1
|
Santana PA, Forero JC, Guzmán F, Gaete S, Acosta F, Mercado LA, Álvarez CA. Detection and Localization of IL-8 and CXCR1 in Rainbow Trout Larvae in Response to Pseudomonas aeruginosa Lipopolysaccharide. Animals (Basel) 2024; 14:2878. [PMID: 39409827 PMCID: PMC11475925 DOI: 10.3390/ani14192878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The salmonid industry faces challenges due to the susceptibility of fish to opportunistic pathogens, particularly in early developmental stages. Understanding the immunological capacity during these stages is crucial for developing effective disease control strategies. IL-8R, a member of the G-protein-coupled receptor family, acts as a receptor for Interleukin 8 (IL-8). The binding of IL-8 to IL-8R plays a major role in the pathophysiology of a wide spectrum of inflammatory conditions. This study focused on the immune response capacity of rainbow trout (Oncorhynchus mykiss) larvae by analyzing IL-8/CXCR1 response to lipopolysaccharide (LPS) from Pseudomonas aeruginosa. Previous research demonstrated that LPS from P. aeruginosa acts as a potent immunostimulant in teleost, enhancing pro-inflammatory cytokines. The methodology included in silico analysis and the synthesis and characterization of an omCXCR1-derived epitope peptide, which was used to produce omCXCR1-specific anti98 serum in mice. The research revealed that rainbow trout larvae 19 days post-hatching (dph) exhibited pronounced immune responses post-stimulation with 1 µg/mL of LPS. This was evidenced by the upregulated protein expression of IL-8 and omCXCR1 in trout larvae 2 and 8 h after LPS challenge, as analyzed by ELISA and immunohistochemistry. Furthermore, fluorescence microscopy successfully revealed the colocalization of IL-8 and its receptor in cells from mucosal tissues after LPS challenge in larvae 19 dph. These findings underscore the efficacy of LPS immersion as a method to activate the innate immune system in trout larvae. Furthermore, we propose IL-8 and its receptor as molecular markers for evaluating immunostimulation in the early developmental stages of salmonids.
Collapse
Affiliation(s)
- Paula A. Santana
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago 8910060, Chile;
| | - Juan C. Forero
- Laboratorio de Bioingeniería de Tejidos e Innovación Odontológica, Facultad de Odontología, Universidad de Valparaíso, Valparaíso 2360004, Chile;
- Cátedra de Ciencias Básicas, Escuela de Odontología, Facultad de Odontología, Universidad de Valparaíso, Valparaíso 2360004, Chile
| | - Fanny Guzmán
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile;
| | - Sandra Gaete
- Laboratorio de Diagnóstico de COVID-19, Unidad de Detección y Análisis, Universidad de O’Higgins, Rancagua 2841959, Chile;
| | - Félix Acosta
- Grupo de Investigación en Acuicultura (GIA), Instituto Universitario Ecoaqua, Universidad de Las Palmas de Gran Canaria, Islas Canarias, 35214 Taliarte, Spain;
| | - Luis A. Mercado
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2340025, Chile
| | - Claudio A. Álvarez
- Laboratorio de Cultivo de Peces, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo 1781421, Chile
- Laboratorio de Fisiología y Genética Marina (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo 1781421, Chile
| |
Collapse
|
2
|
Henard C, Li H, Nowak BF, von Gersdorff Jørgensen L. Unpredictable Repeated Stress in Rainbow Trout ( Oncorhynchus mykiss) Shifted the Immune Response against a Fish Parasite. BIOLOGY 2024; 13:769. [PMID: 39452078 PMCID: PMC11504028 DOI: 10.3390/biology13100769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
Farmed fish are regularly subjected to various stressors due to farming practices, and their effect in the context of a disease outbreak is uncertain. This research evaluated the effects of unpredictable repeated stress in rainbow trout challenged with the ciliate Ichthyophthirius multifiliis, known to cause white spot disease in freshwater fish. Before and after the pathogen exposure, fish were handled with a random rotation of three procedures. At 7 days post-infection (dpi), the parasite burden was evaluated in fish and in the tank's water, and the local and systemic immune responses were investigated in the gill and spleen, respectively. The fish mortality was recorded until 12 dpi, when all the fish from the infected groups died. There was no statistical difference in parasite burden (fish and tank's water) and infection severity between the two infected fish groups. The immune gene expression analysis suggested a differential immune response between the gill and the spleen. In gills, a T helper cell type 2 immune response was initiated, whereas in spleen, a T helper cell type 1 immune response was observed. The stress has induced mainly upregulations of immune genes in the gill (cat-1, hep, il-10) and downregulations in the spleen (il-2, il-4/13a, il-8). Our results suggested that the unpredictable repeated stress protocol employed did not impair the fish immune system.
Collapse
Affiliation(s)
- Cyril Henard
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 7 Frederiksberg C, 1870 Frederiksberg, Denmark;
| | - Hanxi Li
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Barbara F. Nowak
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston 7248, Tasmania, Australia;
| | - Louise von Gersdorff Jørgensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 7 Frederiksberg C, 1870 Frederiksberg, Denmark;
| |
Collapse
|
3
|
Ramadan RM, Mahdy OA, El-Saied MA, Mohammed FF, Salem MA. Novel insights into immune stress markers associated with myxosporeans gill infection in Nile tilapia (molecular and immunohistochemical studies). PLoS One 2024; 19:e0303702. [PMID: 38833454 PMCID: PMC11149867 DOI: 10.1371/journal.pone.0303702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
Nile tilapia (Oreochromis niloticus) is valued in aquaculture because of its quick development and ability to thrive in various environments. Myxosporeans are among the fish parasites that affect fish productivity, as they impact fish growth and reproduction, resulting in large fish deaths in farms and hatcheries. This study has been focused on morpho-molecular identification for the myxosporean parasites infecting Nile tilapia from three governorates in Egypt and assessment of gene expression of different cytokines (Interleukin-1βeta (IL-1β), major histocompatibility complex class II (MHC-II), and clusters of differentiation 4 (CD-4) and 8 (CD-8)) in tissues. Additionally, this work aimed to correlate the developed histopathological alterations and inflammatory reactions in gills with immunohistochemical expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-α). Finally, the infected fish's cortisol levels and blood glucose were assessed. Results of BLAST sequence analysis of the 18S rRNA for the collected protozoans confirmed Myxobolus agolus, M. brachysporus, M. tilapiae, and Henneguya species. The molecular characterization of the immunological status of gills revealed marked upregulation of different inflammatory cytokines in the gills of infected fish. There was a significantly increased serum cortisol and glucose level in infected fish compared with control, non-infected ones. Severe histopathological alterations were observed in the infected fish gills, associated with increased expression of iNOS and TNF-α and related to myxosporean infection. The present study provides new insights into oxidative stress biomarkers in Nile tilapia infected with Myxosporeans and elucidates the gill's immune status changes as a portal of entry for protozoa that contribute to tissue damage.
Collapse
Affiliation(s)
- Reem M. Ramadan
- Faculty of Veterinary Medicine, Department of Parasitology, Cairo University, Giza, Egypt
| | - Olfat A. Mahdy
- Faculty of Veterinary Medicine, Department of Parasitology, Cairo University, Giza, Egypt
| | - Mohamed A. El-Saied
- Faculty of Veterinary Medicine, Department of Pathology, Cairo University, Giza, Egypt
| | - Faten F. Mohammed
- Faculty of Veterinary Medicine, Department of Pathology, Cairo University, Giza, Egypt
- Department of Pathology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mai A. Salem
- Faculty of Veterinary Medicine, Department of Parasitology, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Speirs ZC, Loynes CA, Mathiessen H, Elks PM, Renshaw SA, Jørgensen LVG. What can we learn about fish neutrophil and macrophage response to immune challenge from studies in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109490. [PMID: 38471626 DOI: 10.1016/j.fsi.2024.109490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Fish rely, to a high degree, on the innate immune system to protect them against the constant exposure to potential pathogenic invasion from the surrounding water during homeostasis and injury. Zebrafish larvae have emerged as an outstanding model organism for immunity. The cellular component of zebrafish innate immunity is similar to the mammalian innate immune system and has a high degree of sophistication due to the needs of living in an aquatic environment from early embryonic stages of life. Innate immune cells (leukocytes), including neutrophils and macrophages, have major roles in protecting zebrafish against pathogens, as well as being essential for proper wound healing and regeneration. Zebrafish larvae are visually transparent, with unprecedented in vivo microscopy opportunities that, in combination with transgenic immune reporter lines, have permitted visualisation of the functions of these cells when zebrafish are exposed to bacterial, viral and parasitic infections, as well as during injury and healing. Recent findings indicate that leukocytes are even more complex than previously anticipated and are essential for inflammation, infection control, and subsequent wound healing and regeneration.
Collapse
Affiliation(s)
- Zoë C Speirs
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Catherine A Loynes
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Heidi Mathiessen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Philip M Elks
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Stephen A Renshaw
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Louise von Gersdorff Jørgensen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark.
| |
Collapse
|
5
|
Buchmann K, Karami AM, Duan Y. The early ontogenetic development of immune cells and organs in teleosts. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109371. [PMID: 38232790 DOI: 10.1016/j.fsi.2024.109371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Fully developed teleosts possess a highly developed immune system comprising both innate and adaptive elements, but when hatching from the egg, the yolksac larva is still at an ontogenetically incomplete stage with regard to physiological, including immunological, functions. The immune system in these young fish stages is far less developed when compared to the youngs appearing from reptile and avian eggs and from most mammals at parturition. In those vertebrate groups the early ontogenetic development of the fetus is highly protected. The lack of a fully developed immune system in yolksac larvae of fish is critical, because this stage encounters a potentially hostile and infectious aquatic environment. The strong selective pressure on the immune system of the yolksac larva and the youngest fry stages explains the existence of a multi-facetted innate system, which is protecting the young fish stages against viral, bacterial and parasitic infections. The sequential development of immune cells and organs depends on host species and its environmental setting. However, a strong armament comprising innate cells (neutrophilic granulocytes, macrophages) and molecules (receptors, lectins, complement, AMPs and constitutively expressed immunoglobulins) protect the earliest stages. The adaptive immune elements, including T-cells and B-cells, occur gradually in headkidney, spleen, thymus, tonsils, bursa equivalent (if present) and mucosa associated lymphoid cells. A functional protective response following immunization occur later.
