension by activating peroxisome proliferator-activated receptor delta/endothelial nitric oxide synthase signaling. J Hypertens 2019; 36:651-665. [PMID: 29084084 DOI: 10.1097/hjh.0000000000001605] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE We aimed to elucidate the ameliorative effect of hydrogen sulfide (H2S) on endothelium-dependent relaxation disturbances via peroxisome proliferator-activated receptor delta/endothelial nitric oxide synthase (PPARδ/eNOS) pathway activation in hypertensive patients and rats. METHODS Renal arteries were collected from normotensive and hypertensive patients who underwent nephron-sparing surgery. Renal arteries from 37 patients were cultured with or without sodium H2S (NaHS) 50 μmol/l. The rats were randomly divided into four groups: Sham; Sham + NaHS, two kidneys; one clipped (2K1C); and 2K1C + NaHS. Mean arterial pressure was measured by tail-cuff plethysmography. A microvessel recording technique was used to observe the effect of NaHS on endothelium-dependent relaxation. Plasma H2S concentrations were detected using the monobromobimane method. Real-time PCR and western blotting were used to assess mRNA and protein levels of AT1, cystathionine γ-lyase, PPARδ, and phosphor-eNOS. Laser confocal scanning microscopy measured intracellular NO production in human umbilical vein endothelial cells. RESULTS NaHS improved endothelial function in hypertensive humans and rats. The 20-week administration of NaHS to 2K1C rats lowered the mean arterial pressure. In human umbilical vein endothelial cells, NaHS improved the AngII-induced production of NO. NaHS upregulated PPARδ expression, increased protein kinase B (Akt) or adenosine monophosphate kinase-activated protein kinase (AMPK) phosphorylation, and enhanced eNOS phosphorylation. A PPARδ agonist could mimic the ameliorative effect of NaHS that was suppressed by PPARδ, AMPK, or Akt inhibition. CONCLUSION H2S plays a protective function in renal arterial endothelium in hypertension by activating the PPARδ/PI3K/Akt/eNOS or PPARδ/AMPK/eNOS pathway. H2S may serve as an effective strategy against hypertension.
Collapse
|
15
|
The Role of Nrf2 Signaling in PPAR β/ δ-Mediated Vascular Protection against Hyperglycemia-Induced Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5852706. [PMID: 30046379 PMCID: PMC6036815 DOI: 10.1155/2018/5852706] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 02/18/2018] [Indexed: 12/31/2022]
Abstract
Hyperglycemia induces oxidative stress and plays a substantial role in the progression of vascular diseases. Here, we demonstrated the potentiality of peroxisome proliferator-activated receptor (PPAR)β/δ activation in attenuating high glucose-induced oxidative stress in endothelial cells and diabetic rats, pointing to the involvement of nuclear factor erythroid 2-related factor 2 (Nrf2). HUVECs exposed to high glucose showed increased levels of reactive oxygen species (ROS) and upregulated NOX-2, NOX-4, Nrf2, and NQO-1 effects that were significantly reversed by the PPARβ/δ agonists GW0742 and L165041. Both PPARβ/δ agonists, in a concentration-dependent manner, induced transcriptional and protein upregulation of heme oxygenase-1 (HO-1) under low- and high-glucose conditions. All effects of PPARβ/δ agonists were reversed by either pharmacological inhibition or siRNA-based downregulation of PPARβ/δ. These in vitro findings were confirmed in diabetic rats treated with GW0742. In conclusion, PPARβ/δ activation confers vascular protection against hyperglycemia-induced oxidative stress by suppressing NOX-2 and NOX-4 expression plus a direct induction of HO-1; with the subsequent downregulation of the Nrf2 pathway. Thus, PPARβ/δ activation could be of interest to prevent the progression of diabetic vascular complications.
Collapse
|
16
|
Abstract
In the face of the global epidemic of diabetes, it is critical that we update our knowledge about the pathogenesis of diabetes and the related micro alterations on the vascular network in the body. This may ultimately lead to early diagnosis and novel treatment options for delaying the progression of diabetic complications. Research has recently revealed the pivotal role of endothelin in the pathogenesis of diabetic complications, particularly in the regulation of the capillary flow, which is affected in the course of retinopathy. Although there are several reviews on various approaches to the treatment of diabetes, including normalization of glucose and fat metabolism, no reviews in literature have focused on the endothelin system as a therapeutic target or early indicator of diabetic microangiopathy. In this review, we summarize some of the experimental and clinical evidence suggesting that current therapeutic approaches to diabetes may include the modulation of the blood concentration of compounds of the endothelin system. In addition, we will briefly discuss the beneficial effects produced by the inhibition of the production of high levels of endothelin in vasculopathy, with focus on diabetic retinopathy. The cutting-edge technology currently widely used in opththalmology, such as the OCT angiography, allows us to detect very early retinal morphological changes alongside alterations in choroidal and retinal vascular network. Combination of such changes with highly sensitive measurements of alterations in serum concentrations of endothelin may lead to more efficient early detection and treatment of diabetes and related macro/microvascular complications.
Collapse
|
17
|
Salusin- β Is Involved in Diabetes Mellitus-Induced Endothelial Dysfunction via Degradation of Peroxisome Proliferator-Activated Receptor Gamma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6905217. [PMID: 29359008 PMCID: PMC5735326 DOI: 10.1155/2017/6905217] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/08/2017] [Indexed: 12/18/2022]
Abstract
The pathophysiological mechanisms for vascular lesions in diabetes mellitus (DM) are complex, among which endothelial dysfunction plays a vital role. Therapeutic target against endothelial injury may provide critical venues for treatment of diabetic vascular diseases. We recently identified that salusin-β contributed to high glucose-induced endothelial cell apoptosis. However, the roles of salusin-β in DM-induced endothelial dysfunction remain largely elusive. Male C57BL/6J mice were used to induce type 2 diabetes mellitus (T2DM) model. Human umbilical vein endothelial cells (HUVECs) were cultured in high glucose/high fat (HG/HF) medium. We demonstrated increased expression of salusin-β in diabetic aortic tissues and high-glucose/high-fat- (HG/HF-) incubated HUVECs. Disruption of salusin-β by shRNA abrogated the reactive oxygen species (ROS) production, inflammation, and nitrotyrosine content of HUVECs cultured in HG/HF medium. The HG/HF-mediated decrease in peroxisome proliferator-activated receptor γ (PPARγ) expression was restored by salusin-β shRNA, and PPARγ inhibitor T0070907 abolished the protective actions of salusin-β shRNA on endothelial injury in HG/HF-treated HUVECs. Salusin-β silencing obviously improved endothelium-dependent vasorelaxation, oxidative stress, inflammatory response, and nitrative stress in diabetic aorta. Taken together, our results highlighted the essential role of salusin-β in pathological endothelial dysfunction, and salusin-β may be a promising target in treatment of vascular complications of DM.
Collapse
|
18
|
Teske KA, Rai G, Nandhikonda P, Sidhu PS, Feleke B, Simeonov A, Yasgar A, Jadhav A, Maloney DJ, Arnold LA. Parallel Chemistry Approach to Identify Novel Nuclear Receptor Ligands Based on the GW0742 Scaffold. ACS COMBINATORIAL SCIENCE 2017; 19:646-656. [PMID: 28825467 DOI: 10.1021/acscombsci.7b00066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the parallel synthesis of novel analogs of GW0742, a peroxisome proliferator-activated receptor δ (PPARδ) agonist. For that purpose, modified reaction conditions were applied, such as a solid-phase palladium-catalyzed Suzuki coupling. In addition, tetrazole-based compounds were generated as a bioisostere for carboxylic acid-containing ligand GW0742. The new compounds were investigated for their ability to activate PPARδ mediated transcription and their cross-reactivity with the vitamin D receptor (VDR), another member of the nuclear receptor superfamily. We identified many potent PPARδ agonists that were less toxic than GW0742, where ∼65 of the compounds synthesized exhibited partial PPARδ activity (23-98%) with EC50 values ranging from 0.007-18.2 μM. Some ligands, such as compound 32, were more potent inhibitors of VDR-mediated transcription with significantly reduced PPARδ activity than GW0742, however, none of the ligands were completely selective for VDR inhibition over PPARδ activation of transcription.