Collapse
Affiliation(s)
- Kurt Buchmann
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Asma M Karami
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Yajiao Duan
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
6
|
Sun T, Huang J, Zhu L, Wu S, Zhao L, Kang Y. Integrative mRNA-miRNA interaction analysis associated with the immune response in the head kidney of rainbow trout (Oncorhynchus mykiss) after infectious hematopoietic necrosis virus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109140. [PMID: 37797868 DOI: 10.1016/j.fsi.2023.109140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 09/05/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) is an important cold-water fish widely cultivated in China. The frequent occurrence of viral diseases caused by infectious hematopoietic necrosis virus (IHNV) seriously restricted the healthy development of the rainbow trout farming industry. However, the immune defense mechanism induced by IHNV in rainbow trout has not been fully elucidated. In the present study, we detected mRNA and miRNA expression profiles in rainbow trout head kidney after IHNV infection using RNA-seq and identified key immune-related genes and miRNAs. The results showed that a total of 7486 genes and 277 miRNAs were differentially expressed, and numerous differentially expressed genes (DEGs) enriched in the immune-related pathways such as Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway, NOD-like receptor signaling pathway, cytokine-cytokine receptor interaction, and JAK-STAT signaling pathway were significantly up-regulated, including LGP2, MDA5, TRIM25, IRF3, IRF7, TLR3, TLR7, TLR8, MYD88, and IFN1. Integration analysis identified six miRNAs (miR-141-y, miR-200-y, miR-144-y, miR-2188-y, miR-725-y, and miR-203-y) that target at least six key immune-related genes (TRIM25, LGP2, TLR3, TLR7, IRF3, and IRF7). Further, we verified selected immune-related mRNAs and miRNAs through qRT-PCR and confirmed the reliability of the RNA-seq results. These findings improve our understanding of the immune mechanism of rainbow trout infected with IHNV and provide basic data for future breeding for disease resistance in rainbow trout.
Collapse
Affiliation(s)
- Tongzhen Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jinqiang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Lirui Zhu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shenji Wu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lu Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yujun Kang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
7
|
Younis NA, Thabit H, El-Samannoudy SI, Attia MM. The immune responses of Oreochromis niloticus against Prohemistomum vivax encysted metacercariae infection with the evaluation of different biomarkers stressors. Sci Rep 2023; 13:11885. [PMID: 37482562 PMCID: PMC10363534 DOI: 10.1038/s41598-023-38809-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 07/14/2023] [Indexed: 07/25/2023] Open
Abstract
This study aimed at evaluating the immunological status of Oreochromis niloticus (O. niloticus); so, a total of 120 O. niloticus were collected from different farms located in Kafr El-Sheikh Governorate in Egypt during the period from January 2021 to January 2022. The fish were surveyed for commonly encysted metacercariae present in different organs such as gills, spleen, liver, kidney, and muscles. The collected encysted metacercariae were of the family Cyathocotylidae (Prohemistomum vivax) with a prevalence of 25%. Different cell-mediated immune responses such as Major histocompatibility class II alpha (MHC-IIα), Toll-like receptor 7 (TLR-7), Interleukin (IL-8), and Clusters of differentiation 4 (CD4) were assessed in different organs such as gills, spleen, liver, kidney, and muscles which revealed an elevation in different genes in infected organs as a reaction from the body against parasitic infection. In addition, the liver enzymes; aspartate aminotransferase (AST), and alanine aminotransferase (ALT), were assessed in the serum of O. niloticus as well as blood glucose, cortisol levels, and lysozyme activity were estimated to record higher levels in the infected fish in comparison with the control non-infected ones.
Collapse
Affiliation(s)
- Nehal A Younis
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Hasnaa Thabit
- Department of Zoology and Entomology, Faculty of Science, Assiut University, PO 71526, Assiut, Egypt.
| | - Salma I El-Samannoudy
- Physiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Marwa M Attia
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
8
|
Zhu X, Liu Y, Xu N, Ai X, Yang Y. Molecular Characterization and Expression Analysis of IL-10 and IL-6 in Channel Catfish ( Ictalurus punctatus). Pathogens 2023; 12:886. [PMID: 37513733 PMCID: PMC10384647 DOI: 10.3390/pathogens12070886] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
IL-10 and IL-6 play important roles in protecting against inflammation and clearing pathogens from the body. In this study, homologous compounds of IL-10 and IL-6 were identified in channel catfish, and their immune responses were analyzed. The CDS sequences of IL-10 and IL-6 were 549 bp and 642 bp, respectively, and showed the highest homology with Ameiurus melas. In addition, the expression of the IL-10 and IL-6 genes was ubiquitous in 10 tissues examined. IL-10 is highly expressed in the liver and slightly expressed in the gill. The high expression of the IL-6 gene was observed in the spleen, heart, and gonad, with the lowest levels in the liver. LPS, Poly(I:C), PHA, and PMA showed a highly significant increase in IL-10 and IL-6 expression 48 h after CCK stimulation (p < 0.01). Otherwise, Yersinia ruckeri, Streptococcus iniae, channel catfish virus, and deltamethrin induced IL-10 and IL-6 expression, varying in intensity between different organs. Our results suggest that IL-10 and IL-6 are involved in the immune response of the host against the pathogen.
Collapse
Affiliation(s)
- Xia Zhu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| |
Collapse
|
9
|
Ragab RH, Elgendy MY, Sabry NM, Sharaf MS, Attia MM, Korany RM, Abdelsalam M, Eltahan AS, Eldessouki EA, El-Demerdash GO, Khalil RH, Mahmoud AE, Eissa AE. Mass kills in hatchery-reared European seabass ( Dicentrarchus labrax) triggered by concomitant infections of Amyloodinium ocellatum and Vibrio alginolyticus. Int J Vet Sci Med 2022; 10:33-45. [PMID: 35573137 PMCID: PMC9090348 DOI: 10.1080/23144599.2022.2070346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Amyloodiniosis and vibriosis are serious diseases in European seabass (Dicentrarchus labrax) hatcheries with noticeable high mortality. This study was conducted on tank-cultured D. labrax frys at a private marine hatchery near Mariout Lake (Alexandria, Egypt). Frys showed a high mortality rate (70%), lethargy, darkening, asphyxia, ascites, and velvety skin appearance. Both infectious agents were presumptively identified in all investigated frys. The identities of the two recovered agents were confirmed by molecular assay and phylogenetic analysis. On the tissue level, histopathological examination of skin, splenic, and renal tissue indicated severe alterations due to the direct impacts of both infections. On the cellular level, scanning electron micrographs showed both protozoal and bacterial pathogens on/in gill epithelial cells in solitary and colonial forms. Vibrio alginolyticus showed variable results for tested antibiotics, with a higher sensitivity to florfenicol. A successful control strategy was strictly adopted to overcome infections and stop mortalities. Copper sulphate and hydrogen peroxide were efficiently applied to tank water to overcome A. ocellatum infections. Further, florfenicol was effectively used to overcome systemic V. alginolyticus infections. The efficacy of treatments was confirmed by the absence of infectious agents in randomly collected fish samples. To the best of the authors’ knowledge, this study is one of the earliest Egyptian studies that dealt with the dilemma of mass kills associated with external parasitic/systemic bacterial infections among hatchery-reared European seabass.
Collapse
Affiliation(s)
- Reham H. Ragab
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mamdouh Y. Elgendy
- Department of Hydrobiology, Veterinary Research Institute, National Research Centre, Giza, Egypt
| | - Nader M Sabry
- Fish Disease Lab, Aquaculture Division, National Institute of Oceanography and Fishery (NIOF), Alexandria, Egypt
| | - Mahmoud S. Sharaf
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa M. Attia
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Reda M.S. Korany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed Abdelsalam
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed S. Eltahan
- Department of Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Elsayed A. Eldessouki
- Department of Fish Health and Diseases, Faculty of Fish Resources, Suez University, Suez, Egypt
| | - Ghada O. El-Demerdash
- Agriculture Research Centre, Animal Health Research Institute, Al-Fayoum Provincial Laboratory, Giza, Egypt
| | - Riad H. Khalil
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Abeer E. Mahmoud
- Department of Fish Diseases, Animal Health Research Institute, Assiut Provincial Laboratory, Agriculture Research Center, Dokki, Egypt
| | - Alaa Eldin Eissa
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
10
|
McGrath L, O'Keeffe J, Slattery O. Antimicrobial peptide gene expression in Atlantic salmon (Salmo salar) seven days post-challenge with Neoparamoeba perurans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104287. [PMID: 34619176 DOI: 10.1016/j.dci.2021.104287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/01/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Amoebic gill disease in teleost fish is caused by the marine parasite Neoparamoeba perurans. To date, the role of antimicrobial peptides β-defensins and cathelicidins in this infection have not been explored. Using a high-throughput microfluidics quantitative polymerase chain reaction system (Biomark HD™ by Fluidigm), this study aimed to: firstly, to investigate organ-specific expression of antimicrobial peptide genes β-defensin-1, -3 and -4 and cathelicidin 2 in healthy Atlantic salmon; secondly, to compare the expression of these antimicrobial peptide genes in healthy versus asymptomatic Atlantic salmon seven days post-challenge with Neoparamoeba perurans. Results from this study indicate expression of the β-defensin and cathelicidin genes in the selected organs from healthy Atlantic salmon. Furthermore, a statistically significant upregulation of β-defensins -3 and -4 and cathelicidin 2 was detected in gill of parasite-challenged salmon. The upregulated cathelicidin and β-defensin genes in gill could indicate novel potential roles in innate immune responses to Neoparamoeba perurans.