Collapse
Affiliation(s)
- Kelly A. Teske
- Department
of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin, Milwaukee, Wisconsin 53211, United States
| | - Ganesha Rai
- NIH
Chemical Genomics Center, National Center for Advancing Translational
Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892-3370, United States
| | - Premchendar Nandhikonda
- Department
of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin, Milwaukee, Wisconsin 53211, United States
| | - Preetpal S. Sidhu
- Department
of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin, Milwaukee, Wisconsin 53211, United States
| | - Belaynesh Feleke
- Department
of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin, Milwaukee, Wisconsin 53211, United States
| | - Anton Simeonov
- NIH
Chemical Genomics Center, National Center for Advancing Translational
Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892-3370, United States
| | - Adam Yasgar
- NIH
Chemical Genomics Center, National Center for Advancing Translational
Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892-3370, United States
| | - Ajit Jadhav
- NIH
Chemical Genomics Center, National Center for Advancing Translational
Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892-3370, United States
| | - David J. Maloney
- NIH
Chemical Genomics Center, National Center for Advancing Translational
Sciences (NCATS), National Institutes of Health, Bethesda, Maryland 20892-3370, United States
| | - Leggy A. Arnold
- Department
of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
19
|
Ajith TA, Jayakumar TG. Peroxisome proliferator-activated receptors in cardiac energy metabolism and cardiovascular disease. Clin Exp Pharmacol Physiol 2017; 43:649-58. [PMID: 27115677 DOI: 10.1111/1440-1681.12579] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/28/2016] [Accepted: 04/08/2016] [Indexed: 11/30/2022]
Abstract
Cardiomyocytes mainly depend on energy produced from the oxidation of fatty acids and mitochondrial oxidative phosphorylation. Shortage of energy or excessive fat accumulation can lead to cardiac disorders. High saturated fat intake and a sedentary life style have a major influence in the development of cardiovascular disease (CVD). Peroxisome proliferator-activated receptors (PPARs), one of the nuclear receptor super family members, play critical role in the metabolism of lipids by regulating their oxidation and storage. Furthermore, they are involved in glucose homeostasis as well. PPARs, mainly alpha (α) and beta/delta (β/δ), have a significant effect on the lipid metabolism and anti-inflammation in endothelial cells (ECs), vascular smooth muscle cells, and also in cardiomyocytes. Pro-inflammatory cytokines, mainly tumour necrosis factor-α, released at the site of inflammation in the sub-ECs of coronary arteries can inactivate the PPARs which can eventually lead to decreased energy production in the myocardium. Various synthetic ligands of PPAR-α and β/δ have many favourable effects in modulating the vascular diseases and heart failure. Despite the adverse effects from therapy using PPAR- gamma ligands, several laboratories are now focused on synthesizing partial activators which may combine their beneficial effects with lowering of undesirable side effects. This review discusses the role of isoforms of PPAR in the cardiomyocytes energy balance and CVD. The knowledge will help in the synthesis of ligands for their partial activation in order to render energy balance and protection from CVD.
Collapse
|
20
|
CO-releasing molecules-2 attenuates ox-LDL-induced injury in HUVECs by ameliorating mitochondrial function and inhibiting Wnt/β-catenin pathway. Biochem Biophys Res Commun 2017. [DOI: 10.1016/j.bbrc.2017.06.089] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Romero M, Vera B, Galisteo M, Toral M, Gálvez J, Perez-Vizcaino F, Duarte J. Protective vascular effects of quercitrin in acute TNBS-colitis in rats: the role of nitric oxide. Food Funct 2017; 8:2702-2711. [DOI: 10.1039/c7fo00755h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Quercitrin (quercetin 3-rhamnoside) is a bioflavonoid with anti-inflammatory activity in experimental colitis.
Collapse
Affiliation(s)
- Miguel Romero
- Department of Pharmacology
- School of Pharmacy
- University of Granada
- 18071 Granada
- Spain
| | - Beatriz Vera
- Department of Pharmacology
- School of Pharmacy
- University of Granada
- 18071 Granada
- Spain
| | - Milagros Galisteo
- Department of Pharmacology
- School of Pharmacy
- University of Granada
- 18071 Granada
- Spain
| | - Marta Toral
- Department of Pharmacology
- School of Pharmacy
- University of Granada
- 18071 Granada
- Spain
| | - Julio Gálvez
- Department of Pharmacology
- School of Pharmacy
- University of Granada
- 18071 Granada
- Spain
| | - Francisco Perez-Vizcaino
- Department of Pharmacology
- School of Medicine
- University Complutense of Madrid
- Ciber Enfermedades Respiratorias (Ciberes) and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM)
- Spain
| | - Juan Duarte
- Department of Pharmacology
- School of Pharmacy
- University of Granada
- 18071 Granada
- Spain
| |
Collapse
|
22
|
Toral M, Romero M, Pérez-Vizcaíno F, Duarte J, Jiménez R. Antihypertensive effects of peroxisome proliferator-activated receptor-β/δ activation. Am J Physiol Heart Circ Physiol 2016; 312:H189-H200. [PMID: 27881385 DOI: 10.1152/ajpheart.00155.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 09/12/2016] [Accepted: 11/21/2016] [Indexed: 01/16/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily of ligand-activated transcription factors, which is composed of three members encoded by distinct genes: PPARα, PPARβ/δ, and PPARγ. The biological actions of PPARα and PPARγ and their potential as a cardiovascular therapeutic target have been extensively reviewed, whereas the biological actions of PPARβ/δ and its effectiveness as a therapeutic target in the treatment of hypertension remain less investigated. Preclinical studies suggest that pharmacological PPARβ/δ activation induces antihypertensive effects in direct [spontaneously hypertensive rat (SHR), ANG II, and DOCA-salt] and indirect (dyslipemic and gestational) models of hypertension, associated with end-organ damage protection. This review summarizes mechanistic insights into the antihypertensive effects of PPARβ/δ activators, including molecular and functional mechanisms. Pharmacological PPARβ/δ activation induces genomic actions including the increase of regulators of G protein-coupled signaling (RGS), acute nongenomic vasodilator effects, as well as the ability to improve the endothelial dysfunction, reduce vascular inflammation, vasoconstrictor responses, and sympathetic outflow from central nervous system. Evidence from clinical trials is also examined. These preclinical and clinical outcomes of PPARβ/δ ligands may provide a basis for the development of therapies in combating hypertension.
Collapse
Affiliation(s)
- Marta Toral
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Francisco Pérez-Vizcaíno
- Department of Pharmacology, School of Medicine, University Complutense of Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid. Spain; and.,Ciber Enfermedades Respiratorias (Ciberes). Madrid. Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain; .,Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| |
Collapse
|
23
|
Romero M, Toral M, Gómez-Guzmán M, Jiménez R, Galindo P, Sánchez M, Olivares M, Gálvez J, Duarte J. Antihypertensive effects of oleuropein-enriched olive leaf extract in spontaneously hypertensive rats. Food Funct 2016; 7:584-93. [PMID: 26593388 DOI: 10.1039/c5fo01101a] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of chronic consumption of oleuropein-enriched (15% w/w) olive leaf extract (OLE) on blood pressure, endothelial function, and vascular oxidative and inflammatory status in spontaneously hypertensive rats (SHR) were evaluated. Ten Wistar Kyoto rats (WKY) and twenty SHR were randomly assigned to three groups: a control WKY group, a control SHR group and a SHR group treated with OLE (30 mg kg(-1)) for 5 weeks. Long-term administration of OLE reduced systolic blood pressure, heart rate, and cardiac and renal hypertrophy. OLE treatment reversed the impaired aortic endothelium-dependent relaxation to acetylcholine observed in SHR. OLE restored aortic eNOS phosphorylation at Ser-1177 and Thr-495 and increased eNOS activity. OLE eliminated the increased aortic superoxide levels, and reduced the elevated NADPH oxidase activity, as a result of reduced NOX-1 and NOX-2 mRNA levels in SHR. OLE reduced the enhanced vascular TLR4 expression by inhibition of mitogen-activated protein kinase (MAPK) signaling with the subsequent reduction of proinflammatory cytokines. In conclusion, OLE exerts antihypertensive effects on genetic hypertension related to the improvement of vascular function as a result of reduced pro-oxidative and pro-inflammatory status.
Collapse
Affiliation(s)
- M Romero
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, 18071, Granada, Spain. and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - M Toral
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, 18071, Granada, Spain.
| | - M Gómez-Guzmán
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, 18071, Granada, Spain.
| | - R Jiménez
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, 18071, Granada, Spain. and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - P Galindo
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, 18071, Granada, Spain.
| | - M Sánchez
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, 18071, Granada, Spain.
| | - M Olivares
- Laboratorio de Descubrimiento y Preclínica, Departamento de Investigación BIOSEARCH S.A, Granada, Spain
| | - J Gálvez
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, 18071, Granada, Spain. and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - J Duarte
- Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, 18071, Granada, Spain. and Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
24
|
Tan NS, Vázquez-Carrera M, Montagner A, Sng MK, Guillou H, Wahli W. Transcriptional control of physiological and pathological processes by the nuclear receptor PPARβ/δ. Prog Lipid Res 2016; 64:98-122. [PMID: 27665713 DOI: 10.1016/j.plipres.2016.09.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/31/2016] [Accepted: 09/20/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Academia, 20 College Road, 169856, Singapore; Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Agency for Science Technology & Research, 138673, Singapore; KK Research Centre, KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore.
| | - Manuel Vázquez-Carrera
- Department of Pharmacology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Institute of Biomedicine of the University of Barcelona (IBUB), Pediatric Research Institute-Hospital Sant Joan de Déu, Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Diseases (CIBERDEM), Barcelona, Spain
| | | | - Ming Keat Sng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Academia, 20 College Road, 169856, Singapore
| | - Hervé Guillou
- INRA ToxAlim, UMR1331, Chemin de Tournefeuille, Toulouse Cedex 3, France
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University, Academia, 20 College Road, 169856, Singapore; INRA ToxAlim, UMR1331, Chemin de Tournefeuille, Toulouse Cedex 3, France; Center for Integrative Genomics, University of Lausanne, Le Génopode, CH 1015 Lausanne, Switzerland.
| |
Collapse
|
25
|
Vascular smooth muscle cell dysfunction in diabetes: nuclear receptors channel to relaxation. Clin Sci (Lond) 2016; 130:1837-9. [DOI: 10.1042/cs20160518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/08/2016] [Indexed: 11/17/2022]
Abstract
Endothelial dysfunction and impaired vascular relaxation represent a common cause of microvascular disease in patients with diabetes. Although multiple mechanisms underlying altered endothelial cell function in diabetes have been described, there is currently no specific and approved pharmacological treatment. In this edition of Clinical Science, Morales-Cano et al. characterize voltage-dependent K+ (Kv) channels as genes regulated by pharmacological activation of peroxisome proliferator-activated receptor-b/d (PPARb/d). Diabetes altered Kv channel function leading to impaired coronary artery relaxation, which was prevented by pharmacological activation of PPARb/d. These studies highlight an important mechanism of vascular dysfunction in diabetes and point to a potential approach for therapy, particularly considering that PPARb/d ligands have been developed and tested in small clinical trials.
Collapse
|
26
|
Choy KW, Mustafa MR, Lau YS, Liu J, Murugan D, Lau CW, Wang L, Zhao L, Huang Y. Paeonol protects against endoplasmic reticulum stress-induced endothelial dysfunction via AMPK/PPARδ signaling pathway. Biochem Pharmacol 2016; 116:51-62. [PMID: 27449753 DOI: 10.1016/j.bcp.2016.07.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022]
Abstract
Endoplasmic reticulum (ER) stress in endothelial cells often leads to endothelial dysfunction which underlies the pathogenesis of cardiovascular diseases. Paeonol, a major phenolic component extracted from Moutan Cortex, possesses various medicinal benefits which have been used extensively in traditional Chinese medicine. The present study investigated the protective mechanism of paeonol against tunicamycin-induced ER stress in isolated mouse aortas and human umbilical vein endothelial cells (HUVECs). Vascular reactivity in aorta was measured using a wire myograph. The effects of paeonol on protein expression of ER stress markers, reactive oxygen species (ROS) production, nitric oxide (NO) bioavailability and peroxisome proliferator-activated receptor δ (PPARδ) activity in the vascular wall were assessed by Western blot, dihydroethidium fluorescence (DHE) or lucigenin enhanced-chemiluminescence, 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM DA) and dual luciferase reporter assay, respectively. Ex vivo treatment with paeonol (0.1μM) for 16h reversed the impaired endothelium-dependent relaxations in C57BJ/6J and PPARδ wild type (WT) mouse aortas following incubation with tunicamycin (0.5μg/mL). Elevated ER stress markers, oxidative stress and reduction of NO bioavailability induced by tunicamycin in HUVECs, C57BJ/6J and PPARδ WT mouse aortas were reversed by paeonol treatment. These beneficial effects of paeonol were diminished in PPARδ knockout (KO) mouse aortas. Paeonol increased the expression of 5' adenosine monophosphate-activated protein kinase (AMPK) and PPARδ expression and activity while restoring the decreased phosphorylation of eNOS. The present study delineates that paeonol protects against tunicamycin-induced vascular endothelial dysfunction by inhibition of ER stress and oxidative stress, thus elevating NO bioavailability via the AMPK/PPARδ signaling pathway.
Collapse
Affiliation(s)
- Ker-Woon Choy
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Yeh Siang Lau
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jian Liu
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Dharmani Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chi Wai Lau
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Li Wang
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Lei Zhao
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
27
|
Activation of PPARβ/δ prevents hyperglycaemia-induced impairment of Kv7 channels and cAMP-mediated relaxation in rat coronary arteries. Clin Sci (Lond) 2016; 130:1823-36. [PMID: 27413020 DOI: 10.1042/cs20160141] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/13/2016] [Indexed: 01/09/2023]
Abstract
PPARβ/δ activation protects against endothelial dysfunction in diabetic models. Elevated glucose is known to impair cAMP-induced relaxation and Kv channel function in coronary arteries (CA). Herein, we aimed to analyse the possible protective effects of the PPARβ/δ agonist GW0742 on the hyperglycaemic-induced impairment of cAMP-induced relaxation and Kv channel function in rat CA. As compared with low glucose (LG), incubation under high glucose (HG) conditions attenuated the relaxation induced by the adenylate cyclase activator forskolin in CA and this was prevented by GW0742. The protective effect of GW0742 was supressed by a PPARβ/δ antagonist. In myocytes isolated from CA under LG, forskolin enhanced Kv currents and induced hyperpolarization. In contrast, when CA were incubated with HG, Kv currents were diminished and the electrophysiological effects of forskolin were abolished. These deleterious effects were prevented by GW0742. The protective effects of GW0742 on forskolin-induced relaxation and Kv channel function were confirmed in CA from type-1 diabetic rats. In addition, the differences in the relaxation induced by forskolin in CA incubated under LG, HG or HG + GW0742 were abolished by the Kv7 channel inhibitor XE991. Accordingly, GW0742 prevented the down-regulation of Kv7 channels induced by HG. Finally, the preventive effect of GW0742 on oxidative stress and cAMP-induced relaxation were overcome by the pyruvate dehydrogenase kinase 4 (PDK4) inhibitor dichloroacetate (DCA). Our results reveal that the PPARβ/δ agonist GW0742 prevents the impairment of the cAMP-mediated relaxation in CA under HG. This protective effect was associated with induction of PDK4, attenuation of oxidative stress and preservation of Kv7 channel function.
Collapse
|
28
|
Toral M, Romero M, Jiménez R, Robles-Vera I, Tamargo J, Martínez MC, Pérez-Vizcaíno F, Duarte J. Role of UCP2 in the protective effects of PPARβ/δ activation on lipopolysaccharide-induced endothelial dysfunction. Biochem Pharmacol 2016; 110-111:25-36. [DOI: 10.1016/j.bcp.2016.05.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/10/2016] [Indexed: 12/23/2022]
|
29
|
Wen Z, Shimojima Y, Shirai T, Li Y, Ju J, Yang Z, Tian L, Goronzy JJ, Weyand CM. NADPH oxidase deficiency underlies dysfunction of aged CD8+ Tregs. J Clin Invest 2016; 126:1953-67. [PMID: 27088800 DOI: 10.1172/jci84181] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/18/2016] [Indexed: 12/13/2022] Open
Abstract
Immune aging results in progressive loss of both protective immunity and T cell-mediated suppression, thereby conferring susceptibility to a combination of immunodeficiency and chronic inflammatory disease. Here, we determined that older individuals fail to generate immunosuppressive CD8+CCR7+ Tregs, a defect that is even more pronounced in the age-related vasculitic syndrome giant cell arteritis. In young, healthy individuals, CD8+CCR7+ Tregs are localized in T cell zones of secondary lymphoid organs, suppress activation and expansion of CD4 T cells by inhibiting the phosphorylation of membrane-proximal signaling molecules, and effectively inhibit proliferative expansion of CD4 T cells in vitro and in vivo. We identified deficiency of NADPH oxidase 2 (NOX2) as the molecular underpinning of CD8 Treg failure in the older individuals and in patients with giant cell arteritis. CD8 Tregs suppress by releasing exosomes that carry preassembled NOX2 membrane clusters and are taken up by CD4 T cells. Overexpression of NOX2 in aged CD8 Tregs promptly restored suppressive function. Together, our data support NOX2 as a critical component of the suppressive machinery of CD8 Tregs and suggest that repairing NOX2 deficiency in these cells may protect older individuals from tissue-destructive inflammatory disease, such as large-vessel vasculitis.
Collapse
|
30
|
Overview of Antagonists Used for Determining the Mechanisms of Action Employed by Potential Vasodilators with Their Suggested Signaling Pathways. Molecules 2016; 21:495. [PMID: 27092479 PMCID: PMC6274436 DOI: 10.3390/molecules21040495] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/23/2016] [Accepted: 03/28/2016] [Indexed: 01/04/2023] Open
Abstract
This paper is a review on the types of antagonists and the signaling mechanism pathways that have been used to determine the mechanisms of action employed for vasodilation by test compounds. Thus, we exhaustively reviewed and analyzed reports related to this topic published in PubMed between the years of 2010 till 2015. The aim of this paperis to suggest the most appropriate type of antagonists that correspond to receptors that would be involved during the mechanistic studies, as well as the latest signaling pathways trends that are being studied in order to determine the route(s) that atest compound employs for inducing vasodilation. The methods to perform the mechanism studies were included. Fundamentally, the affinity, specificity and selectivity of the antagonists to their receptors or enzymes were clearly elaborated as well as the solubility and reversibility. All the signaling pathways on the mechanisms of action involved in the vascular tone regulation have been well described in previous review articles. However, the most appropriate antagonists that should be utilized have never been suggested and elaborated before, hence the reason for this review.