Collapse
Affiliation(s)
- Leisha McGrath
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Rd., Galway, H91 T8NW, Ireland
| | - Joan O'Keeffe
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Rd., Galway, H91 T8NW, Ireland
| | - Orla Slattery
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Rd., Galway, H91 T8NW, Ireland.
| |
Collapse
|
11
|
Santana PA, Álvarez CA, Sáenz-Martínez DE, Salinas-Parra N, Guzmán F, Paradela A, Mercado L. New insight to the rol of α-enolase (Eno-1) as immunological marker in rainbow trout fry. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104163. [PMID: 34118278 DOI: 10.1016/j.dci.2021.104163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
α-Enolase is an enzyme of the glycolytic pathway that has also been involved in vertebrate inflammatory processes through its interaction with plasminogen. However, its participation in the immune response of lower vertebrates during early life development is unknown. Opportunistic pathogens in salmon farming are the principal cause of mortality in the fry stage. For that reason, molecular indicators of their immunological status are required to ensure the success of the large-scale cultivation. Thus, the objective of this work was to analyze if ENO-1 is involved in the immune response of rainbow trout fry. For this purpose, the coding sequence of trout ENO-1 was characterized, identifying the plasminogen-binding domain that has been described for homologs of this enzyme in higher vertebrates. A peptide-epitope of α-enolase was used for producing mice antiserum. The specificity of polyclonal antibodies was confirmed by dot blot, ELISA and Western blot. Then, the antiserum was used to evaluate α-enolase expression in fry between 152 and 264 degree-days post-hatching after 2, 8, and 12 h of challenge with lipopolysaccharide from Pseudomona auroginosa. The expression of α-enolase at both transcriptional (RT-qPCR) and protein (ELISA) levels was significantly increased after 8 h post-challenge with lipopolysaccharide. These results were confirmed by proteomic analysis by 2D-difference gel electrophoresis (DIGE). This work provides the first evidence of the involvement of α-enolase in the early immune response of salmonids. Future research will be required to understand the possible interaction of α-enolase with plasminogen in cells and tissues of the salmonid immune system.
Collapse
Affiliation(s)
- Paula A Santana
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, el Llano Subercaseaux 2801, San Miguel, Santiago, Chile.
| | - Claudio A Álvarez
- Lab oratorio de Fisiología y Genética Marina, Centro de Estudios Avanzados en Zonas Áridas, Coquimbo, Chile; Facultad de Ciencias del Mar, Universidad Católica del Norte, Coquimbo, Chile.
| | - Daniel E Sáenz-Martínez
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile; Programa de Doctorado en Biotecnología Pontificia Universidad Católica de Valparaíso/Universidad Técnica Federico Santa María, Valparaíso, Chile.
| | - Nicolás Salinas-Parra
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile; Programa de Doctorado en Biotecnología Pontificia Universidad Católica de Valparaíso/Universidad Técnica Federico Santa María, Valparaíso, Chile.
| | - Fanny Guzmán
- Núcleo Biotecnológico de Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile.
| | - Alberto Paradela
- Centro Nacional de Biotecnología, CSIC, C/ Darwin n°3 Cantoblanco, 28049, Madrid, España, Spain.
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile; Núcleo Biotecnológico de Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Avenida Universidad #330, 2373223,Valparaíso, Chile.
| |
Collapse
|
12
|
Attia MM, Abdelsalam M, Korany RMS, Mahdy OA. Characterization of digenetic trematodes infecting African catfish (Clarias gariepinus) based on integrated morphological, molecular, histopathological, and immunological examination. Parasitol Res 2021; 120:3149-3162. [PMID: 34351490 DOI: 10.1007/s00436-021-07257-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022]
Abstract
Parasitic infection may cause massive losses in Clarias gariepinus fries and fingerlings. Therefore, this study aimed to characterize the digenetic trematodes species (two adults' flukes and one metacercariae) infecting African catfish Clarias gariepinus, as well as their histopathological impacts on infected fish. The intestinal flukes were identified as Orientocreadium batrachoides and Masenia bangweulensis based on their morphological and molecular characteristics. Sequencing of their 28S (LSU rRNA) and 18S rRNA (SSU rRNA) genes confirmed that these trematodes belong to the families Orientocreadiidae and Cephalogonimidae, respectively. The metacercariae trematode infecting skin and muscles were only morphologically identified as Cyanodiplostomum sp. The gene expression levels of MHC II increased in naturally infected fish either with O. batrachoides or Cyanodiplostomum sp. alone, compared with uninfected catfish. In addition, lysozyme levels in individual fish serum increased in catfish infected either with O. batrachoides or Cyanodiplostomum sp. alone. Histopathological examination of the skin revealed embedded parasitic cysts that displaced tissue in the dermis. Surrounding tissues were infiltrated with melanomacrophages and displayed dermal edema. Histopathological analysis showed O. batrachoides or M. bangweulensis between the gastric folds of the stomach of infected catfish, causing infiltration of mononuclear inflammatory cells in the lamina propria.
Collapse
Affiliation(s)
- Marwa M Attia
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed Abdelsalam
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Reda M S Korany
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Olfat A Mahdy
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| |
Collapse
|
13
|
Roh H, Kim N, Lee Y, Park J, Kim BS, Lee MK, Park CI, Kim DH. Dual-Organ Transcriptomic Analysis of Rainbow Trout Infected With Ichthyophthirius multifiliis Through Co-Expression and Machine Learning. Front Immunol 2021; 12:677730. [PMID: 34305907 PMCID: PMC8296305 DOI: 10.3389/fimmu.2021.677730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/31/2021] [Indexed: 01/16/2023] Open
Abstract
Ichthyophthirius multifiliis is a major pathogen that causes a high mortality rate in trout farms. However, systemic responses to the pathogen and its interactions with multiple organs during the course of infection have not been well described. In this study, dual-organ transcriptomic responses in the liver and head kidney and hemato-serological indexes were profiled under I. multifiliis infection and recovery to investigate systemic immuno-physiological characteristics. Several strategies for massive transcriptomic interpretation, such as differentially expressed genes (DEGs), Poisson linear discriminant (PLDA), and weighted gene co-expression network analysis (WGCNA) models were used to investigate the featured genes/pathways while minimizing the disadvantages of individual methods. During the course of infection, 6,097 and 2,931 DEGs were identified in the head kidney and liver, respectively. Markers of protein processing in the endoplasmic reticulum, oxidative phosphorylation, and the proteasome were highly expressed. Likewise, simultaneous ferroptosis and cellular reconstruction was observed, which is strongly linked to multiple organ dysfunction. In contrast, pathways relevant to cellular replication were up-regulated in only the head kidney, while endocytosis- and phagosome-related pathways were notably expressed in the liver. Moreover, interestingly, most immune-relevant pathways (e.g., leukocyte trans-endothelial migration, Fc gamma R-mediated phagocytosis) were highly activated in the liver, but the same pathways in the head kidney were down-regulated. These conflicting results from different organs suggest that interpretation of co-expression among organs is crucial for profiling of systemic responses during infection. The dual-organ transcriptomics approaches presented in this study will greatly contribute to our understanding of multi-organ interactions under I. multifiliis infection from a broader perspective.
Collapse
Affiliation(s)
- HyeongJin Roh
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Nameun Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Yoonhang Lee
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Jiyeon Park
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Bo Seong Kim
- Aquatic Disease Control Division, National Institute of Fisheries Science (NIFS), Busan, South Korea
| | - Mu Kun Lee
- Korean Aquatic Organism Disease Inspector Association, Busan, South Korea
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, South Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| |
Collapse
|
14
|
Processed Animal Proteins from Insect and Poultry By-Products in a Fish Meal-Free Diet for Rainbow Trout: Impact on Intestinal Microbiota and Inflammatory Markers. Int J Mol Sci 2021; 22:ijms22115454. [PMID: 34064267 PMCID: PMC8196822 DOI: 10.3390/ijms22115454] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Sustainability of aquaculture is tied to the origin of feed ingredients. In search of sustainable fish meal-free formulations for rainbow trout, we evaluated the effect of Hermetia illucens meal (H) and poultry by-product meal (P), singly (10, 30, and 60% of either H or P) or in combination (10% H + 50% P, H10P50), as partial replacement of vegetable protein (VM) on gut microbiota (GM), inflammatory, and immune biomarkers. Fish fed the mixture H10P50 had the best growth performance. H, P, and especially the combination H10P50 partially restored α-diversity that was negatively affected by VM. Diets did not differ in the Firmicutes:Proteobacteria ratio, although the relative abundance of Gammaproteobacteria was reduced in H and was higher in P and in the fishmeal control. H had higher relative abundance of chitin-degrading Actinomyces and Bacillus, Dorea, and Enterococcus. Actinomyces was also higher in H feed, suggesting feed-chain microbiome transmission. P increased the relative abundance of protein degraders Paeniclostridium and Bacteroidales. IL-1β, IL-10, TGF-β, COX-2, and TCR-β gene expression in the midgut and head kidney and plasma lipopolysaccharide (LPS) revealed that the diets did not compromise the gut barrier function or induce inflammation. H, P, and H10P50 therefore appear valid protein sources in fishmeal-free aquafeeds.
Collapse
|
15
|
Brunner SR, Varga JFA, Dixon B. Antimicrobial Peptides of Salmonid Fish: From Form to Function. BIOLOGY 2020; 9:E233. [PMID: 32824728 PMCID: PMC7464209 DOI: 10.3390/biology9080233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
Antimicrobial peptides (AMPs) are small, usually cationic, and amphiphilic molecules that play a crucial role in molecular and cellular host defense against pathogens, tissue damage, and infection. AMPs are present in all metazoans and several have been discovered in teleosts. Some teleosts, such as salmonids, have undergone whole genome duplication events and retained a diverse AMP repertoire. Salmonid AMPs have also been shown to possess diverse and potent antibacterial, antiviral, and antiparasitic activity and are induced by a variety of factors, including dietary components and specific molecules also known as pathogen-associated molecular patterns (PAMPs), which may activate downstream signals to initiate transcription of AMP genes. Moreover, a multitude of cell lines have been established from various salmonid species, making it possible to study host-pathogen interactions in vitro, and several of these cell lines have been shown to express various AMPs. In this review, the structure, function, transcriptional regulation, and immunomodulatory role of salmonid AMPs are highlighted in health and disease. It is important to characterize and understand how salmonid AMPs function as this may lead to a better understanding of host-pathogen interactions with implications for aquaculture and medicine.
Collapse
Affiliation(s)
- Sascha R. Brunner
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (S.R.B.); (J.F.A.V.)
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Joseph F. A. Varga
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (S.R.B.); (J.F.A.V.)