Collapse
|
31
|
Chronic peroxisome proliferator-activated receptorβ/δ agonist GW0742 prevents hypertension, vascular inflammatory and oxidative status, and endothelial dysfunction in diet-induced obesity. J Hypertens 2016; 33:1831-44. [PMID: 26147382 DOI: 10.1097/hjh.0000000000000634] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Endothelial dysfunction plays a key role in obesity-induced risk of cardiovascular disease. The aim of the present study was to analyze the effect of chronic peroxisome proliferator-activated receptor (PPAR)β/δ agonist GW0742 treatment on endothelial function in obese mice fed a high-fat diet (HFD). METHODS AND RESULTS Five-week-old male mice were allocated to one of the following groups: control, control-treated (GW0742, 3 mg/kg per day, by oral gavage), HFD, HFD + GW0742, HFD + GSK0660 (1 mg/kg/day, intraperitoneal) or HFD-GW0742-GSK0660 and followed for 11 or 13 weeks. GW0742 administration to mice fed HFD prevented the gain of body weight, heart and kidney hypertrophy, and fat accumulation. The increase in plasma levels of fasting glucose, glucose tolerance test, homeostatic model assessment of insulin resistance, and triglyceride found in the HFD group was suppressed by GW0742. This agonist increased plasma HDL in HFD-fed mice and restored the levels of tumor necrosis factor-α and adiponectin in fat. GW0742 prevented the impaired nitric oxide-dependent vasodilatation induced by acetylcholine in aortic rings from mice fed HFD. Moreover, GW0742 increased both aortic Akt and endothelial nitric oxide synthase phosphorylation, and inhibited the increase in caveolin-1/endothelial nitric oxide synthase interaction, ethidium fluorescence, NOX-1, Toll-like receptor 4, tumor necrosis factor-α, and interleukin-6 expression, and IκBα phosphorylation found in aortae from the HFD group. GSK0660 prevented all changes induced by GW0742. CONCLUSION PPARβ/δ activation prevents obesity and exerts protective effects on hypertension and on the early manifestations of atherosclerosis, that is, endothelial dysfunction and the vascular pro-oxidant and pro-inflammatory status, in HFD-fed mice.
Collapse
|
32
|
Niu HS, Ku PM, Niu CS, Cheng JT, Lee KS. Development of PPAR-agonist GW0742 as antidiabetic drug: study in animals. Drug Des Devel Ther 2015; 9:5625-32. [PMID: 26508837 PMCID: PMC4610778 DOI: 10.2147/dddt.s95045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The development of new drugs for the treatment of diabetes mellitus (DM) is critically important. Insulin resistance (IR) is one of the main problems associated with type-2 DM (T2DM) seen in clinics. GW0742, a selective peroxisome proliferator-activated receptor (PPAR)-δ agonist, has been shown to ameliorate metabolic abnormalities including IR in skeletal muscle in mice fed high-fructose corn syrup. However, the influence of GW0742 on systemic insulin sensitivity has still not been elucidated. Therefore, it is important to investigate the effect of GW0742 on systemic IR in diabetic rats for the development of new drugs. Methods The present study used a T2DM animal model to compare the effect of GW0742 on IR using homeostasis model assessment-IR (HOMA-IR) and hyperinsulinemic euglycemic clamping. Additionally, the insulinotropic action of GW0742 was investigated in type-1 DM (T1DM) rats. Changes in the protein expression of glucose transporter 4 (GLUT4) and phosphoenolpyruvate carboxykinase (PEPCK) in skeletal muscle and in liver, respectively, were also identified by Western blots. Results GW0742 attenuated the increased HOMA-IR in diabetic rats fed a fructose-rich diet. This action was blocked by GSK0660 at the dose sufficient to inhibit PPAR-δ. Improvement of IR by GW0742 was also characterized in diabetic rats using hyperinsulinemic euglycemic clamping. Additionally, an increase of insulin sensitivity due to GW0742 was observed in these diabetic rats. Moreover, GW0742 reduced the hyperglycemia in T1DM rats lacking insulin. Western blotting analysis indicated that GW0742 reversed the decrease in GLUT4 and markedly reduced the increased PEPCK in liver. Conclusion The data showed that GW0742 has the ability to improve glucose homeostasis in diabetic rats through activation of PPAR-δ. Therefore, PPAR-δ is a good target for the development of antidiabetic drugs in the future.
Collapse
Affiliation(s)
- Ho-Shan Niu
- Department of Nursing, Tzu Chi College of Technology, Hualien City, Taiwan
| | - Po-Ming Ku
- Department of Cardiology, Chi-Mei Medical Center, Yong Kang, Tainan City, Taiwan ; Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City, Taiwan
| | - Chiang-Shan Niu
- Department of Nursing, Tzu Chi College of Technology, Hualien City, Taiwan
| | - Juei-Tang Cheng
- Department of Medical Research, Chi-Mei Medical Center, Yong Kang, Tainan City, Taiwan ; Institute of Medical Sciences, Chang Jung Christian University, Guiren, Tainan City, Taiwan
| | - Kung-Shing Lee
- Department of Surgery, Division of Neurosurgery, Pingtung Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan ; Department of Surgery, Kaohsiung Medical University, Kaohsiung City, Taiwan ; School of Medicine, Chung-Ho Memorial Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
| |
Collapse
|
33
|
Gómez-Guzmán M, Toral M, Romero M, Jiménez R, Galindo P, Sánchez M, Zarzuelo MJ, Olivares M, Gálvez J, Duarte J. Antihypertensive effects of probioticsLactobacillusstrains in spontaneously hypertensive rats. Mol Nutr Food Res 2015; 59:2326-36. [DOI: 10.1002/mnfr.201500290] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/21/2015] [Accepted: 07/29/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Manuel Gómez-Guzmán
- Departamento de Farmacología; Facultad de Farmacia; Universidad de Granada; Granada Spain
| | - Marta Toral
- Departamento de Farmacología; Facultad de Farmacia; Universidad de Granada; Granada Spain
| | - Miguel Romero
- Departamento de Farmacología; Facultad de Farmacia; Universidad de Granada; Granada Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA); Granada Spain
| | - Rosario Jiménez
- Departamento de Farmacología; Facultad de Farmacia; Universidad de Granada; Granada Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA); Granada Spain
| | - Pilar Galindo
- Departamento de Farmacología; Facultad de Farmacia; Universidad de Granada; Granada Spain
| | - Manuel Sánchez
- Departamento de Farmacología; Facultad de Farmacia; Universidad de Granada; Granada Spain
| | - María José Zarzuelo
- Departamento de Farmacología; Facultad de Farmacia; Universidad de Granada; Granada Spain
| | - Mónica Olivares
- Laboratorio de Descubrimiento y Preclínica; Departamento de Investigación BIOSEARCH S.A; Granada Spain
| | - Julio Gálvez
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA); Granada Spain
- CIBER-ehd; Departamento de Farmacología; CIBM; Universidad de Granada; Armilla (Granada) Spain
| | - Juan Duarte
- Departamento de Farmacología; Facultad de Farmacia; Universidad de Granada; Granada Spain
- Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA); Granada Spain
| |
Collapse
|
34
|
Li G, Chen C, Laing SD, Ballard C, Biju KC, Reddick RL, Clark RA, Li S. Hematopoietic knockdown of PPARδ reduces atherosclerosis in LDLR-/- mice. Gene Ther 2015. [PMID: 26204499 DOI: 10.1038/gt.2015.78] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PPARδ (peroxisome proliferator-activated receptor δ) mediates inflammation in response to lipid accumulation. Systemic administration of a PPARδ agonist can ameliorate atherosclerosis. Paradoxically, genetic deletion of PPARδ in hematopoietic cells led to a reduction of atherosclerosis in murine models, suggesting that downregulation of PPARδ expression in these cells may mitigate atherogenesis. To advance this finding forward to potential clinical translation through hematopoietic stem cell transplantation-based gene therapy, we employed a microRNA (miRNA) approach to knock down PPARδ expression in bone marrow cells followed by transplantation of the cells into LDLR-/- mice. We found that knockdown of PPARδ expression in the hematopoietic system caused a dramatic reduction in aortic atherosclerotic lesions. In macrophages, a key component in atherogenesis, knockdown of PPARδ led to decreased expression of multiple pro-inflammatory factors, including monocyte chemoattractant protein-1 (MCP-1), interleukin (IL)-1β and IL-6. Expression of CCR2, a receptor for MCP-1, was also decreased. The downregulation of pro-inflammatory factors is consistent with significant reduction of macrophage presence in the lesions, which may also be attributable to elevation of ABCA1 (ATP-binding cassette, subfamily A, member 1) and depression of adipocyte differentiate-related protein. Furthermore, the abundance of both MCP-1 and matrix metalloproteinase-9 proteins was reduced in plaque areas. Our results demonstrate that miRNA-mediated PPARδ knockdown in hematopoietic cells is able to ameliorate atherosclerosis.