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (S.R.B.); (J.F.A.V.)
| |
Collapse
|
16
|
Buchmann K. Immune response to Ichthyophthirius multifiliis and role of IgT. Parasite Immunol 2020; 42:e12675. [PMID: 31587318 PMCID: PMC7507210 DOI: 10.1111/pim.12675] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/19/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022]
Abstract
The parasitic ciliate Ichthyophthirius multifiliis causes white spot disease in freshwater fish worldwide. The theront penetrates external surfaces of the naïve fish where it develops into the feeding trophont stage and elicits a protective immune response both at the affected site as well as at the systemic level. The present work compiles data and presents an overall model of the protective reactions induced. A wide spectrum of inflammatory reactions are established upon invasion but the specific protection is provided by adaptive factors. Immunoglobulin IgT is involved in protection of surfaces in several fish species and is thereby one of the first adaptive immune molecules reacting with the penetrating theront. IgT producing lymphocytes occur in epithelia, dispersed or associated with lymphoid cell aggregations (skin epidermis, fins, gills, nostrils and buccal cavities) but they are also present in central immune organs such as the head kidney, spleen and liver. When theronts invade immunized fish skin, they are encountered by host factors which opsonize the parasite and may result in complement activation, phagocytosis or cell-mediated killing. However, antibody (IgT, IgM and IgD) binding to parasite cilia has been suggested to alter parasite behaviour and induce an escape reaction, whereby specific IgT (or other classes of immunoglobulin in fish surfaces) takes a central role in protection against the parasite.
Collapse
Affiliation(s)
- Kurt Buchmann
- Department of Veterinary and Animal ScienceFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| |
Collapse
|
17
|
Comprehensive transcriptional changes in the liver of Kanglang white minnow ( Anabarilius g rahami) in response to the infection of parasite Ichthyophthirius m ultifiliis. Animals (Basel) 2020; 10:ani10040681. [PMID: 32295151 PMCID: PMC7222788 DOI: 10.3390/ani10040681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Kanglang white minnow (KWM, Anabarilius grahami), is a typical “3E” (Endangered, Endemic and Economic) fish species in Yunnan-Guizhou Plateau. As one of the traditional “Four Famous Fishes” in Yunnan province, it has become the major local aquaculture species with increasing demand after the success of artificial breeding. However, this economically important fish is highly susceptible to the infection of a parasite ciliate, Ichthyophthirius multifiliis (Ich), during the practical procedure of artificial breeding. To examine the host immune responses to Ich, we divided the experimental fishes into three groups (including control, early-infected stage, and late-infected stage) for transcriptome sequencing to analyze the differentially expressed genes (DEGs) and immune response mechanisms. Abstract The notorious parasite Ichthyophthirius multifiliis (Ich) has been recorded worldwide in fish species and causes white spot disease, posing major threats and resulting in severe losses to international fish production. Extensively effective strategies for treating Ich are not available yet, and genetic mechanisms of hosts in response to the parasite are still largely unknown. In this study, we selected Kanglang white minnow (KWM, Anabarilius grahami) to examine its liver transcriptional changes after Ich infection, as white spot disease is one bottleneck problem in exploring this economically important species. We divided the experimental fishes into three groups (control, early-infected, and late-infected) to examine differentially expressed genes (DEGs). A total of 831 DEGs were identified and classified into 128 significantly enriched GO (Gene Ontology) terms and 71 significantly enriched KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. Most of these terms or pathways were functionally enriched in immunity, inflammatory response, and apoptosis, such as nucleotide-binding oligomerization domain-like (NOD-like) receptor signaling, tumor necrosis factor (TNF) signaling, interleukin-17 (IL-17) signaling, and apoptosis pathways. We also identified 178 putative antimicrobial peptides (AMPs) and AMP precursors based on our previously reported genome assembly of KWM, and revealed that the expressional patterns varied according to different types. In summary, our work reported the first comprehensive transcriptional changes in KWM in response to the exogenous infection of Ich, which would lay a solid foundation for in-depth studies on disease defense or resistant strains selection in this valuable fish.
Collapse
|
18
|
Wang Q, Yu Y, Zhang X, Xu Z. Immune responses of fish to Ichthyophthirius multifiliis (Ich): A model for understanding immunity against protozoan parasites. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 93:93-102. [PMID: 30630003 DOI: 10.1016/j.dci.2019.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/05/2019] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
The parasitic ciliate Ichthyophthirius multifiliis (Ich), which infects almost all freshwater fish species, provides an optimal model for the study of immunity against extracellular protozoa. Ich invades the epithelia of mucosal tissues, forms white spots covering the whole body, and induces high mortality, while survivor fish develop both innate and adaptive immunity against Ich attack in systemic and mucosal tissues. Besides the protective roles of the Toll-like receptor (TLR)-mediated innate immune response, the critical immune functions of novel IgT in the skin, gut, gill, and olfactory organ of teleosts have been demonstrated in recent years, and all this information contributes to the ontogeny of the mucosal immune response in vertebrates. Especially in rainbow trout, Ich-infected fish exhibited higher IgT concentrations and titers in the mucosa and increased IgT+ B-lymphocyte proliferation in mucosal tissues. IgM mainly functions in the adaptive immune response in the systemic tissues of rainbow trout, accompanied with increased IgM+ B-lymphocyte proliferation in the head kidney of Ich-infected trout. However, little is known about the interaction between these mucosal tissues and systemic immune organs and the interaction between the inductive immune organs and functional immune organs. Immobilization antigens (Iags), located on the parasite cell and ciliary membranes, have been characterized to be targeted by specific antibodies produced in the host. The crosslinking of antigens mediated by antibodies triggers either an escape response or the immobilization of Ich. With more knowledge about the Iags of Ich and the immunity of teleosts, a more targeted vaccine, even a DNA vaccine, can be developed for the immune control strategy of Ich. Due to the high frequency of clinical fish ichthyophthiriasis, the study of fish immune responses to Ich provides an optimal experimental model for understanding immunity against extracellular protozoa.
Collapse
Affiliation(s)
- Qingchao Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiaoting Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
19
|
Syahputra K, Kania PW, Al-Jubury A, Jafaar RM, Dirks RP, Buchmann K. Transcriptomic analysis of immunity in rainbow trout (Oncorhynchus mykiss) gills infected by Ichthyophthirius multifiliis. FISH & SHELLFISH IMMUNOLOGY 2019; 86:486-496. [PMID: 30513380 DOI: 10.1016/j.fsi.2018.11.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/22/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
The parasite Ichthyophthirius multifiliis infecting skin, fins and gills of a wide range of freshwater fish species, including rainbow trout, is known to induce a protective immune response in the host. Although a number of studies have reported activation of several immune genes in infected fish host, the immune response picture is still considered incomplete. In order to address this issue, a comparative transcriptomic analysis was performed on infected versus uninfected rainbow trout gills and it showed that a total of 3352 (7.2%) out of 46,585 identified gene sequences were significantly regulated after parasite infection. Of differentially expressed gene sequences, 1796 genes were up-regulated and 1556 genes were down-regulated. These were classified into 61 Gene Ontology (GO) terms and mapped to 282 reference canonical pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Infection of I. multifiliis induced a clear differential expression of immune genes, related to both innate and adaptive immunity. A total of 268 (6.86%) regulated gene sequences were known to take part in 16 immune-related pathways. These involved pathways related to the innate immunity such as the Chemokine signaling pathway, Platelet activation, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway, and Leukocyte transendothelial migration. Elevated transcription of genes encoding the TLR 8 gene and chemokines (CCL4, CCL19, CCL28, CXCL8, CXCL11, CXCL13, CXCL14) was recorded indicating their roles in recognition of I. multifiliis and subsequent induction of the inflammatory response, respectively. A number of upregulated genes in infected gills were associated with antigen processing/presentation and T and B cell receptor signaling (including B cell marker CD22 involved in B cell development). Overall the analysis supports the notion that I. multifiliis induces a massive and varied innate response upon which a range of adaptive immune responses are established which may contribute to the long lasting protection of immunized rainbow trout.
Collapse
Affiliation(s)
- Khairul Syahputra
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Per W Kania
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Azmi Al-Jubury
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Rzgar M Jafaar
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Ron P Dirks
- Future Genomics Technologies B.V., Leiden, the Netherlands
| | - Kurt Buchmann
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
20
|
Furlan M, Rosani U, Gambato S, Irato P, Manfrin A, Mardirossian M, Venier P, Pallavicini A, Scocchi M. Induced expression of cathelicidins in trout (Oncorhynchus mykiss) challenged with four different bacterial pathogens. J Pept Sci 2018; 24:e3089. [PMID: 29808604 DOI: 10.1002/psc.3089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/31/2018] [Accepted: 04/30/2018] [Indexed: 11/05/2022]
Abstract
Cathelicidins are an important family of antimicrobial peptide effectors of innate immunity in vertebrates. Two members of this group, CATH-1 and CATH-2, have been identified and characterized in teleosts (ray-finned fish). In this study, we investigated the expression of these genes in different tissues of rainbow trout challenged with 4 different inactivated pathogens. By using qPCR, we detected a strong induction of both cath-1 and cath-2 genes within 24 hours after intraperitoneal inoculation with Lactococcus garvieae, Yersinia ruckeri, Aeromonas salmonicida, or Flavobacterium psychrophilum cells. Up to 700-fold induction of cath-2 was observed in the spleen of animals challenged with Y. ruckeri. Moreover, we found differences in the intensity and timing of gene up-regulation in the analyzed tissues. The overall results highlight the importance of cathelicidins in the immune response mechanisms of salmonids.
Collapse
Affiliation(s)
- Michela Furlan
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127, Trieste, Italy
| | - Umberto Rosani
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padova, Italy
| | - Stefano Gambato
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127, Trieste, Italy
| | - Paola Irato
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padova, Italy
| | - Amedeo Manfrin
- Fish Pathology Laboratory, Istituto Zooprofilattico delle Venezie, Via Romea 14/a, 35020 Legnaro, Padova, Italy
| | - Mario Mardirossian
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127, Trieste, Italy
| | - Paola Venier
- Department of Biology, University of Padova, Via U. Bassi, 58/B, 35121, Padova, Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127, Trieste, Italy
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127, Trieste, Italy
| |
Collapse
|
21
|
Shepherd BS, Spear AR, Philip AM, Leaman DW, Stepien CA, Sepulveda-Villet OJ, Palmquist DE, Vijayan MM. Effects of cortisol and lipopolysaccharide on expression of select growth-, stress- and immune-related genes in rainbow trout liver. FISH & SHELLFISH IMMUNOLOGY 2018; 74:410-418. [PMID: 29325711 DOI: 10.1016/j.fsi.2018.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
Many studies have shown that stress-induced cortisol levels negatively influence growth and immunity in finfish. Despite this knowledge, few studies have assessed the direct effects of cortisol on liver immune function. Using real-time PCR, the expression of three cortisol-responsive genes (GR: glucocorticoid receptor, IGF-1: insulin-like growth factor-I and SOCS-1: suppressor of cytokine signaling-I), genes involved with innate and adaptive immunity (IL-1β: interleukin-1 beta, IgM: immunoglobin-M and Lyz: lysozyme), and liver-specific antimicrobial peptides (hepcidin and LEAP-2A: liver-expressed antimicrobial peptide-2A) was studied in vitro using rainbow trout liver slices. The abundances of GR, SOCS-1 and IGF-1 mRNAs were suppressed by cortisol treatment. Abundance of IL-1β mRNA was upregulated by LPS and suppressed by cortisol treatment in a time-dependent manner. While abundance of IgM mRNA was suppressed by cortisol treatment and stimulated by LPS, there were no effects of cortisol or LPS on abundance of Lyz mRNA. Abundance of hepcidin and LEAP-2A mRNA levels were suppressed by cortisol treatment and stimulated by LPS. These results demonstrate that cortisol directly suppresses abundance of GR, IGF-1, IL-1β, IgM, hepcidin, LEAP-2A and SOCS-1 mRNA transcripts in the rainbow trout liver. We report for the first time, a suppressive effect of cortisol (within 8 h of treatment) on hepcidin and LEAP-2A mRNAs in rainbow trout liver, which suggests that acute stress may negatively affect liver immune function in rainbow trout.