Collapse
Affiliation(s)
- G Li
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - C Chen
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - S D Laing
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - C Ballard
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - K C Biju
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - R L Reddick
- Department of Pathology, University of Texas Health Science Center, San Antonio, TX, USA
| | - R A Clark
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - S Li
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.,Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, USA.,Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
35
|
Inhibition of TLR4 attenuates vascular dysfunction and oxidative stress in diabetic rats. J Mol Med (Berl) 2015; 93:1341-54. [DOI: 10.1007/s00109-015-1318-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/24/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
|
36
|
Manea SA, Constantin A, Manda G, Sasson S, Manea A. Regulation of Nox enzymes expression in vascular pathophysiology: Focusing on transcription factors and epigenetic mechanisms. Redox Biol 2015; 5:358-366. [PMID: 26133261 PMCID: PMC4501559 DOI: 10.1016/j.redox.2015.06.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 02/06/2023] Open
Abstract
NADPH oxidases (Nox) represent a family of hetero-oligomeric enzymes whose exclusive biological function is the generation of reactive oxygen species (ROS). Nox-derived ROS are essential modulators of signal transduction pathways that control key physiological activities such as cell growth, proliferation, migration, differentiation, and apoptosis, immune responses, and biochemical pathways. Enhanced formation of Nox-derived ROS, which is generally associated with the up-regulation of different Nox subtypes, has been established in various pathologies, namely cardiovascular diseases, diabetes, obesity, cancer, and neurodegeneration. The detrimental effects of Nox-derived ROS are related to alterations in cell signalling and/or direct irreversible oxidative damage of nucleic acids, proteins, carbohydrates, and lipids. Thus, understanding of transcriptional regulation mechanisms of Nox enzymes have been extensively investigated in an attempt to find ways to counteract the excessive formation of Nox-derived ROS in various pathological states. Despite the numerous existing data, the molecular pathways responsible for Nox up-regulation are not completely understood. This review article summarizes some of the recent advances and concepts related to the regulation of Nox expression in the vascular pathophysiology. It highlights the role of transcription factors and epigenetic mechanisms in this process. Identification of the signalling molecules involved in Nox up-regulation, which is associated with the onset and development of cardiovascular dysfunction may contribute to the development of novel strategies for the treatment of cardiovascular diseases. Nox is a unique class of enzymes whose sole function is the generation of ROS. Nox-derived ROS play a major role in cell physiology. Enhanced expression and activation of Nox has been reported in numerous pathologies. Nox expression is regulated via complex transcription factor-epigenetic mechanisms. Understanding of Nox regulation is essential to counteract ROS-induced cell damage.
Collapse
Affiliation(s)
- Simona-Adriana Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Alina Constantin
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania
| | - Gina Manda
- "Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Shlomo Sasson
- The Institute for Drug Research, Department of Pharmacology, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Adrian Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|
37
|
Wawrzyniak M, Pich C, Gross B, Schütz F, Fleury S, Quemener S, Sgandurra M, Bouchaert E, Moret C, Mury L, Rommens C, Mottaz H, Dombrowicz D, Michalik L. Endothelial, but not smooth muscle, peroxisome proliferator-activated receptor β/δ regulates vascular permeability and anaphylaxis. J Allergy Clin Immunol 2015; 135:1625-35.e5. [DOI: 10.1016/j.jaci.2014.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 10/21/2014] [Accepted: 11/04/2014] [Indexed: 01/07/2023]
|
38
|
Wu Y, Xue L, Du W, Huang B, Tang C, Liu C, Qiu H, Jiang Q. Polydatin Restores Endothelium-Dependent Relaxation in Rat Aorta Rings Impaired by High Glucose: A Novel Insight into the PPARβ-NO Signaling Pathway. PLoS One 2015; 10:e0126249. [PMID: 25941823 PMCID: PMC4420467 DOI: 10.1371/journal.pone.0126249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/30/2015] [Indexed: 02/02/2023] Open
Abstract
Polydatin, a natural component from Polygonum Cuspidatum, has important therapeutic effects on metabolic syndrome. A novel therapeutic strategy using polydatin to improve vascular function has recently been proposed to treat diabetes-related cardiovascular complications. However, the biological role and molecular basis of polydatin’s action on vascular endothelial cells (VECs)-mediated vasodilatation under diabetes-related hyperglycemia condition remain elusive. The present study aimed to assess the contribution of polydatin in restoring endothelium-dependent relaxation and to determine the details of its underlying mechanism. By measuring endothelium-dependent relaxation, we found that acetylcholine-induced vasodilation was impaired by elevated glucose (55 mmol/L); however, polydatin (1, 3, 10 μmol/L) could restore the relaxation in a dose-dependent manner. Polydatin could also improve the histological damage to endothelial cells in the thoracic aorta. Polydatin’s effects were mediated via promoting the expression of endothelial NO synthase (eNOS), enhancing eNOS activity and decreasing the inducible NOS (iNOS) level, finally resulting in a beneficial increase in NO release, which probably, at least in part, through activation of the PPARβ signaling pathway. The results provided a novel insight into polydatin action, via PPARβ-NO signaling pathways, in restoring endothelial function in high glucose conditions. The results also indicated the potential utility of polydatin to treat diabetes related cardiovascular diseases.
Collapse
Affiliation(s)
- Yang Wu
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, PR China
| | - Lai Xue
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, PR China
| | - Weimin Du
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, PR China
| | - Bo Huang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, PR China
| | - Cuiping Tang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, PR China
| | - Changqing Liu
- Pharmaceutical college, Fujiang medical University, Fujian 350004, PR China
| | - Hongmei Qiu
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, PR China
| | - Qingsong Jiang
- Department of Pharmacology, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, PR China
- * E-mail:
| |
Collapse
|
39
|
Manea A, Manea SA, Todirita A, Albulescu IC, Raicu M, Sasson S, Simionescu M. High-glucose-increased expression and activation of NADPH oxidase in human vascular smooth muscle cells is mediated by 4-hydroxynonenal-activated PPARα and PPARβ/δ. Cell Tissue Res 2015; 361:593-604. [PMID: 25722086 DOI: 10.1007/s00441-015-2120-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 12/29/2014] [Indexed: 01/04/2023]
Abstract
High glucose induces vascular smooth muscle cell (SMC) dysfunction by generating oxidative stress attributable, in part, to the up-regulated NADPH oxidases (Nox). We have attempted to elucidate the high-glucose-generated molecular signals that mediate this effect and hypothesize that products of high-glucose-induced lipid peroxidation regulate Nox by activating peroxisome proliferator-activated receptors (PPARs). Human aortic SMCs were exposed to glucose (5.5-25 mM) or 4-hydroxynonenal (1-25 μM, 4-HNE). Lucigenin assay, real-time polymerase chain reaction, western blot, and promoter analyses were employed to investigate Nox. We found that high glucose generated an increase in Nox activity and expression. It also promoted oxidative stress that consequently induced lipid peroxidation, which resulted in the production of 4-HNE. Pharmacological inhibition of Nox activity significantly reduced the formation of high-glucose-induced 4-HNE. Exposure of SMCs to non-cytotoxic concentrations (1-10 μM) of 4-HNE alone mimicked the effect of high glucose incubation, whereas scavenging of 4-HNE by N-acetyl L-cysteine completely abolished both the effects of high glucose and 4-HNE. The latter exerted its effect by activating PPARα and PPARβ/δ, but not PPARγ, as assessed pharmacologically by the inhibitory effect of selective antagonists and following the silencing of the expression of these receptors. These new data indicate that 4-HNE, generated following Nox activation, functions as an endogenous activator of PPARα and PPARβ/δ. The newly discovered "lipid peroxidation products-PPARs-Nox axis" represents a novel mechanism of Nox regulation and an additional therapeutic target for oxidative stress in diabetes.
Collapse
Affiliation(s)
- Adrian Manea
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8 B.P. Hasdeu Street, 050568, Bucharest, Romania,
| | | | | | | | | | | | | |
Collapse
|
40
|
Abas R, Othman F, Thent ZC. Effect of Momordica charantia fruit extract on vascular complication in type 1 diabetic rats. EXCLI JOURNAL 2015; 14:179-89. [PMID: 26417358 PMCID: PMC4553902 DOI: 10.17179/excli2014-539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/11/2014] [Indexed: 11/25/2022]
Abstract
Diabetes mellitus is one of the risk factors in the development of vascular complications. Decreased nitric oxide (NO) production and increased lipid peroxidation in diabetes mellitus are the dominant exaggerating factors. Mormodica charantia (MC) was proven to be useful in improving diabetes mellitus and its complications. In the present study, a total of 40 male Sprague-Dawley rats were used. Diabetes was induced by a single dose (50 mg/kg) of streptozotocin (STZ), intramuscularly. Following 4 weeks of STZ induction, the animals were equally divided into five groups (n = 8); Control group (Ctrl), control group treated with MC (Ctrl-MC), diabetic untreated group (DM-Ctrl), diabetic group treated with MC (DM-MC) and diabetic group treated with metformin 150 g/kg (DM-Met). Oral administration of the MC fruit extract (1.5 g/kg) was continued for 28 days. DM-MC group showed a significant decrease (P < 0.05) in blood pressure, total cholesterol and triglyceride levels compared to the DM-Ctrl group. Aortic tissue NO level was significantly increased and malondialdehyde level was decreased in the DM-MC group. Immunohistochemical staining showed an increase in eNOS expression in the endothelial lining of the DM-MC group. Similarly, morphological deterioration of the aortic tissues was reverted to normal. In summary, treatment with the MC fruit extract exerted the significant vasculoprotective effect in the type 1 diabetic rat model.
Collapse
Affiliation(s)
- Razif Abas
- Department of Anatomy, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Malaysia
- Department of Human Anatomy, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400 Serdang, Selangor
| | - Faizah Othman
- Department of Anatomy, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Malaysia
| | - Zar Chi Thent
- Department of Anatomy, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Malaysia
| |
Collapse
|
41
|
Cheang WS, Tian XY, Wong WT, Huang Y. The peroxisome proliferator-activated receptors in cardiovascular diseases: experimental benefits and clinical challenges. Br J Pharmacol 2015; 172:5512-22. [PMID: 25438608 DOI: 10.1111/bph.13029] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/24/2014] [Accepted: 11/20/2014] [Indexed: 12/13/2022] Open
Abstract
The peroxisome proliferator-activated receptors, PPARα, PPARβ/δ and PPARγ, are ligand-activated transcriptional factors belonging to the nuclear receptors superfamily and they are known to play important roles in glucose and lipid metabolism. Experimental studies in animal models of metabolic diseases have also revealed that activation of PPARs protects against the vascular complications of diabetes, hypertension, atherosclerosis, myocardial infarction and stroke, through exerting their anti-inflammatory, anti-atherogenic and antioxidant effects. In clinical trials and post-market surveillance, agonists of PPARs have been shown to effectively prevent cardiovascular events. However, adverse effects, particularly for PPARγ agonists, are also observed with the use of investigational PPAR agonists and even some approved drugs. Further exploration of underlying mechanisms is needed to develop novel ways of PPAR activation without causing serious side effects. This article reviews the cardiovascular effects of PPARs, with emphasis on the therapeutic potential of PPAR agonists in combating metabolic vascular diseases.
Collapse
Affiliation(s)
- Wai San Cheang
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Xiao Yu Tian
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Wing Tak Wong
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Yu Huang
- Shenzhen Research Institute, Institute of Vascular Medicine and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
42
|
Quintela AM, Jiménez R, Piqueras L, Gómez-Guzmán M, Haro J, Zarzuelo MJ, Cogolludo A, Sanz MJ, Toral M, Romero M, Pérez-Vizcaíno F, Duarte J. PPARβ activation restores the high glucose-induced impairment of insulin signalling in endothelial cells. Br J Pharmacol 2015; 171:3089-102. [PMID: 24527778 DOI: 10.1111/bph.12646] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/05/2014] [Accepted: 02/11/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE PPARβ enhances insulin sensitivity in adipocytes and skeletal muscle cells, but its effects on insulin signalling in endothelial cells are not known. We analysed the effects of the PPARβ/δ (PPARβ) agonists, GW0742 and L165041, on impaired insulin signalling induced by high glucose in HUVECs and aortic and mesenteric arteries from diabetic rats. EXPERIMENTAL APPROACH Insulin-stimulated NO production, Akt-Ser(473) and eNOS-Ser(1177) phosphorylation, and reactive oxygen species (ROS) production were studied in HUVECs incubated in low- or high-glucose medium. Insulin-stimulated relaxations and protein phosphorylation in vessels from streptozotocin (STZ)-induced diabetic rats were also analysed. KEY RESULTS HUVECs incubated in high-glucose medium showed a significant reduction in insulin-stimulated production of NO. High glucose also reduced insulin-induced Akt-Ser(473) and eNOS-Ser(1177) phosphorylation, increased IRS-1-Ser(636) and ERK1/2-Thr(183) -Tyr(185) phosphorylation and increased ROS production. The co-incubation with the PPARβ agonists GW0742 or L165041 prevented all these effects induced by high glucose. In turn, the effects induced by the agonists were suppressed when HUVEC were also incubated with the PPARβ antagonist GSK0660, the pyruvate dehydrogenase kinase (PDK)4 inhibitor dichloroacetate or after knockdown of both PPARβ and PDK4 with siRNA. The ERK1/2 inhibitor PD98059, ROS scavenger catalase, inhibitor of complex II thenoyltrifluoroacetone or uncoupler of oxidative phosphorylation, carbonyl cyanide m-chlorophenylhydrazone, also prevented glucose-induced insulin resistance. In STZ diabetic rats, oral GW0742 also improved insulin signalling and the impaired NO-mediated vascular relaxation. CONCLUSION AND IMPLICATIONS PPARβ activation in vitro and in vivo restores the endothelial function, preserving the insulin-Akt-eNOS pathway impaired by high glucose, at least in part, through PDK4 activation.
Collapse
Affiliation(s)
- A M Quintela
- Department of Pharmacology, University of Granada, 18071, Granada, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Neels JG, Grimaldi PA. Physiological functions of peroxisome proliferator-activated receptor β. Physiol Rev 2014; 94:795-858. [PMID: 24987006 DOI: 10.1152/physrev.00027.2013] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The peroxisome proliferator-activated receptors, PPARα, PPARβ, and PPARγ, are a family of transcription factors activated by a diversity of molecules including fatty acids and fatty acid metabolites. PPARs regulate the transcription of a large variety of genes implicated in metabolism, inflammation, proliferation, and differentiation in different cell types. These transcriptional regulations involve both direct transactivation and interaction with other transcriptional regulatory pathways. The functions of PPARα and PPARγ have been extensively documented mainly because these isoforms are activated by molecules clinically used as hypolipidemic and antidiabetic compounds. The physiological functions of PPARβ remained for a while less investigated, but the finding that specific synthetic agonists exert beneficial actions in obese subjects uplifted the studies aimed to elucidate the roles of this PPAR isoform. Intensive work based on pharmacological and genetic approaches and on the use of both in vitro and in vivo models has considerably improved our knowledge on the physiological roles of PPARβ in various cell types. This review will summarize the accumulated evidence for the implication of PPARβ in the regulation of development, metabolism, and inflammation in several tissues, including skeletal muscle, heart, skin, and intestine. Some of these findings indicate that pharmacological activation of PPARβ could be envisioned as a therapeutic option for the correction of metabolic disorders and a variety of inflammatory conditions. However, other experimental data suggesting that activation of PPARβ could result in serious adverse effects, such as carcinogenesis and psoriasis, raise concerns about the clinical use of potent PPARβ agonists.
Collapse
Affiliation(s)
- Jaap G Neels
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| | - Paul A Grimaldi
- Institut National de la Santé et de la Recherche Médicale U 1065, Mediterranean Center of Molecular Medicine (C3M), Team "Adaptive Responses to Immuno-metabolic Dysregulations," Nice, France; and Faculty of Medicine, University of Nice Sophia-Antipolis, Nice, France
| |
Collapse
|
44
|
Gómez-Guzmán M, Jiménez R, Romero M, Sánchez M, Zarzuelo MJ, Gómez-Morales M, O'Valle F, López-Farré AJ, Algieri F, Gálvez J, Pérez-Vizcaino F, Sabio JM, Duarte J. Chronic hydroxychloroquine improves endothelial dysfunction and protects kidney in a mouse model of systemic lupus erythematosus. Hypertension 2014; 64:330-7. [PMID: 24842914 DOI: 10.1161/hypertensionaha.114.03587] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hydroxychloroquine has been shown to be efficacious in the treatment of autoimmune diseases, including systemic lupus erythematosus. Hydroxychloroquine-treated lupus patients showed a lower incidence of thromboembolic disease. Endothelial dysfunction, the earliest indicator of the development of cardiovascular disease, is present in lupus. Whether hydroxychloroquine improves endothelial function in lupus is not clear. The aim of this study was to analyze the effects of hydroxychloroquine on hypertension, endothelial dysfunction, and renal injury in a female mouse model of lupus. NZBWF1 (lupus) and NZW/LacJ (control) mice were treated with hydroxychloroquine 10 mg/kg per day by oral gavage, or with tempol and apocynin in the drinking water, for 5 weeks. Hydroxychloroquine treatment did not alter lupus disease activity (assessed by plasma double-stranded DNA autoantibodies) but prevented hypertension, cardiac and renal hypertrophy, proteinuria, and renal injury in lupus mice. Aortae from lupus mice showed reduced endothelium-dependent vasodilator responses to acetylcholine and enhanced contraction to phenylephrine, which were normalized by hydroxychloroquine or antioxidant treatments. No differences among all experimental groups were found in both the relaxant responses to acetylcholine and the contractile responses to phenylephrine in rings incubated with the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester. Vascular reactive oxygen species content and mRNA levels of nicotinamide adenine dinucleotide phosphate oxidase subunits NOX-1 and p47(phox) were increased in lupus mice and reduced by hydroxychloroquine or antioxidants. Chronic hydroxychloroquine treatment reduced hypertension, endothelial dysfunction, and organ damage in severe lupus mice, despite the persistent elevation of anti-double-stranded DNA, suggesting the involvement of new additional mechanisms to improve cardiovascular complications.