Collapse
Affiliation(s)
- Brian S Shepherd
- USDA/ARS/School of Freshwater Sciences/University of Wisconsin-Milwaukee, 600 E. Greenfield Ave., Milwaukee, WI 53204, USA.
| | - Allyn R Spear
- USDA/ARS/School of Freshwater Sciences/University of Wisconsin-Milwaukee, 600 E. Greenfield Ave., Milwaukee, WI 53204, USA
| | - Anju M Philip
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Douglas W Leaman
- Department of Biological Sciences, The University of Toledo, 2801 W. Bancroft St., MS 601, Toledo, OH 43606, USA
| | - Carol A Stepien
- Great Lakes Genetics/Genomics Laboratory, Department of Environmental Sciences, The University of Toledo, Toledo, OH 43616, USA
| | - Osvaldo J Sepulveda-Villet
- School of Freshwater Sciences/University of Wisconsin-Milwaukee, 600 E. Greenfield Ave., Milwaukee, WI 53204, USA
| | - Debra E Palmquist
- USDA/ARS-Midwest Area Statistics Unit, 1815 N. Street, Peoria, IL 61604, USA
| | - Mathilakath M Vijayan
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
22
|
Carriero MM, Henrique-Silva F, Caetano AR, Lobo FP, Alves AL, Varela ES, Del Collado M, Moreira GSA, Maia AAM. Characterization and gene expression analysis of pacu (Piaractus mesopotamicus) inducible nitric oxide synthase (iNOS) following Aeromonas dhakensis infection. FISH & SHELLFISH IMMUNOLOGY 2018; 74:94-100. [PMID: 29277697 DOI: 10.1016/j.fsi.2017.12.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/01/2017] [Accepted: 12/16/2017] [Indexed: 06/07/2023]
Abstract
Nitric oxide (NO) is an important effector molecule which is involved in a myriad of biological processes, including immune responses against pathogens such as parasites, virus and bacteria. During the inflammatory processes in vertebrates, NO is produced by the inducible nitric oxide synthase (iNOS) enzyme in practically all nucleated cells to suppress or kill intracellular pathogens. The aim of the present study was to characterize the full coding region of the iNOS gene of pacu (Piaractus mesopotamicus), an economically and ecologically important South American fish species, and to analyze mRNA expression levels following intraperitoneal infection with the pathogenic bacterium Aeromonas dhakensis by means of quantitative real time PCR (qPCR). The results showed that the pacu iNOS transcript is 3237 bp in length, encoding a putative protein composed of 1078 amino acid residues. The amino acid sequence showed similarities ranging from 69.03% to 94.34% with other teleost fish and 57.70% with the human iNOS, with all characteristic domains and cofactor binding sites of the enzyme detected. Phylogenetic analysis showed that the iNOS from the red-bellied piranha, another South American characiform, was the closest related sequence to the pacu iNOS. iNOS transcripts were constitutively detected in the liver, spleen and head kidney, and there was a significant upregulation in the liver and spleen at 12, 24 and 48 h after infection with A. dhakensis. No significant variations were observed in the head kidney during the periods analyzed. These results show that iNOS expression was induced by A. dhakensis infection and suggest that this enzyme may be involved in the response to this bacterium in pacu.
Collapse
Affiliation(s)
- Mateus M Carriero
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil; Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil.
| | - Flávio Henrique-Silva
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | | | | | | | | - Maite Del Collado
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Gabriel S A Moreira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Antonio A M Maia
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
23
|
Chen M, Wang S, Liang X, Ma D, He L, Liu Y. Effect of Dietary Acidolysis-Oxidized Konjac Glucomannan Supplementation on Serum Immune Parameters and Intestinal Immune-Related Gene Expression of Schizothorax prenanti. Int J Mol Sci 2017; 18:E2558. [PMID: 29182557 PMCID: PMC5751161 DOI: 10.3390/ijms18122558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 11/22/2017] [Accepted: 11/26/2017] [Indexed: 11/28/2022] Open
Abstract
The present study was conducted to investigate the effects of dietary acidolysis-oxidized konjac glucomannan (A-OKGM) (0%, 0.4%, 0.8%, and 1.6%) supplementation on the immunity and expression of immune-related genes in Schizothorax prenanti. After feeding for eight weeks, the serum and guts were used for measurement of biochemical parameters, and immune-related gene expression in the gut were also analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). C-reactive protein and IgM levels were significantly higher in the A-OKGM fed groups than in the control group, regardless of the dosage. The 0.4% and 1.6% A-OKGM groups showed significant up-regulation of tumor necrosis factor α (TNFα) in the anterior gut. The 0.8% and 1.6% A-OKGM groups also showed significantly enhanced TNFα expression in the mid- and distal guts. Interleukin-1β (IL-1β) expression in the anterior gut of fish fed with 0.4% and 1.6% A-OKGM diets was significantly enhanced. The 0.8% and 1.6% A-OKGM diets resulted in significantly increased the expression of IL-1β in the distal gut. Similarly, the interleukin-6 (IL-6) messenger RNA (mRNA) levels in the 0.4% and 1.6% diet groups were significantly higher in the anterior gut. The 0.8% and 1.6% A-OKGM diet groups showed significant induction of IL-6 gene expression in the distal gut. A-OKGM modified from KGM can act as an immunostimulant to enhance the immunity of S. prenanti.
Collapse
Affiliation(s)
- Mingrui Chen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Shuyao Wang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Xue Liang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Donghui Ma
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Li He
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
24
|
Tian F, Tong C, Feng C, Wanghe K, Zhao K. Transcriptomic profiling of Tibetan highland fish (Gymnocypris przewalskii) in response to the infection of parasite ciliate Ichthyophthirius multifiliis. FISH & SHELLFISH IMMUNOLOGY 2017; 70:524-535. [PMID: 28882799 DOI: 10.1016/j.fsi.2017.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/26/2017] [Accepted: 09/01/2017] [Indexed: 06/07/2023]
Abstract
Gymnocypris przewalskii is a native cyprinid in the Lake Qinghai of the Qinghai-Tibetan Plateau. G. przewalskii is highly susceptible to the infection of a parasite, Ichthyophthirius multifiliis, in the artificial propagation and breeding. To better understand the host immune reaction to I. multifiliis infection, we characterize the gene expression profiles in the spleen of healthy and I. multifiliis infected G. przewalskii by RNA-seq. Totally, the transcriptomic analysis produces 463,031,110 high quality reads, which are assembled to 213,538 genes with N50 of 1918 bp and the average length of 1205 bp. Of assembled genes, 90.52% are annotated by public databases. The expression analysis shows 744 genes are significantly changed by the infection of I. multifiliis, which are validated by qRT-PCR with the correlation coefficient of 0.896. The differentially expressed genes are classified into 689 GO terms and 230 KEGG pathways, highlighting the promoted innate immunity in I. multifiliis infected G. przewalskii at 2 days post infection. Our results pinpoint that the up-regulated genes are enriched in TLR signaling pathway, inflammatory response and activation of immune cell migration. On the contrary, complement genes are down-regulated, indicating the evasion of host complement cascades by I. multifiliis. The repressed genes are also enriched in the pathways related to metabolism and endocrine, suggesting the metabolic disturbance in I. multifiliis treated G. przewalskii. In summary, the present study profiles the gene expression signature of G. przewalskii in the responses to I. multifiliis infection, and improves our understanding on molecular mechanisms of host-parasite interaction in G. przewalskii, which focuses the crucial function of TLRs, cytokines and complement components in the host defense against I. multifiliis.
Collapse
Affiliation(s)
- Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; Qinghai Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China
| | - Chao Tong
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; Qinghai Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chenguang Feng
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; Qinghai Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kunyuan Wanghe
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; Qinghai Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; Laboratory of Plateau Fish Evolutionary and Functional Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China; Qinghai Key Laboratory of Animal Ecological Genomics, Xining, Qinghai, China.
| |
Collapse
|
25
|
Moreira GSA, Shoemaker CA, Zhang D, Xu DH. Expression of immune genes in skin of channel catfish immunized with live theronts of Ichthyophthirius multifiliis. Parasite Immunol 2017; 39. [PMID: 27801984 DOI: 10.1111/pim.12397] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023]
Abstract
The objective of this study was to evaluate differential expression of innate and adaptive immune genes, including immunoglobulin, immune cell receptor, cytokine, inflammatory protein, toll-like receptors (TLR) and recombination-activating gene (RAG) in skin from channel catfish, Ictalurus punctatus after immunization with live theronts of Ichthyophthirius multifiliis (Ich) by intraperitoneal injection. The immunized catfish showed significantly higher survival rate (95%) than those of mock-immunized control fish (0% survival) after the theront challenge. The gene expression of innate immune system, such as cytokines (IL-1β type a, IL-1β type b, IFN-γ, TGF1-β and TNF-α) and inflammatory proteins (NF-kB and iNOS 2), showed significant upregulation at day 1 (D1) post-immunization. Expression of TLR genes exhibited a rapid increase from hour 4 (h4) to D10 post-immunization. Genes of the adaptive response, such as the cell receptor MHC I, CD8+ , CD4+ and TCR-α, showed upregulation at D1, D6 and D10. The TCR-β expression increased rapidly at h4 and remained upregulated until D10. Immunoglobulin IgM upregulation was detected from h4 until D2 while IgD expression was increased from D1 until D10. Rapid upregulation of innate and adaptive immune genes in skin of catfish following live theront vaccination was demonstrated in this study ultimately resulting in significant protection against Ich infection.