Collapse
Affiliation(s)
- Manuel Gómez-Guzmán
- From the Department of Pharmacology (M.G.-G., R.J., M.R., M.S., M.J.Z., J.D.), CIBERehd (F.A., J.G.), and Department of Pathology (M.G.-M., F.O.), University of Granada, Granada, Spain; Cardiovascular Research Unit, Hospital Clínico San Carlos (A.J.L.-F.), Department of Pharmacology, School of Medicine, Complutense University of Madrid; Ciber Enfermedades Respiratorias (Ciberes), and Instituto de Investigacion Sanitaria Gregorio Maranon (IISGM), Madrid, Spain (F.P.-V.); Internal Medicine Service, Hospital Universitario Virgen de las Nieves, Granada, Spain (J.M.S.)
| | - Rosario Jiménez
- From the Department of Pharmacology (M.G.-G., R.J., M.R., M.S., M.J.Z., J.D.), CIBERehd (F.A., J.G.), and Department of Pathology (M.G.-M., F.O.), University of Granada, Granada, Spain; Cardiovascular Research Unit, Hospital Clínico San Carlos (A.J.L.-F.), Department of Pharmacology, School of Medicine, Complutense University of Madrid; Ciber Enfermedades Respiratorias (Ciberes), and Instituto de Investigacion Sanitaria Gregorio Maranon (IISGM), Madrid, Spain (F.P.-V.); Internal Medicine Service, Hospital Universitario Virgen de las Nieves, Granada, Spain (J.M.S.)
| | - Miguel Romero
- From the Department of Pharmacology (M.G.-G., R.J., M.R., M.S., M.J.Z., J.D.), CIBERehd (F.A., J.G.), and Department of Pathology (M.G.-M., F.O.), University of Granada, Granada, Spain; Cardiovascular Research Unit, Hospital Clínico San Carlos (A.J.L.-F.), Department of Pharmacology, School of Medicine, Complutense University of Madrid; Ciber Enfermedades Respiratorias (Ciberes), and Instituto de Investigacion Sanitaria Gregorio Maranon (IISGM), Madrid, Spain (F.P.-V.); Internal Medicine Service, Hospital Universitario Virgen de las Nieves, Granada, Spain (J.M.S.)
| | - Manuel Sánchez
- From the Department of Pharmacology (M.G.-G., R.J., M.R., M.S., M.J.Z., J.D.), CIBERehd (F.A., J.G.), and Department of Pathology (M.G.-M., F.O.), University of Granada, Granada, Spain; Cardiovascular Research Unit, Hospital Clínico San Carlos (A.J.L.-F.), Department of Pharmacology, School of Medicine, Complutense University of Madrid; Ciber Enfermedades Respiratorias (Ciberes), and Instituto de Investigacion Sanitaria Gregorio Maranon (IISGM), Madrid, Spain (F.P.-V.); Internal Medicine Service, Hospital Universitario Virgen de las Nieves, Granada, Spain (J.M.S.)
| | - María José Zarzuelo
- From the Department of Pharmacology (M.G.-G., R.J., M.R., M.S., M.J.Z., J.D.), CIBERehd (F.A., J.G.), and Department of Pathology (M.G.-M., F.O.), University of Granada, Granada, Spain; Cardiovascular Research Unit, Hospital Clínico San Carlos (A.J.L.-F.), Department of Pharmacology, School of Medicine, Complutense University of Madrid; Ciber Enfermedades Respiratorias (Ciberes), and Instituto de Investigacion Sanitaria Gregorio Maranon (IISGM), Madrid, Spain (F.P.-V.); Internal Medicine Service, Hospital Universitario Virgen de las Nieves, Granada, Spain (J.M.S.)
| | - Mercedes Gómez-Morales
- From the Department of Pharmacology (M.G.-G., R.J., M.R., M.S., M.J.Z., J.D.), CIBERehd (F.A., J.G.), and Department of Pathology (M.G.-M., F.O.), University of Granada, Granada, Spain; Cardiovascular Research Unit, Hospital Clínico San Carlos (A.J.L.-F.), Department of Pharmacology, School of Medicine, Complutense University of Madrid; Ciber Enfermedades Respiratorias (Ciberes), and Instituto de Investigacion Sanitaria Gregorio Maranon (IISGM), Madrid, Spain (F.P.-V.); Internal Medicine Service, Hospital Universitario Virgen de las Nieves, Granada, Spain (J.M.S.)
| | - Francisco O'Valle
- From the Department of Pharmacology (M.G.-G., R.J., M.R., M.S., M.J.Z., J.D.), CIBERehd (F.A., J.G.), and Department of Pathology (M.G.-M., F.O.), University of Granada, Granada, Spain; Cardiovascular Research Unit, Hospital Clínico San Carlos (A.J.L.-F.), Department of Pharmacology, School of Medicine, Complutense University of Madrid; Ciber Enfermedades Respiratorias (Ciberes), and Instituto de Investigacion Sanitaria Gregorio Maranon (IISGM), Madrid, Spain (F.P.-V.); Internal Medicine Service, Hospital Universitario Virgen de las Nieves, Granada, Spain (J.M.S.)
| | - Antonio José López-Farré
- From the Department of Pharmacology (M.G.-G., R.J., M.R., M.S., M.J.Z., J.D.), CIBERehd (F.A., J.G.), and Department of Pathology (M.G.-M., F.O.), University of Granada, Granada, Spain; Cardiovascular Research Unit, Hospital Clínico San Carlos (A.J.L.-F.), Department of Pharmacology, School of Medicine, Complutense University of Madrid; Ciber Enfermedades Respiratorias (Ciberes), and Instituto de Investigacion Sanitaria Gregorio Maranon (IISGM), Madrid, Spain (F.P.-V.); Internal Medicine Service, Hospital Universitario Virgen de las Nieves, Granada, Spain (J.M.S.)
| | - Francesca Algieri
- From the Department of Pharmacology (M.G.-G., R.J., M.R., M.S., M.J.Z., J.D.), CIBERehd (F.A., J.G.), and Department of Pathology (M.G.-M., F.O.), University of Granada, Granada, Spain; Cardiovascular Research Unit, Hospital Clínico San Carlos (A.J.L.-F.), Department of Pharmacology, School of Medicine, Complutense University of Madrid; Ciber Enfermedades Respiratorias (Ciberes), and Instituto de Investigacion Sanitaria Gregorio Maranon (IISGM), Madrid, Spain (F.P.-V.); Internal Medicine Service, Hospital Universitario Virgen de las Nieves, Granada, Spain (J.M.S.)
| | - Julio Gálvez
- From the Department of Pharmacology (M.G.-G., R.J., M.R., M.S., M.J.Z., J.D.), CIBERehd (F.A., J.G.), and Department of Pathology (M.G.-M., F.O.), University of Granada, Granada, Spain; Cardiovascular Research Unit, Hospital Clínico San Carlos (A.J.L.-F.), Department of Pharmacology, School of Medicine, Complutense University of Madrid; Ciber Enfermedades Respiratorias (Ciberes), and Instituto de Investigacion Sanitaria Gregorio Maranon (IISGM), Madrid, Spain (F.P.-V.); Internal Medicine Service, Hospital Universitario Virgen de las Nieves, Granada, Spain (J.M.S.)
| | - Francisco Pérez-Vizcaino
- From the Department of Pharmacology (M.G.-G., R.J., M.R., M.S., M.J.Z., J.D.), CIBERehd (F.A., J.G.), and Department of Pathology (M.G.-M., F.O.), University of Granada, Granada, Spain; Cardiovascular Research Unit, Hospital Clínico San Carlos (A.J.L.-F.), Department of Pharmacology, School of Medicine, Complutense University of Madrid; Ciber Enfermedades Respiratorias (Ciberes), and Instituto de Investigacion Sanitaria Gregorio Maranon (IISGM), Madrid, Spain (F.P.-V.); Internal Medicine Service, Hospital Universitario Virgen de las Nieves, Granada, Spain (J.M.S.)
| | - José Mario Sabio
- From the Department of Pharmacology (M.G.-G., R.J., M.R., M.S., M.J.Z., J.D.), CIBERehd (F.A., J.G.), and Department of Pathology (M.G.-M., F.O.), University of Granada, Granada, Spain; Cardiovascular Research Unit, Hospital Clínico San Carlos (A.J.L.-F.), Department of Pharmacology, School of Medicine, Complutense University of Madrid; Ciber Enfermedades Respiratorias (Ciberes), and Instituto de Investigacion Sanitaria Gregorio Maranon (IISGM), Madrid, Spain (F.P.-V.); Internal Medicine Service, Hospital Universitario Virgen de las Nieves, Granada, Spain (J.M.S.)
| | - Juan Duarte
- From the Department of Pharmacology (M.G.-G., R.J., M.R., M.S., M.J.Z., J.D.), CIBERehd (F.A., J.G.), and Department of Pathology (M.G.-M., F.O.), University of Granada, Granada, Spain; Cardiovascular Research Unit, Hospital Clínico San Carlos (A.J.L.-F.), Department of Pharmacology, School of Medicine, Complutense University of Madrid; Ciber Enfermedades Respiratorias (Ciberes), and Instituto de Investigacion Sanitaria Gregorio Maranon (IISGM), Madrid, Spain (F.P.-V.); Internal Medicine Service, Hospital Universitario Virgen de las Nieves, Granada, Spain (J.M.S.).
| |
Collapse
|
45
|
Chang PC, Chen LJ, Cheng JT. Role of peroxisome proliferator-activated receptors δ (PPARδ) in rats showing endotoxemic heart failure. J Appl Biomed 2014. [DOI: 10.1016/j.jab.2013.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
46
|
Xiao GF, Xu SH, Chao Y, Xie LD, Xu CS, Wang HJ. PPARδ activation inhibits homocysteine-induced p22(phox) expression in EA.hy926 cells through reactive oxygen species/p38MAPK pathway. Eur J Pharmacol 2014; 727:29-34. [PMID: 24486703 DOI: 10.1016/j.ejphar.2014.01.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 01/17/2023]
Abstract
Increased expression of the p22(phox) subunit of the NADPH oxidase complex may possibly contribute to both the enzyme׳s increased activation and the occurrence of oxidative stress during hyperhomocysteinaemia. However, the activation of peroxisome proliferator-activated receptor (PPAR) δ has been shown to inhibit p22(phox) expression. The purpose of this study was to elucidate the signaling pathway by which PPARδ activation regulated homocysteine-induced expression of p22(phox). EA.hy926 cells were stimulated with homocysteine (Hcy) in the presence or absence of the PPARδ-specific agonist, GW0742, or of various signaling inhibitors, including the antioxidants N-acetylcysteine (NAC), NADPH oxidase inhibitor, diphenyleneiodonium (DPI), and the p38MAPK inhibitor, SB203580. Expression of p22(phox) mRNA and phospho-p38MAPK protein were measured by real-time PCR and western blot analysis, respectively, and reactive oxygen species were measured by fluorescence microscopy. Our data indicate that Hcy increased both the expression of p22(phox) in a concentration-dependent manner and also increased phosphoryation of p38 MAPK and reactive oxygen species production in a time-dependent manner. However, activation of the PPARδ signaling pathway by the agonist GW0742 reversed all these changes induced by Hcy. Furthermore, SB203580 prevented the increase in p22(phox) expression, and NAC and DPI not only inhibited Hcy-induced phosphorylation of p38MAPK, but also prevented expression of p22(phox). These findings indicate that Hcy-induced expression of p22(phox) is regulated by the reactive oxygen species/p38MAPK pathway and that PPARδ activation is capable of attenuating this pathway by eliminating Hcy-induced reactive oxygen species production.
Collapse
Affiliation(s)
- Gen-Fa Xiao
- Department of Cardiology, The Second Hospital of Nanping, Jianyang, Fujian 354200, China
| | - Shang-Hua Xu
- Department of Cardiology, Nanping First Hospital Affiliated to Fujian Medical University, Nanping, Fujian 353000, China.
| | - Yi Chao
- Department of Cardiology, The Second Hospital of Nanping, Jianyang, Fujian 354200, China.
| | - Liang-Di Xie
- Hypertension Institute of Fujian Province, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Chang-Sheng Xu
- Hypertension Institute of Fujian Province, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Hua-Jun Wang
- Hypertension Institute of Fujian Province, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
47
|
Matsumoto T, Lopes RAM, Taguchi K, Kobayashi T, Tostes RC. Linking the beneficial effects of current therapeutic approaches in diabetes to the vascular endothelin system. Life Sci 2014; 118:129-35. [PMID: 24418002 DOI: 10.1016/j.lfs.2013.12.216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/04/2013] [Accepted: 12/24/2013] [Indexed: 12/19/2022]
Abstract
The rising epidemic of diabetes worldwide is of significant concern. Although the ultimate objective is to prevent the development and find a cure for the disease, prevention and treatment of diabetic complications is very important. Vascular complications in diabetes, or diabetic vasculopathy, include macro- and microvascular dysfunction and represent the principal cause of morbidity and mortality in diabetic patients. Endothelial dysfunction plays a pivotal role in the development and progression of diabetic vasculopathy. Endothelin-1 (ET-1), an endothelial cell-derived peptide, is a potent vasoconstrictor with mitogenic, pro-oxidative and pro-inflammatory properties that are particularly relevant to the pathophysiology of diabetic vasculopathy. Overproduction of ET-1 is reported in patients and animal models of diabetes and the functional effects of ET-1 and its receptors are also greatly altered in diabetic conditions. The current therapeutic approaches in diabetes include glucose lowering, sensitization to insulin, reduction of fatty acids and vasculoprotective therapies. However, whether and how these therapeutic approaches affect the ET-1 system remain poorly understood. Accordingly, in the present review, we will focus on experimental and clinical evidence that indicates a role for ET-1 in diabetic vasculopathy and on the effects of current therapeutic approaches in diabetes on the vascular ET-1 system.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Rheure A M Lopes
- Department of Pharmacology, Medical School of Ribeirao Preto, University of Sao Paulo, Av Bandeirantes 3900, Ribeirao Preto, SP 14049-900, Brazil
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Rita C Tostes
- Department of Pharmacology, Medical School of Ribeirao Preto, University of Sao Paulo, Av Bandeirantes 3900, Ribeirao Preto, SP 14049-900, Brazil
| |
Collapse
|
48
|
Fuentes-Antrás J, Ioan AM, Tuñón J, Egido J, Lorenzo Ó. Activation of toll-like receptors and inflammasome complexes in the diabetic cardiomyopathy-associated inflammation. Int J Endocrinol 2014; 2014:847827. [PMID: 24744784 PMCID: PMC3972909 DOI: 10.1155/2014/847827] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 01/23/2014] [Indexed: 02/06/2023] Open
Abstract
Diabetic cardiomyopathy is defined as a ventricular dysfunction initiated by alterations in cardiac energy substrates in the absence of coronary artery disease and hypertension. Hyperglycemia, hyperlipidemia, and insulin resistance are major inducers of the chronic low-grade inflammatory state that characterizes the diabetic heart. Cardiac Toll-like receptors and inflammasome complexes may be key inducers for inflammation probably through NF-κB activation and ROS overproduction. However, metabolic dysregulated factors such as peroxisome proliferator-activated receptors and sirtuins may serve as therapeutic targets to control this response by mitigating both Toll-like receptors and inflammasome signaling.
Collapse
Affiliation(s)
- J. Fuentes-Antrás
- Cardiovascular Research Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| | - A. M. Ioan
- Cardiovascular Research Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| | - J. Tuñón
- Cardiovascular Research Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| | - J. Egido
- Cardiovascular Research Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Avenida Reyes Católicos 2, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| | - Ó. Lorenzo
- Cardiovascular Research Laboratory, IIS-Fundación Jiménez Díaz, Autónoma University, Avenida Reyes Católicos 2, 28040 Madrid, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Avenida Reyes Católicos 2, 28040 Madrid, Spain
- *Ó. Lorenzo:
| |
Collapse
|
49
|
Ding Y, Yang KD, Yang Q. The role of PPARδ signaling in the cardiovascular system. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:451-73. [PMID: 24373246 DOI: 10.1016/b978-0-12-800101-1.00014-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARα, β/δ, and γ), members of the nuclear receptor transcription factor superfamily, play important roles in the regulation of metabolism, inflammation, and cell differentiation. All three PPAR subtypes are expressed in the cardiovascular system with various expression patterns. Among the three PPAR subtypes, PPARδ is the least studied but has arisen as a potential therapeutic target for cardiovascular and many other diseases. It is known that PPARδ is ubiquitously expressed and abundantly expressed in cardiomyocytes. Accumulated evidence illustrates the role of PPARδ in regulating cardiovascular function and determining pathological progression. In this chapter, we will discuss the current knowledge in the role of PPARδ in the cardiovascular system, the mechanistic insights, and the potential therapeutic utilization for treating cardiovascular disease.
Collapse
Affiliation(s)
- Yishu Ding
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Kevin D Yang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qinglin Yang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
50
|
Alteration of energy substrates and ROS production in diabetic cardiomyopathy. Mediators Inflamm 2013; 2013:461967. [PMID: 24288443 PMCID: PMC3833358 DOI: 10.1155/2013/461967] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/18/2013] [Accepted: 09/20/2013] [Indexed: 01/01/2023] Open
Abstract
Diabetic cardiomyopathy is initiated by alterations in energy substrates. Despite excess of plasma glucose and lipids, the diabetic heart almost exclusively depends on fatty acid degradation. Glycolytic enzymes and transporters are impaired by fatty acid metabolism, leading to accumulation of glucose derivatives. However, fatty acid oxidation yields lower ATP production per mole of oxygen than glucose, causing mitochondrial uncoupling and decreased energy efficiency. In addition, the oxidation of fatty acids can saturate and cause their deposition in the cytosol, where they deviate to induce toxic metabolites or gene expression by nuclear-receptor interaction. Hyperglycemia, the fatty acid oxidation pathway, and the cytosolic storage of fatty acid and glucose/fatty acid derivatives are major inducers of reactive oxygen species. However, the presence of these species can be essential for physiological responses in the diabetic myocardium.
Collapse
|