Collapse
Affiliation(s)
- G S A Moreira
- Laboratory of Parasitology, College of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, Brazil
| | - C A Shoemaker
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, USA
| | - D Zhang
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, USA
| | - D-H Xu
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, USA
| |
Collapse
|
26
|
Xu DH, Moreira GSA, Shoemaker CA, Zhang D, Beck BH. Expression of immune genes in systemic and mucosal immune tissues of channel catfish vaccinated with live theronts of Ichthyophthirius multifiliis. FISH & SHELLFISH IMMUNOLOGY 2017; 66:540-547. [PMID: 28546022 DOI: 10.1016/j.fsi.2017.05.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
Ichthyophthiriasis caused by Ichthyophthirius multifiliis (Ich) has a worldwide distribution and affects most freshwater fishes. Fish surviving natural infection and/or immunized with Ich develop strong innate and adaptive immune responses. However, there is a lack of the knowledge regarding immune gene expression patterns in systemic and mucosal immune tissues, and how immune genes interact and lead to innate and adaptive immune protection against Ich infection in fish. The objective of this study was to investigate the expression of innate and adaptive immune-related genes in systemic (liver, spleen) and mucosal (gill, intestine) tissues of channel catfish over time following vaccination with live Ich theronts. The vaccinated fish showed significantly higher antibody titers and survival (95%) than those of mock immunized fish. Expression of IgM and IgD heavy chain genes exhibited a rapid increase from 4 h (h4) to 2 days (d2) post-vaccination in systemic immune tissues. Immune cell receptor genes (CD4, CD8-α, MHC I, MHC II β, TcR-α, and TcR-β) were more highly upregulated and remained upregulated for longer duration in systemic tissues than in mucosal tissues of the vaccinated fish. The cytokine genes IL-1βa and IFN-γ were rapidly upregulated in both systemic and mucosal tissues of vaccinated fish, with peak expression from h4 to d1 post-vaccination. Toll-like receptor genes TLR-1 and TLR-9 showed relatively stable upregulation in the gill of immunized fish following vaccination. Results of this study revealed the molecular immune responses in mucosal and systemic tissues of vaccinated fish and demonstrated that Ich vaccination resulted in innate and adaptive immune responses against Ich infection.
Collapse
Affiliation(s)
- De-Hai Xu
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832-4352, USA.
| | - Gabriel S A Moreira
- Laboratory of Parasitology, College of Animal Science and Food Engineering, University of Sao Paulo (USP), Av. Duque de Caxias Norte, 225, 13635-900, Pirassununga, SP, Brazil
| | - Craig A Shoemaker
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832-4352, USA
| | - Dunhua Zhang
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832-4352, USA
| | - Benjamin H Beck
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832-4352, USA
| |
Collapse
|
27
|
Banerjee G, Ray AK. The advancement of probiotics research and its application in fish farming industries. Res Vet Sci 2017; 115:66-77. [PMID: 28157611 DOI: 10.1016/j.rvsc.2017.01.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 01/16/2017] [Accepted: 01/20/2017] [Indexed: 12/11/2022]
Abstract
Fish are always susceptible to a variety of lethal diseases caused by different types of bacterial, fungal, viral and parasitic agents. The unscientific management practises such as, over feeding, high stock densities and destructive fishing techniques increase the probability of disease symptoms in aquaculture industries. According to Food and Agriculture Association (FAO), each and every year several countries such as China, India, Norway, Indonesia, etc. face a huge loss in aquaculture production due to mainly bacterial and viral diseases. The use of antibiotics is a common practise in fish farming sectors to control the disease outbreak. However, the antibiotics are not long term friend because it creates selective pressure for emergence of drug resistant bacteria. Probiotics are live microorganisms that confer several beneficial effects to host (enhances immunity, helps in digestion, protects from pathogens, improves water quality, promotes growth and reproduction) and can be used as an alternative of antibiotics. In recent year, a wide range of bacteria have reported as potential probiotics candidates in fish farming sectors, however, Lactobacillus sp. and Bacillus sp. gain special attention due to their high antagonistic activities, extracellular enzyme production and availability. In this present review, we have summarized the recent advancement in aquaculture probiotics research and its impact on fish health, nutrition, immunity, reproduction and water quality.
Collapse
Affiliation(s)
- Goutam Banerjee
- Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal 731235, India; Center for Nature Conservation and Biosafety (CNCB Pvt. Ltd.; cncb.co.in), Cuttack, Odisha 754132, India.
| | - Arun Kumar Ray
- Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal 731235, India
| |
Collapse
|
28
|
Santana PA, Guzmán F, Forero JC, Luna OF, Mercado L. Hepcidin, Cathelicidin-1 and IL-8 as immunological markers of responsiveness in early developmental stages of rainbow trout. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 62:48-57. [PMID: 27106706 DOI: 10.1016/j.dci.2016.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/15/2016] [Accepted: 04/15/2016] [Indexed: 06/05/2023]
Abstract
During the early developmental stage of salmonids, high mortality occurs largely as a result of pathogens. These cause low immune competence in fry, producing disease, decreasing production and finally leading to economic losses. Therefore, the aim of this study was to characterise the developmental stages in which rainbow trout acquires immune response capability when challenged with LPS from Pseudomona aeruginosa for 8 h, studying the hepcidin, cathelicidin-1 and IL-8. Total RNA was extracted from fry at 34, 42, 56 and 66 days post hatching (dph). Hepcidin and cathelicidin-1 transcripts were detected only at days 34 and 42, whereas the IL-8 transcript was detected from day 34 to day 66. To analyse the protein expression in the fry, polyclonal anti-peptide antibodies were generated in rabbit. These three immune sera demonstrated the ability to recognise the whole molecule in biological samples. Immunofluorescence showed that skin, gills and intestine mainly responded to the LPS challenge, indicating that these portals of pathogen entry are capturing LPS. This study constitutes a valuable approach, since it has the potential to identify molecules with biological activity that can be used to evaluate the status of fry in culture.
Collapse
Affiliation(s)
- Paula A Santana
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Programa de Doctorado en Biotecnología Pontificia Universidad Católica de Valparaíso/Universidad Técnica Federico Santa María, Valparaíso, Chile; Núcleo Biotecnológico de Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Fanny Guzmán
- Núcleo Biotecnológico de Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Juan C Forero
- Programa de Doctorado en Biotecnología Pontificia Universidad Católica de Valparaíso/Universidad Técnica Federico Santa María, Valparaíso, Chile.
| | - Omar F Luna
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile; Núcleo Biotecnológico de Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Luis Mercado
- Grupo de Marcadores Inmunológicos, Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
29
|
Zhang CN, Zhang JL, Liu WB, Wu QJ, Gao XC, Ren HT. Cloning, characterization and mRNA expression of interleukin-6 in blunt snout bream (Megalobrama amblycephala). FISH & SHELLFISH IMMUNOLOGY 2016; 54:639-647. [PMID: 26965748 DOI: 10.1016/j.fsi.2016.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 06/05/2023]
Abstract
In the present study, the interleukin-6 gene (IL-6) cDNA in blunt snout bream (Megalobrama amblycephala) was identified and its expression profiles under ammonia stress and bacterial challenge were investigated. The IL-6 sequence consisted of 1045 bp, including a 696 bp ORF which translated into a 232 amino acid (AA) protein. The protein contained a putative signal peptide of 24 AA in length. IL-6 expression analysis showed that the it is differentially expressed in various tissues under normal conditions and the highest IL-6 level was observed in the intestine tissue, followed by the liver, and then in the gills. Under ammonia stress, the IL-6 mRNA level both in spleens and intestine increased significantly (P < 0.05), with the maximum levels attained at 6 h, 12 h (72, 10-fold, respectively). Thereafter, they all significantly decreased (P < 0.01) and returned to the basal value within 48 h. Whereas, in livers it slightly decreased at 3 h firstly (0.5-fold), and then significantly (P < 0.05) increased with the maximum level attained 12 h (3-fold). Further expression analysis showed that the mRNA level of IL-6 in spleens, intestine and livers of blunt snout bream all increased significantly (P < 0.05), with maximum values attained at 6 h, 3 h, 6 h (10, 6, 18-fold, respectively) after Aeromonas hydrophila (A. hydrophila) injection, and then decreased to the basal value within 24 h which suggested that IL-6 was involved in the immune response to A. hydrophila. The cloning and expression analysis of the IL-6 provide theoretical basis to further study the mechanism of anti-adverseness and expression characteristics under stress conditions in blunt snout bream.
Collapse
Affiliation(s)
- Chun-Nuan Zhang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, PR China.
| | - Ji-Liang Zhang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, PR China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, PR China
| | - Qiu-Jue Wu
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, PR China
| | - Xiao-Chan Gao
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, PR China
| | - Hong-Tao Ren
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang 471003, PR China
| |
Collapse
|
30
|
Xu DH, Zhang QZ, Shoemaker CA, Zhang D, Moreira GSA. Molecular immune response of channel catfish immunized with live theronts of Ichthyophthirius multifiliis. FISH & SHELLFISH IMMUNOLOGY 2016; 54:86-92. [PMID: 27044331 DOI: 10.1016/j.fsi.2016.03.166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
The parasite Ichthyophthirius multifiliis (Ich) has been reported in various freshwater fishes worldwide and results in severe losses to both food and aquarium fish production. The fish surviving natural infections or immunized with live theronts develop strong specific and non-specific immune responses. Little is known about how these immune genes are induced or how they interact and lead to specific immunity against Ichthyophthirius multifiliis in channel catfish Ictalurus punctatus. This study evaluated the differential expression of immune-related genes, including immunoglobulin, immune cell receptor, cytokine, complement factor and toll-like receptors in head kidney from channel catfish at different time points after immunization with live theronts of I. multifiliis. The immunized fish showed significantly higher anti-Ich antibody expressed as immobilization titer and ELISA titer than those of control fish. The vast majority of immunized fish (95%) survived theront challenge. Expression of IgM and IgD heavy chain genes exhibited a rapid increase from 4 hour (h4) to 2 days (d2) post immunization. Expression of immune cell receptor genes (CD4, CD8-α, MHC I, MHC II β, TcR-α, and TcR-β) showed up-regulation from h4 to d6 post immunization, indicating that different immune cells were actively involved in cellular immune response. Cytokine gene expression (IL-1βa, IL-1βb, IFN-γ and TNF-α) increased rapidly at h4 post immunization and were at an up-regulated level until d2 compared to the bovine serum albumin control. Expression of complement factor and toll-like receptor genes exhibited a rapid increase from h4 to d2 post immunization. Results of this study demonstrated differential expression of genes involved in the specific or non-specific immune response post immunization and that the vaccination against Ich resulted in protection against infection by I. multifiliis.
Collapse
Affiliation(s)
- De-Hai Xu
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL 36832-4352, USA.
| | - Qi-Zhong Zhang
- Institute of Hydrobiology, Jinan University, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Guangzhou 510632, PR China
| | - Craig A Shoemaker
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL 36832-4352, USA
| | - Dunhua Zhang
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL 36832-4352, USA
| | - Gabriel S A Moreira
- Laboratory of Parasitology, College of Animal Science and Food Engineering, University of Sao Paulo (USP), Av. Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP, Brazil
| |
Collapse
|
31
|
Ronza P, Bermúdez R, Losada AP, Sitjà-Bobadilla A, Pardo BG, Quiroga MI. Immunohistochemical detection and gene expression of TNFα in turbot (Scophthalmus maximus) enteromyxosis. FISH & SHELLFISH IMMUNOLOGY 2015; 47:368-376. [PMID: 26386194 DOI: 10.1016/j.fsi.2015.09.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/29/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
Enteromyxum scophthalmi (Myxozoa) constitutes one of the most devastating pathogens for turbot (Scophthalmus maximus, L.) aquaculture. This parasite causes a severe intestinal parasitosis that leads to a cachectic syndrome with high morbidity and mortality rates for which no therapeutic options are available. Presence of inflammatory infiltrates, increased apoptotic rates and epithelial detaching have been described at intestinal level, as well as leukocyte depletion in lymphohaematopoietic organs. Previous investigations on enteromyxosis in turbot showed the high susceptibility of this species to the parasite and reported the existence of a dysregulated immune response against the parasite. The pleiotropic cytokine tumour necrosis factor alpha (TNFα) plays a major role in immune response and is involved in a wide range of biological activities. In teleost, the gene expression of this cytokine has been found regulated under several pathological conditions. Teleost TNFα shows some analogous functions with its mammalian counterparts, but the extent of its activities is still poorly understood. Cytokines are generally considered as a double-edge sword and TNFα has been implicated in the pathogenesis of different inflammatory diseases as well as in wasting syndromes described in mammals. The aim of this work was to analyse the expression of TNFα during enteromyxosis with molecular (Q-PCR) and morphological (immunohistochemistry) tools. Kidney, spleen and pyloric caeca from turbot with moderate and severe infections were analysed and compared to healthy naïve fish. TNFα expression was increased in both spleen and kidney in the earlier stages of the disease, whereas in severely infected fish, the expression decreased, especially in kidney. At the intestinal level, an increase in the number of TNFα-positive cells was noticed, which was proportional to the infiltration of inflammatory cells. The results demonstrate the involvement of TNFα in the immune response to E. scophthalmi in turbot, which could be related to the development of the clinic signs and lesions.
Collapse
Affiliation(s)
- Paolo Ronza
- Departamento de Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| | - Roberto Bermúdez
- Departamento de Anatomía y Producción Animal, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| | - Ana Paula Losada
- Departamento de Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| | - Ariadna Sitjà-Bobadilla
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, Castellón 12595, Spain.
| | - Belén G Pardo
- Departamento de Genética, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| | - María Isabel Quiroga
- Departamento de Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002, Lugo, Spain.
| |
Collapse
|
32
|
Katzenback BA. Antimicrobial Peptides as Mediators of Innate Immunity in Teleosts. BIOLOGY 2015; 4:607-39. [PMID: 26426065 PMCID: PMC4690011 DOI: 10.3390/biology4040607] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/16/2015] [Accepted: 09/17/2015] [Indexed: 12/16/2022]
Abstract
Antimicrobial peptides (AMPs) have been identified throughout the metazoa suggesting their evolutionarily conserved nature and their presence in teleosts is no exception. AMPs are short (18–46 amino acids), usually cationic, amphipathic peptides. While AMPs are diverse in amino acid sequence, with no two AMPs being identical, they collectively appear to have conserved functions in the innate immunity of animals towards the pathogens they encounter in their environment. Fish AMPs are upregulated in response to pathogens and appear to have direct broad-spectrum antimicrobial activity towards both human and fish pathogens. However, an emerging role for AMPs as immunomodulatory molecules has become apparent—the ability of AMPs to activate the innate immune system sheds light onto the multifaceted capacity of these small peptides to combat pathogens through direct and indirect means. Herein, this review focuses on the role of teleost AMPs as modulators of the innate immune system and their regulation in response to pathogens or other exogenous molecules. The capacity to regulate AMP expression by exogenous factors may prove useful in modulating AMP expression in fish to prevent disease, particularly in aquaculture settings where crowded conditions and environmental stress pre-dispose these fish to infection.
Collapse
Affiliation(s)
- Barbara A Katzenback
- Department of Biology, University of Waterloo, 200 University Ave West, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
33
|
Munang'andu HM, Mutoloki S, Evensen Ø. A Review of the Immunological Mechanisms Following Mucosal Vaccination of Finfish. Front Immunol 2015; 6:427. [PMID: 26379665 PMCID: PMC4547047 DOI: 10.3389/fimmu.2015.00427] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/06/2015] [Indexed: 11/13/2022] Open
Abstract
Mucosal organs are principle portals of entry for microbial invasion and as such developing protective vaccines against these pathogens can serve as a first line of defense against infections. In general, all mucosal organs in finfish are covered by a layer of mucus whose main function is not only to prevent pathogen attachment by being continuously secreted and sloughing-off but it serves as a vehicle for antimicrobial compounds, complement, and immunoglobulins that degrade, opsonize, and neutralize invading pathogens on mucosal surfaces. In addition, all mucosal organs in finfish possess antigen-presenting cells (APCs) that activate cells of the adaptive immune system to generate long-lasting protective immune responses. The functional activities of APCs are orchestrated by a vast array of proinflammatory cytokines and chemokines found in all mucosal organs. The adaptive immune system in mucosal organs is made of humoral immune responses that are able to neutralize invading pathogens as well as cellular-mediated immune responses whose kinetics are comparable to those induced by parenteral vaccines. In general, finfish mucosal immune system has the capacity to serve as the first-line defense mechanism against microbial invasion as well as being responsive to vaccination.
Collapse
Affiliation(s)
- Hetron Mweemba Munang'andu
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences , Oslo , Norway
| | - Stephen Mutoloki
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences , Oslo , Norway
| | - Øystein Evensen
- Section of Aquatic Medicine and Nutrition, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences , Oslo , Norway
| |
Collapse
|
34
|
The Mucosal Immune System of Teleost Fish. BIOLOGY 2015; 4:525-39. [PMID: 26274978 PMCID: PMC4588148 DOI: 10.3390/biology4030525] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/05/2015] [Accepted: 08/05/2015] [Indexed: 01/08/2023]
Abstract
Teleost fish possess an adaptive immune system associated with each of their mucosal body surfaces. Evidence obtained from mucosal vaccination and mucosal infection studies reveal that adaptive immune responses take place at the different mucosal surfaces of teleost. The main mucosa-associated lymphoid tissues (MALT) of teleosts are the gut-associated lymphoid tissue (GALT), skin-associated lymphoid tissue (SALT), the gill-associated lymphoid tissue (GIALT) and the recently discovered nasopharynx-associated lymphoid tissue (NALT). Teleost MALT includes diffuse B cells and T cells with specific phenotypes different from their systemic counterparts that have co-evolved to defend the microbe-rich mucosal environment. Both B and T cells respond to mucosal infection or vaccination. Specific antibody responses can be measured in the gills, gut and skin mucosal secretions of teleost fish following mucosal infection or vaccination. Rainbow trout studies have shown that IgT antibodies and IgT(+) B cells are the predominant B cell subset in all MALT and respond in a compartmentalized manner to mucosal infection. Our current knowledge on adaptive immunity in teleosts is limited compared to the mammalian literature. New research tools and in vivo models are currently being developed in order to help reveal the great intricacy of teleost mucosal adaptive immunity and help improve mucosal vaccination protocols for use in aquaculture.
Collapse
|
35
|
Zante MD, Borchel A, Brunner RM, Goldammer T, Rebl A. Cloning and characterization of the proximal promoter region of rainbow trout (Oncorhynchus mykiss) interleukin-6 gene. FISH & SHELLFISH IMMUNOLOGY 2015; 43:249-256. [PMID: 25549935 DOI: 10.1016/j.fsi.2014.12.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 06/04/2023]
Abstract
Interleukin-6 (IL6) is a pleiotropic cytokine with important immunoregulatory functions. Its expression is inducible in immune cells and tissues of several fish species. We also found that IL6 mRNA abundance was significantly increased in spleen, liver, and gill of rainbow trout after experimental infection with Aeromonas salmonicida. Genomic DNA sequences of IL6 orthologs from three salmonid species revealed a conserved exon/intron structure and a high overall nucleotide identity of >88%. To uncover key mechanisms regulating IL6 expression in salmonid fish, we amplified a fragment of the proximal IL6 promoter from rainbow trout and identified in-silico conserved binding sites for NF-κB and CEBP. The activity of this IL6 promoter fragment was analyzed in the established human embryonic kidney line HEK-293. Luciferase- and GFP-based reporter systems revealed that the proximal IL6 promoter is activated by Escherichia coli. Essentially, both reporter systems proved that NF-κB p50, but not NF-κB p65 or CEBP, activates the IL6 promoter fragment. Truncation of this fragment caused a significant decrease in IL6 promoter activation. This characterization of the proximal promoter of the IL6-encoding gene provides basic knowledge about the IL6 gene expression in rainbow trout.
Collapse
Affiliation(s)
- Merle D Zante
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Andreas Borchel
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Ronald M Brunner
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
36
|
Krasnov A, Wesmajervi Breiland MS, Hatlen B, Afanasyev S, Skugor S. Sexual maturation and administration of 17β-estradiol and testosterone induce complex gene expression changes in skin and increase resistance of Atlantic salmon to ectoparasite salmon louse. Gen Comp Endocrinol 2015; 212:34-43. [PMID: 25599658 DOI: 10.1016/j.ygcen.2015.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/25/2014] [Accepted: 01/10/2015] [Indexed: 12/29/2022]
Abstract
The crustacean ectoparasitic salmon louse (Lepeophtheirus salmonis) is a major problem of Atlantic salmon aquaculture in the Northern hemisphere. Host-pathogen interactions in this system are highly complex. Resistance to the parasite involves variations in genetic background, nutrition, properties of skin, and status of the endocrine and immune systems. This study addressed the relationship between sex hormones and lice infection. Field observation revealed a sharp reduction of lice prevalence during sexual maturation with no difference between male and female fish. To determine if higher resistance against lice was related to sex hormones, post-smolt salmon were administered control feed and feeds containing 17β-estradiol (20 mg/kg) and testosterone (25 mg/kg) during a 3-week pre-challenge period. After challenge with lice, counts were reduced 2-fold and 1.5-fold in fish that received 17β-estradiol and testosterone, respectively. Gene expression analyses were performed from skin of salmon collected in the field trial and from the controlled lab experiment at three time points (end of feeding-before challenge, 3 days post challenge (dpc) and 16 dpc) using oligonucleotide microarray and qPCR. Differential expression was observed in genes associated with diverse biological processes. Both studies revealed similar changes of several antibacterial acute phase proteins; of note was induction of cathelicidin and down-regulation of a defensin gene. Treatment with hormones revealed their ability to modulate T helper cell (Th)-mediated immunity in skin. Enhanced protection achieved by 17β-estradiol administration might in part be due to the skewing of Th responses away from the prototypic anti-parasitic Th2 immunity and towards the more effective Th1 responses. Multiple genes involved in wound healing, differentiation and remodelling of skin tissue were stimulated during maturation but suppressed with sex hormones. Such opposite regulation suggested that these processes were not associated with resistance to the parasite under the studied conditions. Both studies revealed regulation of a suite of genes encoding putative large mucosal proteins found exclusively in fish. Marked decrease of erythrocyte markers indicated reduced circulation while down-regulation of multiple zymogen granule membrane proteins and transporters of cholesterol and other compounds suggested limited availability of nutrients for the parasites.
Collapse
Affiliation(s)
| | | | | | - Sergey Afanasyev
- Nofima AS, PO Box 6122, NO-9291 Tromsø, Norway; Sechenov Institute of Evolutionary Physiology and Biochemistry, M. Toreza av. 44, Peterburg 194223, Russia.
| | - Stanko Skugor
- SLRC-Sea Lice Research Center, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Box 8146, NO-0033 Oslo, Norway.
| |
Collapse
|
37
|
Zhao F, Li YW, Pan HJ, Shi CB, Luo XC, Li AX, Wu SQ. TAK1-binding proteins (TAB1 and TAB2) in grass carp (Ctenopharyngodon idella): identification, characterization, and expression analysis after infection with Ichthyophthirius multifiliis. FISH & SHELLFISH IMMUNOLOGY 2014; 38:389-399. [PMID: 24747054 DOI: 10.1016/j.fsi.2014.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 06/03/2023]
Abstract
Transforming growth factor-β activated kinase-1 (TAK1) is a key regulatory molecule in toll-like receptor (TLR), interleukin-1 (IL-1), and tumor necrosis factor (TNF) signaling pathways. The activation of TAK1 is specifically regulated by two TAK1-binding proteins, TAB1 and TAB2. However, the roles of TAB1 and TAB2 in fish have not been reported to date. In the present study, TAB1 (CiTAB1) and TAB2 (CiTAB2) in grass carp (Ctenopharyngodon idella) were identified and characterized, and their expression profiles were analyzed after fish were infected with the pathogenic ciliate Ichthyophthirius multifiliis. The full-length CiTAB1 cDNA is 1949 bp long with an open reading frame (ORF) of 1497 bp that encodes a putative protein of 498 amino acids containing a typical PP2Cc domain. The full-length CiTAB2 cDNA is 2967 bp long and contains an ORF of 2178 bp encoding a putative protein of 725 amino acids. Protein structure analysis revealed that CiTAB2 consists of three main structural domains: an N-terminal CUE domain, a coiled-coil domain, and a C-terminal ZnF domain. Multiple sequence alignment showed that CiTAB1 and CiTAB2 share high sequence identity with other known TAB1 and TAB2 proteins, and several conserved phosphorylation sites and an O-GlcNAc site were deduced in CiTAB1. Phylogenetic tree analysis demonstrated that CiTAB1 and CiTAB2 have the closest evolutionary relationship with TAB1 and TAB2 of Danio rerio, respectively. CiTAB1 and CiTAB2 were both widely expressed in all examined tissues with the highest levels in the heart and liver, respectively. After infection with I. multifiliis, the expressions of CiTAB1 and CiTAB2 were both significantly up-regulated in all tested tissues at most time points, which indicates that these proteins may be involved in the host immune response against I. multifiliis infection.
Collapse
Affiliation(s)
- Fei Zhao
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yan-Wei Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Hou-Jun Pan
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| | - Cun-Bin Shi
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China
| | - Xiao-Chun Luo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, PR China
| | - An-Xing Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Shu-Qin Wu
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, PR China.
| |
Collapse
|
38
|
Heinecke RD, Chettri JK, Buchmann K. Adaptive and innate immune molecules in developing rainbow trout, Oncorhynchus mykiss eggs and larvae: expression of genes and occurrence of effector molecules. FISH & SHELLFISH IMMUNOLOGY 2014; 38:25-33. [PMID: 24561127 DOI: 10.1016/j.fsi.2014.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 02/12/2014] [Accepted: 02/14/2014] [Indexed: 06/03/2023]
Abstract
The ontogenetic development of the immune system was studied during the egg phase and the early post-hatch period of rainbow trout. Quantitative real-time PCR (qPCR) was used to assess the timing and degree of expression of 9 important immune relevant genes and EF1-α. Further, immunohistochemical staining using monoclonal antibodies was applied on rainbow trout embryos and larvae in order to localize five different protein molecules (MHCII, CD8, IgM, IgT and SAA) in the developing tissue and immune organs. Maternally transferred transcripts of EF1-α mRNA were detected in the unfertilized egg. Early onset of expression was seen for all immune genes at very low levels. The amount of mRNA slowly increased and peaked around and after hatching. The highest increases were seen for MHCII, C3, C5 and SAA. Immunohistochemistry using five monoclonal antibodies showed positive staining from day 84 post fertilization. Skin, gills, intestine, pseudobranch and thymus showed reactivity for MHCII, thymus for CD8, gill mucus for IgT and pseudobranch and cartilage associated tissue for SAA. The importance of detected factors for early protection of eggs and larvae is discussed.
Collapse
Affiliation(s)
- Rasmus D Heinecke
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 7, DK-1870 Frederiksberg C, Denmark.
| | - Jiwan K Chettri
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 7, DK-1870 Frederiksberg C, Denmark.
| | - Kurt Buchmann
- Laboratory of Aquatic Pathobiology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 7, DK-1870 Frederiksberg C, Denmark.
| |
Collapse
|
39
|
Dickerson HW, Findly RC. Immunity to Ichthyophthirius infections in fish: a synopsis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:290-299. [PMID: 23810781 DOI: 10.1016/j.dci.2013.06.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 06/02/2023]
Abstract
Ichthyophthirius multifiliis is a ciliated protozoan parasite that infects freshwater fish. It has been the subject of both applied and basic research for over 100years, which can be attributed to its world-wide distribution and its significant economic impact on both food and aquarium fish production. I. multifiliis serves as a model for studies in fish on innate and acquired immunity, as well as on mucosal immunity. Although an obligate parasite, I. multifiliis is relatively easily passaged from infected to naïve fish in laboratory aquaria, and is easily observed and manipulated under laboratory conditions. It parasitizes the epithelia of the skin and gills, which facilitates in vivo experimentation and quantification of challenge. This review provides a description of both mucosal and systemic innate and adaptive immune responses to parasite infection, a synopsis of host-parasite immunobiology, vaccine research, and suggested areas for future research to address critical remaining questions. Studies in carp and rainbow trout have shown that extensive tissue damage occurs when the parasite invades the epithelia of the skin and gills and substantial focal and systemic inflammatory responses are elicited by the innate immune response. The adaptive immune response is initiated when phagocytic cells are activated by antigens released by the parasite. It is not known whether activated T and B cells proliferate locally in the skin and gills following infection or migrate to these sites from the spleen or anterior kidney. I. multifiliis infection elicits both mucosal and systemic antibody production. Fish that survive I. multifiliis infection acquire protective immunity. Memory B cells provide long-term humoral memory. This suggests that protective vaccines are theoretically possible, and substantial efforts have been made toward developing vaccines in various fish species. Exposure of fish to controlled surface infections or by intracoelomic injection of live theronts provides protection. Vaccination with purified immobilization antigens, which are GPI-anchored membrane proteins, also provides protection under laboratory conditions and immobilization antigens are currently the most promising candidates for subunit vaccines against I. multifiliis.
Collapse
Affiliation(s)
- H W Dickerson
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, United States
| | - R C Findly
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA 30602, United States
| |
Collapse
|
40
|
Nowak B, Valdenegro-Vega V, Crosbie P, Bridle A. Immunity to amoeba. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:257-267. [PMID: 23921258 DOI: 10.1016/j.dci.2013.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/02/2013] [Accepted: 07/28/2013] [Indexed: 06/02/2023]
Abstract
Amoebic infections in fish are most likely underestimated and sometimes overlooked due to the challenges associated with their diagnosis. Amoebic diseases reported in fish affect either gills or internal organs or may be systemic. Host response ranges from hyperplastic response in gill infections to inflammation (including granuloma formation) in internal organs. This review focuses on the immune response of Atlantic salmon to Neoparamoeba perurans, the causative agent of Amoebic Gill Disease (AGD).
Collapse
Affiliation(s)
- Barbara Nowak
- NCMCRS, AMC, University of Tasmania, Launceston, Tasmania, Australia.
| | | | - Philip Crosbie
- NCMCRS, AMC, University of Tasmania, Launceston, Tasmania, Australia
| | - Andrew Bridle
- NCMCRS, AMC, University of Tasmania, Launceston, Tasmania, Australia
| |
Collapse
|